1
|
Osorio-Perez RM, Rodríguez-Manzo G, Espinosa-Riquer ZP, Cruz SL, González-Espinosa C. Endocannabinoid modulation of allergic responses: Focus on the control of FcεRI-mediated mast cell activation. Eur J Cell Biol 2023; 102:151324. [PMID: 37236045 DOI: 10.1016/j.ejcb.2023.151324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Allergic reactions are highly prevalent pathologies initiated by the production of IgE antibodies against harmless antigens (allergens) and the activation of the high-affinity IgE receptor (FcεRI) expressed in the surface of basophils and mast cells (MCs). Research on the mechanisms of negative control of those exacerbated inflammatory reactions has been intense in recent years. Endocannabinoids (eCBs) show important regulatory effects on MC-mediated immune responses, mainly inhibiting the production of pro-inflammatory mediators. However, the description of the molecular mechanisms involved in eCB control of MC activation is far from complete. In this review, we aim to summarize the available information regarding the role of eCBs in the modulation of FcεRI-dependent activation of that cell type, emphasizing the description of the eCB system and the existence of some of its elements in MCs. Unique characteristics of the eCB system and cannabinoid receptors (CBRs) localization and signaling in MCs are mentioned. The described and putative points of cross-talk between CBRs and FcεRI signaling cascades are also presented. Finally, we discuss some important considerations in the study of the effects of eCBs in MCs and the perspectives in the field.
Collapse
Affiliation(s)
- Rubi Monserrat Osorio-Perez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Zyanya P Espinosa-Riquer
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Silvia L Cruz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico.
| |
Collapse
|
2
|
Azarova I, Klyosova E, Polonikov A. Association between RAC1 gene variation, redox homeostasis and type 2 diabetes mellitus. Eur J Clin Invest 2022; 52:e13792. [PMID: 35416295 DOI: 10.1111/eci.13792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Increased production of reactive oxygen species (ROS) and oxidative stress are known to play a key role in the pathogenesis of type 2 diabetes (T2D); however, the relationship between genes encoding a multi-subunit ROS-generated enzyme NADPH oxidase and disease susceptibility remains unexplored. AIMS The present pilot study investigated whether single-nucleotide polymorphisms (SNP) at the RAC1 gene (Rac family small GTPase 1), a molecular switcher of NADPH oxidase, are associated with the risk of T2D, glucose metabolism and redox homeostasis. MATERIALS & METHODS DNA samples from 3206 unrelated Russian subjects (1579 T2D patients and 1627 controls) were genotyped for six common SNPs rs4724800, rs7784465, rs10951982, rs10238136, rs836478 and rs9374 of RAC1 using the MassArray-4 system. RESULTS SNP rs7784465 was associated with an increased risk of T2D (p = .0003), and significant differences in the RAC1 haplotypes occurred between the cases and controls (p = .005). Seventeen combinations of RAC1 genotypes showed significant associations with T2D risk (FDR <0.05). Associations of RAC1 polymorphisms with T2D were modified by environmental factors such as sedentary lifestyle, psychological stresses, a dietary deficit of fresh fruits/vegetables and increased carbohydrate intake. RAC1 polymorphisms were associated with biochemical parameters in diabetics: rs7784465 (p = .015) and rs836478 (p = .028) with increased glycated haemoglobin, rs836478 (p = .005) with increased fasting blood glucose, oxidized glutathione (p = .012) and uric acid (p = .034). Haplotype rs4724800A-rs7784465C-rs10951982G-rs10238136A-rs836478C-rs9374G was strongly associated with increased levels of hydrogen peroxide (p < .0001). CONCLUSION Thus, polymorphisms in the RAC1 gene represent novel genetic markers of type 2 diabetes, and their link with glucose metabolism and disease pathogenesis is associated with the changes in redox homeostasis.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, Kursk, Russian Federation.,Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russian Federation.,Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russian Federation
| |
Collapse
|
3
|
Laudanski K, Wain J. Considerations for Cannabinoids in Perioperative Care by Anesthesiologists. J Clin Med 2022; 11:jcm11030558. [PMID: 35160010 PMCID: PMC8836924 DOI: 10.3390/jcm11030558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Increased usage of recreational and medically indicated cannabinoid compounds has been an undeniable reality for anesthesiologists in recent years. These compounds’ complicated pharmacology, composition, and biological effects result in challenging issues for anesthesiologists during different phases of perioperative care. Here, we review the existing formulation of cannabinoids and their biological activity to put them into the context of the anesthesia plan execution. Perioperative considerations should include a way to gauge the patient’s intake of cannabinoids, the ability to gain consent properly, and vigilance to the increased risk of pulmonary and airway problems. Intraoperative management in individuals with cannabinoid use is complicated by the effects cannabinoids have on general anesthetics and depth of anesthesia monitoring while simultaneously increasing the potential occurrence of intraoperative hemodynamic instability. Postoperative planning should involve higher vigilance to the risk of postoperative strokes and acute coronary syndromes. However, most of the data are not up to date, rending definite conclusions on the importance of perioperative cannabinoid intake on anesthesia management difficult.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: (K.L.); (J.W.)
| | - Justin Wain
- School of Osteopathic Medicine, Campbell University, Buies Creek, NC 27506, USA
- Correspondence: (K.L.); (J.W.)
| |
Collapse
|
4
|
Kratz D, Sens A, Schäfer SMG, Hahnefeld L, Geisslinger G, Thomas D, Gurke R. Pre-analytical challenges for the quantification of endocannabinoids in human serum. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1190:123102. [PMID: 35026652 DOI: 10.1016/j.jchromb.2022.123102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
Endocannabinoids (ECs) are potent lipid mediators with high physiological relevance. They are involved in a wide variety of diseases like depression or multiple sclerosis and are closely connected to metabolic parameters in humans. Therefore, their suitability as a biomarker in different (patho-)physiological conditions is discussed intensively and predominantly investigated by analyzing systemic concentrations in easily accessible matrices like blood. Carefully designed pre-analytical sample handling is of major importance for high-quality data, but harmonization is not achieved yet. Whole blood is either processed to serum or plasma before the onset of analytical workflows and while knowledge about pre-analytical challenges in plasma handling is thorough they were not systematically investigated for serum. Therefore, the ECs AEA and 2-AG, and closely related EC-like substances 1-AG, DHEA, and PEA were examined by LC-MS/MS in serum samples of nine healthy volunteers employing different pre-analytical sample handling protocols, including prolonged coagulation, and storage after centrifugation at room temperature (RT) or on ice. Furthermore, all analytes were also assessed in plasma samples obtained from the same individuals at the same time points to investigate the comparability between those two blood-based matrices regarding obtained concentrations and their 2-AG/1-AG ratio. This study shows that ECs and EC-like substances in serum samples were significantly higher than in plasma and are especially prone to ex vivo changes during initial and prolonged storage for coagulation at RT. Storage on ice after centrifugation is less critical. However, storage at RT further increases 1-AG and 2-AG concentrations, while also lowering the already reduced 2-AG/1-AG ratio due to isomerization. Thus, avoidance of prolonged processing at RT can increase data quality if serum as the matrix of choice is unavoidable. However, serum preparation in itself is expected to initiate changes of physiological concentrations as standard precautionary measures like fast and cooled processing can only be utilized by using plasma, which should be the preferred matrix for analyses of ECs and EC-like substances.
Collapse
Affiliation(s)
- D Kratz
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - A Sens
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - S M G Schäfer
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - L Hahnefeld
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - G Geisslinger
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - D Thomas
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - R Gurke
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Kratz D, Thomas D, Gurke R. Endocannabinoids as potential biomarkers: It's all about pre-analytics. J Mass Spectrom Adv Clin Lab 2021; 22:56-63. [PMID: 34939056 DOI: 10.1016/j.jmsacl.2021.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Introduction Arachidonoyl ethanolamide (AEA) and 2-arachidonoyl glycerol (2-AG) are central lipid mediators of the endocannabinoid system. They are highly relevant due to their involvement in a wide variety of inflammatory, metabolic or malign diseases. Further elucidation of their modes of action and use as biomarkers in an easily accessible matrix, like blood, is restricted by their susceptibility to deviations during blood sampling and physiological co-dependences, which results in high variability of reported concentrations in low ng/mL ranges. Objectives The objective of this review is the identification of critical parameters during the pre-analytical phase and proposal of minimum requirements for reliable determination of endocannabinoids (ECs) in blood samples. Methods Reported physiological processes influencing the EC concentrations were put into context with published pre-analytical research and stability data from bioanalytical method validation. Results The cause for variability in EC concentrations is versatile. In part, they are caused by inter-individual factors like sex, metabolic status and/or diurnal changes. Nevertheless, enzymatic activity in freshly drawn blood samples is the main reason for changing concentrations of AEA and 2-AG, besides additional non-enzymatic isomerization of the latter. Conclusion Blood samples for EC analyses require immediate processing at low temperatures (>0 °C) to maintain sample integrity. Standardization of the respective blood tube or anti-coagulant, sampling time point, applied centrifugal force and complete processing time can further decrease variability caused by sample handling. Nevertheless, extensive characterization of study participants is needed to reduce distortion of clinical data caused by co-variables and facilitate research on the endocannabinoid system.
Collapse
Key Words
- (U)HPLC, (ultra) high performance liquid chromatography
- 1-AG, 1-arachidonoyl glycerol
- 2-AG, 2-arachidonoyl glycerol
- 2-Arachidonoyl glycerol
- AEA, arachidonoyl ethanolamide
- Anandamide
- BMI, body mass index
- Blood sampling
- CBR, cannabinoid receptor
- EC-like, endocannabinoid-like
- ECS, endocannabinoid system
- ECs, endocannabinoids
- EDTA, ethylenediaminetetraacetic acid
- Endocannabinoid
- FAAH, fatty acid amide hydrolase
- FT, freezing temperature
- FTC, freeze–thaw cycles
- HDL, high density lipo protein
- KSCN, potassium thiocyanate
- LLE, liquid–liquid extraction
- MAGL, monoacylglycerol lipase
- MS/MS, tandem mass spectrometry
- O-AEA, virodhamine
- OEA, oleoyl ethanolamide
- PAF, platelet-activating factor
- PEA, palmitoyl ethanolamide
- PMSF, phenylmethylsulfonyl fluoride
- Pre-analytics
- RT, room temperature
- SPE, solid-phase extraction
- WB, whole blood
Collapse
Affiliation(s)
- Daniel Kratz
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, pharmazentrum frankfurt/ZAFES, University Hospital of Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Schmid HHO. Discovering a New Metabolic Pathway. Early Work with My Friend, Viswanathan Natarajan. Cell Biochem Biophys 2021; 79:423-428. [PMID: 34510384 DOI: 10.1007/s12013-021-01029-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
This article summarizes our early work with Viswanathan Natarajan in the 1980s at the University of Minnesota's Hormel Institute, when he was at the beginning of his brilliant academic career. At that time most metabolic pathways for the biosynthesis and degradation of phospholipids were well established and known in considerable detail. Hence, it was exciting to discover a novel sequence of biochemical reactions, first in dog heart and later in various other vertebrate cells and tissues that became known as the transacylation-phosphodiesterase pathway of phospholipid metabolism. Because one of the metabolites, N-arachidonoylethanolamine, produced by this reaction sequence, was later found to bind to and activate cannabinoid receptors, investigations of this pathway became part of the rapidly growing field of endocannabinoid research. This is briefly summarized here as well.
Collapse
|
7
|
The Interplay between the Immune and the Endocannabinoid Systems in Cancer. Cells 2021; 10:cells10061282. [PMID: 34064197 PMCID: PMC8224348 DOI: 10.3390/cells10061282] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of Cannabis sativa has been recognized since ancient times. Phytocannabinoids, endocannabinoids and synthetic cannabinoids activate two major G protein-coupled receptors, subtype 1 and 2 (CB1 and CB2). Cannabinoids (CBs) modulate several aspects of cancer cells, such as apoptosis, autophagy, proliferation, migration, epithelial-to-mesenchymal transition and stemness. Moreover, agonists of CB1 and CB2 receptors inhibit angiogenesis and lymphangiogenesis in vitro and in vivo. Low-grade inflammation is a hallmark of cancer in the tumor microenvironment (TME), which contains a plethora of innate and adaptive immune cells. These cells play a central role in tumor initiation and growth and the formation of metastasis. CB2 and, to a lesser extent, CB1 receptors are expressed on a variety of immune cells present in TME (e.g., T cells, macrophages, mast cells, neutrophils, NK cells, dendritic cells, monocytes, eosinophils). The activation of CB receptors modulates a variety of biological effects on cells of the adaptive and innate immune system. The expression of CB2 and CB1 on different subsets of immune cells in TME and hence in tumor development is incompletely characterized. The recent characterization of the human cannabinoid receptor CB2-Gi signaling complex will likely aid to design potent and specific CB2/CB1 ligands with therapeutic potential in cancer.
Collapse
|
8
|
Kienzl M, Kargl J, Schicho R. The Immune Endocannabinoid System of the Tumor Microenvironment. Int J Mol Sci 2020; 21:ijms21238929. [PMID: 33255584 PMCID: PMC7728085 DOI: 10.3390/ijms21238929] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Leukocytes are part of the tumor microenvironment (TME) and are critical determinants of tumor progression. Because of the immunoregulatory properties of cannabinoids, the endocannabinoid system (ECS) may have an important role in shaping the TME. Members of the ECS, an entity that consists of cannabinoid receptors, endocannabinoids and their synthesizing/degrading enzymes, have been associated with both tumor growth and rejection. Immune cells express cannabinoid receptors and produce endocannabinoids, thereby forming an “immune endocannabinoid system”. Although in vitro effects of exogenous cannabinoids on immune cells are well described, the role of the ECS in the TME, and hence in tumor development and immunotherapy, is still elusive. This review/opinion discusses the possibility that the “immune endocannabinoid system” can fundamentally influence tumor progression. The widespread influence of cannabinoids on immune cell functions makes the members of the ECS an interesting target that could support immunotherapy.
Collapse
Affiliation(s)
- Melanie Kienzl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (M.K.); (J.K.)
- BioTechMed, 8010 Graz, Austria
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (M.K.); (J.K.)
| | - Rudolf Schicho
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (M.K.); (J.K.)
- BioTechMed, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-74132; Fax: +43-316-385-79613
| |
Collapse
|
9
|
Maccarrone M, Rapino C, Francavilla F, Barbonetti A. Cannabinoid signalling and effects of cannabis on the male reproductive system. Nat Rev Urol 2020; 18:19-32. [PMID: 33214706 DOI: 10.1038/s41585-020-00391-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
Marijuana is the most widely consumed recreational drug worldwide, which raises concerns for its potential effects on fertility. Many aspects of human male reproduction can be modulated by cannabis-derived extracts (cannabinoids) and their endogenous counterparts, known as endocannabinoids (eCBs). These latter molecules act as critical signals in a variety of physiological processes through receptors, enzymes and transporters collectively termed the endocannabinoid system (ECS). Increasing evidence suggests a role for eCBs, as well as cannabinoids, in various aspects of male sexual and reproductive health. Although preclinical studies have clearly shown that ECS is involved in negative modulation of testosterone secretion by acting both at central and testicular levels in animal models, the effect of in vivo exposure to cannabinoids on spermatogenesis remains a matter of debate. Furthermore, inconclusive clinical evidence does not seem to support the notion that plant-derived cannabinoids have harmful effects on human sexual and reproductive health. An improved understanding of the complex crosstalk between cannabinoids and eCBs is required before targeting of ECS for modulation of human fertility becomes a reality.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Cinzia Rapino
- School of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Felice Francavilla
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Arcangelo Barbonetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
10
|
Reynolds LM, Dutta R, Seeds MC, Lake KN, Hallmark B, Mathias RA, Howard TD, Chilton FH. FADS genetic and metabolomic analyses identify the ∆5 desaturase (FADS1) step as a critical control point in the formation of biologically important lipids. Sci Rep 2020; 10:15873. [PMID: 32985521 PMCID: PMC7522985 DOI: 10.1038/s41598-020-71948-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Humans have undergone intense evolutionary selection to optimize their capacity to generate necessary quantities of long chain (LC-) polyunsaturated fatty acid (PUFA)-containing lipids. To better understand the impact of genetic variation within a locus of three FADS genes (FADS1, FADS2, and FADS3) on a diverse family of lipids, we examined the associations of 247 lipid metabolites (including four major classes of LC-PUFA-containing molecules and signaling molecules) with common and low-frequency genetic variants located within the FADS locus. Genetic variation in the FADS locus was strongly associated (p < 1.2 × 10–8) with 52 LC-PUFA-containing lipids and signaling molecules, including free fatty acids, phospholipids, lyso-phospholipids, and an endocannabinoid. Notably, the majority (80%) of FADS-associated lipids were not significantly associated with genetic variants outside of this FADS locus. These findings highlight the central role genetic variation at the FADS locus plays in regulating levels of physiologically critical LC-PUFA-containing lipids that participate in innate immunity, energy homeostasis, and brain development/function.
Collapse
Affiliation(s)
- Lindsay M Reynolds
- Division of Public Health Sciences, Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Rahul Dutta
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Michael C Seeds
- Department of Internal Medicine/Molecular Medicine, and the Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kirsten N Lake
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, 85719, USA
| | - Brian Hallmark
- The BIO5 Institute, University of Arizona, Tucson, AZ, 85719, USA
| | - Rasika A Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University, Baltimore, MD, 21224, USA
| | - Timothy D Howard
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Floyd H Chilton
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, 85719, USA. .,The BIO5 Institute, University of Arizona, Tucson, AZ, 85719, USA.
| |
Collapse
|
11
|
Sharma DS, Raghuwanshi S, Kovuru N, Dahariya S, Gautam DK, Paddibhatla I, Gutti RK. Virodhamine, an endocannabinoid, induces megakaryocyte differentiation by regulating MAPK activity and function of mitochondria. J Cell Physiol 2020; 236:1445-1453. [PMID: 32696508 DOI: 10.1002/jcp.29949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/07/2020] [Indexed: 11/10/2022]
Abstract
Endocannabinoids are well-known regulators of neurotransmission by activating the cannabinoid (CB) receptors. Endocannabinoids are being used extensively for the treatment of various neurological disorders such as Alzheimer's and Parkinson's diseases. Although endocannabinoids are well studied in cell survival, proliferation, and differentiation in various neurological disorders and several cancers, the functional role in the regulation of blood cell development is less examined. In the present study, virodhamine, which is an agonist of CB receptor-2, was used to examine its effect on megakaryocytic development from a megakaryoblastic cell. We observed that virodhamine increases cell adherence, cell size, and cytoplasmic protrusions. Interestingly, we have also observed large nucleus and increased expression of megakaryocytic marker (CD61), which are the typical hallmarks of megakaryocytic differentiation. Furthermore, the increased expression of CB2 receptor was noticed in virodhamine-induced megakaryocytic cells. The effect of virodhamine on megakaryocytic differentiation could be mediated through CB2 receptor. Therefore, we have studied virodhamine induced molecular regulation of megakaryocytic differentiation; mitogen-activated protein kinase (MAPK) activity, mitochondrial function, and reactive oxygen species (ROS) production were majorly affected. The altered mitochondrial functions and ROS production is the crucial event associated with megakaryocytic differentiation and maturation. In the present study, we report that virodhamine induces megakaryocytic differentiation by triggering MAPK signaling and ROS production either through MAPK effects on ROS-generating enzymes or by the target vanilloid receptor 1-mediated regulation of mitochondrial function.
Collapse
Affiliation(s)
- Durga Shankar Sharma
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana, India
| | - Sanjeev Raghuwanshi
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana, India
| | - Narasaiah Kovuru
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana, India
| | - Swati Dahariya
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana, India
| | | | - Indira Paddibhatla
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
12
|
Disease-Specific Derangement of Circulating Endocannabinoids and N-Acylethanolamines in Myeloproliferative Neoplasms. Int J Mol Sci 2020; 21:ijms21093399. [PMID: 32403407 PMCID: PMC7246996 DOI: 10.3390/ijms21093399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 01/13/2023] Open
Abstract
Growing evidence highlights the endocannabinoid (EC) system involvement in cancer progression. Lipid mediators of this system are secreted by hematopoietic cells, including the ECs 2-arachidonoyl-glycerol (2AG) and arachidonoyl-ethanolamide (AEA), the 2AG metabolite 1AG, and members of N-acylethanolamine (NAE) family—palmitoyl-ethanolamide (PEA) and oleoyl-ethanolamide (OEA). However, the relevance of the EC system in myeloproliferative neoplasms (MPN) was never investigated. We explored the EC plasma profile in 55 MPN patients, including myelofibrosis (MF; n = 41), polycythemia vera (PV; n = 9), and essential thrombocythemia (ET; n = 5) subclasses and in 10 healthy controls (HC). AEA, PEA, OEA, 2AG, and 1AG plasma levels were measured by LC–MS/MS. Overall considered, MPN patients displayed similar EC and NAE levels compared to HC. Nonetheless, AEA levels in MPN were directly associated with the platelet count. MF patients showed higher levels of the sum of 2AG and 1AG compared to ET and PV patients, higher OEA/AEA ratios compared to HC and ET patients, and higher OEA/PEA ratios compared to HC. Furthermore, the sum of 2AG and 1AG positively correlated with JAK2V617F variant allele frequency and splenomegaly in MF and was elevated in high-risk PV patients compared to in low-risk PV patients. In conclusion, our work revealed specific alterations of ECs and NAE plasma profile in MPN subclasses and potentially relevant associations with disease severity.
Collapse
|
13
|
Turcotte C, Archambault AS, Dumais É, Martin C, Blanchet MR, Bissonnette E, Ohashi N, Yamamoto K, Itoh T, Laviolette M, Veilleux A, Boulet LP, Di Marzo V, Flamand N. Endocannabinoid hydrolysis inhibition unmasks that unsaturated fatty acids induce a robust biosynthesis of 2-arachidonoyl-glycerol and its congeners in human myeloid leukocytes. FASEB J 2020; 34:4253-4265. [PMID: 32012340 DOI: 10.1096/fj.201902916r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
The endocannabinoid (eCB) 2-arachidonoyl-gycerol (2-AG) modulates immune responses by activating cannabinoid receptors or through its multiple metabolites, notably eicosanoids. Thus, 2-AG hydrolysis inhibition might represent an interesting anti-inflammatory strategy that would simultaneously increase the levels of 2-AG and decrease those of eicosanoids. Accordingly, 2-AG hydrolysis inhibition increased 2-AG half-life in neutrophils. Under such setting, neutrophils, eosinophils, and monocytes synthesized large amounts of 2-AG and other monoacylglycerols (MAGs) in response to arachidonic acid (AA) and other unsaturated fatty acids (UFAs). Arachidonic acid and UFAs were ~1000-fold more potent than G protein-coupled receptor (GPCR) agonists. Triascin C and thimerosal, which, respectively, inhibit fatty acyl-CoA synthases and acyl-CoA transferases, prevented the UFA-induced MAG biosynthesis, implying glycerolipid remodeling. 2-AG and other MAG biosynthesis was preceded by that of the corresponding lysophosphatidic acid (LPA). However, we could not directly implicate LPA dephosphorylation in MAG biosynthesis. While GPCR agonists poorly induced 2-AG biosynthesis, they inhibited that induced by AA by 25%-50%, suggesting that 2-AG biosynthesis is decreased when leukocytes are surrounded by a pro-inflammatory entourage. Our data strongly indicate that human leukocytes use AA and UFAs to biosynthesize biologically significant concentrations of 2-AG and other MAGs and that hijacking the immune system with 2-AG hydrolysis inhibitors might diminish inflammation in humans.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Anne-Sophie Archambault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Élizabeth Dumais
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Cyril Martin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Marie-Renée Blanchet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Elyse Bissonnette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Nami Ohashi
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, Machida, Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, Machida, Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, Machida, Japan
| | - Michel Laviolette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Alain Veilleux
- École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada
| | - Louis-Philippe Boulet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| | - Vincenzo Di Marzo
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada.,École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada.,Joint International Unit between the National Research Council (CNR) of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
14
|
Endocannabinoid 2-arachidonoylglycerol is elevated in the coronary circulation during acute coronary syndrome. PLoS One 2019; 14:e0227142. [PMID: 31887202 PMCID: PMC6936850 DOI: 10.1371/journal.pone.0227142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/12/2019] [Indexed: 11/19/2022] Open
Abstract
Objectives The endocannabinoid system modulates coronary circulatory function and atherogenesis. The two major endocannabinoids (eCB), 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamide (AEA), are increased in venous blood from patients with coronary artery disease (CAD). However, given their short half-life and their autocrine/paracrine mechanism of action, eCB levels in venous blood samples might not reflect arterial or coronary eCB concentrations. The aim of this cross-sectional study was to identify the local concentration profile of eCB and to detect whether and how this concentration profile changes in CAD and NSTEMI versus patients without CAD. Methods and results 83 patients undergoing coronary angiography were included in this study. Patients were divided into three groups based on their definite diagnosis of a) no CAD, b) stable CAD, or c) non-ST-segment elevation myocardial infarction (NSTEMI). Blood was drawn from the arterial sheath and the aorta in all patients and additionally distal to the culprit coronary lesion in CAD- and NSTEMI patients. 2-AG levels varied significantly between patient groups and between the sites of blood extraction. The lowest levels were detected in patients without CAD; the highest 2-AG concentrations were detected in NSTEMI patients and in the coronary arteries. Peripheral 2-AG levels were significantly higher in NSTEMI patients (107.4 ± 28.4 pmol/ml) than in CAD- (17.4 ± 5.4 pmol/ml; p < 0.001), or no-CAD patients (23.9 ± 7.1 pmol/ml; p < 0.001). Moreover, coronary 2-AG levels were significantly higher in NSTEMI patients than in CAD patients (369.3 ± 57.2 pmol/ml vs. 240.1 ± 25.3 pmol/ml; p = 0.024). Conclusions 2-AG showed significant variability in arterial blood samples drawn from distinct locations. Possibly, lesional macrophages synthesise 2-AG locally, which thereby contributes to endothelial dysfunction and local inflammation.
Collapse
|
15
|
Moradi H, Park C, Igarashi M, Streja E, Argueta DA, Soohoo M, Daglian J, You AS, Rhee CM, Kashyap ML, DiPatrizio NV, Vaziri ND, Kalantar-Zadeh K, Piomelli D. Serum Endocannabinoid Levels in Patients With End-Stage Renal Disease. J Endocr Soc 2019; 3:1869-1880. [PMID: 31583368 PMCID: PMC6767629 DOI: 10.1210/js.2019-00242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/30/2019] [Indexed: 11/19/2022] Open
Abstract
CONTEXT Previous studies have shown that the endocannabinoid system plays a major role in energy metabolism through the actions of its main mediators, 2-arachidonoyl-sn-glycerol (2-AG) and anandamide (AEA). OBJECTIVE We examined serum levels of major endocannabinoid mediators and their association with clinical parameters in patients with end-stage renal disease (ESRD). DESIGN AND SETTING Serum concentrations of 2-AG and AEA were measured in patients on maintenance hemodialysis (MHD) and controls, and correlations with various clinical and laboratory indices were examined. 2-AG was also measured in age and sex-matched healthy subjects for comparison of levels in patients undergoing MHD. MAIN OUTCOME MEASURE Serum 2-AG. RESULTS Serum 2-AG levels were significantly elevated in patients with ESRD compared with healthy controls. Higher levels of 2-AG were found in patients on MHD compared to healthy subjects, and similar findings were seen in a second set of subjects in independent analyses. Among 96 patients on MHD, 2-AG levels correlated significantly and positively with serum triglycerides (ρ = 0.43; P < 0.0001), body mass index (ρ = 0.40; P < 0.0001), and body anthropometric measures and negatively with serum high-density lipoprotein cholesterol (ρ = -0.33; P = 0.001) following adjustment for demographic and clinical variables. CONCLUSIONS In patients on MHD, levels of serum 2-AG, a major endocannabinoid mediator, were increased. In addition, increasing serum 2-AG levels correlated with increased serum triglycerides and markers of body mass. Future studies will need to evaluate the potential mechanisms responsible for these findings.
Collapse
Affiliation(s)
- Hamid Moradi
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Irvine, California
- Tibor Rubin Veterans Affairs Medical Center, Long Beach, California
| | - Christina Park
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Irvine, California
- Tibor Rubin Veterans Affairs Medical Center, Long Beach, California
| | - Miki Igarashi
- Anatomy and Neurobiology, University of California Irvine School of Medicine, Irvine, California
| | - Elani Streja
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Irvine, California
- Tibor Rubin Veterans Affairs Medical Center, Long Beach, California
| | - Donovan A Argueta
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California
| | - Melissa Soohoo
- Tibor Rubin Veterans Affairs Medical Center, Long Beach, California
- Department of Medicine, University of California Irvine School of Medicine, Irvine, California
| | - Jennifer Daglian
- Anatomy and Neurobiology, University of California Irvine School of Medicine, Irvine, California
| | - Amy S You
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Irvine, California
| | - Connie M Rhee
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Irvine, California
| | - Moti L Kashyap
- Tibor Rubin Veterans Affairs Medical Center, Long Beach, California
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Irvine, California
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology and Hypertension, University of California Irvine School of Medicine, Irvine, California
- Tibor Rubin Veterans Affairs Medical Center, Long Beach, California
| | - Daniele Piomelli
- Tibor Rubin Veterans Affairs Medical Center, Long Beach, California
| |
Collapse
|
16
|
Espinosa-Riquer ZP, Ibarra-Sánchez A, Vibhushan S, Bratti M, Charles N, Blank U, Rodríguez-Manzo G, González-Espinosa C. TLR4 Receptor Induces 2-AG-Dependent Tolerance to Lipopolysaccharide and Trafficking of CB2 Receptor in Mast Cells. THE JOURNAL OF IMMUNOLOGY 2019; 202:2360-2371. [PMID: 30814309 DOI: 10.4049/jimmunol.1800997] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/30/2019] [Indexed: 12/16/2022]
Abstract
Mast cells (MCs) contribute to the control of local inflammatory reactions and become hyporesponsive after prolonged TLR4 activation by bacterial LPS. The molecular mechanisms involved in endotoxin tolerance (ET) induction in MCs are not fully understood. In this study, we demonstrate that the endocannabinoid 2-arachidonoylglycerol (2-AG) and its receptor, cannabinoid receptor 2 (CB2), play a role in the establishment of ET in bone marrow-derived MCs from C57BL/6J mice. We found that CB2 antagonism prevented the development of ET and that bone marrow-derived MCs produce 2-AG in a TLR4-dependent fashion. Exogenous 2-AG induced ET similarly to LPS, blocking the phosphorylation of IKK and the p65 subunit of NF-κB and inducing the synthesis of molecular markers of ET. LPS caused CB2 receptor trafficking in Rab11-, Rab7-, and Lamp2-positive vesicles, indicating recycling and degradation of the receptor. 2-AG also prevented LPS-induced TNF secretion in vivo, in a MC-dependent model of endotoxemia, demonstrating that TLR4 engagement leads to 2-AG secretion, which contributes to the negative control of MCs activation. Our study uncovers a functional role for the endocannabinoid system in the inhibition of MC-dependent innate immune responses in vivo.
Collapse
Affiliation(s)
- Zyanya P Espinosa-Riquer
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, CP 14330 Mexico City, Mexico
| | - Alfredo Ibarra-Sánchez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, CP 14330 Mexico City, Mexico
| | - Shamila Vibhushan
- INSERM U1149, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,CNRS ERL8252, 75018 Paris, France; and.,Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Sorbonne Paris Cité, Université Paris Diderot, 75018 Paris, France
| | - Manuela Bratti
- INSERM U1149, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,CNRS ERL8252, 75018 Paris, France; and.,Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Sorbonne Paris Cité, Université Paris Diderot, 75018 Paris, France
| | - Nicolas Charles
- INSERM U1149, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,CNRS ERL8252, 75018 Paris, France; and.,Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Sorbonne Paris Cité, Université Paris Diderot, 75018 Paris, France
| | - Ulrich Blank
- INSERM U1149, Centre de Recherche sur l'Inflammation, 75018 Paris, France.,CNRS ERL8252, 75018 Paris, France; and.,Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Sorbonne Paris Cité, Université Paris Diderot, 75018 Paris, France
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, CP 14330 Mexico City, Mexico;
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, CP 14330 Mexico City, Mexico;
| |
Collapse
|
17
|
Fowler CJ, Doherty P, Alexander SPH. Endocannabinoid Turnover. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:31-66. [PMID: 28826539 DOI: 10.1016/bs.apha.2017.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this review, we consider the biosynthetic, hydrolytic, and oxidative metabolism of the endocannabinoids anandamide and 2-arachidonoylglycerol. We describe the enzymes associated with these events and their characterization. We identify the inhibitor profile for these enzymes and the status of therapeutic exploitation, which to date has been limited to clinical trials for fatty acid amide hydrolase inhibitors. To bring the review to a close, we consider whether point block of a single enzyme is likely to be the most successful approach for therapeutic exploitation of the endocannabinoid system.
Collapse
Affiliation(s)
| | - Patrick Doherty
- Wolfson Centre for Age-Related Disease, King's College London, London, United Kingdom
| | | |
Collapse
|
18
|
Barbonetti A, Bisogno T, Battista N, Piscitelli F, Micillo A, Francavilla S, Maccarrone M, Francavilla F. 2-arachidonoylglycerol levels are increased in leukocytospermia and correlate with seminal macrophages. Andrology 2016; 5:87-94. [DOI: 10.1111/andr.12283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
Affiliation(s)
- A. Barbonetti
- San Raffaele Sulmona Institute; Sulmona Italy
- Andrology Unit; Department of Life, Health and Environment Sciences; University of L'Aquila; L'Aquila Italy
| | - T. Bisogno
- Endocannabinoid Research Group; Institute of Biomolecular Chemistry; National Research Council; Pozzuoli Italy
- Department of Medicine; Campus Bio-Medico University of Rome; Rome Italy
| | - N. Battista
- Faculty of Bioscience and Technology for Food, Agriculture and Environment; University of Teramo; Teramo Italy
| | - F. Piscitelli
- Endocannabinoid Research Group; Institute of Biomolecular Chemistry; National Research Council; Pozzuoli Italy
| | - A. Micillo
- Andrology Unit; Department of Life, Health and Environment Sciences; University of L'Aquila; L'Aquila Italy
| | - S. Francavilla
- Andrology Unit; Department of Life, Health and Environment Sciences; University of L'Aquila; L'Aquila Italy
| | - M. Maccarrone
- Department of Medicine; Campus Bio-Medico University of Rome; Rome Italy
| | - F. Francavilla
- Andrology Unit; Department of Life, Health and Environment Sciences; University of L'Aquila; L'Aquila Italy
| |
Collapse
|
19
|
Nagy-Grócz G, Tar L, Bohár Z, Fejes-Szabó A, Laborc KF, Spekker E, Vécsei L, Párdutz Á. The modulatory effect of anandamide on nitroglycerin-induced sensitization in the trigeminal system of the rat. Cephalalgia 2015; 36:849-61. [PMID: 26512068 DOI: 10.1177/0333102415613766] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND One of the human and animal models of migraine is the systemic administration of the nitric oxide donor (NO) nitroglycerin (NTG). NO can provoke migraine-like attacks in migraineurs and initiates a self-amplifying process in the trigeminal system, probably leading to central sensitization. Recent studies suggest that the endocannabinoid system is involved in nociceptive signal processing and cannabinoid receptor (CB) agonists are able to attenuate nociception in animal models of pain. AIM The purpose of the present study was to investigate the modulatory effects of a CB agonist anandamide (AEA) on the NTG-induced expression of transient receptor potential vanilloid type 1 (TRPV1), neuronal nitric oxide synthase (nNOS), nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX-2) and kynurenine aminotransferase-II (KAT-II) in the upper cervical spinal cord (C1-C2) of the rat, where most of the trigeminal nociceptive afferents convey. METHODS A half hour before and one hour after NTG (10 mg/kg) or placebo injection, adult male Sprague-Dawley rats (n = 44) were treated with AEA (2 × 5 mg/kg). Four hours after placebo/NTG injection, the animals were perfused and the cervical spinal cords were removed for immunohistochemistry and Western blotting. RESULTS AND CONCLUSION Our results show that NTG is able to increase TRPV1, nNOS, NF-κB and COX-2 and decrease KAT-II expression in the C1-C2 segments. On the other hand, we have found that AEA modulates the NTG-induced changes, thus it influences the activation and central sensitization process in the trigeminal system, probably via CBs.
Collapse
Affiliation(s)
- Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Hungary
| | - Lilla Tar
- Department of Neurology, University of Ulm, Germany
| | - Zsuzsanna Bohár
- MTA-SZTE Neuroscience Research Group, University of Szeged, Hungary
| | - Annamária Fejes-Szabó
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Hungary
| | - Klaudia Flóra Laborc
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Hungary
| | - Eleonóra Spekker
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Hungary MTA-SZTE Neuroscience Research Group, University of Szeged, Hungary
| | - Árpád Párdutz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Hungary
| |
Collapse
|
20
|
Turcotte C, Chouinard F, Lefebvre JS, Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites. J Leukoc Biol 2015; 97:1049-70. [PMID: 25877930 DOI: 10.1189/jlb.3ru0115-021r] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/28/2015] [Indexed: 12/26/2022] Open
Abstract
2-Arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA) are endocannabinoids that have been implicated in many physiologic disorders, including obesity, metabolic syndromes, hepatic diseases, pain, neurologic disorders, and inflammation. Their immunomodulatory effects are numerous and are not always mediated by cannabinoid receptors, reflecting the presence of an arachidonic acid (AA) molecule in their structure, the latter being the precursor of numerous bioactive lipids that are pro- or anti-inflammatory. 2-AG and AEA can thus serve as a source of AA but can also be metabolized by most eicosanoid biosynthetic enzymes, yielding additional lipids. In this regard, enhancing endocannabinoid levels by using endocannabinoid hydrolysis inhibitors is likely to augment the levels of these lipids that could regulate inflammatory cell functions. This review summarizes the metabolic pathways involved in the biosynthesis and metabolism of AEA and 2-AG, as well as the biologic effects of the 2-AG and AEA lipidomes in the regulation of inflammation.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - François Chouinard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Julie S Lefebvre
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
21
|
Endocannabinoids, related compounds and their metabolic routes. Molecules 2014; 19:17078-106. [PMID: 25347455 PMCID: PMC6271436 DOI: 10.3390/molecules191117078] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 12/27/2022] Open
Abstract
Endocannabinoids are lipid mediators able to bind to and activate cannabinoid receptors, the primary molecular targets responsible for the pharmacological effects of the Δ9-tetrahydrocannabinol. These bioactive lipids belong mainly to two classes of compounds: N-acylethanolamines and acylesters, being N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), respectively, their main representatives. During the last twenty years, an ever growing number of fatty acid derivatives (endocannabinoids and endocannabinoid-like compounds) have been discovered and their activities biological is the subject of intense investigations. Here, the most recent advances, from a therapeutic point of view, on endocannabinoids, related compounds, and their metabolic routes will be reviewed.
Collapse
|
22
|
Alhouayek M, Masquelier J, Muccioli GG. Controlling 2-arachidonoylglycerol metabolism as an anti-inflammatory strategy. Drug Discov Today 2013; 19:295-304. [PMID: 23891880 DOI: 10.1016/j.drudis.2013.07.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 01/21/2023]
Abstract
The endocannabinoid system is implicated in, and regulates, several physiological processes, ranging from food intake and energy balance to pain and inflammation. 2-Arachidonoylglycerol (2-AG) is a full agonist at the cannabinoid receptors which classically mediate its effects. The activity of this bioactive lipid is dependent on its endogenous levels, which are tightly controlled by several hydrolases, monoacylglycerol lipase and α/β-hydrolase domain 6 and 12. Moreover, 2-AG is also a substrate of cyclooxygenase-2, and this reaction leads to the formation of prostaglandin glycerol esters, the effects of which remain to be fully elucidated. In this review we discuss the multiple mechanisms by which 2-AG controls inflammation and the therapeutic potential of 2-AG metabolism inhibitors.
Collapse
Affiliation(s)
- Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier 72, B1.72.01, B-1200 Bruxelles, Belgium; Medicinal Chemistry Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier 73, B1.73.10, B-1200 Bruxelles, Belgium
| | - Julien Masquelier
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier 72, B1.72.01, B-1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier 72, B1.72.01, B-1200 Bruxelles, Belgium.
| |
Collapse
|
23
|
Prestifilippo JP, Medina VA, Mohn CE, Rodriguez PA, Elverdin JC, Fernandez-Solari J. Endocannabinoids mediate hyposalivation induced by inflammogens in the submandibular glands and hypothalamus. Arch Oral Biol 2013; 58:1251-9. [PMID: 23684250 DOI: 10.1016/j.archoralbio.2013.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/13/2013] [Accepted: 04/05/2013] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the factors that could participate on salivary glands hypofunction during inflammation and the participation of endocannabinoids in hyposalivation induced by the presence of inflammogens in the submandibular gland (SMG) or in the brain. DESIGN Salivary secretion was assessed in the presence of inflammogens and/or the cannabinoid receptor antagonist AM251 in the SMG or in the brain of rats. At the end of the experiments, some systemic and glandular inflammatory markers were measured and histopathological analysis was performed. RESULTS The inhibitory effect observed 1h after lipopolysaccharide (LPS, 50μg/50μl) injection into the SMG (ig) was completely prevented by the injection of AM251 (5μg/50μl) by the same route (P<0.05). The LPS (ig)-induced increase in PGE2 content was not altered by AM251 (ig), while the glandular production of TNFα induced by the endotoxin (P<0.001) was partially blocked by it. Also, LPS injection produced no significant changes in the wet weight of the SMG neither damage to lipid membranes of its cells, nor significant microscopic changes in them, after hispopathological analysis, compared to controls. Finally, TNFα (100ng/5μl) injected intracerebro-ventricularly (icv) inhibited methacholine-induced salivary secretion evaluated 30min after (P<0.01), but the previous injection of AM251 (500ng/5μl, icv) prevented completely that effect. CONCLUSION We conclude that endocannabinoids mediate the hyposialia induced by inflammogens in the SMG and in the brain. The hypofunction would be due to changes on signalling pathway produced by inflammatory compounds since anatomical changes were not observed.
Collapse
Affiliation(s)
- J P Prestifilippo
- Department of Physiology, Dental School, University of Buenos Aires, Marcelo T.de Alvear 2142, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
24
|
Chouinard F, Turcotte C, Guan X, Larose MC, Poirier S, Bouchard L, Provost V, Flamand L, Grandvaux N, Flamand N. 2-Arachidonoyl-glycerol- and arachidonic acid-stimulated neutrophils release antimicrobial effectors against E. coli, S. aureus, HSV-1, and RSV. J Leukoc Biol 2013; 93:267-76. [PMID: 23242611 PMCID: PMC4995105 DOI: 10.1189/jlb.0412200] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The endocannabinoid 2-AG is highly susceptible to its hydrolysis into AA, which activates neutrophils through de novo LTB(4) biosynthesis, independently of CB activation. In this study, we show that 2-AG and AA stimulate neutrophils to release antimicrobial effectors. Supernatants of neutrophils activated with nanomolar concentrations of 2-AG and AA indeed inhibited the infectivity of HSV-1 and RSV. Additionally, the supernatants of 2-AG- and AA-stimulated neutrophils strongly impaired the growth of Escherichia coli and Staphylococcus aureus. This correlated with the release of a large amount (micrograms) of α-defensins, as well as a limited amount (nanograms) of LL-37. All the effects of AA and 2-AG mentioned above were prevented by inhibiting LTB(4) biosynthesis or by blocking BLT(1). Importantly, neither CB(2) receptor agonists nor antagonists could mimic nor prevent the effects of 2-AG, respectively. In fact, qPCR data show that contaminating eosinophils express ∼100-fold more CB(2) receptor mRNA than purified neutrophils, suggesting that CB(2) receptor expression by human neutrophils is limited and that contaminating eosinophils are likely responsible for the previously documented CB(2) expression by freshly isolated human neutrophils. The rapid conversion of 2-AG to AA and their subsequent metabolism into LTB(4) promote 2-AG and AA as multifunctional activators of neutrophils, mainly exerting their effects by activating the BLT(1). Considering that nanomolar concentrations of AA or 2-AG were sufficient to impair viral infectivity, this suggests potential physiological roles for 2-AG and AA as regulators of host defense in vivo.
Collapse
Affiliation(s)
- François Chouinard
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Québec City, Canada
- Faculté de Médecine, Université Laval, Québec City, Canada
| | - Caroline Turcotte
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Québec City, Canada
- Faculté de Médecine, Université Laval, Québec City, Canada
| | - Xiaochun Guan
- Centre de Recherche du CHUM, Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Marie-Chantal Larose
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Québec City, Canada
- Faculté de Médecine, Université Laval, Québec City, Canada
| | - Samuel Poirier
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Québec City, Canada
- Faculté de Médecine, Université Laval, Québec City, Canada
| | - Line Bouchard
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Québec City, Canada
- Faculté de Médecine, Université Laval, Québec City, Canada
| | - Véronique Provost
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Québec City, Canada
- Faculté de Médecine, Université Laval, Québec City, Canada
| | - Louis Flamand
- Centre de Recherche du CHUQ, Département de Microbiologie, Infectiologie et Immunologie, Université Laval, Québec City, Canada
- Faculté de Médecine, Université Laval, Québec City, Canada
| | - Nathalie Grandvaux
- Centre de Recherche du CHUM, Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Département de Médecine, Québec City, Canada
- Faculté de Médecine, Université Laval, Québec City, Canada
| |
Collapse
|
25
|
Abstract
In recent years, a growing interest has been dedicated to the study of the endocannabinoid system. The isolation of Cannabis sativa main psychotropic compound, Δ(9)-tetrahydrocannabinol (THC), has led to the discovery of an atypical neurotransmission system that modulates the release of other neurotransmitters and participates in many biological processes, including the cascade of inflammatory responses. In this context, cannabinoids have been studied for their possible therapeutic properties in neuroinflammatory diseases. In this review, historic and biochemical aspects of cannabinoids are discussed, as well as their function as modulators of inflammatory processes and therapeutic perspectives for neurodegenerative disorders, particularly, multiple sclerosis.
Collapse
Affiliation(s)
- Viviane M Saito
- Laboratory of Immunopharmacology, Graduate Program in Neurosciences, UFMG, Belo Horizonte, Brazil
| | | | | |
Collapse
|
26
|
Abstract
Endocannabinoid system is reported to be activated during myocardial ischemia-reperfusion (IR) injury and protects against heart injury. We, therefore, observed changes in endocannabinoids levels during acute myocardial infarction (AMI) and myocardial IR injury and evaluated the role of cannabinoid-2 (CB2) receptor in infarct and IR heart injury. In contrast to 16 control patients with normal coronary artery angiogram, the endocannabinoid 2-arachidonoylglycerol level in the infarct-side coronary artery of 23 AMI patients increased significantly, with increased reactive oxygen species and tumor necrosis factor-α levels in both infarct-side coronary artery and radial artery. Then, 35 C57BL/6J mice were made into SHAM, AMI, or IR models. AMI and IR groups were treated with CB2-selective agonist HU308 ((+)-(1aH,3H,5aH)-4-[2,6-dimethoxy-4-(1,1-dimethylheptyl)phenyl]-6,6-dimethylbicyclo[3.1.1]hept-2-ene-2-carbinol), with or without CB2-selective antagonist AM630 [6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-yl](4-methoxyphenyl)methanone through intraperitoneal injection. Compared with the SHAM, expressions of cannabinoid CB1/CB2 receptor proteins in AMI/IR animals were upregulated; production of 2-arachidonoylglycerol and anandamide and release of reactive oxygen species and tumor necrosis factor-α also increased. HU308 significantly decreased the infarct size and the levels of reactive oxygen species and tumor necrosis factor-α in AMI/IR animals. However, these effects were blocked by AM630. In conclusion, the endocannabinoid system was activated during AMI and IR, and CB2 receptor activation produces a protective role, thus offering a novel pharmaceutical target for treating these diseases.
Collapse
|
27
|
Gyombolai P, Pap D, Turu G, Catt KJ, Bagdy G, Hunyady L. Regulation of endocannabinoid release by G proteins: a paracrine mechanism of G protein-coupled receptor action. Mol Cell Endocrinol 2012; 353:29-36. [PMID: 22075205 PMCID: PMC4169275 DOI: 10.1016/j.mce.2011.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/12/2011] [Accepted: 10/12/2011] [Indexed: 02/06/2023]
Abstract
In the past years, the relationship between the endocannabinoid system (ECS) and other hormonal and neuromodulatory systems has been intensively studied. G protein-coupled receptors (GPCRs) can stimulate endocannabinoid (eCB) production via activation of G(q/11) proteins and, in some cases, G(s) proteins. In this review, we summarize the pathways through which GPCR activation can trigger eCB release, as well as the best known examples of this process throughout the body tissues. Angiotensin II-induced activation of AT(1) receptors, similar to other G(q/11)-coupled receptors, can lead to the formation of 2-arachidonoylglycerol (2-AG), an important eCB. The importance of eCB formation in angiotensin II action is supported by the finding that the hypertensive effect of angiotensin II, injected directly into the hypothalamic paraventricular nucleus of anaesthetized rats, can be abolished by AM251, an inverse agonist of CB(1) cannabinoid receptors (CB(1)Rs). We conclude that activation of the ECS should be considered as a general consequence of the stimulation of G(q/11)-coupled receptors, and may mediate some of the physiological effects of GPCRs.
Collapse
Affiliation(s)
- Pál Gyombolai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dorottya Pap
- Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Kevin J. Catt
- Section on Hormonal Regulation, Program in Developmental Endocrinology and Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - György Bagdy
- Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Group of Neuropsychopharmacology and Neurochemistry, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Laboratory of Neurobiochemistry and Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, Budapest, Hungary
- Corresponding author at: Department of Physiology, Faculty of Medicine, Semmelweis University, H-1444 Budapest, P.O. Box 259, Hungary. Tel: +36 1 266 9180; fax: +36 1 266 6504
| |
Collapse
|
28
|
Abstract
Despite being regarded as a hippie science for decades, cannabinoid research has finally found its well-deserved position in mainstream neuroscience. A series of groundbreaking discoveries revealed that endocannabinoid molecules are as widespread and important as conventional neurotransmitters such as glutamate or GABA, yet they act in profoundly unconventional ways. We aim to illustrate how uncovering the molecular, anatomical, and physiological characteristics of endocannabinoid signaling has revealed new mechanistic insights into several fundamental phenomena in synaptic physiology. First, we summarize unexpected advances in the molecular complexity of biogenesis and inactivation of the two endocannabinoids, anandamide and 2-arachidonoylglycerol. Then, we show how these new metabolic routes are integrated into well-known intracellular signaling pathways. These endocannabinoid-producing signalosomes operate in phasic and tonic modes, thereby differentially governing homeostatic, short-term, and long-term synaptic plasticity throughout the brain. Finally, we discuss how cell type- and synapse-specific refinement of endocannabinoid signaling may explain the characteristic behavioral effects of cannabinoids.
Collapse
Affiliation(s)
- István Katona
- Institute of Experimental Medicine, Hungarian Academy of Sciences, 1051 Budapest, Hungary.
| | | |
Collapse
|
29
|
Pucci M, Pasquariello N, Battista N, Di Tommaso M, Rapino C, Fezza F, Zuccolo M, Jourdain R, Finazzi Agrò A, Breton L, Maccarrone M. Endocannabinoids stimulate human melanogenesis via type-1 cannabinoid receptor. J Biol Chem 2012; 287:15466-78. [PMID: 22431736 DOI: 10.1074/jbc.m111.314880] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We show that a fully functional endocannabinoid system is present in primary human melanocytes (normal human epidermal melanocyte cells), including anandamide (AEA), 2-arachidonoylglycerol, the respective target receptors (CB(1), CB(2), and TRPV1), and their metabolic enzymes. We also show that at higher concentrations AEA induces normal human epidermal melanocyte apoptosis (∼3-fold over controls at 5 μM) through a TRPV1-mediated pathway that increases DNA fragmentation and p53 expression. However, at lower concentrations, AEA and other CB(1)-binding endocannabinoids dose-dependently stimulate melanin synthesis and enhance tyrosinase gene expression and activity (∼3- and ∼2-fold over controls at 1 μM). This CB(1)-dependent activity was fully abolished by the selective CB(1) antagonist SR141716 or by RNA interference of the receptor. CB(1) signaling engaged p38 and p42/44 mitogen-activated protein kinases, which in turn activated the cyclic AMP response element-binding protein and the microphthalmia-associated transcription factor. Silencing of tyrosinase or microphthalmia-associated transcription factor further demonstrated the involvement of these proteins in AEA-induced melanogenesis. In addition, CB(1) activation did not engage the key regulator of skin pigmentation, cyclic AMP, showing a major difference compared with the regulation of melanogenesis by α-melanocyte-stimulating hormone through melanocortin 1 receptor.
Collapse
Affiliation(s)
- Mariangela Pucci
- Department of Biomedical Sciences, University of Teramo, 64100 Teramo, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ho WSV, Hill MN, Miller GE, Gorzalka BB, Hillard CJ. Serum contents of endocannabinoids are correlated with blood pressure in depressed women. Lipids Health Dis 2012; 11:32. [PMID: 22373123 PMCID: PMC3334711 DOI: 10.1186/1476-511x-11-32] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/28/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Depression is known to be a risk factor for cardiovascular diseases but the underlying mechanisms remain unclear. Since recent preclinical evidence suggests that endogenous agonists of cannabinoid receptors (endocannabinoids) are involved in both cardiovascular function and depression, we asked whether endocannabinoids correlated with either in humans. RESULTS Resting blood pressure and serum content of endocannabinoids in ambulatory, medication-free, female volunteers with depression (n = 28) and their age- and ethnicity-matched controls (n = 27) were measured. In females with depression, both diastolic and mean arterial blood pressures were positively correlated with serum contents of the endocannabinoids, N-arachidonylethanolamine (anandamide) and 2-arachidonoylglycerol. There was no correlation between blood pressure and endocannabinoids in control subjects. Furthermore, depressed women had significantly higher systolic blood pressure than control subjects. A larger body mass index was also found in depressed women, however, it was not significantly correlated with serum endocannabinoid contents. CONCLUSIONS This preliminary study raises the possibility that endocannabinoids play a role in blood pressure regulation in depressives with higher blood pressure, and suggests an interrelationship among endocannabinoids, depression and cardiovascular risk factors in women.
Collapse
Affiliation(s)
- W S Vanessa Ho
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
31
|
Raman P, Kaplan BLF, Thompson JT, Vanden Heuvel JP, Kaminski NE. 15-Deoxy-delta12,14-prostaglandin J2-glycerol ester, a putative metabolite of 2-arachidonyl glycerol, activates peroxisome proliferator activated receptor gamma. Mol Pharmacol 2011; 80:201-9. [PMID: 21511917 DOI: 10.1124/mol.110.070441] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2-Arachidonyl glycerol (2-AG) is an endogenous arachidonic acid derivative capable of suppressing interleukin (IL)-2 production by activated T cells. 2-AG-mediated IL-2 suppression is dependent on cyclooxygenase-2 (COX-2) metabolism and peroxisome proliferator activated receptor γ (PPARγ) activation. The objective of the present studies was to examine whether 15-deoxy-Δ(12,14)-PGJ(2)-glycerol ester (15d-PGJ(2)-G), a putative metabolite of 2-AG, can mimic the actions of 2-AG on IL-2 regulation through PPARγ activation. 15d-PGJ(2)-G bound PPARγ-ligand binding domain in a PPARγ competitive binding assay. 15d-PGJ(2)-G treatment activated PPARγ in a reporter assay, and PPARγ activation was attenuated when a PPARγ antagonist, 2-chloro-5-nitro-N-4-pyridinylbenzamide (T0070907), was present. 15d-PGJ(2)-G treatment suppressed IL-2 production by activated Jurkat cells, which was partially attenuated when pretreated with T0070907. Moreover, IL-2 suppression was pronounced when 15d-PGJ(2)-G was present 30 min before or after T-cell activation. Concordant with IL-2 suppression, 15d-PGJ(2)-G treatment decreased nuclear factor of activated T cells (NFAT) transcriptional activity in transiently transfected Jurkat cells. It is noteworthy that T0070907 alone markedly increased NFAT reporter activity, suggesting the existence of endogenous PPARγ activation and modulation of NFAT. Because COX-2 metabolism of 2-AG is important for IL-2 suppression, the effect of 2-AG on COX-2 and PPARγ mRNA expression was investigated. 2-AG treatment decreased the up-regulation of COX-2 mRNA after T-cell activation, which suggests negative feedback limiting COX-2-mediated metabolism of 2-AG. PPARγ mRNA expression was increased upon activation, and 2-AG treatment produced a modest decrease in PPARγ mRNA expression. Collectively, our findings suggest that 15d-PGJ(2)-G activates PPARγ to decrease NFAT transcriptional activity and IL-2 expression in activated T cells.
Collapse
Affiliation(s)
- Priyadarshini Raman
- Department of Pharmacology & Toxicology and the Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824-1317, USA
| | | | | | | | | |
Collapse
|
32
|
Depolarizing and calcium-mobilizing stimuli fail to enhance synthesis and release of endocannabinoids from rat brain cerebral cortex slices. J Neurochem 2011; 117:665-77. [DOI: 10.1111/j.1471-4159.2011.07235.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Fernandez-Solari J, Prestifilippo JP, Ossola CA, Rettori V, Elverdin JC. Participation of the endocannabinoid system in lipopolysaccharide-induced inhibition of salivary secretion. Arch Oral Biol 2010; 55:583-90. [PMID: 20542488 DOI: 10.1016/j.archoralbio.2010.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/11/2010] [Accepted: 05/15/2010] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The aim of the present paper was to assess whether lipopolysaccharide (LPS)-induced inhibition of salivary secretion involves the activation of the endocannabinoid system and the participation of tumor necrosis factor (TNF)alpha in the submandibular gland. DESIGN Pharmacological approaches were performed by using CB1 and/or CB2 cannabinoid receptor antagonists, AM251 and AM630, respectively, injected into the submandibular gland, to study the participation of the endocannabinoid system in LPS inhibitory effects on metacholine-induced salivary secretion. To assess the participation of TNFalpha on LPS inhibitory effects, salivary secretion was studied in LPS treated rats after the intraglandular injection of etanercept, a soluble form of TNF receptor which blocks TNFalpha action. Finally, to evaluate the possible interplay between endocannabinoids and TNFalpha on the submandibular gland function reduced during LPS challenge, the salivary secretion was studied after the intraglandular injection of this cytokine alone or concomitantly with AM251 and AM630. RESULTS AM251 and AM630, injected separately or concomitantly, partially prevented LPS-induced inhibition of salivation. Also, anandamide synthase activity was increased in submandibular glands extracted from rats 3h after LPS injection, suggesting that the endocannabinoid system was activated in response to this challenge. On the other hand, etanercept, prevented the inhibitory effect of LPS on salivary secretion and moreover, TNFalpha injected intraglandularly inhibited salivary secretion, being this effect prevented by AM251 and AM630 injected concomitantly. CONCLUSION The present results demonstrate the participation of the endocannabinoid system and TNFalpha on salivary responses during systemic inflammation induced by LPS.
Collapse
|
34
|
Alexander SPH, Kendall DA. The life cycle of the endocannabinoids: formation and inactivation. Curr Top Behav Neurosci 2009; 1:3-35. [PMID: 21104378 DOI: 10.1007/978-3-540-88955-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this chapter, we summarise the current thinking about the nature of endocannabinoids. In describing the life cycle of these agents, we highlight the synthetic and catabolic enzymes suggested to be involved. For each of these, we provide a systematic analysis of information on sequence, subcellular and cellular distribution, as well as physiological and pharmacological substrates, enhancers and inhibitors, together with brief descriptions of the impact of manipulating enzyme levels through genetic mechanisms (dealt with in more detail in the chapter "Genetic Models of the Endocannabinoid System" by Monory and Lutz, this volume). In addition, we describe experiments investigating the stimulation of endocannabinoid synthesis and release in intact cell systems.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Biomedical Sciences and Institute of Neuroscience, University of Nottingham Medical School, Queens Medical Centre, Nottingham, UK.
| | | |
Collapse
|
35
|
Jiang LS, Pu J, Han ZH, Hu LH, He B. Role of activated endocannabinoid system in regulation of cellular cholesterol metabolism in macrophages. Cardiovasc Res 2008; 81:805-13. [PMID: 19074161 DOI: 10.1093/cvr/cvn344] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIMS Evidence from recent studies suggests that the endocannabinoid system participates in the regulation of lipid metabolism and body composition. We hypothesize that the system is activated by oxidized low-density lipoprotein (oxLDL) and regulates cellular cholesterol metabolism in macrophages. METHODS AND RESULTS Primary peritoneal macrophages isolated from Sprague-Dawley rats and RAW264.7 mice macrophages were cultured. A liquid chromatography/mass spectrometry (LC/MS) system was used to measure the endocannabinoid anandamide (AEA), 2-arachidonoylglycerol (2-AG), and cellular cholesterol levels in macrophages. The regulatory mechanisms of cellular cholesterol metabolism were also investigated by molecular biology methods. The results showed that the endocannabinoid system in macrophages was activated by oxLDL through elevation of the AEA and 2-AG levels and the up-regulation of the cannabinoid CB1 and CB2 receptor expression. Win55,212-2, a synthetic cannabinoid, promotes cellular cholesterol accumulation in macrophages, which was associated with an increase in the expression of CD36 and a decrease in the expression of ATP-binding cassette protein A1 (ABCA1) as mediated by an up-regulated peroxisome proliferator-activated receptor gamma (PPARgamma). AM251, a selective cannabinoid CB1 receptor antagonist, impaired the abilities of Win55,212-2-treated macrophages to accumulate cholesterol by down-regulating CD36 receptor expression and up-regulating ABCA1 expression. CONCLUSION We have demonstrated, for the first time, that the endocannabinoid system in macrophages is activated by oxLDL and that the activated endocannabinoid system promotes cellular cholesterol accumulation in macrophages. The results also indicate that selectively blocking the CB1 receptor can reduce oxLDL accumulation in macrophages, which might represent a promising therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Li-sheng Jiang
- Department of Geriatrics, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
36
|
Baldassarri S, Bertoni A, Bagarotti A, Sarasso C, Zanfa M, Catani MV, Avigliano L, Maccarrone M, Torti M, Sinigaglia F. The endocannabinoid 2-arachidonoylglycerol activates human platelets through non-CB1/CB2 receptors. J Thromb Haemost 2008; 6:1772-9. [PMID: 18647220 DOI: 10.1111/j.1538-7836.2008.03093.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The endocannabinoid 2-arachidonoylglycerol (2-AG) is an endogenous lipid that acts through the activation of G-protein-coupled cannabinoid receptors and plays essential roles in many physiological contexts. In the cardiovascular system 2-AG is generated by both activated endothelial cells and platelets, and participates in the regulation of inflammation and thrombosis. Although human platelets actively metabolize endocannabinoids, 2-AG also binds to platelet surface and leads to cell activation. OBJECTIVE To investigate the biological consequence of 2-AG interactions with human platelets and to clarify the role of cannabinoid receptors. METHODS Gel-filtered platelets were stimulated with 2-AG in the presence or absence of various inhibitors. Platelet aggregation and secretion were measured in a lumiaggregometer. Calcium ion movements were measured in FURA-2 loaded platelets. Thromboxane A(2) (TxA(2)) generation was evaluated as Thromboxane B(2) accumulation with a commercial EIA assay. RESULTS 2-AG induced platelet shape change, aggregation and secretion with a dose-dependent mechanism that required engagement of platelet TxA(2) receptors. 2-AG caused also cytosolic calcium increase; however, it was totally dependent on availability of TxA(2). Indeed 2-AG was able to induce a robust generation of TxA(2) through the cyclooxygenase pathway. Treatment of platelets with inhibitors of monoacylglycerol lipase and fatty acid amide hydrolase did not affect the activation induced by 2-AG. Moreover, neither CB(1) and CB(2) proteins nor CB(1)/CB(2) mRNAs were detected in platelets. CONCLUSIONS 2-AG can be considered a new physiologic platelet agonist able to induce full platelet activation and aggregation with a non-CB(1)/CB(2) receptor-mediated mechanism.
Collapse
Affiliation(s)
- S Baldassarri
- Department of Clinical and Experimental Medicine, University of Eastern Piedmont, Novara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kunos G, Osei-Hyiaman D, Liu J, Godlewski G, Bátkai S. Endocannabinoids and the control of energy homeostasis. J Biol Chem 2008; 283:33021-5. [PMID: 18694938 DOI: 10.1074/jbc.r800012200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endocannabinoids (ECBs) are ubiquitous lipid mediators that act through the same G protein-coupled receptors (CB1 and CB2) that recognize plant-derived cannabinoids. As regulators of metabolism, ECBs are anabolic: they increase the intake, promote the storage, and decrease the expenditure of energy. Recent work indicates that activation of peripheral CB1 receptors by ECBs plays a key role in the hormonal/metabolic changes associated with obesity/metabolic syndrome and may be targeted for its pharmacotherapy.
Collapse
Affiliation(s)
- George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9413, USA.
| | | | | | | | | |
Collapse
|
38
|
Rossi C, Pini LA, Cupini ML, Calabresi P, Sarchielli P. Endocannabinoids in platelets of chronic migraine patients and medication-overuse headache patients: relation with serotonin levels. Eur J Clin Pharmacol 2007; 64:1-8. [DOI: 10.1007/s00228-007-0391-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Accepted: 09/24/2007] [Indexed: 12/22/2022]
|
39
|
Abstract
Endocannabinoids are blood borne and may also be secreted by the endothelium. Accordingly, there has been interest in the interactions between (endo)cannabinoids and blood cells. There is certainly evidence that (endo)cannabinoids may promote platelet activation, indicating that they may be thrombogenic. Platelets are involved both in the metabolism and release of endocannabinoids, and so it is possible that their circulating levels may be regulated by platelets. This process is altered in disease states such that platelet-derived endocannabinoids contribute towards hypotension in cardiovascular shock. Not only may endocannabinoids regulate platelet function and possibly lead to thrombogenesis, but they may also influence haematopoiesis. Given these emerging roles, the aim of this review is to examine the interactions between cannabinoids and blood.
Collapse
Affiliation(s)
- M D Randall
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, UK.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW When tissue is destroyed, pain arises. Tissue destruction is associated with an inflammatory reaction. This leads to activation of nociceptors. The following review will concentrate on pro-algesic and analgesic mediators, which arise from immune cells or resident cells in the periphery or the circulation during inflammation. RECENT FINDINGS In early inflammation endogenous hyperalgesic mediators are produced, including cytokines, chemokines, nerve growth factor as well as bradykinin, prostaglandins and ATP. Simultaneously, analgesic mediators are secreted: opioid peptides, somatostatin, endocannabinoids and certain cytokines. Inflammation increases the expression of peripheral opioid receptors on sensory nerve terminals and enhances their signal transduction, as well as the amount of opioid peptides in infiltrating immune cells. Interference with the recruitment of opioid-containing immune cells into inflamed tissue by blockade of adhesion molecules or by intrathecal morphine injection reduces endogenous analgesia. SUMMARY Inflammatory pain is the result of the interplay between pro-algesic and analgesic mediators. To avoid central side effects, future analgesic therapy should be targeted at either selectively blocking novel pro-algesic mediators or at enhancing endogenous peripheral analgesic effects.
Collapse
Affiliation(s)
- Heike L Rittner
- Department of Anaesthesiology and Intensive Care Medicine, Charité-University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.
| | | | | |
Collapse
|
41
|
Mendez-Sanchez N, Zamora-Valdes D, Pichardo-Bahena R, Barredo-Prieto B, Ponciano-Rodriguez G, Bermejo-Martínez L, Chavez-Tapia NC, Baptista-González HA, Uribe M. Endocannabinoid receptor CB2 in nonalcoholic fatty liver disease. Liver Int 2007; 27:215-9. [PMID: 17311616 DOI: 10.1111/j.1478-3231.2006.01401.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND AIM Fatty infiltration and fibrosis are major issues in chronic liver disease. Recent reports suggest a role for the endocannabinoid system in these processes. AIM To characterize localization and expression of CB2 in normal liver and nonalcoholic fatty liver. METHODS We studied 64 liver biopsies: eight were considered normal; 56 had a diagnosis of nonalcoholic fatty liver disease (NAFLD); 32 with nonalcoholic steatosis and 24 nonalcoholic steatohepatitis (NASH). CB2 immunolocalization was studied in 38 samples in paraffin blocks using immunohistochemistry, and a computerized semiquantitative analysis was carried out. CB2 mRNA expression was assessed through RT-PCR in 26 frozen liver samples and the ratio CB2/beta-actin was used to evaluate differences between groups. Statistical analysis was performed with central tendency measures and the Mann-Whitney U-test. We considered as significant differences those with a P-value <0.05. RESULTS Neither parenchymal nor nonparenchymal cells in normal liver tissue react towards anti-CB2 antibodies. All the samples from patients with steatosis and nonalcoholic steatohepatitis showed hepatocellular immunoreactivity. Cholangiocytes were positive only in the NAFLD group. Normal liver tissue showed a normalized CB2/beta-actin ratio of 0.001+/-0.01, steatosis 6.52+/-17.3 (P=0.05 vs normal) and NASH 6.49+/-12.2 (P=0.06 vs normal and P=0.6 vs steatosis). CONCLUSION CB2 receptors are expressed by hepatocytes in nonalcoholic fatty liver disease but not in normal liver.
Collapse
Affiliation(s)
- N Mendez-Sanchez
- Department of Biomedical Research, Gastroenterology & Liver Unit, Puente de Piedra 150, Col. Toriello Guerra, Mexico City, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Oka S, Wakui J, Ikeda S, Yanagimoto S, Kishimoto S, Gokoh M, Nasui M, Sugiura T. Involvement of the cannabinoid CB2 receptor and its endogenous ligand 2-arachidonoylglycerol in oxazolone-induced contact dermatitis in mice. THE JOURNAL OF IMMUNOLOGY 2007; 177:8796-805. [PMID: 17142782 DOI: 10.4049/jimmunol.177.12.8796] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The possible involvement of 2-arachidonoylglycerol (2-AG), an endogenous ligand for the cannabinoid receptors (CB1 and CB2), in contact dermatitis in mouse ear was investigated. We found that the level of 2-AG was markedly elevated in the ear following a challenge with oxazolone in sensitized mice. Of note, the swelling following the challenge was suppressed by either the administration of SR144528, a CB2 receptor antagonist, immediately after sensitization, or the administration of SR144528 upon the challenge. The effect of AM251, a CB1 receptor antagonist, was marginal in either case. It seems apparent, therefore, that the CB2 receptor and its endogenous ligand 2-AG are closely involved in both the sensitization phase and the elicitation phase of oxazolone-induced contact dermatitis. In line with this, we found that Langerhans cells (MHC class II(+)) contain a substantial amount of CB2 receptor mRNA, whereas keratinocytes (MHC class II(-)) do not. We also obtained evidence that the expression of mRNAs for proinflammatory cytokines following a challenge with oxazolone was markedly suppressed by treatment with SR144528. We next examined whether the CB2 receptor and 2-AG participate in chronic contact dermatitis accompanied by the infiltration of tissues by eosinophils. The amount of 2-AG in mouse ear dramatically increased following repeated challenge with oxazolone. Importantly, treatment with SR144528 attenuated both the recruitment of eosinophils and ear swelling in chronic contact dermatitis induced by repeated challenge with oxazolone. These results strongly suggest that the CB2 receptor and 2-AG play important stimulative roles in the sensitization, elicitation, and exacerbation of allergic inflammation.
Collapse
Affiliation(s)
- Saori Oka
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa 199-0195, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gokoh M, Kishimoto S, Oka S, Sugiura T. 2-Arachidonoylglycerol Enhances the Phagocytosis of Opsonized Zymosan by HL-60 Cells Differentiated into Macrophage-Like Cells. Biol Pharm Bull 2007; 30:1199-205. [PMID: 17603153 DOI: 10.1248/bpb.30.1199] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors (CB1 and CB2). While evidence is accumulating that the CB1 receptor plays important regulatory roles in various nervous tissues and cells, the physiological roles of the CB2 receptor, which is abundantly expressed in the immune system, are yet to be determined. In this study, we examined in detail the effect of 2-arachidonoylglycerol on the phagocytosis of opsonized zymosan by HL-60 cells that had differentiated into macrophage-like cells. We found that the addition of 2-arachidonoylglycerol augmented the phagocytosis of opsonized zymosan by the differentiated HL-60 cells. The effect was observed from 1 nM and increased with increasing concentrations of 2-arachidonoylglycerol. Treatment of the cells with SR144528 or pertussis toxin abolished the effect of 2-arachidonoylglycerol, indicating that the CB2 receptor and Gi/o are involved in the augmented phagocytosis. Phosphatidylinositol 3-kinase and extracellular signal-regulated kinase were also suggested to be involved; treatment of the cells with wortmannin or PD98059 abrogated the 2-arachidonoylglycerol-augmented phagocytosis. These results strongly suggest that 2-arachidonoylglycerol, derived from stimulated inflammatory cells, has an important role in augmenting the phagocytosis of invading microorganisms by macrophages/monocytes thereby stimulating inflammatory reactions and immune responses.
Collapse
Affiliation(s)
- Maiko Gokoh
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa, Japan
| | | | | | | |
Collapse
|
44
|
Ueda Y, Miyagawa N, Wakitani K. Involvement of cannabinoid CB2 receptors in the IgE-mediated triphasic cutaneous reaction in mice. Life Sci 2006; 80:414-9. [PMID: 17055000 DOI: 10.1016/j.lfs.2006.09.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 09/20/2006] [Accepted: 09/22/2006] [Indexed: 01/21/2023]
Abstract
Involvement of cannabinoid CB2 receptors in the IgE-mediated cutaneous reaction was investigated. Epicutaneous challenge with 2,4-dinitrofluorobenzene caused a triphasic swelling in the ear of BALB/c and C57BL/6 mice passively sensitized with anti-dinitrophenol IgE. Peak responses of the ear swelling appeared at 1 h, 24 h, and 8 days after the challenge in both strains of mice. In contrast, cannabinoid CB2 receptor-deficient mice failed to exhibit the obvious triphasic ear swelling observed in wild-type mice. Oral administration of cannabinoid CB2 receptor antagonist/inverse agonists [N-(benzo[1,3]dioxol-5-ylmethyl)-7-methoxy-2-oxo-8-pentyloxy-1,2-dihydroquinoline-3-carboxamide] (JTE-907) and {N-[(1S)-endo-1,3,3-trimethylbicyclo[2,2,1]heptan-2yl]5-(4-chloro-3-methyl-phenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide} (SR144528) at doses of 0.1-10 mg/kg significantly and dose-dependently suppressed all three phases of ear swelling in BALB/c mice. Interestingly, epicutaneous treatment with an ether-linked analogue of endogenous cannabinoids, 2-arachidonoylglycerol, caused an ear swelling that could be detected at 1 h, 24 h, and 8 days after treatment of both BALB/c and C57BL/6 mice. These results suggest that cannabinoid CB2 receptors are involved in induction of the triphasic cutaneous reaction mediated by IgE, and that cannabinoid CB2 receptor antagonist/inverse agonists may serve as anti-allergic agents in the treatment of allergic dermatitis.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Camphanes/pharmacology
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/metabolism
- Dinitrofluorobenzene/immunology
- Dinitrofluorobenzene/pharmacology
- Dioxoles/pharmacology
- Dose-Response Relationship, Drug
- Female
- Immunoglobulin E/immunology
- Ligands
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Pyrazoles/pharmacology
- Quinolones/pharmacology
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/physiology
- Skin/drug effects
- Skin/immunology
- Skin/metabolism
Collapse
Affiliation(s)
- Yoshifumi Ueda
- Japan Tobacco Inc., Central Pharmaceutical Research Institute, Takatsuki, Osaka, 569-1125, Japan.
| | | | | |
Collapse
|
45
|
Kishimoto S, Oka S, Gokoh M, Sugiura T. Chemotaxis of human peripheral blood eosinophils to 2-arachidonoylglycerol: comparison with other eosinophil chemoattractants. Int Arch Allergy Immunol 2006; 140 Suppl 1:3-7. [PMID: 16772720 DOI: 10.1159/000092704] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND 2-Arachidonoylglycerol (2-AG), an endogenous ligand for the cannabinoid receptors (CB1 and CB2), has been shown to exhibit a variety of cannabimimetic activities in vitro and in vivo. Recently, we found that human eosinophilic leukemia EoL-1 cells and human peripheral blood eosinophils express the CB2 receptor. We also found that 2-AG induces the migration of these cells in a CB2 receptor-dependent manner. In this study, we investigated whether the 2-AG-induced migration of human eosinophils is due to chemotaxis or chemokinesis. We also compared the ability of 2-AG to induce the migration of eosinophils with those of other eosinophil chemoattractants. METHODS Eosinophils were separated from the peripheral blood of healthy donors. The migration of eosinophils to various stimulants was examined using Transwell inserts. In view of the fact that 2-AG is rapidly metabolized by cells, we employed 2-AG ether, an ether-linked nonhydrolyzable analog of 2-AG, instead of 2-AG to determine whether the 2-AG-induced migration is due to chemotaxis or chemokinesis. RESULTS 2-AG ether induced the migration of human eosinophils, like 2-AG. The 2-AG ether-induced migration was reduced by the coincubation of eosinophils with 2-AG ether in the upper compartment of the Transwell inserts, indicating that the migration is attributable to chemotaxis. The concentration of 2-AG required to induce the eosinophil migration appears to be pathophysiologically relevant, although the order of the pharmacologically effective concentration of 2-AG was approximately ten times lower than those of platelet-activating factor, RANTES and eotaxin. CONCLUSION These results strongly suggest that 2-AG is involved in the infiltration of eosinophils during allergic inflammation.
Collapse
Affiliation(s)
- Seishi Kishimoto
- Faculty of Pharmaceutical Sciences, Teikyo University, Kanagawa, Japan
| | | | | | | |
Collapse
|
46
|
Rockwell CE, Snider NT, Thompson JT, Vanden Heuvel JP, Kaminski NE. Interleukin-2 suppression by 2-arachidonyl glycerol is mediated through peroxisome proliferator-activated receptor gamma independently of cannabinoid receptors 1 and 2. Mol Pharmacol 2006; 70:101-11. [PMID: 16611855 DOI: 10.1124/mol.105.019117] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2-Arachidonyl glycerol (2-AG) is an endogenous arachidonic acid derivative that binds cannabinoid receptors CB1 and CB2 and is hence termed an endocannabinoid. 2-AG also modulates a variety of immunological responses, including expression of the autocrine/paracrine T cell growth factor interleukin (IL)-2. The objective of the present studies was to determine the mechanism responsible for IL-2 suppression by 2-AG. Because of the labile properties of 2-AG, 2-AG ether, a nonhydrolyzable analog of 2-AG, was also used. Both 2-AG and 2-AG ether suppressed IL-2 expression independently of CB1 and CB2, as demonstrated in leukocytes derived from CB1/CB2-null mice. Moreover, we demonstrated that both 2-AG and 2-AG ether treatment activated peroxisome proliferator-activated receptor gamma (PPARgamma), as evidenced by forced differentiation of 3T3-L1 cells into adipocytes, induction of aP2 mRNA levels, and activation of a PPARgamma-specific luciferase reporter in transiently transfected 3T3-L1 cells. Consequently, the putative role of PPARgamma in IL-2 suppression by 2-AG and 2-AG ether was examined in Jurkat T cells. Concordant with PPARgamma involvement, the PPARgamma-specific antagonist 2-chloro-5-nitro-N-(4-pyridyl)-benzamide (T0070907) blocked 2-AG- and 2-AG ether-mediated IL-2 suppression. Likewise, 2-AG suppressed the transcriptional activity of two transcription factors crucial for IL-2 expression, nuclear factor of activated T cells and nuclear factor kappaB, in the absence but not in the presence of T0070907. 2-AG treatment also induced PPARgamma binding to a PPAR response element in activated Jurkat T cells. Together, the aforementioned studies identify PPARgamma as a novel intracellular target of 2-AG, which mediates the suppression of IL-2 by 2-AG in a manner that is independent of CB1 and/or CB2.
Collapse
MESH Headings
- 3T3-L1 Cells
- Adipogenesis/drug effects
- Animals
- Arachidonic Acids/chemistry
- Arachidonic Acids/pharmacology
- Benzamides/pharmacology
- Cells, Cultured
- Endocannabinoids
- Fatty Acid-Binding Proteins/genetics
- Female
- Gene Expression/drug effects
- Glycerides/chemistry
- Glycerides/pharmacology
- Humans
- Interferon-gamma/genetics
- Interleukin-2/antagonists & inhibitors
- Interleukin-2/metabolism
- Interleukin-4/genetics
- Jurkat Cells
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/metabolism
- NFATC Transcription Factors/metabolism
- PPAR gamma/genetics
- PPAR gamma/metabolism
- Peroxisome Proliferator-Activated Receptors/genetics
- Prostaglandin D2/analogs & derivatives
- Prostaglandin D2/pharmacology
- Protein Binding/drug effects
- Pyridines/pharmacology
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/physiology
- Response Elements/genetics
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- Thiazolidinediones/pharmacology
Collapse
Affiliation(s)
- Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, 315 National Food Safety and Toxicology Building, East Lansing, MI 48824-1317, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Drug abuse continues to take an enormous economic and social toll on the world. Among the costs are reduced productivity, increased need for medical services and stress on families. Treatments that allow affected individuals to reduce compulsive drug use are lacking and novel approaches to their development will likely come from increased understanding of the consequences of chronic exposure to reinforcing drugs. The purpose of this review is to explore the role of lipids in drug abuse and to present a rationale for an increased focus on the interactions between drugs of abuse and lipids in the brain. Small molecular weight lipids function as neuromodulators in the brain and, as such, play a role in the synaptic plasticity that occurs following exposure to drugs of abuse. In addition, the membrane lipid bilayer consists of lipid subdomains and emerging evidence suggests that protein function can be altered by transient associations with these subdomains. Finally, lipidomics is a very new field devoted to the exploration of changes in cellular lipid constituents during phenotypic alterations. Enhanced research in all of these areas will likely provide useful insights into and, perhaps, therapeutic targets for the treatment of drug abuse.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| |
Collapse
|
48
|
|
49
|
Walter L, Dinh T, Stella N. ATP induces a rapid and pronounced increase in 2-arachidonoylglycerol production by astrocytes, a response limited by monoacylglycerol lipase. J Neurosci 2005; 24:8068-74. [PMID: 15371507 PMCID: PMC6729797 DOI: 10.1523/jneurosci.2419-04.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cytoplasm of neural cells contain millimolar amounts of ATP, which flood the extracellular space after injury, activating purinergic receptors expressed by glial cells and increasing gliotransmitter production. These gliotransmitters, which are thought to orchestrate neuroinflammation, remain widely uncharacterized. Recently, we showed that microglial cells produce 2-arachidonoylglycerol (2-AG), an endocannabinoid known to prevent the propagation of harmful neuroinflammation, and that ATP increases this production by threefold at 2.5 min (Witting et al., 2004). Here we show that ATP increases 2-AG production from mouse astrocytes in culture, a response that is more rapid (i.e., significant within 10 sec) and pronounced (i.e., 60-fold increase at 2.5 min) than any stimulus-induced increase in endocannabinoid production reported thus far. Increased 2-AG production from astrocytes requires millimolar amounts of ATP, activation of purinergic P2X7 receptors, sustained rise in intracellular calcium, and diacylglycerol lipase activity. Furthermore, we show that astrocytes express monoacylglycerol lipase (MGL), the main hydrolyzing enzyme of 2-AG, the pharmacological inhibition of which potentiates the ATP-induced 2-AG production (up to 113-fold of basal 2-AG production at 2.5 min). Our results show that ATP greatly increases, and MGL limits, 2-AG production from astrocytes. We propose that 2-AG may function as a gliotransmitter, with MGL inhibitors potentiating this production and possibly restraining the propagation of harmful neuroinflammation.
Collapse
Affiliation(s)
- Lisa Walter
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA
| | | | | |
Collapse
|
50
|
Zhao Q, He Z, Chen N, Cho YY, Zhu F, Lu C, Ma WY, Bode AM, Dong Z. 2-Arachidonoylglycerol stimulates activator protein-1-dependent transcriptional activity and enhances epidermal growth factor-induced cell transformation in JB6 P+ cells. J Biol Chem 2005; 280:26735-42. [PMID: 15886210 PMCID: PMC2227265 DOI: 10.1074/jbc.m412828200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid, and it plays a critical role in cannabinoid receptor-mediated cell signaling. Although 2-AG was shown to induce ERK activation via the cannabinoid receptor 1 (CB1), only a nonspecific CB receptor agonist and antagonist was used in those studies. Whether cannabinoid receptor 2 (CB2) is involved in 2-AG-induced ERK activation is still unclear. Moreover, whether 2-AG is involved in mediation of AP-1 activity and cell transformation is also not known. In the present study, we show that 2-AG stimulates AP-1-dependent transcriptional activity and enhances epidermal growth factor-induced cell transformation in mouse epidermal JB6 P+ Cl41 cells. Using JB6 P+ C141 cells, stably transfected with an AP-1 luciferase reporter, we found that 10 microm 2-AG induced up to a 3-fold stimulation of AP-1 transcriptional activity. The AP-1 stimulation appeared to be mediated by ERK but not JNK or p38 kinase. PD98059, a specific inhibitor of MEK1, almost completely blocked 2-AG-induced ERK phosphorylation and AP-1 activation. Using CB1/2-/- murine embryonic fibroblasts, we present the first direct evidence that both cannabinoid receptors 1 and 2 (CB1/2) are involved in 2-AG-induced ERK activation. 2-AG could not stimulate ERK phosphorylation or Fyn kinase activity in dominant negative Fyn. In addition, the Fyn inhibitor PP2 blocked 2-AG-induced Fyn kinase activity and ERK phosphorylation and activity. Small interfering RNA Fyn also suppressed 2-AG-induced ERK phosphorylation. Interestingly, 2-AG enhanced epidermal growth factor-induced AP-1 DNA binding and cell transformation. Taken together, our data provide direct evidence suggesting that 2-AG may have a novel role in cell transformation and carcinogenesis in a signaling pathway involving CB1/2 and activation of Fyn, ERKs, and AP-1.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/pharmacology
- Cell Line
- Cell Transformation, Neoplastic/chemically induced
- Drug Synergism
- Endocannabinoids
- Epidermal Growth Factor/pharmacology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Glycerides/pharmacology
- Mice
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-fyn
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/deficiency
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction
- Transcription Factor AP-1/drug effects
- Transfection
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zigang Dong
- Address correspondence to: Zigang Dong, Hormel Institute, University of Minnesota, 80116 Avenue NE, Austin, Minnesota 55912, Tel. 507-437-9600; Fax. 507-437-9606; E-Mail:
| |
Collapse
|