1
|
El-Din NGS, Hafez MSMAE, El-Wahab MGA, Ibrahim HAH. Biological activities of derived pigments and polyphenols from the newly recorded alga Phyllymenia gibbesii. Sci Rep 2024; 14:21284. [PMID: 39261518 PMCID: PMC11390728 DOI: 10.1038/s41598-024-70825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
The newly recorded Phyllymenia gibesii in the Mediterranean Sea at Alexandria coast of Egypt is regarded as a significant source of bioactive substances and is applied as an antioxidant, anti-inflammatory, and antimicrobial agent. According to the HPLC chromatograms, the acetone extract of P. gibesii comprised ten photosynthetic pigments (chlorophyll-a, chlorophyll-d, α-carotene, β-carotene, phycocyanin, allophycocyanin, antheraxanthin, β-cryptoxanthin, lutein, and violaxanthin). Total carotenoids were the dominant class in the pigments' profile, achieving a concentration of 257 g/g dry weight. The P. gibbesii extract had a total content of phenols (146.67 mg/g) and a total content of flavonoids (104.40 mg/g). The capacity of all the investigated biological activities augmented with the concentration of the algal extract. The maximal DPPH scavenging capacity was 81.44%, with an inhibitory concentration (IC50) of 9.88 μg/mL. Additionally, the highest ABTS scavenging capacity was 89.62%, recording an IC50 of 21.77 μg/mL. The hemolytic activity of P. gibbesii attained a maximum capacity of 49.88% with an IC50 of 100.25 μg/mL. Data also showed the maximum anti-inflammatory effectiveness at 81.25%, with an IC50 of 99.75 μg/mL. Furthermore, the extract exhibited antimicrobial capacity against all reference strains, particularly at high concentrations (0.1 mg/mL), with the greatest effect on C. albicans and E. coli.
Collapse
Affiliation(s)
| | - Mohamed S M Abd El Hafez
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
- Faculty of Health Science Technology, Borg Al Arab Technological University, Alexandria, Egypt
| | - Miral G Abd El-Wahab
- Faculty of Technological Industry and Energy, Thebes Technological University, Thebes, Luxor, Egypt
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), Borg Al Arab Al Gadida city, Egypt
| | - Hassan A H Ibrahim
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
- Microbiology Department, NIOF, Kayet Bay, El-Anfoushy, Alexandria, Egypt.
| |
Collapse
|
2
|
Ozcagli E, Kubickova B, Jacobs MN. Addressing chemically-induced obesogenic metabolic disruption: selection of chemicals for in vitro human PPARα, PPARγ transactivation, and adipogenesis test methods. Front Endocrinol (Lausanne) 2024; 15:1401120. [PMID: 39040675 PMCID: PMC11260640 DOI: 10.3389/fendo.2024.1401120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
Whilst western diet and sedentary lifestyles heavily contribute to the global obesity epidemic, it is likely that chemical exposure may also contribute. A substantial body of literature implicates a variety of suspected environmental chemicals in metabolic disruption and obesogenic mechanisms. Chemically induced obesogenic metabolic disruption is not yet considered in regulatory testing paradigms or regulations, but this is an internationally recognised human health regulatory development need. An early step in the development of relevant regulatory test methods is to derive appropriate minimum chemical selection lists for the target endpoint and its key mechanisms, such that the test method can be suitably optimised and validated. Independently collated and reviewed reference and proficiency chemicals relevant for the regulatory chemical universe that they are intended to serve, assist regulatory test method development and validation, particularly in relation to the OECD Test Guidelines Programme. To address obesogenic mechanisms and modes of action for chemical hazard assessment, key initiating mechanisms include molecular-level Peroxisome Proliferator-Activated Receptor (PPAR) α and γ agonism and the tissue/organ-level key event of perturbation of the adipogenesis process that may lead to excess white adipose tissue. Here we present a critical literature review, analysis and evaluation of chemicals suitable for the development, optimisation and validation of human PPARα and PPARγ agonism and human white adipose tissue adipogenesis test methods. The chemical lists have been derived with consideration of essential criteria needed for understanding the strengths and limitations of the test methods. With a weight of evidence approach, this has been combined with practical and applied aspects required for the integration and combination of relevant candidate test methods into test batteries, as part of an Integrated Approach to Testing and Assessment for metabolic disruption. The proposed proficiency and reference chemical list includes a long list of negatives and positives (20 chemicals for PPARα, 21 for PPARγ, and 11 for adipogenesis) from which a (pre-)validation proficiency chemicals list has been derived.
Collapse
|
3
|
Yang Z, Li F, Shen S, Wang X, Nihmot Ibrahim A, Zheng H, Zhang J, Ji X, Liao X, Zhang Y. Natural chlorophyll: a review of analysis methods, health benefits, and stabilization strategies. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38795062 DOI: 10.1080/10408398.2024.2356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
Chlorophyll (Chl) is a natural pigment, widely distributed ranging from photosynthetic prokaryotes to higher plants, with an annual yield of up to 1.2 billion tons worldwide. Five types of Chls are observed in nature, that can be distinguished and identified using spectroscopy and mass spectrometry. Chl is also used in the food industry owing to its bioactivities, including obesity prevention, inflammation reduction, viral infection inhibition, anticancer effects, anti-oxidation, and immunostimulatory properties. It has great potential of being applied as a colorant and dietary supplement in the food industry. However, Chl is unstable under various enzymatic, acidic, heat, and light conditions, which limit its application. Although some strategies, such as aggregation with other food components, microencapsulation, and metal cation replacement, have been proposed to overcome these limitations, they are still not enough to facilitate its widespread application. Therefore, stabilization strategies and bioactivities of Chl need to be expected to expand its application in various fields, thereby aiding in the sustainable development of mankind.
Collapse
Affiliation(s)
- Zhaotian Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
- Sanya Institute of China Agricultural University, Sanya, PR China
| | - Fangwei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Suxia Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Xiao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Ajibola Nihmot Ibrahim
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Hongli Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Jinghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Xingyu Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Yan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
- Sanya Institute of China Agricultural University, Sanya, PR China
| |
Collapse
|
4
|
Torequl Islam M, Shimul Bhuia M, Paulo Martins de Lima J, Paulo Araujo Maia F, Beatriz Herminia Ducati A, Douglas Melo Coutinho H. Phytanic acid, an inconclusive phytol metabolite: A review. Curr Res Toxicol 2023; 5:100120. [PMID: 37744206 PMCID: PMC10515296 DOI: 10.1016/j.crtox.2023.100120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Phytanic acid (PA: 3,7,11,15-tetramethylhexadecanoic acid) is an important biometabolite of the chlorophyll-derived diterpenoid phytol. Its biological sources (occurrence) and ADME (absorption, distribution, metabolism, and elimination) profile are well-discussed in the literature. Cumulative literature suggests that PA has beneficial as well as harmful biological roles in humans and other animals. This study aimed to sketch a brief summary of PA's beneficial and harmful pharmacological effects in test systems on the basis of existing literature reports. Literature findings propose that PA has anti-inflammatory and immunomodulatory, antidiabetic, anti-obesity, anticancer, and oocyte maturation effects. Although a high plasma PA-level mediated SLS remains controversial, it is evident to link it with Refsum's disease and other peroxisomal enzyme deficiency diseases in humans, including RCDP and LD; ZHDA and Alzheimer's disease; progressive ataxia and dysarthria; and an increased risk of some lymphomas such as LBL, FL, and NHL. PA exerts toxic effects on different kinds of cells, including neuronal, cardiac, and renal cells, through diverse pathways such as oxidative stress, mitochondrial disturbance, apoptosis, disruption of Na+/K+-ATPase activity, Ca2+ homeostasis, alteration of AChE and MAO activities, etc. PA is considered a cardiac biomarker in humans. In conclusion, PA may be one of the most important biometabolites in humans.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | | | | | | |
Collapse
|
5
|
Song Q, Wang J, Griffiths A, Lee SM, Iyamu ID, Huang R, Cordoba-Chacon J, Song Z. Nicotinamide N-methyltransferase upregulation contributes to palmitate-elicited peroxisome proliferator-activated receptor transactivation in hepatocytes. Am J Physiol Cell Physiol 2023; 325:C29-C41. [PMID: 37212549 PMCID: PMC10259858 DOI: 10.1152/ajpcell.00010.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) plays a pivotal role in regulating lipid metabolism and hepatic PPARγ transactivation contributes to fatty liver development. Fatty acids (FAs) are well-known endogenous ligands for PPARγ. Palmitate, a 16-C saturated FA (SFA) and the most abundant SFA in human circulation, is a strong inducer of hepatic lipotoxicity, a central pathogenic factor for various fatty liver diseases. In this study, using both alpha mouse liver 12 (AML12) and primary mouse hepatocytes, we investigated the effects of palmitate on hepatic PPARγ transactivation and underlying mechanisms, as well as the role of PPARγ transactivation in palmitate-induced hepatic lipotoxicity, all of which remain ambiguous currently. Our data revealed that palmitate exposure was concomitant with both PPARγ transactivation and upregulation of nicotinamide N-methyltransferase (NNMT), a methyltransferase catalyzing the degradation of nicotinamide, the predominant precursor for cellular NAD+ biosynthesis. Importantly, we discovered that PPARγ transactivation by palmitate was blunted by NNMT inhibition, suggesting that NNMT upregulation plays a mechanistic role in PPARγ transactivation. Further investigations uncovered that palmitate exposure is associated with intracellular NAD+ decline and NAD+ replenishment with NAD+-enhancing agents, nicotinamide and nicotinamide riboside, obstructed palmitate-induced PPARγ transactivation, implying that cellular NAD+ decline resulted from NNMT upregulation represents a potential mechanism behind palmitate-elicited PPARγ transactivation. At last, our data showed that the PPARγ transactivation marginally ameliorated palmitate-induced intracellular triacylglycerol accumulation and cell death. Collectively, our data provided the first-line evidence supporting that NNMT upregulation plays a mechanistic role in palmitate-elicited PPARγ transactivation, potentially through reducing cellular NAD+ contents.NEW & NOTEWORTHY Hepatic PPARγ transactivation contributes to fatty liver development. Saturated fatty acids (SFAs) induce hepatic lipotoxicity. Here, we investigated whether and how palmitate, the most abundant SFA in the human blood, affects PPARγ transactivation in hepatocytes. We reported for the first time that upregulation of nicotinamide N-methyltransferase (NNMT), a methyltransferase catalyzing the degradation of nicotinamide, the predominant precursor for cellular NAD+ biosynthesis, plays a mechanistic role in regulating palmitate-elicited PPARγ transactivation through reducing intracellular NAD+ contents.
Collapse
Affiliation(s)
- Qing Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jun Wang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Alexandra Griffiths
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Samuel Man Lee
- Division of Endocrinology/Diabetes & Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Iredia D Iyamu
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug Discovery, Purdue University, West Lafayette, Indiana, United States
| | - Jose Cordoba-Chacon
- Division of Endocrinology/Diabetes & Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
6
|
Hartley A, Ahmad I. The role of PPARγ in prostate cancer development and progression. Br J Cancer 2023; 128:940-945. [PMID: 36510001 PMCID: PMC10006070 DOI: 10.1038/s41416-022-02096-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Advanced and metastatic prostate cancer is often incurable, but its dependency on certain molecular alterations may provide the basis for targeted therapies. A growing body of research has demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ) is amplified as prostate cancer progresses. PPARγ has been shown to support prostate cancer growth through its roles in fatty acid synthesis, mitochondrial biogenesis, and co-operating with androgen receptor signalling. Interestingly, splice variants of PPARγ may have differing and contrasting roles. PPARγ itself is a highly druggable target, with agonists having been used for the past two decades in treating diabetes. However, side effects associated with these compounds have currently limited clinical use of these drugs in prostate cancer. Further understanding of PPARγ and novel techniques to target it, may provide therapies for advanced prostate cancer.
Collapse
Affiliation(s)
- Andrew Hartley
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Imran Ahmad
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
7
|
Shah RV, Steffen LM, Nayor M, Reis JP, Jacobs DR, Allen NB, Lloyd-Jones D, Meyer K, Cole J, Piaggi P, Vasan RS, Clish CB, Murthy VL. Dietary metabolic signatures and cardiometabolic risk. Eur Heart J 2023; 44:557-569. [PMID: 36424694 PMCID: PMC10169425 DOI: 10.1093/eurheartj/ehac446] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/23/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022] Open
Abstract
AIMS Observational studies of diet in cardiometabolic-cardiovascular disease (CM-CVD) focus on self-reported consumption of food or dietary pattern, with limited information on individual metabolic responses to dietary intake linked to CM-CVD. Here, machine learning approaches were used to identify individual metabolic patterns related to diet and relation to long-term CM-CVD in early adulthood. METHODS AND RESULTS In 2259 White and Black adults (age 32.1 ± 3.6 years, 45% women, 44% Black) in the Coronary Artery Risk Development in Young Adults (CARDIA) study, multivariate models were employed to identify metabolite signatures of food group and composite dietary intake across 17 food groups, 2 nutrient groups, and healthy eating index-2015 (HEI2015) diet quality score. A broad array of metabolites associated with diet were uncovered, reflecting food-related components/catabolites (e.g. fish and long-chain unsaturated triacylglycerols), interactions with host features (microbiome), or pathways broadly implicated in CM-CVD (e.g. ceramide/sphingomyelin lipid metabolism). To integrate diet with metabolism, penalized machine learning models were used to define a metabolite signature linked to a putative CM-CVD-adverse diet (e.g. high in red/processed meat, refined grains), which was subsequently associated with long-term diabetes and CVD risk numerically more strongly than HEI2015 in CARDIA [e.g. diabetes: standardized hazard ratio (HR): 1.62, 95% confidence interval (CI): 1.32-1.97, P < 0.0001; CVD: HR: 1.55, 95% CI: 1.12-2.14, P = 0.008], with associations replicated for diabetes (P < 0.0001) in the Framingham Heart Study. CONCLUSION Metabolic signatures of diet are associated with long-term CM-CVD independent of lifestyle and traditional risk factors. Metabolomics improves precision to identify adverse consequences and pathways of diet-related CM-CVD.
Collapse
Affiliation(s)
- Ravi V Shah
- Vanderbilt University Medical Center, Vanderbilt Clinical and Translational Research Center (VTRACC), Nashville, TN, USA
| | - Lyn M Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Matthew Nayor
- Cardiology Division, Boston University School of Medicine, Boston, MA, USA
| | - Jared P Reis
- Epidemiology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - David R Jacobs
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Norrina B Allen
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Donald Lloyd-Jones
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Katie Meyer
- Nutrition Department, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Joanne Cole
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Paolo Piaggi
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Ramachandran S Vasan
- Sections of Preventive Medicine and Epidemiology and Cardiovascular Medicine, Department of Medicine, and Department of Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Venkatesh L Murthy
- Department of Medicine and Radiology, University of Michigan, 1338 Cardiovascular Center, Ann Arbor, MI 48109-5873, USA
| |
Collapse
|
8
|
Investigation of biological activities of Xeromphis uliginosa (Retz.) root extracts in Swiss-albino mice model, an extinctive medicinal plant of Bangladesh. EUREKA: LIFE SCIENCES 2022. [DOI: 10.21303/2504-5695.2022.002600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Xeromphis. uliginosa (Retz.) is an extinctive Bangladeshi medicinal plant that is locally used for the treatments of pain, diabetes, diarrhea, depressant, and other diseases. The present study was conducted to evaluate the peripheral analgesic activity (PAA), central analgesic activity (CAA), central nervous system antidepressant activity (CNS-AD), antidiarrheal activity (ADA), and hypoglycaemic activity (HGA) of methanolic root extract of X. uliginosa (MREXU) in a mice model.
The acetic acid-induced writhing inhibition and tail flick method were applied to determine the PAA and CAA of MREXU. The CNS-AD was measured using the phenobarbitone sodium-mediated sleeping method whereas, the castor oil-induced antidiarrheal method was used to determine the ADA of the crude extracts. To determine the HGA of MREXU crude extract, the tail tipping technique was conducted in a mice model.
The MREXU displayed potential PAA and CAA in mice models. The MREXU 200 and 400 mg/kg significantly inhibit the number of writings along with diclofenac sodium. On the other hand, MREXU both doses significantly inhibit thermal stimulus after 60 and 90 minutes respectively. In the CNS-AD study, crude extract of 200 and 400 mg/kg significantly increase the onset of sleep by decreasing the duration of sleep. Similarly, the dose of 200 mg/kg significantly reduced diarrheal faeces for the whole 4 hours of experiments. The heartiest outcome of MREXU was displayed in the HGA assay. Both doses of MREXU significantly reduced the blood sugar level for the entire 3 hours of the experiments.
In this study, it is revealed that the root of MREXU has extremely significant blood sugar-reducing activity, potential CNS-AD and mild to moderate nociceptive activity in the mice model
Collapse
|
9
|
Murthy VL, Nayor M, Carnethon M, Reis JP, Lloyd-Jones D, Allen NB, Kitchen R, Piaggi P, Steffen LM, Vasan RS, Freedman JE, Clish CB, Shah RV. Circulating metabolite profile in young adulthood identifies long-term diabetes susceptibility: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Diabetologia 2022; 65:657-674. [PMID: 35041022 PMCID: PMC8969893 DOI: 10.1007/s00125-021-05641-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS The aim of this work was to define metabolic correlates and pathways of diabetes pathogenesis in young adults during a subclinical latent phase of diabetes development. METHODS We studied 2083 young adults of Black and White ethnicity in the prospective observational cohort Coronary Artery Risk Development in Young Adults (CARDIA) study (mean ± SD age 32.1 ± 3.6 years; 43.9% women; 42.7% Black; mean ± SD BMI 25.6 ± 4.9 kg/m2) and 1797 Framingham Heart Study (FHS) participants (mean ± SD age 54.7 ± 9.7 years; 52.1% women; mean ± SD BMI 27.4 ± 4.8 kg/m2), examining the association of comprehensive metabolite profiles with endophenotypes of diabetes susceptibility (adipose and muscle tissue phenotypes and systemic inflammation). Statistical learning techniques and Cox regression were used to identify metabolite signatures of incident diabetes over a median of nearly two decades of follow-up across both cohorts. RESULTS We identified known and novel metabolites associated with endophenotypes that delineate the complex pathophysiological architecture of diabetes, spanning mechanisms of muscle insulin resistance, inflammatory lipid signalling and beta cell metabolism (e.g. bioactive lipids, amino acids and microbe- and diet-derived metabolites). Integrating endophenotypes of diabetes susceptibility with the metabolome generated two multi-parametric metabolite scores, one of which (a proinflammatory adiposity score) was associated with incident diabetes across the life course in participants from both the CARDIA study (young adults; HR in a fully adjusted model 2.10 [95% CI 1.72, 2.55], p<0.0001) and FHS (middle-aged and older adults; HR 1.33 [95% CI 1.14, 1.56], p=0.0004). A metabolite score based on the outcome of diabetes was strongly related to diabetes in CARDIA study participants (fully adjusted HR 3.41 [95% CI 2.85, 4.07], p<0.0001) but not in the older FHS population (HR 1.15 [95% CI 0.99, 1.33], p=0.07). CONCLUSIONS/INTERPRETATION Selected metabolic abnormalities in young adulthood identify individuals with heightened diabetes risk independent of race, sex and traditional diabetes risk factors. These signatures replicate across the life course.
Collapse
Affiliation(s)
- Venkatesh L Murthy
- Department of Medicine and Radiology, University of Michigan, Ann Arbor, MI, USA.
| | - Matthew Nayor
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | - Jared P Reis
- National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | | | | | - Robert Kitchen
- Simches Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Paolo Piaggi
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Lyn M Steffen
- University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Ramachandran S Vasan
- Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Jane E Freedman
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Clary B Clish
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ravi V Shah
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
10
|
Potential of Diterpenes as Antidiabetic Agents: Evidence from Clinical and Pre-Clinical Studies. Pharmacol Res 2022; 179:106158. [PMID: 35272043 DOI: 10.1016/j.phrs.2022.106158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/20/2022]
Abstract
Diterpenes are a diverse group of structurally complex natural products with a wide spectrum of biological activities, including antidiabetic potential. In the last 25 years, numerous diterpenes have been investigated for antidiabetic activity, with some of them reaching the stage of clinical trials. However, these studies have not been comprehensively reviewed in any previous publication. Herein, we critically discussed the literature on the potential of diterpenes as antidiabetic agents, published from 1995 to September, 2021. In the period under review, 427 diterpenes were reported to have varying degrees of antidiabetic activity. Steviol glycosides, stevioside (1) and rebaudioside A (2), were the most investigated diterpenes with promising antidiabetic property using in vitro and in vivo models, as well as human subjects. All the tested pimaranes consistently showed good activity in preclinical evaluations against diabetes. Inhibitions of α-glucosidase and protein tyrosine phosphatase 1B (PTP 1B) activities and peroxisome proliferator-activated receptors gamma (PPAR-γ) agonistic property, were the most frequently used assays for studying the antidiabetic activity of diterpenes. The molecular mechanisms of action of the diterpenes include increased GLUT4 translocation, and activation of phosphoinositide 3-kinase (PI3K) and AMP-activated protein kinase (AMPK)-dependent signaling pathways. Our data revealed that diterpenes hold promising antidiabetic potential. Stevioside (1) and rebaudioside A (2) are the only diterpenes that were advanced to the clinical trial stage of the drug discovery pipeline. Diterpenes belonging to the abietane, labdane, pimarane and kaurane class have shown promising activity in in vitro and in vivo models of diabetes and should be further investigated.
Collapse
|
11
|
GC–MS and HPLC analysis of antiglycogenolytic and glycogenic compounds in kaempferol 3–O–gentiobioside containing Senna alata L leaves in experimental rats. TRANSLATIONAL METABOLIC SYNDROME RESEARCH 2021. [DOI: 10.1016/j.tmsr.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Noruddin NAA, Hamzah MF, Rosman Z, Salin NH, Shu-Chien AC, Muhammad TST. Natural Compound 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al from Momordica charantia Acts as PPARγ Ligand. Molecules 2021; 26:2682. [PMID: 34063700 PMCID: PMC8124227 DOI: 10.3390/molecules26092682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022] Open
Abstract
Momordica charantia is a popular vegetable associated with effective complementary and alternative diabetes management in some parts of the world. However, the molecular mechanism is less commonly investigated. In this study, we investigated the association between a major cucurbitane triterpenoid isolated from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (THCB) and peroxisome proliferator activated receptor gamma (PPARγ) activation and its related activities using cell culture and molecular biology techniques. In this study, we report on both M. charantia fruit crude extract and THCB in driving the luciferase activity of Peroxisome Proliferator Response Element, associated with PPARγ activation. Other than that, THCB also induced adipocyte differentiation at far less intensity as compared to the full agonist rosiglitazone. In conjunction, THCB treatment on adipocytes also resulted in upregulation of PPAR gamma target genes expression; AP2, adiponectin, LPL and CD34 at a lower magnitude compared to rosiglitazone's induction. THCB also induced glucose uptake into muscle cells and the mechanism is via Glut4 translocation to the cell membrane. In conclusion, THCB acts as one of the many components in M. charantia to induce hypoglycaemic effect by acting as PPARγ ligand and inducing glucose uptake activity in the muscles by means of Glut4 translocation.
Collapse
Affiliation(s)
- Nur Adelina Ahmad Noruddin
- National Institutes of Biotechnology Malaysia-Malaysian Institute of Pharmaceuticals and Nutraceuticals (NIBM-IPharm), Ministry of Science, Technology and Innovation, Blok 5A, Halaman Bukit Gambir 11700, Malaysia; (N.A.A.N.); (M.F.H.); (Z.R.); (N.H.S.)
| | - Mohamad Faiz Hamzah
- National Institutes of Biotechnology Malaysia-Malaysian Institute of Pharmaceuticals and Nutraceuticals (NIBM-IPharm), Ministry of Science, Technology and Innovation, Blok 5A, Halaman Bukit Gambir 11700, Malaysia; (N.A.A.N.); (M.F.H.); (Z.R.); (N.H.S.)
| | - Zulfadli Rosman
- National Institutes of Biotechnology Malaysia-Malaysian Institute of Pharmaceuticals and Nutraceuticals (NIBM-IPharm), Ministry of Science, Technology and Innovation, Blok 5A, Halaman Bukit Gambir 11700, Malaysia; (N.A.A.N.); (M.F.H.); (Z.R.); (N.H.S.)
| | - Nurul Hanim Salin
- National Institutes of Biotechnology Malaysia-Malaysian Institute of Pharmaceuticals and Nutraceuticals (NIBM-IPharm), Ministry of Science, Technology and Innovation, Blok 5A, Halaman Bukit Gambir 11700, Malaysia; (N.A.A.N.); (M.F.H.); (Z.R.); (N.H.S.)
| | - Alexander Chong Shu-Chien
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
- Centre for Chemical Biology, Universiti Sains Malaysia, Sains@USM, Blok B No. 10, Persiaran Bukit Jambul, Bayan Lepas 11900, Malaysia
| | | |
Collapse
|
13
|
Upadhyay HC, Mishra A, Pandey J, Sharma P, Tamrakar AK, Srivastava AK, Khan F, Srivastava SK. In vitro, in vivo and in silico Antihyperglycemic Activity of Some Semi-synthetic Phytol Derivatives. Med Chem 2020; 18:115-121. [PMID: 33327922 DOI: 10.2174/1573406417666201216124018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/09/2020] [Accepted: 10/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Due to the prevalence of type-2 diabetes across the globe, there is unmet need to explore new molecular targets for the development of cost-effective and safer antihyperglycemic agents. OBJECTIVE Structural modification of phytol and evaluation of in vitro, in vivo and in silico antihyperglycemic activity of derivatives establishing the preliminary structure activity relationship (SAR). METHODS The semi-synthetic derivatives of phytol were prepared following previously described methods. The antihyperglycemic potential was measured in vitro in terms of increase in 2-deoxyglucose (2-DG) uptake by L-6 rat skeletal muscle cells as well as in vivo in sucrose-loaded (SLM) and streptozotocin (STZ)-induced diabetic rat models. The blood glucose profile was measured at 30, 60, 90, 120, 180, 240, 300 and 1440 min post administration of sucrose in rats. The in silico docking was performed on peroxisome proliferator-activated receptor gamma (PPARγ) as anti-diabetic target along with absorption, distribution, metabolism, excretion and toxicity (ADMET) studies. RESULTS Nine semi-synthetic ester derivatives: acetyl (1), lauroyl (2), palmitoyl (3), pivaloyl (4), trans-crotonyl (5), benzoyl (6), m-anisoyl (7), 3,4,5-trimethoxy benzoyl (8) cinnamoyl (9) along with bromo derivative (10) of phytol were prepared. The derivatives 9, 8 and 2 caused 4.5, 3.2 and 2.7 times more in vitro uptake of 2-DG respectively than rosiglitazone (ROSI). The derivatives showed significant improvement on oral glucose tolerance both in SLM (29.6-21%) as well as STZ-induced diabetic (30.8-19.0%) rats. The in silico ADMET, docking studies showed non-toxicity and high binding affinity with PPARγ. CONCLUSION The potent antihyperglycemic activity with favorable pharmacokinetics supports phytol derivatives as suitable antidiabetic lead.
Collapse
Affiliation(s)
- Harish C Upadhyay
- Medicinal Chemistry Department, Metabolic and Structural Biology Department; CSIR-Central Institute of Medicinal and Aromatic Plants, P.O.- CIMAP, Lucknow-226015. India
| | - Akansha Mishra
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow-226031. India
| | - Jyotsana Pandey
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow-226031. India
| | - Pooja Sharma
- Medicinal Chemistry Department, Metabolic and Structural Biology Department; CSIR-Central Institute of Medicinal and Aromatic Plants, P.O.- CIMAP, Lucknow-226015. India
| | - Akhilesh K Tamrakar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow-226031. India
| | - Arvind K Srivastava
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow-226031. India
| | - Feroz Khan
- Medicinal Chemistry Department, Metabolic and Structural Biology Department; CSIR-Central Institute of Medicinal and Aromatic Plants, P.O.- CIMAP, Lucknow-226015. India
| | - Santosh K Srivastava
- Medicinal Chemistry Department, Metabolic and Structural Biology Department; CSIR-Central Institute of Medicinal and Aromatic Plants, P.O.- CIMAP, Lucknow-226015. India
| |
Collapse
|
14
|
Torrez Lamberti MF, DeBose-Scarlett E, Garret T, Parker LA, Neu J, Lorca GL. Metabolomic Profile of Personalized Donor Human Milk. Molecules 2020; 25:E5783. [PMID: 33302441 PMCID: PMC7763631 DOI: 10.3390/molecules25245783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
Human milk could be considered an active and complex mixture of beneficial bacteria and bioactive compounds. Since pasteurization drastically reduces the microbial content, we recently demonstrated that pasteurized donor human milk (DHM) could be inoculated with different percentages (10% and 30%) of mother's own milk (MOM) to restore the unique live microbiota, resulting in personalized milk (RM10 and RM30, respectively). Pasteurization affects not only the survival of the microbiota but also the concentration of proteins and metabolites, in this study, we performed a comparative metabolomic analysis of the RM10, RM30, MOM and DHM samples to evaluate the impact of microbial restoration on metabolite profiles, where metabolite profiles clustered into four well-defined groups. Comparative analyses of DHM and MOM metabolomes determined that over one thousand features were significantly different. In addition, significant changes in the metabolite concentrations were observed in MOM and RM30 samples after four hours of incubation, while the concentration of metabolites in DHM remained constant, indicating that these changes are related to the microbial expansion. In summary, our analyses indicate that the metabolite profiles of DHM are significantly different from that of MOM, and the profile of MOM may be partially restored in DHM through microbial expansion.
Collapse
Affiliation(s)
- Monica F. Torrez Lamberti
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (M.F.T.L.); (E.D.-S.)
| | - Evon DeBose-Scarlett
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (M.F.T.L.); (E.D.-S.)
| | - Timothy Garret
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Leslie Ann Parker
- College of Nursing, University of Florida, Gainesville, FL 32611, USA;
| | - Josef Neu
- Department of Pediatrics, Division of Neonatology, University of Florida, Gainesville, FL 32611, USA;
| | - Graciela L. Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (M.F.T.L.); (E.D.-S.)
| |
Collapse
|
15
|
Abstract
The aims of this research communication were to investigate the in vivo tissue accumulation of phytanic acid (PA) and any changes in the tissue fatty acid profiles in mice. Previous in vitro studies have demonstrated that PA is a milk component with the potential to cause both beneficial effects on lipid and glucose metabolism and detrimental effects on neuronal cells. However, there is limited information about its in vivo actions. In this study, mice were fed diets containing either 0.00 or 0.05% 3RS, 7R, 11R-PA, which is the isomer found in milk and the human body. After 4 weeks, adipose tissue, liver and brain were harvested and their fatty acid profiles were determined by gas chromatographic analysis. The results showed that PA and its metabolite pristanic acid accumulated in the adipose tissue of PA-fed mice, and that dietary PA decreased the hepatic compositions of several saturated fatty acids such as palmitic acid while increasing the compositions of polyunsaturated fatty acids including linoleic acid and docosahexaenoic acid. However, dietary PA neither accumulated nor had a high impact on the fatty acid profile in the brain. These results suggested that dietary PA could exert its biological activities in adipose tissue and liver, although the brain is relatively less affected by dietary PA. These data provide a basis for understanding the in vivo physiological actions of PA.
Collapse
|
16
|
Shafi S, Gupta P, Khatik GL, Gupta J. PPARγ: Potential Therapeutic Target for Ailments Beyond Diabetes and its Natural Agonism. Curr Drug Targets 2020; 20:1281-1294. [PMID: 31131751 DOI: 10.2174/1389450120666190527115538] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023]
Abstract
Intense research interests have been observed in establishing PPAR gamma as a therapeutic target for diabetes. However, PPARγ is also emerging as an important therapeutic target for varied disease states other than type 2 diabetes like neurodegenerative disorders, cancer, spinal cord injury, asthma, and cardiovascular problems. Furthermore, glitazones, the synthetic thiazolidinediones, also known as insulin sensitizers, are the largely studied PPARγ agonists and the only ones approved for the treatment of type 2 diabetes. However, they are loaded with side effects like fluid retention, obesity, hepatic failure, bone fractures, and cardiac failure; which restrict their clinical application. Medicinal plants used traditionally are the sources of bioactive compounds to be used for the development of successful drugs and many structurally diverse natural molecules are already established as PPARγ agonists. These natural partial agonists when compared to full agonist synthetic thiazolidinediones led to weaker PPARγ activation with lesser side effects but are not thoroughly investigated. Their thorough characterization and elucidation of mechanistic activity might prove beneficial for counteracting diseases by modulating PPARγ activity through dietary changes. We aim to review the therapeutic significance of PPARγ for ailments other than diabetes and highlight natural molecules with potential PPARγ agonistic activity.
Collapse
Affiliation(s)
- Sana Shafi
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab - 144411, India
| | - Pawan Gupta
- School of Pharmaceutical Sciences, Lovely Professional University (LPU), Phagwara, Punjab - 144411, India.,Department of Research and Development, Lovely Professional University (LPU), Phagwara, Punjab - 144411, India
| | - Gopal Lal Khatik
- School of Pharmaceutical Sciences, Lovely Professional University (LPU), Phagwara, Punjab - 144411, India
| | - Jeena Gupta
- School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab - 144411, India
| |
Collapse
|
17
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
18
|
Nakanishi T, Kagamizono K, Yokoyama S, Suzuki R, Sakakibara H, Erickson L, Kawahara S. Effects of dietary phytol on tissue accumulation of phytanic acid and pristanic acid and on the tissue lipid profiles in mice. Anim Sci J 2020; 91:e13424. [PMID: 32618084 DOI: 10.1111/asj.13424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Recent in vitro evidence suggests that the phytol-derived fatty acids, phytanic acid (PA) and pristanic acid (PrA), are components of animal products with the potential to cause both beneficial and harmful effects on human health. In this study, we investigated the in vivo tissue accumulation of PA and PrA and the changes in tissue lipid profiles, using mice fed a phytol-containing diet. After 4 weeks of treatment with a diet containing 1.0% phytol, plasma, adipose tissue, liver, and brain were collected and their lipid profiles were biochemically and gas-chromatographically determined. Dietary phytol caused PA and PrA accumulation in the adipose tissue and liver but not in the brain, and reduced plasma and liver triacylglycerol levels. Phytol intake also decreased the fatty acid concentrations in the adipose tissue, especially polyunsaturated fatty acids such as linoleic acid, but increased the concentrations of these fatty acids in the liver. However, dietary phytol had a low impact on the brain lipid profile. This study suggests that dietary phytol intake caused accumulation of PA and PrA and modified lipid profiles in the adipose tissue and liver, but that the brain is an insusceptible tissue to dietary phytol-induced changes.
Collapse
Affiliation(s)
- Tomonori Nakanishi
- Department of Biochemistry and Applied Biosciences Faculty of Agriculture University of Miyazaki Miyazaki Japan
| | - Kazuhiro Kagamizono
- Department of Biochemistry and Applied Biosciences Faculty of Agriculture University of Miyazaki Miyazaki Japan
| | - Sayaka Yokoyama
- Department of Biochemistry and Applied Biosciences Faculty of Agriculture University of Miyazaki Miyazaki Japan
| | - Ryoji Suzuki
- Department of Biochemistry and Applied Biosciences Faculty of Agriculture University of Miyazaki Miyazaki Japan
| | - Hiroyuki Sakakibara
- Department of Biochemistry and Applied Biosciences Faculty of Agriculture University of Miyazaki Miyazaki Japan
| | - Laurie Erickson
- Department of Biology Harold Washington City College of Chicago Chicago IL USA
- Department of Health Sciences Blitstein Institute of Hebrew Theological College Chicago IL USA
| | - Satoshi Kawahara
- Department of Biochemistry and Applied Biosciences Faculty of Agriculture University of Miyazaki Miyazaki Japan
| |
Collapse
|
19
|
Phytol and its metabolites phytanic and pristanic acids for risk of cancer: current evidence and future directions. Eur J Cancer Prev 2019; 29:191-200. [PMID: 31436750 PMCID: PMC7012361 DOI: 10.1097/cej.0000000000000534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This review summarizes the current evidence on the potential role of phytol, a microbial metabolite of chlorophyl A, and its metabolites, phytanic and pristanic acids, in carcinogenesis. Primary food sources in Western diets are the nut skin for phytol and lipids in dairy, beef and fish for its metabolites. Phytol and its metabolites gained interest as dietary compounds for cancer prevention because, as natural ligands of peroxisome proliferator-activated receptor-α and -γ and retinoid X receptor, phytol and its metabolites have provided some evidence in cell culture studies and limited evidence in animal models of anti-carcinogenic, anti-inflammatory and anti-metabolic-syndrome properties at physiological concentrations. However, there may be a narrow range of efficacy, because phytol and its metabolites at supra-physiological concentrations can cause in vitro cytotoxicity in non-cancer cells and can cause morbidity and mortality in animal models. In human studies, evidence for a role of phytol and its metabolites in cancer prevention is currently limited and inconclusive. In short, phytol and its metabolites are potential dietary compounds for cancer prevention, assuming the challenges in preventing cytotoxicity in non-cancer cells and animal models and understanding phytol metabolism can be mitigated.
Collapse
|
20
|
Overexpression of Dlx2 enhances osteogenic differentiation of BMSCs and MC3T3-E1 cells via direct upregulation of Osteocalcin and Alp. Int J Oral Sci 2019; 11:12. [PMID: 30880332 PMCID: PMC6421343 DOI: 10.1038/s41368-019-0046-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 01/17/2023] Open
Abstract
Genetic studies have revealed a critical role of Distal-homeobox (Dlx) genes in bone formation, and our previous study showed that Dlx2 overexpressing in neural crest cells leads to profound abnormalities of the craniofacial tissues. The aim of this study was to investigate the role and the underlying molecular mechanisms of Dlx2 in osteogenic differentiation of mouse bone marrow stromal cells (BMSCs) and pre-osteoblast MC3T3-E1 cells. Initially, we observed upregulation of Dlx2 during the early osteogenesis in BMSCs and MC3T3-E1 cells. Moreover, Dlx2 overexpression enhanced alkaline phosphatase (ALP) activity and extracellular matrix mineralization in BMSCs and MC3T3-E1 cell line. In addition, micro-CT of implanted tissues in nude mice confirmed that Dlx2 overexpression in BMSCs promoted bone formation in vivo. Unexpectedly, Dlx2 overexpression had little impact on the expression level of the pivotal osteogenic transcription factors Runx2, Dlx5, Msx2, and Osterix, but led to upregulation of Alp and Osteocalcin (OCN), both of which play critical roles in promoting osteoblast maturation. Importantly, luciferase analysis showed that Dlx2 overexpression stimulated both OCN and Alp promoter activity. Through chromatin-immunoprecipitation assay and site-directed mutagenesis analysis, we provide molecular evidence that Dlx2 transactivates OCN and Alp expression by directly binding to the Dlx2-response cis-acting elements in the promoter of the two genes. Based on these findings, we demonstrate that Dlx2 overexpression enhances osteogenic differentiation in vitro and accelerates bone formation in vivo via direct upregulation of the OCN and Alp gene, suggesting that Dlx2 plays a crucial role in osteogenic differentiation and bone formation. The distal-less homeobox (Dlx) gene family is related to various features of bone development, and the Dlx2 member of that family has been found to play a crucial role in bone formation. A team headed by Steve Guofang Shen at the Shanghai Jiao Tong University School of Medicine in China investigated the function of Dlx2 in osteogenic (bone development) differentiation of mouse bone marrow stromal cells (BMSCs) and MC3T3-E1 cells (precursors of osteoblasts, the major cellular component of bone). The team found that overexpression of Dlx2 promotes osteogenic differentiation in vitro and accelerates bone formation in vivo by enhancing Osteocalcin and Alp genes (both of which play critical roles in promoting osteoblast maturation). The authors conclude that their results suggest a promising future strategy for treating bone defects where BMSCs overexpress Dlx2.
Collapse
|
21
|
Wang H, Mao X, Du M. Phytanic acid activates PPARα to promote beige adipogenic differentiation of preadipocytes. J Nutr Biochem 2019; 67:201-211. [PMID: 30951974 DOI: 10.1016/j.jnutbio.2019.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/23/2019] [Accepted: 02/28/2019] [Indexed: 11/30/2022]
Abstract
A better understanding of the mechanisms of beige and brown adipogenesis is needed for developing strategies to prevent and treat obesity and associated metabolic disorders. Phytanic acid (PA) exists in a wide range of foods, especially in milk fat and marine foods, but its effects on obesity and beige adipogenesis remain poorly defined. The objective is to investigate the effects and regulatory mechanisms of PA in the beige adipogenesis. In 3T3-L1 preadipocytes, PA elevated the expression of brown adipogenic markers, suggesting that PA promotes beige adipogenic differentiation in committed adipogenic cells. In uncommitted C3H10T1/2 cells, while PA increased PGC1α expression, it did not increase brown adipogenic regulators PRDM16 or UCP1 expression, suggesting that PA had no significant effects on brown adipocyte commitment. PA also enhanced mitochondrial biogenesis and oxygen consumption. Promotion of both mitochondriogenesis and beige adipogenic differentiation were blocked by using PPARα antagonist or with Pparα knockdown, showing that PA-mediated beige/brown adipogenic differentiation is dependent on PPARα. Additionally, the PA-regulated effect is independent on β3-adrenergic receptor. Taken together, PA promotes beige adipogenic differentiation, but not the commitment of progenitor cells to the brown adipocyte lineage. PPARα is a key mediator during PA-induced beige/brown adipogenic differentiation.
Collapse
Affiliation(s)
- Hanning Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100194, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xueying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100194, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Min Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100194, China; Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
22
|
Foshati S, Ekramzadeh M. Thylakoids: A Novel Food-Derived Supplement for Obesity - A Mini-Review. INT J VITAM NUTR RES 2019; 90:169-178. [PMID: 30829138 DOI: 10.1024/0300-9831/a000556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nowadays, overweight and obesity are major epidemic health problems that can bring about some other health issues such as cardiovascular disease which is the first cause of mortality worldwide. Thylakoids are disc-like membranes responsible for photosynthetic light reactions in chloroplasts of green plants. Although only a few animal and human studies have been conducted regarding the impact of thylakoids on overweight- and obesity-related factors, all of them have resulted in positive outcomes. These outcomes are as follows: increment of satiety response; suppression of hunger sensations, particularly hedonic hunger; reduction of body weight and fat; promotion of glucose homeostasis; decrease in serum lipids; attenuation of oxidative stress and inflammation; and modulation of gut microbiota, notably by increasing some helpful bacteria such as Lactobacillus reuteri. It seems that some of these useful effects are related to retarded absorption of dietary fat and carbohydrate caused by thylakoids. There is still a need for more well-designed studies.
Collapse
Affiliation(s)
- Sahar Foshati
- Nutrition and Food Sciences Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Ekramzadeh
- Nutrition and Food Sciences Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Nakanishi T, Motoba I, Anraku M, Suzuki R, Yamaguchi Y, Erickson L, Eto N, Sugamoto K, Matsushita Y, Kawahara S. Naturally occurring 3RS, 7R, 11R-phytanic acid suppresses in vitro T-cell production of interferon-gamma. Lipids Health Dis 2018; 17:147. [PMID: 29935534 PMCID: PMC6015457 DOI: 10.1186/s12944-018-0793-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Among the eight stereoisomers of phytanic acid (PA), the 3RS, 7R, 11R-isomer is naturally occurring and is present in foods and the human body. PA is considered to have possible health benefits in the immune system. However, it remains undetermined whether these effects are elicited by the 3RS, 7R, 11R-PA isomer, because previous studies used a commercially available PA whose isomer configuration is unknown. In this study, we synthesized a preparation of 3RS, 7R, 11R-PA, and investigated its in vitro immunomodulatory effects, especially the T-cell production of interferon (IFN)-γ, which is associated with various autoimmune diseases. This study also investigated the effects of 3RS, 7R, 11R-PA on NF-κB activity in order to address the mechanism of its immunomodulatory effects. METHODS Mouse splenocytes and purified T-cells were stimulated with T-cell mitogens and incubated with 3RS, 7R, 11R-PA, followed by evaluation of IFN-γ production. The effect of 3RS, 7R, 11R-PA on NF-κB activity was also investigated using an A549 cell line with stable expression of an NF-κB-dependent luciferase reporter gene. RESULTS 3RS, 7R, 11R-PA significantly reduced in vitro IFN-γ production at both the protein and mRNA levels, and was accompanied by decreased expression of T-bet, a key regulator of Th1 cell differentiation. The results indicated that NF-κB-mediated transcriptional activity was significantly decreased by 3RS, 7R, 11R-PA and that GW6471, an antagonist of peroxisome proliferator activated receptor α (PPARα), abrogated the inhibitory effect of 3RS, 7R, 11R-PA on NF-κB activity. CONCLUSIONS The present study suggests that 3RS, 7R, 11R-PA is a functional and bioactive fatty acid, and has a potentially beneficial effect for amelioration of T-cell mediated autoimmune diseases. This study also indicates that interference in the NF-κB pathway via PPARα activation is a potential mechanism of the immunomodulatory effects of 3RS, 7R, 11R-PA.
Collapse
Affiliation(s)
- Tomonori Nakanishi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Ibuki Motoba
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Mayuko Anraku
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Ryoji Suzuki
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Yuto Yamaguchi
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Laurie Erickson
- Department of Biology, Harold Washington City College of Chicago, 30 E. Lake St, Chicago, IL, 60601, USA.,Department of Health Sciences, Blitstein Institute of Hebrew Theological College, 2606 W. Touhy Ave, Chicago, IL, 60645, USA
| | - Nozomu Eto
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Kazuhiro Sugamoto
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Yohichi Matsushita
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Satoshi Kawahara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
24
|
Zhu L, Huang Q, Xie Z, Kang M, Ding H, Chen B, Chen Y, Liu C, Wang Y, Tang W. PPARGC1A rs3736265 G>A polymorphism is associated with decreased risk of type 2 diabetes mellitus and fasting plasma glucose level. Oncotarget 2018; 8:37308-37320. [PMID: 28418876 PMCID: PMC5514910 DOI: 10.18632/oncotarget.16307] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/13/2017] [Indexed: 12/21/2022] Open
Abstract
It has been reported that peroxisome proliferator-activated receptor gamma (PPARG) and peroxisome proliferator-activated receptor gamma co-activator 1 (PPARGC1) family (e.g. PPARGC1A and PPARGC1B) are key agents in the development and pathophysiology of type 2 diabetes mellitus (T2DM). In this study, we designed a case-control study and selected PPARG rs1801282 C>G, PPARG rs3856806 C>T, PPARGC1A rs8192678 C>T, PPARGC1A rs2970847 C>T, PPARGC1A rs3736265 G>A, PPARGC1B rs7732671 G>C and PPARGC1B rs17572019 G>A polymorphisms to assess the relationship between these polymorphisms and T2DM using the SNPscan method. A total of 502 T2DM patients and 784 non-diabetic controls were enrolled. We found that PPARGC1A rs3736265 G>A polymorphism was correlated with a borderline decreased susceptibility of T2DM. In a subgroup analysis by age, sex, alcohol use, smoking status and body mass index, a significantly decreased risk of T2DM in <65 years and female groups was found. Haplotype comparison analysis indicated that CTTCGGG and CTCTGGG haplotypes with the order of PPARG rs1801282 C>G, PPARG rs3856806 C>T, PPARGC1A rs8192678 C>T, PPARGC1A rs2970847 C>T, PPARGC1A rs3736265 G>A, PPARGC1B rs7732671 G>C and PPARGC1B rs17572019 G>A polymorphisms in gene position significantly increased the risk of T2DM. However, CCCCACA haplotype conferred a decreased risk to T2DM. We also found that PPARGC1A rs3736265 A allele decreased the level of fasting plasma glucose (FPG), while increased the level of Triglyceride. In conclusion, Our findings suggest that variants of PPARGC1A rs3736265 G>A polymorphism decrease the level of FPG, improving the expectation of study in individual's prevention strategies to T2DM.
Collapse
Affiliation(s)
- Li Zhu
- Department of Nephrology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Qiuyu Huang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Zhiqiang Xie
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Hao Ding
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Boyang Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Yu Chen
- Department of Medical Oncology, Fujian Provincial Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China
| | - Chao Liu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yafeng Wang
- Department of Cardiology, The People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan Province, China
| | - Weifeng Tang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
25
|
Taguchi Y, Toyoshima Y, Tokita R, Kato H, Takahashi SI, Minami S. Triglyceride synthesis in hepatocytes isolated from rats fed a low-protein diet is enhanced independently of upregulation of insulin signaling. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Yang K, Wang L, Zhou G, Lin X, Peng J, Wang L, Luo L, Wang J, Shu G, Wang S, Gao P, Zhu X, Xi Q, Zhang Y, Jiang Q. Phytol Promotes the Formation of Slow-Twitch Muscle Fibers through PGC-1α/miRNA but Not Mitochondria Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5916-5925. [PMID: 28654264 DOI: 10.1021/acs.jafc.7b01048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phytol is a side chain of chlorophyll belonging to the side-chain double terpenoid. When animals consume food rich in chlorophyll, phytol can be broken down to phytanic acid after digestion. It was reported that feeding animals with different varieties and levels of forage could significant improve pH and marbling score of steer and lamb carcasses, but the internal mechanism for this is still not reported. The marbling score and pH of muscle was mainly determined by skeletal muscle fiber type, which is due to expression of different myosin heavy-chain (MHC) isoforms. Here, we provide evidence that phytol can indeed affect the diversity of muscle fiber types both in vitro and in vivo and demonstrate that phytol can increase the expression of MHC I (p < 0.05), likely by upgrading the expression of PPARδ, PGC-1α, and related miRNAs. This fiber-type transformation process may not be caused by activated mitochondrial metabolism but by the structural changes in muscle fiber types.
Collapse
Affiliation(s)
- Kelin Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Lina Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Gan Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Xiajing Lin
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Jianlong Peng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Leshan Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Lv Luo
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Jianbin Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Gang Shu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Songbo Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Ping Gao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Xiaotong Zhu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Qianyun Xi
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Yongliang Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| | - Qingyan Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou, Guangdong 510640, People's Republic of China
| |
Collapse
|
27
|
Roca-Saavedra P, Mariño-Lorenzo P, Miranda J, Porto-Arias J, Lamas A, Vazquez B, Franco C, Cepeda A. Phytanic acid consumption and human health, risks, benefits and future trends: A review. Food Chem 2017; 221:237-247. [DOI: 10.1016/j.foodchem.2016.10.074] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/29/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
|
28
|
Fatty Acids of CLA-Enriched Egg Yolks Can Induce Transcriptional Activation of Peroxisome Proliferator-Activated Receptors in MCF-7 Breast Cancer Cells. PPAR Res 2017; 2017:2865283. [PMID: 28458685 PMCID: PMC5385215 DOI: 10.1155/2017/2865283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/02/2017] [Accepted: 02/12/2017] [Indexed: 12/13/2022] Open
Abstract
In our previous study, we showed that fatty acids from CLA-enriched egg yolks (EFA-CLA) reduced the proliferation of breast cancer cells; however, the molecular mechanisms of their action remain unknown. In the current study, we used MCF-7 breast cancer cell line to determine the effect of EFA-CLA, as potential ligands for peroxisome proliferator-activated receptors (PPARs), on identified in silico PPAR-responsive genes: BCAR3, TCF20, WT1, ZNF621, and THRB (transcript TRβ2). Our results showed that EFA-CLA act as PPAR ligands with agonistic activity for all PPAR isoforms, with the highest specificity towards PPARγ. In conclusion, we propose that EFA-CLA-mediated regulation of PPAR-responsive genes is most likely facilitated by cis9,trans11CLA isomer incorporated in egg yolk. Notably, EFA-CLA activated PPAR more efficiently than nonenriched FA as well as synthetic CLA isomers. We also propose that this regulation, at least in part, can be responsible for the observed reduction in the proliferation of MCF-7 cells treated with EFA-CLA.
Collapse
|
29
|
Peroxisome Proliferator-Activated Receptor Modulation during Metabolic Diseases and Cancers: Master and Minions. PPAR Res 2016; 2016:6517313. [PMID: 28115924 PMCID: PMC5225385 DOI: 10.1155/2016/6517313] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022] Open
Abstract
The prevalence of obesity and metabolic diseases (such as type 2 diabetes mellitus, dyslipidaemia, and cardiovascular diseases) has increased in the last decade, in both industrialized and developing countries. This also coincided with our observation of a similar increase in the prevalence of cancers. The aetiology of these diseases is very complex and involves genetic, nutritional, and environmental factors. Much evidence indicates the central role undertaken by peroxisome proliferator-activated receptors (PPARs) in the development of these disorders. Due to the fact that their ligands could become crucial in future target-therapies, PPARs have therefore become the focal point of much research. Based on this evidence, this narrative review was written with the purpose of outlining the effects of PPARs, their actions, and their prospective uses in metabolic diseases and cancers.
Collapse
|
30
|
Parodi PW. Cooperative action of bioactive components in milk fat with PPARs may explain its anti-diabetogenic properties. Med Hypotheses 2016; 89:1-7. [DOI: 10.1016/j.mehy.2015.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 12/30/2015] [Indexed: 01/04/2023]
|
31
|
Nakanishi T, Anraku M, Suzuki R, Kono T, Erickson L, Kawahara S. Novel immunomodulatory effects of phytanic acid and its related substances in mice. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Rush ET, Goodwin JL, Braverman NE, Rizzo WB. Low bone mineral density is a common feature of Zellweger spectrum disorders. Mol Genet Metab 2016; 117:33-7. [PMID: 26643206 DOI: 10.1016/j.ymgme.2015.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/22/2015] [Accepted: 11/23/2015] [Indexed: 01/31/2023]
Abstract
Patients with Zellweger Spectrum Disorders (ZSDs) have impaired peroxisome biogenesis and severe, multisystem disease. Although the neurologic symptoms of ZSD tend to be the most prominent, patients also have hepatic, renal and adrenal impairment. Little is known about bone health in patients with ZSD, particularly those with mild or moderate presentation. We investigated 13 ZSD patients who had strikingly abnormal bone mineral density for age. DXA scans showed mean lumbar and femoral neck Z-scores of -3.2. There were no major differences between ambulatory and nonambulatory patients, and no biochemical abnormalities consistent with rickets or vitamin D deficiency were seen. Cyclic bisphosphonate therapy in one ZSD patient was successfully used to increase in bone mineral density. Although the etiology of bone disease in this condition is unknown, we speculate that altered signaling through the PPARγ pathway or deficient plasmalogens in patients with ZSD disrupts osteogenesis, resulting in poor bone formation and poor mineralization. Further investigation into the pathogenic mechanisms of bone disease in ZSD and the role of peroxisomal metabolism in osteogenesis may yield insights into the pathology of bone disease and suggest novel treatment options.
Collapse
Affiliation(s)
- Eric T Rush
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA; Departments of Internal Medicine and Orthopaedic Surgery, University of Nebraska Medical Center, Omaha, NE, USA; Children's Hospital and Medical Center, Omaha, NE, USA.
| | - Jennifer L Goodwin
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nancy E Braverman
- Departments of Human Genetics and Pediatrics, McGill University, Montreal, QC, Canada
| | - William B Rizzo
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA; Children's Hospital and Medical Center, Omaha, NE, USA
| |
Collapse
|
33
|
Phytol in a pharma-medico-stance. Chem Biol Interact 2015; 240:60-73. [DOI: 10.1016/j.cbi.2015.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/01/2015] [Accepted: 07/24/2015] [Indexed: 01/02/2023]
|
34
|
Chang WC, Wu SC, Xu KD, Liao BC, Wu JF, Cheng AS. Scopoletin protects against methylglyoxal-induced hyperglycemia and insulin resistance mediated by suppression of advanced glycation endproducts (AGEs) generation and anti-glycation. Molecules 2015; 20:2786-801. [PMID: 25671364 PMCID: PMC6272799 DOI: 10.3390/molecules20022786] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/03/2015] [Indexed: 12/13/2022] Open
Abstract
Recently, several types of foods and drinks, including coffee, cream, and cake, have been found to result in high methylglyoxal (MG) levels in the plasma, thus causing both nutritional and health concerns. MG can be metabolized by phase-II enzymes in liver through the positive regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2). In this study, we investigated the ability of scopoletin (SP) to protect against MG-induced hyperglycemia and insulin resistance. Recently, SP was shown to be a peroxisome proliferator-activated receptor-γ activator to elevate insulin sensitivity. We investigated the effects of oral administration of SP on the metabolic, biochemical, and molecular abnormalities characteristic of type 2 diabetes in MG-treated Wistar rats to understand the potential mechanism of scopoletin for diabetes protection. Our results suggested that SP activated Nrf2 by Ser40 phosphorylation, resulting in the metabolism of MG into d-lactic acid and the inhibition of AGEs generation, which reduced the accumulation of AGEs in the livers of MG-induced rats. In this manner, SP improved the results of the oral glucose tolerance test and dyslipidemia. Moreover, SP also increased the plasma translocation of glucose transporter-2 and promoted Akt phosphorylation caused by insulin treatment in MG-treated FL83B hepatocytes. In contrast, SP effectively suppressed protein tyrosine phosphatase 1B (PTP1B) expression, thereby alleviating insulin resistance. These findings suggest that SP acts as an anti-glycation and anti-diabetic agent, and thus has therapeutic potential for the prevention of diabetes.
Collapse
Affiliation(s)
- Wen-Chang Chang
- Department of Medicinal Plant Development, Yupintang Traditional Chinese Medicine Foundation, 4F., No.2, Ln. 138, Yongyuan Rd., Yonghe Dist., New Taipei City 234, Taiwan.
| | - Shinn-Chih Wu
- Department of Animal Science and Technology, National Taiwan University, 59 Roosevelt Road Section 4, Taipei 10617, Taiwan.
| | - Kun-Di Xu
- Department of Medicinal Plant Development, Yupintang Traditional Chinese Medicine Foundation, 4F., No.2, Ln. 138, Yongyuan Rd., Yonghe Dist., New Taipei City 234, Taiwan.
| | - Bo-Chieh Liao
- Department of Medicinal Plant Development, Yupintang Traditional Chinese Medicine Foundation, 4F., No.2, Ln. 138, Yongyuan Rd., Yonghe Dist., New Taipei City 234, Taiwan.
| | - Jia-Feng Wu
- Department of Medicinal Plant Development, Yupintang Traditional Chinese Medicine Foundation, 4F., No.2, Ln. 138, Yongyuan Rd., Yonghe Dist., New Taipei City 234, Taiwan.
| | - An-Sheng Cheng
- Department of Medicinal Plant Development, Yupintang Traditional Chinese Medicine Foundation, 4F., No.2, Ln. 138, Yongyuan Rd., Yonghe Dist., New Taipei City 234, Taiwan.
| |
Collapse
|
35
|
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) has been the focus of intense research because ligands for this receptor have emerged as potent insulin sensitizers used in the treatment of type 2 diabetes. There have been described three PPAR isotypes α, δ and γ which have an integrated role in controlling the expression of genes playing key roles in the storage and mobilization of lipids, in glucose metabolism, in morphogenesis and inflammatory response. Recent advances include the discovery of novel genes that are regulated by PPARγ, which helps to explain how activation of this adipocyte predominant transcription factor regulates glucose and lipid homeostasis. Increased levels of circulating free fatty acids and lipid accumulation in non-adipose tissue have been implicated in the development of insulin resistance. This situation is improved by PPARγ ligands, which promotes fatty acid storage in fat deposits and regulates the expression of adipocyte-secreted hormones that impacts on glucose homeostasis. So the net result of the pleiotropic effects of PPARγ ligands is improvement of insulin sensitivity. This review highlights the roles that PPAR gamma play in the regulation of gene expression of multiple diseases including obesity, diabetes and cancer and highlights the gene isolation transformation role. Further studies are needed for the transformation of PPAR gamma gene in plants and evaluate in animals for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- C Janani
- Department of Plant Science, Bharathidasan University, Tiruchirapalli 620 024, India
| | - B D Ranjitha Kumari
- Department of Plant Science, Bharathidasan University, Tiruchirapalli 620 024, India.
| |
Collapse
|
36
|
Menon GK, Orsó E, Aslanidis C, Crumrine D, Schmitz G, Elias PM. Ultrastructure of skin from Refsum disease with emphasis on epidermal lamellar bodies and stratum corneum barrier lipid organization. Arch Dermatol Res 2014; 306:731-7. [PMID: 24920240 DOI: 10.1007/s00403-014-1478-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/14/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
Abstract
Classic Refsum disease (RD) is a rare, autosomal recessively-inherited disorder of peroxisome metabolism due to a defect in the initial step in the alpha oxidation of phytanic acid (PA), a C16 saturated fatty acid with four methyl side groups, which accumulates in plasma and lipid enriched tissues (please see van den Brink and Wanders, Cell Mol Life Sci 63:1752-1765, 2006). It has been proposed that the disease complex in RD is in part due to the high affinity of phytanic acid for retinoid X receptors and peroxisome proliferator-activated receptors. Structurally, epidermal hyperplasia, increased numbers of cornified cell layers, presence of cells with lipid droplets in stratum basale and reduction of granular layer to a single layer have been reported by Blanchet-Bardon et al. (The ichthyoses, SP Medical & Scientific Books, New York, pp 65-69, 1978). However, lamellar body (LB) density and secretion were reportedly normal. We recently examined biopsies from four unrelated patients, using both OsO4 and RuO4 post-fixation to evaluate the barrier lipid structural organization. Although lamellar body density appeared normal, individual organelles often had distorted shape, or had non-lamellar domains interspersed with lamellar structures. Some of the organelles seemed to lack lamellar contents altogether, showing instead uniformly electron-dense contents. In addition, we also observed mitochondrial abnormalities in the nucleated epidermis. Stratum granulosum-stratum corneum junctions also showed co-existence of non-lamellar and lamellar domains, indicative of lipid phase separation. Also, partial detachment or complete absence of corneocyte lipid envelopes (CLE) was seen in the stratum corneum of all RD patients. In conclusion, abnormal LB contents, resulting in defective lamellar bilayers, as well as reduced CLEs, likely lead to impaired barrier function in RD.
Collapse
Affiliation(s)
- G K Menon
- Global Research and Development, Ashland, Inc., Bridgewater, NJ, USA
| | | | | | | | | | | |
Collapse
|
37
|
Zhang Y, Foncea R, Deis JA, Guo H, Bernlohr DA, Chen X. Lipocalin 2 expression and secretion is highly regulated by metabolic stress, cytokines, and nutrients in adipocytes. PLoS One 2014; 9:e96997. [PMID: 24818605 PMCID: PMC4018437 DOI: 10.1371/journal.pone.0096997] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/14/2014] [Indexed: 01/03/2023] Open
Abstract
Lipocalin 2 (Lcn2) has been recently characterized as a new adipokine having a role in innate immunity and energy metabolism. Nonetheless, the metabolic regulation of Lcn2 production in adipocytes has not been comprehensively studied. To better understand the Lcn2 biology, we investigated the regulation of Lcn2 expression in adipose tissue in response to metabolic stress in mice as well as the control of Lcn2 expression and secretion by cytokines and nutrients in 3T3-L1 adipocytes. Our results showed that the mRNA expression of Lcn2 was upregulated in white and brown adipose tissues as well as liver during fasting and cold stress in mice. Among pro-inflammatory cytokines TNFα, IL-1β, and IL-6, IL-1β showed most profound effect on Lcn2 expression and secretion in 3T3-L1 adipocytes. Insulin stimulated Lcn2 expression and secretion in a dose-dependent manner; this insulin effect was significantly abolished in the presence of low concentration of glucose. Moreover, insulin-stimulated Lcn2 expression and secretion was also attenuated when glucose was replaced by 3-O-methyl-d-glucose or by blocking NFκB pathway activation. Additionally, we showed that palmitate and oleate induced Lcn2 expression and secretion more significantly than EPA, while phytanic acid reduced Lcn2 production. Our results demonstrated that Lcn2 production in adipocytes is highly responsive to metabolic stress, cytokines, and nutrient signals, suggesting an important role of Lcn2 in adipocyte metabolism and inflammation.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, Minnesota, United States of America
| | - Rocio Foncea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, Minnesota, United States of America
| | - Jessica A. Deis
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, Minnesota, United States of America
| | - Hong Guo
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, Minnesota, United States of America
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, Minnesota, United States of America
| | - Xiaoli Chen
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
38
|
Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutr J 2014; 13:17. [PMID: 24524207 PMCID: PMC3943808 DOI: 10.1186/1475-2891-13-17] [Citation(s) in RCA: 830] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/07/2014] [Indexed: 02/06/2023] Open
Abstract
Peroxisome proliferator-activated receptors are expressed in many tissues, including adipocytes, hepatocytes, muscles and endothelial cells; however, the affinity depends on the isoform of PPAR, and different distribution and expression profiles, which ultimately lead to different clinical outcomes. Because they play an important role in lipid and glucose homeostasis, they are called lipid and insulin sensors. Their actions are limited to specific tissue types and thus, reveal a characteristic influence on target cells. PPARα mainly influences fatty acid metabolism and its activation lowers lipid levels, while PPARγ is mostly involved in the regulation of the adipogenesis, energy balance, and lipid biosynthesis. PPARβ/δ participates in fatty acid oxidation, mostly in skeletal and cardiac muscles, but it also regulates blood glucose and cholesterol levels. Many natural and synthetic ligands influence the expression of these receptors. Synthetic ligands are widely used in the treatment of dyslipidemia (e.g. fibrates--PPARα activators) or in diabetes mellitus (e.g. thiazolidinediones--PPARγ agonists). New generation drugs--PPARα/γ dual agonists--reveal hypolipemic, hypotensive, antiatherogenic, anti-inflammatory and anticoagulant action while the overexpression of PPARβ/δ prevents the development of obesity and reduces lipid accumulation in cardiac cells, even during a high-fat diet. Precise data on the expression and function of natural PPAR agonists on glucose and lipid metabolism are still missing, mostly because the same ligand influences several receptors and a number of reports have provided conflicting results. To date, we know that PPARs have the capability to accommodate and bind a variety of natural and synthetic lipophilic acids, such as essential fatty acids, eicosanoids, phytanic acid and palmitoylethanolamide. A current understanding of the effects of PPARs, their molecular mechanisms and the role of these receptors in nutrition and therapeutic treatment are delineated in this paper.
Collapse
Affiliation(s)
- Bogna Grygiel-Górniak
- Department of Bromatology and Human Nutrition, University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
39
|
Micro-architectural changes in cancellous bone differ in female and male C57BL/6 mice with high-fat diet-induced low bone mineral density. Br J Nutr 2014; 111:1811-21. [DOI: 10.1017/s0007114514000051] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The relationship between fat and bone mass at distinct trabecular and cortical skeletal compartments in a high-fat diet (HFD) model was studied. For this, C57BL/6 mice were assigned to four groups of eight animals each. Two groups, each of males and females, received a standard chow diet while the remaining other two groups received the HFD for a period of 10 weeks. Male mice on the HFD were heavier and gained more weight (15·8 %; P< 0·05) v. those on the control diet or when compared with the female rats fed the HFD. We observed an increased lipid profile in both males and females, with significantly higher lipid levels (about 20–25 %; P< 0·01) in males. However, glucose intolerance was more pronounced in females than males on the HFD (about 30 %; P< 0·05). The micro-architectural assessment of bones showed that compared with female mice on the HFD, male mice on the HFD showed more deterioration at the trabecular region. This was corroborated by plasma osteocalcin and carboxy-terminal collagen crosslinks (CTx) levels confirming greater loss in males (about 20 %; P< 0·01). In both sexes cortical bone parameters and strength remained unchanged after 10 weeks of HFD treatment. The direct effect of the HFD on bone at the messenger RNA level in progenitor cells isolated from femoral bone marrow was a significantly increased expression of adipogenic marker genes v. osteogenic genes. Overall, the present data indicate that obesity induced by a HFD aggravates bone loss in the cancellous bone compartment, with a greater loss in males than females, although 10 weeks of HFD treatment did not alter cortical bone mass and strength in both males and females.
Collapse
|
40
|
Atangwho IJ, Egbung GE, Ahmad M, Yam MF, Asmawi MZ. Antioxidant versus anti-diabetic properties of leaves from Vernonia amygdalina Del. growing in Malaysia. Food Chem 2013; 141:3428-34. [DOI: 10.1016/j.foodchem.2013.06.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 05/09/2013] [Accepted: 06/12/2013] [Indexed: 11/25/2022]
|
41
|
Hsu WH, Lee BH, Chang YY, Hsu YW, Pan TM. A novel natural Nrf2 activator with PPARγ-agonist (monascin) attenuates the toxicity of methylglyoxal and hyperglycemia. Toxicol Appl Pharmacol 2013; 272:842-51. [DOI: 10.1016/j.taap.2013.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 12/22/2022]
|
42
|
GC/MS and 1H-NMR Analysis of Phytanic Acid Synthesized from Natural trans-Phytol and a Synthetic Phytol Standard. Chromatographia 2013. [DOI: 10.1007/s10337-013-2588-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Werner LB, Hellgren LI, Raff M, Jensen SK, Petersen RA, Drachmann T, Tholstrup T. Effects of butter from mountain-pasture grazing cows on risk markers of the metabolic syndrome compared with conventional Danish butter: a randomized controlled study. Lipids Health Dis 2013; 12:99. [PMID: 23842081 PMCID: PMC3720277 DOI: 10.1186/1476-511x-12-99] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/28/2013] [Indexed: 11/27/2022] Open
Abstract
Background There is considerable interest in dairy products from low-input systems, such as mountain-pasture grazing cows, because these products are believed to be healthier than products from high-input conventional systems. This may be due to a higher content of bioactive components, such as phytanic acid, a PPAR-agonist derived from chlorophyll. However, the effects of such products on human health have been poorly investigated. Objective To compare the effect of milk-fat from mountain-pasture grazing cows (G) and conventionally fed cows (C) on risk markers of the metabolic syndrome. Design In a double-blind, randomized, 12-week, parallel intervention study, 38 healthy subjects replaced part of their habitual dietary fat intake with 39 g fat from test butter made from milk from mountain-pasture grazing cows or from cows fed conventional winter fodder. Glucose-tolerance and circulating risk markers were analysed before and after the intervention. Results No differences in blood lipids, lipoproteins, hsCRP, insulin, glucose or glucose-tolerance were observed. Interestingly, strong correlations between phytanic acid at baseline and total (P<0.0001) and LDL cholesterol (P=0.0001) were observed. Conclusions Lack of effects on blood lipids and inflammation indicates that dairy products from mountain-pasture grazing cows are not healthier than products from high-input conventional systems. Considering the strong correlation between LDL cholesterol and phytanic acid at baseline, it may be suggested that phytanic acid increases total and LDL cholesterol. Trial registration ClinicalTrials.gov, NCT01343589
Collapse
Affiliation(s)
- Louise B Werner
- Department of Nutrition, Exercise and Sports, Faculty of Sciences, University of Copenhagen, Frederiksberg 1958, Denmark.
| | | | | | | | | | | | | |
Collapse
|
44
|
Young JF, Therkildsen M, Ekstrand B, Che BN, Larsen MK, Oksbjerg N, Stagsted J. Novel aspects of health promoting compounds in meat. Meat Sci 2013; 95:904-11. [PMID: 23688796 DOI: 10.1016/j.meatsci.2013.04.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 02/06/2023]
Abstract
Meat is an integral part of the human diet. Besides essential amino acids and nutritive factors of high quality and availability, meat provides often overlooked components of importance for human health. These are amino acids and bioactive compounds that may be very important in i) preventing muscle wasting diseases, such as in sarcopenia, ii) reducing food and caloric intake to prevent metabolic syndrome, iii) blood pressure homeostasis via ACE-inhibitory components from connective tissue, and iv) maintaining functional gut environment through meat-derived nucleotides and nucleosides. In addition, meat could be an important source of phytanic acid, conjugated linoleic acids and antioxidants. Further, it becomes increasingly apparent that design of in vitro meat will be possible, and that this development may lead to improved health benefits from commercially viable and sustainable meat products.
Collapse
Affiliation(s)
- J F Young
- Department of Food Science, Aarhus University, Blichers Allé 20, Tjele, Denmark.
| | | | | | | | | | | | | |
Collapse
|
45
|
Che BN, Oksbjerg N, Hellgren LI, Nielsen JH, Young JF. Phytanic acid stimulates glucose uptake in a model of skeletal muscles, the primary porcine myotubes. Lipids Health Dis 2013; 12:14. [PMID: 23398851 PMCID: PMC3606424 DOI: 10.1186/1476-511x-12-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 01/31/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phytanic acid (PA) is a chlorophyll metabolite with potentials in regulating glucose metabolism, as it is a natural ligand of the peroxisome proliferator-activated receptor (PPAR) that is known to regulate hepatic glucose homeostasis. This study aimed to establish primary porcine myotubes as a model for measuring glucose uptake and glycogen synthesis, and to examine the impact of physiological amounts of PA on glucose uptake and glycogen synthesis either alone or in combination with insulin. METHODS Porcine satellite cells were cultured into differentiated myotubes and tritiated 2-deoxyglucose (2-DOG) was used to measure glucose uptake, in relation to PA and 2-DOG exposure times and also in relation to PA and insulin concentrations. The MIXED procedure model of SAS was used for statistical analysis of data. RESULTS PA increased glucose uptake by approximately 35%, and the presence of insulin further increased the uptake, but this further increase in uptake was non- additive and less pronounced at high insulin concentrations. There was no effect of PA alone on glycogen synthesis, while the insulin stimulation of glycogen was increased by 20% in the presence of PA. PA neither stimulated glucose uptake nor glycogen synthesis in insulin-resistant myotubes generated by excess glucose exposure. CONCLUSIONS Primary porcine myotubes were established as a model of skeletal muscles for measuring glucose uptake and glycogen synthesis, and we showed that PA can play a role in stimulating glucose uptake at no or inadequate insulin concentrations.
Collapse
Affiliation(s)
- Brita N Che
- Department of Food Science, Aarhus University, Blichers Allé 20, Tjele, 8830, Denmark
| | | | | | | | | |
Collapse
|
46
|
Che BN, Kristensen T, Nebel C, Dalsgaard TK, Hellgren LI, Young JF, Larsen MK. Content and distribution of phytanic acid diastereomers in organic milk as affected by feed composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:225-230. [PMID: 23210769 DOI: 10.1021/jf304079r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Phytanic acid (PA) is a bioactive compound found in milk that is derived from the phytol chain of chlorophyll, and the content of PA in milk fat depends on the availability of phytol from feed. In this study, the content of PA diastereomers was analyzed in milk sampled from five organic herds twice during the grazing season (May and September). The total content of PA was higher in September compared to May, but was not affected by breed (Danish Holstein or Danish Jersey). Total PA could not be directly related to intake of green feed items. The distribution between diastereomers was closely related to the amount of grazed clovers, where a higher intake resulted in a higher share of the RRR isomer.
Collapse
Affiliation(s)
- Brita N Che
- Department of Food Science, Aarhus University, AU Foulum, Tjele, Denmark
| | | | | | | | | | | | | |
Collapse
|
47
|
Elmazar MM, El-Abhar HS, Schaalan MF, Farag NA. Phytol/Phytanic acid and insulin resistance: potential role of phytanic acid proven by docking simulation and modulation of biochemical alterations. PLoS One 2013; 8:e45638. [PMID: 23300941 PMCID: PMC3534692 DOI: 10.1371/journal.pone.0045638] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 08/22/2012] [Indexed: 11/20/2022] Open
Abstract
Since activation of PPARγ is the main target for the antidiabetic effect of TZDs, especially when it heterodimerizes with RXR, we aimed to test the potential antidiabetic effect of phytol (250 mg/kg), the natural precursor of phytanic acid, a RXR ligand and/or pioglitazone (5 mg/kg) to diabetic insulin-resistant rats. Regarding the molecular docking simulation on PPARγ, phytanic acid, rather than phytol, showed a binding mode that mimics the crystal orientation of rosiglitazone and pioglitazone, forming H bonds with the same amino acids (S289, H 323, H 449 and Y 473), and the least energy level, which emphasizes their importance for PPARγ molecular recognition, activation, hence antidiabetic activity. In addition, docking on the RXRα/PPARγ heterodimer, revealed that phytanic acid has higher binding affinity and lesser energy score on RXRα, compared to the original ligand, retinoic acid. Phytanic acid binds by 3H bonds and shares retinoic acid in arginine (R 316). These results were further supported biochemically, where oral phytol and/or pioglitazone (5 mg/kg) improved significantly glucose homeostasis, lipid panel, raised serum adiponectin level and lowered TNF-α, reaching in most cases the effect of the 10 mg/kg pioglitazone. The study concluded that the insulin sensitizing/anti-diabetic effect of phytol is mediated by partly from activation of nuclear receptors and heterodimerization of RXR with PPARγ by phytanic acid.
Collapse
Affiliation(s)
| | - Hanan S. El-Abhar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona F. Schaalan
- Department of Biochemistry, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Nahla A. Farag
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| |
Collapse
|
48
|
Dangarembizi R, Erlwanger KH, Moyo D, Chivandi E. Phytochemistry, pharmacology and ethnomedicinal uses of Ficus thonningii (Blume Moraceae): a review. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2012; 10:203-12. [PMID: 24146443 DOI: 10.4314/ajtcam.v10i2.4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The common wild fig, Ficus thonningii, is extensively used in African ethnomedicine for treating a number of disease conditions which include diarrhoea, urinary tract infections, diabetes mellitus, gonorrhoea, respiratory infections, and mental illnesses. This review aims to present a logical analysis of the nutritional, phytochemical and pharmacological properties of F. thonningii in relation to its therapeutic applications. A bibliographic analysis of the uses, phytochemical constituents and phytophamacological properties of Ficus thonningii was carried out using published papers, medicinal plant databases and various ethnobotanical and ethnopharmacological books. Ficus thonningii contains various bioactive compounds which include alkaloids, terpenoids, flavonoids, tannins and active proteins, all of which contribute to its curative properties. In vitro and in vivo pharmacological studies revealed that F. thonningii possesses antimicrobial, antidiarrhoeal, antihelmintic, antioxidant, anti-inflammatory and analgesic properties. Acute and sub-chronic toxicity studies have shown that Ficus thonningii is non-toxic if administered orally in low doses. Scientific research has validated the ethnomedicinal claims that Ficus thonningii is useful in disease management. However, there is need to continue identifying, isolating and quantifying the active principles and possibly determine the mechanisms underlying its curative properties.
Collapse
Affiliation(s)
- Rachael Dangarembizi
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, Republic of South Africa ; Faculty of Medicine, National University of Science and Technology, Box AC939, Ascot, Bulawayo, Zimbabwe
| | | | | | | |
Collapse
|
49
|
Gautam J, Kushwaha P, Swarnkar G, Khedgikar V, Nagar GK, Singh D, Singh V, Jain M, Barthwal M, Trivedi R. EGb 761 promotes osteoblastogenesis, lowers bone marrow adipogenesis and atherosclerotic plaque formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:1134-1142. [PMID: 22951391 DOI: 10.1016/j.phymed.2012.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 04/18/2012] [Accepted: 07/06/2012] [Indexed: 06/01/2023]
Abstract
AIM OF THE STUDY Our earlier study has demonstrated that EGb 761 (standardized extract of Ginkgo) has the bone sparing effect on the estrogen deficiency induced bone loss model. In the present study, we have addressed the question whether treatment of osteoporosis benefits arterial calcification or vice versa, because both adipocyte and osteoblast originate from the same mesenchymal cell of the bone marrow cell (BMC) population. MATERIALS AND METHODS Bone marrow cells were isolated to study the effect of EGb 761 on osteoblast and adipocytes. For in vivo effect hamsters were fed high fat diet and the effect of EGb 761 studied on atherosclerotic plaque formation and endothelial function. RESULTS BMC's undergoing induced osteogenic or adipogenic differentiations in the presence of EGb 761 show increase and decrease in mineralization and adipogenesis respectively. Osteogenic and adipogenic mRNAs, reveal lineage dependent expression patterns. Runx-2 (osteoblast transcription factor) showed a progressive increase, whereas PPAR-γ (adipogenic regulator) was attenuated, with same pattern of expression being for late osteogenic and adipogenic genes. EGb 761 led to increase in apoptotic cells and ROS, an important upstream signal. In vivo experiments in hamsters after induction with high cholesterol diet (HCD) show improvement in endothelial function by EGb 761 with lowering in total plasma cholesterol levels. EGb 761 led to vascular preservation of the aortic lumen with impairment of the endothelium dependent relaxation which was corroborated by micro-CT and histological sections of the thoracic region of the aorta. CONCLUSION From this data, it can be implied that EGb 761 controls bone loss, adiposity and lowers atherogenic risk factor after HCD induction.
Collapse
Affiliation(s)
- Jyoti Gautam
- Division of Endocrinology, CSIR-Central Drug Research Institute, Chattar Manzil, Lucknow, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
The relationship between high-fat dairy consumption and obesity, cardiovascular, and metabolic disease. Eur J Nutr 2012; 52:1-24. [PMID: 22810464 DOI: 10.1007/s00394-012-0418-1] [Citation(s) in RCA: 273] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/02/2012] [Indexed: 12/14/2022]
Abstract
PURPOSE To comprehensively review the data on the relationship between the consumption of dairy fat and high-fat dairy foods, obesity, and cardiometabolic disease. METHODS We have conducted a systematic literature review of observational studies on the relationship between dairy fat and high-fat dairy foods, obesity, and cardiometabolic disease. We have integrated these findings with data from controlled studies showing effects of several minor dairy fatty acids on adiposity and cardiometabolic risk factors, and data on how bovine feeding practices influence the composition of dairy fat. RESULTS In 11 of 16 studies, high-fat dairy intake was inversely associated with measures of adiposity. Studies examining the relationship between high-fat dairy consumption and metabolic health reported either an inverse or no association. Studies investigating the connection between high-fat dairy intake and diabetes or cardiovascular disease incidence were inconsistent. We discuss factors that may have contributed to the variability between studies, including differences in (1) the potential for residual confounding; (2) the types of high-fat dairy foods consumed; and (3) bovine feeding practices (pasture- vs. grain-based) known to influence the composition of dairy fat. CONCLUSIONS The observational evidence does not support the hypothesis that dairy fat or high-fat dairy foods contribute to obesity or cardiometabolic risk, and suggests that high-fat dairy consumption within typical dietary patterns is inversely associated with obesity risk. Although not conclusive, these findings may provide a rationale for future research into the bioactive properties of dairy fat and the impact of bovine feeding practices on the health effects of dairy fat.
Collapse
|