1
|
Ortega-Vallbona R, Johansson L, Carpio LE, Serrano-Candelas E, Mahdizadeh SJ, Fearnhead H, Gozalbes R, Eriksson LA. Computational Characterization of the Interaction of CARD Domains in the Apoptosome. Biochemistry 2025; 64:401-418. [PMID: 39761026 PMCID: PMC11755718 DOI: 10.1021/acs.biochem.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
The apoptosome, a critical protein complex in apoptosis regulation, relies on intricate interactions between its components, particularly the proteins containing the Caspase Activation and Recruitment Domain (CARD). This work presents a thorough computational analysis of the stability and specificity of CARD-CARD interactions within the apoptosome. Departing from available crystal structures, we identify important residues for the interaction between the CARD domains of Apaf-1 and Caspase-9. Our results underscore the essential role of these residues in apoptosome activity, offering prospects for targeted intervention strategies. Available experimental complex structures were able to validate the protein-protein docking consensus approach used herein. We furthermore extended our analysis to explore the specificity of CARD-CARD interactions by cross-docking experiments between apoptosome and PIDDosome components, between which there should not be any interaction despite belonging to the same death fold subfamily. Our findings indicate that native interactions within individual complexes exhibit greater stability than the cross-docked complexes, emphasizing the specificity required for effective protein complex formation. This study enhances our understanding of apoptotic regulation and demonstrates the utility of computational approaches in elucidating intricate protein-protein interactions.
Collapse
Affiliation(s)
| | - Linda Johansson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Göteborg 405 30, Sweden
| | - Laureano E. Carpio
- ProtoQSAR
SL, Parque Tecnológico de Valencia, Paterna, Valencia 46980, Spain
- Moldrug
AI Systems SL, Olimpia
Arozena Torres 45, Valencia 46018, Spain
| | | | - Sayyed Jalil Mahdizadeh
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Göteborg 405 30, Sweden
| | - Howard Fearnhead
- Pharmacology
and Therapeutics, National University of
Ireland Galway, Galway H91 TK33, Ireland
| | - Rafael Gozalbes
- ProtoQSAR
SL, Parque Tecnológico de Valencia, Paterna, Valencia 46980, Spain
- Moldrug
AI Systems SL, Olimpia
Arozena Torres 45, Valencia 46018, Spain
| | - Leif A. Eriksson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Göteborg 405 30, Sweden
| |
Collapse
|
2
|
Antony F, Brough Z, Orangi M, Al-Seragi M, Aoki H, Babu M, Duong van Hoa F. Sensitive Profiling of Mouse Liver Membrane Proteome Dysregulation Following a High-Fat and Alcohol Diet Treatment. Proteomics 2024; 24:e202300599. [PMID: 39313981 DOI: 10.1002/pmic.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
Alcohol consumption and high-fat (HF) diets often coincide in Western society, resulting in synergistic negative effects on liver function. Although studies have analyzed the global protein expression in the context of alcoholic liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), none has offered specific insights on liver dysregulation at the membrane proteome level. Membrane-specific profiling of metabolic and compensatory phenomena is usually overshadowed in conventional proteomic workflows. In this study, we use the Peptidisc method to isolate and compare the membrane protein (MP) content of the liver with its unique biological functions. From mice fed with an HF diet and ethanol in drinking water, we annotate over 1500 liver proteins with half predicted to have at least one transmembrane segment. Among them, we identify 106 integral MPs that are dysregulated compared to the untreated sample. Gene Ontology analysis reveals several dysregulated membrane-associated processes like lipid metabolism, cell adhesion, xenobiotic processing, and mitochondrial membrane formation. Pathways related to cholesterol and bile acid transport are also mutually affected, suggesting an adaptive mechanism to counter the upcoming steatosis of the liver model. Taken together, our Peptidisc-based profiling of the diet-dysregulated liver provides specific insights and hypotheses into the role of the transmembrane proteome in disease development, and flags desirable MPs for therapeutic and diagnostic targeting.
Collapse
Affiliation(s)
- Frank Antony
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zora Brough
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mona Orangi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammed Al-Seragi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Franck Duong van Hoa
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Neuman MG, Seitz HK, Teschke R, Malnick S, Johnson-Davis KL, Cohen LB, German A, Hohmann N, Moreira B, Moussa G, Opris M. Molecular, Viral and Clinical Features of Alcohol- and Non-Alcohol-Induced Liver Injury. Curr Issues Mol Biol 2022; 44:1294-1315. [PMID: 35723310 PMCID: PMC8947098 DOI: 10.3390/cimb44030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 01/08/2023] Open
Abstract
Hepatic cells are sensitive to internal and external signals. Ethanol is one of the oldest and most widely used drugs in the world. The focus on the mechanistic engine of the alcohol-induced injury has been in the liver, which is responsible for the pathways of alcohol metabolism. Ethanol undergoes a phase I type of reaction, mainly catalyzed by the cytoplasmic enzyme, alcohol dehydrogenase (ADH), and by the microsomal ethanol-oxidizing system (MEOS). Reactive oxygen species (ROS) generated by cytochrome (CYP) 2E1 activity and MEOS contribute to ethanol-induced toxicity. We aimed to: (1) Describe the cellular, pathophysiological and clinical effects of alcohol misuse on the liver; (2) Select the biomarkers and analytical methods utilized by the clinical laboratory to assess alcohol exposure; (3) Provide therapeutic ideas to prevent/reduce alcohol-induced liver injury; (4) Provide up-to-date knowledge regarding the Corona virus and its affect on the liver; (5) Link rare diseases with alcohol consumption. The current review contributes to risk identification of patients with alcoholic, as well as non-alcoholic, liver disease and metabolic syndrome. Additional prevalence of ethnic, genetic, and viral vulnerabilities are presented.
Collapse
Affiliation(s)
- Manuela G. Neuman
- In Vitro Drug Safety and Biotechnology and the Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada; (G.M.); (M.O.)
- Correspondence:
| | - Helmut K. Seitz
- Centre of Liver and Alcohol Diseases, Ethianum Clinic and Department of Clinical Pharmacology and Pharmacoepidemiology, Faculty of Medicine, University of Heidelberg, 69115 Heidelberg, Germany; (H.K.S.); (N.H.); (B.M.)
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 60323 Frankfurt, Germany;
| | - Stephen Malnick
- Department of Internal Medicine C. Kaplan Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel; (S.M.); (A.G.)
| | - Kamisha L. Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Centre and Division of Toxicology, ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT 84115, USA;
| | - Lawrence B. Cohen
- Division of Gastroenterology, Sunnybrook Health Sciences Centre and Department of Medicine, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M4N 3N5, Canada;
| | - Anit German
- Department of Internal Medicine C. Kaplan Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Rehovot 76100, Israel; (S.M.); (A.G.)
| | - Nicolas Hohmann
- Centre of Liver and Alcohol Diseases, Ethianum Clinic and Department of Clinical Pharmacology and Pharmacoepidemiology, Faculty of Medicine, University of Heidelberg, 69115 Heidelberg, Germany; (H.K.S.); (N.H.); (B.M.)
| | - Bernhardo Moreira
- Centre of Liver and Alcohol Diseases, Ethianum Clinic and Department of Clinical Pharmacology and Pharmacoepidemiology, Faculty of Medicine, University of Heidelberg, 69115 Heidelberg, Germany; (H.K.S.); (N.H.); (B.M.)
| | - George Moussa
- In Vitro Drug Safety and Biotechnology and the Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada; (G.M.); (M.O.)
| | - Mihai Opris
- In Vitro Drug Safety and Biotechnology and the Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L5, Canada; (G.M.); (M.O.)
- Family Medicine Clinic CAR, 010362 Bucharest, Romania
| |
Collapse
|
4
|
Ferdouse A, Agrawal RR, Gao MA, Jiang H, Blaner WS, Clugston RD. Alcohol induced hepatic retinoid depletion is associated with the induction of multiple retinoid catabolizing cytochrome P450 enzymes. PLoS One 2022; 17:e0261675. [PMID: 35030193 PMCID: PMC8759667 DOI: 10.1371/journal.pone.0261675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic alcohol consumption leads to a spectrum of liver disease that is associated with significant global mortality and morbidity. Alcohol is known to deplete hepatic vitamin A content, which has been linked to the pathogenesis of alcoholic liver disease. It has been suggested that induction of Cytochrome P450 2E1 (CYP2E1) contributes to alcohol-induced hepatic vitamin A depletion, but the possible contributions of other retinoid-catabolizing CYPs have not been well studied. The main objective of this study was to better understand alcohol-induced hepatic vitamin A depletion and test the hypothesis that alcohol-induced depletion of hepatic vitamin A is due to CYP-mediated oxidative catabolism. This hypothesis was tested in a mouse model of chronic alcohol consumption, including wild type and Cyp2e1 -/- mice. Our results show that chronic alcohol consumption is associated with decreased levels of hepatic retinol, retinyl esters, and retinoic acid. Moreover, the depletion of hepatic retinoid is associated with the induction of multiple retinoid catabolizing CYPs, including CYP26A1, and CYP26B1 in alcohol fed wild type mice. In Cyp2e1 -/- mice, alcohol-induced retinol decline is blunted but retinyl esters undergo a change in their acyl composition and decline upon alcohol exposure like WT mice. In conclusion, the alcohol induced decline in hepatic vitamin A content is associated with increased expression of multiple retinoid-catabolizing CYPs, including the retinoic acid specific hydroxylases CYP26A1 and CYP26B1.
Collapse
Affiliation(s)
- Afroza Ferdouse
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Rishi R. Agrawal
- Institute of Human Nutrition, Columbia University, New York, New York, United States of America
| | - Madeleine A. Gao
- Institute of Human Nutrition, Columbia University, New York, New York, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Hongfeng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - William S. Blaner
- Institute of Human Nutrition, Columbia University, New York, New York, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Robin D. Clugston
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Salehi E, Mashayekh M, Taheri F, Gholami M, Motaghinejad M, Safari S, Sepehr A. Curcumin Can be Acts as Effective agent for Prevent or Treatment of Alcohol-induced Toxicity in Hepatocytes: An Illustrated Mechanistic Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:418-436. [PMID: 34400970 PMCID: PMC8170768 DOI: 10.22037/ijpr.2020.112852.13985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous studies have shown that alcohol abuse can cause serious liver damage and cirrhosis. The main pathway for these types of hepatocellular cell neurodegeneration is mitochondrial dysfunction, which causes lipid peroxidation and dysfunction of the glutathione ring and the defect of antioxidant enzymes in alcoholic hepatic cells. Alcohol can also initiate malicious inflammatory pathways and trigger the initiation and activation of intestinal and extrinsic apoptosis pathways in hepatocellular tissues that lead to cirrhosis. Previous studies have shown that curcumin may inhibit lipid peroxidation, glutathione dysfunction and restore antioxidant enzymes. Curcumin also modulates inflammation and the production of alcohol-induced biomarkers. Curcumin has been shown to play a critical role in the survival of alcoholic hepatocellular tissue. It has been shown that curcumin can induce and trigger mitochondrial biogenesis and, by this mechanism, prevent the occurrence of both intrinsic and extrinsic apoptosis pathways in liver cells that have been impaired by alcohol. According to this mechanism, curcumin may protect hepatocellular tissue from alcohol-induced cell degeneration and may therefore survive alcoholic hepatocellular tissue. . Based on these mechanisms, the protective functions of curcumin against alcohol-induced cell degeneration due to oxidative stress, inflammation, and apoptosis events in hepatocellular tissue have been recorded. Hence, in this research, we have attempted to evaluate and analyze the main contribution mechanism of curcumin cell defense properties against alcohol-induced hepatocellular damage, according to previous experimental and clinical studies, and in this way we report findings from major studies.
Collapse
Affiliation(s)
- Elham Salehi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran.
| | - Mohammad Mashayekh
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran.
| | - Fereshteh Taheri
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mina Gholami
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Majid Motaghinejad
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Safari
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Afrah Sepehr
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Mawson AR, Croft AM. Multiple Vaccinations and the Enigma of Vaccine Injury. Vaccines (Basel) 2020; 8:E676. [PMID: 33198395 PMCID: PMC7712358 DOI: 10.3390/vaccines8040676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
A growing number of vaccines are administered at the same time or in close succession, increasing the complexity of assessing vaccine safety. Individual vaccines are assumed to have no other effect than protection against the targeted pathogen, but vaccines also have nonspecific and interactive effects, the outcomes of which can be beneficial or harmful. To date, no controlled trials and very few observational studies have determined the impact of vaccination schedules on overall health. The balance of the risks and benefits from mass vaccination therefore remains uncertain. Recent studies worryingly suggest links between multiple vaccinations and increased risks of diverse multisystem health problems, including allergies, infections, and neuropsychiatric or neurodevelopmental disorders. Here, we propose that, in susceptible persons, multiple vaccinations activate the retinoid cascade and trigger apoptotic hepatitis, leading to cholestatic liver dysfunction, in which stored vitamin A compounds (retinyl esters and retinoic acid) enter the circulation in toxic concentrations; this induces endogenous forms of hypervitaminosis A, with the severity of adverse outcomes being directly proportional to the concentration of circulating retinoids. In very low concentrations, vitamin A and its major metabolite retinoic acid contribute to immune function and to the process of immunization, whereas excess vitamin A increases the risk of adverse events, including common "side-effects" as well as chronic adverse outcomes. The increasing rates of allergy, ear infections, and neurodevelopmental disorders (NDDs) in countries with high rates of vaccination could be related to mass vaccination and to its impact on liver function and vitamin A metabolism, collectively representing endogenous manifestations of hypervitaminosis A. Further studies of health outcomes in vaccinated and unvaccinated groups are urgently needed, to increase understanding of the pathophysiology and treatment of vaccine injury, to identify the risk factors and screen for vaccine injury, to inform public health policy on potential hazards related to vaccination schedules, and to optimize the safety and benefits of vaccines.
Collapse
Affiliation(s)
- Anthony R. Mawson
- Department of Epidemiology and Biostatistics, School of Public Health, College of Health Sciences, Jackson State University, Jackson, MS 39213, USA
| | - Ashley M. Croft
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, UK;
| |
Collapse
|
7
|
Seitz HK. The role of cytochrome P4502E1 in the pathogenesis of alcoholic liver disease and carcinogenesis. Chem Biol Interact 2019; 316:108918. [PMID: 31836462 DOI: 10.1016/j.cbi.2019.108918] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Helmut K Seitz
- Centre of Alcohol Research (CAR), University of Heidelberg, Heidelberg and Department of Medicine, Salem Medical Centre, Heidelberg, Germany.
| |
Collapse
|
8
|
Mawson AR, Croft AM. Rubella Virus Infection, the Congenital Rubella Syndrome, and the Link to Autism. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3543. [PMID: 31546693 PMCID: PMC6801530 DOI: 10.3390/ijerph16193543] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 12/16/2022]
Abstract
Rubella is a systemic virus infection that is usually mild. It can, however, cause severe birth defects known as the congenital rubella syndrome (CRS) when infection occurs early in pregnancy. As many as 8%-13% of children with CRS developed autism during the rubella epidemic of the 1960s compared to the background rate of about 1 new case per 5000 children. Rubella infection and CRS are now rare in the U.S. and in Europe due to widespread vaccination. However, autism rates have risen dramatically in recent decades to about 3% of children today, with many cases appearing after a period of normal development ('regressive autism'). Evidence is reviewed here suggesting that the signs and symptoms of rubella may be due to alterations in the hepatic metabolism of vitamin A (retinoids), precipitated by the acute phase of the infection. The infection causes mild liver dysfunction and the spillage of stored vitamin A compounds into the circulation, resulting in an endogenous form of hypervitaminosis A. Given that vitamin A is a known teratogen, it is suggested that rubella infection occurring in the early weeks of pregnancy causes CRS through maternal liver dysfunction and exposure of the developing fetus to excessive vitamin A. On this view, the multiple manifestations of CRS and associated autism represent endogenous forms of hypervitaminosis A. It is further proposed that regressive autism results primarily from post-natal influences of a liver-damaging nature and exposure to excess vitamin A, inducing CRS-like features as a function of vitamin A toxicity, but without the associated dysmorphogenesis. A number of environmental factors are discussed that may plausibly be candidates for this role, and suggestions are offered for testing the model. The model also suggests a number of measures that may be effective both in reducing the risk of fetal CRS in women who acquire rubella in their first trimester and in reversing or minimizing regressive autism among children in whom the diagnosis is suspected or confirmed.
Collapse
Affiliation(s)
- Anthony R Mawson
- Department of Epidemiology and Biostatistics, School of Public Health, College of Health Sciences, Jackson State University, Jackson, MS 39213, USA.
| | - Ashley M Croft
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
| |
Collapse
|
9
|
Li M, Wu C, Guo H, Chu C, Hu M, Zhou C. Mangiferin improves hepatic damage-associated molecular patterns, lipid metabolic disorder and mitochondrial dysfunction in alcohol hepatitis rats. Food Funct 2019; 10:3514-3534. [PMID: 31144698 DOI: 10.1039/c9fo00153k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study was conducted to investigate the beneficial effects and possible mechanism of action of mangiferin (MF) in alcohol hepatitis (AH) rats. Building on our previous study, the damage-associated molecular patterns (DAMPs), lipid metabolic disorder and mitochondrial dysfunction were investigated. MF effectively regulated the abnormal liver function, the levels of alcohol, FFAs and metal elements in serum. More importantly, MF improved the expression levels of mRNA and protein of PPAR-γ, OPA-1, Cav-1, EB1, NF-κB p65, NLRP3, Cas-1 and IL-1β, and decreased the positive protein expression rates of HSP90, HMGB1, SYK, CCL20, C-CAS-3, C-PARP and STARD1. Additionally, MF decreased the levels of fumarate, cAMP, xanthurenic acid and d-glucurone-6,3-lactone, and increased the levels of hippuric acid and phenylacetylglycine, and then adjusted the changes of phenylalanine metabolism, TCA cycle and ascorbate and aldarate metabolic pathways. The above results suggested that MF can effectively prevent AH by modulating specific AH-associated genes, potential biomarkers and metabolic pathways in AH rats, etc.
Collapse
Affiliation(s)
- Mengran Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, 180 WuSi Road, Lianchi District, Baoding 071002, China.
| | | | | | | | | | | |
Collapse
|
10
|
Seitz HK. Alcohol and cancer-individual risk factors. Addiction 2017; 112:232-233. [PMID: 27905157 DOI: 10.1111/add.13664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Helmut K Seitz
- Centre of Alcohol Research (CAR), University of Heidelberg, Heidelberg, Germany.,Department of Medicine, Salem Medical Centre, Heidelberg, Germany
| |
Collapse
|
11
|
Stickel F, Moreno C, Hampe J, Morgan MY. The genetics of alcohol dependence and alcohol-related liver disease. J Hepatol 2017; 66:195-211. [PMID: 27575312 DOI: 10.1016/j.jhep.2016.08.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022]
Abstract
The susceptibility to developing alcohol dependence and significant alcohol-related liver injury is determined by a number of constitutional, environmental and genetic factors, although the nature and level of interplay between them remains unclear. The familiality and heritability of alcohol dependence is well-documented but, to date, no strong candidate genes conferring increased risk have emerged, although variants in alcohol dehydrogenase and acetaldehyde dehydrogenase have been shown to confer protection, predominantly in individuals of East Asian ancestry. Population contamination with confounders such as drug co-dependence and psychiatric and physical co-morbidity may explain the essentially negative genome-wide association studies in this disorder. The familiality and hereditability of alcohol-related cirrhosis is not as well-documented but three strong candidate genes PNPLA3, TM6SF2 and MBOAT7, have been identified. The mechanisms by which variants in these genes confer risk and the nature of the functional interplay between them remains to be determined but, when elucidated, will undoubtedly increase our understanding of the pathophysiology of this disease. The way in which this genetic information could potentially inform patient management has yet to be determined and tested.
Collapse
Affiliation(s)
- Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, Switzerland.
| | - Christophe Moreno
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, TU Dresden, Germany
| | - Marsha Y Morgan
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, UK
| |
Collapse
|
12
|
Abstract
A strong causal association has become evident between Zika virus (ZIKV) infection during pregnancy and the occurrence of fetal growth restriction, microcephaly and eye defects. Circumstantial evidence is presented in this paper in support of the hypothesis that these effects, as well as the Guillain-Barré syndrome, are due to an endogenous form of hypervitaminosis A resulting from ZIKV infection-induced damage to the liver and the spillage of stored vitamin A compounds ("retinoids") into the maternal and fetal circulation in toxic concentrations. Retinoids are mainly stored in the liver (about 80%) and are essential for numerous biological functions. In higher concentration, retinoids are potentially cytotoxic, pro-oxidant, mutagenic and teratogenic, especially if sudden shifts occur in their bodily distribution. Although liver involvement has not been mentioned specifically in recent reports, conventional liver enzyme tests underestimate the true extent of liver dysfunction. The proposed model could be tested by comparing retinoid concentration and expression profiles in microcephalic newborns of ZIKV-infected mothers and nonmicrocephalic newborn controls, and by correlating these profiles with measures of clinical severity.
Collapse
Affiliation(s)
- Anthony R. Mawson
- Department of Epidemiology and Biostatistics, School of Public Health (Initiative), Jackson State University, Jackson, Mississippi
| |
Collapse
|
13
|
Abstract
Retinoic acid (RA) was identified as the biologically active form of vitamin A almost 70 years ago and work on its function and mechanism of action is still of major interest both from a scientific and a clinical perspective. The currently accepted model postulates that RA is produced in two sequential oxidative steps: first, retinol is oxidized reversibly to retinaldehyde, and then retinaldehyde is oxidized irreversibly to RA. Excess RA is inactivated by conversion to hydroxylated derivatives. Much is left to learn, especially about retinoid binding proteins and the trafficking of the hydrophobic retinoid substrates between membrane bound and cytosolic enzymes. Here, background on development of the field and an update on recent advances in our understanding of the enzymatic pathways and mechanisms that control the rate of RA production and degradation are presented with a focus on the many questions that remain unanswered.
Collapse
|
14
|
McKillop IH, Schrum LW, Thompson KJ. Role of alcohol in the development and progression of hepatocellular carcinoma. Hepat Oncol 2016; 3:29-43. [PMID: 30191025 PMCID: PMC6095421 DOI: 10.2217/hep.15.40] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant cause of cancer-related morbidity and mortality. Chronic, heavy ethanol consumption is a major risk for developing the worsening liver pathologies that culminate in hepatic cirrhosis, the leading risk factor for developing HCC. A significant body of work reports the biochemical and pathological consequences of ethanol consumption and metabolism during hepatocarcinogeneis. The systemic effects of ethanol means organ system interactions are equally important in understanding the initiation and progression of HCC within the alcoholic liver. This review aims to summarize the effects of ethanol-ethanol metabolism during the pathogenesis of alcoholic liver disease, the progression toward HCC and the importance of ethanol as a comorbid factor for HCC development.
Collapse
Affiliation(s)
- Iain H McKillop
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203 USA
| | - Laura W Schrum
- Department of Medicine, Carolinas Medical Center, Charlotte, NC 28203 USA
| | - Kyle J Thompson
- Department of Surgery, Carolinas Medical Center, Charlotte, NC 28203 USA
| |
Collapse
|
15
|
Taschler U, Schreiber R, Chitraju C, Grabner GF, Romauch M, Wolinski H, Haemmerle G, Breinbauer R, Zechner R, Lass A, Zimmermann R. Adipose triglyceride lipase is involved in the mobilization of triglyceride and retinoid stores of hepatic stellate cells. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:937-45. [PMID: 25732851 PMCID: PMC4408194 DOI: 10.1016/j.bbalip.2015.02.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/05/2015] [Accepted: 02/22/2015] [Indexed: 01/04/2023]
Abstract
Hepatic stellate cells (HSCs) store triglycerides (TGs) and retinyl ester (RE) in cytosolic lipid droplets. RE stores are degraded following retinoid starvation or in response to pathogenic stimuli resulting in HSC activation. At present, the major enzymes catalyzing lipid degradation in HSCs are unknown. In this study, we investigated whether adipose triglyceride lipase (ATGL) is involved in RE catabolism of HSCs. Additionally, we compared the effects of ATGL deficiency and hormone-sensitive lipase (HSL) deficiency, a known RE hydrolase (REH), on RE stores in liver and adipose tissue. We show that ATGL degrades RE even in the presence of TGs, implicating that these substrates compete for ATGL binding. REH activity was stimulated and inhibited by comparative gene identification-58 and G0/G1 switch gene-2, respectively, the physiological regulators of ATGL activity. In cultured primary murine HSCs, pharmacological inhibition of ATGL, but not HSL, increased RE accumulation. In mice globally lacking ATGL or HSL, RE contents in white adipose tissue were decreased or increased, respectively, while plasma retinol and liver RE levels remained unchanged. In conclusion, our study shows that ATGL acts as REH in HSCs promoting the degradation of RE stores in addition to its established function as TG lipase. HSL is the predominant REH in adipocytes but does not affect lipid mobilization in HSCs. ATGL possesses retinyl ester and triacylglycerol hydrolase activity. The lack of ATGL activity causes increased triacylglycerol and retinyl ester storage in hepatic stellate cells. ATGL acts as retinyl ester and triacylglycerol lipase in hepatic stellate cells.
Collapse
Affiliation(s)
- Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | | | - Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Matthias Romauch
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Guenter Haemmerle
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Rolf Breinbauer
- Institute of Organic Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria.
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria.
| |
Collapse
|
16
|
Chaves GV, Peres WAF, Gonçalves JC, Ramalho A. Vitamin A and retinol-binding protein deficiency among chronic liver disease patients. Nutrition 2014; 31:664-8. [PMID: 25837210 DOI: 10.1016/j.nut.2014.10.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/26/2014] [Accepted: 10/27/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Vitamin A deficiency (VAD) is associated with the progression of chronic liver disease (CLD). The aim in this study was to assess levels of serum retinol and retinol-binding protein (RBP) as well as liver vitamin A stores in the presence of liver cirrhosis and hepatocellular carcinoma. METHODS We ascertained the serum retinol and RBP levels of randomly selected CLD patients divided into two groups, one given 1500 UI (n = 89) and the other receiving 2500 UI (n = 89) doses of retinyl palmitate for the relative dose response test. Blood samples were collected in a fasting state and 5 and 7 h after supplementation. RESULTS The prevalence of VAD was 62.4%. There was a progressive drop in serum retinol (P < 0.001) and RBP (P = 0.002) according to the severity of the liver disease, and a greater prevalence of severe VAD was noted in cirrhosis Child & Pugh C (52.8%). Fifty percent of the patients presented a low availability of RBP relative to retinol concentration, and there was no peak in RBP levels regardless of the dose of retinyl palmitate administered. CONCLUSIONS Our findings suggest serum retinol and RBP are relevant as indicators of vitamin A nutritional status in the presence of CLD. Liver vitamin A store cannot be evaluated using the RDR test because CLD causes a reduction in RBP synthesis and interferes with the mobilization of endogenous vitamin A. Considering how the patients already showed a drop in RBP relative to retinol concentrations, it is reasonable to assume vitamin A supplementation may trigger harmful effects in CLD patients.
Collapse
Affiliation(s)
- Gabriela Villaça Chaves
- Department of Nutrition and Dietetics, Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Wilza Arantes Ferreira Peres
- Department of Nutrition and Dietetics, Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Carlos Gonçalves
- Department of Medicine, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andréa Ramalho
- Department of Social and Applied Nutrition, Institute of Nutrition, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Pan Z, Dan Z, Fu Y, Tang W, Lin J. Low-dose ATRA supplementation abolishes PRM formation in rat liver and ameliorates ethanol-induced liver injury. ACTA ACUST UNITED AC 2013; 26:508-12. [PMID: 17219953 DOI: 10.1007/s11596-006-0505-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effects of all-trans-retinoic acid (ATRA) in low doses supplementation on concentrations of polar retinoid metabolites (PRM) and retinoids in the ethanol-fed rat liver, and on hepatocyte injury were investigated. The rat model of alcoholic liver disease (ALD) was induced by intragastric infusion of ethanol, and then the rats were administrated with ATRA in two different doses (150 microg/kg body weight and 1.5 mg/kg body weight) for 4 weeks. Concentrations of retinoids in rat liver and plasma were determined by using HPLC. Liver tissues pathologic changes were observed under the light microscopy and electron microscopy. The serum transaminases concentrations were measured. The results showed that the HPLC analysis of retinoids revealed that retinoids (vitamin A, RA, retinyl palmitate) concentrations in ethanol-fed rat liver and RA concentration in ethanol-fed rat plasma were markedly diminished (P<0.01) after ethanol feeding for 12 weeks. Furthermore, obvious peaks of PRM were formed in livers of ethanol-fed rats. ATRA 150 microg/kg supplementation in ethanol-fed rats for 4 weeks raised RA concentration in both liver and plasma, and also raised vitamin A concentration in liver to control levels, partially restored retinyl palmitate concentration (P<0.05) in liver. ATRA 1.5 mg/kg supplementation raised not only RA concentrations in liver and plasma but also retinyl palmitate concentrations in liver. However, the vitamin A concentration in liver of ATRA-supplemented rats (1.5 mg/kg) was higher than that of controls (P<0.05). The histologic observation of liver tissues indicated that ATRA treatment notably alleviated hepatocellular swelling, steatosis, the swelling of mitochondria and proliferation of smooth endoplasmic reticulum (SER). ATRA treatment greatly decreased levels of serum transaminases as compared with the only ethanol-fed group (P<0.05). It was concluded that low-dose ATRA treatment could restore retinoids concentrations and abolish the PRM formation in liver of ALD rats, and then ameliorate the injury of liver cells.
Collapse
Affiliation(s)
- Zhihong Pan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | |
Collapse
|
18
|
Sid B, Verrax J, Calderon PB. Role of oxidative stress in the pathogenesis of alcohol-induced liver disease. Free Radic Res 2013; 47:894-904. [PMID: 23800214 DOI: 10.3109/10715762.2013.819428] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic alcohol consumption is a well-known risk factor for liver disease, which represents a major cause of morbidity and mortality worldwide. The pathological process of alcohol-induced liver disease is characterized by a broad spectrum of morphological changes ranging from steatosis with minimal injury to more advanced liver damage, including steato-hepatitis and fibrosis/cirrhosis. Experimental and clinical studies increasingly show that the oxidative damage induced by ethanol contribute in many ways to the pathogenesis of alcohol hepatotoxicity. This article describes the contribution of oxidative mechanisms to liver damage by alcohol.
Collapse
Affiliation(s)
- B Sid
- Université Catholique de Louvain, Louvain Drug Research Institute, Toxicology and Cancer Biology Research Group (GTOX) , Brussels , Belgium
| | | | | |
Collapse
|
19
|
Mawson AR. Retinoids, race and the pathogenesis of dengue hemorrhagic fever. Med Hypotheses 2013; 81:1069-74. [PMID: 23999008 DOI: 10.1016/j.mehy.2013.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/06/2013] [Indexed: 12/21/2022]
Abstract
Dengue hemorrhagic fever (DHF) is the most significant mosquito-borne viral disease worldwide in terms of illness, mortality and economic cost, but the pathogenesis of DHF is not well understood and there is no specific treatment or vaccine. Based on evidence of liver involvement, it is proposed that dengue virus and retinoids interact to cause cholestatic liver damage, resulting in the spillage of stored retinoids into the circulation and in an endogenous form of hypervitaminosisis A manifested by the signs and symptoms of the disease, including: fever, severe joint and bone pain, capillary leakage, thrombocytopenia, headache, and gastrointestinal symptoms. While retinoids in low concentration are essential for numerous biological functions, they are prooxidant, cytotoxic, mutagenic and teratogenic in higher concentration, especially when unbound to protein, and an endogenous form of vitamin A intoxication is recognized in cholestasis. The model tentatively explains the observations that 1) repeat infections are more severe than initial dengue virus infections; 2) the incidence of denue has increased dramatically worldwide in recent decades; 3) DHF is less prevalent in people of African ancestry than those of other racial backgrounds; and 4) infants are protected from dengue. The retinoid toxicity hypothesis of DHF predicts the co-existence of low serum concentrations of retinol coupled with high concentrations of retinoic acid and an increased percentage of retinyl esters to total vitamin A. Subject to such tests, it may be possible to treat DHF effectively using drugs that target the metabolism and expression of retinoids.
Collapse
Affiliation(s)
- Anthony R Mawson
- Health Policy and Management, School of Health Sciences, College of Public Service, Jackson State University, Jackson, MS 39213, United States.
| |
Collapse
|
20
|
Mawson AR. Role of Fat-Soluble Vitamins A and D in the Pathogenesis of Influenza: A New Perspective. ACTA ACUST UNITED AC 2013. [DOI: 10.5402/2013/246737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Reduced exposure to solar radiation, leading to a deficiency of vitamin D and hence impaired innate immunity, has been suggested as a trigger for influenza viral replication and as an explanation of seasonal influenza. Although this hypothesis accounts for many unexplained facts about the epidemiology of influenza, gaps remain in understanding the pathogenesis and manifestations of the disease. Several observations suggest a role for vitamin A compounds (retinoids) in the disease. This paper presents a new model of the etiopathogenesis of influenza, suggesting that host resistance and susceptibility depend importantly on the ratio of vitamin D to vitamin A activity. Retinoid concentrations within normal physiological limits appear to inhibit influenza pathogenesis whereas higher background concentrations (i.e., very low vitamin D : A ratios) increase the risk of severe complications of the disease. There is also evidence that influenza-induced or preexisting liver disease, diabetes, and obesity worsen the severity of infection, possibly via liver dysfunction and alterations in retinoid metabolism. The model could be tested by determining the presence of retinoids in the secretions of patients with influenza and by studies of retinoid profiles in patients and controls. Potential strategies for prevention and treatment are discussed.
Collapse
Affiliation(s)
- Anthony R. Mawson
- Department of Health Policy and Management, School of Health Sciences, College of Public Service, Jackson State University,
350 West Woodrow Wilson Avenue, Room 229, Jackson, MS 39213, USA
| |
Collapse
|
21
|
Kedishvili NY. Enzymology of retinoic acid biosynthesis and degradation. J Lipid Res 2013; 54:1744-60. [PMID: 23630397 PMCID: PMC3679379 DOI: 10.1194/jlr.r037028] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/17/2013] [Indexed: 12/18/2022] Open
Abstract
All-trans-retinoic acid is a biologically active derivative of vitamin A that regulates numerous physiological processes. The concentration of retinoic acid in the cells is tightly regulated, but the exact mechanisms responsible for this regulation are not completely understood, largely because the enzymes involved in the biosynthesis of retinoic acid have not been fully defined. Recent studies using in vitro and in vivo models suggest that several members of the short-chain dehydrogenase/reductase superfamily of proteins are essential for retinoic acid biosynthesis and the maintenance of retinoic acid homeostasis. However, the exact roles of some of these recently identified enzymes are yet to be characterized. The properties of the known contributors to retinoid metabolism have now been better defined and allow for more detailed understanding of their interactions with retinoid-binding proteins and other retinoid enzymes. At the same time, further studies are needed to clarify the interactions between the cytoplasmic and membrane-bound proteins involved in the processing of hydrophobic retinoid metabolites. This review summarizes current knowledge about the roles of various biosynthetic and catabolic enzymes in the regulation of retinoic acid homeostasis and outlines the remaining questions in the field.
Collapse
Affiliation(s)
- Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
22
|
Wang X, Zhao G, Liang J, Jiang J, Chen N, Yu J, Wang Q, Xu A, Chen S, Wu L. PFOS-induced apoptosis through mitochondrion-dependent pathway in human–hamster hybrid cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 754:51-7. [DOI: 10.1016/j.mrgentox.2013.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 04/05/2013] [Accepted: 04/16/2013] [Indexed: 11/27/2022]
|
23
|
Abstract
We and others have shown that chronic alcohol consumption results in the induction of CYP2E1 in the liver. We have also detected for the first time such an induction in the mucosa of the small intestine and the colon. The overall induction of CYP2E1 shows interindividual variations and occurs already following a daily ingestion of 40 g of ethanol after 1 week. CYP2E1 induction is associated with an increased metabolism of ethanol resulting in the generation of reactive oxygen species (ROS) with direct and indirect carcinogenic action. ROS generated by CYP2E1 may lead to lipid peroxidation and lipid peroxidation products such as 4-hydroxynonenal bind to DNA forming highly carcinogenic exocyclic etheno DNA-adducts. The generation of these adducts has been shown in cell cultures in animal experiments as well as in human liver biopsies. CYP2E1 also metabolizes various procarcinogens present in diets and in tobacco smoke to their carcinogenic metabolites. Among these, nitrosamines seem to be the most important carcinogens. CYP2E1 also degrades retinoic acid and retinol to polar metabolites. Metabolism of retinoic acid not only results in the loss of retinoic acid promoting carcinogenesis through an increase in cell proliferation and dedifferentiation but also in generation of polar metabolites with apoptotic properties. We have shown that chlormethiazole is a specific CYP2E1 inhibitor in humans. Chlormethiazole inhibits CYP2E1 activity and thus blocks the formation of DNA adducts in cell cultures, restores retinoic acids in alcohol fed animals and inhibits chemical induced ethanol mediated hepatocarcinogenesis. Thus, there is increasing evidence that CYP2E1 induced by chronic alcohol consumption plays an important role in alcohol mediated carcinogenesis.
Collapse
|
24
|
Ye Q, Lian F, Chavez PRG, Chung J, Ling W, Qin H, Seitz HK, Wang XD. Cytochrome P450 2E1 inhibition prevents hepatic carcinogenesis induced by diethylnitrosamine in alcohol-fed rats. Hepatobiliary Surg Nutr 2012; 1:5-18. [PMID: 23543859 DOI: 10.3978/j.issn.2304-3881.2012.11.05] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic alcohol ingestion increases hepatic cytochrome P450 2E1 (CYP2E1), which is associated with hepatocarcinogenesis. We investigated whether treatment with chlormethiazole (CMZ), a CYP2E1 inhibitor, protects against alcohol-associated hepatic carcinogenesis in rats. Rats were fed either an ethanol liquid diet or a non-ethanol liquid diet, with or without CMZ for one and ten months. A single intraperitoneal injection of diethylnitrosamine (DEN, 20 mg/kg) was given to initiate hepatic carcinogenesis. CYP2E1 expression, inflammatory proteins, cell proliferation, protein-bound 4-HNE, etheno-DNA adducts, 8-hydroxy-2'-deoxyguanosine (8-OHdG), retinoid concentrations, and hepatic carcinogenesis were examined. Ethanol feeding for 1 month with DEN resulted in significantly increased hepatic CYP2E1 levels and increased nuclear accumulation of NF-κB protein and TNF-α expression, which were associated with increased cyclin D1 expression and p-GST positive altered hepatic foci. All of these changes induced by ethanol feeding were significantly inhibited by the one month CMZ treatment. At 10-months of treatment, hepatocellular adenomas were detected in ethanol-fed rats only, but neither in control rats nor in animals receiving ethanol and CMZ. The 8-OHdG formation was found to be significantly increased in ethanol fed animals and normalized with CMZ treatment. In addition, alcohol-reduced hepatic retinol and retinoic acid concentrations were restored by CMZ treatment to normal levels in the rats at 10 months of treatment. These data demonstrate that the inhibition of ethanol-induced CYP2E1 as a key pathogenic factor can counteract the tumor-promoting action of ethanol by decreasing TNF-α expression, NF-κB activation, and oxidative DNA damage as well as restoring normal hepatic levels of retinoic acid in DEN-treated rats.
Collapse
Affiliation(s)
- Qinyuan Ye
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA ; School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Primary brain tumors are among the top ten causes of cancer-related deaths in the US. Malignant gliomas account for approximately 70% of the 22,500 new cases of malignant primary brain tumors diagnosed in adults each year and are associated with high morbidity and mortality. Despite optimal treatment, the prognosis for patients with gliomas remains poor. The use of retinoids (vitamin A and its congeners) in the treatment of certain tumors was originally based on the assumption that these conditions were associated with an underlying deficiency of vitamin A and that supplementation with pharmacological doses would correct the deficiency. Yet the results of retinoid treatment have been only modestly beneficial and usually short-lived. Studies also indicate that vitamin A excess and supplementation have pro-oxidant effects and are associated with increased risks of mortality from cancer and other diseases. The therapeutic role of vitamin A in cancer thus remains uncertain and a new perspective on the facts is needed. The modest and temporary benefits of retinoid treatment could result from a process of feedback inhibition, whereby exogenous retinoid temporarily inhibits the endogenous synthesis of these compounds. In fact, repeated and/or excessive exposure of the tissues to endogenous retinoic acid may contribute to carcinogenesis. Gliomas, in particular, may result from an imbalance in retinoid receptor expression initiated by environmental factors that increase the endogenous production of retinoic acid in glia. At the receptor level, it is proposed that this imbalance is characterized by excessive expression of retinoic acid receptor-α (RARα) and reduced expression of retinoic acid receptor-β (RARβ). This suggests a potential new treatment strategy for gliomas, possibly even at a late stage of the disease, ie, to combine the use of a RARα antagonist and a RARβ agonist. According to this hypothesis, the RARα antagonist would be expected to inhibit RARα-induced gliomas, while the RARβ agonist would suppress tumor growth and possibly contribute to the regeneration of normal glia.
Collapse
Affiliation(s)
- Anthony R Mawson
- Department of Health Policy and Management, School of Health Sciences, College of Public Service, Jackson State University, Jackson, MS, USA
| |
Collapse
|
26
|
Jia X, Yin L, Feng Y, Peng X, Ma F, Yao Y, Liu X, Zhang Z, Yuan Z, Zhang L. A dynamic plasma membrane proteome analysis of alcohol-induced liver cirrhosis. Proteome Sci 2012; 10:39. [PMID: 22682408 PMCID: PMC3558348 DOI: 10.1186/1477-5956-10-39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 05/25/2012] [Indexed: 12/26/2022] Open
Abstract
Alcohol-induced injury has become one of the major causes for liver cirrhosis. However, the molecular mechanisms of ethanol-induced injury are not fully understood. To this end, we performed a dynamic plasma membrane proteomic research on rat model. A rat model from hepatitis to liver cirrhosis was developed. Plasma membrane from liver tissue with liver fibrosis stage of 2 and 4 (S2 and S4) was purified by sucrose density gradient centrifugation. Its purification was verified by western blotting. Proteins from plasma membrane were separated by two-dimensional electrophoresis (2DE) and differentially expressed proteins were identified by tandem mass spectrometry. 16 consistent differentially expressed proteins from S2 to S4 were identified by mass spectrometry. The expression of differentially expressed proteins annexin A6 and annexin A3 were verified by western blotting, and annexin A3 was futher verified by immunohistochemistry. Our research suggests a possible mechanism by which ethanol alters protein expression to enhance the liver fibrosis progression. These differentially expressed proteins might be new drug targets for treating alcoholic liver cirrhosis.
Collapse
Affiliation(s)
- Xiaofang Jia
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai 201508, China
| | - Lin Yin
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai 201508, China
| | - Yanling Feng
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai 201508, China
| | - Xia Peng
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai 201508, China
| | - Fang Ma
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai 201508, China
| | - Yamin Yao
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai 201508, China
| | - Xiaoqian Liu
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai 201508, China
| | - Zhiyong Zhang
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai 201508, China
| | - Zhenghong Yuan
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai 201508, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center affiliated to Fudan University, Shanghai 201508, China.,Institute of Clinical Pharmacology, Pharmacogenetics Research Institute, Changsha, Hunan 410078, China
| |
Collapse
|
27
|
Clugston RD, Blaner WS. The adverse effects of alcohol on vitamin A metabolism. Nutrients 2012; 4:356-71. [PMID: 22690322 PMCID: PMC3367262 DOI: 10.3390/nu4050356] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 04/30/2012] [Accepted: 05/03/2012] [Indexed: 02/03/2023] Open
Abstract
The objective of this review is to explore the relationship between alcohol and the metabolism of the essential micronutrient, vitamin A; as well as the impact this interaction has on alcohol-induced disease in adults. Depleted hepatic vitamin A content has been reported in human alcoholics, an observation that has been confirmed in animal models of chronic alcohol consumption. Indeed, alcohol consumption has been associated with declines in hepatic levels of retinol (vitamin A), as well as retinyl ester and retinoic acid; collectively referred to as retinoids. Through the use of animal models, the complex interplay between alcohol metabolism and vitamin A homeostasis has been studied; the reviewed research supports the notion that chronic alcohol consumption precipitates a decline in hepatic retinoid levels through increased breakdown, as well as increased export to extra-hepatic tissues. While the precise biochemical mechanisms governing alcohol's effect remain to be elucidated, its profound effect on hepatic retinoid status is irrefutable. In addition to a review of the literature related to studies on tissue retinoid levels and the metabolic interactions between alcohol and retinoids, the significance of altered hepatic retinoid metabolism in the context of alcoholic liver disease is also considered.
Collapse
Affiliation(s)
- Robin D Clugston
- Department of Medicine and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
28
|
Shirakami Y, Lee SA, Clugston RD, Blaner WS. Hepatic metabolism of retinoids and disease associations. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1821:124-36. [PMID: 21763780 PMCID: PMC3488285 DOI: 10.1016/j.bbalip.2011.06.023] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 06/14/2011] [Accepted: 06/21/2011] [Indexed: 12/12/2022]
Abstract
The liver is the most important tissue site in the body for uptake of postprandial retinoid, as well as for retinoid storage. Within the liver, both hepatocytes and hepatic stellate cells (HSCs) are importantly involved in retinoid metabolism. Hepatocytes play an indispensable role in uptake and processing of dietary retinoid into the liver, and in synthesis and secretion of retinol-binding protein (RBP), which is required for mobilizing hepatic retinoid stores. HSCs are the central cellular site for retinoid storage in the healthy animal, accounting for as much as 50-60% of the total retinoid present in the entire body. The liver is also an important target organ for retinoid actions. Retinoic acid is synthesized in the liver and can interact with retinoid receptors which control expression of a large number of genes involved in hepatic processes. Altered retinoid metabolism and the accompanying dysregulation of retinoid signaling in the liver contribute to hepatic disease. This is related to HSCs, which contribute significantly to the development of hepatic disease when they undergo a process of cellular activation. HSC activation results in the loss of HSC retinoid stores and changes in extracellular matrix deposition leading to the onset of liver fibrosis. An association between hepatic disease progression and decreased hepatic retinoid storage has been demonstrated. In this review article, we summarize the essential role of the liver in retinoid metabolism and consider briefly associations between hepatic retinoid metabolism and disease. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Yohei Shirakami
- Department of Medicine, College of Physcians and Surgeons, Columbia University, 630 W, 168th St, New York, NY 10032, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Dietary supplements (DS) are easily available and increasingly used, and adverse hepatic reactions have been reported following their intake. To critically review the literature on liver injury because of DSs, delineating patterns and mechanisms of injury and to increase the awareness towards this cause of acute and chronic liver damage. Studies and case reports on liver injury specifically because of DSs published between 1990 and 2010 were searched in the PubMed and EMBASE data bases using the terms 'dietary/nutritional supplements', 'adverse hepatic reactions', 'liver injury'; 'hepatitis', 'liver failure', 'vitamin A' and 'retinoids', and reviewed for yet unidentified publications. Significant liver injury was reported after intake of Herbalife and Hydroxycut products, tea extracts from Camellia sinensis, products containing usnic acid and high contents of vitamin A, anabolic steroids and others. No uniform pattern of hepatotoxicity has been identified and severity may range from asymptomatic elevations of serum liver enzymes to hepatic failure and death. Exact estimates on how frequent adverse hepatic reactions occur as a result of DSs cannot be provided. Liver injury from DSs mimicking other liver diseases is increasingly recognized. Measures to reduce risk include tighter regulation of their production and distribution and increased awareness of users and professionals of the potential risks.
Collapse
Affiliation(s)
- Felix Stickel
- Department of Visceral Surgery and Medicine, Institute of Clinical Pharmacology and Visceral Research, Inselspital, University of Berne, Berne, Switzerland.
| | | | | | | |
Collapse
|
30
|
D'Ambrosio DN, Clugston RD, Blaner WS. Vitamin A metabolism: an update. Nutrients 2011; 3:63-103. [PMID: 21350678 PMCID: PMC3042718 DOI: 10.3390/nu3010063] [Citation(s) in RCA: 360] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/24/2010] [Accepted: 01/11/2011] [Indexed: 12/18/2022] Open
Abstract
Retinoids are required for maintaining many essential physiological processes in the body, including normal growth and development, normal vision, a healthy immune system, normal reproduction, and healthy skin and barrier functions. In excess of 500 genes are thought to be regulated by retinoic acid. 11-cis-retinal serves as the visual chromophore in vision. The body must acquire retinoid from the diet in order to maintain these essential physiological processes. Retinoid metabolism is complex and involves many different retinoid forms, including retinyl esters, retinol, retinal, retinoic acid and oxidized and conjugated metabolites of both retinol and retinoic acid. In addition, retinoid metabolism involves many carrier proteins and enzymes that are specific to retinoid metabolism, as well as other proteins which may be involved in mediating also triglyceride and/or cholesterol metabolism. This review will focus on recent advances for understanding retinoid metabolism that have taken place in the last ten to fifteen years.
Collapse
Affiliation(s)
- Diana N D'Ambrosio
- Department of Medicine and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
31
|
Ye Y, Dan Z. All-trans retinoic acid diminishes collagen production in a hepatic stellate cell line via suppression of active protein-1 and c-Jun N-terminal kinase signal. ACTA ACUST UNITED AC 2010; 30:726-33. [PMID: 21181362 DOI: 10.1007/s11596-010-0648-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Indexed: 12/16/2022]
Abstract
Following acute and chronic liver injury, hepatic stellate cells (HSCs) become activated to undergo a phenotypic transformation into myofibroblast-like cells and lose their retinol content, but the mechanisms of retinoid loss and its potential roles in HSCs activation and liver fibrosis are not understood. The influence of retinoids on HSCs and hepatic fibrosis remains controversial. The purpose of this study was to evaluate the effects of all-trans retinoid acid (ATRA) on cell proliferation, mRNA expression of collagen genes [procollagen α1 (I), procollagen α1 (III)], profibrogenic genes (TGF-β(1), CTGF, MMP-2, TIMP-1, TIMP-2, PAI-1), fibrolytic genes (MMP-3, MMP-13) and the upstream element (JNK and AP-1) in the rat hepatic stellate cell line (CFSC-2G). Cell proliferation was evaluated by measuring BrdU incorporation. The mRNA expression levels of collagen genes [procollagen α1 (I), procollagen α1 (III)], profibrogenic genes (TGF-β(1), CTGF, MMP-2, TIMP-1, TIMP-2, PAI-1), and fibrolytic genes (MMP-3, MMP-13) were quantitatively detected by using real-time PCR. The mRNA expression of JNK and AP-1 was quantified by RT-PCR. The results showed that ATRA inhibited HSCs proliferation and diminished the mRNA expression of collagen genes [procollagen α1 (I), procollagen α1 (III)] and profibrogenic genes (TGF-β(1), CTGF, MMP-2, TIMP-1, TIMP-2, PAI-1), and significantly stimulated the mRNA expression of MMP-3 and MMP-13 in HSCs by suppressing the mRNA expression of JNK and AP-1. These findings suggested that ATRA could inhibit proliferation and collagen production of HSCs via the suppression of active protein-1 and c-Jun N-terminal kinase signal, then decrease the mRNAs expression of profibrogenic genes (TGF-β(1), CTGF, MMP-2, TIMP-1, TIMP-2, PAI-1), and significantly induce the mRNA expression of MMP-3 and MMP-13.
Collapse
Affiliation(s)
- Yuan Ye
- Huazhong University of Science and Technology, Wuhan 430030, China.
| | | |
Collapse
|
32
|
Effect of ATRA on contents of liver retinoids, oxidative stress and hepatic injury in rat model of extrahepatic cholestasis. ACTA ACUST UNITED AC 2010; 27:491-4. [PMID: 18060617 DOI: 10.1007/s11596-007-0503-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Indexed: 02/08/2023]
Abstract
The effects of all-trans-retinoic acid (ATRA) administration on the concentration of retinoids (RA and vitamin A) in liver, oxidative stress and the hepatic injury in a rat model of common bile duct ligation (CBDL)-induced liver injury were investigated. Female rats were subjected to a sham (n=5) or CBDL (n=48). Two weeks after operation, rats undergoing CBDL were randomized to receive treatment with either ATRA at three different doses (0.1, 1.5, 7.5 mg/kg) dissolved in bean oil or only bean oil every day over a 4-week experimental period. Rats were killed and blood samples were collected from the heart for determination of the serum transaminase. The contents of retinoids in rat liver were detected by using HPLC. Malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD) levels in liver were determined by a spectrophotometric method according to the instruction of the kits. Liver pathologic changes were observed under the light microscopy and electron microscopy. The results showed that compared with sham-operated group, the levels of retinoids in the liver tissue were significantly decreased in the CBDL group (P<0.01). ATRA (0.1 mg/kg) administration in CBDL rats partially restored the contents of retinoids (P<0.05). Liver RA and vitamin A contents in CBDL group were significantly increased after ATRA (1.5 and 7.5 mg/kg) supplementation as compared with sham-operated group (P<0.05). However, in ATRA-treated CBDL group, hepatic GSH level and SOD activity, depressed by CBDL, and hepatic MDA level, increased by CBDL were returned to those in sham-operated group (P<0.05). The histologic observation of liver tissues indicated that ATRA treatment notably alleviated hepatocellular swelling, steatosis, the swelling of mitochondria and proliferation of smooth endoplasmic reticulum (SER). Treatment with ATRA could reduce levels of serum transaminase as compared with sham-operated group, more greatly in 1.5 and 7.5 mg/kg ATRA-treated groups than in 0.1 mg/kg ATRA-treated group. It was concluded that ATRA treatment can recover MDA and GSH levels and SOD activity in CBDL rat liver through restoring RA and vitamin A contents, and eventually ameliorate liver injury.
Collapse
|
33
|
Popov Y, Sverdlov DY, Bhaskar KR, Sharma AK, Millonig G, Patsenker E, Krahenbuhl S, Krahenbuhl L, Schuppan D. Macrophage-mediated phagocytosis of apoptotic cholangiocytes contributes to reversal of experimental biliary fibrosis. Am J Physiol Gastrointest Liver Physiol 2010; 298:G323-34. [PMID: 20056896 PMCID: PMC2838516 DOI: 10.1152/ajpgi.00394.2009] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Studies have suggested the reversibility of liver fibrosis, but the mechanisms of fibrosis reversal are poorly understood. We investigated the possible functional link between apoptosis, macrophages, and matrix turnover in rat liver during reversal of fibrosis secondary to bile duct ligation (BDL). Biliary fibrosis was induced by BDL for 4 wk. After Roux-en-Y (RY)-bilio-jejunal-anastomosis, resolution of fibrosis was monitored for up to 12 wk by hepatic collagen content, matrix metalloproteinase (MMP) expression and activities, and fibrosis-related gene expression. MMP expression and activities were studied in macrophages after engulfment of apoptotic cholangiocytes in vitro. Hepatic collagen decreased to near normal at 12 wk after RY-anastomosis. During reversal, profibrogenic mRNA declined, whereas expression of several profibrolytic MMPs increased. Fibrotic septa showed fragmentation at week 4 and disappeared at week 12. Peak histological remodeling at week 4 was characterized by massive apoptosis of cytokeratin 19+ cholangiocytes, >90% in colocalization with CD68+ macrophages, and a 2- to 7.5-fold increase in matrix-degrading activities. In vitro, phagocytosis of apoptotic cholangiocytes induced matrix-degrading activities and MMP-3, -8, and -9 in rat peritoneal macrophages. We concluded that reconstruction of bile flow after BDL leads to an orchestrated fibrolytic program that results in near complete reversal of advanced fibrosis. The peak of connective tissue remodeling and fibrolytic activity is associated with massive apoptosis of cholangiocytes and their phagocytic clearance by macrophages in vivo. Macrophages upregulate MMPs and become fibrolytic effector cells upon apoptotic cholangiocyte engulfment in vitro, suggesting that phagocytosis-associated MMP induction in macrophages significantly contributes to biliary fibrosis reversal.
Collapse
Affiliation(s)
- Yury Popov
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; ,2Department of Medicine I, University of Erlangen-Nuremberg, Germany;
| | - Deanna Y. Sverdlov
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| | - K. Ramakrishnan Bhaskar
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| | - Anisha K. Sharma
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| | - Gunda Millonig
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| | - Eleonora Patsenker
- 2Department of Medicine I, University of Erlangen-Nuremberg, Germany; ,3Institute of Clinical Pharmacology, University of Bern;
| | - Stephan Krahenbuhl
- 4Department of Clinical Pharmacology & Toxicology and Research, University Hospital Basel;
| | | | - Detlef Schuppan
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
34
|
Lohwasser C, Neureiter D, Popov Y, Bauer M, Schuppan D. Role of the receptor for advanced glycation end products in hepatic fibrosis. World J Gastroenterol 2009; 15:5789-98. [PMID: 19998499 PMCID: PMC2791271 DOI: 10.3748/wjg.15.5789] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the role of advanced glycation end products (AGE) and their specific receptor (RAGE) in the pathogenesis of liver fibrogenesis.
METHODS: In vitro RAGE expression and extracellular matrix-related gene expression in both rat and human hepatic stellate cells (HSC) were measured after stimulation with the two RAGE ligands, advanced glycation end product-bovine serum albumin (AGE-BSA) and Nε-(carboxymethyl) lysine (CML)-BSA, or with tumor necrosis factor-α (TNF-α). In vivo RAGE expression was examined in models of hepatic fibrosis induced by bile duct ligation or thioacetamide. The effects of AGE-BSA and CML-BSA on HSC proliferation, signal transduction and profibrogenic gene expression were studied in vitro.
RESULTS: In hepatic fibrosis, RAGE expression was enhanced in activated HSC, and also in endothelial cells, inflammatory cells and activated bile duct epithelia. HSC expressed RAGE which was upregulated after stimulation with AGE-BSA, CML-BSA, and TNF-α. RAGE stimulation with AGE-BSA and CML-BSA did not alter HSC proliferation, apoptosis, fibrogenic signal transduction and fibrosis- or fibrolysis-related gene expression, except for marginal upregulation of procollagen α1(I) mRNA by AGE-BSA.
CONCLUSION: Despite upregulation of RAGE in activated HSC, RAGE stimulation by AGE does not alter their fibrogenic activation. Therefore, RAGE does not contribute directly to hepatic fibrogenesis.
Collapse
|
35
|
Blaner WS, O'Byrne SM, Wongsiriroj N, Kluwe J, D'Ambrosio DM, Jiang H, Schwabe RF, Hillman EMC, Piantedosi R, Libien J. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:467-73. [PMID: 19071229 DOI: 10.1016/j.bbalip.2008.11.001] [Citation(s) in RCA: 309] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 11/05/2008] [Accepted: 11/12/2008] [Indexed: 01/08/2023]
Abstract
The majority of retinoid (vitamin A and its metabolites) present in the body of a healthy vertebrate is contained within lipid droplets present in the cytoplasm of hepatic stellate cells (HSCs). Two types of lipid droplets have been identified through histological analysis of HSCs within the liver: smaller droplets bounded by a unit membrane and larger membrane-free droplets. Dietary retinoid intake but not triglyceride intake markedly influences the number and size of HSC lipid droplets. The lipids present in rat HSC lipid droplets include retinyl ester, triglyceride, cholesteryl ester, cholesterol, phospholipids and free fatty acids. Retinyl ester and triglyceride are present at similar concentrations, and together these two classes of lipid account for approximately three-quarters of the total lipid in HSC lipid droplets. Both adipocyte-differentiation related protein and TIP47 have been identified by immunohistochemical analysis to be present in HSC lipid droplets. Lecithin:retinol acyltransferase (LRAT), an enzyme responsible for all retinyl ester synthesis within the liver, is required for HSC lipid droplet formation, since Lrat-deficient mice completely lack HSC lipid droplets. When HSCs become activated in response to hepatic injury, the lipid droplets and their retinoid contents are rapidly lost. Although loss of HSC lipid droplets is a hallmark of developing liver disease, it is not known whether this contributes to disease development or occurs simply as a consequence of disease progression. Collectively, the available information suggests that HSC lipid droplets are specialized organelles for hepatic retinoid storage and that loss of HSC lipid droplets may contribute to the development of hepatic disease.
Collapse
Affiliation(s)
- William S Blaner
- Department of Medicine, Columbia University, 630 W. 168th St., New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Park SY, Shin SW, Lee SM, Park JW. Hypochlorous acid-induced modulation of cellular redox status in HeLa cells. Arch Pharm Res 2008; 31:905-10. [PMID: 18704334 DOI: 10.1007/s12272-001-1245-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 04/13/2008] [Accepted: 05/13/2008] [Indexed: 11/25/2022]
Abstract
Myeloperoxidase catalyzes the formation of hypochlorous acid (HOCI) via reaction of H2O2 with CI(-) ions. Although HOCI plays a major role in the human immune system by killing bacteria and other invading pathogens, excessive generation of this oxidant causes damage to tissues. Exposure of HeLa cells to HOCI decreased viability, inactivated antioxidant enzymes, damaged mitochondria, and modulated cellular redox status. HOCI also induced significant increases in cellular oxidative damage reflected by lipid peroxidation, protein oxidation, and DNA damage. HOCI-mediated oxidative damage to HeLa cells may perturb the cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant state.
Collapse
Affiliation(s)
- Sin Young Park
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu, Korea
| | | | | | | |
Collapse
|
37
|
Stickel F, Inderbitzin D, Candinas D. Role of nutrition in liver transplantation for end-stage chronic liver disease. Nutr Rev 2008; 66:47-54. [PMID: 18254884 DOI: 10.1111/j.1753-4887.2007.00005.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Patients with end-stage liver disease often reveal significant protein-energy malnutrition, which may deteriorate after listing for transplantation. Since malnutrition affects post-transplant survival, precise assessment must be an integral part of pre- and post-surgical management. While there is wide agreement that aggressive treatment of nutritional deficiencies is required, strong scientific evidence supporting nutritional therapy is sparse. In practice, oral nutritional supplements are preferred over parenteral nutrition, but enteral tube feeding may be necessary to maintain adequate calorie intake. Protein restriction should be avoided and administration of branched-chain amino acids may help yield a sufficient protein supply. Specific problems such as micronutrient deficiency, fluid balance, cholestasis, encephalopathy, and comorbid conditions need attention in order to optimize patient outcome.
Collapse
Affiliation(s)
- Felix Stickel
- Institute of Clinical Pharmacology, Inselspital, University of Berne, Berne, Switzerland.
| | | | | |
Collapse
|
38
|
Abstract
Although per capita alcohol consumption, and thus the prevalence of alcoholic liver disease, decreases generally with age in Europe and in the United States, recently an increase in alcohol consumption has been reported in individuals over 65 years. Reasons explaining this observation may include an increase in life expectancy or a loss of life partners and, thus, loneliness and depression. Although ethanol metabolism and ethanol distribution change with age, and an elderly person's liver is more susceptible to the toxic effect of ethanol, the spectrum of alcoholic liver diseases and their symptoms and signs is similar to that seen in patients of all ages. However, prognosis of alcoholic liver disease in the elderly is poor. In addition, chronic alcohol consumption may enhance drug associated liver disease and may also act as a cofactor in other liver diseases, such as viral hepatitis and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Helmut K Seitz
- Department of Medicine & Center of Alcohol Research, Liver Disease and Nutrition, Salem Medical Center, University of Heidelberg, Zeppelinstrasse 11-33, D - 69121 Heidelberg, Germany.
| | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Alcohol consumption among the elderly has increased. Alcohol metabolism changes with age and the elderly are more sensitive to the toxic effects; this increased consumption is therefore of great clinical relevance. RECENT FINDINGS Metabolism of ethanol changes with advancing age because activity of the enzymes involved, such as alcohol and acetaldehyde dehydrogenase and cytochrome P-4502E1, diminish with age. The water distribution volume also decreases with age. Both lead to increased blood concentrations of ethanol. Also, elderly people take more drugs, and ethanol and these drugs may interact; therefore, alcohol consumption can modify serum drug concentrations and their toxicity. Finally, elderly people may suffer more frequently from other types of liver disease, and alcohol may exacerbate these. SUMMARY Over recent decades alcohol consumption has increased among those who are older than 65 years. Alcohol is more toxic in the ageing organism because of changes in its metabolism, distribution and elimination, which lead to central nervous system effects at lower levels of intake; also, ageing organs such as brain and liver are more sensitive to the toxicity of alcohol. For these reasons, alcohol should be used in moderation, especially among those of older age.
Collapse
Affiliation(s)
- Patrick Meier
- Department of Medicine and Laboratory of Alcohol Research, Liver Disease and Nutrition, Salem Medical Centre, Heidelberg, Germany
| | | |
Collapse
|
40
|
Abstract
Approximately 3.6% of cancers worldwide derive from chronic alcohol drinking, including those of the upper aerodigestive tract, the liver, the colorectum and the breast. Although the mechanisms for alcohol-associated carcinogenesis are not completely understood, most recent research has focused on acetaldehyde, the first and most toxic ethanol metabolite, as a cancer-causing agent. Ethanol may also stimulate carcinogenesis by inhibiting DNA methylation and by interacting with retinoid metabolism. Alcohol-related carcinogenesis may interact with other factors such as smoking, diet and comorbidities, and depends on genetic susceptibility.
Collapse
Affiliation(s)
- Helmut K Seitz
- Department of Medicine and Laboratory of Alcohol Research, Liver Disease and Nutrition, Salem Medical Centre, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
41
|
Patsenker E, Popov Y, Wiesner M, Goodman SL, Schuppan D. Pharmacological inhibition of the vitronectin receptor abrogates PDGF-BB-induced hepatic stellate cell migration and activation in vitro. J Hepatol 2007; 46:878-87. [PMID: 17258347 DOI: 10.1016/j.jhep.2006.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 11/07/2006] [Accepted: 11/13/2006] [Indexed: 01/18/2023]
Abstract
BACKGROUND/AIMS Activated hepatic stellate cells (HSC) play a central role in the development of liver fibrosis. Platelet-derived growth factor (PDGF)-BB and the integrin alphavbeta3 mediate mesenchymal cell migration and proliferation. However, their contribution and interaction during fibrogenic activation of HSC remains unclear. To this aim we investigated if PDFGF-BB and alphavbeta3 interact, and how far small molecular inhibitors of alphavbeta3 modulate PDGF-BB and serum-induced migration, proliferation and fibrogenic activation of HSC. METHODS Rat and human HSC were subjected to migration and proliferation assays in the presence or absence of a peptide or a nonpeptide alphavbeta3 inhibitor. Activation of mitogen-activated protein kinases (ERK1/2, p38), Akt, focal adhesion kinase (FAK), paxillin and beta3 integrin was evaluated by phospho-specific Western blotting. Fibrosis related transcripts were determined by quantitative real-time PCR. RESULTS PDGF-BB-stimulated HSC migration which was blocked dose-dependently by the alphavbeta3 antagonists, with complete inhibition at 10(-6)M. alphavbeta3 blockage did not affect cell viability or proliferation, while it decreased phosphorylation of FAK, paxillin, beta3 integrin and p38, but not of ERK1/2 or Akt. alphavbeta3 inhibition led to downregulation of certain profibrogenic transcripts, while it upregulated fibrolytic MMP-13 mRNA. CONCLUSIONS Inhibition of integrin alphavbeta3 leads to abrogation of migration of HSC stimulated with PDGF-BB and to an antifibrogenic gene expression pattern.
Collapse
Affiliation(s)
- Eleonora Patsenker
- Institute of Clinical Pharmacology, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
42
|
Paula TPD, Peres WAF, Ramalho RA, Coelho HSM. Vitamin A metabolic aspects and alcoholic liver disease. REV NUTR 2006. [DOI: 10.1590/s1415-52732006000500008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The liver is a strategic organ in the metabolism of macro and micronutrients; when its functioning is compromised, it may cause some change in the nutritional status of vitamin A. The purpose of this article is to review scientific evidence in literature on the liver metabolism of vitamin A, the role of ethanol and retinol interactions on hepatic morphology, besides the alterations in the metabolism of this vitamin in alcoholic liver disease. Data were collected from Medline database. The liver is the main organ responsible for the storage, metabolism and distribution of vitamin A to peripheral tissues. This organ uses retinol for its normal functioning such as cell proliferation and differentiation. This way, vitamin A deficiency seems to alter liver morphology. Patients with alcoholic liver disease have been found to have low hepatic levels of retinol in all stages of their disease. In alcoholic liver disease, vitamin A deficiency may result from decreased ingestion or absorption, reduction in retinoic acid synthesis or increased degradation. Long-term alcohol intake results in reduced levels of retinoic acid, which may promote the development of liver tumor. So, in chronic alcoholic subjects, vitamin A status needs to be closely monitored to avoid its deficiency and clinical effects, however its supplementation must be done with caution since the usual dose may be toxic for those who consume ethanol.
Collapse
|
43
|
Homann N, Seitz HK, Wang XD, Yokoyama A, Singletary KW, Ishii H. Mechanisms in alcohol-associated carcinogenesis. Alcohol Clin Exp Res 2006; 29:1317-20. [PMID: 16088994 DOI: 10.1097/01.alc.0000171892.09367.6f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- N Homann
- Medical University of Schleswig-Holstein, Lübeck, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Wagnerberger S, Schäfer C, Bode C, Parlesak A. Saturation of retinol-binding protein correlates closely to the severity of alcohol-induced liver disease. Alcohol 2006; 38:37-43. [PMID: 16762690 DOI: 10.1016/j.alcohol.2006.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 03/29/2006] [Accepted: 03/31/2006] [Indexed: 11/20/2022]
Abstract
Impaired metabolism of retinol has been shown to occur in alcohol-induced liver disease (ALD). The purpose of the present study was to investigate the saturation of retinol-binding protein (RBP) in 6 patients with different stages of ALD. Hospitalized alcohol consumers (n=118) with different stages of ALD (ALD1: mild stage of liver damage; ALD2: moderately severe changes of the liver with signs of hepatic inflammation; ALD3: severely impaired liver function) and 45 healthy control subjects were nutritionally assessed, and retinol and RBP content was measured in plasma by high-performance liquid chromatography and enzyme-linked immunosorbent assay methods, respectively. No differences were noted in daily retinol intake, but subjects with ALD had significantly lower concentrations of retinol in plasma (ALD1: 1.81+/-0.17 micromol/l [mean+/-S.E.M.]; ALD2: 1.95+/-0.24 micromol/l; ALD3: 0.67+/-0.13 micromol/l) compared to controls (2.76+/-0.19 micromol/l). Subjects of group ALD2 had significantly higher plasma RBP levels than controls (P<.05) and patients with ALD1 (P<.05) and ALD3 (P<.001). The relative saturation of RBP with retinol decreased with severity of ALD (controls: 76.8+/-5.0%; ALD1: 55.8+/-6.5%; ALD2: 43.5+/-6.2%; ALD3: 29.0+/-5.1%). The present study indicates that plasma concentrations of retinol and RBP per se do not correlate to severity of ALD, but rather that the retinol/RBP ratio links to the severity of alcohol-induced liver damage. From these results, a reduced availability of retinol in the periphery due to an altered saturation of RBP can be concluded.
Collapse
Affiliation(s)
- Sabine Wagnerberger
- Department of Physiology of Nutrition and Gender Research, Hohenheim University (140e), Garbenstrasse 28, 70599 Stuttgart, Germany
| | | | | | | |
Collapse
|
45
|
Shang T, Joseph J, Hillard CJ, Kalyanaraman B. Death-associated Protein Kinase as a Sensor of Mitochondrial Membrane Potential. J Biol Chem 2005; 280:34644-53. [PMID: 16085644 DOI: 10.1074/jbc.m506466200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have investigated here the mechanism of dephosphorylation and activation of death-associated protein kinase (DAPK) and the role of lysosome in neuroblastoma cells (SH-SY5Y) treated with mitochondrial toxins, such as MPP(+) and rotenone. Mitochondrial respiratory chain inhibitors and uncouplers decreased mitochondrial membrane potential leading to DAPK dephosphorylation and activation. The class III phosphoinositide 3-kinase inhibitors attenuated DAPK dephosphorylation induced by mitochondrial toxins. Complex I inhibition by mitochondrial toxins (e.g. MPP(+)) resulted in mitochondrial swelling and lysosome reduction. Inhibition of class III phosphoinositide 3-kinase attenuated MPP(+)-induced lysosome reduction and cell death. The role of DAPK as a sensor of mitochondrial membrane potential in mitochondrial diseases was addressed.
Collapse
Affiliation(s)
- Tiesong Shang
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Chronic and excessive alcohol intake is associated with an increased risk of a variety of cancers (e.g., oral cavity, larynx, esophagus, liver, lung, colorectal, and breast). Retinoids (vitamin A and its derivatives) are known to exert profound effects on cellular growth, cellular differentiation, and apoptosis, thereby controlling carcinogenesis. Lower hepatic vitamin A levels have been well documented in alcoholics. Substantial research has been done, investigating the mechanisms by which excessive alcohol interferes with retinoid metabolism. More specifically, (1) alcohol acts as a competitive inhibitor of vitamin A oxidation to retinoic acid involving alcohol dehydrogenases and acetaldehyde dehydrogenases; (2) alcohol-induced cytochrome P450 enzymes (CYP), particularly CYP2E1, enhance catabolism of vitamin A and retinoic acid; and (3) alcohol alters retinoid homeostasis by increasing vitamin A mobilization from liver to extrahepatic tissues. As a consequence, long-term and excessive alcohol intake results in impaired status of retinoic acid, the most active derivative of vitamin A and a ligand for both retinoic acid receptors and retinoid X receptors. Moreover, this alcohol-impaired retinoic acid homeostasis interferes with (1) retinoic acid signaling (e.g., down-regulates retinoid target gene expression) and (2) retinoic acid "cross-talk" with the mitogen-activated protein kinase [(MAPK), including Jun N-terminal kinase, extracellular signal-regulated kinase, and p38 kinase] signaling pathway. In addition, restoration of retinoic acid homeostasis by retinoic acid supplementation restored the normal status of both retinoid and MAPK signaling, thereby maintaining normal cell proliferation and apoptosis in alcohol-fed animals. These observations would have implications for the prevention of alcohol-promoted liver (and peripheral tissue) carcinogenesis. However, a better understanding of the alcohol-retinoid interaction and the molecular mechanisms involved is needed before retinoids can be pursued in the prevention of alcohol-related carcinogenesis in human beings, particularly regarding the detrimental effects of polar metabolites of vitamin A.
Collapse
Affiliation(s)
- Xiang-Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA.
| |
Collapse
|