1
|
Zhou F, Chen M, Liu Y, Xia X, Zhao P. Serum mitochondrial-encoded NADH dehydrogenase 6 and Annexin A1 as novel biomarkers for mortality prediction in critically ill patients with sepsis. Front Immunol 2024; 15:1486322. [PMID: 39611143 PMCID: PMC11602424 DOI: 10.3389/fimmu.2024.1486322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Objectives Formyl peptide receptor 1 (FPR1) is a member of G protein-coupled receptor (GPCR) family that detects potentially danger signals characterized by the appearance of N-formylated peptides which originate from either bacteria or host mitochondria during organ injury, including sepsis. Mitochondrial-encoded NADH dehydrogenase 6 (MT-ND6) and Annexin A1 (ANXA1), as mitochondrial damage-associated molecular patterns (mtDAMPs) agonist and endogenous agonist of FPR1 respectively, interact with FPR1 regulating polymorphonuclear leukocytes (PMNs) function and inflammatory response during sepsis. However, there is no direct evidence of MT-ND6 or ANXA1 in the circulation of patients with sepsis and their potential role in clinical significance, including diagnosis and mortality prediction during sepsis. Methods A prospective cohort study was conducted in ICU within a large academic hospital. We measured serum MT-ND6 or ANXA1 in a cohort of patients with sepsis in ICU (n=180) and patients with non-sepsis in ICU (n=60) by Enzyme-linked immunosorbent assays (ELISA). The ROC curve and Kaplan Meier analysis was used to evaluate the diagnostic and prognostic ability of two biomarkers for patients with sepsis. Results The concentration of MT-ND6 and ANXA1 were significantly elevated in the patients with sepsis, and the diagnostic values of MT-ND6 (0.789) for sepsis patients was second only to SOFA scores (AUC = 0.870). Higher serum concentrations of MT-ND6 (>1.41 ng/ml) and lower concentrations of ANXA1 (< 8.09 ng/mL) were closely related to the higher mortality in patients with sepsis, with the predictive values were 0.705 and 0.694, respectively. When patients with sepsis classified based on four pro-inflammation and two anti-inflammation cytokines, it was shown that combination of MT-ND6 and ANXA1 obviously improved the predictive values in the septic patients with mixed hyperinflammation or immunosuppression phenotypes. Conclusion Our findings provide valuable models testing patient risk prediction and strengthen the evidence for agonists of FPR1, MT-ND6 and ANXA1, as novel biomarker for patient selection for novel therapeutic agents to target mtDAMPs and regulator of GPCRs in sepsis.
Collapse
Affiliation(s)
- Fan Zhou
- Department of Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Research Center for Interdisciplinary & High-Quality Innovative Development in Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, China
| | - Meiling Chen
- Department of Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Research Center for Interdisciplinary & High-Quality Innovative Development in Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, China
| | - Yilin Liu
- Intensive Care Medicine Department, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
| | - Xianzhu Xia
- Department of Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Research Center for Interdisciplinary & High-Quality Innovative Development in Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
| | - Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Research Center for Interdisciplinary & High-Quality Innovative Development in Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Laboratory Medicine, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
- Shaoguan Municipal Quality Control Center for Surveillance of Bacterial Resistance, Shaoguan, China
- Shaoguan Engineering Research Center for Research and Development of Molecular and Cellular Technology in Rapid Diagnosis of Infectious Diseases and Cancer, Shaoguan, China
| |
Collapse
|
2
|
Vieira RR, da Silva RA, Sasso GRS, Franco PC, Borges FT, Lima PDA, Sanches JM, Gil CD, Carbonel AAF. Lack of Annexin A1 Exacerbates Inflammatory Response in Acute Endometritis Model. Inflammation 2024; 47:1041-1052. [PMID: 38198110 DOI: 10.1007/s10753-023-01959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/11/2024]
Abstract
Annexin A1 (AnxA1) is a glucocorticoid-inducible protein and an important endogenous modulator of inflammation. However, its effect in the endometrial microenvironment is poorly explained. This study aimed to evaluate the role of endogenous AnxA1 in an endometritis mouse model induced by lipopolysaccharide (LPS). Female C57BL/6 wild-type (WT) and AnxA1-/- mice were divided into two groups: SHAM and LPS. To induce endometritis, mice received a vaginal infusion of 50 μL of LPS (1 mg/mL) dissolved in phosphate-buffered saline. After 24 h, the mice were euthanized, and blood and uteri samples were collected. The endometrium inflammatory scores were significantly increased in the LPS-treated group. AnxA1-/- mice from the LPS group demonstrated a significant increase in the number of degranulated mast cell levels compared to AnxA1-/- SHAM mice. The Western blotting analysis revealed that a lack of AnxA1 promoted the upregulation of NLRP3 and pro-IL-1β in the acute endometritis animal model compared to WT LPS animals. LPS-induced endometritis increased the number of blood peripheral leukocytes in both WT and AnxA1-/- mice compared with SHAM group mice (p < 0.001). AnxA1-/- mice also showed increased plasma levels of IL-1β (p < 0.01), IL-6, IL-10, IL-17, and TNF-α (p < 0.05) following LPS-induced endometritis. In conclusion, a lack of endogenous AnxA1 exacerbated the inflammatory response in an endometritis model via NLRP3 dysregulation, increased uterine mast cell activation, and plasma pro-inflammatory cytokine release.
Collapse
Affiliation(s)
- Renata R Vieira
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, Edifício Lemos Torres - 3° andar, São Paulo, SP, 04023-900, Brazil
| | - Rafael André da Silva
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Gisela R S Sasso
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, Edifício Lemos Torres - 3° andar, São Paulo, SP, 04023-900, Brazil
| | - Paulo C Franco
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, Edifício Lemos Torres - 3° andar, São Paulo, SP, 04023-900, Brazil
| | - Fernanda T Borges
- Department of Medicine, Nephrology Division, Universidade Federal de São Paulo (UNIFESP), Sao Paulo, SP, 04038-901, Brazil
| | - Patrícia D A Lima
- Queen's Cardiopulmonary Unit (QCPU), Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Jose Marcos Sanches
- School of Medicine, Universidade do Oeste Paulista (UNOESTE), Guaruja, SP, 11441-225, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, Edifício Lemos Torres - 3° andar, São Paulo, SP, 04023-900, Brazil.
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil.
| | - Adriana A F Carbonel
- Department of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, Edifício Lemos Torres - 3° andar, São Paulo, SP, 04023-900, Brazil
| |
Collapse
|
3
|
de Melo IS, Sabino-Silva R, Costa MA, Vaz ER, Anselmo-E-Silva CI, de Paula Soares Mendonça T, Oliveira KB, de Souza FMA, Dos Santos YMO, Pacheco ALD, Freitas-Santos J, Caixeta DC, Goulart LR, de Castro OW. N-Formyl-Methionyl-Leucyl-Phenylalanine Plays a Neuroprotective and Anticonvulsant Role in Status Epilepticus Model. Cell Mol Neurobiol 2023; 43:4231-4244. [PMID: 37742326 DOI: 10.1007/s10571-023-01410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
Status epilepticus (SE) is described as continuous and self-sustaining seizures, which triggers hippocampal neurodegeneration, inflammation, and gliosis. N-formyl peptide receptor (FPR) has been associated with inflammatory process. N-formyl-methionyl-leucyl-phenylalanine (fMLP) peptide plays an anti-inflammatory role, mediated by the activation of G-protein-coupled FPR. Here, we evaluated the influence of fMLP peptides on the behavior of limbic seizures, memory consolidation, and hippocampal neurodegeneration process. Male Wistar rats (Rattus norvegicus) received microinjections of pilocarpine in hippocampus (H-PILO, 1.2 mg/μL, 1 μL) followed by fMLP (1 mg/mL, 1 μL) or vehicle (VEH, saline 0.9%, 1 μL). During the 90 min of SE, epileptic seizures were analyzed according to the Racine's Scale. After 24 h of SE, memory impairment was assessed by the inhibitory avoidance test and the neurodegeneration process was evaluated in hippocampal areas. There was no change in latency and number of wet dog shake (WDS) after administration of fMLP. However, our results showed that the intrahippocampal infusion of fMLP reduced the severity of seizures, as well as the number of limbic seizures. In addition, fMLP infusion protected memory dysfunction followed by SE. Finally, the intrahippocampal administration of fMLP attenuated the process of neurodegeneration in both hippocampi. Taken together, our data suggest a new insight into the functional role of fMLP peptides, with important implications for their potential use as a therapeutic agent for the treatment of brain disorders, such as epilepsy. Schematic drawing on the neuroprotective and anticonvulsant role of fMLP during status epilepticus. Initially, a cannula was implanted in hippocampus and pilocarpine/saline was administered into the hippocampus followed by fMLP/saline (A-C). fMLP reduced seizure severity and neuronal death in the hippocampus, as well as protecting against memory deficit (D).
Collapse
Affiliation(s)
- Igor Santana de Melo
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil.
| | - Robinson Sabino-Silva
- Department of Physiology, Innovation Center in Salivary Diagnostic and Nanotheranostics, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlandia (UFU), Av. Pará, 1720, Uberlandia, MG, CEP 38400-902, Brazil.
| | - Maisa Araújo Costa
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Emília Rezende Vaz
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
| | | | | | - Kellysson Bruno Oliveira
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Fernanda Maria Araújo de Souza
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Yngrid Mickaelli Oliveira Dos Santos
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Amanda Larissa Dias Pacheco
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Jucilene Freitas-Santos
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil
| | - Douglas Carvalho Caixeta
- Department of Physiology, Innovation Center in Salivary Diagnostic and Nanotheranostics, Institute of Biomedical Sciences (ICBIM), Federal University of Uberlandia (UFU), Av. Pará, 1720, Uberlandia, MG, CEP 38400-902, Brazil
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil
| | - Olagide Wagner de Castro
- Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Av. Lourival de Melo Mota, Km 14, Campus A. C. Simões, Cidade Universitária, Maceió, AL, CEP 57072-970, Brazil.
| |
Collapse
|
4
|
Chen J, Austin-Williams S, O'Riordan CE, Claria-Ribas P, Sugimoto MA, Norling LV, Thiemermann C, Perretti M. Formyl Peptide Receptor Type 2 Deficiency in Myeloid Cells Amplifies Sepsis-Induced Cardiac Dysfunction. J Innate Immun 2023; 15:548-561. [PMID: 37068475 PMCID: PMC10315071 DOI: 10.1159/000530284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/16/2023] [Indexed: 04/19/2023] Open
Abstract
Using a global formyl peptide receptor (Fpr) 2 knockout mouse colony, we have reported the modulatory properties of this pro-resolving receptor in polymicrobial sepsis. Herein, we have used a humanized FPR2 (hFPR2) mouse colony, bearing an intact or a selective receptor deficiency in myeloid cells to dwell on the cellular mechanisms. hFPR2 mice and myeloid cell-specific hFPR2 KO (KO) mice were subjected to cecal ligation and puncture (CLP)-induced polymicrobial sepsis. Compared with hFPR2 mice, CLP caused exacerbated cardiac dysfunction (assessed by echocardiography), worsened clinical outcome, and impaired bacterial clearance in KO mice. This pathological scenario was paralleled by increased recruitment of pro-inflammatory monocytes and reduced M2-like macrophages within the KO hearts. In peritoneal exudates of KO mice, we quantified increased neutrophil and MHC II+ macrophage numbers but decreased monocyte/macrophage and MHC II- macrophage recruitment. hFPR2 upregulation was absent in myeloid cells, and local production of lipoxin A4 was reduced in septic KO mice. Administration of the FPR2 agonist annexin A1 (AnxA1) improved cardiac function in hFPR2 septic mice but had limited beneficial effects in KO mice, in which the FPR2 ligand failed to polarize macrophages toward an MHC II- phenotype. In conclusion, FPR2 deficiency in myeloid cells exacerbates cardiac dysfunction and worsens clinical outcome in polymicrobial sepsis. The improvement of cardiac function and the host immune response by AnxA1 is more effective in hFPR2-competent septic mice.
Collapse
Affiliation(s)
- Jianmin Chen
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London, UK
| | - Shani Austin-Williams
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | | | - Pol Claria-Ribas
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Michelle A. Sugimoto
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Lucy V. Norling
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London, UK
| | - Christoph Thiemermann
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Mauro Perretti
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
5
|
Xie W, Zou S, Dong C, Yang C. SPI1-mediated autophagy of peripheral blood monocyte cells as a mechanism for sepsis based on single-cell RNA sequencing. Int Immunopharmacol 2023; 117:109909. [PMID: 37012859 DOI: 10.1016/j.intimp.2023.109909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/17/2023]
Abstract
Autophagy has been documented to participate in immune responses and inflammatory diseases, but the mechanistic actions of monocyte autophagy in sepsis remain largely unknown. This study intends to analyze the mechanism of autophagy of peripheral blood monocyte cells (PBMCs) in sepsis based on single-cell RNA sequencing (scRNA-seq). The scRNA-seq data of PBMC samples from sepsis patients were downloaded from the GEO database, followed by identification of cell marker genes, key pathways and key genes. The bioinformatics analysis showed that the PBMC samples of sepsis patients mainly contained 9 immune cell types, among which three types of monocytes showed significant changes in cell numbers in sepsis patients. Of note, the highest autophagy score was found in the intermediate monocytes. The Annexin signaling pathway was a key pathway for the communication between monocytes and other cells. More importantly, SPI1 was predicted as a key gene in the autophagy phenotype of intermediate monocytes, and SPI1 might suppress ANXA1 transcription. The high expression of SPI1 in sepsis was confirmed by RT-qPCR and Western blot analysis. Dual luciferase reporter gene assay verified that SPI1 could bind to the promoter region of ANXA1. Furthermore, it was found that SPI1 might affect monocyte autophagy in the mouse model of sepsis through regulation of ANXA1. In conclusion, we provide insight into the mechanism underlying the septic potential of SPI1, which enhances monocyte autophagy by inhibiting the transcription of ANXA1 in sepsis.
Collapse
Affiliation(s)
- Wenfeng Xie
- Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, PR China
| | - Sainan Zou
- Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, PR China
| | - Chengcheng Dong
- Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, PR China
| | - Chunhua Yang
- Intensive Care Unit, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, PR China.
| |
Collapse
|
6
|
Ahmad SD, Cetin M, Waugh RE, McGrath JL. A computer vision approach for analyzing label free leukocyte trafficking dynamics on a microvascular mimetic. Front Immunol 2023; 14:1140395. [PMID: 37033977 PMCID: PMC10080102 DOI: 10.3389/fimmu.2023.1140395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
High-content imaging techniques in conjunction with in vitro microphysiological systems (MPS) allow for novel explorations of physiological phenomena with a high degree of translational relevance due to the usage of human cell lines. MPS featuring ultrathin and nanoporous silicon nitride membranes (µSiM) have been utilized in the past to facilitate high magnification phase contrast microscopy recordings of leukocyte trafficking events in a living mimetic of the human vascular microenvironment. Notably, the imaging plane can be set directly at the endothelial interface in a µSiM device, resulting in a high-resolution capture of an endothelial cell (EC) and leukocyte coculture reacting to different stimulatory conditions. The abundance of data generated from recording observations at this interface can be used to elucidate disease mechanisms related to vascular barrier dysfunction, such as sepsis. The appearance of leukocytes in these recordings is dynamic, changing in character, location and time. Consequently, conventional image processing techniques are incapable of extracting the spatiotemporal profiles and bulk statistics of numerous leukocytes responding to a disease state, necessitating labor-intensive manual processing, a significant limitation of this approach. Here we describe a machine learning pipeline that uses a semantic segmentation algorithm and classification script that, in combination, is capable of automated and label-free leukocyte trafficking analysis in a coculture mimetic. The developed computational toolset has demonstrable parity with manually tabulated datasets when characterizing leukocyte spatiotemporal behavior, is computationally efficient and capable of managing large imaging datasets in a semi-automated manner.
Collapse
Affiliation(s)
- S. Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Mujdat Cetin
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
- Goergen Institute for Data Science, University of Rochester, Rochester, NY, United States
| | - Richard E. Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
7
|
Formyl peptide receptor 2 as a potential therapeutic target for inflammatory bowel disease. Acta Pharmacol Sin 2023; 44:19-31. [PMID: 35840658 DOI: 10.1038/s41401-022-00944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/15/2022] [Indexed: 01/18/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a global health burden whose existing treatment is largely dependent on anti-inflammatory agents. Despite showing some therapeutic actions, their clinical efficacy and adverse events are unacceptable. Resolution as an active and orchestrated phase of inflammation involves improper inflammatory response with three key triggers, specialized pro-resolving mediators (SPMs), neutrophils and phagocyte efferocytosis. The formyl peptide receptor 2 (FPR2/ALX) is a human G protein-coupled receptor capable of binding SPMs and participates in the resolution process. This receptor has been implicated in several inflammatory diseases and its association with mouse model of IBD was established in some resolution-related studies. Here, we give an overview of three reported FPR2/ALX agonists highlighting their respective roles in pro-resolving strategies.
Collapse
|
8
|
Liu H, Ma C, Xu H, Zhang H, Xu R, Zhang K, Sun R, Li K, Wu Q, Wen L, Zhang L, Guo Y. In vivo Detection of Macromolecule Free Radicals in Mouse Sepsis-Associated Encephalopathy Using a New MRI and Immunospin Trapping Strategy. Int J Nanomedicine 2022; 17:3809-3820. [PMID: 36072961 PMCID: PMC9444031 DOI: 10.2147/ijn.s378726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Free radicals in oxidative stress are known to play a pathogenic role in sepsis. A major clinical challenge associated with sepsis is sepsis-associated encephalopathy (SAE). The rapid increase of free radicals in the brain promotes SAE progression. Here, macromolecule free radicals in the mouse brain were uniquely detected by immunospin trapping (IST) and magnetic resonance imaging (MRI). Methods The new strategy uses spin trapping agent DEPMPO-biotin to capture macromolecule free radicals in lesions and form biotin-DEPMPO-radical adducts. Then, a targeting MRI probe, avidin-BSA@Gd-ESIO, was used to detect the radical adducts through the highly specific binding of avidin and biotin. The avidin-BSA@Gd-ESIO probe was synthesized and systematically characterized. The detection capability of the new strategy was evaluated in vitro and in vivo using a confocal microscope and a 7T MRI, respectively. Results In reactive oxygen species (ROS)–induced microglial cells, the accumulation of the avidin-BSA@Gd-ESIO probe in the DEPMPO-biotin-treated group was significantly higher than that of control groups. In vivo MRI T1 signal intensities were significantly higher within the hippocampus, striatum, and medial cortex of the brain in mice with a mild or severe degree of sepsis compared with the sham control group. Histological analysis validated that the distribution of the avidin-BSA@Gd-ESIO probe in brain tissue slices was consistent with the MRI images. The fluorescence signals of ROS and avidin-BSA@Gd-ESIO probe were overlapped and visualized using immunofluorescent staining. By evaluating the T1 signal changes over time in different areas of the brain, we estimated the optimal MRI detection time to be 30 minutes after the probe administration. Discussion This method can be applied specifically to assess the level of macromolecular free radicals in vivo in a simple and stable manner, providing a pathway for a more comprehensive understanding of the role of free radicals in SAE.
Collapse
Affiliation(s)
- Hanrui Liu
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Chengyong Ma
- West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Huayan Xu
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Huan Zhang
- College of Chemistry and Materials Science, Northwest University, Xi’an, People’s Republic of China
| | - Rong Xu
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Kun Zhang
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Ran Sun
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Kuan Li
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Qihong Wu
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Lingyi Wen
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Lizhi Zhang
- West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Lizhi Zhang, Department of Radiology, West China Hospital of Sichuan University, No. 37, Guoxue Road, Chengdu, Sichuan, 610041, People’s Republic of China, Email
| | - Yingkun Guo
- West China Second University Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Correspondence: Yingkun Guo, Development and Related Diseases of Women and Children Key Laboratory, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renmin South Road, Chengdu, Sichuan, 610041, People’s Republic of China, Tel +86+18180609256, Email
| |
Collapse
|
9
|
Xiao Y, Ren C, Chen G, Shang P, Song X, You G, Yan S, Yao Y, Zhou H. Neutrophil membrane-mimicking nanodecoys with intrinsic anti-inflammatory properties alleviate sepsis-induced acute liver injury and lethality in a mouse endotoxemia model. Mater Today Bio 2022; 14:100244. [PMID: 35345558 PMCID: PMC8956822 DOI: 10.1016/j.mtbio.2022.100244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
Sepsis-induced acute liver injury often develops in the early stages of sepsis and can exacerbate the pathology by contributing to multiple organ dysfunction and increasing lethality. No specific therapies for sepsis-induced liver injury are currently available; therefore, effective countermeasures are urgently needed. Considering the crucial role of neutrophils in sepsis-induced liver injury, herein, neutrophil membrane-mimicking nanodecoys (NM) were explored as a biomimetic nanomedicine for the treatment of sepsis-associated liver injury. NM administration exhibited excellent biocompatibility and dramatically decreased the plasma levels of inflammatory cytokines and liver injury biomarkers, including aspartate aminotransferase, alanine aminotransferase, and direct bilirubin, in a sepsis mouse model. NM treatment also reduced hepatic malondialdehyde content, myeloperoxidase activity, and histological injury, and ultimately improved survival in the septic mice. Further in vitro studies showed that NM treatment neutralized the neutrophil chemokines and inflammatory mediators and directly mitigated neutrophil chemotaxis and adhesion. Additionally, NM also markedly weakened lipopolysaccharide-induced reactive oxygen species generation, cyclooxygenase-2 expression, nitric oxide secretion, and subsequent hepatocyte injury. Thus, this study provides a promising therapeutic strategy for the management of sepsis-induced acute liver injury.
Collapse
Affiliation(s)
- Yao Xiao
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Chao Ren
- Translational Medicine Research Center, Fourth Medical Center and Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Gan Chen
- Institute of Health Service and Transfusion Medicine, Beijing, China
- Corresponding author.
| | - Pan Shang
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Xiang Song
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Guoxing You
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Shaoduo Yan
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Yongming Yao
- Translational Medicine Research Center, Fourth Medical Center and Medical Innovation Research Division of the Chinese PLA General Hospital, Beijing, China
- Corresponding author.
| | - Hong Zhou
- Institute of Health Service and Transfusion Medicine, Beijing, China
- Corresponding author.
| |
Collapse
|
10
|
Mui L, Martin CM, Tschirhart BJ, Feng Q. Therapeutic Potential of Annexins in Sepsis and COVID-19. Front Pharmacol 2021; 12:735472. [PMID: 34566657 PMCID: PMC8458574 DOI: 10.3389/fphar.2021.735472] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a continuing problem in modern healthcare, with a relatively high prevalence, and a significant mortality rate worldwide. Currently, no specific anti-sepsis treatment exists despite decades of research on developing potential therapies. Annexins are molecules that show efficacy in preclinical models of sepsis but have not been investigated as a potential therapy in patients with sepsis. Human annexins play important roles in cell membrane dynamics, as well as mediation of systemic effects. Most notably, annexins are highly involved in anti-inflammatory processes, adaptive immunity, modulation of coagulation and fibrinolysis, as well as protective shielding of cells from phagocytosis. These discoveries led to the development of analogous peptides which mimic their physiological function, and investigation into the potential of using the annexins and their analogous peptides as therapeutic agents in conditions where inflammation and coagulation play a large role in the pathophysiology. In numerous studies, treatment with recombinant human annexins and annexin analogue peptides have consistently found positive outcomes in animal models of sepsis, myocardial infarction, and ischemia reperfusion injury. Annexins A1 and A5 improve organ function and reduce mortality in animal sepsis models, inhibit inflammatory processes, reduce inflammatory mediator release, and protect against ischemic injury. The mechanisms of action and demonstrated efficacy of annexins in animal models support development of annexins and their analogues for the treatment of sepsis. The effects of annexin A5 on inflammation and platelet activation may be particularly beneficial in disease caused by SARS-CoV-2 infection. Safety and efficacy of recombinant human annexin A5 are currently being studied in clinical trials in sepsis and severe COVID-19 patients.
Collapse
Affiliation(s)
- Louise Mui
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Claudio M Martin
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada.,Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Brent J Tschirhart
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Qingping Feng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| |
Collapse
|
11
|
Gao Q, Hernandes MS. Sepsis-Associated Encephalopathy and Blood-Brain Barrier Dysfunction. Inflammation 2021; 44:2143-2150. [PMID: 34291398 DOI: 10.1007/s10753-021-01501-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022]
Abstract
Sepsis is a life-threatening clinical condition caused by a dysregulated host response to infection. Sepsis-associated encephalopathy (SAE) is a common but poorly understood neurological complication of sepsis, which is associated with increased morbidity and mortality. SAE clinical presentation may range from mild confusion and delirium to severe cognitive impairment and deep coma. Important mechanisms associated with SAE include excessive microglial activation, impaired endothelial barrier function, and blood-brain barrier (BBB) dysfunction. Endotoxemia and pro-inflammatory cytokines produced systemically during sepsis lead to microglial and brain endothelial cell activation, tight junction downregulation, and increased leukocyte recruitment. The resulting neuroinflammation and BBB dysfunction exacerbate SAE pathology and aggravate sepsis-induced brain dysfunction. In this mini-review, recent literature surrounding some of the mediators of BBB dysfunction during sepsis is summarized. Modulation of microglial activation, endothelial cell dysfunction, and the consequent prevention of BBB permeability represent relevant therapeutic targets that may significantly impact SAE outcomes.
Collapse
Affiliation(s)
- Qingzeng Gao
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, WMB 308, Atlanta, GA, 30322, USA
| | - Marina Sorrentino Hernandes
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, WMB 308, Atlanta, GA, 30322, USA.
| |
Collapse
|
12
|
Ren X, Wen W, Fan X, Hou W, Su B, Cai P, Li J, Liu Y, Tang F, Zhang F, Yang Y, He J, Ma W, He J, Wang P, Cao Q, Chen F, Chen Y, Cheng X, Deng G, Deng X, Ding W, Feng Y, Gan R, Guo C, Guo W, He S, Jiang C, Liang J, Li YM, Lin J, Ling Y, Liu H, Liu J, Liu N, Liu SQ, Luo M, Ma Q, Song Q, Sun W, Wang G, Wang F, Wang Y, Wen X, Wu Q, Xu G, Xie X, Xiong X, Xing X, Xu H, Yin C, Yu D, Yu K, Yuan J, Zhang B, Zhang P, Zhang T, Zhao J, Zhao P, Zhou J, Zhou W, Zhong S, Zhong X, Zhang S, Zhu L, Zhu P, Zou B, Zou J, Zuo Z, Bai F, Huang X, Zhou P, Jiang Q, Huang Z, Bei JX, Wei L, Bian XW, Liu X, Cheng T, Li X, Zhao P, Wang FS, Wang H, Su B, Zhang Z, Qu K, Wang X, Chen J, Jin R, Zhang Z. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell 2021; 184:1895-1913.e19. [PMID: 33657410 PMCID: PMC7857060 DOI: 10.1016/j.cell.2021.01.053] [Citation(s) in RCA: 454] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/09/2020] [Accepted: 01/28/2021] [Indexed: 02/05/2023]
Abstract
A dysfunctional immune response in coronavirus disease 2019 (COVID-19) patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes are associated with distinct clinical features, including age, sex, severity, and disease stages of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within virus-positive cells. Systemic upregulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis of and developing effective therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Xianwen Ren
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Wen Wen
- National Center for Liver Cancer, Second Military Medical University, Shanghai 200003, China; Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200003, China; Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai 200003, China
| | - Xiaoying Fan
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhong Hou
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Bin Su
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Pengfei Cai
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Jiesheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Yang Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Fei Tang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Fan Zhang
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150080 Harbin, China
| | - Yu Yang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Jiangping He
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China
| | - Wenji Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Pingping Wang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, China
| | - Qiqi Cao
- National Center for Liver Cancer, Second Military Medical University, Shanghai 200003, China; Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200003, China; Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai 200003, China
| | - Fangjin Chen
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Yuqing Chen
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Xuelian Cheng
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Guohong Deng
- Department of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xilong Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Wenyu Ding
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yingmei Feng
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Rui Gan
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150080 Harbin, China
| | - Chuang Guo
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Weiqiang Guo
- Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Shuai He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chen Jiang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Juanran Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yi-Min Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jun Lin
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Yun Ling
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Shanghai 201052, China
| | - Haofei Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jianwei Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China
| | - Nianping Liu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Shu-Qiang Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Meng Luo
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, China
| | - Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qibing Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wujianan Sun
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - GaoXiang Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Feng Wang
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaofeng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Gang Xu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Xiaowei Xie
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Xinxin Xiong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xudong Xing
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China
| | - Hao Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Chonghai Yin
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongdong Yu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kezhuo Yu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Jin Yuan
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Biao Zhang
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Peipei Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing 400038, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), and Department of Pathology, the First Hospital Affiliated to USTC, Hefei, Anhui 230036, China; Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tong Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Peidong Zhao
- Analytical Biosciences Beijing Limited, Beijing 100084, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wei Zhou
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China
| | - Sujuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xiaosong Zhong
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai 201508, China
| | - Lin Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiahua Zou
- Cancer Center, Huanggang Hospital of Traditional Chinese Medicine, Huanggang 438000, China
| | - Zengtao Zuo
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Xi Huang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Qinghua Jiang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, China.
| | - Zhiwei Huang
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150080 Harbin, China.
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing 400038, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), and Department of Pathology, the First Hospital Affiliated to USTC, Hefei, Anhui 230036, China.
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing 400038, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), and Department of Pathology, the First Hospital Affiliated to USTC, Hefei, Anhui 230036, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Medical Research Center, Shantou University Medical College, Shaoguan 512025, China.
| | - Fu-Sheng Wang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China.
| | - Hongyang Wang
- National Center for Liver Cancer, Second Military Medical University, Shanghai 200003, China; Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200003, China; Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai 200003, China.
| | - Bing Su
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China.
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China.
| | - Xiaoqun Wang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jiekai Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Ronghua Jin
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
13
|
Grewal T, Rentero C, Enrich C, Wahba M, Raabe CA, Rescher U. Annexin Animal Models-From Fundamental Principles to Translational Research. Int J Mol Sci 2021; 22:ijms22073439. [PMID: 33810523 PMCID: PMC8037771 DOI: 10.3390/ijms22073439] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Routine manipulation of the mouse genome has become a landmark in biomedical research. Traits that are only associated with advanced developmental stages can now be investigated within a living organism, and the in vivo analysis of corresponding phenotypes and functions advances the translation into the clinical setting. The annexins, a family of closely related calcium (Ca2+)- and lipid-binding proteins, are found at various intra- and extracellular locations, and interact with a broad range of membrane lipids and proteins. Their impacts on cellular functions has been extensively assessed in vitro, yet annexin-deficient mouse models generally develop normally and do not display obvious phenotypes. Only in recent years, studies examining genetically modified annexin mouse models which were exposed to stress conditions mimicking human disease often revealed striking phenotypes. This review is the first comprehensive overview of annexin-related research using animal models and their exciting future use for relevant issues in biology and experimental medicine.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Carsten A. Raabe
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| |
Collapse
|
14
|
Annexin A1 Attenuates Neutrophil Migration and IL-6 Expression through Fpr2 in a Mouse Model of Streptococcus suis-Induced Meningitis. Infect Immun 2021; 89:IAI.00680-20. [PMID: 33318141 PMCID: PMC8097268 DOI: 10.1128/iai.00680-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis serotype 2 is a crucial pathogenic cause of bacterial meningitis, a life-threatening disease with neurological sequelae and high rates of mortality. Inflammation triggered by S. suis infection must be precisely regulated to prevent further tissue damage. Streptococcus suis serotype 2 is a crucial pathogenic cause of bacterial meningitis, a life-threatening disease with neurological sequelae and high rates of mortality. Inflammation triggered by S. suis infection must be precisely regulated to prevent further tissue damage. As a glucocorticoid anti-inflammatory mediator, annexin A1 (AnxA1) mainly acts through formyl peptide receptor 2 (Fpr2) to alleviate inflammation in the peripheral system. In this study, we evaluated the roles of AnxA1 and Fpr2 in a mouse model of S. suis meningitis created via intracisternal infection in Fpr2-deficient (Fpr2−/−) and wild-type (WT) mice. We revealed that Fpr2−/− mice were highly susceptible to S. suis meningitis, displaying increased inflammatory cytokine levels, bacterial dissemination, and neutrophil migration compared with WT mice. Additionally, AnxA1 exerted anti-inflammatory effects through Fpr2, such as attenuation of leukocyte infiltration, inflammatory mediator production, and astrocyte or microglial activation in the brain. Importantly, we found that the antimigratory function of AnxA1 decreases neutrophil adherence to the endothelium through Fpr2. Finally, an in vitro study revealed that AnxA1 potentially suppresses interleukin-6 (IL-6) expression through the Fpr2/p38/COX-2 pathway. These data demonstrated that Fpr2 is an anti-inflammatory receptor that regulates neutrophil migration in mice with S. suis meningitis and identified AnxA1 as a potential therapeutic option.
Collapse
|
15
|
Weng H, Peng Y, Pei Q, Jing F, Yang M, Yi Q. Decreased serum Annexin A1 levels in Kawasaki disease with coronary artery aneurysm. Pediatr Res 2021; 89:569-573. [PMID: 32316027 DOI: 10.1038/s41390-020-0898-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/29/2020] [Accepted: 03/30/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Kawasaki disease (KD) is an acute and systemic vasculitis whose etiology remains unclear. The most crucial complication is the formation of coronary artery aneurysm (CAA). Annexin A1 (ANXA1) is an endogenous anti-inflammatory agent and pro-resolving mediator involved in inflammation-related diseases. This study sought to investigate the serum ANXA1 levels in KD patients and further explore the relationship between ANXA1 and CAA, as well as additional clinical parameters. METHODS Serum samples were collected from 95 KD patients and 39 healthy controls (HCs). KD patients were further divided into two groups: KD with CAAs (KD-CAAs) and KD non-CAAs (KD-NCAAs). Serum levels of ANXA1 and interleukin-6 (IL-6) were determined using enzyme-linked immunosorbent assays. RESULTS Serum ANXA1 levels in the KD group were significantly lower than in the HC group. In particular, serum ANXA1 levels were substantially lower in the KD-CAA groups. Moreover, serum ANXA1 levels were positively correlated with N%, C-reactive protein (CRP), and IL-6 but negatively correlated with L% in the KD group. Positive correlations between serum ANXA1 levels and erythrocyte sedimentation rate (ESR), IL-6, and D-dimer (DD) were observed in the KD-CAA group. CONCLUSIONS ANXA1 may be involved in the development of KD, and downregulation of ANXA1 may lead to the hypercoagulability seen in KD. IMPACT For the first time, it was demonstrated that serum ANXA1 levels were significantly decreased in Kawasaki disease with coronary artery aneurysms. ANXA1 might be involved in the acute phase of Kawasaki disease. Low serum concentrations of ANXA1 might lead to the hypercoagulability stage in Kawasaki disease. ANXA1 might be a potential therapeutic target for patients with Kawasaki disease.
Collapse
Affiliation(s)
- Haobo Weng
- Department of Cardiovascular Medicine; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Yue Peng
- Department of Cardiovascular Medicine; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Qiongfei Pei
- Department of Cardiovascular Medicine; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Fengchuan Jing
- Department of Cardiovascular Medicine; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Maoling Yang
- Department of Cardiovascular Medicine; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Qijian Yi
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
16
|
Recent advances in the design and development of formyl peptide receptor 2 (FPR2/ALX) agonists as pro-resolving agents with diverse therapeutic potential. Eur J Med Chem 2021; 213:113167. [PMID: 33486199 DOI: 10.1016/j.ejmech.2021.113167] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
Under physiological conditions the initiation, duration and amplitude of inflammatory responses are tightly regulated to ensure the restoration of homeostasis. The resolution of inflammation in these circumstances is dictated by responses to endogenously generated mediators. Mimicry of such mediators underpins the principle of promoting the resolution of inflammation in treating inflammatory pathologies. The formyl peptide receptor 2 (FPR2/ALX) is a G-protein coupled receptor known to play a crucial role in maintaining host defence and orchestrating the inflammatory process. FPR2/ALX can be activated by a wide range of distinct agonists, including lipids, proteins, peptides, and an array of synthetic small molecule agonists. The focus of this review is to provide a comprehensive overview of recent progress made in the development of FPR2/ALX agonists which promote resolution and tissue regeneration.
Collapse
|
17
|
Lipopolysaccharide-induced sepsis-like state compromises post-ischemic neurological recovery, brain tissue survival and remodeling via mechanisms involving microvascular thrombosis and brain T cell infiltration. Brain Behav Immun 2021; 91:627-638. [PMID: 33122024 DOI: 10.1016/j.bbi.2020.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/04/2020] [Accepted: 10/13/2020] [Indexed: 02/03/2023] Open
Abstract
Sepsis predisposes for poor stroke outcome. This association suggests that sepsis disturbs post-ischemic tissue survival and brain remodeling. To elucidate this link, we herein exposed mice to 30 min intraluminal middle cerebral artery occlusion (MCAO) and induced a sepsis-like state at 72 h post-ischemia by intraperitoneal delivery of Escherichia coli lipopolysaccharide (LPS; three doses of 0.1 or 1 mg/kg, separated by 6 h), a major component of the bacterium's outer membrane. Neurological recovery, ischemic injury, brain remodeling and immune responses were evaluated over up to 56 days post-sepsis (dps) by behavioral tests, immunohistochemistry and flow cytometry. Delivery of 1 mg/kg but not 0.1 mg/kg LPS reduced rectal temperature over 48 h by up to 3.4 ± 3.1 °C, increased general and focal neurological deficits in the Clark score over 72 h and increased motor-coordination deficits in the tight rope test over up to 21 days. Notably, 1 mg/kg, but not 0.1 mg/kg LPS increased intercellular adhesion molecule-1 abundance on ischemic microvessels, increased microvascular thrombosis and increased patrolling monocyte and T cell infiltrates in ischemic brain tissue at 3 dps. Infarct volume was increased by 1 mg/kg, but not 0.1 mg/kg LPS at 3 dps (that is, 6 days post-MCAO), as was brain atrophy at 28 and 56 dps. Microglial activation in ischemic brain tissue, evaluated by morphology analysis of Iba-1 immunostainings, was transiently increased by 0.1 and 1 mg/kg LPS at 3 dps. Our data provide evidence that neurological recovery and brain remodeling are profoundly compromised in the ischemic brain post-sepsis as a consequence of cerebral thromboinflammation.
Collapse
|
18
|
Vital SA, Senchenkova EY, Ansari J, Gavins FNE. Targeting AnxA1/Formyl Peptide Receptor 2 Pathway Affords Protection against Pathological Thrombo-Inflammation. Cells 2020; 9:cells9112473. [PMID: 33202930 PMCID: PMC7697101 DOI: 10.3390/cells9112473] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Stroke is a leading cause of death and disability globally and is associated with a number of co-morbidities including sepsis and sickle cell disease (SCD). Despite thrombo-inflammation underlying these co-morbidities, its pathogenesis remains complicated and drug discovery programs aimed at reducing and resolving the detrimental effects remain a major therapeutic challenge. The objective of this study was to assess whether the anti-inflammatory pro-resolving protein Annexin A1 (AnxA1) was able to reduce inflammation-induced thrombosis and suppress platelet activation and thrombus formation in the cerebral microvasculature. Using two distinct models of pathological thrombo-inflammation (lipopolysaccharide (LPS) and sickle transgenic mice (STM)), thrombosis was induced in the murine brain using photoactivation (light/dye) coupled with intravital microscopy. The heightened inflammation-induced microvascular thrombosis present in these two distinct thrombo-inflammatory models was inhibited significantly by the administration of AnxA1 mimetic peptide AnxA1Ac2-26 (an effect more pronounced in the SCD model vs. the endotoxin model) and mediated by the key resolution receptor, Fpr2/ALX. Furthermore, AnxA1Ac2-26 treatment was able to hamper platelet aggregation by reducing platelet stimulation and aggregation (by moderating αIIbβ3 and P-selectin). These findings suggest that targeting the AnxA1/Fpr2/ALX pathway represents an attractive novel treatment strategy for resolving thrombo-inflammation, counteracting e.g., stroke in high-risk patient cohorts.
Collapse
Affiliation(s)
- Shantel A. Vital
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA; (S.A.V.); (E.Y.S.); (J.A.)
| | - Elena Y. Senchenkova
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA; (S.A.V.); (E.Y.S.); (J.A.)
| | - Junaid Ansari
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA; (S.A.V.); (E.Y.S.); (J.A.)
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
| | - Felicity N. E. Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA; (S.A.V.); (E.Y.S.); (J.A.)
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
- Correspondence: ; Tel.: +44-(0)-1895-267151
| |
Collapse
|
19
|
Briottet M, Shum M, Urbach V. The Role of Specialized Pro-Resolving Mediators in Cystic Fibrosis Airways Disease. Front Pharmacol 2020; 11:1290. [PMID: 32982730 PMCID: PMC7493015 DOI: 10.3389/fphar.2020.01290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Cystic Fibrosis (CF) is a recessive genetic disease due to mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encoding the CFTR chloride channel. The ion transport abnormalities related to CFTR mutation generate a dehydrated airway surface liquid (ASL) layer, which is responsible for an altered mucociliary clearance, favors infections and persistent inflammation that lead to progressive lung destruction and respiratory failure. The inflammatory response is normally followed by an active resolution phase to return to tissue homeostasis, which involves specialized pro-resolving mediators (SPMs). SPMs promote resolution of inflammation, clearance of microbes, tissue regeneration and reduce pain, but do not evoke unwanted immunosuppression. The airways of CF patients showed a decreased production of SPMs even in the absence of pathogens. SPMs levels in the airway correlated with CF patients' lung function. The prognosis for CF has greatly improved but there remains a critical need for more effective treatments that prevent excessive inflammation, lung damage, and declining pulmonary function for all CF patients. This review aims to highlight the recent understanding of CF airway inflammation and the possible impact of SPMs on functions that are altered in CF airways.
Collapse
Affiliation(s)
| | | | - Valerie Urbach
- Institut national de la santé et de la recherche médicale (Inserm) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| |
Collapse
|
20
|
Cussell PJ, Gomez Escalada M, Milton NG, Paterson AW. The N-formyl peptide receptors: contemporary roles in neuronal function and dysfunction. Neural Regen Res 2020; 15:1191-1198. [PMID: 31960798 PMCID: PMC7047793 DOI: 10.4103/1673-5374.272566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/20/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
N-formyl peptide receptors (FPRs) were first identified upon phagocytic leukocytes, but more than four decades of research has unearthed a plethora of non-myeloid roles for this receptor family. FPRs are expressed within neuronal tissues and markedly in the central nervous system, where FPR interactions with endogenous ligands have been implicated in the pathophysiology of several neurodegenerative diseases including Alzheimer's disease and Parkinson's disease, as well as neurological cancers such as neuroblastoma. Whilst the homeostatic function of FPRs in the nervous system is currently undefined, a variety of novel physiological roles for this receptor family in the neuronal context have been posited in both human and animal settings. Rapid developments in recent years have implicated FPRs in the process of neurogenesis and neuronal differentiation which, upon greater characterisation, could represent a novel pharmacological target for neuronal regeneration therapies that may be used in the treatment of brain/spinal cord injury, stroke and neurodegeneration. This review aims to summarize the recent progress made to determine the physiological role of FPRs in a neuronal setting, and to put forward a case for FPRs as a novel pharmacological target for conditions of the nervous system, and for their potential to open the door to novel neuronal regeneration therapies.
Collapse
Affiliation(s)
- Peter J.G. Cussell
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK
| | - Margarita Gomez Escalada
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK
| | - Nathaniel G.N. Milton
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK
| | - Andrew W.J. Paterson
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK
| |
Collapse
|
21
|
Schröder N, Schaffrath A, Welter JA, Putzka T, Griep A, Ziegler P, Brandt E, Samer S, Heneka MT, Kaddatz H, Zhan J, Kipp E, Pufe T, Tauber SC, Kipp M, Brandenburg LO. Inhibition of formyl peptide receptors improves the outcome in a mouse model of Alzheimer disease. J Neuroinflammation 2020; 17:131. [PMID: 32331524 PMCID: PMC7181500 DOI: 10.1186/s12974-020-01816-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/16/2020] [Indexed: 12/11/2022] Open
Abstract
Background An important hallmark of Alzheimer’s disease (AD) is the increase of Aβ1-42 burden and its accumulation to senile plaques, leading the reactive gliosis and neurodegeneration. The modulation of glia cell function represents an attractive therapeutic strategy, but is currently limited by an incomplete understanding of its relevance for AD. The chemotactic G-protein coupled formyl peptide receptor (FPR), which is known to modulate Aβ1-42 uptake and signal transduction, might be one candidate molecule regulating glia function in AD. Here, we investigate whether the modulation of FPR exerts beneficial effects in an AD preclinical model. Methods To address this question, APP/PS1 double-transgenic AD mice were treated for 20 weeks with either the pro-inflammatory FPR agonist fMLF, the FPR1/2 antagonist Boc2 or the anti-inflammatory FPR2 agonist Ac2-26. Spatial learning and memory were evaluated using a Morris water maze test. Immunohistological staining, gene expression studies, and flow cytometry analyses were performed to study neuronal loss, gliosis, and Aß-load in the hippocampus and cortex, respectively. Results FPR antagonism by Boc2-treatment significantly improved spatial memory performance, reduced neuronal pathology, induced the expression of homeostatic growth factors, and ameliorated microglia, but not astrocyte, reactivity. Furthermore, the elevated levels of amyloid plaques in the hippocampus were reduced by Boc2-treatment, presumably by an induction of amyloid degradation. Conclusions We suggest that the modulation of FPR signaling cascades might be considered as a promising therapeutic approach for alleviating the cognitive deficits associated with early AD. Additional studies are now needed to address the downstream effectors as well as the safety profile of Boc2.
Collapse
Affiliation(s)
- Nicole Schröder
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Anja Schaffrath
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Josua A Welter
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Tim Putzka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Angelika Griep
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Patrick Ziegler
- Institute for Occupational and Social Medicine, RWTH Aachen University, Aachen, Germany
| | - Elisa Brandt
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Sebastian Samer
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany
| | - Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany
| | - Eugenia Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Simone C Tauber
- Department of Neurology, RWTH University Hospital Aachen, Aachen, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany
| | - Lars-Ove Brandenburg
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, D-18057, Rostock, Germany. .,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
22
|
Galvão I, de Carvalho RVH, Vago JP, Silva ALN, Carvalho TG, Antunes MM, Ribeiro FM, Menezes GB, Zamboni DS, Sousa LP, Teixeira MM. The role of annexin A1 in the modulation of the NLRP3 inflammasome. Immunology 2020; 160:78-89. [PMID: 32107769 DOI: 10.1111/imm.13184] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Annexins are well-known Ca2+ phospholipid-binding proteins, which have a wide variety of cellular functions. The role of annexin A1 (AnxA1) in the innate immune system has focused mainly on the anti-inflammatory and proresolving properties through its binding to the formyl-peptide receptor 2 (FPR2)/ALX receptor. However, studies suggesting an intracellular role of AnxA1 are emerging. In this study, we aimed to understand the role of AnxA1 for interleukin (IL)-1β release in response to activators of the nucleotide-binding domain leucine-rich repeat (NLR) and pyrin domain containing receptor 3 (NLRP3) inflammasome. Using AnxA1 knockout mice, we observed that AnxA1 is required for IL-1β release in vivo and in vitro. These effects were due to reduction of transcriptional levels of IL-1β, NLRP3 and caspase-1, a step called NLRP3 priming. Moreover, we demonstrate that AnxA1 co-localize and directly bind to NLRP3, suggesting the role of AnxA1 in inflammasome activation is independent of its anti-inflammatory role via FPR2. Therefore, AnxA1 regulates NLRP3 inflammasome priming and activation in a FPR2-independent manner.
Collapse
Affiliation(s)
- Izabela Galvão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renan V H de Carvalho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Juliana P Vago
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre L N Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Toniana G Carvalho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maísa M Antunes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabiola M Ribeiro
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo B Menezes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lirlândia P Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
23
|
Sun X, Dai Y, Tan G, Liu Y, Li N. Integration Analysis of m 6A-SNPs and eQTLs Associated With Sepsis Reveals Platelet Degranulation and Staphylococcus aureus Infection are Mediated by m 6A mRNA Methylation. Front Genet 2020; 11:7. [PMID: 32174955 PMCID: PMC7054457 DOI: 10.3389/fgene.2020.00007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
Sepsis is a major threat with high mortality rate for critically ill patients. Response to pathogen infection by the host immune system is a key biological process involved in the onset and development of sepsis. Heterogeneous host genome variation, especially single nucleotide polymorphisms (SNPs), has long been suggested to contribute to differences in disease progression. However, the function of SNPs located in non-coding regions remains to be elucidated. Recently, m6A mRNA modification levels were revealed to differ at SNPs. As m6A is a crucial regulator of gene expression, these SNPs might control genes by changing the m6A level on mRNA. To investigate the potential role of m6A SNPs in sepsis, we integrated m6A-SNP and expression quantitative trait loci (eQTLs) data. Analysis revealed 15,720 m6A-cis-eQTLs and 381 m6A-trans-eQTLs associated with sepsis. We identified 1321 genes as locations of m6A-cis-eQTLs. These were enriched in platelet degranulation and Staphylococcus aureus infection pathways, which are vital for the pathophysiological process of sepsis. We conclude that m6A modification of mRNA plays a very important role in sepsis, with m6A-cis-eQTLs potentially having the most effect on individual variation in sepsis progression.
Collapse
Affiliation(s)
- Xuri Sun
- Department of Critical Care Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China
| | - Yishuang Dai
- Department of Outpatient operating room, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Guoliang Tan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China
| | - Yuqi Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China
| | - Neng Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
24
|
Machado MG, Tavares LP, Souza GVS, Queiroz-Junior CM, Ascenção FR, Lopes ME, Garcia CC, Menezes GB, Perretti M, Russo RC, Teixeira MM, Sousa LP. The Annexin A1/FPR2 pathway controls the inflammatory response and bacterial dissemination in experimental pneumococcal pneumonia. FASEB J 2019; 34:2749-2764. [PMID: 31908042 DOI: 10.1096/fj.201902172r] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 01/10/2023]
Abstract
Streptococcus pneumoniae is a major cause of community-acquired pneumonia leading to high mortality rates. Inflammation triggered by pneumococcal infection is necessary for bacterial clearance but must be spatially and temporally regulated to prevent further tissue damage and bacterial dissemination. Annexin A1 (AnxA1) mainly acts through Formyl Peptide Receptor 2 (FPR2) inducing the resolution of inflammation. Here, we have evaluated the role of AnxA1 and FPR2 during pneumococcal pneumonia in mice. For that, AnxA1, Fpr2/3 knockout (KO) mice and wild-type (WT) controls were infected intranasally with S pneumoniae. AnxA1 and Fpr2/3 KO mice were highly susceptible to infection, displaying uncontrolled inflammation, increased bacterial dissemination, and pulmonary dysfunction compared to WT animals. Mechanistically, the absence of AnxA1 resulted in the loss of lung barrier integrity and increased neutrophil activation upon S pneumoniae stimulation. Importantly, treatment of WT or AnxA1 KO-infected mice with Ac2-26 decreased inflammation, lung damage, and bacterial burden in the airways by increasing macrophage phagocytosis. Conversely, Ac2-26 peptide was ineffective to afford protection in Fpr2/3 KO mice during infection. Altogether, these findings show that AnxA1, via FPR2, controls inflammation and bacterial dissemination during pneumococcal pneumonia by promoting host defenses, suggesting AnxA1-based peptides as a novel therapeutic strategy to control pneumococcal pneumonia.
Collapse
Affiliation(s)
- Marina Gomes Machado
- Laboratório de sinalização na inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Pádua Tavares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanna V Santos Souza
- Laboratório de sinalização na inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso M Queiroz-Junior
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Roque Ascenção
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mateus Eustáquio Lopes
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana Couto Garcia
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Gustavo Batista Menezes
- Departamento de Morfologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Remo Castro Russo
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia Pires Sousa
- Laboratório de sinalização na inflamação, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
25
|
Annexin A1 mimetic peptide Ac2-26 attenuates mechanical injury induced corneal scarring and inflammation. Biochem Biophys Res Commun 2019; 519:396-401. [PMID: 31519322 DOI: 10.1016/j.bbrc.2019.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022]
Abstract
Annexin A1 (AnxA1) has been shown to exert potent anti-inflammatory and anti-fibrotic activities in a range of systemic inflammatory disorders. Corneal scarring is characterized by myofibroblast differentiation and disorganized extracellular matrix deposition. This study was aim to explore the potential therapeutic properties of Ac2-26, a mimetic peptide of AnnexinA1 (AnxA1), on TGF-β induced human corneal myofibroblast differentiation and mechanical injury-induced mouse corneal haze. The results found that Ac2-26 treatment dose dependently reduced α-SMA level and other fibrogenic gene expressions in HTK cells stimulated by exogenous TGF-β1. While this anti-fibrotic effect was abolished by an FPR2/ALX inhibitor WRW4. In mice, topical Ac2-26 application suppressed the development of corneal scarring, inhibited myofibroblast differentiation, while promoted the corneal epithelial wound healing. Moreover, Ac2-26 treatment inhibited Ly6G + neutrophil infiltration and reduced corneal inflammatory response. The results provided in vivo and in vitro supports the anti-fibrotic and anti-inflammatory effects of AnxA1 derived peptide Ac2-26, and suggest that AnxA1 mimetic agents might be a promising strategy for the treatment of corneal scarring.
Collapse
|
26
|
Senchenkova EY, Ansari J, Becker F, Vital SA, Al-Yafeai Z, Sparkenbaugh EM, Pawlinski R, Stokes KY, Carroll JL, Dragoi AM, Qin CX, Ritchie RH, Sun H, Cuellar-Saenz HH, Rubinstein MR, Han YW, Orr AW, Perretti M, Granger DN, Gavins FNE. Novel Role for the AnxA1-Fpr2/ALX Signaling Axis as a Key Regulator of Platelet Function to Promote Resolution of Inflammation. Circulation 2019; 140:319-335. [PMID: 31154815 PMCID: PMC6687438 DOI: 10.1161/circulationaha.118.039345] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Ischemia reperfusion injury (I/RI) is a common complication of cardiovascular diseases. Resolution of detrimental I/RI-generated prothrombotic and proinflammatory responses is essential to restore homeostasis. Platelets play a crucial part in the integration of thrombosis and inflammation. Their role as participants in the resolution of thromboinflammation is underappreciated; therefore we used pharmacological and genetic approaches, coupled with murine and clinical samples, to uncover key concepts underlying this role. Methods: Middle cerebral artery occlusion with reperfusion was performed in wild-type or annexin A1 (AnxA1) knockout (AnxA1−/−) mice. Fluorescence intravital microscopy was used to visualize cellular trafficking and to monitor light/dye–induced thrombosis. The mice were treated with vehicle, AnxA1 (3.3 mg/kg), WRW4 (1.8 mg/kg), or all 3, and the effect of AnxA1 was determined in vivo and in vitro. Results: Intravital microscopy revealed heightened platelet adherence and aggregate formation post I/RI, which were further exacerbated in AnxA1−/− mice. AnxA1 administration regulated platelet function directly (eg, via reducing thromboxane B2 and modulating phosphatidylserine expression) to promote cerebral protection post-I/RI and act as an effective preventative strategy for stroke by reducing platelet activation, aggregate formation, and cerebral thrombosis, a prerequisite for ischemic stroke. To translate these findings into a clinical setting, we show that AnxA1 plasma levels are reduced in human and murine stroke and that AnxA1 is able to act on human platelets, suppressing classic thrombin-induced inside-out signaling events (eg, Akt activation, intracellular calcium release, and Ras-associated protein 1 [Rap1] expression) to decrease αIIbβ3 activation without altering its surface expression. AnxA1 also selectively modifies cell surface determinants (eg, phosphatidylserine) to promote platelet phagocytosis by neutrophils, thereby driving active resolution. (n=5–13 mice/group or 7–10 humans/group.) Conclusions: AnxA1 affords protection by altering the platelet phenotype in cerebral I/RI from propathogenic to regulatory and reducing the propensity for platelets to aggregate and cause thrombosis by affecting integrin (αIIbβ3) activation, a previously unknown phenomenon. Thus, our data reveal a novel multifaceted role for AnxA1 to act both as a therapeutic and a prophylactic drug via its ability to promote endogenous proresolving, antithromboinflammatory circuits in cerebral I/RI. Collectively, these results further advance our knowledge and understanding in the field of platelet and resolution biology.
Collapse
Affiliation(s)
- Elena Y Senchenkova
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.)
| | - Junaid Ansari
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.)
| | - Felix Becker
- Department for General, Visceral, and Transplant Surgery, University Hospital Muenster, Germany (F.B., H.S.)
| | - Shantel A Vital
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.)
| | - Zaki Al-Yafeai
- Pathology and Translational Pathobiology (Z.A.-Y., A.W.O.)
| | | | - Rafal Pawlinski
- Department of Medicine, University North Carolina Chapel Hill (E.M.S., R.P.)
| | - Karen Y Stokes
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.)
| | - Jennifer L Carroll
- INLET (J.L.C., A.-M.D.).,Feist-Weiller Cancer Center (J.L.C., A.-M.D.), Louisiana State University Health Sciences Center-Shreveport
| | - Ana-Maria Dragoi
- INLET (J.L.C., A.-M.D.).,Feist-Weiller Cancer Center (J.L.C., A.-M.D.), Louisiana State University Health Sciences Center-Shreveport
| | - Cheng Xue Qin
- Heart Failure Pharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.X.Q., R.H.R.)
| | - Rebecca H Ritchie
- Heart Failure Pharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (C.X.Q., R.H.R.)
| | - Hai Sun
- Neurosurgery (H.S., H.H.C.-Z.).,Department for General, Visceral, and Transplant Surgery, University Hospital Muenster, Germany (F.B., H.S.)
| | | | - Mara R Rubinstein
- Division of Periodontics, College of Dental Medicine (M.R.R., Y.W.H.), Columbia University, New York
| | - Yiping W Han
- Division of Periodontics, College of Dental Medicine (M.R.R., Y.W.H.), Columbia University, New York.,Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons (Y.W.H.), Columbia University, New York
| | - A Wayne Orr
- Pathology and Translational Pathobiology (Z.A.-Y., A.W.O.).,Cellular Biology and Anatomy (A.W.O.)
| | - Mauro Perretti
- William Harvey Research Institute, Queen Mary University of London, UK (M.P.)
| | - D Neil Granger
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.)
| | - Felicity N E Gavins
- Departments of Molecular and Cellular Physiology (E.Y.S., J.A., S.A.V., K.Y.S., D.N.G., F.N.E.G.).,Department of Life Sciences, Brunel University London, Uxbridge, Middlesex, UK (F.N.E.G.)
| |
Collapse
|
27
|
Ding Y, Flores J, Klebe D, Li P, McBride DW, Tang J, Zhang JH. Annexin A1 attenuates neuroinflammation through FPR2/p38/COX-2 pathway after intracerebral hemorrhage in male mice. J Neurosci Res 2019; 98:168-178. [PMID: 31157469 DOI: 10.1002/jnr.24478] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 04/08/2019] [Accepted: 05/15/2019] [Indexed: 11/08/2022]
Abstract
Spontaneous intracerebral hemorrhage (ICH) is the deadliest stroke subtype and neuroinflammation is a critical component of the pathogenesis following ICH. Annexin A1-FPR2 signaling has been shown to play a protective role in animal stroke models. This study aimed to assess whether Annexin A1 attenuated neuroinflammation and brain edema after ICH and investigate the underlying mechanisms. Male CD-1 mice were subjected to collagenase-induced ICH. Annexin A1 was administered at 0.5 hr after ICH. Brain water content measurement, short-term and long-term neurobehavioral tests, Western blot and immnunofluorescence were performed. Results showed that Annexin A1 effectively attenuated brain edema, improved short-term neurological function and ameliorated microglia activation after ICH. Annexin A1 also improved memory function at 28 days after ICH. However, these beneficial effects were abolished with the administration of FPR2 antagonist Boc-2. Furthermore, AnxA1/FPR2 signaling may confer protective effects via inhibiting p38-associated inflammatory cascade. Our study demonstrated that Annexin A1/FPR2/p38 signaling pathway played an important role in attenuating neuroinflammation after ICH and that Annexin A1 could be a potential therapeutic strategy for ICH patients.
Collapse
Affiliation(s)
- Yan Ding
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Jerry Flores
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Damon Klebe
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Peng Li
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jiping Tang
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California
| | - John H Zhang
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California.,Departments of Anesthesiology, Neurology and Neurosurgery, Loma Linda University, Loma Linda, California
| |
Collapse
|
28
|
Recchiuti A, Mattoscio D, Isopi E. Roles, Actions, and Therapeutic Potential of Specialized Pro-resolving Lipid Mediators for the Treatment of Inflammation in Cystic Fibrosis. Front Pharmacol 2019; 10:252. [PMID: 31001110 PMCID: PMC6454233 DOI: 10.3389/fphar.2019.00252] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/28/2019] [Indexed: 01/07/2023] Open
Abstract
Non-resolving inflammation is the main mechanism of morbidity and mortality among patients suffering from cystic fibrosis (CF), the most common life-threatening human genetic disease. Resolution of inflammation is an active process timely controlled by endogenous specialized pro-resolving lipid mediators (SPMs) produced locally in inflammatory loci to restrain this innate response, prevent further damages to the host, and permit return to homeostasis. Lipoxins, resolvins, protectins, and maresins are SPM derived from polyunsaturated fatty acids that limit excessive leukocyte infiltration and pro-inflammatory signals, stimulate innate microbial killing, and enhance resolution. Their unique chemical structures, receptors, and bioactions are being elucidated. Accruing data indicate that SPMs carry protective functions against unrelenting inflammation and infections in preclinical models and human CF systems. Here, we reviewed their roles and actions in controlling resolution of inflammation, evidence for their impairment in CF, and proofs of principle for their exploitation as innovative, non-immunosuppressive drugs to address inflammation and infections in CF.
Collapse
Affiliation(s)
- Antonio Recchiuti
- Department of Medical, Oral and Biotechnological Science, Università “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Centro di Scienze dell’Invecchiamento e Medicina Traslazionale (CeSI-MeT), Università “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Domenico Mattoscio
- Department of Medical, Oral and Biotechnological Science, Università “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Centro di Scienze dell’Invecchiamento e Medicina Traslazionale (CeSI-MeT), Università “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Elisa Isopi
- Department of Medical, Oral and Biotechnological Science, Università “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Centro di Scienze dell’Invecchiamento e Medicina Traslazionale (CeSI-MeT), Università “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| |
Collapse
|
29
|
Hopkin SJ, Lewis JW, Krautter F, Chimen M, McGettrick HM. Triggering the Resolution of Immune Mediated Inflammatory Diseases: Can Targeting Leukocyte Migration Be the Answer? Front Pharmacol 2019; 10:184. [PMID: 30881306 PMCID: PMC6407428 DOI: 10.3389/fphar.2019.00184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022] Open
Abstract
Leukocyte recruitment is a pivotal process in the regulation and resolution of an inflammatory episode. It is vital for the protective responses to microbial infection and tissue damage, but is the unwanted reaction contributing to pathology in many immune mediated inflammatory diseases (IMIDs). Indeed, it is now recognized that patients with IMIDs have defects in at least one, if not multiple, check-points regulating the entry and exit of leukocytes from the inflamed site. In this review, we will explore our understanding of the imbalance in recruitment that permits the accumulation and persistence of leukocytes in IMIDs. We will highlight old and novel pharmacological tools targeting these processes in an attempt to trigger resolution of the inflammatory response. In this context, we will focus on cytokines, chemokines, known pro-resolving lipid mediators and potential novel lipids (e.g., sphingosine-1-phosphate), along with the actions of glucocorticoids mediated by 11-beta hydroxysteroid dehydrogenase 1 and 2.
Collapse
Affiliation(s)
- Sophie J. Hopkin
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jonathan W. Lewis
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Franziska Krautter
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Myriam Chimen
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helen M. McGettrick
- Rheumatology Research Group, Arthritis Research UK Centre of Excellence in the Pathogenesis of Rheumatoid Arthritis, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
Gimenes AD, Andrade BFD, Pinotti JVP, Oliani SM, Galvis-Alonso OY, Gil CD. Annexin A1-derived peptide Ac 2-26 in a pilocarpine-induced status epilepticus model: anti-inflammatory and neuroprotective effects. J Neuroinflammation 2019; 16:32. [PMID: 30755225 PMCID: PMC6371492 DOI: 10.1186/s12974-019-1414-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Background The inflammatory process has been described as a crucial mechanism in the pathophysiology of temporal lobe epilepsy. The anti-inflammatory protein annexin A1 (ANXA1) represents an interesting target in the regulation of neuroinflammation through the inhibition of leukocyte transmigration and the release of proinflammatory mediators. In this study, the role of the ANXA1-derived peptide Ac2-26 in an experimental model of status epilepticus (SE) was evaluated. Methods Male Wistar rats were divided into Naive, Sham, SE and SE+Ac2-26 groups, and SE was induced by intrahippocampal injection of pilocarpine. In Sham animals, saline was applied into the hippocampus, and Naive rats were only handled. Three doses of Ac2-26 (1 mg/kg) were administered intraperitoneally (i.p.) after 2, 8 and 14 h of SE induction. Finally, 24 h after the experiment-onset, rats were euthanized for analyses of neuronal lesion and inflammation. Results Pilocarpine induced generalised SE in all animals, causing neuronal damage, and systemic treatment with Ac2-26 decreased neuronal degeneration and albumin levels in the hippocampus. Also, both SE groups showed an intense influx of microglia, which was corroborated by high levels of ionised calcium binding adaptor molecule 1(Iba-1) and monocyte chemoattractant protein-1 (MCP-1) in the hippocampus. Ac2-26 reduced the astrocyte marker (glial fibrillary acidic protein; GFAP) levels, as well as interleukin-1β (IL-1β), interleukin-6 (IL-6) and growth-regulated alpha protein (GRO/KC). These effects of the peptide were associated with the modulation of the levels of formyl peptide receptor 2, a G-protein-coupled receptor that binds to Ac2-26, and the phosphorylated extracellular signal-regulated kinase (ERK) in the hippocampal neurons. Conclusions The data suggest a neuroprotective effect of Ac2-26 in the epileptogenic processes through downregulation of inflammatory mediators and neuronal loss.
Collapse
Affiliation(s)
- Alexandre D Gimenes
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-900, Brazil
| | - Bruna F D Andrade
- Department of Molecular Biology, São José do Rio Preto School of Medicine (FAMERP), São José do Rio Preto, SP, 15090-000, Brazil
| | - José Victor P Pinotti
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-900, Brazil
| | - Sonia M Oliani
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-900, Brazil.,From the Post-Graduation in Biosciences, Instituto de Biociências, Letras e Ciências Exatas, São Paulo State University (IBILCE/UNESP), São José do Rio Preto, SP, 15054-000, Brazil
| | - Orfa Y Galvis-Alonso
- Department of Molecular Biology, São José do Rio Preto School of Medicine (FAMERP), São José do Rio Preto, SP, 15090-000, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-900, Brazil. .,From the Post-Graduation in Biosciences, Instituto de Biociências, Letras e Ciências Exatas, São Paulo State University (IBILCE/UNESP), São José do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
31
|
Ong WY, Chua JJE. Role of formyl peptide receptor 2 (FPR2) in the normal brain and in neurological conditions. Neural Regen Res 2019; 14:2071-2072. [PMID: 31397336 PMCID: PMC6788234 DOI: 10.4103/1673-5374.262575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore; Life Sciences Institute Neurobiology Research Programme, National University of Singapore, Singapore
| | - John Jia En Chua
- Life Sciences Institute Neurobiology Research Programme; Department of Physiology, National University of Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
32
|
Kim YE, Park WS, Ahn SY, Sung DK, Chang YS. Intratracheal transplantation of mesenchymal stem cells attenuates hyperoxia-induced lung injury by down-regulating, but not direct inhibiting formyl peptide receptor 1 in the newborn mice. PLoS One 2018; 13:e0206311. [PMID: 30356317 PMCID: PMC6200259 DOI: 10.1371/journal.pone.0206311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/10/2018] [Indexed: 12/29/2022] Open
Abstract
Formyl peptide receptor 1 (FPR1) has been shown to be a key regulator of inflammation. However, its role in bronchopulmonary dysplasia (BPD) has not been delineated yet. We investigated whether FPR1 plays a pivotal role in regulating lung inflammation and injuries, and whether intratracheally transplanted mesenchymal stem cells (MSCs) attenuate hyperoxic lung inflammation and injuries by down-regulating FPR1. Newborn wild type (WT) or FPR1 knockout (FPR1-/-) C57/BL6 mice were randomly exposed to 80% oxygen or room air for 14 days. At postnatal day (P) 5, 2×105 MSCs were intratracheally transplanted. At P14, mice were sacrificed for histopathological and morphometric analyses. Hyperoxia significantly increased lung neutrophils, macrophages, and TUNEL-positive cells, while impairing alveolarization and angiogenesis, along with a significant increase in FPR1 mRNA levels in WT mice. The hyperoxia-induced lung inflammation and lung injuries were significantly attenuated, with the reduced mRNA level of FPR1, in WT mice with MSC transplantation and in FPR1-/- mice, irrespective of MSCs transplantation. However, only MSC transplantation, but not the FPR1 knockout, significantly attenuated the hyperoxia-induced increase in TUNEL-positive cells. Our findings indicate that FPR1 play a critical role in regulating lung inflammation and injuries in BPD, and MSCs attenuate hyperoxic lung inflammation and injuries, but not apoptosis, with down regulating, but not direct inhibiting FPR1.
Collapse
Affiliation(s)
- Young Eun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
| | - Won Soon Park
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
- Department of Pediatrics, Samsung Medical Center, Seoul, Korea
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - So Yoon Ahn
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
- Department of Pediatrics, Samsung Medical Center, Seoul, Korea
| | - Dong Kyung Sung
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yun Sil Chang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Korea
- Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
- Department of Pediatrics, Samsung Medical Center, Seoul, Korea
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
33
|
Smith HK, Omura S, Vital SA, Becker F, Senchenkova EY, Kaur G, Tsunoda I, Peirce SM, Gavins FNE. Metallothionein I as a direct link between therapeutic hematopoietic stem/progenitor cells and cerebral protection in stroke. FASEB J 2017; 32:2381-2394. [PMID: 29269399 DOI: 10.1096/fj.201700746r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stroke continues to be a leading cause of death and disability worldwide, yet effective treatments are lacking. Previous studies have indicated that stem-cell transplantation could be an effective treatment. However, little is known about the direct impact of transplanted cells on injured brain tissue. We wanted to help fill this knowledge gap and investigated effects of hematopoietic stem/progenitor cells (HSPCs) on the cerebral microcirculation after ischemia-reperfusion injury (I/RI). Treatment of HSPCs in I/RI for up to 2 wk after cerebral I/RI led to decreased mortality rate, decreased infarct volume, improved functional outcome, reduced microglial activation, and reduced cerebral leukocyte adhesion. Confocal microscopy and fluorescence-activated cell sorting analyses showed transplanted HSPCs emigrate preferentially into ischemic cortex brain parenchyma. We isolated migrated HSPCs from the brain; using RNA sequencing to investigate the transcriptome, we found metallothionein (MT, particularly MT-I) transcripts were dramatically up-regulated. Finally, to confirm the significance of MT, we exogenously administered MT-I after cerebral I/RI and found that it produced neuroprotection in a manner similar to HSPC treatment. These findings provide novel evidence that the mechanism through which HSPCs promote repair after stroke maybe via direct action of HSPC-derived MT-I and could therefore be exploited as a useful therapeutic strategy for stroke.-Smith, H. K., Omura, S., Vital, S. A., Becker, F., Senchenkova, E. Y., Kaur, G., Tsunoda, I., Peirce, S. M., Gavins, F. N. E. Metallothionein I as a direct link between therapeutic hematopoietic stem/progenitor cells and cerebral protection in stroke.
Collapse
Affiliation(s)
- Helen K Smith
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA.,Pathology and Laboratory Medicine, Weill Cornell Medical College, New York City, New York, USA
| | - Seiichi Omura
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA.,Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Shantel A Vital
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Felix Becker
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA.,Department for General and Visceral Surgery, University Hospital Muenster, Muenster, Germany
| | - Elena Y Senchenkova
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Ikuo Tsunoda
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA.,Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan.,Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Felicity N E Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA.,Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
34
|
Zhang Z, Ma Q, Shah B, Mackensen GB, Lo DC, Mathew JP, Podgoreanu MV, Terrando N. Neuroprotective Effects of Annexin A1 Tripeptide after Deep Hypothermic Circulatory Arrest in Rats. Front Immunol 2017; 8:1050. [PMID: 28912778 PMCID: PMC5582068 DOI: 10.3389/fimmu.2017.01050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/14/2017] [Indexed: 01/01/2023] Open
Abstract
Resolution agonists, including lipid mediators and peptides such as annexin A1 (ANXA1), are providing novel approaches to treat inflammatory conditions. Surgical trauma exerts a significant burden on the immune system that can affect and impair multiple organs. Perioperative cerebral injury after cardiac surgery is associated with significant adverse neurological outcomes such as delirium and postoperative cognitive dysfunction. Using a clinically relevant rat model of cardiopulmonary bypass (CPB) with deep hypothermic circulatory arrest (DHCA), we tested the pro-resolving effects of a novel bioactive ANXA1 tripeptide (ANXA1sp) on neuroinflammation and cognition. Male rats underwent 2 h CPB with 1 h DHCA at 18°C, and received vehicle or ANXA1sp followed by timed reperfusion up to postoperative day 7. Immortalized murine microglial cell line BV2 were treated with vehicle or ANXA1sp and subjected to 2 h oxygen-glucose deprivation followed by timed reoxygenation. Microglial activation, cell death, neuroinflammation, and NF-κB activation were assessed in tissue samples and cell cultures. Rats exposed to CPB and DHCA had evident neuroinflammation in various brain areas. However, in ANXA1sp-treated rats, microglial activation and cell death (apoptosis and necrosis) were reduced at 24 h and 7 days after surgery. This was associated with a reduction in key pro-inflammatory cytokines due to inhibition of NF-κB activation in the brain and systemically. Treated rats also had improved neurologic scores and shorter latency in the Morris water maze. In BV2 cells treated with ANXA1sp, similar protective effects were observed including decreased pro-inflammatory cytokines and cell death. Notably, we also found increased expression of ANXA1, which binds to NF-κB p65 and thereby inhibits its transcriptional activity. Our findings provide evidence that treatment with a novel pro-resolving ANXA1 tripeptide is neuroprotective after cardiac surgery in rats by attenuating neuroinflammation and may prevent postoperative neurologic complications.
Collapse
Affiliation(s)
- Zhiquan Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Qing Ma
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Bijal Shah
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - G. Burkhard Mackensen
- Department of Anesthesiology & Pain Medicine, University of Washington Medical Center, Seattle, WA, United States
| | - Donald C. Lo
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| | - Joseph P. Mathew
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Mihai V. Podgoreanu
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
35
|
Perucci LO, Sugimoto MA, Gomes KB, Dusse LM, Teixeira MM, Sousa LP. Annexin A1 and specialized proresolving lipid mediators: promoting resolution as a therapeutic strategy in human inflammatory diseases. Expert Opin Ther Targets 2017; 21:879-896. [PMID: 28786708 DOI: 10.1080/14728222.2017.1364363] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The timely resolution of inflammation is essential to restore tissue homeostasis and to avoid chronic inflammatory diseases. Resolution of inflammation is an active process modulated by various proresolving mediators, including annexin A1 (AnxA1) and specialized proresolving lipid mediators (SPMs), which counteract excessive inflammatory responses and stimulate proresolving mechanisms. Areas covered: The protective effects of AnxA1 and SPMs have been extensively explored in pre-clinical animal models. However, studies investigating the function of these molecules in human diseases are just emerging. This review highlights recent advances on the role of proresolving mediators, and pharmacological opportunities of promoting resolution pathways in preclinical models and patients with various human diseases. Expert opinion: Dysregulation or 'failure' in proresolving mechanisms might be involved in the pathogenesis of chronic inflammatory diseases. Altered levels of proresolving mediators were found in a wide range of human diseases. In some cases, AnxA1 and SPMs are up-regulated in human blood and tissues but fail to engage in proresolving signaling and, hence, to regulate excessive inflammation. Thus, the new concept of 'resolution pharmacology' could be applied to compensate deficiency of endogenous proresolving mediators' generation and/or possible failures in the engagement of resolution pathways observed in many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Luiza Oliveira Perucci
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Michelle Amantéa Sugimoto
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Karina Braga Gomes
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Luci Maria Dusse
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Mauro Martins Teixeira
- d Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Lirlândia Pires Sousa
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
36
|
Zhang H, Lu Y, Sun G, Teng F, Luo N, Jiang J, Wen A. The common promoter polymorphism rs11666254 downregulates FPR2/ALX expression and increases risk of sepsis in patients with severe trauma. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:171. [PMID: 28679406 PMCID: PMC5499024 DOI: 10.1186/s13054-017-1757-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 06/19/2017] [Indexed: 02/07/2023]
Abstract
Background Formyl peptide receptor 2-lipoxin receptor (FPR2/ALX) modulates the anti-inflammatory response and therefore may be a target for treating sepsis. The purpose of this study was to investigate the association between genetic variants of the FPR2/ALX gene and sepsis after severe trauma as well as to further analyze the functions of sepsis-related genetic polymorphisms. Methods Three tag single-nucleotide polymorphisms (tag SNPs) that captured all common alleles across the FPR2/ALX genomic region were genotyped using pyrosequencing in an initial sample consisting of 275 patients with severe trauma. The rs11666254 polymorphism, which had statistical significance, was genotyped in an additional 371 patients, and logistic regression analysis was performed to determine associations between the FPR2/ALX gene polymorphism and sepsis susceptibility after severe trauma. The messenger RNA (mRNA) and protein levels of FPR2/ALX in the lipopolysaccharide-stimulated white blood cells of trauma patients were determined by performing quantitative polymerase chain reactions and Western blot analysis. Tumor necrosis factor (TNF)-α production was measured by enzyme-linked immunosorbent assay. The effects of the promoter polymorphism rs11666254 on the transcription activity of FPR2/ALX were analyzed using a luciferase reporter assay. Results Among the three tag SNPs, only the rs11666254 polymorphism was found to be significantly associated with sepsis in trauma patients, and this association persisted after a pooled analysis of all 646 trauma patients, which showed that patients who carried the A allele of rs11666254 had a significantly higher risk of developing sepsis than individuals who carried the G allele. This SNP was also significantly associated with lower FPR2/ALX mRNA and protein expression as well as higher TNF-α production from the peripheral blood leukocyte response to bacterial lipoprotein stimulation. In addition, the rs11666254 polymorphism could significantly decrease the promoter activity of the FPR2/ALX gene. Conclusions The rs11666254 polymorphism in the FPR2/ALX gene is a functional SNP that increases sepsis susceptibility in patients after traumatic injury. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1757-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Han Zhang
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Yao Lu
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Guixiang Sun
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Fang Teng
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Nian Luo
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Jianxin Jiang
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Daping District, Chongqing, 400042, China
| | - Aiqing Wen
- Department of Blood Transfusion, Research Institute of Surgery, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Daping District, Chongqing, 400042, China.
| |
Collapse
|
37
|
Hughes EL, Becker F, Flower RJ, Buckingham JC, Gavins FNE. Mast cells mediate early neutrophil recruitment and exhibit anti-inflammatory properties via the formyl peptide receptor 2/lipoxin A 4 receptor. Br J Pharmacol 2017; 174:2393-2408. [PMID: 28471519 DOI: 10.1111/bph.13847] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE In recent years, studies have focused on the resolution of inflammation, which can be achieved by endogenous anti-inflammatory agonists such as Annexin A1 (AnxA1). Here, we investigated the effects of mast cells (MCs) on early LPS-induced neutrophil recruitment and the involvement of the AnxA1-formyl peptide receptor 2/ALX (FPR2/ALX or lipoxin A4 receptor) pathway. EXPERIMENTAL APPROACH Intravital microscopy (IVM) was used to visualize and quantify the effects of LPS (10 μg per mouse i.p.) on murine mesenteric cellular interactions. Furthermore, the role that MCs play in these inflammatory responses was determined in vivo and in vitro, and effects of AnxA1 mimetic peptide Ac2-26 were assessed. KEY RESULTS LPS increased both neutrophil endothelial cell interactions within the mesenteric microcirculation and MC activation (determined by IVM and ruthenium red dye uptake), which in turn lead to the early stages of neutrophil recruitment. MC recruitment of neutrophils could be blocked by preventing the pro-inflammatory activation (using cromolyn sodium) or enhancing an anti-inflammatory phenotype (using Ac2-26) in MCs. Furthermore, MCs induced neutrophil migration in vitro, and MC stabilization enhanced the release of AnxA1 from neutrophils. Pharmacological approaches (such as the administration of FPR pan-antagonist Boc2, or the FPR2/ALX antagonist WRW4) revealed neutrophil FPR2/ALX to be important in this process. CONCLUSIONS AND IMPLICATIONS Data presented here provide evidence for a role of MCs, which are ideally positioned in close proximity to the vasculature, to act as sentinel cells in neutrophil extravasation and resolution of inflammation via the AnxA1-FPR2/ALX pathway.
Collapse
Affiliation(s)
- Ellen L Hughes
- Centre for Brain Sciences, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Felix Becker
- Department for General and Visceral Surgery, University Hospital Muenster, 48149, Muenster, Germany
| | - Roderick J Flower
- Centre of Biochemical Pharmacology, Queen Mary University, London, EC1V 3AJ, UK
| | | | - Felicity N E Gavins
- Centre for Brain Sciences, Department of Medicine, Imperial College London, London, W12 0NN, UK.,Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Centre Shreveport, Shreveport, LA, 71130, USA
| |
Collapse
|
38
|
Oliveira LG, Souza-Testasicca MC, Vago JP, Figueiredo AB, Canavaci AMC, Perucci LO, Ferreira TPT, Coelho EAF, Gonçalves DU, Rocha MOC, E Silva PMR, Ferreira CN, Queiroz-Junior C, Sousa LP, Fernandes AP. Annexin A1 Is Involved in the Resolution of Inflammatory Responses during Leishmania braziliensis Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:3227-3236. [PMID: 28289158 DOI: 10.4049/jimmunol.1602028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/13/2017] [Indexed: 12/30/2022]
Abstract
Leishmaniases are diseases caused by several Leishmania species. Leishmania (Viannia) braziliensis can cause localized cutaneous leishmaniasis (LCL), which heals spontaneously, or mucosal leishmaniasis (ML), characterized by chronic and intense inflammation and scanty parasitism. Annexin A1 (AnxA1) is a protein involved in modulation and resolution of inflammation through multiple mechanisms. In the present study, the role of AnxA1 was investigated in L. braziliensis-infected BALB/c mice. AnxA1 levels increased at the peak of tissue lesion and parasitism in infected mice. AnxA1 increased also after L. braziliensis infection of BALB/c (wild-type [WT]) bone marrow derived macrophages. Despite a lower parasite intake, parasite burden in bone marrow-derived macrophages from AnxA1-/- mice was similar to WT and associated with an early increase of TNF-α and, later, of IL-10. AnxA1-/- mice controlled tissue parasitism similarly to WT animals, but they developed significantly larger lesions at later stages of infection, with a more pronounced inflammatory infiltrate and increased specific production of IFN-γ, IL-4, and IL-10. AnxA1-/- mice also presented higher phosphorylation levels of ERK-1/2 and p65/RelA (NF-κB) and inducible NO synthase expression, suggesting that AnxA1 may be involved in modulation of inflammation in this model of experimental leishmaniasis. Finally, assessment of AnxA1 levels in sera from patients with LCL or ML revealed that ML patients had higher levels of serum AnxA1 than did LCL patients or control subjects. Collectively, these data indicate that AnxA1 is actively expressed during L. braziliensis infection. In the absence of AnxA1, mice are fully able to control parasite replication, but they present more intense inflammatory responses and delayed ability to resolve their lesion size.
Collapse
Affiliation(s)
- Leandro G Oliveira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Míriam C Souza-Testasicca
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Juliana P Vago
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.,Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Amanda Braga Figueiredo
- Laboratório de Imunoparasitologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais 35400-000, Brazil
| | - Adriana M C Canavaci
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luiza Oliveira Perucci
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | | | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; and
| | - Denise Utsch Gonçalves
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; and
| | - Manoel Otávio C Rocha
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; and
| | - Patrícia M R E Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Cláudia N Ferreira
- Setor de Patologia Clínica, Colégio Técnico, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Celso Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Lirlândia P Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.,Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901 Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil;
| |
Collapse
|
39
|
El-Tanbouly GS, El-Awady MS, Megahed NA, Salem HA, El-Kashef HA. The NF-κB inhibitor celastrol attenuates acute hepatic dysfunction induced by cecal ligation and puncture in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 50:175-182. [PMID: 28189063 DOI: 10.1016/j.etap.2017.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/12/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
Acute hepatic dysfunction associating sepsis is mediated mainly by toll-like receptor-4 (TLR-4)/nuclear factor kappa-B (NF-κB) inflammatory pathway. This study explores potential hepatoprotective effect of the NF-κB inhibitor celastrol in cecal ligation and puncture (CLP) model in rats. Protective effect of celastrol (1mg/kg, i.p., 1h before CLP) was illustrated after 24h by preventing CLP-induced hepatic histopathological changes and elevation in serum hepatic biomarkers [alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TB) and gamma aminotransferase (γ-GT)] without affecting mortality. Celastrol anti-inflammatory effect was illustrated by inhibiting increased serum and hepatic mRNA expression of interleukin-6 (IL-6) without affecting IL-10 elevation. Furthermore, celastrol inhibited CLP-induced elevations in hepatic mRNA expression of nuclear factor inhibitory protein kappa-B alpha (NFκBia), TLR-4, 5-lipoxygenase (5-LOX) and prevented NF-κB/p65 nuclear translocation and activation. In conclusion, celastrol prevented CLP-induced acute hepatic dysfunction through its anti-inflammatory effect by attenuating NF-κB activation, TLR-4 and 5-LOX expression with subsequent reduction in pro-inflammatory IL-6.
Collapse
Affiliation(s)
- Ghada S El-Tanbouly
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for science and technology, Gamasa, Egypt
| | - Mohammed S El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Nermeen A Megahed
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hatem A Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hassan A El-Kashef
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for science and technology, Gamasa, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
40
|
Galvão I, Vago JP, Barroso LC, Tavares LP, Queiroz-Junior CM, Costa VV, Carneiro FS, Ferreira TP, Silva PMR, Amaral FA, Sousa LP, Teixeira MM. Annexin A1 promotes timely resolution of inflammation in murine gout. Eur J Immunol 2017; 47:585-596. [PMID: 27995621 DOI: 10.1002/eji.201646551] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/27/2016] [Accepted: 12/14/2016] [Indexed: 12/31/2022]
Abstract
Gout is a self-limited inflammatory disease caused by deposition of monosodium urate (MSU) crystals in the joints. Resolution of inflammation is an active process leading to restoration of tissue homeostasis. Here, we studied the role of Annexin A1 (AnxA1), a glucocorticoid-regulated protein that has anti-inflammatory and proresolving actions, in resolution of acute gouty inflammation. Injection of MSU crystals in the knee joint of mice induced inflammation that was associated with expression of AnxA1 during the resolving phase of inflammation. Neutralization of AnxA1 with antiserum or blockade of its receptor with BOC-1 (nonselective) or WRW4 (selective) prevented the spontaneous resolution of gout. There was greater neutrophil infiltration after challenge with MSU crystals in AnxA1 knockout mice (AnxA1-/- ) and delayed resolution associated to decreased neutrophil apoptosis and efferocytosis. Pretreatment of mice with AnxA1-active N-terminal peptide (Ac2-26 ) decreased neutrophil influx, IL-1β, and CXCL1 production in periarticular joint. Posttreatment with Ac2-26 decreased neutrophil accumulation, IL-1β, and hypernociception, and improved the articular histopathological score. Importantly, the therapeutic effects of Ac2-26 were associated with increased neutrophils apoptosis and shortened resolution intervals. In conclusion, AnxA1 plays a crucial role in the context of acute gouty inflammation by promoting timely resolution of inflammation.
Collapse
Affiliation(s)
- Izabela Galvão
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana P Vago
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Livia C Barroso
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana P Tavares
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso M Queiroz-Junior
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian V Costa
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda S Carneiro
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiana P Ferreira
- Laboratório de Inflamação, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Patricia M R Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil
| | - Flávio A Amaral
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro M Teixeira
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
41
|
El-Tanbouly GS, El-Awady MS, Megahed NA, El-Kashef HA, Salem HA. The lipoxin A 4 agonist BML-111 attenuates acute hepatic dysfunction induced by cecal ligation and puncture in rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:361-368. [PMID: 28035464 DOI: 10.1007/s00210-016-1335-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
Sepsis is a systemic inflammatory response associating severe infection leading to multi-organ failure, such as hepatic dysfunction. This study investigates the possible hepatoprotective effect of the lipoxin A4 agonist (BML-111) in cecal ligation and puncture (CLP) model in rats. Pretreatment with BML-111 (1 mg/kg, i.p., 1 h before CLP) protected against CLP-induced mortality after 24 h. BML-111 prevented marked inflammatory cells in liver tissues and decreased elevation in serum hepatic biomarkers [alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TB), gamma-glutamyl transferase (γ-GT)] induced by CLP. Additionally, BML-111 attenuated elevated serum level of interleukin-6 (IL-6) and downregulated hepatic IL-6 mRNA expression. Meanwhile, BML-111 further increased serum IL-10 and upregulated hepatic IL-10 mRNA expression, while it downregulated hepatic mRNA expression of nuclear factor inhibitory protein kappa-B alpha (NFκBia), toll-like receptor-4 (TLR-4), and 5-lipooxygenase (5-LOX). Moreover, BML-111 prevented NF-κB/p65 nuclear translocation and activation. In conclusion, BML-111 attenuated CLP-induced acute hepatic dysfunction through its anti-inflammatory effect by decreasing NF-κB activity, TLR-4, and 5-LOX expression with subsequent decrease in pro-inflammatory IL-6 and elevation in anti-inflammatory IL-10.
Collapse
Affiliation(s)
- Ghada S El-Tanbouly
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mohammed S El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Nermeen A Megahed
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Hassan A El-Kashef
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hatem A Salem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
42
|
de Jong R, Leoni G, Drechsler M, Soehnlein O. The advantageous role of annexin A1 in cardiovascular disease. Cell Adh Migr 2016; 11:261-274. [PMID: 27860536 DOI: 10.1080/19336918.2016.1259059] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The inflammatory response protects the human body against infection and injury. However, uncontrolled and unresolved inflammation can lead to tissue damage and chronic inflammatory diseases. Therefore, active resolution of inflammation is essential to restore tissue homeostasis. This review focuses on the pro-resolving molecule annexin A1 (ANXA1) and its derived peptides. Mechanisms instructed by ANXA1 are multidisciplinary and affect leukocytes as well as endothelial cells and tissue resident cells like macrophages and mast cells. ANXA1 has an outstanding role in limiting leukocyte recruitment and different aspects of ANXA1 as modulator of the leukocyte adhesion cascade are discussed here. Additionally, this review details the therapeutic relevance of ANXA1 and its derived peptides in cardiovascular diseases since atherosclerosis stands out as a chronic inflammatory disease with impaired resolution and continuous leukocyte recruitment.
Collapse
Affiliation(s)
- Renske de Jong
- a Institute for Cardiovascular Prevention , Ludwig-Maximilians University , Munich , Germany.,b Department of Pathology , Academic Medical Center, Amsterdam University , Amsterdam , the Netherlands
| | - Giovanna Leoni
- a Institute for Cardiovascular Prevention , Ludwig-Maximilians University , Munich , Germany.,b Department of Pathology , Academic Medical Center, Amsterdam University , Amsterdam , the Netherlands
| | - Maik Drechsler
- a Institute for Cardiovascular Prevention , Ludwig-Maximilians University , Munich , Germany.,b Department of Pathology , Academic Medical Center, Amsterdam University , Amsterdam , the Netherlands.,c DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance , Munich , Germany
| | - Oliver Soehnlein
- a Institute for Cardiovascular Prevention , Ludwig-Maximilians University , Munich , Germany.,b Department of Pathology , Academic Medical Center, Amsterdam University , Amsterdam , the Netherlands.,c DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance , Munich , Germany
| |
Collapse
|
43
|
Holloway PM, Gillespie S, Becker F, Vital SA, Nguyen V, Alexander JS, Evans PC, Gavins FNE. Sulforaphane induces neurovascular protection against a systemic inflammatory challenge via both Nrf2-dependent and independent pathways. Vascul Pharmacol 2016; 85:29-38. [PMID: 27401964 DOI: 10.1016/j.vph.2016.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 12/25/2022]
Abstract
Sepsis is often characterized by an acute brain inflammation and dysfunction, which is associated with increased morbidity and mortality worldwide. Preventing cerebral leukocyte recruitment may provide the key to halt progression of systemic inflammation to the brain. Here we investigated the influence of the anti-inflammatory and anti-oxidant compound, sulforaphane (SFN) on lipopolysaccharide (LPS)-induced cellular interactions in the brain. The inflammatory response elicited by LPS was blunted by SFN administration (5 and 50mg/kg i.p.) 24h prior to LPS treatment in WT animals, as visualized and quantified using intravital microscopy. This protective effect of SFN was lost in Nrf2-KO mice at the lower dose tested, however 50mg/kg SFN revealed a partial effect, suggesting SFN works in part independently of Nrf2 activity. In vitro, SFN reduced neutrophil recruitment to human brain endothelial cells via a down regulation of E-selectin and vascular cell adhesion molecule 1 (VCAM-1). Our data confirm a fundamental dose-dependent role of SFN in limiting cerebral inflammation. Furthermore, our data demonstrate that not only is Nrf2 in part essential in mediating these neuroprotective effects, but they occur via down-regulation of E-selectin and VCAM-1. In conclusion, SFN may provide a useful therapeutic drug to reduce cerebral inflammation in sepsis.
Collapse
Affiliation(s)
- Paul M Holloway
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Scarlett Gillespie
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Felix Becker
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA; Department for General and Visceral Surgery, University Hospital Muenster, Muenster, Germany
| | - Shantel A Vital
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Victoria Nguyen
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Paul C Evans
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Felicity N E Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA; Division of Brain Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
44
|
de Paula-Silva M, Barrios BE, Macció-Maretto L, Sena AA, Farsky SHP, Correa SG, Oliani SM. Role of the protein annexin A1 on the efficacy of anti-TNF treatment in a murine model of acute colitis. Biochem Pharmacol 2016; 115:104-13. [PMID: 27343762 DOI: 10.1016/j.bcp.2016.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/17/2016] [Indexed: 02/08/2023]
Abstract
TNF-α is involved in the mechanisms that initiate inflammatory bowel diseases (IBDs). Anti-TNF-α drugs, such as infliximab (IFX), cause non-responsiveness and side effects, indicating the need to investigate alternative therapies for these diseases. The anti-inflammatory protein, annexin A1 (AnxA1), has been associated with the protection of the gastrointestinal mucosa. To further address the role of endogenous AnxA1 on the TNF-α blockade efficacy in a murine model, we assessed colitis induced by Dextran Sulfate Sodium (DSS) in wild-type (WT) and AnxA1(-/-) Balb/c mice treated with IFX. We consistently observed endogenous AnxA1 prevented clinical and physiological manifestations of experimental colitis treated with IFX, additionally the manifestation of the disease was observed earlier in AnxA1(-)(/-) mice. Rectal bleeding, diarrhea, histological score, epithelial damages and collagen degradation caused by DSS were prevented following IFX treatment only in WT mice. IL-6 increased during colitis in WT and AnxA1(-)(/-) mice, decreasing under IFX treatment in WT. The influx of neutrophils and TNF-α secretion were largely elevated in AnxA1(-)(/-) mice when compared to WT mice. In the group WT/DSS+IFX, phagocytes were more susceptible to apoptosis following treatment with IFX. Endogenous expression of AnxA1 increased after DSS and decreased with IFX treatment, demonstrating an attenuated inflammatory response. The data indicate that AnxA1 contributes to the establishment of intestinal homeostasis after blocking of TNF-α was used as a treatment of IBD, constituting a key molecule in the mechanism of action and a potential biomarker of therapeutic efficacy.
Collapse
Affiliation(s)
- Marina de Paula-Silva
- Post-graduation in Structural and Functional Biology, São Paulo Federal University (UNIFESP), São Paulo, São Paulo, Brazil
| | - Bibiana Elisabeth Barrios
- Center of Investigation in Biochemistry and Clinical Immunology, Cordoba National University (UNC), Córdoba, Córdoba, Argentina
| | - Lisa Macció-Maretto
- Center of Investigation in Biochemistry and Clinical Immunology, Cordoba National University (UNC), Córdoba, Córdoba, Argentina
| | - Angela Aparecida Sena
- Department of Biology, Laboratory of Immunomorphology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | | | - Silvia Graciela Correa
- Center of Investigation in Biochemistry and Clinical Immunology, Cordoba National University (UNC), Córdoba, Córdoba, Argentina
| | - Sonia Maria Oliani
- Post-graduation in Structural and Functional Biology, São Paulo Federal University (UNIFESP), São Paulo, São Paulo, Brazil; Department of Biology, Laboratory of Immunomorphology, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
45
|
Vital SA, Becker F, Holloway PM, Russell J, Perretti M, Granger DN, Gavins FNE. Formyl-Peptide Receptor 2/3/Lipoxin A4 Receptor Regulates Neutrophil-Platelet Aggregation and Attenuates Cerebral Inflammation: Impact for Therapy in Cardiovascular Disease. Circulation 2016; 133:2169-79. [PMID: 27154726 PMCID: PMC4889496 DOI: 10.1161/circulationaha.115.020633] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 04/04/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Platelet activation at sites of vascular injury is essential for hemostasis, but it is also a major pathomechanism underlying ischemic injury. Because anti-inflammatory therapies limit thrombosis and antithrombotic therapies reduce vascular inflammation, we tested the therapeutic potential of 2 proresolving endogenous mediators, annexin A1 N-terminal derived peptide (AnxA1Ac2-26) and aspirin-triggered lipoxin A4 (15-epi-lipoxin A4), on the cerebral microcirculation after ischemia/reperfusion injury. Furthermore, we tested whether the lipoxin A4 receptor formyl-peptide receptor 2/3 (Fpr2/3; ortholog to human FPR2/lipoxin A4 receptor) evoked neuroprotective functions after cerebral ischemia/reperfusion injury. METHODS AND RESULTS Using intravital microscopy, we found that cerebral ischemia/reperfusion injury was accompanied by neutrophil and platelet activation and neutrophil-platelet aggregate formation within cerebral microvessels. Moreover, aspirin-triggered lipoxin A4 activation of neutrophil Fpr2/3 regulated neutrophil-platelet aggregate formation in the brain and inhibited the reactivity of the cerebral microvasculature. The same results were obtained with AnxA1Ac2-26 administration. Blocking Fpr2/lipoxin A4 receptor with the antagonist Boc2 reversed this effect, and treatments were ineffective in Fpr2/3 knockout mice, which displayed an exacerbated disease severity, evidenced by increased infarct area, blood-brain barrier dysfunction, increased neurological score, and elevated levels of cytokines. Furthermore, aspirin treatment significantly reduced cerebral leukocyte recruitment and increased endogenous levels of aspirin-triggered lipoxin A4, effects again mediated by Fpr2/3. CONCLUSION Fpr2/lipoxin A4 receptor is a therapeutic target for initiating endogenous proresolving, anti-inflammatory pathways after cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Shantel A Vital
- From Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport (S.A.V., P.M.H., J.R., D.N.G., F.N.E.G.); Department for General and Visceral Surgery, University Hospital Muenster, Germany (F.B.); William Harvey Research Institute, Queen Mary University of London, UK (M.P.); and Division of Brain Sciences, Imperial College London, UK (F.N.E.G.)
| | - Felix Becker
- From Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport (S.A.V., P.M.H., J.R., D.N.G., F.N.E.G.); Department for General and Visceral Surgery, University Hospital Muenster, Germany (F.B.); William Harvey Research Institute, Queen Mary University of London, UK (M.P.); and Division of Brain Sciences, Imperial College London, UK (F.N.E.G.)
| | - Paul M Holloway
- From Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport (S.A.V., P.M.H., J.R., D.N.G., F.N.E.G.); Department for General and Visceral Surgery, University Hospital Muenster, Germany (F.B.); William Harvey Research Institute, Queen Mary University of London, UK (M.P.); and Division of Brain Sciences, Imperial College London, UK (F.N.E.G.)
| | - Janice Russell
- From Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport (S.A.V., P.M.H., J.R., D.N.G., F.N.E.G.); Department for General and Visceral Surgery, University Hospital Muenster, Germany (F.B.); William Harvey Research Institute, Queen Mary University of London, UK (M.P.); and Division of Brain Sciences, Imperial College London, UK (F.N.E.G.)
| | - Mauro Perretti
- From Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport (S.A.V., P.M.H., J.R., D.N.G., F.N.E.G.); Department for General and Visceral Surgery, University Hospital Muenster, Germany (F.B.); William Harvey Research Institute, Queen Mary University of London, UK (M.P.); and Division of Brain Sciences, Imperial College London, UK (F.N.E.G.)
| | - D Neil Granger
- From Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport (S.A.V., P.M.H., J.R., D.N.G., F.N.E.G.); Department for General and Visceral Surgery, University Hospital Muenster, Germany (F.B.); William Harvey Research Institute, Queen Mary University of London, UK (M.P.); and Division of Brain Sciences, Imperial College London, UK (F.N.E.G.)
| | - Felicity N E Gavins
- From Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport (S.A.V., P.M.H., J.R., D.N.G., F.N.E.G.); Department for General and Visceral Surgery, University Hospital Muenster, Germany (F.B.); William Harvey Research Institute, Queen Mary University of London, UK (M.P.); and Division of Brain Sciences, Imperial College London, UK (F.N.E.G.).
| |
Collapse
|
46
|
Machado ID, Spatti M, Hastreiter A, Santin JR, Fock RA, Gil CD, Oliani SM, Perretti M, Farsky SHP. Annexin A1 Is a Physiological Modulator of Neutrophil Maturation and Recirculation Acting on the CXCR4/CXCL12 Pathway. J Cell Physiol 2016; 231:2418-27. [PMID: 26892496 DOI: 10.1002/jcp.25346] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/16/2016] [Indexed: 12/18/2022]
Abstract
Neutrophil production and traffic in the body compartments is finely controlled, and the strong evidences support the role of CXCL12/CXCR4 pathway on neutrophil trafficking to and from the bone marrow (BM). We recently showed that the glucocorticoid-regulated protein, Annexin A1 (AnxA1) modulates neutrophil homeostasis and here we address the effects of AnxA1 on steady-state neutrophil maturation and trafficking. For this purpose, AnxA1(-/-) and Balb/C wild-type mice (WT) were donors of BM granulocytes and mesenchymal stem cells and blood neutrophils. In vivo treatments with the pharmacological AnxA1 mimetic peptide (Ac2-26) or the formyl peptide receptor (FPR) antagonist (Boc-2) were used to elucidate the pathway of AnxA1 action, and with the cytosolic glucocorticoid antagonist receptor RU 38486. Accelerated maturation of BM granulocytes was detected in AnxA1(-/-) and Boc2-treated WT mice, and was reversed by treatment with Ac2-26 in AnxA1(-/-) mice. AnxA1 and FPR2 were constitutively expressed in bone marrow granulocytes, and their expressions were reduced by treatment with RU38486. Higher numbers of CXCR4(+) neutrophils were detected in the circulation of AnxA1(-/-) or Boc2-treated WT mice, and values were rescued in Ac2-26-treated AnxA1(-/-) mice. Although circulating neutrophils of AnxA1(-/-) animals were CXCR4(+) , they presented reduced CXCL12-induced chemotaxis. Moreover, levels of CXCL12 were reduced in the bone marrow perfusate and in the mesenchymal stem cell supernatant from AnxA1(-/-) mice, and in vivo and in vitro CXCL12 expression was re-established after Ac2-26 treatment. Collectively, these data highlight AnxA1 as a novel determinant of neutrophil maturation and the mechanisms behind blood neutrophil homing to BM via the CXCL12/CXCR4 pathway. J. Cell. Physiol. 231: 2418-2427, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Isabel Daufenback Machado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marina Spatti
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Araceli Hastreiter
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - José Roberto Santin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Cristiane Damas Gil
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Sonia Maria Oliani
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Mauro Perretti
- Centre for Biochemical Pharmacology, The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Annexin A1 and the Resolution of Inflammation: Modulation of Neutrophil Recruitment, Apoptosis, and Clearance. J Immunol Res 2016; 2016:8239258. [PMID: 26885535 PMCID: PMC4738713 DOI: 10.1155/2016/8239258] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022] Open
Abstract
Neutrophils (also named polymorphonuclear leukocytes or PMN) are essential components of the immune system, rapidly recruited to sites of inflammation, providing the first line of defense against invading pathogens. Since neutrophils can also cause tissue damage, their fine-tuned regulation at the inflammatory site is required for proper resolution of inflammation. Annexin A1 (AnxA1), also known as lipocortin-1, is an endogenous glucocorticoid-regulated protein, which is able to counterregulate the inflammatory events restoring homeostasis. AnxA1 and its mimetic peptides inhibit neutrophil tissue accumulation by reducing leukocyte infiltration and activating neutrophil apoptosis. AnxA1 also promotes monocyte recruitment and clearance of apoptotic leukocytes by macrophages. More recently, some evidence has suggested the ability of AnxA1 to induce macrophage reprogramming toward a resolving phenotype, resulting in reduced production of proinflammatory cytokines and increased release of immunosuppressive and proresolving molecules. The combination of these mechanisms results in an effective resolution of inflammation, pointing to AnxA1 as a promising tool for the development of new therapeutic strategies to treat inflammatory diseases.
Collapse
|
48
|
Kalogiannis M, Delikatny EJ, Jeitner TM. Serotonin as a putative scavenger of hypohalous acid in the brain. Biochim Biophys Acta Mol Basis Dis 2015; 1862:651-661. [PMID: 26699077 DOI: 10.1016/j.bbadis.2015.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/04/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022]
Abstract
Neurodegenerative disorders represent the culmination of numerous insults including oxidative stress. The long etiology of most of these disorders suggests that lessening the effects of one or more of the insults could significantly delay disease onset. Antioxidants have been tested as possible therapeutics for neurodegenerative disorders, but with little success. Here we report that serotonin acts as a scavenger of hypochlorous acid (HOCl) in the brain. Serotonin was shown to prevent the oxidation of 2-thio-5-nitrobenzoate by HOCl in a biphasic manner. The first phase was a partial scavenging that occurred at concentrations of serotonin that exceeded those of HOCl. (1)H-NMR studies indicated that HOCl chlorinates both the aryl and akyl nitrogen atoms of serotonin. Thus, the oxidation of 2-thio-5-nitrobenzoate that occurred during the first phase of scavenging is likely due to the formation of serotonergic chloramines. A second phase of scavenging occurred at concentrations of HOCl that exceeded those of serotonin. Under these conditions, the chlorinated serotonin polymerized and formed inert aggregates. Serotonin was further shown to prevent the loss of cells and cellular α-ketoglutarate dehydrogenase complex activity caused by HOCl. Extracellular concentrations of serotonin in the brain can be elevated with selective serotonin reuptake inhibitors and suggests that such compounds could be used to increase the cerebral antioxidant capacity. Acute administration of selective serotonin reuptake inhibitors to mice treated with endotoxin partially mitigated sickness behavior and protein chlorination in the brain. These observations suggest that serotonin may act to suppress chlorinative stress in the brain.
Collapse
Affiliation(s)
- Mike Kalogiannis
- Department of Neurosciences, Winthrop University Hospital, 222 Station Plaza, Mineola, NY 11501, USA.
| | - E James Delikatny
- Department of Radiology, University of Pennsylvania, 317 Anatomy Chemistry Building, 3620 Hamilton Walk, Pennsylvania, PA 19104, USA.
| | - Thomas M Jeitner
- Department of Neurosciences, Winthrop University Hospital, 222 Station Plaza, Mineola, NY 11501, USA; Department of Biochemistry and Molecular Biology, New York Medical College, Basic Sciences, 15 Dana Road, Valhalla, NY 10595, USA.
| |
Collapse
|
49
|
Urrutia RA, Kalinec F. Biology and pathobiology of lipid droplets and their potential role in the protection of the organ of Corti. Hear Res 2015; 330:26-38. [PMID: 25987503 PMCID: PMC5391798 DOI: 10.1016/j.heares.2015.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022]
Abstract
The current review article seeks to extend our understanding on the role of lipid droplets within the organ of Corti. In addition to presenting an overview of the current information about the origin, structure and function of lipid droplets we draw inferences from the collective body of knowledge about this cellular organelle to build a conceptual framework to better understanding their role in auditory function. This conceptual model considers that lipid droplets play a significant role in the synthesis, storage, and release of lipids and proteins for energetic use and/or modulating cell signaling pathways. We describe the role and mechanism by which LD play a role in human diseases, and we also review emerging data from our laboratory revealing the potential role of lipid droplets from Hensen cells in the auditory organ. We suggest that lipid droplets might help to develop rapidly and efficiently the resolution phase of inflammatory responses in the mammalian cochlea, preventing inflammatory damage of the delicate inner ear structures and, consequently, sensorineural hearing loss.
Collapse
Affiliation(s)
- Raul A Urrutia
- Epigenetics and Chromatin Dynamics Laboratory, Translational Epigenomic Program, Center for Individualized Medicine (CIM) Mayo Clinic, Rochester, MN 55905, USA
| | - Federico Kalinec
- Laboratory of Auditory Cell Biology, Department of Head & Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
50
|
Sena AA, Pedrotti LP, Barrios BE, Cejas H, Balderramo D, Diller A, Correa SG. Lack of TNFRI signaling enhances annexin A1 biological activity in intestinal inflammation. Biochem Pharmacol 2015; 98:422-31. [PMID: 26386311 DOI: 10.1016/j.bcp.2015.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/11/2015] [Indexed: 12/19/2022]
Abstract
We evaluated whether the lack of TNF-α signaling increases mucosal levels of annexin A1 (AnxA1); the hypothesis stems from previous findings showing that TNF-α neutralization in Crohn's disease patients up-regulates systemic AnxA1 expression. Biopsies from healthy volunteers and patients under anti-TNF-α therapy with remittent ulcerative colitis (UC) showed higher AnxA1 expression than those with active disease. We also evaluated dextran sulfate sodium (DSS)-acute colitis in TNF-α receptor 1 KO (TNFR1-/-) strain with impaired TNF-α signaling and C57BL/6 (WT) mice. Although both strains developed colitis, TNFR1-/- mice showed early clinical recovery, lower myeloperoxidase (MPO) activity and milder histopathological alterations. Colonic epithelium from control and DSS-treated TNFR1-/- mice showed intense AnxA1 expression and AnxA1+ CD4+ and CD8+ T cells were more frequent in TNFR1-/- animals, suggesting an extra supply of AnxA1. The pan antagonist of AnxA1 receptors exacerbated the colitis outcome in TNFR1-/- mice, supporting the pivotal role of AnxA1 in the early recovery. Our findings demonstrate that the TNF-α signaling reduction favors the expression and biological activity of AnxA1 in inflamed intestinal mucosa.
Collapse
Affiliation(s)
- Angela A Sena
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Cordoba, Córdoba, Argentina
| | - Luciano P Pedrotti
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Cordoba, Córdoba, Argentina
| | - Bibiana E Barrios
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Cordoba, Córdoba, Argentina
| | - Hugo Cejas
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Cordoba, Córdoba, Argentina
| | - Domingo Balderramo
- Gastroenterology Department, Hospital Privado, Centro Médico, Córdoba, Argentina
| | - Ana Diller
- Pathology Department, Hospital Privado, Centro Médico, Córdoba, Argentina
| | - Silvia G Correa
- Immunology, Department of Clinical Biochemistry, CIBICI (CONICET), Faculty of Chemical Sciences, National University of Cordoba, Córdoba, Argentina.
| |
Collapse
|