1
|
Jang S, Hong W, Moon Y. Obesity-compromised immunity in post-COVID-19 condition: a critical control point of chronicity. Front Immunol 2024; 15:1433531. [PMID: 39188722 PMCID: PMC11345197 DOI: 10.3389/fimmu.2024.1433531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Post-COVID-19 condition is recognized as a multifactorial disorder, with persistent presence of viral antigens, discordant immunity, delayed viral clearance, and chronic inflammation. Obesity has emerged as an independent risk factor for both SARS-CoV-2 infection and its subsequent sequelae. In this study, we aimed to predict the molecular mechanisms linking obesity and post-COVID-19 distress. Viral antigen-exposed adipose tissues display remarkable levels of viral receptors, facilitating viral entry, deposition, and chronic release of inflammatory mediators and cells in patients. Subsequently, obesity-associated inflammatory insults are predicted to disturb cellular and humoral immunity by triggering abnormal cell differentiation and lymphocyte exhaustion. In particular, the decline in SARS-CoV-2 antibody titers and T-cell exhaustion due to chronic inflammation may account for delayed virus clearance and persistent activation of inflammatory responses. Taken together, obesity-associated defective immunity is a critical control point of intervention against post-COVID-19 progression, particularly in subjects with chronic metabolic distress.
Collapse
Affiliation(s)
- Soonwoo Jang
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
| | - Wooyoung Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
2
|
Iwakura H, Ensho T, Ueda Y. Desacyl-ghrelin, not just an inactive form of ghrelin?-A review of current knowledge on the biological actions of desacyl-ghrelin. Peptides 2023:171050. [PMID: 37392995 DOI: 10.1016/j.peptides.2023.171050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Desacyl-ghrelin is a form of ghrelin which lacks acyl-modification of the third serine residue of ghrelin. Originally, desacyl-ghrelin was considered to be just an inactive form of ghrelin. More recently, however, it has been suggested to have various biological activities, including control of food intake, growth hormone, glucose metabolism, and gastric movement, and is involved in cell survival. In this review, we summarize the current knowledge of the biological actions of desacyl-ghrelin and the proposed mechanisms by which it exerts the effects.
Collapse
Affiliation(s)
- Hiroshi Iwakura
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan.
| | - Takuya Ensho
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan
| | - Yoko Ueda
- Department of Pharmacotherapeutics, School of Pharmaceutical Science, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan
| |
Collapse
|
3
|
Kehagias D, Georgopoulos N, Habeos I, Lampropoulos C, Mulita F, Kehagias I. The role of the gastric fundus in glycemic control. Hormones (Athens) 2023; 22:151-163. [PMID: 36705877 DOI: 10.1007/s42000-023-00429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023]
Abstract
PURPOSE Ghrelin, one of the most studied gut hormones, is mainly produced by the gastric fundus. Abundant evidence exists from preclinical and clinical studies underlining its contribution to glucose regulation. In the following narrative review, the role of the gastric fundus in glucose regulation is summarized and we investigate whether its resection enhances glycemic control. METHODS An electronic search was conducted in the PubMed® database and in Google Scholar® using a combination of medical subject headings (MeSH). We examined types of metabolic surgery, including, in particular, gastric fundus resection, either as part of laparoscopic sleeve gastrectomy (LSG) or modified laparoscopic gastric bypass with fundus resection (LRYGBP + FR), and the contribution of ghrelin reduction to glucose regulation. RESULTS Fourteen human studies were judged to be eligible and included in this narrative review. Reduction of ghrelin levels after fundus resection might be related to early glycemic improvement before significant weight loss is achieved. Long-term data regarding the role of ghrelin reduction in glucose homeostasis are sparse. CONCLUSION The exact role of ghrelin in achieving glycemic control is still ambiguous. Data from human studies reveal a potential contribution of ghrelin reduction to early glycemic improvement, although further well-designed studies are needed.
Collapse
Affiliation(s)
- Dimitrios Kehagias
- Department of General Surgery, General University Hospital of Patras, 26504, Rio, Greece.
| | - Neoklis Georgopoulos
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, University of Patras Medical School, 26504, Rio, Greece
| | - Ioannis Habeos
- Division of Endocrinology and Diabetes, Department of Internal Medicine, University Hospital of Patras, 26504, Rio, Greece
| | | | - Francesk Mulita
- Department of General Surgery, General University Hospital of Patras, 26504, Rio, Greece
| | - Ioannis Kehagias
- Division of Bariatric and Metabolic Surgery, Department of Surgery, General University Hospital of Patras, 26504, Rio, Greece
| |
Collapse
|
4
|
Chen Y, Han X, Wang L, Wen Q, Li L, Sun L, Chen Q. Multiple roles of ghrelin in breast cancer. Int J Biol Markers 2022; 37:241-248. [PMID: 35763463 DOI: 10.1177/03936155221110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Breast cancer is one of the most threatening malignant tumors in women worldwide; hence, investigators are continually performing novel research in this field. However, an accurate prediction of its prognosis and postoperative recovery remains difficult. The severity of breast cancer is patient-specific and affected by several health factors; thus, unknown mechanisms may affect its progression. This article analyzes existing literature on breast cancer, ranging from the discovery of ghrelin to its present use, and aims to provide a reference for future research into breast cancer mechanisms and treatment-plan improvement. Various parts of ghrelin have been associated with breast cancer by direct or indirect evidence. The ghrelin system may encompass the direction of expanding breast cancer treatment methods and prognostic indicators. Therefore, we compiled almost all studies on the relationship between the ghrelin system and breast cancer, including unacylated ghrelin, its GHRL gene, ghrelin O-acyltransferase, the receptor growth hormone secretagogue receptor, and several splice variants of ghrelin to lay the foundation for future research.
Collapse
Affiliation(s)
- Yiding Chen
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuke Han
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Wang
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Wen
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liufu Li
- Pengshan District People's Hospital of Meishan City, Meishan, China
| | - Lisha Sun
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- 176759Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Prins K, Huisman M, McLuskey A, Mies R, Karels B, Delhanty PJD, Visser JA. Ghrelin deficiency sex-dependently affects food intake, locomotor activity, and adipose and hepatic gene expression in a binge-eating mouse model. Am J Physiol Endocrinol Metab 2022; 322:E494-E507. [PMID: 35403437 DOI: 10.1152/ajpendo.00432.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Binge-eating disorder is the most prevalent eating disorder diagnosed, affecting three times more women than men. Ghrelin stimulates appetite and reward signaling, and loss of its receptor reduces binge-eating behavior in male mice. Here, we examined the influence of ghrelin itself on binge-eating behavior in both male and female mice. Five-wk-old wild-type (WT) and ghrelin-deficient (Ghrl-/-) mice were housed individually in indirect calorimetry cages for 9 wks. Binge-like eating was induced by giving mice ad libitum chow, but time-restricted access to a Western-style diet (WD; 2 h access, 3 days/wk) in the light phase (BE); control groups received ad libitum chow (CO), or ad libitum access to both diets (CW). All groups of BE mice showed binge-eating behavior, eating up to 60% of their 24-h intake during the WD access period. Subsequent dark phase chow intake was decreased in Ghrl-/- mice and remained decreased in Ghrl-/- females on nonbinge days. Also, nonbinge day locomotor activity was lower in Ghrl-/- than in WT BE females. Upon euthanasia, Ghrl-/- BE mice weighed less and had a lower lean body mass percentage than WT BE mice. In BE and CW groups, ghrelin and sex altered the expression of genes involved in lipid processing, thermogenesis, and aging in white adipose tissue and livers. We conclude that, although ghrelin deficiency does not hamper the development of binge-like eating, it sex-dependently alters food intake timing, locomotor activity, and metabolism. These results add to the growing body of evidence that ghrelin signaling is sexually dimorphic.NEW & NOTEWORTHY Ghrelin, a peptide hormone secreted from the gut, is involved in hunger and reward signaling, which are altered in binge-eating disorder. Although sex differences have been described in both binge-eating and ghrelin signaling, this interaction has not been fully elucidated. Here, we show that ghrelin deficiency affects the behavior and metabolism of mice in a binge-like eating paradigm, and that the sex of the mice impacts the magnitude and direction of these effects.
Collapse
Affiliation(s)
- Karina Prins
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Martin Huisman
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Anke McLuskey
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rosinda Mies
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Bas Karels
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Patric J D Delhanty
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Miller JL, Lacroix A, Bird LM, Shoemaker AH, Haqq A, Deal CL, Clark KA, Ames MH, Suico JG, de la Peña A, Fortier C. The Efficacy, Safety, and Pharmacology of a Ghrelin O-Acyltransferase Inhibitor for the Treatment of Prader-Willi Syndrome. J Clin Endocrinol Metab 2022; 107:e2373-e2380. [PMID: 35213714 DOI: 10.1210/clinem/dgac105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Acylated ghrelin (AG) stimulates appetite and is elevated compared to its unacylated (UAG) counterpart in Prader-Willi syndrome (PWS). GLWL-01 is a selective, reversible inhibitor of ghrelin O-acyltransferase (GOAT), the enzyme that converts UAG into AG. OBJECTIVE This work aimed to assess the efficacy, pharmacokinetics, pharmacodynamics, and safety of GLWL-01 in the treatment of PWS patients. METHODS A double-blind, placebo-controlled, phase 2 crossover study was conducted with 2 active treatment periods of 28 days in 19 patients (aged 16-65 years; body mass index (BMI) ≥ 28) with genetically confirmed PWS. The study took place in 7 hospital-based study centers in the United States and Canada. Patients received placebo or GLWL-01 (450 mg twice daily) orally after lead-in placebo and washout periods. The Hyperphagia Questionnaire for Clinical Trials and Caregiver Global Impression of Change were used to measure reductions in hyperphagia. Plasma concentrations of AG and UAG were evaluated as correlates. RESULTS Treatment resulted in statistically significant differences compared to placebo in plasma AG (P = .0002), UAG (P = .0488), and AG/UAG (P = .0003). GLWL-01 did not statistically significantly reduce hyperphagia-related behavior or bring about changes in global clinical end points, as assessed by caregivers. Anthropometric and clinical parameters correlated with obesity did not statistically significantly change in response to treatment. Less than half of patients reported a treatment-emergent adverse event (TEAE). No deaths, serious adverse events, or severe TEAEs were reported. CONCLUSION GLWL-01 is safe and well tolerated. Pharmacological parameters confirmed the inhibition of GOAT following administration of GLWL-01. Patients' eating behaviors, BMI, blood glucose, and total cholesterol, among other similar measures, were not modified.
Collapse
Affiliation(s)
| | - André Lacroix
- Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec H2X 3J4, Canada
| | - Lynne M Bird
- University of California San Diego and Rady Children's Hospital, San Diego, California 92123, USA
| | | | - Andrea Haqq
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta T6G 2T9, Canada
| | - Cheri L Deal
- Centre Hospitalier Universitaire Ste-Justine, Montréal, Québec H3T 1C5, Canada
| | | | - Michael H Ames
- EMB Statistical Solutions LLC, Overland Park, Kansas 66210, USA
| | | | | | | |
Collapse
|
7
|
Hajishizari S, Imani H, Mehranfar S, Saeed Yekaninejad M, Mirzababaei A, Clark CCT, Mirzaei K. The association of appetite and hormones (leptin, ghrelin, and Insulin) with resting metabolic rate in overweight/ obese women: a case-control study. BMC Nutr 2022; 8:37. [PMID: 35484608 PMCID: PMC9052687 DOI: 10.1186/s40795-022-00531-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
Objective Low resting metabolic rate (RMR), as a risk factor for weight gain and obesity, can be influenced by many factors. Empirical research has confirmed the role of appetite and related hormones in obesity and energy intake. This study aimed to investigate the relationship between appetite and related hormones in overweight or obese Iranian women with normal and hypo RMR. Methods This case–control study was conducted on 42 Iranian adult women (21 cases, and 21 controls), aged 18–48 years. An impedance body analyzer was used to obtain the body composition and an indirect calorimeter was used to assess the RMR. The Flint questionnaire was used to assess appetite, dietary intake, and physical activity were assessed by FFQ and IPAQ questionnaires respectively, and ELISA kits were used to assess leptin, ghrelin, and insulin hormones. Results The results of the study demonstrated a negative association between ghrelin hormone level (β = -0.34, 95%CI = -61.70,-3.86, P-value = 0.027) and RMR, and a positive association between insulin hormone level (β = 0.48, 95%CI = 9.38–34.35, P-value = 0.001) and RMR. Also, results of the appetite questionnaire showed that, in general, both appetite (β = 0.32, 95%CI = -0.10–2.99 P-value = 0.044) and hunger variable (β = 0.30, 95%CI = 0.04–5.87, P-value = 0.047) have a positive association with RMR. There was no significant association between leptin levels and RMR. Conclusion It is evident that appetite and related hormones have a potential role in promoting a normal RMR.
Collapse
Affiliation(s)
- Sara Hajishizari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hossein Imani
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sanaz Mehranfar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
8
|
Zang P, Yang CH, Liu J, Lei HY, Wang W, Guo QY, Lu B, Shao JQ. Relationship Between Acyl and Desacyl Ghrelin Levels with Insulin Resistance and Body Fat Mass in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:2763-2770. [PMID: 36105430 PMCID: PMC9464628 DOI: 10.2147/dmso.s368770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Although strong evidence suggests that ghrelin plays an important role in regulating energy balance, the effects of acylated ghrelin (AG) and deacylated ghrelin (DAG) on fat mass are largely undefined. This study aimed to investigate the differential associations of both forms of ghrelin with insulin resistance and body fat mass in patients with type 2 diabetes mellitus (T2DM). PATIENTS AND METHODS A total of 162 patients with type 2 diabetes were recruited and classified based on BMI and visceral fat area (VFA) as VFA normal group (n = 78), normal-BMI VFA obesity group (n = 20) and high-BMI VFA obesity group (n = 64). VFA and subcutaneous fat area (SFA) were detected by bioelectrical impedance analysis. Blood samples were collected to measure fasting glucose, insulin, lipids, AG and DAG levels after clinical examination. RESULTS Compared with VFA normal group, DAG levels were significantly lower (421.7 ± 106.0 and 388.7 ± 96.5 pg/mL vs 524.4 ± 141.5 pg/mL, P < 0.01) in the two VFA obesity groups. No significant difference was found in AG levels within three groups. Among all subjects, BMI, VFA, SFA, fasting insulin and HOMA-IR were negatively correlated with DAG but positively with AG/DAG ratio (P < 0.01). In contrast, AG was positively correlated with HOMA-IR and fasting glucose (P < 0.01). Multiple stepwise regression analysis showed that fasting glucose was the independent factor of AG, VFA and HOMA-IR were the independent factors related to DAG. CONCLUSION DAG levels have a strong negative association with excess body fat mass and insulin resistance, whereas AG levels are closely related to elevated blood glucose levels in T2DM patients.
Collapse
Affiliation(s)
- Pu Zang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Cui-Hua Yang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Jun Liu
- Department of Endocrinology, Jinling Hospital, Southern Medical University, Nanjing, People’s Republic of China
| | - Hai-Yan Lei
- Department of Endocrinology, Jinling Hospital, Southern Medical University, Nanjing, People’s Republic of China
| | - Wei Wang
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Qing-Yu Guo
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Bin Lu
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
| | - Jia-Qing Shao
- Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, People’s Republic of China
- Correspondence: Jia-Qing Shao, Department of Endocrinology, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, People’s Republic of China, Tel +86-25-80860354, Email
| |
Collapse
|
9
|
Pérez-Galarza J, Prócel C, Cañadas C, Aguirre D, Pibaque R, Bedón R, Sempértegui F, Drexhage H, Baldeón L. Immune Response to SARS-CoV-2 Infection in Obesity and T2D: Literature Review. Vaccines (Basel) 2021; 9:102. [PMID: 33572702 PMCID: PMC7911386 DOI: 10.3390/vaccines9020102] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
In December 2019, a novel coronavirus known as SARS-CoV-2 was first detected in Wuhan, China, causing outbreaks of the coronavirus disease COVID-19 that has now spread globally. For this reason, The World Health Organization (WHO) declared COVID-19 a public health emergency in March 2020. People living with pre-existing conditions such as obesity, cardiovascular diseases, type 2 diabetes (T2D), and chronic kidney and lung diseases, are prone to develop severe forms of disease with fatal outcomes. Metabolic diseases such as obesity and T2D alter the balance of innate and adaptive responses. Both diseases share common features characterized by augmented adiposity associated with a chronic systemic low-grade inflammation, senescence, immunoglobulin glycation, and abnormalities in the number and function of adaptive immune cells. In obese and T2D patients infected by SARS-CoV-2, where immune cells are already hampered, this response appears to be stronger. In this review, we describe the abnormalities of the immune system, and summarize clinical findings of COVID-19 patients with pre-existing conditions such as obesity and T2D as this group is at greater risk of suffering severe and fatal clinical outcomes.
Collapse
Affiliation(s)
- Jorge Pérez-Galarza
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
- Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador; (R.B.); (F.S.)
| | | | - Cristina Cañadas
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
| | - Diana Aguirre
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
| | - Ronny Pibaque
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
| | - Ricardo Bedón
- Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador; (R.B.); (F.S.)
- Hospital General Docente de Calderón, Quito 170201, Ecuador
| | - Fernando Sempértegui
- Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador; (R.B.); (F.S.)
| | - Hemmo Drexhage
- Immunology Department, Erasmus Medical Center, 3015 Rotterdam, The Netherlands;
| | - Lucy Baldeón
- Research Institute of Biomedicine, Central University of Ecuador, Quito 170201, Ecuador; (J.P.-G.); (C.C.); (D.A.); (R.P.)
- Faculty of Medicine, Central University of Ecuador, Quito 170403, Ecuador; (R.B.); (F.S.)
| |
Collapse
|
10
|
Mathur N, Mehdi SF, Anipindi M, Aziz M, Khan SA, Kondakindi H, Lowell B, Wang P, Roth J. Ghrelin as an Anti-Sepsis Peptide: Review. Front Immunol 2021; 11:610363. [PMID: 33584688 PMCID: PMC7876230 DOI: 10.3389/fimmu.2020.610363] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Sepsis continues to produce widespread inflammation, illness, and death, prompting intensive research aimed at uncovering causes and therapies. In this article, we focus on ghrelin, an endogenous peptide with promise as a potent anti-inflammatory agent. Ghrelin was discovered, tracked, and isolated from stomach cells based on its ability to stimulate release of growth hormone. It also stimulates appetite and is shown to be anti-inflammatory in a wide range of tissues. The anti-inflammatory effects mediated by ghrelin are a result of both the stimulation of anti-inflammatory processes and an inhibition of pro-inflammatory forces. Anti-inflammatory processes are promoted in a broad range of tissues including the hypothalamus and vagus nerve as well as in a broad range of immune cells. Aged rodents have reduced levels of growth hormone (GH) and diminished immune responses; ghrelin administration boosts GH levels and immune response. The anti-inflammatory functions of ghrelin, well displayed in preclinical animal models of sepsis, are just being charted in patients, with expectations that ghrelin and growth hormone might improve outcomes in patients with sepsis.
Collapse
Affiliation(s)
- Nimisha Mathur
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Syed F. Mehdi
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Manasa Anipindi
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Monowar Aziz
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Sawleha A. Khan
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Hema Kondakindi
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Barbara Lowell
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ping Wang
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Jesse Roth
- Laboratory of Diabetes, Obesity, and Other Metabolic Disorders, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
11
|
Moose JE, Leets KA, Mate NA, Chisholm JD, Hougland JL. An overview of ghrelin O-acyltransferase inhibitors: a literature and patent review for 2010-2019. Expert Opin Ther Pat 2020; 30:581-593. [PMID: 32564644 DOI: 10.1080/13543776.2020.1776263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The peptide hormone ghrelin regulates physiological processes associated with energy homeostasis such as appetite, insulin signaling, glucose metabolism, and adiposity. Ghrelin has also been implicated in a growing number of neurological pathways involved in stress response and addiction behavior. For ghrelin to bind the growth hormone secretagogue receptor 1a (GHS-R1a) and activate signaling, the hormone must first be octanoylated on a specific serine side chain. This key transformation is performed by the enzyme ghrelin O-acyltransferase (GOAT), and therefore GOAT inhibitors may be useful in treating disorders related to ghrelin signaling such as diabetes, obesity, and related metabolic syndromes. AREAS COVERED This report covers ghrelin and GOAT as potential therapeutic targets and summarizes work on GOAT inhibitors through the end of 2019, highlighting recent successes with both peptidomimetics and small molecule GOAT inhibitors as potent modulators of GOAT-catalyzed ghrelin octanoylation. EXPERT OPINION A growing body of biochemical and structural knowledge regarding the ghrelin/GOAT system now enables multiple avenues for identifying and optimizing GOAT inhibitors. We are at the beginning of a new era with increased opportunities for leveraging ghrelin and GOAT in the understanding and treatment of multiple health conditions including diabetes, obesity, and addiction.
Collapse
Affiliation(s)
- Jacob E Moose
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - Katelyn A Leets
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - Nilamber A Mate
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - John D Chisholm
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| | - James L Hougland
- Department of Chemistry and BioInspired Syracuse, Syracuse University , Syracuse, NY, USA
| |
Collapse
|
12
|
Gortan Cappellari G, Barazzoni R. Ghrelin forms in the modulation of energy balance and metabolism. Eat Weight Disord 2019; 24:997-1013. [PMID: 30353455 DOI: 10.1007/s40519-018-0599-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is a gastric hormone circulating in acylated (AG) and unacylated (UnAG) forms. This narrative review aims at presenting current emerging knowledge on the impact of ghrelin forms on energy balance and metabolism. AG represents ~ 10% of total plasma ghrelin, has an appetite-stimulating effect and is the only form for which a receptor has been identified. Moreover, other metabolic AG-induced effects have been reported, including the modulation of glucose homeostasis with stimulation of liver gluconeogenesis, the increase of fat mass and the improvement of skeletal muscle mitochondrial function. On the other hand, UnAG has no orexigenic effects, however recent reports have shown that it is directly involved in the modulation of skeletal muscle energy metabolism by improving a cluster of interlinked functions including mitochondrial redox activities, tissue inflammation and insulin signalling and action. These findings are in agreement with human studies which show that UnAG circulating levels are positively associated with insulin sensitivity both in metabolic syndrome patients and in a large cohort from the general population. Moreover, ghrelin acylation is regulated by a nutrient sensor mechanism, specifically set on fatty acids availability. These recent findings consistently point towards a novel independent role of UnAG as a regulator of muscle metabolic pathways maintaining energy status and tissue anabolism. While a specific receptor for UnAG still needs to be identified, recent evidence strongly supports the hypothesis that the modulation of ghrelin-related molecular pathways, including those involved in its acylation, may be a potential novel target in the treatment of metabolic derangements in disease states characterized by metabolic and nutritional complications.Level of evidence Level V, narrative review.
Collapse
Affiliation(s)
- Gianluca Gortan Cappellari
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy.
| | - Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy.
- Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Trieste, Italy.
| |
Collapse
|
13
|
Abstract
Obesity is a severe worldwide epidemic. Obesity comorbidities, such as type 2 diabetes mellitus, hypertension, and atherosclerosis, are costly for patients and governments. The treatment of obesity involves several facets, including lifestyle changes, bariatric surgery, and pharmacotherapy. As changes in lifestyle require considerable patient commitment that is sometimes unachievable, and surgery is expensive and invasive, pharmacotherapy is the primary option for most patients. This review describes the pharmacotherapy currently available in the USA, Europe, and Brazil, focusing on its limitations. We then analyze the results from clinical trials of new drug candidates. Most drugs cause weight loss of < 4 kg compared with controls, and severe adverse effects have caused a number of drugs to be withdrawn from the market in several countries. Drugs under development have not shown more significant weight loss or reduced adverse effects. We conclude that a significant portion of obese patients have few treatment options because of the adverse effects and minimal weight loss associated with current pharmacotherapy. However, drugs currently under development appear unable to change this scenario in the near future. Thus, it is essential that new compounds are developed and new molecular targets studied so obesity can be efficiently treated in all patients in the future.
Collapse
|
14
|
Mani BK, Shankar K, Zigman JM. Ghrelin's Relationship to Blood Glucose. Endocrinology 2019; 160:1247-1261. [PMID: 30874792 PMCID: PMC6482034 DOI: 10.1210/en.2019-00074] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/09/2019] [Indexed: 12/16/2022]
Abstract
Much effort has been directed at studying the orexigenic actions of administered ghrelin and the potential effects of the endogenous ghrelin system on food intake, food reward, body weight, adiposity, and energy expenditure. Although endogenous ghrelin's actions on some of these processes remain ambiguous, its glucoregulatory actions have emerged as well-recognized features during extreme metabolic conditions. The blood glucose-raising actions of ghrelin are beneficial during starvation-like conditions, defending against life-threatening falls in blood glucose, but they are seemingly detrimental in obese states and in certain monogenic forms of diabetes, contributing to hyperglycemia. Also of interest, blood glucose negatively regulates ghrelin secretion. This article reviews the literature suggesting the existence of a blood glucose-ghrelin axis and highlights the factors that mediate the glucoregulatory actions of ghrelin, especially during metabolic extremes such as starvation and diabetes.
Collapse
Affiliation(s)
- Bharath K Mani
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kripa Shankar
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeffrey M Zigman
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas
- Correspondence: Jeffrey M. Zigman, MD, PhD, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390. E-mail:
| |
Collapse
|
15
|
Yang EI, Lee CH, Che DN, Jang SI, Kim YS. Biological activities of water-soluble polysaccharides from Opuntia humifusa stem in high-fat-diet-fed mice. J Food Biochem 2019; 43:e12806. [PMID: 31353577 DOI: 10.1111/jfbc.12806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/10/2018] [Accepted: 01/29/2019] [Indexed: 11/28/2022]
Abstract
Water-soluble polysaccharide (WSP) of Opuntia humifusa stems was extracted and its biological activities in mice fed with a high-fat diet (HFD) were investigated. The mice were treated with oral doses of WSP for 4 weeks. Body weight, fat mass, serum lipid, and hormone profiles, gastrointestinal tract changes were evaluated. WSP treatment resulted in a decrease in fat mass and improvement of lipid and hormone profiles associated with HFD consumption. In addition, WSP improved the gastrointestinal health of the mice by increasing ghrelin-releasing cells and serotonin-positive cells and boosted immune functions by increasing the expression of CD4+ cells and nitric oxide synthase. Also, WSP treatment reduced gastrointestinal transit time and increased fecal moisture content. These findings suggest that a sufficient intake of WSP from O. humifusa can be beneficial in preventing disorders that are associated with the consumption of HFD including the preservation of gastrointestinal health. PRACTICAL APPLICATIONS: Opuntia humifusa is a traditional edible plant widely eaten in Asia for its high concentrations of vitamin C, polyphenols, and flavonoids. The research investigated the biological activity of WSP extracted from O. humifusa stems. The data obtained from this study sheds light on the use of plant-based polysaccharides in nutraceutical industries as potential functional food materials for the prevention of HFD-related disorders and improvement of gastrointestinal health. The results of this research could serve as a base for further research on this polysaccharide as a source of functional polysaccharides and promotes its usage on a large scale in functional food materials.
Collapse
Affiliation(s)
- Eun-In Yang
- Research Center for Industrial Development of Biofood Materials, Chonbuk National University, Jeonju, Republic of Korea
| | - Chang-Hyun Lee
- Department of Anatomy, College of Oriental Medicine, Woosuk University, Wanju, Republic of Korea
| | - Denis Nchang Che
- Department of Food Science and Technology, Chonbuk National University, Jeonju, Republic of Korea
| | - Seon-Il Jang
- Department of Health Management, Jeonju University, Jeonju, Republic of Korea
| | - Young-Soo Kim
- Research Center for Industrial Development of Biofood Materials, Chonbuk National University, Jeonju, Republic of Korea.,Department of Food Science and Technology, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
16
|
Maugham ML, Seim I, Thomas PB, Crisp GJ, Shah ET, Herington AC, Brown KA, Gregory LS, Nelson CC, Jeffery PL, Chopin LK. No effect of unacylated ghrelin administration on subcutaneous PC3 xenograft growth or metabolic parameters in a Rag1-/- mouse model of metabolic dysfunction. PLoS One 2018; 13:e0198495. [PMID: 30458004 PMCID: PMC6245673 DOI: 10.1371/journal.pone.0198495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022] Open
Abstract
Ghrelin is a peptide hormone which, when acylated, regulates appetite, energy balance and a range of other biological processes. Ghrelin predominately circulates in its unacylated form (unacylated ghrelin; UAG). UAG has a number of functions independent of acylated ghrelin, including modulation of metabolic parameters and cancer progression. UAG has also been postulated to antagonise some of the metabolic effects of acyl-ghrelin, including its effects on glucose and insulin regulation. In this study, Rag1-/- mice with high-fat diet-induced obesity and hyperinsulinaemia were subcutaneously implanted with PC3 prostate cancer xenografts to investigate the effect of UAG treatment on metabolic parameters and xenograft growth. Daily intraperitoneal injection of 100 μg/kg UAG had no effect on xenograft tumour growth in mice fed normal rodent chow or 23% high-fat diet. UAG significantly improved glucose tolerance in host Rag1-/- mice on a high-fat diet, but did not significantly improve other metabolic parameters. We propose that UAG is not likely to be an effective treatment for prostate cancer, with or without associated metabolic syndrome.
Collapse
Affiliation(s)
- Michelle L. Maugham
- Ghrelin Research Group, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Skeletal Biology and Forensic Anthropology Research Laboratory, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Inge Seim
- Ghrelin Research Group, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Patrick B. Thomas
- Ghrelin Research Group, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Gabrielle J. Crisp
- Ghrelin Research Group, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Esha T. Shah
- Ghrelin Research Group, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Adrian C. Herington
- Ghrelin Research Group, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medicine, New York City, New York, United States of America
| | - Laura S. Gregory
- Skeletal Biology and Forensic Anthropology Research Laboratory, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Colleen C. Nelson
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Penny L. Jeffery
- Ghrelin Research Group, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lisa K. Chopin
- Ghrelin Research Group, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Prostate Cancer Research Centre - Queensland, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
- Comparative and Endocrine Biology Laboratory, Translational Research Institute – Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Rhea EM, Salameh TS, Gray S, Niu J, Banks WA, Tong J. Ghrelin transport across the blood-brain barrier can occur independently of the growth hormone secretagogue receptor. Mol Metab 2018; 18:88-96. [PMID: 30293893 PMCID: PMC6308033 DOI: 10.1016/j.molmet.2018.09.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE The blood-brain barrier (BBB) regulates the entry of substrates and peptides into the brain. Ghrelin is mainly produced in the stomach but exerts its actions in the central nervous system (CNS) by crossing the BBB. Once present in the CNS, ghrelin can act in the hypothalamus to regulate food intake, in the hippocampus to regulate neurogenesis, and in the olfactory bulb to regulate food-seeking behavior. The goal of this study was to determine whether the primary signaling receptor for ghrelin, the growth hormone secretagogue receptor (GHSR), mediates the transport of ghrelin from blood to brain. METHODS We utilized the sensitive and quantitative multiple-time regression analysis technique to determine the transport rate of mouse and human acyl ghrelin (AG) and desacyl ghrelin (DAG) in wildtype and Ghsr null mice. We also measured the regional distribution of these ghrelin peptides throughout the brain. Lastly, we characterized the transport characteristics of human DAG by measuring the stability in serum and brain, saturability of transport, and the complete transfer across the brain endothelial cell. RESULTS We found the transport rate across the BBB of both forms of ghrelin, AG, and DAG, were not affected by the loss of GHSR. We did find differences in the transport rate between the two isoforms, with DAG being faster than AG; this was dependent on the species of ghrelin, human being faster than mouse. Lastly, based on the ubiquitous properties of ghrelin throughout the CNS, we looked at regional distribution of ghrelin uptake and found the highest levels of uptake in the olfactory bulb. CONCLUSIONS The data presented here suggest that ghrelin transport can occur independently of the GHSR, and ghrelin uptake varies regionally throughout the brain. These findings better our understanding of the gut-brain communication and may lead to new understandings of ghrelin physiology.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- VA Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Therese S Salameh
- VA Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Sarah Gray
- Division of Endocrinology, Metabolism, and Nutrition, Duke Molecular Physiology Institute, Department of Medicine, Duke University, Durham, NC, USA
| | - Jingjing Niu
- Division of Endocrinology, Metabolism, and Nutrition, Duke Molecular Physiology Institute, Department of Medicine, Duke University, Durham, NC, USA
| | - William A Banks
- VA Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jenny Tong
- Division of Endocrinology, Metabolism, and Nutrition, Duke Molecular Physiology Institute, Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
18
|
Viltart O, Duriez P, Tolle V. Metabolic and neuroendocrine adaptations to undernutrition in anorexia nervosa: from a clinical to a basic research point of view. Horm Mol Biol Clin Investig 2018; 36:hmbci-2018-0010. [PMID: 29804101 DOI: 10.1515/hmbci-2018-0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
The exact mechanisms linking metabolic and neuroendocrine adaptations to undernutrition and the pathophysiology of anorexia nervosa (AN) are not fully understood. AN is a psychiatric disorder of complex etiology characterized by extreme starvation while the disease is progressing into a chronic state. Metabolic and endocrine alterations associated to this disorder are part of a powerful response to maintain whole body energy homeostasis. But these modifications may also contribute to associated neuropsychiatric symptoms (reward abnormalities, anxiety, depression) and thus participate to sustain the disease. The current review presents data with both a clinical and basic research point of view on the role of nutritional and energy sensors with neuroendocrine actions in the pathophysiology of the disease, as they modulate metabolic responses, reproductive functions, stress responses as well as physical activity. While clinical data present a full description of changes occurring in AN, animal models that integrate either spontaneous genetic mutations or experimentally-induced food restriction with hyperactivity and/or social stress recapitulate the main metabolic and endocrine alterations of AN and provide mechanistic information between undernutrition state and symptoms of the disease. Further progress on the central and peripheral mechanism involved in the pathophysiology of eating disorders partly relies on the development and/or refinement of existing animal models to include recently identified genetic traits and better mimic the complex and multifactorial dimensions of the disease.
Collapse
Affiliation(s)
- Odile Viltart
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université de Lille (Sciences et technologies), Lille, France
| | - Philibert Duriez
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Clinique des Maladies Mentales et de l'Encéphale (CMME), Hôpital Sainte-Anne, Paris, France
| | - Virginie Tolle
- Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
19
|
Poher AL, Tschöp MH, Müller TD. Ghrelin regulation of glucose metabolism. Peptides 2018; 100:236-242. [PMID: 29412824 PMCID: PMC5805851 DOI: 10.1016/j.peptides.2017.12.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 02/07/2023]
Abstract
The a 28-amino acid peptide ghrelin was discovered in 1999 as a growth hormone (GH) releasing peptide. Soon after its discovery, ghrelin was found to increase body weight and adiposity by acting on the hypothalamic melanocortinergic system. Subsequently, ghrelin was found to exert a series of metabolic effects, overall testifying ghrelin a pleiotropic nature of broad pharmacological interest. Ghrelin acts through the growth hormone secretagogue-receptor (GHS-R), a seven transmembrane G protein-coupled receptor with high expression in the anterior pituitary, pancreatic islets, thyroid gland, heart and various regions of the brain. Among ghrelins numerous metabolic effects are the most prominent the stimulation of appetite via activation of orexigenic hypothalamic neurocircuits and the food-intake independent stimulation of lipogenesis, which both together lead to an increase in body weight and adiposity. Ghrelin effects beyond the regulation of appetite and GH secretion include the regulation of gut motility, sleep-wake rhythm, taste sensation, reward seeking behaviour, and the regulation of glucose metabolism. The latter received recently increasing recognition because pharmacological inhibition of ghrelin signaling might be of therapeutic value to improve insuin resistance and type 2 diabetes. In this review we highlight the multifaceted nature of ghrelin and summarize its glucoregulatory action and discuss the pharmacological value of ghrelin pathway inhibition for the treatment of glucose intolerance and type 2 diabetes.
Collapse
Affiliation(s)
- Anne-Laure Poher
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German National Diabetes Center (DZD), 85764, Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German National Diabetes Center (DZD), 85764, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333, Munich, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München and German National Diabetes Center (DZD), 85764, Neuherberg, Germany.
| |
Collapse
|
20
|
AZP-531, an unacylated ghrelin analog, improves food-related behavior in patients with Prader-Willi syndrome: A randomized placebo-controlled trial. PLoS One 2018; 13:e0190849. [PMID: 29320575 PMCID: PMC5761957 DOI: 10.1371/journal.pone.0190849] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/18/2017] [Indexed: 11/19/2022] Open
Abstract
Context and objective Prader-Willi syndrome (PWS) is characterized by early-onset hyperphagia and increased circulating levels of the orexigenic Acylated Ghrelin (AG) hormone with a relative deficit of Unacylated Ghrelin (UAG). AZP-531, a first-in-class UAG analog, was shown to inhibit the orexigenic effect of AG in animals, to improve glycemic control and decrease body weight in humans. We aimed to investigate the safety and efficacy of AZP-531 in patients with PWS for whom no approved treatment for hyperphagia is currently available. Methods and design Multi-center, randomized, double-blind, placebo-controlled trial. Forty-seven patients with genetically confirmed PWS and evidence of hyperphagia received daily subcutaneous injections of AZP-531 (3 and 4 mg for 50–70 kg and >70 kg body weight, respectively) or matching placebo for 14 days. Assessments included adverse events, vital signs, safety laboratory tests, the Hyperphagia Questionnaire (HQ), patient-reported appetite, body composition and glycemic measures. Results AZP-531 was well tolerated. There was a significant improvement with AZP-531 versus placebo in the mean total score, the 9-item score and the severity domain score of the HQ (p < .05). The highest reduction in the total and 9-item scores was observed in AZP-531 subjects with the highest hyperphagia score at baseline. Findings were supported by a reduction in appetite scores observed with AZP-531 only. Body weight did not change in both groups while a significant reduction in waist circumference and fat mass was observed only with AZP-531. AZP-531 significantly decreased post-prandial glucose levels in a baseline glucose dependent fashion. Conclusions AZP-531 may constitute a new treatment strategy to improve hyperphagia and metabolic issues in patients with PWS. These findings support further investigation in longer-term clinical trials.
Collapse
|
21
|
Sominsky L, Goularte JF, Andrews ZB, Spencer SJ. Acylated Ghrelin Supports the Ovarian Transcriptome and Follicles in the Mouse: Implications for Fertility. Front Endocrinol (Lausanne) 2018; 9:815. [PMID: 30697193 PMCID: PMC6340924 DOI: 10.3389/fendo.2018.00815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022] Open
Abstract
Ghrelin, an orexigenic gut-derived peptide, is gaining increasing attention due to its multifaceted role in a number of physiological functions, including reproduction. Ghrelin exists in circulation primarily as des-acylated and acylated ghrelin. Des-acyl ghrelin, until recently considered to be an inactive form of ghrelin, is now known to have independent physiological functionality. However, the relative contribution of acyl and des-acyl ghrelin to reproductive development and function is currently unknown. Here we used ghrelin-O-acyltransferase (GOAT) knockout (KO) mice that have no measurable levels of endogenous acyl ghrelin and chronically high levels of des-acyl ghrelin, to characterize how the developmental and life-long absence of acyl ghrelin affects ovarian development and reproductive capacity. We combined the assessment of markers of reproductive maturity and the capacity to breed with measures of ovarian morphometry, as well as with ovarian RNA sequencing analysis. Our data show that while GOAT KO mice retain the capacity to breed in young adulthood, there is a diminished number of ovarian follicles (per mm3) in the juvenile and adult ovaries, due to a significant reduction in the number of small follicles, particularly the primordial follicles. We also show pronounced specific changes in the ovarian transcriptome in the juvenile GOAT KO ovary, indicative of a potential for premature ovarian development. Collectively, these findings indicate that an absence of acyl ghrelin does not prevent reproductive success but that appropriate levels of acyl and des-acyl ghrelin may be necessary for optimal ovarian maturation.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- *Correspondence: Luba Sominsky
| | - Jeferson F. Goularte
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Zane B. Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Sarah J. Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Mahbod P, Smith EP, Fitzgerald ME, Morano RL, Packard BA, Ghosal S, Scheimann JR, Perez-Tilve D, Herman JP, Tong J. Desacyl Ghrelin Decreases Anxiety-like Behavior in Male Mice. Endocrinology 2018; 159:388-399. [PMID: 29155981 PMCID: PMC5761608 DOI: 10.1210/en.2017-00540] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/10/2017] [Indexed: 11/19/2022]
Abstract
Ghrelin is a 28-amino acid polypeptide that regulates feeding, glucose metabolism, and emotionality (stress, anxiety, and depression). Plasma ghrelin circulates as desacyl ghrelin (DAG) or, in an acylated form, acyl ghrelin (AG), through the actions of ghrelin O-acyltransferase (GOAT), exhibiting low or high affinity, respectively, for the growth hormone secretagogue receptor (GHSR) 1a. We investigated the role of endogenous AG, DAG, and GHSR1a signaling on anxiety and stress responses using ghrelin knockout (Ghr KO), GOAT KO, and Ghsr stop-floxed (Ghsr null) mice. Behavioral and hormonal responses were tested in the elevated plus maze and light/dark (LD) box. Mice lacking both AG and DAG (Ghr KO) increased anxiety-like behaviors across tests, whereas anxiety reactions were attenuated in DAG-treated Ghr KO mice and in mice lacking AG (GOAT KO). Notably, loss of GHSR1a (Ghsr null) did not affect anxiety-like behavior in any test. Administration of AG and DAG to Ghr KO mice with lifelong ghrelin deficiency reduced anxiety-like behavior and decreased phospho-extracellular signal-regulated kinase phosphorylation in the Edinger-Westphal nucleus in wild-type mice, a site normally expressing GHSR1a and involved in stress- and anxiety-related behavior. Collectively, our data demonstrate distinct roles for endogenous AG and DAG in regulation of anxiety responses and suggest that the behavioral impact of ghrelin may be context dependent.
Collapse
Affiliation(s)
- Parinaz Mahbod
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Eric P. Smith
- Department of Medicine, University of Cincinnati,
Cincinnati, Ohio 45267
| | - Maureen E. Fitzgerald
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Rachel L. Morano
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Benjamin A. Packard
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Sriparna Ghosal
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Jessie R. Scheimann
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Diego Perez-Tilve
- Department of Medicine, University of Cincinnati,
Cincinnati, Ohio 45267
| | - James P. Herman
- Department of Psychiatry and Behavioral Neuroscience,
University of Cincinnati, Cincinnati, Ohio 45267
| | - Jenny Tong
- Division of Endocrinology, Metabolism and Nutrition,
Department of Medicine, Duke University, Durham, North Carolina 27708
| |
Collapse
|
23
|
Huynh DN, Elimam H, Bessi VL, Ménard L, Burelle Y, Granata R, Carpentier AC, Ong H, Marleau S. A Linear Fragment of Unacylated Ghrelin (UAG 6-13) Protects Against Myocardial Ischemia/Reperfusion Injury in Mice in a Growth Hormone Secretagogue Receptor-Independent Manner. Front Endocrinol (Lausanne) 2018; 9:798. [PMID: 30692964 PMCID: PMC6340090 DOI: 10.3389/fendo.2018.00798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/19/2018] [Indexed: 12/29/2022] Open
Abstract
Unacylated ghrelin (UAG), the most abundant form of ghrelin in circulation, has been shown to exert cardioprotective effect in experimental cardiopathies. The present study aimed to investigate the cardioprotective effect of a linear bioactive fragment of UAG against myocardial ischemia-induced injury and dysfunction in C57BL/6 wild type mice and the mechanisms involved. Treatments were administered at doses of 100 (UAG), 1,000 and 3,000 (UAG6-13) nmol/kg at 12 h interval during 14 days prior to 30 min left coronary artery ligation and reperfusion for a period of 6 or 48 h. The infarct area was decreased in a dose-dependent manner at 48 h of reperfusion, with a reduction of 54% at the highest dose of UAG6-13 tested. Myocardial hemodynamics were improved as demonstrated by an increase in cardiac output, maximum first derivative of left ventricular pressure, and preload recruitable stroke work, a load-independent contractility index. Six hours after reperfusion, circulating levels of IL-6 and TNF-α pro-inflammatory cytokines were reduced, and the effect was maintained at 48 h for TNF-α. 5' AMP-activated protein kinase (AMPK) was activated, while acetyl-CoA carboxylase (ACC) activity was inhibited, along with a decrease in apoptotic protein levels. In isolated hearts, the effect of UAG6-13 was unaffected by the presence of D-Lys3-GHRP-6, a ghrelin receptor (GHSR1a) antagonist, suggesting that the peptide acted through a GHSR1a-independent pathway. The results support the therapeutic application of UAG bioactive peptide fragments against myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- David N. Huynh
- Faculté de pharmacie, Université de Montréal, Montréal, QC, Canada
| | - Hanan Elimam
- Faculté de pharmacie, Université de Montréal, Montréal, QC, Canada
- Faculty of Pharmacy, University of Sadat City, Sadat, Egypt
| | - Valérie L. Bessi
- Faculté de pharmacie, Université de Montréal, Montréal, QC, Canada
| | - Liliane Ménard
- Faculté de pharmacie, Université de Montréal, Montréal, QC, Canada
| | - Yan Burelle
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Riccarda Granata
- Department of Medical Science, University of Turin, Turin, Italy
| | - André C. Carpentier
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Huy Ong
- Faculté de pharmacie, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Huy Ong
| | - Sylvie Marleau
- Faculté de pharmacie, Université de Montréal, Montréal, QC, Canada
- Sylvie Marleau
| |
Collapse
|
24
|
Cleverdon ER, McGovern-Gooch KR, Hougland JL. The octanoylated energy regulating hormone ghrelin: An expanded view of ghrelin's biological interactions and avenues for controlling ghrelin signaling. Mol Membr Biol 2017; 33:111-124. [PMID: 29143554 DOI: 10.1080/09687688.2017.1388930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ghrelin is a small peptide hormone that requires a unique post-translational modification, serine octanoylation, to bind and activate the GHS-R1a receptor. Initially demonstrated to stimulate hunger and appetite, ghrelin-dependent signaling is implicated in a variety of neurological and physiological processes influencing diseases such as diabetes, obesity, and Prader-Willi syndrome. In addition to its cognate receptor, recent studies have revealed ghrelin interacts with a range of binding partners within the bloodstream. Defining the scope of ghrelin's interactions within the body, understanding how these interactions work in concert to modulate ghrelin signaling, and developing molecular tools for controlling ghrelin signaling are essential for exploiting ghrelin for therapeutic effect. In this review, we discuss recent findings regarding the biological effects of ghrelin signaling, outline binding partners that control ghrelin trafficking and stability in circulation, and summarize the current landscape of inhibitors targeting ghrelin octanoylation.
Collapse
Affiliation(s)
| | | | - James L Hougland
- a Department of Chemistry , Syracuse University , Syracuse , NY , USA
| |
Collapse
|
25
|
Sominsky L, Hodgson DM, McLaughlin EA, Smith R, Wall HM, Spencer SJ. Linking Stress and Infertility: A Novel Role for Ghrelin. Endocr Rev 2017; 38:432-467. [PMID: 28938425 DOI: 10.1210/er.2016-1133] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Infertility affects a remarkable one in four couples in developing countries. Psychological stress is a ubiquitous facet of life, and although stress affects us all at some point, prolonged or unmanageable stress may become harmful for some individuals, negatively impacting on their health, including fertility. For instance, women who struggle to conceive are twice as likely to suffer from emotional distress than fertile women. Assisted reproductive technology treatments place an additional physical, emotional, and financial burden of stress, particularly on women, who are often exposed to invasive techniques associated with treatment. Stress-reduction interventions can reduce negative affect and in some cases to improve in vitro fertilization outcomes. Although it has been well-established that stress negatively affects fertility in animal models, human research remains inconsistent due to individual differences and methodological flaws. Attempts to isolate single causal links between stress and infertility have not yet been successful due to their multifaceted etiologies. In this review, we will discuss the current literature in the field of stress-induced reproductive dysfunction based on animal and human models, and introduce a recently unexplored link between stress and infertility, the gut-derived hormone, ghrelin. We also present evidence from recent seminal studies demonstrating that ghrelin has a principal role in the stress response and reward processing, as well as in regulating reproductive function, and that these roles are tightly interlinked. Collectively, these data support the hypothesis that stress may negatively impact upon fertility at least in part by stimulating a dysregulation in ghrelin signaling.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - Deborah M Hodgson
- School of Psychology, Faculty of Science and IT, The University of Newcastle, New South Wales 2308, Australia
| | - Eileen A McLaughlin
- School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand.,School of Environmental & Life Sciences, Faculty of Science and IT, The University of Newcastle, New South Wales 2308, Australia
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Lookout Road, New Lambton Heights, New South Wales 2305, Australia.,Priority Research Centre in Reproductive Science, The University of Newcastle, New South Wales 2308, Australia
| | - Hannah M Wall
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| |
Collapse
|
26
|
Central Modulation of Neuroinflammation by Neuropeptides and Energy-Sensing Hormones during Obesity. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7949582. [PMID: 28913358 PMCID: PMC5587954 DOI: 10.1155/2017/7949582] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
Central nervous system (CNS) senses energy homeostasis by integrating both peripheral and autonomic signals and responding to them by neurotransmitters and neuropeptides release. Although it is previously considered an immunologically privileged organ, we now know that this is not so. Cells belonging to the immune system, such as B and T lymphocytes, can be recruited into the CNS to face damage or infection, in addition to possessing resident immunological cells, called microglia. In this way, positive energy balance during obesity promotes an inflammatory state in the CNS. Saturated fatty acids from the diet have been pointed out as powerful candidates to trigger immune response in peripheral system and in the CNS. However, how central immunity communicates to peripheral immune response remains to be clarified. Recently there has been a great interest in the neuropeptides, POMC derived peptides, ghrelin, and leptin, due to their capacity to suppress or induce inflammatory responses in the brain, respectively. These may be potential candidates to treat different pathologies associated with autoimmunity and inflammation. In this review, we will discuss the role of lipotoxicity associated with positive energy balance during obesity in proinflammatory response in microglia, B and T lymphocytes, and its modulation by neuropeptides.
Collapse
|
27
|
Favorable Impact on Stress-Related Behaviors by Modulating Plasma Butyrylcholinesterase. Cell Mol Neurobiol 2017; 38:7-12. [PMID: 28712092 PMCID: PMC5775978 DOI: 10.1007/s10571-017-0523-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023]
Abstract
In the last decade, it has become clear that the neuropeptide “ghrelin” and its principal receptor have a large impact on anxiety and stress. Our recent studies have uncovered a link between plasma butyrylcholinesterase (BChE) and ghrelin. BChE actually turns out to be the key regulator of this peptide. This article reviews our recent work on manipulating ghrelin levels in mouse blood and brain by long term elevation of BChE, leading to sustained decrease of ghrelin. That effect in turn was found to reduce stress-induced aggression in group caged mice. Positive consequences were fewer bite wounds and longer survival times. No adverse effects were observed. Further exploration may pave the way for BChE-based treatment of anxiety in humans.
Collapse
|
28
|
Harvey RE, Howard VG, Lemus MB, Jois T, Andrews ZB, Sleeman MW. The Ghrelin/GOAT System Regulates Obesity-Induced Inflammation in Male Mice. Endocrinology 2017; 158:2179-2189. [PMID: 28368434 PMCID: PMC5505216 DOI: 10.1210/en.2016-1832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/23/2017] [Indexed: 11/19/2022]
Abstract
Ghrelin plays a key role in appetite, energy homeostasis, and glucose regulation. Recent evidence suggests ghrelin suppresses inflammation in obesity; however, whether this is modulated by the acylated and/or des-acylated peptide is unclear. We used mice deficient in acylated ghrelin [ghrelin octanoyl-acyltransferase (GOAT) knockout (KO) mice], wild-type (WT) littermates, and C57BL/6 mice to examine the endogenous and exogenous effects of acyl and des-acyl ghrelin on inflammatory profiles under nonobese and obese conditions. We demonstrate that in the spleen, both ghrelin and GOAT are localized primarily in the red pulp. Importantly, in the thymus, ghrelin was predominantly localized to the medulla, whereas GOAT was found in the cortex, implying differing roles in T cell development. Acute exogenous treatment with acyl/des-acyl ghrelin suppressed macrophage numbers in spleen and thymus in obese mice, whereas only acyl ghrelin increased CD3+ T cells in the thymus in mice fed both chow and a high-fat-diet (HFD). Consistent with this result, macrophages were increased in the spleen of KO mice on a HFD. Whereas there was no difference in CD3+ T cells in the plasma, spleen, or thymus of WT vs KO mice, KO chow and HFD-fed mice displayed decreased leukocytes. Our results suggest that the acylation status affects the anti-inflammatory properties of ghrelin under chow and HFD conditions.
Collapse
Affiliation(s)
- Rebecca E. Harvey
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Victor G. Howard
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Moyra B. Lemus
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Tara Jois
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Zane B. Andrews
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Mark W. Sleeman
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| |
Collapse
|
29
|
Au CC, Docanto MM, Zahid H, Raffaelli FM, Ferrero RL, Furness JB, Brown KA. Des-acyl ghrelin inhibits the capacity of macrophages to stimulate the expression of aromatase in breast adipose stromal cells. J Steroid Biochem Mol Biol 2017; 170:49-53. [PMID: 27423512 DOI: 10.1016/j.jsbmb.2016.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 11/18/2022]
Abstract
Des-acyl ghrelin is the unacylated form of the well-characterized appetite-stimulating hormone ghrelin. It affects a number of physiological processes, including increasing adipose lipid accumulation and inhibiting adipose tissue inflammation. Breast adipose tissue inflammation in obesity is associated with an increase in the expression of the estrogen biosynthetic enzyme, aromatase, and is hypothesized to create a hormonal milieu conducive to tumor growth. We previously reported that des-acyl ghrelin inhibits the expression and activity of aromatase in isolated human adipose stromal cells (ASCs), the main site of aromatase expression in the adipose tissue. The current study aimed to examine the effect of des-acyl ghrelin on the capacity of mouse macrophages (RAW264.7 cells) and human adipose tissue macrophages (ATMs) to stimulate aromatase expression in primary human breast ASCs. RAW264.7 cells were treated with 0, 10 and 100pM des-acyl ghrelin following activation with phorbol 12-myristate 13-acetate, and cells and conditioned media were collected after 6 and 24h. The effect of des-acyl ghrelin on macrophage polarization was examined by assessing mRNA expression of pro-inflammatory M1-specific marker Cd11c and anti-inflammatory M2-specific marker Cd206, as well as expression of Tnf and Ptgs2, known mediators of the macrophage-dependent stimulation of aromatase. TNF protein in conditioned media was assessed by ELISA. The effect of RAW264.7 and ATM-conditioned media on aromatase expression in ASCs was assessed after 6h. Results demonstrate des-acyl ghrelin significantly increases the expression of Cd206 and suppresses the expression of Cd11c, Tnf and Ptgs2 in activated RAW264.7 cells. Treatment of RAW264.7 and ATMs with des-acyl ghrelin also significantly reduces the capacity of these cells to stimulate aromatase transcript expression in human breast ASCs. Overall, these findings suggest that in addition to direct effects on aromatase in ASCs, des-acyl ghrelin also has the capacity to inhibit the macrophage-dependent induction of aromatase, and provides a novel mechanism for potential effects of des-acyl ghrelin to break the linkage between obesity and breast cancer.
Collapse
Affiliation(s)
- CheukMan C Au
- Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia.
| | - Maria M Docanto
- Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia.
| | - Heba Zahid
- Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia; Faculty of Applied Medical Science, Taibah University, Medina, Saudi Arabia.
| | - Francesca-Maria Raffaelli
- Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia; Molecular Cell Physiology and Endocrinology, Institute for Zoology, Technische Universität Dresden, Dresden, Germany.
| | - Richard L Ferrero
- Gastrointestinal Infection and Inflammation, Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Microbiology, Monash University, Clayton, VIC, Australia.
| | - John B Furness
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Kristy A Brown
- Metabolism and Cancer Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Physiology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
30
|
McGovern-Gooch KR, Mahajani NS, Garagozzo A, Schramm AJ, Hannah LG, Sieburg MA, Chisholm JD, Hougland JL. Synthetic Triterpenoid Inhibition of Human Ghrelin O-Acyltransferase: The Involvement of a Functionally Required Cysteine Provides Mechanistic Insight into Ghrelin Acylation. Biochemistry 2017; 56:919-931. [PMID: 28134508 DOI: 10.1021/acs.biochem.6b01008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The peptide hormone ghrelin plays a key role in regulating hunger and energy balance within the body. Ghrelin signaling presents a promising and unexploited target for development of small molecule therapeutics for treatment of obesity, diabetes, and other health conditions. Inhibition of ghrelin O-acyltransferase (GOAT), which catalyzes an essential octanoylation step in ghrelin maturation, offers a potential avenue for controlling ghrelin signaling. Through screening a small molecule library, we have identified a class of synthetic triterpenoids that efficiently inhibit ghrelin acylation by the human isoform of GOAT (hGOAT). These compounds function as covalent reversible inhibitors of hGOAT, providing the first evidence of the involvement of a nucleophilic cysteine residue in substrate acylation by a MBOAT family acyltransferase. Surprisingly, the mouse form of GOAT does not exhibit susceptibility to cysteine-modifying electrophiles, revealing an important distinction in the activity and behavior between these closely related GOAT isoforms. This study establishes these compounds as potent small molecule inhibitors of ghrelin acylation and provides a foundation for the development of novel hGOAT inhibitors as therapeutics targeting diabetes and obesity.
Collapse
Affiliation(s)
| | - Nivedita S Mahajani
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - Ariana Garagozzo
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - Anthony J Schramm
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - Lauren G Hannah
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - Michelle A Sieburg
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - John D Chisholm
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| | - James L Hougland
- Department of Chemistry, Syracuse University , Syracuse, New York 13244, United States
| |
Collapse
|
31
|
Sominsky L, Ziko I, Nguyen TX, Andrews ZB, Spencer SJ. Early life disruption to the ghrelin system with over-eating is resolved in adulthood in male rats. Neuropharmacology 2017; 113:21-30. [DOI: 10.1016/j.neuropharm.2016.09.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
|
32
|
Özcan B, Leenen PJM, Delhanty PJD, Baldéon-Rojas LY, Neggers SJ, van der Lely AJ. Unacylated ghrelin modulates circulating angiogenic cell number in insulin-resistant states. Diabetol Metab Syndr 2017; 9:43. [PMID: 28572856 PMCID: PMC5452348 DOI: 10.1186/s13098-017-0239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is associated with reduced numbers and impaired function of circulating angiogenic cells (CAC) which contributes to the progression of atherosclerosis and microvascular disease. Previous studies suggest that short-term infusion of unacylated ghrelin (UAG) normalizes CAC number in patients with T2D. To determine dose-dependent effects of short-term infusion of UAG in T2D patients using a cross-over model, and of long-term infusion of UAG in obese mice, on differentiation of monocyte progenitors into CAC. METHODS Eight overweight T2D patients were infused overnight with 3 and 10 µg/kg/h of UAG in a double-blind, placebo-controlled cross-over study. To assess the effects of long-term UAG treatment, obese mice were infused with UAG for 4 weeks. Monocyte progenitors were assessed for their ability to differentiate into CAC in vitro. RESULTS In T2D patients, UAG treatment caused a reduction in differentiation of CAC, dependent on UAG dose and differentiation method. However, mice treated with UAG showed a significant increase in differentiation of bone marrow progenitors into CAC. CONCLUSION UAG causes a minor suppressive effect on CAC development after short-term treatment in humans, but experiments in mice suggest that long-term treatment has beneficial effects on CAC formation. The Netherlands Trial Register: TC=2487.
Collapse
Affiliation(s)
- Behiye Özcan
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Unacylated ghrelin analog prevents myocardial reperfusion injury independently of permeability transition pore. Basic Res Cardiol 2016; 112:4. [PMID: 27995363 DOI: 10.1007/s00395-016-0595-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023]
Abstract
Reperfusion injury is responsible for an important part of myocardial infarct establishment due notably to triggering cardiomyocytes death at the first minutes of reperfusion. AZP-531 is an optimized analog of unacylated ghrelin currently in clinical development in several metabolic diseases. We investigated a potential cardioprotective effect of AZP-531 in ischemia/reperfusion (IR) and the molecular underlying mechanism(s) involved in this protection. In vivo postconditioning with AZP-531 in C57BL6 mouse IR model decreased infarct size. Western blot analysis on areas at risk from the different mouse groups showed that AZP-531 activates Akt, ERK1-2 as well as S6 and 4EBP1, mTORC1 effectors. We also showed an inhibition of caspase 3 cleavage and Bax translocation to the mitochondria. AZP-531 also stimulated the expression of antioxidants and was capable of decreasing mitochondrial H2O2 production, contributing to the reduction of ROS accumulation. AZP-531 exhibits cardioprotective effect when administrated for postconditioning in C57BL6 mouse IR model. Treatment with AZP-531 rescued the myocardium from cell death at early reperfusion by stimulating protein synthesis, inhibiting Bax/caspase 3-induced apoptosis as well as ROS accumulation and oxidative stress-induced necrosis. AZP-531 may prove useful in the treatment of IR injury.
Collapse
|
34
|
Hassouna R, Labarthe A, Tolle V. Hypothalamic regulation of body growth and appetite by ghrelin-derived peptides during balanced nutrition or undernutrition. Mol Cell Endocrinol 2016; 438:42-51. [PMID: 27693419 DOI: 10.1016/j.mce.2016.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 12/16/2022]
Abstract
Among the gastrointestinal hormones that regulate food intake and energy homeostasis, ghrelin plays a unique role as the first one identified to increases appetite and stimulate GH secretion. This review highlights the latest mechanism by which ghrelin modulates body growth, appetite and energy metabolism by exploring pharmacological actions of the hormone and consequences of genetic or pharmacological blockade of the ghrelin/GHS-R (Growth Hormone Secretagogue Receptor) system on physiological responses in specific nutritional situations. Within the hypothalamus, novel mechanisms of action of this hormone involve its interaction with other ghrelin-derived peptides, such as desacyl ghrelin and obestatin, which are thought to act as functional ghrelin antagonists, and possible modulation of the GHS-R with other G-protein coupled receptors. During chronic undernutrition such as anorexia nervosa, variations of ghrelin-derived peptides may be an adaptative metabolic response to maintain normal glycemic control. Interestingly, some of ghrelin's metabolic actions are thought to be relayed through modulation of GH, an anabolic and hyperglycemic agent.
Collapse
Affiliation(s)
- Rim Hassouna
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d'Alésia, 75014, Paris, France; Naomi Berrie Diabetes Center, Department of Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA
| | - Alexandra Labarthe
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d'Alésia, 75014, Paris, France
| | - Virginie Tolle
- UMR-S 894 INSERM, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d'Alésia, 75014, Paris, France.
| |
Collapse
|
35
|
Pathophysiology of Non Alcoholic Fatty Liver Disease. Int J Mol Sci 2016; 17:ijms17122082. [PMID: 27973438 PMCID: PMC5187882 DOI: 10.3390/ijms17122082] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
The physiopathology of fatty liver and metabolic syndrome are influenced by diet, life style and inflammation, which have a major impact on the severity of the clinicopathologic outcome of non-alcoholic fatty liver disease. A short comprehensive review is provided on current knowledge of the pathophysiological interplay among major circulating effectors/mediators of fatty liver, such as circulating lipids, mediators released by adipose, muscle and liver tissues and pancreatic and gut hormones in relation to diet, exercise and inflammation.
Collapse
|
36
|
Kouno T, Akiyama N, Fujieda K, Nanchi I, Okuda T, Iwasaki T, Oka S, Yukioka H. Reduced intake of carbohydrate prevents the development of obesity and impaired glucose metabolism in ghrelin O-acyltransferase knockout mice. Peptides 2016; 86:145-152. [PMID: 27816752 DOI: 10.1016/j.peptides.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/19/2016] [Accepted: 11/01/2016] [Indexed: 01/24/2023]
Abstract
A close relationship between acylated-ghrelin and sucrose intake has been reported. However, little has been examined about the physiological action of ghrelin on preference for different types of carbohydrate such as glucose, fructose, and starch. The current study was aimed to investigate the role of acylated-ghrelin in the determinants of the choice of carbohydrates, and pathogenesis of chronic disorders, including obesity and insulin resistance. In a two-bottle-drinking test, ghrelin O-acyltransferase (GOAT) knockout (KO) mice consumed a less amount of glucose and maltodextrin, and almost the same amount of fructose and saccharin solution compared to WT littermates. The increased consumption of glucose and maltodextrin was observed when acylated-ghrelin, but not unacylated-ghrelin, was exogeneously administered in normal C57BL/6J mice, suggesting an association of acylated-ghrelin with glucose-containing carbohydrate intake. When fed a diet rich in maltodextrin, starch and fat for 12 weeks, GOAT KO mice showed less food intake and weight gain, as well as improved glucose tolerance and insulin sensitivity than WT mice. Our data suggests that blockade of GOAT activity may offer a therapeutic option for treatment of obesity and its associated metabolic syndrome by preventing from overconsumption of carbohydrate-rich food.
Collapse
Affiliation(s)
- Tetsuya Kouno
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan.
| | - Nobuteru Akiyama
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Kumiko Fujieda
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Isamu Nanchi
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Tomohiko Okuda
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Takanori Iwasaki
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hideo Yukioka
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
37
|
McGovern-Gooch KR, Rodrigues T, Darling JE, Sieburg MA, Abizaid A, Hougland JL. Ghrelin Octanoylation Is Completely Stabilized in Biological Samples by Alkyl Fluorophosphonates. Endocrinology 2016; 157:4330-4338. [PMID: 27623288 DOI: 10.1210/en.2016-1657] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ghrelin is a peptide hormone involved in multiple physiological processes related to energy homeostasis. This hormone features a unique posttranslational serine octanoylation modification catalyzed by the enzyme ghrelin O-acyltransferase, with serine octanoylation essential for ghrelin to bind and activate its cognate receptor. Ghrelin deacylation rapidly occurs in circulation, with both ghrelin and desacyl ghrelin playing important roles in biological signaling. Understanding the regulation and physiological impact of ghrelin signaling requires the ability to rapidly protect ghrelin from deacylation in biological samples such as blood serum or cell lysates to preserve the relative concentrations of ghrelin and desacyl ghrelin. In in vitro ghrelin O-acyltransferase activity assays using insect microsomal protein fractions and mammalian cell lysate and blood serum, we demonstrate that alkyl fluorophosphonate treatment provides rapid, complete, and long-lasting protection of ghrelin acylation against serine ester hydrolysis without interference in enzyme assay or ELISA analysis. Our results support alkyl fluorophosphonate treatment as a general tool for stabilizing ghrelin and improving measurement of ghrelin and desacyl ghrelin concentrations in biochemical and clinical investigations and suggest current estimates for active ghrelin concentration and the ghrelin to desacyl ghrelin ratio in circulation may underestimate in vivo conditions.
Collapse
Affiliation(s)
- Kayleigh R McGovern-Gooch
- Department of Chemistry (K.R.M.-G., J.E.D., M.A.S., J.L.H.), Syracuse University, Syracuse, New York 13244; and Department of Neuroscience (T.R., A.A.), Carleton University, Ottawa, Ontario, Canada K1S5B6
| | - Trevor Rodrigues
- Department of Chemistry (K.R.M.-G., J.E.D., M.A.S., J.L.H.), Syracuse University, Syracuse, New York 13244; and Department of Neuroscience (T.R., A.A.), Carleton University, Ottawa, Ontario, Canada K1S5B6
| | - Joseph E Darling
- Department of Chemistry (K.R.M.-G., J.E.D., M.A.S., J.L.H.), Syracuse University, Syracuse, New York 13244; and Department of Neuroscience (T.R., A.A.), Carleton University, Ottawa, Ontario, Canada K1S5B6
| | - Michelle A Sieburg
- Department of Chemistry (K.R.M.-G., J.E.D., M.A.S., J.L.H.), Syracuse University, Syracuse, New York 13244; and Department of Neuroscience (T.R., A.A.), Carleton University, Ottawa, Ontario, Canada K1S5B6
| | - Alfonso Abizaid
- Department of Chemistry (K.R.M.-G., J.E.D., M.A.S., J.L.H.), Syracuse University, Syracuse, New York 13244; and Department of Neuroscience (T.R., A.A.), Carleton University, Ottawa, Ontario, Canada K1S5B6
| | - James L Hougland
- Department of Chemistry (K.R.M.-G., J.E.D., M.A.S., J.L.H.), Syracuse University, Syracuse, New York 13244; and Department of Neuroscience (T.R., A.A.), Carleton University, Ottawa, Ontario, Canada K1S5B6
| |
Collapse
|
38
|
Stark R, Santos VV, Geenen B, Cabral A, Dinan T, Bayliss JA, Lockie SH, Reichenbach A, Lemus MB, Perello M, Spencer SJ, Kozicz T, Andrews ZB. Des-Acyl Ghrelin and Ghrelin O-Acyltransferase Regulate Hypothalamic-Pituitary-Adrenal Axis Activation and Anxiety in Response to Acute Stress. Endocrinology 2016; 157:3946-3957. [PMID: 27490185 DOI: 10.1210/en.2016-1306] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ghrelin exists in two forms in circulation, acyl ghrelin and des-acyl ghrelin, both of which have distinct and fundamental roles in a variety of physiological functions. Despite this fact, a large proportion of papers simply measure and refer to plasma ghrelin without specifying the acylation status. It is therefore critical to assess and state the acylation status of plasma ghrelin in all studies. In this study we tested the effect of des-acyl ghrelin administration on the hypothalamic-pituitary-adrenal axis and on anxiety-like behavior of mice lacking endogenous ghrelin and in ghrelin-O-acyltransferase (GOAT) knockout (KO) mice that have no endogenous acyl ghrelin and high endogenous des-acyl ghrelin. Our results show des-acyl ghrelin produces an anxiogenic effect under nonstressed conditions, but this switches to an anxiolytic effect under stress. Des-acyl ghrelin influences plasma corticosterone under both nonstressed and stressed conditions, although c-fos activation in the paraventricular nucleus of the hypothalamus is not different. By contrast, GOAT KO are anxious under both nonstressed and stressed conditions, although this is not due to corticosterone release from the adrenals but rather from impaired feedback actions in the paraventricular nucleus of the hypothalamus, as assessed by c-fos activation. These results reveal des-acyl ghrelin treatment and GOAT deletion have differential effects on the hypothalamic-pituitary-adrenal axis and anxiety-like behavior, suggesting that anxiety-like behavior in GOAT KO mice is not due to high plasma des-acyl ghrelin.
Collapse
Affiliation(s)
- Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Vanessa V Santos
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Bram Geenen
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Agustina Cabral
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Tara Dinan
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Jacqueline A Bayliss
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Sarah H Lockie
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Alex Reichenbach
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Moyra B Lemus
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Mario Perello
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Sarah J Spencer
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Tamas Kozicz
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute and Department of Physiology (R.S., V.V.S., J.A.B., S.H.L., A.R., M.B.L., Z.B.A.), Monash University, Clayton, Australia Monash University, Clayton, Melbourne, Victoria 3800, Australia; Department of Anatomy (B.G.M T.K.), Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; Laboratory of Neurophysiology (A.C., M.P.) Multidisciplinary Institute of Cell Biology (Argentine Research Council [CONICET] and Scientific Research Commission, Province of Buenos Aires [CIC-PBA]), La Plata, Buenos Aires, Argentina; School of Health and Biomedical Sciences (T.D., S.J.S.), RMIT University, Melbourne, Victoria 3083, Australia; and Hayward Genetics Center (T.K.), Tulane University, New Orleans, Louisiana 70112
| |
Collapse
|
39
|
Allas S, Delale T, Ngo N, Julien M, Sahakian P, Ritter J, Abribat T, van der Lely AJ. Safety, tolerability, pharmacokinetics and pharmacodynamics of AZP-531, a first-in-class analogue of unacylated ghrelin, in healthy and overweight/obese subjects and subjects with type 2 diabetes. Diabetes Obes Metab 2016; 18:868-74. [PMID: 27063928 DOI: 10.1111/dom.12675] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/05/2016] [Accepted: 02/24/2016] [Indexed: 01/05/2023]
Abstract
AIM To explore the safety, pharmacokinetics and pharmacodynamics in humans of the unacylated ghrelin analogue AZP-531, designed to improve glycaemic control and reduce weight. METHODS Assessments, including glucose measurements, were performed in a three-part randomized study. In Part A, healthy subjects [n = 44, age 18-50 years, body mass index (BMI) 20-28 kg/m(2) ] received a single subcutaneous dose of 0.3, 3, 15, 30, 60 or 120 µg/kg AZP-531 or placebo. In Part B, overweight/obese subjects (n = 32, age 18-65 years, BMI 28-38 kg/m(2) ) and in Part C, patients with type 2 diabetes [T2D; n = 36, age 18-65 years, BMI 20-40 kg/m(2) , glycated haemoglobin (HbA1c) 7-10%] received AZP-531 or placebo for 14 days (daily doses of 3, 15, 30 or 60 µg/kg and 15, 2 × 30 or 60 µg/kg, respectively). RESULTS AZP-531 was well tolerated. Single- and multiple-dose pharmokinetic variables were similar. Maximum AZP-531 concentrations were typically reached at 1 h post-dose. Observed maximum concentration (Cmax ) and area under the curve were dose-proportional. The mean terminal half-life (t1/2 ) was 2-3 h. In Part B, AZP-531 doses of ≥15 µg/kg significantly improved glucose concentrations, without increasing insulin levels, suggesting an insulin-sensitizing effect. AZP-531 decreased mean body weight by 2.6 kg (vs 0.8 kg for placebo). In Part C, glucose variables improved in all groups, including placebo, suggesting a study effect in uncontrolled patients at baseline. Notwithstanding, AZP-531 60 µg/kg reduced HbA1c by 0.4% (vs 0.2% for placebo) and body weight by 2.1 kg (vs 1.3 kg for placebo). CONCLUSIONS AZP-531 was well tolerated in this first-in-human study. Its pharmacokinetic profile, suitable for once-daily dosing, and metabolic effects support further clinical development for T2D.
Collapse
Affiliation(s)
- S Allas
- Alizé Pharma, Ecully, France
| | | | - N Ngo
- Quintiles Early Clinical Development PK Department, Overland Park, KS, USA
| | | | | | - J Ritter
- Phase 1 Quintiles Unit, London, UK
| | | | - A J van der Lely
- Department of Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
40
|
Ku JM, Sleeman MW, Sobey CG, Andrews ZB, Miller AA. Ghrelin-related peptides do not modulate vasodilator nitric oxide production or superoxide levels in mouse systemic arteries. Clin Exp Pharmacol Physiol 2016; 43:468-75. [DOI: 10.1111/1440-1681.12548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/05/2016] [Accepted: 01/17/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Jacqueline M Ku
- Vascular Biology & Immunopharmacology Group; Department of Pharmacology; Monash University; Melbourne Victoria Australia
- School of Health and Biomedical Sciences; RMIT University; Melbourne Victoria Australia
| | - Mark W Sleeman
- Department of Physiology; Monash University; Melbourne Victoria Australia
| | | | - Zane B Andrews
- Department of Physiology; Monash University; Melbourne Victoria Australia
| | - Alyson A Miller
- School of Health and Biomedical Sciences; RMIT University; Melbourne Victoria Australia
| |
Collapse
|
41
|
Physiological roles for butyrylcholinesterase: A BChE-ghrelin axis. Chem Biol Interact 2016; 259:271-275. [PMID: 26915976 DOI: 10.1016/j.cbi.2016.02.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 11/24/2022]
Abstract
Butyrylcholinesterase (BChE) has long been regarded as an "orphan enzyme" with no specific physiological role other than to metabolize exogenous bioactive esters in the diet or in medicines. Human beings with genetic mutations that eliminate all BChE activity appear completely normal, and BChE-knockout mice have been described as "lacking a phenotype" except for faster weight gain on high-fat diets. However, our recent studies with viral gene transfer of BChE in mice reveal that BChE hydrolyzes the so-called "hunger hormone," ghrelin, at a rate which strongly affects the circulating levels of this peptide hormone. This action has important consequences for weight gain and fat metabolism. Surprisingly, it also impacts emotional behaviors such as aggression. Overexpression of BChE leads to low ghrelin levels in the blood stream and reduces aggression and social stress in mice. Under certain circumstances these combined effects contribute to increased life-span in group-housed animals. These findings may generalize to humans, as recent clinical studies by multiple investigators indicate that, among patients with severe cardiovascular disease, longevity correlates with increasing levels of plasma BChE activity.
Collapse
|
42
|
Kafeshani M, Janghorbani M, Salehi R, Kazemi M, Entezari MH. Dietary approaches to stop hypertension influence on insulin receptor substrate-1gene expression: A randomized controlled clinical trial. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2016; 20:832-7. [PMID: 26759568 PMCID: PMC4696366 DOI: 10.4103/1735-1995.170596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Background: Insulin receptor substrate (IRS) Type 1 is a main substrate for the insulin receptor, controls insulin signaling in skeletal muscle, adipose tissue, and the vascular, so it is an important candidate gene for insulin resistance (IR). We aimed to compare the effects of the Dietary Approaches to Stop Hypertension (DASH) and Usual Dietary Advices (UDA) on IRS1 gene expression in women at risk for cardiovascular disease. Materials and Methods: A randomized controlled clinical trial was performed in 44 women at risk for cardiovascular disease. Participants were randomly assigned to a UDA diet or the DASH diet. The DASH diet was rich in fruits, vegetables, whole grains, and low-fat dairy products and low in saturated fat, total fat, cholesterol, refined grains, and sweets, with a total of 2400 mg/day sodium. The UDA diet was a regular diet with healthy dietary advice. Gene expression was assessed by the real-time polymerase chain reaction at the first of study and after 12 weeks. Independent sample t-test and paired-samples t-test were used to compare means of all variables within and between two groups respectively. Results: IRS1 gene expression was increased in DASH group compared with UDA diet (P = 0.00). Weight and waist circumference decreased in DASH group significantly compared to the UDA group (P < 0.05) but the results between the two groups showed no significant difference. Conclusion: DASH diet increased IRS1 gene expression and probably has beneficial effects on IR risks.
Collapse
Affiliation(s)
- Marzieh Kafeshani
- Department of Clinical Nutrition/Community Nutrition/Food Science & Technology, Food Security Research Center, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Janghorbani
- Department of Epidemiology and Biostatistics, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasol Salehi
- Department of Genetics, and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics, and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hasan Entezari
- Department of Clinical Nutrition/Community Nutrition/Food Science & Technology, Food Security Research Center, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
43
|
Zigman JM, Bouret SG, Andrews ZB. Obesity Impairs the Action of the Neuroendocrine Ghrelin System. Trends Endocrinol Metab 2016; 27:54-63. [PMID: 26542050 PMCID: PMC4814209 DOI: 10.1016/j.tem.2015.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 01/08/2023]
Abstract
Ghrelin is a metabolic hormone that promotes energy conservation by regulating appetite and energy expenditure. Although some studies suggest that antagonizing ghrelin function attenuates body weight gain and glucose intolerance on a high calorie diet, there is little information about the metabolic actions of ghrelin in the obese state. In this review, we discuss the novel concept of obesity-induced central ghrelin resistance in neural circuits regulating behavior, and impaired ghrelin secretion from the stomach. Interestingly, weight loss restores ghrelin secretion and function, and we hypothesize that ghrelin resistance is a mechanism designed to protect a higher body weight set-point established during times of food availability, to maximize energy reserves during a time of food scarcity.
Collapse
Affiliation(s)
- Jeffrey M Zigman
- Departments of Internal Medicine (Divisions of Hypothalamic Research and Endocrinology and Metabolism) and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390-9077, USA.
| | - Sebastien G Bouret
- The Saban Research Institute, Developmental Neuroscience Program, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA; Inserm, Jean-Pierre Aubert Research Center, U1172, University Lille 2, Lille, 59045, France
| | - Zane B Andrews
- Metabolic Disease and Obesity Theme, Biomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria 3183, Australia
| |
Collapse
|
44
|
Kang S, Moon NR, Kim DS, Kim SH, Park S. Central acylated ghrelin improves memory function and hippocampal AMPK activation and partly reverses the impairment of energy and glucose metabolism in rats infused with β-amyloid. Peptides 2015; 71:84-93. [PMID: 26188171 DOI: 10.1016/j.peptides.2015.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/09/2015] [Accepted: 07/03/2015] [Indexed: 02/08/2023]
Abstract
Ghrelin is a gastric hormone released during the fasting state that targets the hypothalamus where it induces hunger; however, emerging evidence suggests it may also affect memory function. We examined the effect of central acylated-ghrelin and DES-acetylated ghrelin (native ghrelin) on memory function and glucose metabolism in an experimentally induced Alzheimer's disease (AD) rat model. AD rats were divided into 3 groups and Non-AD rats were used as a normal-control group. Each rat in the AD groups had intracerebroventricular (ICV) infusion of β-amyloid (25-35; 16.8nmol/day) into the lateral ventricle for 3 days, and then the pumps were changed to infuse either acylated-ghrelin (0.2nmol/h; AD-G), DES-acylated ghrelin (0.2nmol/h; AD-DES-G), or saline (control; AD-C) for 3 weeks. The Non-AD group had ICV infusion of β-amyloid (35-25) which does not deposit in the hippocampus. During the next 3 weeks memory function, food intake, body weight gain, body fat composition, and glucose metabolism were measured. AD-C exhibited greater β-amyloid deposition compared to Non-AD-C, and AD-G suppressed the increased β-amyloid deposition and potentiated the phosphorylation AMPK. In addition, AD-G increased the phosphorylation GSK and decreased the phosphorylation of Tau in comparison to AD-C and AD-DES-G. Cognitive function, measured by passive avoidance and water maze tests, was much lower in AD-C than Non-AD-C whereas AD-G but not AD-DES-G prevented the decrease (p<0.021). Body weight gain was lower in AD-C group than Non-AD-C group without changing epididymal fat mass. AD-G reversed the decrease in body weight which was due to increased energy intake and decreased energy expenditure. The AD-G group exhibited a decrease in the second part of serum glucose levels during an oral glucose tolerance test (OGTT) compared to the AD-C and AD-DES-G group (p<0.009). However, area under the curve of insulin during the first part of OGTT was higher in AD-DES-G than other groups, whereas during the second part it was suppressed in AD-G as much as Non-AD. In conclusion, central acylated ghrelin in rats prevented the deterioration of memory function, and energy and glucose metabolisms were partially improved, possibly due to less β-amyloid accumulation. This research suggests that interventions such as intermittent fasting to facilitate sustained elevations of acyl-ghrelin should be investigated for cognitive and metabolic benefits, especially in person with early symptoms of memory impairment.
Collapse
Affiliation(s)
- Suna Kang
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, Republic of Korea
| | - Na Rang Moon
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, Republic of Korea
| | - Da Sol Kim
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, Republic of Korea
| | - Sung Hoon Kim
- Division of Endocrinology & Metabolism, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, Republic of Korea
| | - Sunmin Park
- Food & Nutrition, Obesity/Diabetes Center, Hoseo University, Asan, Republic of Korea.
| |
Collapse
|
45
|
The suppression of ghrelin signaling mitigates age‐associated thermogenic impairment. Aging (Albany NY) 2015; 6:1019-32. [PMID: 25543537 DOI: 10.18632/aging.100706] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Aging is associated with severe thermogenic impairment, which contributes to obesity and diabetes in aging. We previously reported that ablation of the ghrelin receptor, growth hormone secretagogue receptor (GHS‐R), attenuates age‐associated obesity and insulin resistance. Ghrelin and obestatin are derived from the same preproghrelin gene. Here we showed that in brown adipocytes, ghrelin decreases the expression of thermogenic regulator but obestatin increases it, thus showing the opposite effects. We also found that during aging, plasma ghrelin and GHS‐R expression in brown adipose tissue (BAT) are increased, but plasma obestatin is unchanged. Increased plasma ghrelin and unchanged obestatin during aging may lead to an imbalance of thermogenic regulation, which may in turn exacerbate thermogenic impairment in aging. Moreover, we found that GHS‐R ablation activates thermogenic signaling, enhances insulin activation, increases mitochondrial biogenesis, and improves mitochondrial dynamics of BAT. In addition, we detected increased norepinephrine in the circulation, and observed that GHS‐R knockdown in brown adipocytes directly stimulates thermogenic activity, suggesting that GHS‐R regulates thermogenesis via both central and peripheral mechanisms.Collectively, our studies demonstrate that ghrelin signaling is an important thermogenic regulator in aging. Antagonists of GHS‐R may serve as unique anti‐obesity agents, combating obesity by activating thermogenesis.
Collapse
|
46
|
Pei XM, Yung BY, Yip SP, Chan LW, Wong CS, Ying M, Siu PM. Protective effects of desacyl ghrelin on diabetic cardiomyopathy. Acta Diabetol 2015; 52:293-306. [PMID: 25192951 DOI: 10.1007/s00592-014-0637-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/23/2014] [Indexed: 01/03/2023]
Abstract
AIM Diabetic cardiomyopathy is a specific complication of type 2 diabetes mellitus, which causes progressive cardiac dysfunction. Desacyl ghrelin has been preliminarily demonstrated to have beneficial effects on cardiovascular system and glucose metabolism, which are both related to diabetic cardiomyopathy. The aim of this study was to investigate the protective effects of desacyl ghrelin on cardiac dysfunction, cardiac fibrosis, and cellular autophagy in a type 2 diabetic mouse model. MATERIALS AND METHODS Fourteen- to eighteen-week-old db/db diabetic and db/+ non-diabetic mice were intraperitoneally treated with desacyl ghrelin at a dosage of 100 μg/kg for ten consecutive days. Ventricular fractional shortening was examined as an indicator of cardiac function by transthoracic echocardiography. RESULTS The presence of diabetic cardiomyopathy was evident by the reduction in fractional shortening shown in our examined db/db mice. Intriguingly, this reduction in fractional shortening was not observed in the hearts of db/db mice treated with desacyl ghrelin. Cardiac fibrosis (indicated by excessive collagen deposition, decreased by Adiponectin and Mmp13 expression, and up-regulated by Mmp8 expression) and impairment of autophagic signalling (indicated by decreases in Foxo3 and LC3 II-to-LC3 I ratio) were shown in the hearts of diabetic mice. All these cellular and molecular alterations were alleviated by desacyl ghrelin treatment. The key cardiac pro-survival cellular signals including AMPK, Akt, ERK1/2, and GSK3α/β were impaired in the diabetic hearts, but the administration of desacyl ghrelin attenuated these signalling impairments. CONCLUSIONS These results collectively demonstrate that desacyl ghrelin protects the heart against cardiac dysfunction in type 2 diabetic mice by inhibiting excessive collagen deposition and enhancing cardiac autophagic signalling via the pro-survival cellular AMPK/ERK1/2 signalling pathways.
Collapse
Affiliation(s)
- Xiao M Pei
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Müller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, Batterham RL, Benoit SC, Bowers CY, Broglio F, Casanueva FF, D'Alessio D, Depoortere I, Geliebter A, Ghigo E, Cole PA, Cowley M, Cummings DE, Dagher A, Diano S, Dickson SL, Diéguez C, Granata R, Grill HJ, Grove K, Habegger KM, Heppner K, Heiman ML, Holsen L, Holst B, Inui A, Jansson JO, Kirchner H, Korbonits M, Laferrère B, LeRoux CW, Lopez M, Morin S, Nakazato M, Nass R, Perez-Tilve D, Pfluger PT, Schwartz TW, Seeley RJ, Sleeman M, Sun Y, Sussel L, Tong J, Thorner MO, van der Lely AJ, van der Ploeg LHT, Zigman JM, Kojima M, Kangawa K, Smith RG, Horvath T, Tschöp MH. Ghrelin. Mol Metab 2015; 4:437-60. [PMID: 26042199 PMCID: PMC4443295 DOI: 10.1016/j.molmet.2015.03.005] [Citation(s) in RCA: 717] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The gastrointestinal peptide hormone ghrelin was discovered in 1999 as the endogenous ligand of the growth hormone secretagogue receptor. Increasing evidence supports more complicated and nuanced roles for the hormone, which go beyond the regulation of systemic energy metabolism. SCOPE OF REVIEW In this review, we discuss the diverse biological functions of ghrelin, the regulation of its secretion, and address questions that still remain 15 years after its discovery. MAJOR CONCLUSIONS In recent years, ghrelin has been found to have a plethora of central and peripheral actions in distinct areas including learning and memory, gut motility and gastric acid secretion, sleep/wake rhythm, reward seeking behavior, taste sensation and glucose metabolism.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - R Nogueiras
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, University of Santiago de Compostela (CIMUS)-Instituto de Investigación Sanitaria (IDIS)-CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - M L Andermann
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Z B Andrews
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - S D Anker
- Applied Cachexia Research, Department of Cardiology, Charité Universitätsmedizin Berlin, Germany
| | - J Argente
- Department of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain ; Department of Pediatrics, Universidad Autónoma de Madrid and CIBER Fisiopatología de la obesidad y nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - R L Batterham
- Centre for Obesity Research, University College London, London, United Kingdom
| | - S C Benoit
- Metabolic Disease Institute, Division of Endocrinology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - C Y Bowers
- Tulane University Health Sciences Center, Endocrinology and Metabolism Section, Peptide Research Section, New Orleans, LA, USA
| | - F Broglio
- Division of Endocrinology, Diabetes and Metabolism, Dept. of Medical Sciences, University of Torino, Torino, Italy
| | - F F Casanueva
- Department of Medicine, Santiago de Compostela University, Complejo Hospitalario Universitario de Santiago (CHUS), CIBER de Fisiopatologia Obesidad y Nutricion (CB06/03), Instituto Salud Carlos III, Santiago de Compostela, Spain
| | - D D'Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - I Depoortere
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - A Geliebter
- New York Obesity Nutrition Research Center, Department of Medicine, St Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - E Ghigo
- Department of Pharmacology & Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P A Cole
- Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria, Australia
| | - M Cowley
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia ; Monash Obesity & Diabetes Institute, Monash University, Clayton, Victoria, Australia
| | - D E Cummings
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - A Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - S Diano
- Dept of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - S L Dickson
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - C Diéguez
- Department of Physiology, School of Medicine, Instituto de Investigacion Sanitaria (IDIS), University of Santiago de Compostela, Spain
| | - R Granata
- Division of Endocrinology, Diabetes and Metabolism, Dept. of Medical Sciences, University of Torino, Torino, Italy
| | - H J Grill
- Department of Psychology, Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA
| | - K Grove
- Department of Diabetes, Obesity and Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - K M Habegger
- Comprehensive Diabetes Center, University of Alabama School of Medicine, Birmingham, AL, USA
| | - K Heppner
- Division of Diabetes, Obesity, and Metabolism, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - M L Heiman
- NuMe Health, 1441 Canal Street, New Orleans, LA 70112, USA
| | - L Holsen
- Departments of Psychiatry and Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - B Holst
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark
| | - A Inui
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - J O Jansson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - H Kirchner
- Medizinische Klinik I, Universitätsklinikum Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - M Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London, Queen Mary University of London, London, UK
| | - B Laferrère
- New York Obesity Research Center, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - C W LeRoux
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Ireland
| | - M Lopez
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, University of Santiago de Compostela (CIMUS)-Instituto de Investigación Sanitaria (IDIS)-CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - S Morin
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - M Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - R Nass
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - D Perez-Tilve
- Department of Internal Medicine, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - P T Pfluger
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany
| | - T W Schwartz
- Department of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - M Sleeman
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | - Y Sun
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - L Sussel
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - J Tong
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - M O Thorner
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA
| | - A J van der Lely
- Department of Medicine, Erasmus University MC, Rotterdam, The Netherlands
| | | | - J M Zigman
- Departments of Internal Medicine and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M Kojima
- Molecular Genetics, Institute of Life Science, Kurume University, Kurume, Japan
| | - K Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - R G Smith
- The Scripps Research Institute, Florida Department of Metabolism & Aging, Jupiter, FL, USA
| | - T Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - M H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, München, Germany ; Division of Metabolic Diseases, Department of Medicine, Technical University Munich, Munich, Germany
| |
Collapse
|
48
|
Stark R, Reichenbach A, Lockie SH, Pracht C, Wu Q, Tups A, Andrews ZB. Acyl ghrelin acts in the brain to control liver function and peripheral glucose homeostasis in male mice. Endocrinology 2015; 156:858-68. [PMID: 25535832 DOI: 10.1210/en.2014-1733] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent evidence suggests that peripheral ghrelin regulates glucose metabolism. Here, we designed experiments to examine how central acyl ghrelin infusion affects peripheral glucose metabolism under pair-fed or ad libitum feeding conditions. Mice received intracerebroventricular (icv) infusion of artificial cerebrospinal fluid (aCSF), ghrelin, and allowed to eat ad libitum (icv ghrelin ad lib) or ghrelin and pair-fed to the aCSF group (icv ghrelin pf). Minipumps delivered acyl ghrelin at a dose of 0.25 μg/h at 0.5 μL/h for 7 days. There was no difference in daily blood glucose, insulin, glucagon, triglycerides, or nonesterified fatty acids. Body weight gain and food intake was significantly higher in icv ghrelin ad lib mice. However, both icv ghrelin ad lib and icv ghrelin pf groups exhibited heavier white adipose mass. Icv ghrelin pf mice exhibited better glucose tolerance than aCSF or icv ghrelin ad lib mice during a glucose tolerance test, although both icv ghrelin ad lib and icv ghrelin pf increased insulin release during the glucose tolerance test. Central acyl ghrelin infusion and pair feeding also increased breakdown of liver glycogen and triglyceride, and regulated genes involved in hepatic lipid and glucose metabolism. Icv ghrelin pf mice had an increase in plasma blood glucose during a pyruvate tolerance test relative to icv ghrelin ad lib or aCSF mice. Our results suggest that under conditions of negative energy (icv ghrelin pf), central acyl ghrelin engages a neural circuit that influences hepatic glucose function. Metabolic status affects the ability of central acyl ghrelin to regulate peripheral glucose homeostasis.
Collapse
Affiliation(s)
- Romana Stark
- Department of Physiology (R.S., A.R., S.H.L., Q.W., Z.B.A.), Monash University, Clayton, Victoria 3800, Australia; Traditional Chinese Medicine Department (Q.W.), Peking Union Medical College Hospital, Dongcheng District, Beijing 100730, China; Department of Animal Physiology (C.P., A.T.), Faculty of Biology, Phillips University, D-35043 Marburg, Germany; and Department of Physiology (A.T.), Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | | | | | |
Collapse
|
49
|
Wellman MK, Patterson ZR, MacKay H, Darling JE, Mani BK, Zigman JM, Hougland JL, Abizaid A. Novel Regulator of Acylated Ghrelin, CF801, Reduces Weight Gain, Rebound Feeding after a Fast, and Adiposity in Mice. Front Endocrinol (Lausanne) 2015; 6:144. [PMID: 26441834 PMCID: PMC4585333 DOI: 10.3389/fendo.2015.00144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/01/2015] [Indexed: 01/04/2023] Open
Abstract
Ghrelin is a 28 amino acid hormonal peptide that is intimately related to the regulation of food intake and body weight. Once secreted, ghrelin binds to the growth hormone secretagogue receptor-1a, the only known receptor for ghrelin and is capable of activating a number of signaling cascades, ultimately resulting in an increase in food intake and adiposity. Because ghrelin has been linked to overeating and the development of obesity, a number of pharmacological interventions have been generated in order to interfere with either the activation of ghrelin or interrupting ghrelin signaling as a means to reducing appetite and decrease weight gain. Here, we present a novel peptide, CF801, capable of reducing circulating acylated ghrelin levels and subsequent body weight gain and adiposity. To this end, we show that IP administration of CF801 is sufficient to reduce circulating plasma acylated ghrelin levels. Acutely, intraperitoneal injections of CF801 resulted in decreased rebound feeding after an overnight fast. When delivered chronically, they decreased weight gain and adiposity without affecting caloric intake. CF801, however, did cause a change in diet preference, decreasing preference for a high-fat diet and increasing preference for regular chow diet. Given the complexity of ghrelin receptor function, we propose that CF801, along with other compounds that regulate ghrelin secretion, may prove to be a beneficial tool in the study of the ghrelin system, and potential targets for ghrelin-based obesity treatments without altering the function of ghrelin receptors.
Collapse
Affiliation(s)
| | | | - Harry MacKay
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | | - Bharath K. Mani
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M. Zigman
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- *Correspondence: Alfonso Abizaid, Department of Neuroscience, Carleton University, 1125 Colonel By Drive, 329 Life Science Research Building, Ottawa, ON K1S 5B6, Canada,
| |
Collapse
|
50
|
Laermans J, Broers C, Beckers K, Vancleef L, Steensels S, Thijs T, Tack J, Depoortere I. Shifting the circadian rhythm of feeding in mice induces gastrointestinal, metabolic and immune alterations which are influenced by ghrelin and the core clock gene Bmal1. PLoS One 2014; 9:e110176. [PMID: 25329803 PMCID: PMC4199674 DOI: 10.1371/journal.pone.0110176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/12/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In our 24-hour society, an increasing number of people are required to be awake and active at night. As a result, the circadian rhythm of feeding is seriously compromised. To mimic this, we subjected mice to restricted feeding (RF), a paradigm in which food availability is limited to short and unusual times of day. RF induces a food-anticipatory increase in the levels of the hunger hormone ghrelin. We aimed to investigate whether ghrelin triggers the changes in body weight and gastric emptying that occur during RF. Moreover, the effect of genetic deletion of the core clock gene Bmal1 on these physiological adaptations was studied. METHODS Wild-type, ghrelin receptor knockout and Bmal1 knockout mice were fed ad libitum or put on RF with a normal or high-fat diet (HFD). Plasma ghrelin levels were measured by radioimmunoassay. Gastric contractility was studied in vitro in muscle strips and in vivo (13C breath test). Cytokine mRNA expression was quantified and infiltration of immune cells was assessed histologically. RESULTS The food-anticipatory increase in plasma ghrelin levels induced by RF with normal chow was abolished in HFD-fed mice. During RF, body weight restoration was facilitated by ghrelin and Bmal1. RF altered cytokine mRNA expression levels and triggered contractility changes resulting in an accelerated gastric emptying, independent from ghrelin signaling. During RF with a HFD, Bmal1 enhanced neutrophil recruitment to the stomach, increased gastric IL-1α expression and promoted gastric contractility changes. CONCLUSIONS This is the first study demonstrating that ghrelin and Bmal1 regulate the extent of body weight restoration during RF, whereas Bmal1 controls the type of inflammatory infiltrate and contractility changes in the stomach. Disrupting the circadian rhythm of feeding induces a variety of diet-dependent metabolic, immune and gastrointestinal alterations, which may explain the higher prevalence of obesity and immune-related gastrointestinal disorders among shift workers.
Collapse
Affiliation(s)
- Jorien Laermans
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders, KU Leuven - University of Leuven, Leuven, Belgium
| | - Charlotte Broers
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders, KU Leuven - University of Leuven, Leuven, Belgium
| | - Kelly Beckers
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders, KU Leuven - University of Leuven, Leuven, Belgium
| | - Laurien Vancleef
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders, KU Leuven - University of Leuven, Leuven, Belgium
| | - Sandra Steensels
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders, KU Leuven - University of Leuven, Leuven, Belgium
| | - Theo Thijs
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jan Tack
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders, KU Leuven - University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Gut Peptide Research Lab, Translational Research Center for Gastrointestinal Disorders, KU Leuven - University of Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|