1
|
Rosales-Nieto CA, Daigneault BW, Roberts JN, Sánchez-López R, Makela B, Pu Y, Ehrhardt R, Jabur Bittar JH, Veiga-Lopez A. Birth weight, growth indices, and seminal parameters in male offspring are resilient features to maternal pre-conceptional dietary manipulation in sheep. Domest Anim Endocrinol 2024; 88:106849. [PMID: 38608396 PMCID: PMC11156533 DOI: 10.1016/j.domaniend.2024.106849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/17/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Gestational diet manipulation can lead to inadequate fetal nutrient supply resulting in low birth weight, limited postnatal growth, and consequently, reduced reproductive performance in the progeny. However, effects of short-term maternal pre-conceptional dietary manipulation on postnatal growth and reproductive parameters of male offspring in large animals remains unexplored. To determine these consequences, female crossbred (Polypay x Dorset) sheep were allocated to three groups (n = 33/group) of dietary manipulation for 21 days prior to mating under the following conditions: (1) control at 100 % of maintenance energy requirements (40 Kcal of metabolizable energy/kg body weight [BW]), (2) undernutrition (UN) at 50 % of Control intake, and (3) overnutrition (ON) at 200 % of maintenance energy. Singleton ram lambs (UN:9; C:12; ON:6) were monitored from birth until 8 months of age, including birth weight, weekly weights, weight gain, body mass index (BMI), and circulating testosterone. After weaning, monthly scrotal circumference and subcutaneous fat depth were measured. Semen morphology and motility were evaluated at 7 and 8 months of age. Birth weight, weight gain, and BMI at birth and weaning were not significantly different among nutritional treatments. None of the pre-conceptional diets affected body weight change from weaning until 36 weeks of age, BMI, fat depth, or scrotal circumference across the experiment. A sustained rise in plasma testosterone concentrations was detected when ram lambs were, on average, 82 days old and 37 kg. Both testosterone concentrations and scrotal circumference were positively correlated to body weight regardless of treatment group. In addition, seminal parameters did not differ among treatments, but a transient increase in plasma testosterone at 18 weeks of age was observed in ON ram lambs compared to control rams. In conclusion, birth weight, growth indices, and seminal parameters in singleton rams are resilient features in the progeny upon maternal pre-conceptional dietary manipulation in sheep.
Collapse
Affiliation(s)
- Cesar A Rosales-Nieto
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA; Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78321, México
| | - Bradford W Daigneault
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA; Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Jennifer N Roberts
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Rodrigo Sánchez-López
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Barbara Makela
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Yong Pu
- Department of Pathology, University of Illinois at Chicago, IL, 60612, USA
| | - Richard Ehrhardt
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA; Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - João H Jabur Bittar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Almudena Veiga-Lopez
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA; Department of Pathology, University of Illinois at Chicago, IL, 60612, USA.
| |
Collapse
|
2
|
Jiang W, Mooney MH, Shirali M. Unveiling the Genetic Landscape of Feed Efficiency in Holstein Dairy Cows: Insights into Heritability, Genetic Markers, and Pathways via Meta-Analysis. J Anim Sci 2024; 102:skae040. [PMID: 38354297 PMCID: PMC10957122 DOI: 10.1093/jas/skae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Improving the feeding efficiency of dairy cows is a key component to improve the utilization of land resources and meet the demand for high-quality protein. Advances in genomic methods and omics techniques have made it possible to breed more efficient dairy cows through genomic selection. The aim of this review is to obtain a comprehensive understanding of the biological background of feed efficiency (FE) complex traits in purebred Holstein dairy cows including heritability estimate, and genetic markers, genes, and pathways participating in FE regulation mechanism. Through a literature search, we systematically reviewed the heritability estimation, molecular genetic markers, genes, biomarkers, and pathways of traits related to feeding efficiency in Holstein dairy cows. A meta-analysis based on a random-effects model was performed to combine reported heritability estimates of FE complex. The heritability of residual feed intake, dry matter intake, and energy balance was 0.20, 0.34, and 0.22, respectively, which proved that it was reasonable to include the related traits in the selection breeding program. For molecular genetic markers, a total of 13 single-nucleotide polymorphisms and copy number variance loci, associated genes, and functions were reported to be significant across populations. A total of 169 reported candidate genes were summarized on a large scale, using a higher threshold (adjusted P value < 0.05). Then, the subsequent pathway enrichment of these genes was performed. The important genes reported in the articles were included in a gene list and the gene list was enriched by gene ontology (GO):biological process (BP), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis. Three GO:BP terms and four KEGG terms were statistically significant, which mainly focused on adenosine triphosphate (ATP) synthesis, electron transport chain, and OXPHOS pathway. Among these pathways, involved genes such as ATP5MC2, NDUFA, COX7A2, UQCR, and MMP are particularly important as they were previously reported. Twenty-nine reported biological mechanisms along with involved genes were explained mainly by four biological pathways (insulin-like growth factor axis, lipid metabolism, oxidative phosphorylation pathways, tryptophan metabolism). The information from this study will be useful for future studies of genomic selection breeding and genetic structures influencing animal FE. A better understanding of the underlying biological mechanisms would be beneficial, particularly as it might address genetic antagonism.
Collapse
Affiliation(s)
- Wentao Jiang
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL, UK
- Agri-Food and Biosciences Institute, Large Park, Hillsborough, BT26 6DR, UK
| | - Mark H Mooney
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL, UK
| | - Masoud Shirali
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL, UK
- Agri-Food and Biosciences Institute, Large Park, Hillsborough, BT26 6DR, UK
| |
Collapse
|
3
|
Santos Monteiro S, S Santos T, Fonseca L, Saraiva M, Pichel F, Pinto C, Pereira MT, Vilaverde J, Almeida MC, Dores J. Inappropriate gestational weight gain impact on maternofetal outcomes in gestational diabetes. Ann Med 2023; 55:207-214. [PMID: 36538030 PMCID: PMC9788720 DOI: 10.1080/07853890.2022.2159063] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To evaluate the association between the dimension of deviation from appropriate gestational weight gain (GWG) and adverse maternofetal outcomes in women with gestational diabetes mellitus (GDM). METHODS We performed a multicentric retrospective study based on the Portuguese GDM Database. Women were classified as within GWG, insufficient (IGWG) or excessive (EGWG) than the Institute of Medicine recommendations. EGWG and IGWG were calculated for each prepregnancy BMI category. Large-for-gestational-age (LGA) and macrosomia were defined as a birthweight more than the 90th percentile for the gestational age and newborn weight greater than 4000 g, respectively. Logistic regression models (adjusted odds ratio [aOR] plus 95% confidence interval [95%CI]) were derived to evaluate the association between EGWG or IGWG and adverse maternofetal outcomes. RESULTS A total of 18961 pregnant women were included: 39.7% with IGWG and 27.8% with EGWG. An EGWG over 3 kg was associated with a higher risk of LGA infants (aOR 1.95, 95%CI 1.17-3.26) and macrosomia (aOR 2.01, 95%CI 1.23-3.27) in prepregnancy normal weight women. An EGWG greater than 4 kg was associated with a higher risk of LGA infants (aOR 1.67, 95%CI 1.23-2.23) and macrosomia (aOR 1.90, 95%CI 1.38-2.61) in obese women. In overweight women, an EGWG above 3.5 kg was associated with a higher risk of LGA infants (aOR 1.65, 95%CI 1.16-2.34), macrosomia (aOR 1.85, 95%CI 1.30-2.64), preeclampsia (aOR 2.40, 95%CI 1.45-3.98) and pregnancy-induced hypertension (aOR 2.21, 95%CI 1.52-3.21). An IGWG below -3.1 kg or -3kg was associated with a higher risk of small-for-gestational-age [SGA] infants in women with normal (OR 1.40, 95%CI 1.03-1.90) and underweight (OR 2.29, 95%CI 1.09-4.80), respectively. CONCLUSIONS Inappropriate gestational weight gain seems to be associated with an increased risk for adverse maternofetal outcomes, regardless of prepregnancy BMI. Beyond glycemic control, weight management in women with GDM must be a focus of special attention to prevent adverse pregnancy outcomes.KEY MESSAGESThe dimension of deviation from appropriate gestational weight gain was associated with an increased risk for adverse maternofetal outcomes among women with gestational diabetes.Weight management must be a focus of special attention in women with gestational diabetes to prevent adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Sílvia Santos Monteiro
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Tiago S Santos
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Liliana Fonseca
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Miguel Saraiva
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Fernando Pichel
- Division of Nutrition, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Clara Pinto
- Division of Obstetrics, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Maria T Pereira
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Joana Vilaverde
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Maria C Almeida
- On Behalf of the Pregnancy and Diabetes Study Group of the Portuguese Diabetes Society, Maternidade Bissaya Barreto, Coimbra, Portugal
| | - Jorge Dores
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Porto, Portugal
| |
Collapse
|
4
|
Yu Y, Lyo V, Groth SW. The impact of maternal bariatric surgery on long-term health of offspring: a scoping review. Pediatr Res 2023; 94:1619-1630. [PMID: 37340100 DOI: 10.1038/s41390-023-02698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/22/2023]
Abstract
While pregnancy post-bariatric surgery has become increasingly common, little is known about whether and how maternal bariatric surgery affects the next generation. This scoping review aimed to collate available evidence about the long-term health of offspring following maternal bariatric surgery. A literature search was conducted using three databases (PubMed, PsycINFO, EMBASE) to obtain relevant human and animal studies. A total of 26 studies were included: 17 were ancillary reports from five "primary" studies (three human, two animal studies) and the remaining nine were "independent" studies (eight human, one animal studies). The human studies adopted sibling-comparison, case-control, and single-group descriptive designs. Despite limited data and inconsistent results across studies, findings suggested that maternal bariatric surgery appeared to (1) modify epigenetics (especially genes involved in immune, glucose, and obesity regulation); (2) alter weight status (unclear direction of alteration); (3) impair cardiometabolic, immune, inflammatory, and appetite regulation markers (primarily based on animal studies); and (4) not affect the neurodevelopment in offspring. In conclusion, this review supports that maternal bariatric surgery has an effect on the health of offspring. However, the scarcity of studies and heterogenous findings highlight that more research is required to determine the scope and degree of such effects. IMPACT: There is evidence that bariatric surgery modifies epigenetics in offspring, especially genes involved in immune, glucose, and obesity regulation. Bariatric surgery appears to alter weight status in offspring, although the direction of alteration is unclear. There is preliminary evidence that bariatric surgery impairs offspring's cardiometabolic, immune, inflammatory, and appetite regulation markers. Therefore, extra care may be needed to ensure optimal growth in children born to mothers with previous bariatric surgery.
Collapse
Affiliation(s)
- Yang Yu
- School of Nursing, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Victoria Lyo
- Department of Surgery, University of California Davis, Sacramento, CA, 95817, USA
- Center for Alimentary and Metabolic Science, University of California Davis, Sacramento, CA, 95817, USA
| | - Susan W Groth
- School of Nursing, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| |
Collapse
|
5
|
Velazquez MA, Idriss A, Chavatte-Palmer P, Fleming TP. The mammalian preimplantation embryo: Its role in the environmental programming of postnatal health and performance. Anim Reprod Sci 2023; 256:107321. [PMID: 37647800 DOI: 10.1016/j.anireprosci.2023.107321] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
During formation of the preimplantation embryo several cellular and molecular milestones take place, making the few cells forming the early embryo vulnerable to environmental stressors than can impair epigenetic reprogramming and controls of gene expression. Although these molecular alterations can result in embryonic death, a significant developmental plasticity is present in the preimplantation embryo that promotes full-term pregnancy. Prenatal epigenetic modifications are inherited during mitosis and can perpetuate specific phenotypes during early postnatal development and adulthood. As such, the preimplantation phase is a developmental window where developmental programming can take place in response to the embryonic microenvironment present in vivo or in vitro. In this review, the relevance of the preimplantation embryo as a developmental stage where offspring health and performance can be programmed is discussed, with emphasis on malnutrition and assisted reproductive technologies; two major environmental insults with important implications for livestock production and human reproductive medicine.
Collapse
Affiliation(s)
- Miguel A Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Abdullah Idriss
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Pathology and laboratory medicine, King Faisal Specialist Hospital and Research Centre, P.O. Box 40047, MBC J-10, Jeddah 21499, Kingdom of Saudi Arabia
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| | - Tom P Fleming
- Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
6
|
Developmental Programming in Animal Models: Critical Evidence of Current Environmental Negative Changes. Reprod Sci 2023; 30:442-463. [PMID: 35697921 PMCID: PMC9191883 DOI: 10.1007/s43032-022-00999-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
The Developmental Origins of Health and Disease (DOHaD) approach answers questions surrounding the early events suffered by the mother during reproductive stages that can either partially or permanently influence the developmental programming of children, predisposing them to be either healthy or exhibit negative health outcomes in adulthood. Globally, vulnerable populations tend to present high obesity rates, including among school-age children and women of reproductive age. In addition, adults suffer from high rates of diabetes, hypertension, cardiovascular, and other metabolic diseases. The increase in metabolic outcomes has been associated with the combination of maternal womb conditions and adult lifestyle-related factors such as malnutrition and obesity, smoking habits, and alcoholism. However, to date, "new environmental changes" have recently been considered negative factors of development, such as maternal sedentary lifestyle, lack of maternal attachment during lactation, overcrowding, smog, overurbanization, industrialization, noise pollution, and psychosocial stress experienced during the current SARS-CoV-2 pandemic. Therefore, it is important to recognize how all these factors impact offspring development during pregnancy and lactation, a period in which the subject cannot protect itself from these mechanisms. This review aims to introduce the importance of studying DOHaD, discuss classical programming studies, and address the importance of studying new emerging programming mechanisms, known as actual lifestyle factors, during pregnancy and lactation.
Collapse
|
7
|
Programming by maternal obesity: a pathway to poor cardiometabolic health in the offspring. Proc Nutr Soc 2022; 81:227-242. [DOI: 10.1017/s0029665122001914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is an ever increasing prevalence of maternal obesity worldwide such that in many populations over half of women enter pregnancy either overweight or obese. This review aims to summarise the impact of maternal obesity on offspring cardiometabolic outcomes. Maternal obesity is associated with increased risk of adverse maternal and pregnancy outcomes. However, beyond this exposure to maternal obesity during development also increases the risk of her offspring developing long-term adverse cardiometabolic outcomes throughout their adult life. Both human studies and those in experimental animal models have shown that maternal obesity can programme increased risk of offspring developing obesity and adipose tissue dysfunction; type 2 diabetes with peripheral insulin resistance and β-cell dysfunction; CVD with impaired cardiac structure and function and hypertension via impaired vascular and kidney function. As female offspring themselves are therefore likely to enter pregnancy with poor cardiometabolic health this can lead to an inter-generational cycle perpetuating the transmission of poor cardiometabolic health across generations. Maternal exercise interventions have the potential to mitigate some of the adverse effects of maternal obesity on offspring health, although further studies into long-term outcomes and how these translate to a clinical context are still required.
Collapse
|
8
|
Sánchez-Garrido MA, García-Galiano D, Tena-Sempere M. Early programming of reproductive health and fertility: novel neuroendocrine mechanisms and implications in reproductive medicine. Hum Reprod Update 2022; 28:346-375. [PMID: 35187579 PMCID: PMC9071071 DOI: 10.1093/humupd/dmac005] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, environmental changes taking place during early maturational periods may alter normal development and predispose to the occurrence of diverse pathologies later in life. Indeed, adverse conditions during these critical developmental windows of high plasticity have been reported to alter the offspring developmental trajectory, causing permanent functional and structural perturbations that in the long term may enhance disease susceptibility. However, while solid evidence has documented that fluctuations in environmental factors, ranging from nutrient availability to chemicals, in early developmental stages (including the peri-conceptional period) have discernible programming effects that increase vulnerability to develop metabolic perturbations, the impact and eventual mechanisms involved, of such developmental alterations on the reproductive phenotype of offspring have received less attention. OBJECTIVE AND RATIONALE This review will summarize recent advances in basic and clinical research that support the concept of DOHaD in the context of the impact of nutritional and hormonal perturbations, occurring during the periconceptional, fetal and early postnatal stages, on different aspects of reproductive function in both sexes. Special emphasis will be given to the effects of early nutritional stress on the timing of puberty and adult gonadotropic function, and to address the underlying neuroendocrine pathways, with particular attention to involvement of the Kiss1 system in these reproductive perturbations. The implications of such phenomena in terms of reproductive medicine will also be considered. SEARCH METHODS A comprehensive MEDLINE search, using PubMed as main interface, of research articles and reviews, published mainly between 2006 and 2021, has been carried out. Search was implemented using multiple terms, focusing on clinical and preclinical data from DOHaD studies, addressing periconceptional, gestational and perinatal programming of reproduction. Selected studies addressing early programming of metabolic function have also been considered, when relevant. OUTCOMES A solid body of evidence, from clinical and preclinical studies, has documented the impact of nutritional and hormonal fluctuations during the periconceptional, prenatal and early postnatal periods on pubertal maturation, as well as adult gonadotropic function and fertility. Furthermore, exposure to environmental chemicals, such as bisphenol A, and maternal stress has been shown to negatively influence pubertal development and gonadotropic function in adulthood. The underlying neuroendocrine pathways and mechanisms involved have been also addressed, mainly by preclinical studies, which have identified an, as yet incomplete, array of molecular and neurohormonal effectors. These include, prominently, epigenetic regulatory mechanisms and the hypothalamic Kiss1 system, which likely contribute to the generation of reproductive alterations in conditions of early nutritional and/or metabolic stress. In addition to the Kiss1 system, other major hypothalamic regulators of GnRH neurosecretion, such as γ-aminobutyric acid and glutamate, may be targets of developmental programming. WIDER IMPLICATIONS This review addresses an underdeveloped area of reproductive biology and medicine that may help to improve our understanding of human reproductive disorders and stresses the importance, and eventual pathogenic impact, of early determinants of puberty, adult reproductive function and fertility.
Collapse
Affiliation(s)
- Miguel Angel Sánchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - David García-Galiano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
9
|
Li Y, Pollock CA, Saad S. Aberrant DNA Methylation Mediates the Transgenerational Risk of Metabolic and Chronic Disease Due to Maternal Obesity and Overnutrition. Genes (Basel) 2021; 12:genes12111653. [PMID: 34828259 PMCID: PMC8624316 DOI: 10.3390/genes12111653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity is a rapidly evolving universal epidemic leading to acute and long-term medical and obstetric health issues, including increased maternal risks of gestational diabetes, hypertension and pre-eclampsia, and the future risks for offspring's predisposition to metabolic diseases. Epigenetic modification, in particular DNA methylation, represents a mechanism whereby environmental effects impact on the phenotypic expression of human disease. Maternal obesity or overnutrition contributes to the alterations in DNA methylation during early life which, through fetal programming, can predispose the offspring to many metabolic and chronic diseases, such as non-alcoholic fatty liver disease, obesity, diabetes, and chronic kidney disease. This review aims to summarize findings from human and animal studies, which support the role of maternal obesity in fetal programing and the potential benefit of altering DNA methylation to limit maternal obesity related disease in the offspring.
Collapse
Affiliation(s)
- Yan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China;
| | - Carol A. Pollock
- Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia;
| | - Sonia Saad
- Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia;
- Correspondence:
| |
Collapse
|
10
|
Maternal Nutrition and Developmental Programming of Male Progeny. Animals (Basel) 2021; 11:ani11082216. [PMID: 34438674 PMCID: PMC8388505 DOI: 10.3390/ani11082216] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The objective of the following review is to describe available literature on the interaction between maternal nutrition and developmental programming in male offspring. The majority of current research focuses on female offspring or fails to take offspring sex into account, though sexual dimorphisms in response to maternal diet are well-recognized. This leaves a large gap in the understanding of male developmental programming. This review will specifically discuss the impacts of maternal dietary energy and protein on bull and ram growth, development, and reproductive capacity in later life. Abstract Poor maternal nutrition can cause several maladaptive phenotypes in exposed offspring. While non-sex-specific and female-specific adaptations are well-documented, male-specific outcomes are still poorly understood. Of particular interest are the outcomes in bulls and rams, as developmental programming directly impacts long-term productivity of the animal as well as human food security. The following review discusses the impact of poor maternal dietary energy and protein on bull and ram developmental programming as it relates to growth, development, and reproductive capacity. The review also highlights the importance of the timing of maternal dietary insult, as early-, mid-, and late-gestational insults can all have varying effects on offspring.
Collapse
|
11
|
Alabduljabbar S, Zaidan SA, Lakshmanan AP, Terranegra A. Personalized Nutrition Approach in Pregnancy and Early Life to Tackle Childhood and Adult Non-Communicable Diseases. Life (Basel) 2021; 11:life11060467. [PMID: 34073649 PMCID: PMC8224671 DOI: 10.3390/life11060467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
The development of childhood and adult non-communicable diseases (NCD) is associated with environmental factors, starting from intrauterine life. A new theory finds the roots of epigenetic programming in parental gametogenesis, continuing during embryo development, fetal life, and finally in post-natal life. Maternal health status and poor nutrition are widely recognized as implications in the onset of childhood and adult diseases. Early nutrition, particularly breastfeeding, also plays a primary role in affecting the health status of an individual later in life. A poor maternal diet during pregnancy and lack of breastfeeding can cause a nutrient deficiency that affects the gut microbiota, and acts as a cofactor for many pathways, impacting the epigenetic controls and transcription of genes involved in the metabolism, angiogenesis, and other pathways, leading to NCDs in adult life. Both maternal and fetal genetic backgrounds also affect nutrient adsorption and functioning at the cellular level. This review discusses the most recent evidence on maternal nutrition and breastfeeding in the development of NCD, the potentiality of the omics technologies in uncovering the molecular mechanisms underlying it, with the future prospective of applying a personalized nutrition approach to prevent and treat NCD from the beginning of fetal life.
Collapse
|
12
|
Early-life nutrition and metabolic disorders in later life: a new perspective on energy metabolism. Chin Med J (Engl) 2021; 133:1961-1970. [PMID: 32826460 PMCID: PMC7462214 DOI: 10.1097/cm9.0000000000000976] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes mellitus and metabolic disorders have become an epidemic globally. However, the pathogenesis remains largely unclear and the prevention and treatment are still limited. In addition to environmental factors during adulthood, early life is the critical developmental window with high tissue plasticity, which might be modified by external environmental cues. Substantial evidence has demonstrated the vital role of early-life nutrition in programming the metabolic disorders in later life. In this review, we aim to overview the concepts of fetal programming and investigate the effects of early-life nutrition on energy metabolism in later life and the potential epigenetic mechanism. The related studies published on PubMed database up to March 2020 were included. The results showed that both maternal overnutrition and undernutrition increased the riskes of metabolic disorders in offspring and epigenetic modifications, including DNA methylation, miRNAs, and histone modification, might be the vital mediators. The beneficial effects of early-life lifestyle modifications as well as dietary and nutritional interventions on these deleterious metabolic remolding were initially observed. Overall, characterizing the early-life malnutrition that reshapes metabolic disease trajectories may yield novel targets for early prevention and intervention and provide a new point of view to the energy metabolism.
Collapse
|
13
|
Marttila S, Rovio S, Mishra PP, Seppälä I, Lyytikäinen LP, Juonala M, Waldenberger M, Oksala N, Ala-Korpela M, Harville E, Hutri-Kähönen N, Kähönen M, Raitakari O, Lehtimäki T, Raitoharju E. Adulthood blood levels of hsa-miR-29b-3p associate with preterm birth and adult metabolic and cognitive health. Sci Rep 2021; 11:9203. [PMID: 33911114 PMCID: PMC8080838 DOI: 10.1038/s41598-021-88465-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/13/2021] [Indexed: 02/02/2023] Open
Abstract
Preterm birth (PTB) is associated with increased risk of type 2 diabetes and neurocognitive impairment later in life. We analyzed for the first time the associations of PTB with blood miRNA levels in adulthood. We also investigated the relationship of PTB associated miRNAs and adulthood phenotypes previously linked with premature birth. Blood MicroRNA profiling, genome-wide gene expression analysis, computer-based cognitive testing battery (CANTAB) and serum NMR metabolomics were performed for Young Finns Study subjects (aged 34-49 years, full-term n = 682, preterm n = 84). Preterm birth (vs. full-term) was associated with adulthood levels of hsa-miR-29b-3p in a fully adjusted regression model (p = 1.90 × 10-4, FDR = 0.046). The levels of hsa-miR-29b-3p were down-regulated in subjects with PTB with appropriate birthweight for gestational age (p = 0.002, fold change [FC] = - 1.20) and specifically in PTB subjects with small birthweight for gestational age (p = 0.095, FC = - 1.39) in comparison to individuals born full term. Hsa-miR-29b-3p levels correlated with the expressions of its target-mRNAs BCL11A and CS and the gene set analysis results indicated a target-mRNA driven association between hsa-miR-29b-3p levels and Alzheimer's disease, Parkinson's disease, Insulin signaling and Regulation of Actin Cytoskeleton pathway expression. The level of hsa-miR-29b-3p was directly associated with visual processing and sustained attention in CANTAB test and inversely associated with serum levels of VLDL subclass component and triglyceride levels. In conlcusion, adult blood levels of hsa-miR-29b-3p were lower in subjects born preterm. Hsa-miR-29b-3p associated with cognitive function and may be linked with adulthood morbidities in subjects born preterm, possibly through regulation of gene sets related to neurodegenerative diseases and insulin signaling as well as VLDL and triglyceride metabolism.
Collapse
Affiliation(s)
- Saara Marttila
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Gerontology Research Center, Tampere University, Tampere, Finland
| | - Suvi Rovio
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markus Juonala
- Division of Medicine, Turku University Hospital and Department of Medicine, University of Turku, Turku, Finland
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Munich, Germany
| | - Niku Oksala
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Vascular Centre, Tampere University Hospital, Tampere, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Emily Harville
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| |
Collapse
|
14
|
Howe CG, Foley HB, Kennedy EM, Eckel SP, Chavez TA, Faham D, Grubbs BH, Al-Marayati L, Lerner D, Suglia S, Bastain TM, Marsit CJ, Breton CV. Extracellular vesicle microRNA in early versus late pregnancy with birth outcomes in the MADRES study. Epigenetics 2021; 17:269-285. [PMID: 33734019 DOI: 10.1080/15592294.2021.1899887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Circulating miRNA may contribute to the development of adverse birth outcomes. However, few studies have investigated extracellular vesicle (EV) miRNA, which play important roles in intercellular communication, or compared miRNA at multiple time points in pregnancy. In the current study, 800 miRNA were profiled for EVs from maternal plasma collected in early (median: 12.5 weeks) and late (median: 31.8 weeks) pregnancy from 156 participants in the MADRES Study, a health disparity pregnancy cohort. Associations between miRNA and birth weight, birth weight for gestational age (GA), and GA at birth were examined using covariate-adjusted robust linear regression. Differences by infant sex and maternal BMI were also investigated. Late pregnancy measures of 13 miRNA were associated with GA at birth (PFDR<0.050). Negative associations were observed for eight miRNA (miR-4454+ miR-7975, miR-4516, let-7b-5p, miR-126-3p, miR-29b-3p, miR-15a-5p, miR-15b-5p, miR-19b-3p) and positive associations for five miRNA (miR-212-3p, miR-584-5p, miR-608, miR-210-3p, miR-188-5p). Predicted target genes were enriched (PFDR<0.050) in pathways involved in organogenesis and placental development. An additional miRNA (miR-107), measured in late pregnancy, was positively associated with GA at birth in infants born to obese women (PFDR for BMI interaction = 0.011). In primary analyses, the associations between early pregnancy miRNA and birth outcomes were not statistically significant (PFDR≥0.05). However, sex-specific associations were observed for early pregnancy measures of 37 miRNA and GA at birth (PFDR for interactions<0.050). None of the miRNA were associated with fetal growth measures (PFDR≥0.050). Our findings suggest that EV miRNA in both early and late pregnancy may influence gestational duration.
Collapse
Affiliation(s)
- Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Helen B Foley
- Department of Preventive Medicine, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Elizabeth M Kennedy
- Gangarosa Department of Environmental Health, Emory Rollins School of Public Health, Atlanta, GA, USA
| | - Sandrah P Eckel
- Department of Preventive Medicine, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Thomas A Chavez
- Department of Preventive Medicine, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Dema Faham
- Department of Preventive Medicine, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Brendan H Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, Los Angeles, CA, USA
| | - Laila Al-Marayati
- Department of Obstetrics and Gynecology, Keck School of Medicine, Los Angeles, CA, USA.,Eisner Health, Los Angeles, CA, USA
| | | | - Shakira Suglia
- Department of Epidemiology, Emory Rollins School of Public Health, Atlanta, GA, USA
| | - Theresa M Bastain
- Department of Preventive Medicine, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Emory Rollins School of Public Health, Atlanta, GA, USA.,Department of Epidemiology, Emory Rollins School of Public Health, Atlanta, GA, USA
| | - Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Kalra S, Unnikrishnan AG, Baruah MP, Sahay R, Bantwal G. Metabolic and Energy Imbalance in Dysglycemia-Based Chronic Disease. Diabetes Metab Syndr Obes 2021; 14:165-184. [PMID: 33488105 PMCID: PMC7816219 DOI: 10.2147/dmso.s286888] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic flexibility is the ability to efficiently adapt metabolism based on nutrient availability and requirement that is essential to maintain homeostasis in times of either caloric excess or restriction and during the energy-demanding state. This regulation is orchestrated in multiple organ systems by the alliance of numerous metabolic pathways under the master control of the insulin-glucagon-sympathetic neuro-endocrine axis. This, in turn, regulates key metabolic enzymes and transcription factors, many of which interact closely with and culminate in the mitochondrial energy generation machinery. Metabolic flexibility is compromised due to the continuous mismatch between availability and intake of calorie-dense foods and reduced metabolic demand due to sedentary lifestyle and age-related metabolic slowdown. The resultant nutrient overload leads to mitochondrial trafficking of substrates manifesting as mitochondrial dysfunction characterized by ineffective substrate switching and incomplete substrate utilization. At the systemic level, the manifestation of metabolic inflexibility comprises reduced skeletal muscle glucose disposal rate, impaired suppression of hepatic gluconeogenesis and adipose tissue lipolysis manifesting as insulin resistance. This is compounded by impaired β-cell function and progressively reduced β-cell mass. A consequence of insulin resistance is the upregulation of the mitogen-activated protein kinase pathway leading to a pro-hypertensive, atherogenic, and thrombogenic environment. This is further aggravated by oxidative stress, advanced glycation end products, and inflammation, which potentiates the risk of micro- and macro-vascular complications. This review aims to elucidate underlying mechanisms mediating the onset of metabolic inflexibility operating at the main target organs and to understand the progression of metabolic diseases. This could potentially translate into a pharmacological tool that can manage multiple interlinked conditions of dysglycemia, hypertension, and dyslipidemia by restoring metabolic flexibility. We discuss the breadth and depth of metabolic flexibility and its impact on health and disease.
Collapse
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
- Department of Endocrinology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | | | - Manash P Baruah
- Department of Endocrinology, Excel Hospitals, Guwahati, India
| | - Rakesh Sahay
- Department of Endocrinology, Osmania Medical College, Hyderabad, Telangana, India
| | - Ganapathi Bantwal
- Department of Endocrinology, St. John’s Medical College and Hospital, Bangalore, Karnataka, India
| |
Collapse
|
16
|
Copping KJ, Hernandez-Medrano J, Hoare A, Hummitzsch K, McMillen IC, Morrison JL, Rodgers RJ, Perry VEA. Maternal periconceptional and first trimester protein restriction in beef heifers: effects on placental parameters and fetal and neonatal calf development. Reprod Fertil Dev 2021; 32:495-507. [PMID: 32029064 DOI: 10.1071/rd19017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/14/2019] [Indexed: 12/14/2022] Open
Abstract
Few studies have investigated the effects of nutrition during the periconception and early gestation periods on fetal and placental development in cattle. In this study, nulliparous yearling heifers (n=360) were individually fed a diet high or low in protein (HPeri and LPeri) beginning 60 days before conception. From 24 to 98 days after conception, half of each treatment group was changed to the alternative high- or low-protein diet (HPost and LPost) yielding four groups in a 2×2 factorial design. A subset of heifers (n=46) was necropsied at 98 days after conception and fetoplacental development assessed. Placentome number and volume decreased in response to LPeri and LPost diets respectively. Absolute lung, pancreas, septum and ventricle weights decreased in LPost versus HPost fetuses, whereas the post-conception diet altered absolute and relative liver and brain weights depending on sex. Similarly, changes in fetal hepatic gene expression of factors regulating growth, glucose output and lipid metabolism were induced by protein restriction in a sex-specific manner. At term, neonatal calf and placental measures were not different. Protein restriction of heifers during the periconception and early gestation periods alters fetoplacental development and hepatic gene expression. These changes may contribute to functional consequences for progeny, but this may not be apparent from gross morphometry at birth.
Collapse
Affiliation(s)
- K J Copping
- The University of Adelaide, Robinson Research Institute, School of Medicine, Adelaide, SA 5005, Australia
| | - J Hernandez-Medrano
- Department of Obstetrics and Gynaecology, School of Medicine, University of Nottingham, Queen's Medical Centre, Derby Road, NG7 2UH, UK
| | - A Hoare
- South East Vets, 314 Commercial Street, Mount Gambier, SA 5290, Australia
| | - K Hummitzsch
- The University of Adelaide, Robinson Research Institute, School of Medicine, Adelaide, SA 5005, Australia
| | - I C McMillen
- The Chancellery, University of Newcastle, Callaghan, NSW 2308, Australia
| | - J L Morrison
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, SA 5001, Australia
| | - R J Rodgers
- The University of Adelaide, Robinson Research Institute, School of Medicine, Adelaide, SA 5005, Australia
| | - V E A Perry
- The University of Adelaide, Robinson Research Institute, School of Medicine, Adelaide, SA 5005, Australia; and Corresponding author.
| |
Collapse
|
17
|
Maternal resistance to diet-induced obesity partially protects newborn and post-weaning male mice offspring from metabolic disturbances. J Dev Orig Health Dis 2020; 12:660-670. [PMID: 33023711 DOI: 10.1017/s204017442000094x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rising rate of childhood overweight follows the increase in maternal obesity, since perinatal events impact offspring in a diversity of metabolic disorders. Despite many studies that have linked dietary consumption, overnutrition, or maternal obesity as the mediators of fetal metabolic programming, there are gaps regarding the knowledge about the contribution of different maternal phenotypes to the development of metabolic disturbances in offspring. This study aimed to investigate whether maternal high-fat diet (HFD) consumption without the development of the obese phenotype would protect offspring from metabolic disturbances. Female mice were fed standard chow diet or a HFD for 4 weeks before mating. HFD females were classified into obesity-resistant (OR) or obesity-prone (OP), according to weight gain. OP females presented with higher adiposity, fasting serum glucose and insulin, cholesterol and non-esterified fatty acid (NEFA). Newborn offspring from OP dams showed higher serum glucose and insulin and alteration in hepatic gene expression that may have contributed to the rise in hepatic fat content and decline of glycogen levels in the liver. Despite offspring from OR and OP females having showed similar growth after the day of delivery, offspring from OP females had higher caloric intake, fasting glucose, serum triglycerides and altered hepatic gene expression, as well as glucose and pyruvate intolerance and lower insulin sensitivity at d28 compared with offspring from OR females. Maternal pre-pregnancy serum glucose, insulin, and NEFA positively correlated with serum glucose and fat liver content and negatively correlated with hepatic glycogen in offspring. In conclusion, our results show that maternal resistance to diet-induced obesity partially protects offspring from early metabolic disturbances.
Collapse
|
18
|
Wu Y, Wan S, Gu S, Mou Z, Dong L, Luo Z, Zhang J, Hua X. Gestational weight gain and adverse pregnancy outcomes: a prospective cohort study. BMJ Open 2020; 10:e038187. [PMID: 32878761 PMCID: PMC7470642 DOI: 10.1136/bmjopen-2020-038187] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To assess the associations of gestational weight gain (GWG) in early and late pregnancy with subsequent risks of adverse pregnancy outcomes in Chinese women. DESIGN Prospective cohort study. SETTING Shanghai, China. PARTICIPANTS We studied 2630 nulliparous singleton pregnant women with complete data on weight gain in early (≤17 weeks of gestation) and late (>17 weeks) pregnancy in the Shanghai Birth Cohort. METHODS GWG was standardised into z-scores by gestational age and categorised as low (z-score <-1), normal (-1 to +1) and high (>1). The adjusted relative risks (aRRs) and 95%CIs were estimated through log-binomial regression models. Interaction effects between GWG and some other adjustment factors were tested, further stratified analyses were performed separately where interaction terms were significant. OUTCOME MEASURES Adverse maternal and neonatal outcomes. RESULTS Independent from GWG in late pregnancy, higher GWG in early pregnancy was associated with higher risks of gestational diabetes mellitus (aRR: 1.66; 95% CI: 1.11 to 2.48), caesarean section (aRR: 1.21; 95% CI: 1.05 to 1.39) and prolonged hospitalisation (aRR: 1.56; 95% CI: 1.03 to 2.38). Higher GWG in late pregnancy was independently associated with higher risks of caesarean section (aRR: 1.24; 95% CI: 1.09 to 1.41), large for gestational age (aRR: 2.01; 95% CI: 1.50 to 2.7) and macrosomia (aRR: 1.90; 95% CI: 1.30 to 2.78). In addition, the risk of gestational hypertension increased significantly with increased total GWG (aRR: 1.78; 95% CI: 1.14 to 2.76). The effects of GWG in late pregnancy on maternal and neonatal outcomes were significantly different between the women bearing a female and the women bearing male fetus. CONCLUSION The GWG associations with adverse pregnancy outcomes differ at early and late pregnancy, and there may be effect modification by fetal sex in the association of GWG in late pregnancy with some pregnancy outcomes.
Collapse
Affiliation(s)
- Yuelin Wu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Shanghai, China
| | - Sheng Wan
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Shanghai, China
| | - Shengyi Gu
- Department of Obstetrics and Gynaecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengqian Mou
- Department of Obstetrics and Gynaecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingling Dong
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Shanghai, China
| | - Zhongcheng Luo
- Obstetrics and Gynaecology, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Jun Zhang
- Department of Obstetrics and Gynaecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Hua
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Shanghai, China
| |
Collapse
|
19
|
Bar-Sadeh B, Rudnizky S, Pnueli L, Bentley GR, Stöger R, Kaplan A, Melamed P. Unravelling the role of epigenetics in reproductive adaptations to early-life environment. Nat Rev Endocrinol 2020; 16:519-533. [PMID: 32620937 DOI: 10.1038/s41574-020-0370-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 11/08/2022]
Abstract
Reproductive function adjusts in response to environmental conditions in order to optimize success. In humans, this plasticity includes age of pubertal onset, hormone levels and age at menopause. These reproductive characteristics vary across populations with distinct lifestyles and following specific childhood events, and point to a role for the early-life environment in shaping adult reproductive trajectories. Epigenetic mechanisms respond to external signals, exert long-term effects on gene expression and have been shown in animal and cellular studies to regulate normal reproductive function, strongly implicating their role in these adaptations. Moreover, human cohort data have revealed differential DNA methylation signatures in proxy tissues that are associated with reproductive phenotypic variation, although the cause-effect relationships are difficult to discern, calling for additional complementary approaches to establish functionality. In this Review, we summarize how adult reproductive function can be shaped by childhood events. We discuss why the influence of the childhood environment on adult reproductive function is an important consideration in understanding how reproduction is regulated and necessitates consideration by clinicians treating women with diverse life histories. The resolution of the molecular mechanisms responsible for human reproductive plasticity could also lead to new approaches for intervention by targeting these epigenetic modifications.
Collapse
Affiliation(s)
- Ben Bar-Sadeh
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sergei Rudnizky
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Reinhard Stöger
- Department of Biological Sciences, University of Nottingham, Nottingham, UK
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
20
|
Chowdhury R, Taneja S, Dhabhai N, Mazumder S, Upadhyay RP, Sharma S, Tupaki-Sreepurna A, Dewan R, Mittal P, Chellani H, Bahl R, Bhan MK, Bhandari N. Burden of preconception morbidity in women of reproductive age from an urban setting in North India. PLoS One 2020; 15:e0234768. [PMID: 32555694 PMCID: PMC7302496 DOI: 10.1371/journal.pone.0234768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 06/01/2020] [Indexed: 12/26/2022] Open
Abstract
Background There is a growing interest in the life course approach for the prevention, early detection and subsequent management of morbidity in women of reproductive age to ensure optimal health and nutrition when they enter pregnancy. Reliable estimates of such morbidities are lacking. We report the prevalence of health or nutrition-related morbidities, specifically, anemia, undernutrition, overweight and obesity, sexually transmitted infections (STIs) or reproductive tract infections (RTIs), diabetes or prediabetes, hypothyroidism, hypertension, and depressive symptoms, during the preconception period among women aged 18 to 30 years. Methods A cross-sectional study was conducted among 2000 nonpregnant married women aged 18 to 30 years with no or one child who wished to have more children in two low- to middle-income urban neighborhoods in Delhi, India, in the context of a randomized controlled trial. STIs and RTIs were measured by symptoms and signs, blood pressure by a digital device, height by stadiometer and weight by a digital weighing scale. A blood specimen was taken to screen for anemia, diabetes, thyroid disorders and syphilis. Maternal depressive symptoms were assessed using the Patient Health Questionnaire-9 (PHQ-9). Multivariable logistic regression analysis was performed to identify sociodemographic factors associated with individual morbidity. Results Overall, 58.7% of women were anemic; 16.5%, undernourished; 26%, overweight or obese; 13.2%, hypothyroid; and 10.5% with both symptoms and signs of STIs/RTIs. There was an increased risk of RTI/STI symptoms and signs in undernourished women and an increased risk of diabetes or prediabetes in overweight or obese women. An increased risk of undernutrition was also observed in women from lower categories of wealth quintiles. A decreased risk of moderate to severe anemia was seen in overweight women and those who completed at least secondary education. Conclusions Our findings show a high burden of undernutrition, anemia, RTIs, hypothyroidism and prediabetes among women in the study. This information will aid policymakers in planning special programs for women of reproductive age.
Collapse
Affiliation(s)
- Ranadip Chowdhury
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Sunita Taneja
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Neeta Dhabhai
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Sarmila Mazumder
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Ravi Prakash Upadhyay
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | - Sitanshi Sharma
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
| | | | - Rupali Dewan
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Pratima Mittal
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Harish Chellani
- Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Rajiv Bahl
- Department of Maternal, Newborn, Child and Adolescent Health, World Health Organization, Geneva, Switzerland
| | - Maharaj Kishan Bhan
- Knowledge Integration and Translational Platform (KnIT), Biotechnology Industry Research Assistance Council (BIRAC), Department of Biotechnology, Government of India, New Delhi, India
| | - Nita Bhandari
- Centre for Health Research and Development, Society for Applied Studies, New Delhi, India
- * E-mail:
| |
Collapse
|
21
|
Puttabyatappa M, Sargis RM, Padmanabhan V. Developmental programming of insulin resistance: are androgens the culprits? J Endocrinol 2020; 245:R23-R48. [PMID: 32240982 PMCID: PMC7219571 DOI: 10.1530/joe-20-0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Insulin resistance is a common feature of many metabolic disorders. The dramatic rise in the incidence of insulin resistance over the past decade has enhanced focus on its developmental origins. Since various developmental insults ranging from maternal disease, stress, over/undernutrition, and exposure to environmental chemicals can all program the development of insulin resistance, common mechanisms may be involved. This review discusses the possibility that increases in maternal androgens associated with these various insults are key mediators in programming insulin resistance. Additionally, the intermediaries through which androgens misprogram tissue insulin sensitivity, such as changes in inflammatory, oxidative, and lipotoxic states, epigenetic, gut microbiome and insulin, as well as data gaps to be filled are also discussed.
Collapse
Affiliation(s)
| | - Robert M. Sargis
- Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | | |
Collapse
|
22
|
Contreras RE, Schriever SC, Pfluger PT. Physiological and Epigenetic Features of Yoyo Dieting and Weight Control. Front Genet 2019; 10:1015. [PMID: 31921275 PMCID: PMC6917653 DOI: 10.3389/fgene.2019.01015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Obesity and being overweight have become a worldwide epidemic affecting more than 1.9 billion adults and 340 million children. Efforts to curb this global health burden by developing effective long-term non-surgical weight loss interventions continue to fail due to weight regain after weight loss. Weight cycling, often referred to as Yoyo dieting, is driven by physiological counter-regulatory mechanisms that aim at preserving energy, i.e. decreased energy expenditure, increased energy intake, and impaired brain-periphery communication. Models based on genetically determined set points explained some of the weight control mechanisms, but exact molecular underpinnings remained elusive. Today, gene–environment interactions begin to emerge as likely drivers for the obesogenic memory effect associated with weight cycling. Here, epigenetic mechanisms, including histone modifications and DNA methylation, appear as likely factors that underpin long-lasting deleterious adaptations or an imprinted obesogenic memory to prevent weight loss maintenance. The first part summarizes our current knowledge on the physiology of weight cycling by discussing human and murine studies on the Yoyo-dieting phenomenon and physiological adaptations associated with weight loss and weight re-gain. The second part provides an overview on known associations between obesity and epigenetic modifications. We further interrogate the roles of epigenetic mechanisms in the CNS control of cognitive functions as well as reward and addictive behaviors, and subsequently discuss whether such mechanisms play a role in weight control. The final two parts describe major opportunities and challenges associated with studying epigenetic mechanisms in the CNS with its highly heterogenous cell populations, and provide a summary of recent technological advances that will help to delineate whether an obese memory is based upon epigenetic mechanisms.
Collapse
Affiliation(s)
- Raian E Contreras
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Centre for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Sonja C Schriever
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Paul T Pfluger
- Research Unit Neurobiology of Diabetes, Helmholtz Zentrum München, Neuherberg, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.,German Centre for Diabetes Research (DZD), Neuherberg, Germany.,Neurobiology of Diabetes, TUM School of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|
23
|
Zhu Z, Cao F, Li X. Epigenetic Programming and Fetal Metabolic Programming. Front Endocrinol (Lausanne) 2019; 10:764. [PMID: 31849831 PMCID: PMC6901800 DOI: 10.3389/fendo.2019.00764] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/21/2019] [Indexed: 12/30/2022] Open
Abstract
Fetal metabolic programming caused by the adverse intrauterine environment can induce metabolic syndrome in adult offspring. Adverse intrauterine environment introduces fetal long-term relatively irreversible changes in organs and metabolism, and thus causes fetal metabolic programming leading metabolic syndrome in adult offspring. Fetal metabolic programming of obesity and insulin resistance plays a key role in this process. The mechanism of fetal metabolic programming is still not very clear. It is suggested that epigenetic programming, also induced by the adverse intrauterine environment, is a critical underlying mechanism of fetal metabolic programming. Fetal epigenetic programming affects gene expression changes and cellular function through epigenetic modifications without DNA nucleotide sequence changes. Epigenetic modifications can be relatively stably retained and transmitted through mitosis and generations, and thereby induce the development of metabolic syndrome in adult offspring. This manuscript provides an overview of the critical role of epigenetic programming in fetal metabolic programming.
Collapse
Affiliation(s)
- Ziqiang Zhu
- Children's Hospital of Soochow University, Suzhou, China
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Fang Cao
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Xiaozhong Li
- Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
24
|
Bouvier D, Forest JC, Dion-Buteau E, Bernard N, Bujold E, Pereira B, Giguère Y. Association of Maternal Weight and Gestational Weight Gain with Maternal and Neonate Outcomes: A Prospective Cohort Study. J Clin Med 2019; 8:jcm8122074. [PMID: 31783582 PMCID: PMC6947389 DOI: 10.3390/jcm8122074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
We investigated the association of outcomes with pre-pregnancy body mass index (ppBMI), Institute of Medicine (IOM) recommendations about gestational weight gain, and weight gain trajectories during pregnancy. A prospective cohort of 7866 pregnant women was recruited. ppBMI and weight gain at each follow up visit were collected. The outcomes were gestational diabetes mellitus (GDM), hypertensive disorders of pregnancy (HDP), caesarean delivery, macrosomia, small (SGA) and large (LGA) for gestational age, neonatal hypoglycemia. Group-based multi-trajectory modelling was used for weight kinetics during pregnancy. In the third trimester, 53.8% of women were above IOM recommendations, with an increased relative risk (RR) of HDP (1.91 (1.40-2.61)), caesarean (1.34 (1.15-1.56)), macrosomia (2.17 (1.77-2.67)), LGA (2.26 (1.83-2.80)), and hypoglycemia (1.89 (1.12-3.18)). Women with a weight gain above IOM recommendations in the second trimester who normalized their weight gain in third trimester had, compared to those who remained above IOM recommendations, fewer events of HDP (2.8% versus 5.3%, p = 0.008), caesarean delivery (16.9% versus 22%, p = 0.006), macrosomia (8.3% versus 14.2%, p < 0.001), and LGA (7% versus 13.2%, p < 0.001). Multi-trajectory modelling identified three profiles with continued variation in RR of complications, including GDM. Weight gain above IOM recommendations increased the risk of perinatal complications. A correction of excessive weight gain in the second trimester reduces these risks.
Collapse
Affiliation(s)
- Damien Bouvier
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Université Clermont-Auvergne, Faculty of Medicine, CNRS 6293, INSERM 1103, GReD, 63000 Clermont-Ferrand, France;
- Centre de Recherche du CHU de Québec-Université Laval, Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Québec City, G1V 0A6, Canada;
| | - Jean-Claude Forest
- Centre de Recherche du CHU de Québec-Université Laval, Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Québec City, G1V 0A6, Canada;
| | - Emilie Dion-Buteau
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, G1L 3L5, Canada; (E.D.-B.); (N.B.)
| | - Nathalie Bernard
- Centre de Recherche du CHU de Québec-Université Laval, Québec City, G1L 3L5, Canada; (E.D.-B.); (N.B.)
| | - Emmanuel Bujold
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec City, G1V 0A6, Canada;
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France;
| | - Yves Giguère
- Centre de Recherche du CHU de Québec-Université Laval, Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Québec City, G1V 0A6, Canada;
- Correspondence: ; Tel.: +1-418-525-4444
| |
Collapse
|
25
|
Pendleton AL, Humphreys LR, Davis MA, Camacho LE, Anderson MJ, Limesand SW. Increased pyruvate dehydrogenase activity in skeletal muscle of growth-restricted ovine fetuses. Am J Physiol Regul Integr Comp Physiol 2019; 317:R513-R520. [PMID: 31314546 PMCID: PMC6842904 DOI: 10.1152/ajpregu.00106.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022]
Abstract
Fetal sheep with placental insufficiency-induced intrauterine growth restriction (IUGR) have lower fractional rates of glucose oxidation and greater gluconeogenesis, indicating lactate shuttling between skeletal muscle and liver. Suppression of pyruvate dehydrogenase (PDH) activity was proposed because of greater pyruvate dehydrogenase kinase (PDK) 4 and PDK1 mRNA concentrations in IUGR muscle. Although PDK1 and PDK4 inhibit PDH activity to reduce pyruvate metabolism, PDH protein concentrations and activity have not been examined in skeletal muscle from IUGR fetuses. Therefore, we evaluated the protein concentrations and activity of PDH and the kinases and phosphatases that regulate PDH phosphorylation status in the semitendinosus muscle from placenta insufficiency-induced IUGR sheep fetuses and control fetuses. Immunoblots were performed for PDH, phosphorylated PDH (E1α), PDK1, PDK4, and pyruvate dehydrogenase phosphatase 1 and 2 (PDP1 and PDP2, respectively). Additionally, the PDH, lactate dehydrogenase (LDH), and citrate synthase (CS) enzymatic activities were measured. Phosphorylated PDH concentrations were 28% lower (P < 0.01) and PDH activity was 67% greater (P < 0.01) in IUGR fetal muscle compared with control. PDK1, PDK4, PDP1, PDP2, and PDH concentrations were not different between groups. CS and LDH activities were also unaffected. Contrary to the previous speculation, PDH activity was greater in skeletal muscle from IUGR fetuses, which parallels lower phosphorylated PDH. Therefore, greater expression of PDK1 and PDK4 mRNA did not translate to greater PDK1 or PDK4 protein concentrations or inhibition of PDH as proposed. Instead, these findings show greater PDH activity in IUGR fetal muscle, which indicates that alternative regulatory mechanisms are responsible for lower pyruvate catabolism.
Collapse
Affiliation(s)
- Alexander L Pendleton
- Physiological Sciences Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona
| | - Laurel R Humphreys
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| | - Melissa A Davis
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| | - Leticia E Camacho
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| | - Sean W Limesand
- Physiological Sciences Graduate Interdisciplinary Program, The University of Arizona, Tucson, Arizona
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona
| |
Collapse
|
26
|
Sureshchandra S, Marshall NE, Messaoudi I. Impact of pregravid obesity on maternal and fetal immunity: Fertile grounds for reprogramming. J Leukoc Biol 2019; 106:1035-1050. [PMID: 31483523 DOI: 10.1002/jlb.3ri0619-181r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Maternal pregravid obesity results in several adverse health outcomes during pregnancy, including increased risk of gestational diabetes, preeclampsia, placental abruption, and complications at delivery. Additionally, pregravid obesity and in utero exposure to high fat diet have been shown to have detrimental effects on fetal programming, predisposing the offspring to adverse cardiometabolic, endocrine, and neurodevelopmental outcomes. More recently, a deeper appreciation for the modulation of offspring immunity and infectious disease-related outcomes by maternal pregravid obesity has emerged. This review will describe currently available animal models for studying the impact of maternal pregravid obesity on fetal immunity and review the data from clinical and animal model studies. We also examine the burden of pregravid obesity on the maternal-fetal interface and the link between placental and systemic inflammation. Finally, we discuss future studies needed to identify key mechanistic underpinnings that link maternal inflammatory changes and fetal cellular reprogramming events.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Nicole E Marshall
- Maternal-Fetal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
27
|
Wang X, Zhang X, Zhou M, Juan J, Wang X. Association of prepregnancy body mass index, rate of gestational weight gain with pregnancy outcomes in Chinese urban women. Nutr Metab (Lond) 2019; 16:54. [PMID: 31452666 PMCID: PMC6700840 DOI: 10.1186/s12986-019-0386-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022] Open
Abstract
Background The prevalence of obesity and excessive gestational weight gain (GWG) has been increasing worldwide. The aims of this study were to evaluate associations of prepregnancy body mass index (BMI) and rate of GWG in the 2nd and 3rd trimesters with pregnancy outcomes in Chinese urban women, and to examine the dose-response relationship between rate of GWG and pregnancy outcomes. Methods A retrospective analysis included 8926 women who delivered live singletons at ≥28 weeks of gestation between June 2012 and March 2013 among Chinese urban women. BMI was classified into underweight (BMI < 18.5 kg/m2), normal weight (18.5 kg/m2 ≤ BMI < 24 kg/m2), overweight (24 kg/m2 ≤ BMI < 28 kg/m2) and obese (BMI ≥ 28 kg/m2) according to the Chinese standard. Rate of GWG in the 2nd and 3rd trimesters was classified as insufficient, adequate and excessive if it was below, within, or above the 2009 IOM guidelines (0.44–0.58 kg/w [underweight], 0.35–0.50 kg/w [normal], 0.23–0.33 kg/w [overweight], and 0.17–0.27 kg/w [obese]). Logistic regression models and restricted cubic spline analyses were used to assess the association of prepregnancy BMI and rate of GWG with cesarean delivery, preterm birth, small-for-gestational age (SGA) and large-for-gestational age (LGA). Results 22.6 and 50.0% of women had insufficient and excessive rate of GWG, respectively. After adjustment for potential confounders, prepregnancy underweight was associated with increased risk of SGA (OR = 1.71, 95% CI: 1.40–2.09), while both overweight and obesity were associated with higher risk of cesarean delivery (overweight: OR [95% CI] = 1.80 [1.56–2.08]; obese: 2.34 [1.69–3.24]) and LGA (overweight: 1.75 [1.44–2.13]; obese: 2.48 [1.71–3.60]). Both insufficient (OR = 1.34, 95% CI: 1.08–1.65) and excessive rates of GWG (OR = 1.44, 95% CI: 1.20–1.73) were associated with higher risk of preterm birth. Insufficient rate of GWG was associated with increased odds of SGA (OR = 1.49, 95% CI: 1.16–1.82), while excessive rate of GWG was associated with higher risk for cesarean delivery (OR = 1.22, 95% CI: 1.10–1.35) and LGA (OR = 1.58, 95% CI: 1.33–1.87). Additionally, there were significant nonlinear associations between rate of GWG and preterm birth (U-shaped, P for nonlinear < 0.001). Conclusions Prepregnancy overweight, obesity and underweight, and insufficient and excessive rate of GWG were associated with increased risk of pregnancy outcomes in Chinese urban women. Electronic supplementary material The online version of this article (10.1186/s12986-019-0386-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xueyin Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 1 Xi'anmen Street, Xicheng District, Beijing, 100034 China
| | - Xiaosong Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 1 Xi'anmen Street, Xicheng District, Beijing, 100034 China
| | - Min Zhou
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 1 Xi'anmen Street, Xicheng District, Beijing, 100034 China
| | - Juan Juan
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 1 Xi'anmen Street, Xicheng District, Beijing, 100034 China
| | - Xu Wang
- Department of Obstetrics and Gynecology, Peking University First Hospital, No. 1 Xi'anmen Street, Xicheng District, Beijing, 100034 China
| |
Collapse
|
28
|
Goran MI, Plows JF, Ventura EE. Effects of consuming sugars and alternative sweeteners during pregnancy on maternal and child health: evidence for a secondhand sugar effect. Proc Nutr Soc 2019; 78:262-271. [PMID: 30501650 PMCID: PMC7441786 DOI: 10.1017/s002966511800263x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Consumption of sugar and alternative low- or no-energy sweeteners has increased in recent decades. However, it is still uncertain how consumption of sugar and alternative sweeteners during pregnancy affects pregnancy outcomes and long-term offspring health. This review aims to collate the available evidence surrounding the consequences of sugar and alternative sweetener consumption during pregnancy, a so-called secondhand sugar effect. We found evidence that sugar consumption during pregnancy may contribute to increased gestational weight gain and the development of pregnancy complications, including gestational diabetes, preeclampsia and preterm birth. Further, we found a growing body of the animal and human evidence that maternal sugar intake during pregnancy may impact neonatal and childhood metabolism, taste perception and obesity risk. Emerging evidence also suggests that both maternal and paternal preconception sugar intakes are linked to offspring metabolic outcomes, perhaps via epigenetic alterations to the germline. While there have been fewer studies of the impacts of alternative sweetener consumption before and during pregnancy, there is some evidence to suggest effects on infant outcomes including preterm birth risk, increased infant body composition and offspring preference for sweet foods, although mechanisms are unclear. We conclude that preconception and gestational sugar and alternative sweetener consumption may negatively impact pregnancy outcomes and offspring health and that there is a need for further observational, mechanistic and intervention research in this area.
Collapse
Affiliation(s)
- M. I. Goran
- Department of Preventive Medicine, University of Southern California Health Sciences Campus, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - J. F. Plows
- Department of Preventive Medicine, University of Southern California Health Sciences Campus, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - E. E. Ventura
- Department of Preventive Medicine, University of Southern California Health Sciences Campus, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| |
Collapse
|
29
|
Posont RJ, Yates DT. Postnatal Nutrient Repartitioning due to Adaptive Developmental Programming. Vet Clin North Am Food Anim Pract 2019; 35:277-288. [PMID: 31103181 DOI: 10.1016/j.cvfa.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Fetal stress induces developmental adaptations that result in intrauterine growth restriction (IUGR) and low birthweight. These adaptations reappropriate nutrients to the most essential tissues, which benefits fetal survival. The same adaptations are detrimental to growth efficiency and carcass value in livestock, however, because muscle is disproportionally targeted. IUGR adipocytes, liver tissues, and pancreatic β-cells also exhibit functional adaptations. Identifying mechanisms underlying adaptive changes is fundamental to improving outcomes and value in low birthweight livestock. The article outlines studies that have begun to identify stress-induced fetal adaptations affecting growth, metabolism, and differential nutrient utilization in IUGR-born animals.
Collapse
Affiliation(s)
- Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, PO Box 830908, Lincoln, NE 68583, USA
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, PO Box 830908, Lincoln, NE 68583, USA.
| |
Collapse
|
30
|
A therapeutic approach towards microRNA29 family in vascular diabetic complications: A boon or curse? J Diabetes Metab Disord 2019; 18:243-254. [PMID: 31275895 DOI: 10.1007/s40200-019-00409-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus (DM) is one of the major metabolic disorders and its severity leads to death. Enhancement in hyperglycaemic conditions of DM gives rise to endothelial impairment in small and large blood vessels contributing towards microvascular and macrovascular complications respectively. The pathogenesis of diabetic complications is associated with interruption of various signal transduction pathways due to epigenetic modifications such as aberrant histone modifications, DNA methylation and expression of miRNAs along with the long non-coding RNAs (lncRNAs). Amongst these epigenetic alterations, modulated expressions of miRNAs confer to apoptosis and endothelial dysfunction of organs that gives rise to vascular complications. In this review, we principally focussed on physiological role of miR29 family in DM and have discussed crosstalk between miR29 family and numerous genes involved in signal transduction pathways of Diabetic vascular complications. Incidences of diabetic retinopathy exploiting the role of miR29 in regulation of EMT process, differential expression patterns of miR29 and promising therapeutic role of miR29 have been discussed. We have summarised the therapeutic role of miR29 in podocyte impairment and how miR29 regulates the expressions of profibrotic, inflammatory and ECM encoding genes in renal fibrosis under diabetic conditions. We have also highlighted impact of miR29 expression patterns in cardiac angiopathy, cardiomyocyte's apoptosis and cardiac fibrosis. Additionally, we have also presented the contradictory actions of miR29 family in amelioration as well as in enhancement of diabetic complications.
Collapse
|
31
|
Lock MC, Darby JRT, Soo JY, Brooks DA, Perumal SR, Selvanayagam JB, Seed M, Macgowan CK, Porrello ER, Tellam RL, Morrison JL. Differential Response to Injury in Fetal and Adolescent Sheep Hearts in the Immediate Post-myocardial Infarction Period. Front Physiol 2019; 10:208. [PMID: 30890961 PMCID: PMC6412108 DOI: 10.3389/fphys.2019.00208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
Aim: Characterizing the response to myocardial infarction (MI) in the regenerative sheep fetus heart compared to the post-natal non-regenerative adolescent heart may reveal key morphological and molecular differences that equate to the response to MI in humans. We hypothesized that the immediate response to injury in (a) infarct compared with sham, and (b) infarct, border, and remote tissue, in the fetal sheep heart would be fundamentally different to the adolescent, allowing for repair after damage. Methods: We used a sheep model of MI induced by ligating the left anterior descending coronary artery. Surgery was performed on fetuses (105 days) and adolescent sheep (6 months). Sheep were randomly separated into MI (n = 5) or Sham (n = 5) surgery groups at both ages. We used magnetic resonance imaging (MRI), histological/immunohistochemical staining, and qRT-PCR to assess the morphological and molecular differences between the different age groups in response to infarction. Results: Magnetic resonance imaging showed no difference in fetuses for key functional parameters; however there was a significant decrease in left ventricular ejection fraction and cardiac output in the adolescent sheep heart at 3 days post-infarction. There was no significant difference in functional parameters between MRI sessions at Day 0 and Day 3 after surgery. Expression of genes involved in glucose transport and fatty acid metabolism, inflammatory cytokines as well as growth factors and cell cycle regulators remained largely unchanged in the infarcted compared to sham ventricular tissue in the fetus, but were significantly dysregulated in the adolescent sheep. Different cardiac tissue region-specific gene expression profiles were observed between the fetal and adolescent sheep. Conclusion: Fetuses demonstrated a resistance to cardiac damage not observed in the adolescent animals. The manipulation of specific gene expression profiles to a fetal-like state may provide a therapeutic strategy to treat patients following an infarction.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sunthara Rajan Perumal
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Joseph B Selvanayagam
- Cardiac Imaging Research Group, Department of Heart Health, South Australian Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Mike Seed
- The Hospital for Sick Children, Division of Cardiology, Toronto, ON, Canada
| | | | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Department of Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
32
|
Velazquez MA, Fleming TP, Watkins AJ. Periconceptional environment and the developmental origins of disease. J Endocrinol 2019; 242:T33-T49. [PMID: 30707679 DOI: 10.1530/joe-18-0676] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/01/2019] [Indexed: 01/08/2023]
Abstract
The concept emerging from Professor David Barker’s seminal research on the developmental origins of later-life disease has progressed in many directions since it was first published. One critical question being when during gestation might environment alter the developmental programme with such enduring consequences. Here, we review the growing consensus from clinical and animal research that the period around conception, embracing gamete maturation and early embryogenesis might be the most vulnerable period. We focus on four types of environmental exposure shown to modify periconceptional reproduction and offspring development and health: maternal overnutrition and obesity; maternal undernutrition; paternal diet and health; and assisted reproductive technology. These conditions may act through diverse epigenetic, cellular and physiological mechanisms to alter gene expression and cellular signalling and function in the conceptus affecting offspring growth and metabolism leading to increased risk for cardiometabolic and neurological disease in later life.
Collapse
Affiliation(s)
- Miguel A Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom of Great Britain and Northern Ireland
| | - Tom P Fleming
- Biological Sciences, University of Southampton, Southampton, United Kingdom of Great Britain and Northern Ireland
| | - Adam J Watkins
- Division of Child Health, Obstetrics and Gynaecology, Faculty of Medicine, University of Nottingham, Nottingham, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
33
|
Schoppa I, Lyass A, Heard-Costa N, de Ferranti SD, Fox C, Gillman MW, D'Agostino R, Levy D, Mendelson MM. Association of Maternal Prepregnancy Weight with Offspring Adiposity Throughout Adulthood over 37 Years of Follow-up. Obesity (Silver Spring) 2019; 27:137-144. [PMID: 30474203 PMCID: PMC6309198 DOI: 10.1002/oby.22326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed to determine the relation of maternal prepregnancy weight with offspring BMI across adulthood from almost 40 years of follow-up. METHODS BMI was measured in Framingham Heart Study Offspring cohort participants between 1971 and 2008. The association of maternal prepregnancy weight category (ascertained via direct measure and questionnaire) with serial offspring BMI, overweight, obesity, and change in BMI over time was tested, adjusted for age, sex, and a BMI genetic risk score; secondary models additionally adjusted for physical activity, dietary factors, smoking, education, and familial relatedness. RESULTS Among 863 participants at initial assessment (83 exposed and 780 controls), mean (SD) age was 33 (10) years, 53% were female, and mean BMI was 24.5 (4.1) kg/m2 . Exposed offspring BMI was higher at every examination cycle, ranging from 1.5 (0.5) to 3.0 (0.5) kg/m2 (P < 0.001), with larger differences at later assessments. The rate of increase in offspring BMI over time was higher in exposed offspring before the age of 50 years (β [SE] = 0.07 [0.02] kg/m2 per year; P = 0.004) but not after the age of 50 years (-0.05 [0.04] kg/m2 per year; P = 0.2). CONCLUSIONS Maternal prepregnancy weight is associated with greater offspring BMI throughout adulthood, with more rapid weight acceleration in early and midadulthood.
Collapse
Affiliation(s)
- Isabelle Schoppa
- Framingham Heart Study, Framingham, Massachusetts, USA
- Population Studies Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, Massachusetts, USA
| | - Asya Lyass
- Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
| | - Nancy Heard-Costa
- Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sarah D de Ferranti
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caroline Fox
- Framingham Heart Study, Framingham, Massachusetts, USA
- Population Studies Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, Massachusetts, USA
- Merck Research Laboratories, Merck & Co., Boston, Massachusetts, USA
| | - Matthew W Gillman
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, Massachusetts, USA
- Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Ralph D'Agostino
- Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, Massachusetts, USA
- Population Studies Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, Massachusetts, USA
| | - Michael M Mendelson
- Framingham Heart Study, Framingham, Massachusetts, USA
- Population Studies Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, Massachusetts, USA
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Xargay-Torrent S, Carreras-Badosa G, Borrat-Padrosa S, Prats-Puig A, Soriano P, Álvarez-Castaño E, Ferri MJ, De Zegher F, Ibáñez L, López-Bermejo A, Bassols J. Circulating sex hormone binding globulin: An integrating biomarker for an adverse cardio-metabolic profile in obese pregnant women. PLoS One 2018; 13:e0205592. [PMID: 30321217 PMCID: PMC6188865 DOI: 10.1371/journal.pone.0205592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022] Open
Abstract
Sex hormone-binding globulin (SHBG) negatively associates with pre-gestational body mass index (BMI) and gestational weight gain. The link with other cardio-metabolic risk factors in pregnant women is poorly understood. Our aim was to study the association of SHBG levels with common cardio-metabolic risk parameters in pregnant woman. Serum SHBG was quantified in 291 Caucasian pregnant women (142 with normal weight, 42 with pregestational obesity, 50 with gestational obesity and 57 with pregestational plus gestational obesity) with uncomplicated pregnancies and parturition. Cardio-metabolic [C-reactive protein (CRP), blood pressure (BP), glycosylated hemoglobin (HbAc1), glucose, C-peptide, insulin, triglycerides and high molecular weight (HMW) adiponectin], and endocrine [testosterone and estradiol] parameters were also assessed. SHBG was negatively correlated with BMI, but also with CRP, BP, HbAc1, pre and post-load glucose, C-peptide, HOMA-IR, triglycerides; and positively with HMW adiponectin (all p<0.01 to p<0.0001). These associations were more robust in women with pregestational plus gestational obesity, who had lower SHBG, in comparison to normal-weight women (p<0.0001). In multivariate analyses in women with pregestational plus gestational obesity SHBG showed independent associations with CRP (β = −0.352, p = 0.03, R2 = 8.0%), DBP (β = −0.353, p = 0.03, R2 = 7.0%) and SBP (β = −0.333, p = 0.04, R2 = 6.0%) independently of BMI and metabolic and endocrine parameters. SHBG is decreased in pregnant women with pregestational plus gestational obesity in association with common cardio-metabolic parameters. SHBG could represent an integrating biomarker for an adverse cardio-metabolic profile in pregnant women with pregestational plus gestational obesity.
Collapse
Affiliation(s)
- Sílvia Xargay-Torrent
- Obesity and cardiovascular risk in pediatrics, [Girona Biomedical Research Institute] IDIBGI, Salt, Spain
| | - Gemma Carreras-Badosa
- Obesity and cardiovascular risk in pediatrics, [Girona Biomedical Research Institute] IDIBGI, Salt, Spain
| | | | - Anna Prats-Puig
- Department of Physical Therapy, EUSES University School, Salt, Spain
| | - Pilar Soriano
- Clinical Laboratory, Fundació Salut Empordà, Figueres, Spain
| | | | - Mª Jose Ferri
- Clinical Laboratory, Dr. Trueta University Hospital, Girona, Spain
| | - Francis De Zegher
- Department of Development & Regeneration, University of Leuven, Leuven, Belgium
| | - Lourdes Ibáñez
- Endocrinology, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Abel López-Bermejo
- Obesity and cardiovascular risk in pediatrics, [Girona Biomedical Research Institute] IDIBGI, Salt, Spain
- Department of Pediatrics, Dr. Trueta University Hospital, Girona, Spain
- * E-mail: (JB); (ALB)
| | - Judit Bassols
- Materno-fetal metabolic reseach, [Girona Biomedical Research Institute] IDIBGI, Salt, Spain
- * E-mail: (JB); (ALB)
| |
Collapse
|
35
|
Tzika E, Dreker T, Imhof A. Epigenetics and Metabolism in Health and Disease. Front Genet 2018; 9:361. [PMID: 30279699 PMCID: PMC6153363 DOI: 10.3389/fgene.2018.00361] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/21/2018] [Indexed: 01/09/2023] Open
Abstract
In the next 10 years, one billion people are estimated to suffer from disabling consequences of metabolic disorders, making them the number one noncommunicable disease on a global scale by 2030. Lots of risk factors such as dietary intake, lack of exercise and other life style behaviors are considered to play a role in the development of metabolic disorders. Despite the efforts that have been undertaken to unravel their potential causes, the underlying molecular mechanisms remain elusive. Evidence suggests that the pathogenesis involves changes on chromatin and chromatin-modifying enzymes, which can contribute to a persistent dysregulated metabolic phenotype. Indeed, a rising number of studies links epigenetic alterations with the diagnosis and prognosis of metabolic disorders. A prerequisite for exploiting these findings for pharmacological intervention is a detailed understanding of how differential epigenetic modifications control cell metabolism. In this mini review, we summarize the recent advances in uncovering the interplay between epigenetics and metabolic pathways on a cellular level and highlight potential new avenues for alternative treatment strategies.
Collapse
Affiliation(s)
- Evangelia Tzika
- 4SC AG, Translational Pharmacology, Munich, Germany.,Faculty of Medicine, Ludwig Maximilians University of Munich, Munich, Germany
| | | | - Axel Imhof
- Faculty of Medicine, Ludwig Maximilians University of Munich, Munich, Germany.,Protein Analysis Unit (ZfP), Biomedical Center, Ludwig Maximilians University of Munich, Munich, Germany
| |
Collapse
|
36
|
Fleming TP, Watkins AJ, Velazquez MA, Mathers JC, Prentice AM, Stephenson J, Barker M, Saffery R, Yajnik CS, Eckert JJ, Hanson MA, Forrester T, Gluckman PD, Godfrey KM. Origins of lifetime health around the time of conception: causes and consequences. Lancet 2018; 391:1842-1852. [PMID: 29673874 PMCID: PMC5975952 DOI: 10.1016/s0140-6736(18)30312-x] [Citation(s) in RCA: 651] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/03/2017] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
Parental environmental factors, including diet, body composition, metabolism, and stress, affect the health and chronic disease risk of people throughout their lives, as captured in the Developmental Origins of Health and Disease concept. Research across the epidemiological, clinical, and basic science fields has identified the period around conception as being crucial for the processes mediating parental influences on the health of the next generation. During this time, from the maturation of gametes through to early embryonic development, parental lifestyle can adversely influence long-term risks of offspring cardiovascular, metabolic, immune, and neurological morbidities, often termed developmental programming. We review periconceptional induction of disease risk from four broad exposures: maternal overnutrition and obesity; maternal undernutrition; related paternal factors; and the use of assisted reproductive treatment. Studies in both humans and animal models have demonstrated the underlying biological mechanisms, including epigenetic, cellular, physiological, and metabolic processes. We also present a meta-analysis of mouse paternal and maternal protein undernutrition that suggests distinct parental periconceptional contributions to postnatal outcomes. We propose that the evidence for periconceptional effects on lifetime health is now so compelling that it calls for new guidance on parental preparation for pregnancy, beginning before conception, to protect the health of offspring.
Collapse
Affiliation(s)
- Tom P Fleming
- Biological Sciences, University of Southampton, Southampton, UK
| | - Adam J Watkins
- School of Medicine, Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham, UK
| | - Miguel A Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle, UK
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine and Newcastle University Institute for Ageing, Newcastle University, Newcastle, UK
| | - Andrew M Prentice
- MRC Unit, The Gambia and MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Judith Stephenson
- UCL EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, UK
| | - Mary Barker
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Richard Saffery
- Cancer & Disease Epigenetics, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | | | - Judith J Eckert
- Institute of Developmental Sciences, University of Southampton, Southampton, UK
| | - Mark A Hanson
- Institute of Developmental Sciences, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Terrence Forrester
- University of the West Indies Solutions for Developing Countries, The University of the West Indies, Mona, Jamaica
| | - Peter D Gluckman
- Liggins Institute, University of Auckland, Auckland, New Zealand; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK; Institute of Developmental Sciences, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
37
|
Le DH, Verbeke L, Son LH, Chu DT, Pham VH. Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs. BMC Bioinformatics 2017; 18:479. [PMID: 29137601 PMCID: PMC5686822 DOI: 10.1186/s12859-017-1924-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) have been shown to play an important role in pathological initiation, progression and maintenance. Because identification in the laboratory of disease-related miRNAs is not straightforward, numerous network-based methods have been developed to predict novel miRNAs in silico. Homogeneous networks (in which every node is a miRNA) based on the targets shared between miRNAs have been widely used to predict their role in disease phenotypes. Although such homogeneous networks can predict potential disease-associated miRNAs, they do not consider the roles of the target genes of the miRNAs. Here, we introduce a novel method based on a heterogeneous network that not only considers miRNAs but also the corresponding target genes in the network model. RESULTS Instead of constructing homogeneous miRNA networks, we built heterogeneous miRNA networks consisting of both miRNAs and their target genes, using databases of known miRNA-target gene interactions. In addition, as recent studies demonstrated reciprocal regulatory relations between miRNAs and their target genes, we considered these heterogeneous miRNA networks to be undirected, assuming mutual miRNA-target interactions. Next, we introduced a novel method (RWRMTN) operating on these mutual heterogeneous miRNA networks to rank candidate disease-related miRNAs using a random walk with restart (RWR) based algorithm. Using both known disease-associated miRNAs and their target genes as seed nodes, the method can identify additional miRNAs involved in the disease phenotype. Experiments indicated that RWRMTN outperformed two existing state-of-the-art methods: RWRMDA, a network-based method that also uses a RWR on homogeneous (rather than heterogeneous) miRNA networks, and RLSMDA, a machine learning-based method. Interestingly, we could relate this performance gain to the emergence of "disease modules" in the heterogeneous miRNA networks used as input for the algorithm. Moreover, we could demonstrate that RWRMTN is stable, performing well when using both experimentally validated and predicted miRNA-target gene interaction data for network construction. Finally, using RWRMTN, we identified 76 novel miRNAs associated with 23 disease phenotypes which were present in a recent database of known disease-miRNA associations. CONCLUSIONS Summarizing, using random walks on mutual miRNA-target networks improves the prediction of novel disease-associated miRNAs because of the existence of "disease modules" in these networks.
Collapse
Affiliation(s)
- Duc-Hau Le
- Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hai Ba Trung, Hanoi, Vietnam
| | - Lieven Verbeke
- Department of Information Technology, Ghent University - imec, Ghent, Belgium
| | - Le Hoang Son
- VNU University of Science, Vietnam National University, Hanoi, Vietnam
| | - Dinh-Toi Chu
- Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam.,Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam
| | - Van-Huy Pham
- Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
38
|
Soo JY, Orgeig S, McGillick EV, Zhang S, McMillen IC, Morrison JL. Normalisation of surfactant protein -A and -B expression in the lungs of low birth weight lambs by 21 days old. PLoS One 2017; 12:e0181185. [PMID: 28949968 PMCID: PMC5614422 DOI: 10.1371/journal.pone.0181185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/27/2017] [Indexed: 11/18/2022] Open
Abstract
Intrauterine growth restriction (IUGR) induced by placental restriction (PR) in the sheep negatively impacts lung and pulmonary surfactant development during fetal life. Using a sheep model of low birth weight (LBW), we found that there was an increase in mRNA expression of surfactant protein (SP)-A, -B and -C in the lung of LBW lambs but no difference in the protein expression of SP-A or -B. LBW also resulted in increased lysosome-associated membrane glycoprotein (LAMP)-3 mRNA expression, which may indicate an increase in either the density of type II Alveolar epithelial cells (AEC) or maturity of type II AECs. Although there was an increase in glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase (11βHSD)-1 mRNA expression in the lung of LBW lambs, we found no change in the protein expression of these factors, suggesting that the increase in SP mRNA expression is not mediated by increased GC signalling in the lung. The increase in SP mRNA expression may, in part, be mediated by persistent alterations in hypoxia signalling as there was an increase in lung HIF-2α mRNA expression in the LBW lamb. The changes in the hypoxia signalling pathway that persist within the lung after birth may be involved in maintaining SP production in the LBW lamb.
Collapse
Affiliation(s)
- Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Sandra Orgeig
- Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Erin Victoria McGillick
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
- Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
39
|
Lock MC, McGillick EV, Orgeig S, McMillen IC, Mühlhäusler BS, Zhang S, Morrison JL. Differential effects of late gestation maternal overnutrition on the regulation of surfactant maturation in fetal and postnatal life. J Physiol 2017; 595:6635-6652. [PMID: 28759122 DOI: 10.1113/jp274528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS Offspring of overweight and obese women are at greater risk for respiratory complications at birth. We determined the effect of late gestation maternal overnutrition (LGON) in sheep on surfactant maturation, glucose transport and fatty acid metabolism in the lung in fetal and postnatal life. There were significant decreases in surfactant components and numerical density of surfactant producing cells in the alveolar epithelium due to LGON in the fetal lung. However, there were no differences in the levels of these surfactant components between control and LGON lambs at 30 days of age. The reduced capacity for surfactant production in fetuses as a result of LGON may affect the transition to air breathing at birth. There was altered glucose transport and fatty acid metabolism in the lung as a result of LGON in postnatal life. However, there is a normalisation of surfactant components that suggests accelerated maturation in the lungs after birth. ABSTRACT With the increasing incidence of obesity worldwide, the proportion of women entering pregnancy overweight or obese has increased dramatically. The fetus of an overnourished mother experiences numerous metabolic changes that may modulate lung development and hence successful transition to air breathing at birth. We used a sheep model of maternal late gestation overnutrition (LGON; from 115 days' gestation, term 147 ± 3 days) to determine the effect of exposure to an increased plane of nutrition in late gestation on lung development in the fetus (at 141 days' gestation) and the lamb (30 days after birth). We found a decrease in the numerical density of surfactant protein positive cells, as well as a reduction in mRNA expression of surfactant proteins (SFTP-A, -B and -C), a rate limiting enzyme in surfactant phospholipid synthesis (phosphate cytidylyltransferase 1, choline, α; PCYT1A), and glucose transporters (SLC2A1 and SLC2A4) in the fetal lung. In lambs at 30 days after birth, there were no differences between Control and LGON groups in the surfactant components that were downregulated in the LGON fetuses. However, mRNA expression of SFTP-A, PCYT1A, peroxisome proliferator activated receptor-γ, fatty acid synthase and fatty acid transport protein were increased in LGON lambs compared to controls. These results indicate a reduced capacity for surfactant production in late gestation. While these deficits are normalised by 30 days after birth, the lungs of LGON lambs exhibited altered glucose transport and fatty acid metabolism, which is consistent with an enhanced capacity for surfactant synthesis and restoration of surfactant maturity in these animals.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - Erin V McGillick
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001.,Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - Sandra Orgeig
- Molecular & Evolutionary Physiology of the Lung Laboratory, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - Beverly S Mühlhäusler
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - Song Zhang
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia, 5001
| |
Collapse
|
40
|
Goldstein RF, Abell SK, Ranasinha S, Misso M, Boyle JA, Black MH, Li N, Hu G, Corrado F, Rode L, Kim YJ, Haugen M, Song WO, Kim MH, Bogaerts A, Devlieger R, Chung JH, Teede HJ. Association of Gestational Weight Gain With Maternal and Infant Outcomes: A Systematic Review and Meta-analysis. JAMA 2017; 317:2207-2225. [PMID: 28586887 PMCID: PMC5815056 DOI: 10.1001/jama.2017.3635] [Citation(s) in RCA: 1028] [Impact Index Per Article: 146.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE Body mass index (BMI) and gestational weight gain are increasing globally. In 2009, the Institute of Medicine (IOM) provided specific recommendations regarding the ideal gestational weight gain. However, the association between gestational weight gain consistent with theIOM guidelines and pregnancy outcomes is unclear. OBJECTIVE To perform a systematic review, meta-analysis, and metaregression to evaluate associations between gestational weight gain above or below the IOM guidelines (gain of 12.5-18 kg for underweight women [BMI <18.5]; 11.5-16 kg for normal-weight women [BMI 18.5-24.9]; 7-11 kg for overweight women [BMI 25-29.9]; and 5-9 kg for obese women [BMI ≥30]) and maternal and infant outcomes. DATA SOURCES AND STUDY SELECTION Search of EMBASE, Evidence-Based Medicine Reviews, MEDLINE, and MEDLINE In-Process between January 1, 1999, and February 7, 2017, for observational studies stratified by prepregnancy BMI category and total gestational weight gain. DATA EXTRACTION AND SYNTHESIS Data were extracted by 2 independent reviewers. Odds ratios (ORs) and absolute risk differences (ARDs) per live birth were calculated using a random-effects model based on a subset of studies with available data. MAIN OUTCOMES AND MEASURES Primary outcomes were small for gestational age (SGA), preterm birth, and large for gestational age (LGA). Secondary outcomes were macrosomia, cesarean delivery, and gestational diabetes mellitus. RESULTS Of 5354 identified studies, 23 (n = 1 309 136 women) met inclusion criteria. Gestational weight gain was below or above guidelines in 23% and 47% of pregnancies, respectively. Gestational weight gain below the recommendations was associated with higher risk of SGA (OR, 1.53 [95% CI, 1.44-1.64]; ARD, 5% [95% CI, 4%-6%]) and preterm birth (OR, 1.70 [1.32-2.20]; ARD, 5% [3%-8%]) and lower risk of LGA (OR, 0.59 [0.55-0.64]; ARD, -2% [-10% to -6%]) and macrosomia (OR, 0.60 [0.52-0.68]; ARD, -2% [-3% to -1%]); cesarean delivery showed no significant difference (OR, 0.98 [0.96-1.02]; ARD, 0% [-2% to 1%]). Gestational weight gain above the recommendations was associated with lower risk of SGA (OR, 0.66 [0.63-0.69]; ARD, -3%; [-4% to -2%]) and preterm birth (OR, 0.77 [0.69-0.86]; ARD, -2% [-2% to -1%]) and higher risk of LGA (OR, 1.85 [1.76-1.95]; ARD, 4% [2%-5%]), macrosomia (OR, 1.95 [1.79-2.11]; ARD, 6% [4%-9%]), and cesarean delivery (OR, 1.30 [1.25-1.35]; ARD, 4% [3%-6%]). Gestational diabetes mellitus could not be evaluated because of the nature of available data. CONCLUSIONS AND RELEVANCE In this systematic review and meta-analysis of more than 1 million pregnant women, 47% had gestational weight gain greater than IOM recommendations and 23% had gestational weight gain less than IOM recommendations. Gestational weight gain greater than or less than guideline recommendations, compared with weight gain within recommended levels, was associated with higher risk of adverse maternal and infant outcomes.
Collapse
Affiliation(s)
- Rebecca F. Goldstein
- Monash Centre for Health Research and Implementation, Monash University, Victoria, Australia
- Monash Diabetes and Endocrine Units, Monash Health, Victoria, Australia
| | - Sally K. Abell
- Monash Centre for Health Research and Implementation, Monash University, Victoria, Australia
- Monash Diabetes and Endocrine Units, Monash Health, Victoria, Australia
| | - Sanjeeva Ranasinha
- Monash Centre for Health Research and Implementation, Monash University, Victoria, Australia
| | - Marie Misso
- Monash Centre for Health Research and Implementation, Monash University, Victoria, Australia
| | - Jacqueline A. Boyle
- Monash Centre for Health Research and Implementation, Monash University, Victoria, Australia
| | - Mary Helen Black
- Kaiser Permanente, Southern California, Los Angeles
- Ambry Genetics, Aliso Viejo, California
| | - Nan Li
- Tianjin Women’s and Children’s Health Center, Tianjin, China
| | - Gang Hu
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | | | - Line Rode
- Department of Biochemistry, Copenhagen University Hospital, Righospitalet, Copenhagen, Denmark
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | | | | | - Min Hyoung Kim
- Dankook University College of Medicine, Seoul, Republic of Korea
| | - Annick Bogaerts
- Department of Development and Regeneration KU Leuven, University of Leuven, Leuven, Belgium
- Faculty of Medicine and Health Sciences, Centre for Research and Innovation in Care, University of Antwerp, Antwerp, Belgium
- Faculty of Health and Social Work, Research Unit Healthy Living, UC Leuven-Limburg, Leuven, Belgium
| | - Roland Devlieger
- Department of Obstetrics and Gynaecology, University Hospitals KU Leuven, Leuven, Belgium
- Department of Obstetrics, Gynaecology and Fertility, GZA Campus Sint-Augustinus, Wilrijk, Belgium
| | | | - Helena J. Teede
- Monash Centre for Health Research and Implementation, Monash University, Victoria, Australia
- Monash Diabetes and Endocrine Units, Monash Health, Victoria, Australia
| |
Collapse
|
41
|
Melnik BC, Schmitz G. Milk's Role as an Epigenetic Regulator in Health and Disease. Diseases 2017; 5:diseases5010012. [PMID: 28933365 PMCID: PMC5456335 DOI: 10.3390/diseases5010012] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022] Open
Abstract
It is the intention of this review to characterize milk's role as an epigenetic regulator in health and disease. Based on translational research, we identify milk as a major epigenetic modulator of gene expression of the milk recipient. Milk is presented as an epigenetic "doping system" of mammalian development. Milk exosome-derived micro-ribonucleic acids (miRNAs) that target DNA methyltransferases are implicated to play the key role in the upregulation of developmental genes such as FTO, INS, and IGF1. In contrast to miRNA-deficient infant formula, breastfeeding via physiological miRNA transfer provides the appropriate signals for adequate epigenetic programming of the newborn infant. Whereas breastfeeding is restricted to the lactation period, continued consumption of cow's milk results in persistent epigenetic upregulation of genes critically involved in the development of diseases of civilization such as diabesity, neurodegeneration, and cancer. We hypothesize that the same miRNAs that epigenetically increase lactation, upregulate gene expression of the milk recipient via milk-derived miRNAs. It is of critical concern that persistent consumption of pasteurized cow's milk contaminates the human food chain with bovine miRNAs, that are identical to their human analogs. Commercial interest to enhance dairy lactation performance may further increase the epigenetic miRNA burden for the milk consumer.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, Faculty of Human Sciences, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Franz-Josef-Strauß-Allee 11, D-93053 Regensburg, Germany.
| |
Collapse
|
42
|
Ratnasingham A, Eiby YA, Dekker Nitert M, Donovan T, Lingwood BE. Review: Is rapid fat accumulation in early life associated with adverse later health outcomes? Placenta 2017; 54:125-130. [PMID: 28104278 DOI: 10.1016/j.placenta.2017.01.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 12/26/2022]
Abstract
This review discusses ways in which the maternal environment and placental function affect the birth weight and adult health outcomes of offspring. These maternal and placental factors have varying and sometimes opposing effects on birth weight, resulting in infants that are born small for gestational age (SGA), large for gestational age (LGA) or preterm. However, all these alterations in weight have similar effects on adult health, increasing the risk of obesity and its associated cardiovascular and metabolic disorders. While birth weight has been used as a marker for risk of adverse adult health, we propose that a common feature of all these scenarios - early accumulation of excess body fat - may be a better marker than birth weight alone. Furthermore, altered neonatal fat accumulation may be more closely related to the mechanism by which maternal environment and placental adaptation mediate effects on adult health. We suggest that more research should be focussed on early fat accretion, factors that promote fat accretion and if it can be avoided, and whether it would be beneficial to try to reduce fat accumulation in early life.
Collapse
Affiliation(s)
- Abirami Ratnasingham
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland 4029, Australia.
| | - Yvonne A Eiby
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland 4029, Australia.
| | - Marloes Dekker Nitert
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland 4029, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Timothy Donovan
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland 4029, Australia; Grantley Stable Neonatal Unit, Royal Brisbane and Women's Hospital, Herston, Queensland 4029, Australia.
| | - Barbara E Lingwood
- UQ Centre for Clinical Research, The University of Queensland, Herston, Queensland 4029, Australia; Grantley Stable Neonatal Unit, Royal Brisbane and Women's Hospital, Herston, Queensland 4029, Australia.
| |
Collapse
|
43
|
Ramírez-López MT, Arco R, Decara J, Vázquez M, Rivera P, Blanco RN, Alén F, Gómez de Heras R, Suárez J, Rodríguez de Fonseca F. Long-Term Effects of Prenatal Exposure to Undernutrition on Cannabinoid Receptor-Related Behaviors: Sex and Tissue-Specific Alterations in the mRNA Expression of Cannabinoid Receptors and Lipid Metabolic Regulators. Front Behav Neurosci 2016; 10:241. [PMID: 28082878 PMCID: PMC5187359 DOI: 10.3389/fnbeh.2016.00241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022] Open
Abstract
Maternal malnutrition causes long-lasting alterations in feeding behavior and energy homeostasis in offspring. It is still unknown whether both, the endocannabinoid (eCB) machinery and the lipid metabolism are implicated in long-term adaptive responses to fetal reprogramming caused by maternal undernutrition. We investigated the long-term effects of maternal exposure to a 20% standard diet restriction during preconceptional and gestational periods on the metabolically-relevant tissues hypothalamus, liver, and perirenal fat (PAT) of male and female offspring at adulthood. The adult male offspring from calorie-restricted dams (RC males) exhibited a differential response to the CB1 antagonist AM251 in a chocolate preference test as well as increased body weight, perirenal adiposity, and plasma levels of triglycerides, LDL, VLDL, bilirubin, and leptin. The gene expression of the cannabinoid receptors Cnr1 and Cnr2 was increased in RC male hypothalamus, but a down-expression of most eCBs-metabolizing enzymes (Faah, Daglα, Daglβ, Mgll) and several key regulators of fatty-acid β-oxidation (Cpt1b, Acox1), mitochondrial respiration (Cox4i1), and lipid flux (Pparγ) was found in their PAT. The female offspring from calorie-restricted dams exhibited higher plasma levels of LDL and glucose as well as a reduction in chocolate and caloric intake at post-weaning periods in the feeding tests. Their liver showed a decreased gene expression of Cnr1, Pparα, Pparγ, the eCBs-degrading enzymes Faah and Mgll, the de novo lipogenic enzymes Acaca and Fasn, and the liver-specific cholesterol biosynthesis regulators Insig1 and Hmgcr. Our results suggest that the long-lasting adaptive responses to maternal caloric restriction affected cannabinoid-regulated mechanisms involved in feeding behavior, adipose β-oxidation, and hepatic lipid and cholesterol biosynthesis in a sex-dependent manner.
Collapse
Affiliation(s)
- María T Ramírez-López
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Hospital Universitario de GetafeMadrid, Spain
| | - Rocío Arco
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Mariam Vázquez
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Rosario Noemi Blanco
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| | - Raquel Gómez de Heras
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain; Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Ciencias, Universidad de MálagaMálaga, Spain
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| |
Collapse
|
44
|
Ghaffari N, Parry S, Elovitz MA, Durnwald CP. Placental microRNA Expression Is Not Altered by Maternal Obesity and Fetal Overgrowth. AJP Rep 2016; 6:e430-e435. [PMID: 28050331 PMCID: PMC5201431 DOI: 10.1055/s-0036-1597652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Objective The epigenetic mechanisms underlying fetal metabolic programming are poorly understood. We studied whether obesity is associated with alterations in placental miRNA expression. Study Design A cross-sectional study was performed, including (1) normal-weight women (BMI 20-24.9 kg/m2) and normal-birth-weight (BW) infants (2,700-3,500 g) (n = 20), (2) normal-weight and macrosomic infants (BW ≥ 4,000 g) (n = 10), (3) obese (BMI ≥ 35 kg/m2) and normal BW infants (n = 16), and (4) obese and macrosomic infants (n = 10). All had term deliveries (37-41 weeks) and normal glucose tolerance (1 hour GCT < 7.2 mmol/L [130 mg/dL]). The expression of 5,639 placental miRNAs was assessed using miRNA microarray. Differential miRNA expression was determined using two-way ANOVA and pairwise contrasts, with the Benjamini-Hochberg (BH) correction. MiRNAs with Z-scores ≥ 2 and false discovery rate (FDR) < 20% were considered significant. Results Principal components analysis demonstrated similar global miRNA expression profiles among groups. Of 5,639 miRNAs, only 5 were significantly different between obese and controls, which were not validated by quantitative polymerase reaction. Conclusion There was no difference in placental miRNA expression associated with obesity or overgrowth. Aberrant placental miRNA expression is an unlikely mechanism underlying fetal metabolic programming related to maternal obesity.
Collapse
Affiliation(s)
- Neda Ghaffari
- Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, Maternal and Child Health Research Program, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Samuel Parry
- Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, Maternal and Child Health Research Program, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michal A Elovitz
- Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, Maternal and Child Health Research Program, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Celeste P Durnwald
- Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, Maternal and Child Health Research Program, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
A review of fundamental principles for animal models of DOHaD research: an Australian perspective. J Dev Orig Health Dis 2016; 7:449-472. [DOI: 10.1017/s2040174416000477] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Epidemiology formed the basis of ‘the Barker hypothesis’, the concept of ‘developmental programming’ and today’s discipline of the Developmental Origins of Health and Disease (DOHaD). Animal experimentation provided proof of the underlying concepts, and continues to generate knowledge of underlying mechanisms. Interventions in humans, based on DOHaD principles, will be informed by experiments in animals. As knowledge in this discipline has accumulated, from studies of humans and other animals, the complexity of interactions between genome, environment and epigenetics, has been revealed. The vast nature of programming stimuli and breadth of effects is becoming known. As a result of our accumulating knowledge we now appreciate the impact of many variables that contribute to programmed outcomes. To guide further animal research in this field, the Australia and New Zealand DOHaD society (ANZ DOHaD) Animals Models of DOHaD Research Working Group convened at the 2nd Annual ANZ DOHaD Congress in Melbourne, Australia in April 2015. This review summarizes the contributions of animal research to the understanding of DOHaD, and makes recommendations for the design and conduct of animal experiments to maximize relevance, reproducibility and translation of knowledge into improving health and well-being.
Collapse
|
46
|
Lockett GA, Soto-Ramírez N, Ray MA, Everson TM, Xu CJ, Patil VK, Terry W, Kaushal A, Rezwan FI, Ewart SL, Gehring U, Postma DS, Koppelman GH, Arshad SH, Zhang H, Karmaus W, Holloway JW. Association of season of birth with DNA methylation and allergic disease. Allergy 2016; 71:1314-24. [PMID: 26973132 PMCID: PMC5639882 DOI: 10.1111/all.12882] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Season of birth influences allergy risk; however, the biological mechanisms underlying this observation are unclear. The environment affects DNA methylation, with potentially long-lasting effects on gene expression and disease. This study examined whether DNA methylation could underlie the association between season of birth and allergy. METHODS In a subset of 18-year-old participants from the Isle of Wight (IoW) birth cohort (n = 367), the risks of birth season on allergic outcomes were estimated. Whole blood epigenome-wide DNA methylation was measured, and season-associated CpGs detected using a training-and-testing-based technique. Validation method examined the 8-year-old Prevention and Incidence of Asthma and Mite Allergy (PIAMA) cohort. The relationships between DNA methylation, season of birth and allergy were examined. CpGs were analysed in IoW third-generation cohort newborns. RESULTS Autumn birth increased risk of eczema, relative to spring birth. Methylation at 92 CpGs showed association with season of birth in the epigenome-wide association study. In validation, significantly more CpGs had the same directionality than expected by chance, and four were statistically significant. Season-associated methylation was enriched among networks relating to development, the cell cycle and apoptosis. Twenty CpGs were nominally associated with allergic outcomes. Two CpGs were marginally on the causal pathway to allergy. Season-associated methylation was largely absent in newborns, suggesting it arises post-natally. CONCLUSIONS This study demonstrates that DNA methylation in adulthood is associated with season of birth, supporting the hypothesis that DNA methylation could mechanistically underlie the effect of season of birth on allergy, although other mechanisms are also likely to be involved.
Collapse
Affiliation(s)
- Gabrielle A. Lockett
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Nelís Soto-Ramírez
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Meredith A. Ray
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Todd M. Everson
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Cheng-Jian Xu
- Department of Pulmonology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Veeresh K. Patil
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - William Terry
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Akhilesh Kaushal
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Faisal I. Rezwan
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Susan L. Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, The Netherlands
| | - Dirkje S. Postma
- Department of Pulmonary Medicine and Tuberculosis, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Groningen, The Netherlands
| | - S. Hasan Arshad
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
47
|
Obesity epidemic: impact from preconception to postpartum. Future Sci OA 2016; 2:FSO137. [PMID: 28031980 PMCID: PMC5137925 DOI: 10.4155/fsoa-2016-0035] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/15/2016] [Indexed: 12/13/2022] Open
Abstract
The obesity epidemic is on the rise throughout the USA and the world. Not only does it affect the general population but it also specifically poses unique threats to a woman’s life in the antepartum, peripartum and postpartum periods. An increased BMI is associated with worse perinatal outcomes, including higher rates of preeclampsia (and other hypertensive disorders), macrosomia, other neonatal morbidities and gestational diabetes. Isolated maternal obesity and additional maternal diabetes predispose the infant to potential adult disease through fetal programming. This review of the literature examines the effects of obesity on a woman’s life, outlining complications beginning with preconception through the postpartum period. Lay abstract: The obesity epidemic poses unique threats during the whole cycle of pregnancy. This review examines the effects of obesity on a woman’s life, outlining complications from prior to conception through the postpartum period. In addition, the contributions to adult disease of fetal exposure to this maternal risk are discussed. Future advances in nanotechnology and better understanding of placental function might allow more options in preventative and therapeutic interventions, yet with minimal fetal risk.
Collapse
|
48
|
Iosef Husted C, Valencik M. Insulin-like growth factors and their potential role in cardiac epigenetics. J Cell Mol Med 2016; 20:1589-602. [PMID: 27061217 PMCID: PMC4956935 DOI: 10.1111/jcmm.12845] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/24/2016] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) constitutes a major public health threat worldwide, accounting for 17.3 million deaths annually. Heart disease and stroke account for the majority of healthcare costs in the developed world. While much has been accomplished in understanding the pathophysiology, molecular biology and genetics underlying the diagnosis and treatment of CVD, we know less about the role of epigenetics and their molecular determinants. The impact of environmental changes and epigenetics in CVD is now emerging as critically important in understanding the origin of disease and the development of new therapeutic approaches to prevention and treatment. This review focuses on the emerging role of epigenetics mediated by insulin like-growth factors-I and -II in major CVDs such as heart failure, cardiac hypertrophy and diabetes.
Collapse
Affiliation(s)
- Cristiana Iosef Husted
- Department of Pharmacology, University of Nevada, Reno School of Medicine (UNSOM), Reno, NV, USA
| | - Maria Valencik
- Department of Pharmacology, University of Nevada, Reno School of Medicine (UNSOM), Reno, NV, USA
| |
Collapse
|
49
|
|
50
|
Bringhenti I, Ornellas F, Mandarim-de-Lacerda CA, Aguila MB. The insulin-signaling pathway of the pancreatic islet is impaired in adult mice offspring of mothers fed a high-fat diet. Nutrition 2016; 32:1138-43. [PMID: 27155954 DOI: 10.1016/j.nut.2016.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/02/2016] [Accepted: 03/01/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Mothers fed a high-fat (HF) diet can cause different adverse alterations in their offspring. The study aimed to verify the pancreatic islet structure and insulin-signaling pathway in adulthood of offspring of mothers fed a HF diet during the pregnancy. METHODS Female mice (mothers) were randomly assigned to receive either standard chow (Mo-SC) or a HF diet (Mo-HF) ad libitum. After 2 mo on the experimental diets, 3-mo-old female mice were mated with male C57 BL/6 mice that were fed a SC diet. The male offspring was evaluated at 6 mo old. RESULTS At 6 mo of age, Mo-HF offspring had an increment in body mass and adiposity, hypercholesterolemia, and hypertriacylglycerolemia, higher levels of insulin, and leptin with a concomitant decrease in adiponectin levels. In the islet, we observed an alteration in the structure characterized by the migration of some alpha cells from the edge to the core of the islet in association with an increase in the masses of the islet, beta cell, and alpha cell, featuring a pancreatic islet remodeling. Additionally, the Mo-HF offspring demonstrated a decrease in IRS1, PI3 k p-Akt, Pd-1, and Glut2 protein expressions compared to Mo-SC offspring. However, an increase was observed in FOXO1 and insulin protein expressions in Mo-HF offspring compared to Mo-SC offspring. CONCLUSION The present study demonstrated that a maternal HF diet is responsible for remodeling the islet structure coupled with an adverse carbohydrate metabolism and impairment of the insulin-signaling pathway in adult male mice offspring.
Collapse
Affiliation(s)
- Isabele Bringhenti
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ornellas
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|