1
|
Aleman J, K R, Wiegand C, Schurdak ME, Vernetti L, Gavlock D, Reese C, DeBiasio R, LaRocca G, Angarita YD, Gough A, Soto-Gutierrez A, Behari J, Yechoor VK, Miedel MT, Stern AM, Banerjee I, Taylor DL. A metabolic dysfunction-associated steatotic liver acinus biomimetic induces pancreatic islet dysfunction in a coupled microphysiology system. Commun Biol 2024; 7:1317. [PMID: 39397070 PMCID: PMC11471816 DOI: 10.1038/s42003-024-07006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Preclinical and clinical studies suggest that lipid-induced hepatic insulin resistance is a primary defect that predisposes to dysfunction in islets, implicating a perturbed liver-pancreas axis underlying the comorbidity of T2DM and MASLD. To investigate this hypothesis, we developed a human biomimetic microphysiological system (MPS) coupling our vascularized liver acinus MPS (vLAMPS) with pancreatic islet MPS (PANIS) enabling MASLD progression and islet dysfunction to be assessed. The modular design of this system (vLAMPS-PANIS) allows intra-organ and inter-organ dysregulation to be deconvoluted. When compared to normal fasting (NF) conditions, under early metabolic syndrome (EMS) conditions, the standalone vLAMPS exhibited characteristics of early stage MASLD, while no significant differences were observed in the standalone PANIS. In contrast, with EMS, the coupled vLAMPS-PANIS exhibited a perturbed islet-specific secretome and a significantly dysregulated glucose stimulated insulin secretion response implicating direct signaling from the dysregulated liver acinus to the islets. Correlations between several pairs of a vLAMPS-derived and a PANIS-derived factors were significantly altered under EMS, as compared to NF conditions, mechanistically connecting MASLD and T2DM associated hepatic-factors with islet-derived GLP-1 synthesis and regulation. Since vLAMPS-PANIS is compatible with patient-specific iPSCs, this platform represents an important step towards addressing patient heterogeneity, identifying disease mechanisms, and advancing precision medicine.
Collapse
Affiliation(s)
- Julio Aleman
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA
| | - Ravikumar K
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA
| | - Connor Wiegand
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA
| | - Mark E Schurdak
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
| | - Dillon Gavlock
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Celeste Reese
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Greg LaRocca
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | | | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
- University of Pittsburgh Department of Pathology, Pittsburgh, USA
| | - Jaideep Behari
- Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Vijay K Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, USA
| | - Mark T Miedel
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
- University of Pittsburgh Department of Pathology, Pittsburgh, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA.
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA.
| | - Ipsita Banerjee
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA.
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA.
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA.
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA.
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA.
- University of Pittsburgh Liver Research Center, Pittsburgh, USA.
| |
Collapse
|
2
|
Fu J, Zhang Q, Zhang N, Zhou S, Fang Y, Li Y, Yuan L, Chen L, Xiang C. Human Menstrual Blood-Derived Stem Cells Protect against Tacrolimus-Induced Islet Dysfunction via Cystathionine β-Synthase Mediated IL-6/STAT3 Inactivation. Biomolecules 2024; 14:671. [PMID: 38927074 PMCID: PMC11201965 DOI: 10.3390/biom14060671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetes imposes a huge burden worldwide. Islet transplantation is an alternative therapy for diabetes. However, tacrolimus, a kind of immunosuppressant after organ transplantation, is closely related to post-transplant diabetes mellitus. Mesenchymal stem cells (MSCs) have attracted interest for their potential to alleviate diabetes. In vivo experiments revealed that human menstrual blood-derived stem cells (MenSCs) treatment improved tacrolimus-induced blood glucose, body weight, and glucose tolerance disorders in mice. RNA sequencing was used to analyze the potential therapeutic targets of MenSCs. In this study, we illustrated that cystathionine β-synthase (CBS) contributed to tacrolimus -induced islet dysfunction. Using β-cell lines (MIN6, β-TC-6), we demonstrated that MenSCs ameliorated tacrolimus-induced islet dysfunction in vitro. Moreover, MenSC reduced the tacrolimus-induced elevation of CBS levels and significantly enhanced the viability, anti-apoptotic ability, glucose-stimulated insulin secretion (GSIS), and glycolytic flux of β-cells. We further revealed that MenSCs exerted their therapeutic effects by inhibiting CBS expression to activate the IL6/JAK2/STAT3 pathway. In conclusion, we showed that MenSCs may be a potential strategy to improve tacrolimus-induced islet dysfunction.
Collapse
Affiliation(s)
- Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Sining Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Li Yuan
- Innovative Precision Medicine (IPM) Group, Hangzhou 311215, China;
| | - Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| |
Collapse
|
3
|
Aleman J, Ravikumar K, Wiegand C, Schurdak ME, Vernetti L, Gavlock D, Reese C, DeBiasio R, LaRocca G, Angarita YD, Gough A, Soto-Gutierrez A, Behari J, Yechoor V, Miedel MT, Stern AM, Banerjee I, Taylor DL. A metabolic-dysfunction associated steatotic liver acinus biomimetic induces pancreatic islet dysfunction in a coupled microphysiology system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590598. [PMID: 38712135 PMCID: PMC11071380 DOI: 10.1101/2024.04.22.590598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Preclinical and clinical studies suggest that lipid-induced hepatic insulin resistance is a primary defect that predisposes to dysfunction in pancreatic islets, implicating a perturbed liver-pancreas axis underlying the comorbidity of T2DM and MASLD. To investigate this hypothesis, we developed a human biomimetic microphysiological system (MPS) coupling our vascularized liver acinus MPS (vLAMPS) with primary islets on a chip (PANIS) enabling MASLD progression and islet dysfunction to be quantitatively assessed. The modular design of this system (vLAMPS-PANIS) allows intra-organ and inter-organ dysregulation to be deconvoluted. When compared to normal fasting (NF) conditions, under early metabolic syndrome (EMS) conditions, the standalone vLAMPS exhibited characteristics of early stage MASLD, while no significant differences were observed in the standalone PANIS. In contrast, with EMS, the coupled vLAMPS-PANIS exhibited a perturbed islet-specific secretome and a significantly dysregulated glucose stimulated insulin secretion (GSIS) response implicating direct signaling from the dysregulated liver acinus to the islets. Correlations between several pairs of a vLAMPS-derived and a PANIS-derived secreted factors were significantly altered under EMS, as compared to NF conditions, mechanistically connecting MASLD and T2DM associated hepatic factors with islet-derived GLP-1 synthesis and regulation. Since vLAMPS-PANIS is compatible with patient-specific iPSCs, this platform represents an important step towards addressing patient heterogeneity, identifying complex disease mechanisms, and advancing precision medicine.
Collapse
|
4
|
Garneau L, Mulvihill EE, Smith SR, Sparks LM, Aguer C. Myokine Secretion following an Aerobic Exercise Intervention in Individuals with Type 2 Diabetes with or without Exercise Resistance. Int J Mol Sci 2024; 25:4889. [PMID: 38732106 PMCID: PMC11084395 DOI: 10.3390/ijms25094889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Type 2 diabetes (T2D) is characterized by muscle metabolic dysfunction that exercise can minimize, but some patients do not respond to an exercise intervention. Myokine secretion is intrinsically altered in patients with T2D, but the role of myokines in exercise resistance in this patient population has never been studied. We sought to determine if changes in myokine secretion were linked to the response to an exercise intervention in patients with T2D. The participants followed a 10-week aerobic exercise training intervention, and patients with T2D were grouped based on muscle mitochondrial function improvement (responders versus non-responders). We measured myokines in serum and cell-culture medium of myotubes derived from participants pre- and post-intervention and in response to an in vitro model of muscle contraction. We also quantified the expression of genes related to inflammation in the myotubes pre- and post-intervention. No significant differences were detected depending on T2D status or response to exercise in the biological markers measured, with the exception of modest differences in expression patterns for certain myokines (IL-1β, IL-8, IL-10, and IL-15). Further investigation into the molecular mechanisms involving myokines may explain exercise resistance with T2D; however, the role in metabolic adaptations to exercise in T2D requires further investigation.
Collapse
Affiliation(s)
- Léa Garneau
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (L.G.); (E.E.M.)
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
| | - Erin E. Mulvihill
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (L.G.); (E.E.M.)
- University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Steven R. Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL 32804, USA; (S.R.S.); (L.M.S.)
| | - Lauren M. Sparks
- Translational Research Institute for Metabolism and Diabetes, AdventHealth Orlando, Orlando, FL 32804, USA; (S.R.S.); (L.M.S.)
| | - Céline Aguer
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (L.G.); (E.E.M.)
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
- Faculty of Medicine and Health Sciences, Department of Physiology, McGill University–Campus Outaouais, Gatineau, QC J8V 3T4, Canada
- Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
5
|
Di Murro E, Di Giuseppe G, Soldovieri L, Moffa S, Improta I, Capece U, Nista EC, Cinti F, Ciccarelli G, Brunetti M, Gasbarrini A, Pontecorvi A, Giaccari A, Mezza T. Physical Activity and Type 2 Diabetes: In Search of a Personalized Approach to Improving β-Cell Function. Nutrients 2023; 15:4202. [PMID: 37836486 PMCID: PMC10574038 DOI: 10.3390/nu15194202] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most widespread diseases worldwide. Lifestyle interventions, including diet and physical activity (PA), are fundamental non-pharmacological components of T2DM therapy. Exercise interventions are strongly recommended for people with or at risk of developing or already with overt diabetes, but adherence to PA guidelines in this population is still challenging. Furthermore, the heterogeneity of T2DM patients, driven by differing residual β-cell functionality, as well as the possibility of practicing different types and intensities of PA, has led to the need to develop tailored exercise and training plans. Investigations on blood glucose variation in response to exercise could help to clarify why individuals do not respond in the same way to PA, and to guide the prescription of personalized treatments. The aim of this review is to offer an updated overview of the current evidence on the effects of different regimens and modalities of PA regarding glucose sensing and β-cell secretory dynamics in individuals with prediabetes or T2DM, with a special focus on β-cell function.
Collapse
Affiliation(s)
- Emanuela Di Murro
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Gianfranco Di Giuseppe
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Laura Soldovieri
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Simona Moffa
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Ilaria Improta
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Umberto Capece
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Enrico Celestino Nista
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
- Pancreas Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesca Cinti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Gea Ciccarelli
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Michela Brunetti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
- Pancreas Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Andrea Giaccari
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.D.M.); (G.D.G.); (L.S.); (S.M.); (I.I.); (U.C.); (F.C.); (G.C.); (M.B.); (A.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
| | - Teresa Mezza
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (E.C.N.); (A.G.)
- Pancreas Unit, CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
6
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
7
|
Félix-Soriano E, Stanford KI. Exerkines and redox homeostasis. Redox Biol 2023; 63:102748. [PMID: 37247469 PMCID: PMC10236471 DOI: 10.1016/j.redox.2023.102748] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Exercise physiology has gained increasing interest due to its wide effects to promote health. Recent years have seen a growth in this research field also due to the finding of several circulating factors that mediate the effects of exercise. These factors, termed exerkines, are metabolites, growth factors, and cytokines secreted by main metabolic organs during exercise to regulate exercise systemic and tissue-specific effects. The metabolic effects of exerkines have been broadly explored and entail a promising target to modulate beneficial effects of exercise in health and disease. However, exerkines also have broad effects to modulate redox signaling and homeostasis in several cellular processes to improve stress response. Since redox biology is central to exercise physiology, this review summarizes current evidence for the cross-talk between redox biology and exerkines actions. The role of exerkines in redox biology entails a response to oxidative stress-induced pathological cues to improve health outcomes and to modulate exercise adaptations that integrate redox signaling.
Collapse
Affiliation(s)
- Elisa Félix-Soriano
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
8
|
Cao R, Tian H, Zhang Y, Liu G, Xu H, Rao G, Tian Y, Fu X. Signaling pathways and intervention for therapy of type 2 diabetes mellitus. MedComm (Beijing) 2023; 4:e283. [PMID: 37303813 PMCID: PMC10248034 DOI: 10.1002/mco2.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) represents one of the fastest growing epidemic metabolic disorders worldwide and is a strong contributor for a broad range of comorbidities, including vascular, visual, neurological, kidney, and liver diseases. Moreover, recent data suggest a mutual interplay between T2DM and Corona Virus Disease 2019 (COVID-19). T2DM is characterized by insulin resistance (IR) and pancreatic β cell dysfunction. Pioneering discoveries throughout the past few decades have established notable links between signaling pathways and T2DM pathogenesis and therapy. Importantly, a number of signaling pathways substantially control the advancement of core pathological changes in T2DM, including IR and β cell dysfunction, as well as additional pathogenic disturbances. Accordingly, an improved understanding of these signaling pathways sheds light on tractable targets and strategies for developing and repurposing critical therapies to treat T2DM and its complications. In this review, we provide a brief overview of the history of T2DM and signaling pathways, and offer a systematic update on the role and mechanism of key signaling pathways underlying the onset, development, and progression of T2DM. In this content, we also summarize current therapeutic drugs/agents associated with signaling pathways for the treatment of T2DM and its complications, and discuss some implications and directions to the future of this field.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Huimin Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu Zhang
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Geng Liu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Haixia Xu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Guocheng Rao
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yan Tian
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
| | - Xianghui Fu
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduSichuanChina
- Department of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China Medical School, West China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
9
|
Hall LG, Thyfault JP, Johnson JD. Exercise and inactivity as modifiers of β cell function and type 2 diabetes risk. J Appl Physiol (1985) 2023; 134:823-839. [PMID: 36759159 PMCID: PMC10042613 DOI: 10.1152/japplphysiol.00472.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Exercise and regular physical activity are beneficial for the prevention and management of metabolic diseases such as obesity and type 2 diabetes, whereas exercise cessation, defined as deconditioning from regular exercise or physical activity that has lasted for a period of months to years, can lead to metabolic derangements that drive disease. Adaptations to the insulin-secreting pancreatic β-cells are an important benefit of exercise, whereas less is known about how exercise cessation affects these cells. Our aim is to review the impact that exercise and exercise cessation have on β-cell function, with a focus on the evidence from studies examining glucose-stimulated insulin secretion (GSIS) using gold-standard techniques. Potential mechanisms by which the β-cell adapts to exercise, including exerkine and incretin signaling, autonomic nervous system signaling, and changes in insulin clearance, will also be explored. We will highlight areas for future research.
Collapse
Affiliation(s)
- Liam G Hall
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - John P Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
- KU Diabetes Institute, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Oliveira VR, Paula CC, Taniguchi S, Ortis F. Pre-treatment with IL-6 potentiates β-cell death induced by pro-inflammatory cytokines. BMC Mol Cell Biol 2023; 24:11. [PMID: 36977992 PMCID: PMC10045109 DOI: 10.1186/s12860-023-00476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Type I Diabetes mellitus (T1D) is characterized by a specific destruction of β-cells by the immune system. During this process pro-inflammatory cytokines are released in the pancreatic islets and contribute for β-cells demise. Cytokine-induced iNOS activation, via NF-κB, is implicated in induction of β-cells death, which includes ER stress activation. Physical exercise has been used as an adjunct for better glycemic control in patients with T1D, since it is able to increase glucose uptake independent of insulin. Recently, it was observed that the release of IL-6 by skeletal muscle, during physical exercise, could prevent β-cells death induced by pro-inflammatory cytokines. However, the molecular mechanisms involved in this beneficial effect on β-cells are not yet completely elucidated. Our aim was to evaluate the effect of IL-6 on β-cells exposed to pro-inflammatory cytokines. RESULTS Pre-treatment with IL-6 sensitized INS-1E cells to cytokine-induced cell death, increasing cytokine-induced iNOS and Caspase-3 expression. Under these conditions, however, there was a decrease in cytokines-induced p-eIF2-α but not p-IRE1expression, proteins related to ER stress. To address if this prevention of adequate UPR response is involved in the increase in β-cells death markers induced by IL-6 pre-treatment, we used a chemical chaperone (TUDCA), which improves ER folding capacity. Use of TUDCA increased cytokines-induced Caspase-3 expression and Bax/Bcl-2 ratio in the presence of IL-6 pre-treatment. However, there is no modulation of p-eIF2-α expression by TUDCA in this condition, with increase of CHOP expression. CONCLUSION Treatment with IL-6 alone is not beneficial for β-cells, leading to increased cell death markers and impaired UPR activation. In addition, TUDCA has not been able to restore ER homeostasis or improve β-cells viability under this condition, suggesting that other mechanisms may be involved.
Collapse
Affiliation(s)
- V R Oliveira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - C C Paula
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - S Taniguchi
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - F Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
Coomans de Brachène A, Scoubeau C, Musuaya AE, Costa-Junior JM, Castela A, Carpentier J, Faoro V, Klass M, Cnop M, Eizirik DL. Exercise as a non-pharmacological intervention to protect pancreatic beta cells in individuals with type 1 and type 2 diabetes. Diabetologia 2023; 66:450-460. [PMID: 36401627 PMCID: PMC9676790 DOI: 10.1007/s00125-022-05837-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022]
Abstract
AIMS/HYPOTHESIS Diabetes is characterised by progressive loss of functional pancreatic beta cells. None of the therapeutic agents used to treat diabetes arrest this process; preventing beta cell loss remains a major unmet need. We have previously shown that serum from eight young healthy male participants who exercised for 8 weeks protected human islets and insulin-producing EndoC-βH1 cells from apoptosis induced by proinflammatory cytokines or the endoplasmic reticulum (ER) stressor thapsigargin. Whether this protective effect is influenced by sex, age, training modality, ancestry or diabetes is unknown. METHODS We enrolled 82 individuals, male or female, non-diabetic or diabetic, from different origins, in different supervised training protocols for 8-12 weeks (including training at home during the COVID-19 pandemic). EndoC-βH1 cells were treated with 'exercised' serum or with the exerkine clusterin to ascertain cytoprotection from ER stress. RESULTS The exercise interventions were effective and improved [Formula: see text] values in both younger and older, non-obese and obese, non-diabetic and diabetic participants. Serum obtained after training conferred significant beta cell protection (28% to 35% protection after 4 and 8 weeks of training, respectively) from severe ER stress-induced apoptosis. Cytoprotection was not affected by the type of exercise training or participant age, sex, BMI or ancestry, and persisted for up to 2 months after the end of the training programme. Serum from exercised participants with type 1 or type 2 diabetes was similarly protective. Clusterin reproduced the beneficial effects of exercised sera. CONCLUSIONS/INTERPRETATION These data uncover the unexpected potential to preserve beta cell health by exercise training, opening a new avenue to prevent or slow diabetes progression through humoral muscle-beta cell crosstalk.
Collapse
Affiliation(s)
| | - Corentin Scoubeau
- Laboratory for Biometry and Exercise Nutrition, Université Libre de Bruxelles, Brussels, Belgium
| | - Anyïshai E Musuaya
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Jose Maria Costa-Junior
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Angela Castela
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Carpentier
- Laboratory for Biometry and Exercise Nutrition, Université Libre de Bruxelles, Brussels, Belgium
| | - Vitalie Faoro
- Cardiopulmonary Exercise Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Malgorzata Klass
- Laboratory for Biometry and Exercise Nutrition, Université Libre de Bruxelles, Brussels, Belgium
- Laboratory of Applied Biology and Research Unit in Applied Neurophysiology, Université Libre de Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
12
|
Joo SK, Kim W. Interaction between sarcopenia and nonalcoholic fatty liver disease. Clin Mol Hepatol 2023; 29:S68-S78. [PMID: 36472051 PMCID: PMC10029947 DOI: 10.3350/cmh.2022.0358] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia and nonalcoholic fatty liver disease (NAFLD) are common health problems related to aging. Despite the differences in their diagnostic methods, several cross-sectional and longitudinal studies have revealed the close link between sarcopenia and NAFLD. Sarcopenia and NAFLD are linked by several shared pathogenetic mechanisms, including insulin resistance, hormonal imbalance, systemic inflammation, myostatin and adiponectin dysregulation, nutritional deficiencies, and physical inactivity, thus implicating a bidirectional relationship between sarcopenia and NAFLD. However, there is not sufficient data to support a direct causal relationship between sarcopenia and NAFLD. Moreover, it is currently difficult to conclude whether sarcopenia is a risk factor for nonalcoholic steatohepatitis (NASH) or is a consequence of NASH. Therefore, this review intends to touch on the shared common mechanisms and the bidirectional relationship between sarcopenia and NAFLD.
Collapse
Affiliation(s)
- Sae Kyung Joo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Bronczek GA, Soares GM, Marmentini C, Boschero AC, Costa-Júnior JM. Resistance Training Improves Beta Cell Glucose Sensing and Survival in Diabetic Models. Int J Mol Sci 2022; 23:ijms23169427. [PMID: 36012692 PMCID: PMC9409046 DOI: 10.3390/ijms23169427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Resistance training increases insulin secretion and beta cell function in healthy mice. Here, we explored the effects of resistance training on beta cell glucose sensing and survival by using in vitro and in vivo diabetic models. A pancreatic beta cell line (INS-1E), incubated with serum from trained mice, displayed increased insulin secretion, which could be linked with increased expression of glucose transporter 2 (GLUT2) and glucokinase (GCK). When cells were exposed to pro-inflammatory cytokines (in vitro type 1 diabetes), trained serum preserved both insulin secretion and GCK expression, reduced expression of proteins related to apoptotic pathways, and also protected cells from cytokine-induced apoptosis. Using 8-week-old C57BL/6 mice, turned diabetic by multiple low doses of streptozotocin, we observed that resistance training increased muscle mass and fat deposition, reduced fasting and fed glycemia, and improved glucose tolerance. These findings may be explained by the increased fasting and fed insulinemia, along with increased beta cell mass and beta cell number per islet, observed in diabetic-trained mice compared to diabetic sedentary mice. In conclusion, we believe that resistance training stimulates the release of humoral factors which can turn beta cells more resistant to harmful conditions and improve their response to a glucose stimulus.
Collapse
Affiliation(s)
- Gabriela Alves Bronczek
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
| | - Gabriela Moreira Soares
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
| | - Carine Marmentini
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
| | - Antonio Carlos Boschero
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
| | - José Maria Costa-Júnior
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
- Center for Diabetes Research, Division of Endocrinology, Erasmus Hospital, Universite Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-455-11-02-04
| |
Collapse
|
14
|
Zhang S, Wei Y, Wang C. Impacts of an Exercise Intervention on the Health of Pancreatic Beta-Cells: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127229. [PMID: 35742478 PMCID: PMC9223540 DOI: 10.3390/ijerph19127229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023]
Abstract
There is an increasing consensus that exercise is a medicine and that regular exercise can effectively improve and prevent metabolic diseases such as diabetes. Islet cells are the endocrine of the pancreas and vital to the development of diabetes. Decades of developmental research in exercise intervention and the health of islet cells confirmed that exercise exerts beneficial effects on the function, proliferation, and survival rate of islet cells. However, the precise exercise reference scheme is still elusive. To accomplish this goal, we searched and analyzed relevant articles, and concluded the precise exercise prescription treatments for various species such as humans, rats, and mice. Each exercise protocol is shown in the tables below. These exercise protocols form a rich pipeline of therapeutic development for exercise on the health of islet cells.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Sports Science, University of Harbin Sport, Harbin 150008, China; (S.Z.); (Y.W.)
- Department of Kinesiology, University of Shanghai Sport, Shanghai 200238, China
| | - Yaru Wei
- Department of Sports Science, University of Harbin Sport, Harbin 150008, China; (S.Z.); (Y.W.)
| | - Chunxiao Wang
- Department of Sports Science, University of Harbin Sport, Harbin 150008, China; (S.Z.); (Y.W.)
- Correspondence:
| |
Collapse
|
15
|
Geng L, Liao B, Jin L, Yu J, Zhao X, Zhao Y, Zhong L, Wang B, Li J, Liu J, Yang JK, Jia W, Lian Q, Xu A. β-Klotho promotes glycolysis and glucose-stimulated insulin secretion via GP130. Nat Metab 2022; 4:608-626. [PMID: 35551509 DOI: 10.1038/s42255-022-00572-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/07/2022] [Indexed: 12/13/2022]
Abstract
Impaired glucose-stimulated insulin secretion (GSIS) is a hallmark of type-2 diabetes. However, cellular signaling machineries that control GSIS remain incompletely understood. Here, we report that β-klotho (KLB), a single-pass transmembrane protein known as a co-receptor for fibroblast growth factor 21 (FGF21), fine tunes GSIS via modulation of glycolysis in pancreatic β-cells independent of the actions of FGF21. β-cell-specific deletion of Klb but not Fgf21 deletion causes defective GSIS and glucose intolerance in mice and defective GSIS in islets of type-2 diabetic mice is mitigated by adenovirus-mediated restoration of KLB. Mechanistically, KLB interacts with and stabilizes the cytokine receptor subunit GP130 by blockage of ubiquitin-dependent lysosomal degradation, thereby facilitating interleukin-6-evoked STAT3-HIF1α signaling, which in turn transactivates a cluster of glycolytic genes for adenosine triphosphate production and GSIS. The defective glycolysis and GSIS in Klb-deficient islets are rescued by adenovirus-mediated replenishment of STAT3 or HIF1α. Thus, KLB functions as a key cell-surface regulator of GSIS by coupling the GP130 receptor signaling to glucose catabolism in β-cells and represents a promising therapeutic target for diabetes.
Collapse
Affiliation(s)
- Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Boya Liao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiasui Yu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaoyu Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuntao Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Ling Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Baile Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiufeng Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jie Liu
- Department of Medicine, The University of Hong Kong, Hong Kong, China
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, and Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, China
| | - Qizhou Lian
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.
- HKUMed Laboratory of Cellular Therapeutics, The University of Hong Kong, Hong Kong, China.
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Balakrishnan R, Thurmond DC. Mechanisms by Which Skeletal Muscle Myokines Ameliorate Insulin Resistance. Int J Mol Sci 2022; 23:4636. [PMID: 35563026 PMCID: PMC9102915 DOI: 10.3390/ijms23094636] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022] Open
Abstract
The skeletal muscle is the largest organ in the body and secretes circulating factors, including myokines, which are involved in various cellular signaling processes. Skeletal muscle is vital for metabolism and physiology and plays a crucial role in insulin-mediated glucose disposal. Myokines have autocrine, paracrine, and endocrine functions, serving as critical regulators of myogenic differentiation, fiber-type switching, and maintaining muscle mass. Myokines have profound effects on energy metabolism and inflammation, contributing to the pathophysiology of type 2 diabetes (T2D) and other metabolic diseases. Myokines have been shown to increase insulin sensitivity, thereby improving glucose disposal and regulating glucose and lipid metabolism. Many myokines have now been identified, and research on myokine signaling mechanisms and functions is rapidly emerging. This review summarizes the current state of the field regarding the role of myokines in tissue cross-talk, including their molecular mechanisms, and their potential as therapeutic targets for T2D.
Collapse
Affiliation(s)
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Road, Duarte, CA 91010, USA;
| |
Collapse
|
17
|
Veras K, Lucena CF, Goedcke J, Evangelista FS, Carpinelli A, Carvalho CRDO. Moderate Exercise Training Combined With a High-Fat and Sucrose Diet Protects Pancreatic Islet Function in Male C57BL/6J Mice. Front Endocrinol (Lausanne) 2022; 13:881236. [PMID: 35669687 PMCID: PMC9165053 DOI: 10.3389/fendo.2022.881236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is mainly caused by excess energy intake and physical inactivity, and the number of overweight/obese individuals has been steadily increasing for decades. Previous studies showed that rodents fed westernized diets exhibit endocrine pancreas deterioration and a range of metabolic disorders. This study evaluated the effects of moderated aerobic treadmill exercise training on pancreatic islet cell viability and function in mice consuming a high-fat and sucrose diet. In the present study, 60-day-old male C57BL/6J mice were divided into four groups: control (C), fed a standard diet AIN-93M (3.83 kcal/g; 70% carbohydrate (cornstarch and dextrinized starch were chosen as the major source of carbohydrate for the AIN-93 diet. In addition, a small amount of sucrose), 20% protein (casein), and 10% fat (soybean) with no training (i.e., sedentary); C + training (CTR, fed the standard diet with eight weeks of exercise; high-fat diet + sucrose (HFDS), fed a high fat and sucrose diet (5.2 kcal/g; 20% carbohydrate (cornstarch and dextrinized starch were chosen as the major source of carbohydrate), 20% protein (casein), 60% fat (Lard was chosen as the major source of fat and a small amount of soybean) + 20% sucrose diluted in drinking water with no training; and HFDS + training (HFDSTR). After eight weeks, the HFDS mice displayed increased body weight (P<0.001) and epididymal, inguinal and retroperitoneal adipose tissue mass (P<0.01). These mice also presented insulin resistance (P<0.01), glucose intolerance (P<0.001), impaired glucose-stimulated insulin secretion (GSIS) and were less responsive to the physiological net ROS production induced by glucose stimulus. The HFDS group's pancreatic islet cells were 38% less viable and 59% more apoptotic than those from the C group (P<0.05). The HFDSTR improved glucose tolerance, body mass, insulin sensitivity and GSIS (P<0.05). Furthermore, HFDSTR mice had 53% more viable isolated pancreatic islets cells and 29% fewer apoptotic cells than the HFDS group (P<0.01). Thus, exercise training may slow down and/or prevent adverse metabolic effects associated with consuming a westernized diet.
Collapse
Affiliation(s)
- Katherine Veras
- Institute of Biomedical Sciences, Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Camila Ferraz Lucena
- Institute of Biomedical Sciences, Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | - Julia Goedcke
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | | | - Angelo Carpinelli
- Institute of Biomedical Sciences, Department of Physiology and Biophysics, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
18
|
Freitas-Dias R, Lima TI, Costa-Junior JM, Gonçalves LM, Araujo HN, Paula FMM, Santos GJ, Branco RCS, Ou K, Kaestner KH, Silveira LR, Oliveira CAM, Boschero AC, Zoppi CC, Carneiro EM. Offspring from trained male mice inherit improved muscle mitochondrial function through PPAR co-repressor modulation. Life Sci 2021; 291:120239. [PMID: 34942163 DOI: 10.1016/j.lfs.2021.120239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
Aim Investigate whether inheritance of improved skeletal muscle mitochondrial function and its association with glycemic control are multigenerational benefits of exercise. MAIN METHODS Male Swiss mice were subjected to 8 weeks of endurance training and mated with untrained females. KEY FINDINGS Trained fathers displayed typical endurance training-induced adaptations. Remarkably, offspring from trained fathers also exhibited higher endurance performance, mitochondrial oxygen consumption, glucose tolerance and insulin sensitivity. However, PGC-1α expression was not increased in the offspring. In the offspring, the expression of the co-repressor NCoR1 was reduced, increasing activation of PGC-1α target genes. These effects correlated with higher DNA methylation at the NCoR1 promoter in both, the sperm of trained fathers and in the skeletal muscle of their offspring. SIGNIFICANCE Higher skeletal muscle mitochondrial function is inherited by epigenetic de-activation of a key PGC-1α co-repressor.
Collapse
Affiliation(s)
- Ricardo Freitas-Dias
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil; Department of Physical Therapy, Laboratory of Exercise Physiology, University of Pernambuco, Petrolina, PE, Brazil
| | - Tanes I Lima
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jose Maria Costa-Junior
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luciana M Gonçalves
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Hygor N Araujo
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Flavia M M Paula
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Gustavo J Santos
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil; Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, SC, Brazil
| | - Renato Chaves Souto Branco
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Kristy Ou
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leonardo R Silveira
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Camila A M Oliveira
- Department of Biosciences, Federal University of Sao Paulo, Santos, SP, Brazil
| | - Antonio C Boschero
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Claudio C Zoppi
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Everardo M Carneiro
- Obesity and Comorbidities Research Center (OCRC), Department of Functional and Structural Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
19
|
Langlois A, Forterre A, Pinget M, Bouzakri K. Impact of moderate exercise on fatty acid oxidation in pancreatic β-cells and skeletal muscle. J Endocrinol Invest 2021; 44:1815-1825. [PMID: 33844166 PMCID: PMC8357749 DOI: 10.1007/s40618-021-01551-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Fatty acids (FA) play a crucial role in glycaemia regulation in healthy and metabolic disorders conditions through various mechanisms. FA oxidation is one of the processes involved in lipid metabolism and can be modulated by exercise. Nowadays, physical activity is known to be an effective strategy for the prevention and treatment of Type 2 Diabetes. Moreover, its intensity, its duration, the sex-gender, the prandial state, exerkines… are as many parameters that can influence glycaemic control. However, the widely debated question is to determine the best type of exercise for patients with metabolic disorders. In this review, we will discuss the impact of exercise intensity, especially moderate activity, on glycaemic control by focussing on FA oxidation in pancreatic β-cells and skeletal muscle. Finally, thanks to all the recent data, we will determine whether moderate physical activity is a good therapeutic strategy and if FA oxidation represents a target of interest to treat diabetic, obese and insulin-resistant patients.
Collapse
Affiliation(s)
- A Langlois
- Centre Européen D'étude du Diabète, Unité Mixte de Recherche de L'Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
| | - A Forterre
- Centre Européen D'étude du Diabète, Unité Mixte de Recherche de L'Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
| | - M Pinget
- Centre Européen D'étude du Diabète, Unité Mixte de Recherche de L'Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France
| | - K Bouzakri
- Centre Européen D'étude du Diabète, Unité Mixte de Recherche de L'Université de Strasbourg « Diabète et Thérapeutique », Strasbourg, France.
| |
Collapse
|
20
|
|
21
|
Villaça CDBP, de Paula CC, de Oliveira CC, Vilas-Boas EA, Dos Santos-Silva JC, de Oliveira SF, Abdulkader F, Ferreira SM, Ortis F. Beneficial effects of physical exercise for β-cell maintenance in a type 1 diabetes mellitus animal model. Exp Physiol 2021; 106:1482-1497. [PMID: 33913203 DOI: 10.1113/ep088872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Type 1 diabetes mellitus (T1D) leads to hyperglycaemia owing to pancreatic β-cell destruction by the immune system. Physical exercise has been shown to have potentially beneficial protective roles against cytokine-induced pancreatic β-cell death, but its benefits are yet to be proved and should be understood better, especially in the islet environment. What is the main finding and its importance? Physical exercise protects against β-cell loss in a well-described animal model for T1D, induced by multiple low doses of streptozotocin. This seems to be related to reduced cytokine-induced β-cell death and increased islet cell proliferation. Contributions of islet neogenesis and/or transdifferentiation of pancreatic non-β-cells into β-cells cannot be excluded. ABSTRACT Physical exercise has beneficial effects on pancreatic β-cell function and survival in a pro-inflammatory environment. Although these effects have been linked to decreased islet inflammation and modulation of pro-apoptotic pathways, little is known about the islet microenvironment. Our aim was to evaluate the effects of physical exercise in islet histomorphology in a mouse model of type 1 diabetes mellitus induced by multiple low doses of streptozotocin. As expected, induction of type 1 diabetes mellitus led to β-cell loss and, consequently, decreased islet area. Interestingly, although the decrease in islet area was not prevented by physical exercise, this was not the case for the decrease in β-cell mass. This was probably related to induction of β-cell regeneration, because we observed increased proliferation and regeneration markers, such as Ki67 and Pcna, in islets of trained mice. These were found in the central and peripheral regions of the islets. An increase in the percentage of α- and δ-cells in these conditions, combined with an increase in proliferation and Pax4 labelling in peripheral regions, suggest that β-cell regeneration might also occur by transdifferentiation. This agrees with the presence of cells double stained for insulin and glucagon only in islets of diabetic trained mice. In addition, this group had more extra-islet insulin-positive cells and islets associated with ducts than diabetic mice. Physical exercise also decreased nuclear factor-κB activation in islet cells of diabetic trained compared with diabetic untrained mice, indicating a decrease in pro-inflammatory cytokine-induced β-cell death. Taken together, these findings indicate that preservation of β-cell mass induced by physical exercise involves an increase in β-cell replication and decrease in β-cell death, together with islet neogenesis and islet cell transdifferentiation.
Collapse
Affiliation(s)
| | - Carolina Cavalcante de Paula
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), São Paulo, Brazil
| | - Caroline Cruz de Oliveira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), São Paulo, Brazil
| | - Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), São Paulo, Brazil
| | | | - Sérgio Ferreira de Oliveira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), São Paulo, Brazil
| | - Fernando Abdulkader
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), São Paulo, Brazil
| | - Sandra Mara Ferreira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
22
|
Resistance exercise training improves glucose homeostasis by enhancing insulin secretion in C57BL/6 mice. Sci Rep 2021; 11:8574. [PMID: 33883630 PMCID: PMC8060292 DOI: 10.1038/s41598-021-88105-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/06/2021] [Indexed: 01/14/2023] Open
Abstract
Resistance exercise exerts beneficial effects on glycemic control, which could be mediated by exercise-induced humoral factors released in the bloodstream. Here, we used C57Bl/6 healthy mice, submitted to resistance exercise training for 10 weeks. Trained mice presented higher muscle weight and maximum voluntary carrying capacity, combined with reduced body weight gain and fat deposition. Resistance training improved glucose tolerance and reduced glycemia, with no alterations in insulin sensitivity. In addition, trained mice displayed higher insulinemia in fed state, associated with increased glucose-stimulated insulin secretion. Islets from trained mice showed reduced expression of genes related to endoplasmic reticulum (ER) stress, associated with increased expression of Ins2. INS-1E beta-cells incubated with serum from trained mice displayed similar pattern of insulin secretion and gene expression than isolated islets from trained mice. When exposed to CPA (an ER stress inducer), the serum from trained mice partially preserved the secretory function of INS-1E cells, and prevented CPA-induced apoptosis. These data suggest that resistance training, in healthy mice, improves glucose homeostasis by enhancing insulin secretion, which could be driven, at least in part, by humoral factors.
Collapse
|
23
|
Aerobic exercise and lipolysis: A review of the β-adrenergic signaling pathways in adipose tissue. Sci Sports 2021. [DOI: 10.1016/j.scispo.2020.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Rathwa N, Patel R, Palit SP, Parmar N, Rana S, Ansari MI, Ramachandran AV, Begum R. β-cell replenishment: Possible curative approaches for diabetes mellitus. Nutr Metab Cardiovasc Dis 2020; 30:1870-1881. [PMID: 32994121 DOI: 10.1016/j.numecd.2020.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
AIMS Diabetes mellitus (DM) is a disorder of heterogeneous etiology marked by persistent hyperglycemia. Exogenous insulin is the only treatment for type 1 diabetes (T1D). Islet transplantation is a potential long cure for T1D but is disapproved due to the possibility of immune rejection in the later stage. The approaches used for treating type 2 diabetes (T2D) include diet restrictions, weight management and pharmacological interventions. These procedures have not been able to boost the quality of life for diabetic patients owing to the complexity of the disorder. DATA SYNTHESIS Hence, research has embarked on permanent ways of managing, or even curing the disease. One of the possible approaches to restore the pancreas with new glucose-responsive β-cells is by their regeneration. Regeneration of β-cells include islet neogenesis, dedifferentiation, and trans-differentiation of the already differentiated cells. CONCLUSIONS This review briefly describes the islet development, functions of β-cells, mechanism and factors involved in β-cell death. It further elaborates on the potential of the existing and possible therapeutic modalities involved in the in-vivo replenishment of β-cells with a focus on exercise, diet, hormones, small molecules, and phytochemicals.
Collapse
Affiliation(s)
- Nirali Rathwa
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Roma Patel
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Sayantani Pramanik Palit
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Nishant Parmar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Sneha Rana
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| | - Mohammad Ismail Ansari
- Department of Zoology, J.A.T. Arts, Science and Commerce College, Savitribai Phule- Pune University, 411 007, Maharashtra, India
| | - A V Ramachandran
- Division of Life Science, School of Sciences, Navrachana University, Vadodara, 391 410, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India.
| |
Collapse
|
25
|
Lu J, Liu J, Li L, Lan Y, Liang Y. Cytokines in type 1 diabetes: mechanisms of action and immunotherapeutic targets. Clin Transl Immunology 2020; 9:e1122. [PMID: 32185024 PMCID: PMC7074462 DOI: 10.1002/cti2.1122] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/31/2020] [Accepted: 03/01/2020] [Indexed: 12/17/2022] Open
Abstract
Cytokines play crucial roles in orchestrating complex multicellular interactions between pancreatic β cells and immune cells in the development of type 1 diabetes (T1D) and are thus potential immunotherapeutic targets for this disorder. Cytokines that can induce regulatory functions-for example, IL-10, TGF-β and IL-33-are thought to restore immune tolerance and prevent β-cell damage. By contrast, cytokines such as IL-6, IL-17, IL-21 and TNF, which promote the differentiation and function of diabetogenic immune cells, are thought to lead to T1D onset and progression. However, targeting these dysregulated cytokine networks does not always result in consistent effects because anti-inflammatory or proinflammatory functions of cytokines, responsible for β-cell destruction, are context dependent. In this review, we summarise the current knowledge on the involvement of well-known cytokines in both the initiation and destruction phases of T1D and discuss advances in recently discovered roles of cytokines. Additionally, we emphasise the complexity and implications of cytokine modulation therapy and discuss the ways in which this strategy has been translated into clinical trials.
Collapse
Affiliation(s)
- Jingli Lu
- Department of Pharmacy The First Affiliated Hospital of Zhengzhou University Zhengzhou China.,Henan Key Laboratory of Precision Clinical Pharmacy Zhengzhou University Zhengzhou China
| | - Jiyun Liu
- Department of Pharmacy The First Affiliated Hospital of Zhengzhou University Zhengzhou China.,Henan Key Laboratory of Precision Clinical Pharmacy Zhengzhou University Zhengzhou China
| | - Lulu Li
- Department of Pharmacy Wuhan No.1 Hospital Wuhan China
| | - Yan Lan
- Department of Pharmacy Huangshi Center Hospital Huangshi China
| | - Yan Liang
- Department of Pharmacy The First Affiliated Hospital of Zhengzhou University Zhengzhou China.,Henan Key Laboratory of Precision Clinical Pharmacy Zhengzhou University Zhengzhou China
| |
Collapse
|
26
|
Curran M, Drayson MT, Andrews RC, Zoppi C, Barlow JP, Solomon TPJ, Narendran P. The benefits of physical exercise for the health of the pancreatic β-cell: a review of the evidence. Exp Physiol 2020; 105:579-589. [PMID: 32012372 DOI: 10.1113/ep088220] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review discusses the evidence of the benefits of exercise training for β-cell health through improvements in function, proliferation and survival which may have implications in the treatment of diabetes. What advances does it highlight? This review highlights how exercise may modulate β-cell health in the context of diabetes and highlights the need for further exploration of whether β-cell preserving effects of exercise translates to T1D. ABSTRACT Physical exercise is a core therapy for type 1 and type 2 diabetes. Whilst the benefits of exercise for different physiological systems are recognised, the effect of exercise specifically on the pancreatic β-cell is not well described. Here we review the effects of physical exercise on β-cell health. We show that exercise improves β-cell mass and function. The improved function manifests primarily through the increased insulin content of the β-cell and its increased ability to secrete insulin in response to a glucose stimulus. We review the evidence relating to glucose sensing, insulin signalling, β-cell proliferation and β-cell apoptosis in humans and animal models with acute exercise and following exercise training programmes. Some of the mechanisms through which these benefits manifest are discussed.
Collapse
Affiliation(s)
- Michelle Curran
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK.,Department of Surgery, University of Cambridge, Cambridge, UK
| | - Mark T Drayson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | - Claudio Zoppi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Jonathan P Barlow
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Thomas P J Solomon
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Parth Narendran
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.,Department of Diabetes, The Queen Elizabeth Hospital, Birmingham, UK
| |
Collapse
|
27
|
Kim G, Kim JH. Impact of Skeletal Muscle Mass on Metabolic Health. Endocrinol Metab (Seoul) 2020; 35:1-6. [PMID: 32207258 PMCID: PMC7090295 DOI: 10.3803/enm.2020.35.1.1] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle is regarded as an endocrine and paracrine organ. Muscle-derived secretory proteins, referred to as myokines, mediate interactions between skeletal muscle mass and other organs such as the liver, adipose tissue, pancreas, bone, and the cardiovascular system. As individuals age, reduced levels of physical activity and sarcopenia (loss of skeletal muscle mass and strength) are associated with physical frailty and disability. Recently, several studies have suggested that the loss of skeletal muscle mass may contribute to metabolic disease. Therefore, herein, we focus on the relationships between skeletal muscle mass and metabolic diseases, including metabolic syndrome and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
28
|
Wang B, Wang J, He W, Zhao Y, Zhang A, Liu Y, Hassounah F, Ma F, Klein JD, Wang XH, Wang H. Exogenous miR-29a Attenuates Muscle Atrophy and Kidney Fibrosis in Unilateral Ureteral Obstruction Mice. Hum Gene Ther 2020; 31:367-375. [PMID: 31950871 DOI: 10.1089/hum.2019.287] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Renal fibrosis leads to end-stage renal disease, but antifibrotic drugs are difficult to develop. Chronic kidney disease often results in muscle wasting, and thereby increases morbidity and mortality. In this work, adeno-associated virus (AAV)-mediated overexpressing miR-29a was hypothesized to counteract renal fibrosis and muscle wasting through muscle-kidney crosstalk in unilateral ureteral obstruction (UUO) mice. miR-29a level was downregulated in the kidney and skeletal muscle of UUO mice. The secretion of exosome-encapsulated miR-29a increased in cultured skeletal muscle satellite cells and HEK293 renal cells after stimulation with serum from UUO mice. This result was confirmed by qPCR and microRNA deep sequencing in the serum exosomes of mice with obstructed ureters. A recombinant AAV-miR-29a was generated to overexpress miR-29a and injected into the tibialis anterior muscle of the mice 2 weeks before UUO surgery. AAV-miR-29a abrogated the UUO-induced upregulation of YY1 and myostatin in skeletal muscles. Renal fibrosis was also partially improved in the UUO mice with intramuscular AAV-miR-29a transduction. AAV-miR-29a overexpression reversed the increase in transforming growth factor β, fibronectin, alpha-smooth muscle actin, and collagen 1A1 and 4A1 levels in the kidney of UUO mice. AAV-green fluorescent protein was applied to trace the AAV route in vivo, and fluorescence was significantly visible in the injected/uninjected muscles and in the kidneys. In conclusion, intramuscular AAV-miR-29a injection attenuates muscle wasting and ameliorates renal fibrosis by downregulating several fibrotic-related proteins in UUO mice.
Collapse
Affiliation(s)
- Bin Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, P.R. China.,Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, China.,Department of Medicine, Renal Division, Emory University, Atlanta, Georgia
| | - Juan Wang
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia.,Department of Nephrology, Shanghai General Hosptial, Shanghai Jiaotong University, Shanghai, China
| | - Wei He
- Department of Gastroenterology, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Yajie Zhao
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aiqing Zhang
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia.,Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Liu
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia.,Division of Nephrology, The 3rd People's Hospital of Datong, Shanxi Medical University, Taiyuan, China
| | - Faten Hassounah
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia
| | - Fuying Ma
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia
| | - Janet D Klein
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia
| | - Xiaonan H Wang
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia
| | - Haidong Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, P.R. China.,Department of Medicine, Renal Division, Emory University, Atlanta, Georgia
| |
Collapse
|
29
|
Ryan AJ, Ciaraldi TP, Henry RR. Myokine Regulation of Insulin Secretion: Impact of Inflammation and Type 2 Diabetes. Front Physiol 2020; 10:1608. [PMID: 32038288 PMCID: PMC6987462 DOI: 10.3389/fphys.2019.01608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle (SkM) secretes protein factors (myokines) that can exert multiple actions. To study the control of myokine regulation of β-cell function, SkM biopsies were taken from non-diabetic (ND) and Type 2 diabetic (T2D) subjects and satellite cells cultured to myotubes (MT). MT were also treated with lipopolysaccharide (infectious inflammation – II) or a combination of glucose (10 mM), insulin (120 pM), and palmitate (0.4 mM) (metabolic inflammation – MI) to model the inflammatory and metabolic conditions seen in vivo with T2D. Conditioned media (CM) was collected from MT after 24 h and used to treat INS-1 cells for 24 h. Cell viability, total insulin content, glucose-stimulated insulin secretion (GSIS) and maximal (IBMX-stimulated) IS (ISmax) were monitored. Under baseline conditions, CM from ND and T2D MT had no effects on INS-1 cell viability, insulin content, GSIS, or ISmax. After exposure to II, CM from ND-MT augmented GSIS in INS-1 cells by 100 ± 25% over control (p < 0.05); T2D-CM had no effect. After exposure to MI, T2D-CM suppressed GSIS by 35 ± 5% (p < 0.05); ND-CM was without effect. Under either of these conditions cell viability, total insulin content and ISmax were unaffected. Effects of CM on GSIS were lost after CM was boiled. Both augmentation of GSIS by ND-CM from II-treated MT, and suppression by T2D-CM from MI-treated MT, were inhibited by wortmannin, Ro 31-8220, and SB203580. In summary: (1) ND-MT are able to augment GSIS when stressed, (2) T2D-MT responding to a diabetic-like environment secrete myokines that suppress GSIS, (3) Unknown protein factors exert effects specifically on GSIS, possibly through PI-3K, PKC, and/or p38 MAPK. In T2D, both insulin resistance and a suppression of adaptive increased insulin secretion are intrinsic properties of SkM that can contribute to the full T2D phenotype.
Collapse
Affiliation(s)
- Alexander J Ryan
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States.,Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, LA Jolla, CA, United States
| | - Theodore P Ciaraldi
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States.,Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, LA Jolla, CA, United States
| | - Robert R Henry
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States.,Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, LA Jolla, CA, United States
| |
Collapse
|
30
|
Takagaki Y, Lee SM, Dongqing Z, Kitada M, Kanasaki K, Koya D. Endothelial autophagy deficiency induces IL6 - dependent endothelial mesenchymal transition and organ fibrosis. Autophagy 2020; 16:1905-1914. [PMID: 31965901 DOI: 10.1080/15548627.2020.1713641] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Macroautophagy/autophagy plays a vital role in the homeostasis of diverse cell types. Vascular endothelial cells contribute to vascular health and play a unique role in vascular biology. Here, we demonstrated that autophagy defects in endothelial cells induced IL6 (interleukin 6)-dependent endothelial-to-mesenchymal transition (EndMT) and organ fibrosis with metabolic defects in mice. Inhibition of autophagy, either by a specific inhibitor or small interfering RNA (siRNA) for ATG5 (autophagy related 5), in human microvascular endothelial cells (HMVECs) induced EndMT. The IL6 level was significantly higher in ATG5 siRNA-transfected HMVECs culture medium compared with the control HMVECs culture medium, and neutralization of IL6 by a specific antibody completely inhibited EndMT in ATG5 siRNA-transfected HMVECs. Similar to the in vitro data, endothelial-specific atg5 knockout mice (Atg5 Endo; Cdh5-Cre Atg5 flox/flox mice) displayed both EndMT-associated kidney and heart fibrosis when compared to littermate controls. The plasma level of IL6 was higher in Atg5 Endo compared to that of control mice, and fibrosis was accelerated in Atg5 Endo treated with a HFD; neutralization of IL6 by a specific antibody inhibited EndMT and fibrosis in HFD-fed Atg5 Endo associated with the amelioration of metabolic defects. These results revealed the essential role of autophagy in endothelial cell integrity and revealed that the disruption of endothelial autophagy could lead to significant pathological IL6-dependent EndMT and organ fibrosis. Abbreviations: 3-MA: 3-methyladenine; ATG5: autophagy related 5; EndMT: endothelial-to-mesenchymal transition; HES: hematoxylin and eosin stain; HFD: high-fat diet; HMVECs: human microvascular endothelial cells; IFNG: interferon gamma; IL6: interleukin 6; MTS: Masson's trichrome staining; NFD: normal-fat diet; siRNA: small interfering RNA; SMAD3: SMAD family member 3; TGFB: transforming growth factor β; TNF: tumor necrosis factor; VEGFA: vascular endothelial growth factor A.
Collapse
Affiliation(s)
- Yuta Takagaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan
| | - Seon Myeong Lee
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan
| | - Zha Dongqing
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University , Uchinada, Japan
| | - Keizo Kanasaki
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University , Uchinada, Japan.,Internal Medicine 1, Shimane University Faculty of Medicine , Izumo, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University , Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Kanazawa Medical University , Uchinada, Japan
| |
Collapse
|
31
|
IL-6 is present in beta and alpha cells in human pancreatic islets: Expression is reduced in subjects with type 1 diabetes. Clin Immunol 2019; 211:108320. [PMID: 31809899 DOI: 10.1016/j.clim.2019.108320] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 01/03/2023]
Abstract
IL-6 is a pro-inflammatory cytokine upregulated in some autoimmune diseases. The role of IL-6 in the development of type 1 diabetes (T1D) is unclear. Clinical studies are investigating whether tocilizumab (anti-IL-6 receptor) can help preserve beta cell function in patients recently diagnosed with T1D. However, in some rodent models and isolated human islets, IL-6 has been found to have a protective role for beta cells by reducing oxidative stress. Hence, we systematically investigated local tissue expression of IL-6 in human pancreas from non-diabetic, auto-antibody positive donors and donors with T1D and T2D. IL-6 was constitutively expressed by beta and alpha cells regardless of the disease state. However, expression of IL-6 was highly reduced in insulin-deficient islets of donors with T1D, and the expression was then mostly restricted to alpha cells. Our findings suggest that the implication of IL-6 in T1D pathogenesis might be more complex than previously assumed.
Collapse
|
32
|
Von Ah Morano AE, Dorneles GP, Peres A, Lira FS. The role of glucose homeostasis on immune function in response to exercise: The impact of low or higher energetic conditions. J Cell Physiol 2019; 235:3169-3188. [PMID: 31565806 DOI: 10.1002/jcp.29228] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Immune cells are bioenergetically expensive during activation, which requires tightly regulated control of metabolic pathways. Both low and high glycemic conditions can modulate immune function. States of undernourishment depress the immune system, and in the same way, excessive intake of nutrients, such as an obesity state, compromise its functioning. Multicellular organisms depend on two mechanisms to survive: the regulation and ability to store energy to prevent starvation and the ability to fight against infection. Synergic interactions between metabolism and immunity affect many systems underpinning human health. In a chronic way, the breakdown of glycemic homeostasis in the body can influence cells of the immune system and consequently contribute to the onset of diseases such as type II diabetes, obesity, Alzheimer's, and fat and lean mass loss. On the contrary, exercise, recognized as a primary strategy to control hyperglycemic disorders, also induces a coordinated immune-neuro-endocrine response that acutely modulates cardiovascular, respiratory, and muscle functions and the immune response to exercise is widely dependent on the intensity and volume that may affect an immunodepressive state. These altered immune responses induced by exercise are modulated through the "stress hormones" adrenaline and cortisol, which are a threat to leukocyte metabolism. In this context, carbohydrates appear to have a positive acute response as a strategy to prevent depression of the immune system by maintaining plasma glucose concentrations to meet the energy demand from all systems involved during strenuous exercises. Therefore, herein, we discuss the mechanisms through which exercise may promotes changes on glycemic homeostasis in the metabolism and how it affects immune cell functions under higher or lower glucose conditions.
Collapse
Affiliation(s)
- Ana E Von Ah Morano
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Gilson P Dorneles
- Department of Basic Health Sciences, Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Alessandra Peres
- Department of Basic Health Sciences, Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Fábio S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| |
Collapse
|
33
|
Smith JK. IL-6 and the dysregulation of immune, bone, muscle, and metabolic homeostasis during spaceflight. NPJ Microgravity 2018; 4:24. [PMID: 30534586 PMCID: PMC6279793 DOI: 10.1038/s41526-018-0057-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
We have previously reported that exercise-related secretion of IL-6 by peripheral blood mononuclear cells is proportionate to body weight, suggesting that IL-6 is gravisensitive and that suboptimal production of this key cytokine may contribute to homeostatic dysregulations that occur during spaceflight. This review details what is known about the role of this key cytokine in innate and adaptive immunity, hematopoiesis, and in bone, muscle and metabolic homeostasis on Earth and in the microgravity of space and suggests an experimental approach to confirm or disavow the role of IL-6 in space-related dysregulations.
Collapse
Affiliation(s)
- John Kelly Smith
- Departments of Academic Affairs and Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN USA
| |
Collapse
|
34
|
In vitro experimental models for examining the skeletal muscle cell biology of exercise: the possibilities, challenges and future developments. Pflugers Arch 2018; 471:413-429. [PMID: 30291430 DOI: 10.1007/s00424-018-2210-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Exercise provides a cornerstone in the prevention and treatment of several chronic diseases. The use of in vivo exercise models alone cannot fully establish the skeletal muscle-specific mechanisms involved in such health-promoting effects. As such, models that replicate exercise-like effects in vitro provide useful tools to allow investigations that are not otherwise possible in vivo. In this review, we provide an overview of experimental models currently used to induce exercise-like effects in skeletal muscle in vitro. In particular, the appropriateness of electrical pulse stimulation and several pharmacological compounds to resemble exercise, as well as important technical considerations, are addressed. Each model covered herein provides a useful tool to investigate different aspects of exercise with a level of abstraction not possible in vivo. That said, none of these models are perfect under all circumstances, and the choice of model (and terminology) used should be informed by the specific research question whilst accounting for the several inherent limitations of each model. Further work is required to develop and optimise the current experimental models used, such as combination with complementary techniques during treatment, and thereby improve their overall utility and impact within muscle biology research.
Collapse
|
35
|
PBMT and topical diclofenac as single and combined treatment on skeletal muscle injury in diabetic rats: effects on biochemical and functional aspects. Lasers Med Sci 2018; 34:255-262. [PMID: 29992491 DOI: 10.1007/s10103-018-2580-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022]
Abstract
Physical exercise generates several benefits in a short time in patients with diabetes mellitus. However, it can increase the chances of muscle damage, a serious problem for diabetic patients. Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used to treat these injuries, despite the serious adverse effects. In this way, photobiomodulation therapy (PBMT) with low-level laser therapy (LLLT) and/or light emitting diode therapy (LEDT) can be used as an alternative in this case. However, its efficacy in tissue repair of trauma injuries in diabetes mellitus until now is unknown, as well as the combination between PBMT and NSAIDs. The objective of the present study was to evaluate the effects of NSAIDs and PBMT applied alone or combined on functional and biochemical aspects, in an experimental model of muscle injury through controlled trauma in diabetic rats. Muscle injury was induced by means of a single trauma to the animals' anterior tibialis muscle. After 1 h, the rats were treated with PBMT (830 nm; continuous mode, with a power output of 100 mW; 3.57 W/cm2; 3 J; 107.1 J/cm2, 30 s), diclofenac sodium for topical use (1 g), or combination of them. Our results demonstrated that PBMT + diclofenac, and PBMT alone reduced the gene expression of cyclooxygenase-2 (COX-2) at all assessed times as compared to the injury and diclofenac groups (p < 0.05 and p < 0.01 respectively). The diclofenac alone showed reduced levels of COX-2 only in relation to the injury group (p < 0.05). Prostaglandin E2 levels in blood plasma demonstrated similar results to COX2. In addition, we observed that PBMT + diclofenac and PBMT alone showed significant improvement compared with injury and diclofenac groups in functional analysis at all time points. The results indicate that PBMT alone or in combination with diclofenac reduces levels of inflammatory markers and improves gait of diabetic rats in the acute phase of muscle injury.
Collapse
|
36
|
Probing the Effect of Physiological Concentrations of IL-6 on Insulin Secretion by INS-1 832/3 Insulinoma Cells under Diabetic-Like Conditions. Int J Mol Sci 2018; 19:ijms19071924. [PMID: 29966345 PMCID: PMC6073900 DOI: 10.3390/ijms19071924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/18/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023] Open
Abstract
Exercise improves insulin secretion by pancreatic beta cells (β-cells) in patients with type 2 diabetes, but molecular mechanisms of this effect are yet to be determined. Given that contracting skeletal muscle causes a spike in circulating interleukin-6 (IL-6) levels during exercise, muscle-derived IL-6 is a possible endocrine signal associated with skeletal muscle to β-cell crosstalk. Evidence to support a role of IL-6 in regulating the health and function of β-cells is currently inconsistent and studies investigating the role of IL-6 on the function of β-cells exposed to type 2 diabetic-like conditions are limited and often confounded by supraphysiological IL-6 concentrations. The purpose of this study is to explore the extent by which an exercise-relevant concentration of IL-6 influences the function of pancreatic β-cells exposed to type 2 diabetic-like conditions. Using insulin-secreting INS-1 832/3 cells as an experimental β-cell model, we show that 1-h IL-6 (10 pg/mL) has no effect on insulin secretion under normal conditions and does not restore the loss of insulin secretion caused by elevated glucose ± palmitate or IL-1β. Moreover, treatment of INS-1 832/3 cells to medium collected from C2C12 myotubes conditioned with electrical pulse stimulation does not alter insulin secretion despite significant increases in IL-6. Since insulin secretory defects caused by diabetic-like conditions are neither improved nor worsened by exposure to physiological IL-6 levels, we conclude that the beneficial effect of exercise on β-cell function is unlikely to be driven by muscle-derived IL-6.
Collapse
|
37
|
High glucose suppresses the viability and proliferation of HTR‑8/SVneo cells through regulation of the miR‑137/PRKAA1/IL‑6 axis. Int J Mol Med 2018; 42:799-810. [PMID: 29786111 PMCID: PMC6034938 DOI: 10.3892/ijmm.2018.3686] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/27/2018] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to investigate the mechanism underlying the high glucose (HG)-associated regulation of HTR-8/SVneo cell viability and proliferation during gestational diabetes mellitus (GDM), and to verify the association of microRNA (miR)-137, protein kinase AMP-activated catalytic subunit α1 (PRKAA1) and interlukin-6 (IL-6). miR-137-overexpressing and negative control HTR-8/SVneo cells were established by lentiviral vector infection. Cell Counting Kit-8 and colony formation assays were used to analyze the viability and proliferation of HTR-8/SVneo cells. Reverse transcription-quantitative polymerase chain reaction analysis was used to determine the transcriptional activity of miR-137, PRKAA1 and Il-6, and ELISA and western blot analysis were used to measure the protein levels of IL-6 and PRKAA1, respectively. It was demonstrated that PRKAA1 was decreased in the placental tissues of women with GDM and HG-treated HTR-8/SVneo cells, and that HG upregulated miR-137 and IL-6 in trophoblasts. The overexpression of miR-137 decreased levels of PRKAA1 and increased levels of IL-6 in the HTR-8/SVneo cells. An inhibitor of PRKAA1 promoted the secretion of IL-6, whereas an agonist of PRKAA1 suppressed the production of IL-6. HG treatment and the overexpression of miR-137 reduced the viability and proliferation of HTR-8/SVneo cells in vitro, whereas the activation of PRKAA1 or incubation with IL-6 antibody reversed these effects. Overall, it was concluded that HG suppressed the viability and proliferation of trophoblast cells through the miR-137/PRKAA1/IL-6 axis, which may contribute to pathological changes of placental tissues in GDM.
Collapse
|
38
|
Barlow JP, Solomon TP. Do skeletal muscle-secreted factors influence the function of pancreatic β-cells? Am J Physiol Endocrinol Metab 2018; 314:E297-E307. [PMID: 29208613 DOI: 10.1152/ajpendo.00353.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Skeletal muscle is an endocrine organ that secretes a variety of compounds including proteins (myokines), metabolites, microRNAs (miRNAs), and exosomes, many of which are regulated by exercise and play important roles in endocrine signaling. Interorgan communication via muscle-secreted factors therefore provides a novel area for investigation and implicates the importance of skeletal muscle in the pathophysiology of metabolic diseases such as type 2 diabetes (T2D). Given that underlying molecular mechanisms of T2D are subject of ongoing research, in light of new evidence it is probable that interorgan cross-talk between skeletal muscle and pancreatic β-cells plays an important part. To date, the number of studies published in this field provide the basis of this review. Specifically, we discuss current experimental evidence in support for a role of skeletal muscle to β-cell cross-talk, paying particular attention to muscle-secreted factors including myokines, metabolites, miRNAs, and factors contained within exosomes that influence the function and/or the survival of β-cells in health and disease. In reviewing this evidence, we provide an update on the list of known muscle-secreted factors that have potential to influence the function and/or survival of β-cells under normal and diabetic conditions. We also report limitations of current cross-talk methods and discuss future directions in this growing field.
Collapse
Affiliation(s)
- Jonathan P Barlow
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham, West Midlands , United Kingdom
| | - Thomas P Solomon
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham , Birmingham, West Midlands , United Kingdom
| |
Collapse
|
39
|
Paula FMM, Leite NC, Borck PC, Freitas-Dias R, Cnop M, Chacon-Mikahil MPT, Cavaglieri CR, Marchetti P, Boschero AC, Zoppi CC, Eizirik DL. Exercise training protects human and rodent β cells against endoplasmic reticulum stress and apoptosis. FASEB J 2018; 32:1524-1536. [PMID: 29133342 DOI: 10.1096/fj.201700710r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Prolonged exercise has positive metabolic effects in obese or diabetic individuals. These effects are usually ascribed to improvements in insulin sensitivity. We evaluated whether exercise also generates circulating signals that protect human and rodent β cells against endoplasmic reticulum (ER) stress and apoptosis. For this purpose, we obtained serum from humans or mice before and after an 8 wk training period. Exposure of human islets or mouse or rat β cells to human or rodent sera, respectively, obtained from trained individuals reduced cytokine (IL-1β+IFN-γ)- or chemical ER stressor-induced β-cell ER stress and apoptosis, at least in part via activation of the transcription factor STAT3. These findings indicate that exercise training improves human and rodent β-cell survival under diabetogenic conditions and support lifestyle interventions as a protective approach for both type 1 and 2 diabetes.-Paula, F. M. M., Leite, N. C., Borck, P. C., Freitas-Dias, R., Cnop, M., Chacon-Mikahil, M. P. T., Cavaglieri, C. R., Marchetti, P., Boschero, A. C., Zoppi, C. C., Eizirik, D. L. Exercise training protects human and rodent β cells against endoplasmic reticulum stress and apoptosis.
Collapse
Affiliation(s)
- Flavia M M Paula
- Center for Diabetes Research, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nayara C Leite
- Department of Structural and Functional Biology, Institute of Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Patricia C Borck
- Department of Structural and Functional Biology, Institute of Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Ricardo Freitas-Dias
- Department of Structural and Functional Biology, Institute of Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil.,Department of Physical Therapy, University of Pernambuco, Petrolina, Brazil
| | - Miriam Cnop
- Center for Diabetes Research, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mara P T Chacon-Mikahil
- Exercise Physiology Laboratory (FISEX), Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil; and
| | - Claudia R Cavaglieri
- Exercise Physiology Laboratory (FISEX), Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, Brazil; and
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio C Boschero
- Department of Structural and Functional Biology, Institute of Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Claudio C Zoppi
- Department of Structural and Functional Biology, Institute of Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Decio L Eizirik
- Center for Diabetes Research, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
40
|
Giudice J, Taylor JM. Muscle as a paracrine and endocrine organ. Curr Opin Pharmacol 2017; 34:49-55. [PMID: 28605657 PMCID: PMC5808999 DOI: 10.1016/j.coph.2017.05.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 01/05/2023]
Abstract
Skeletal muscle cells are highly abundant and metabolically active and are known to 'communicate' their energy demands to other organs through active secretion. Muscle-derived secretory proteins include a variety of cytokines and peptides collectively referred to as 'myokines' that exert autocrine, paracrine or endocrine effects. Analyses of the skeletal muscle secretome revealed that numerous myokines are secreted in response to contraction or strength training, and that these factors not only regulate energy demand but also contribute to the broad beneficial effects of exercise on cardiovascular, metabolic, and mental health. Herein we review recent studies on the myokines that regulate muscle function and those that mediate cross talk between skeletal muscle and other organs including adipose tissue, liver, pancreas, the cardiovascular system, brain, bones, and skin.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Joan M Taylor
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
41
|
Interleukin-6 increases the expression and activity of insulin-degrading enzyme. Sci Rep 2017; 7:46750. [PMID: 28429777 PMCID: PMC5399448 DOI: 10.1038/srep46750] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/21/2017] [Indexed: 12/23/2022] Open
Abstract
Impairment of the insulin-degrading enzyme (IDE) is associated with obesity and type 2 diabetes mellitus (T2DM). Here, we used 4-mo-old male C57BL/6 interleukin-6 (IL-6) knockout mice (KO) to investigate the role of this cytokine on IDE expression and activity. IL-6 KO mice displayed lower insulin clearance in the liver and skeletal muscle, compared with wild type (WT), due to reduced IDE expression and activity. We also observed that after 3-h incubation, IL-6, 50 and 100 ng ml−1, increased the expression of IDE in HEPG2 and C2C12 cells, respectively. In addition, during acute exercise, the inhibition of IL-6 prevented an increase in insulin clearance and IDE expression and activity, mainly in the skeletal muscle. Finally, IL-6 and IDE concentrations were significantly increased in plasma from humans, after an acute exercise, compared to pre-exercise values. Although the increase in plasma IDE activity was only marginal, a positive correlation between IL-6 and IDE activity, and between IL-6 and IDE protein expression, was observed. Our outcomes indicate a novel function of IL-6 on the insulin metabolism expanding the possibilities for new potential therapeutic strategies, focused on insulin degradation, for the treatment and/or prevention of diseases related to hyperinsulinemia, such as obesity and T2DM.
Collapse
|
42
|
Oharomari LK, de Moraes C, Navarro AM. Exercise Training but not Curcumin Supplementation Decreases Immune Cell Infiltration in the Pancreatic Islets of a Genetically Susceptible Model of Type 1 Diabetes. SPORTS MEDICINE-OPEN 2017; 3:15. [PMID: 28378202 PMCID: PMC5380567 DOI: 10.1186/s40798-017-0082-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/26/2017] [Indexed: 01/23/2023]
Abstract
Background The main mechanism involved in the pathogenesis of autoimmunity is an uncontrolled inflammatory response against self-antigens. Therefore, anti-inflammatory factors, such as the intake of bioactive compounds and a physically active lifestyle, may decrease or cease the development of autoimmune diseases. Type 1 diabetes (T1D) is an autoimmune disease characterized by pancreatic β cell destruction. The non-obese diabetic (NOD) mouse is a model of spontaneous T1D and is the model most similar to human disease. Methods To determine the effects of exercise training and curcumin supplementation on T1D progression, 48 NOD mice, 5 weeks old, were randomly divided into four groups: control, curcumin supplementation, trained, and trained plus curcumin. Every 2 weeks, blood glucose was measured using a glucometer. At the end of 20 weeks, a histopathological procedure was used to assess immune cells infiltration into pancreatic β cells (insulitis). Results Moderate intensity exercise training has the potential to protect pancreatic β cells against an immune response in vivo. However, curcumin supplementation failed to attenuate insulitis in NOD mice. Conclusions These data provide evidence that exercise training can mitigate T1D development in genetically susceptible mice.
Collapse
Affiliation(s)
| | - Camila de Moraes
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
43
|
Silva RPM, dos Santos RO, Matildes NE, Mundim AV, Garrote MDS, Rodrigues PF, Penha-Silva N. Influence of the use of testosterone associated with physical training on some hematologic and physical parameters in older rats with alloxan-induced diabetes. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2017; 61:62-69. [PMID: 27598977 PMCID: PMC10522118 DOI: 10.1590/2359-3997000000200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 01/26/2016] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study investigated the possible blood changes in wistar rats elderly with and without treatment with anabolic steroids submitted physical training. MATERIALS AND METHODS Elderly rats (32) were divided into four groups: normal (N), treated normal (NT), diabetic (D) and treated diabetic (DT). They were submitted to 20 sessions of swimming with overload (5% body weight), 40 min/day for four weeks. The NT and DT groups received application of testosterone twice a week. At the end of the sessions, the animals were subjected to swimming until exhaustion and then killed for removal of blood and visceral fat. We evaluated maximum swim time, weight of visceral fat, erythrogram, leukogram, lipidogram and serum levels of glucose, lactate, aspartate aminotransferase and creatine kinase. The results were compared using one-way ANOVA followed by the post hoc Tukey test. RESULTS In elderly diabetic rats, the use of anabolic associated with physical training in older rats resulted in improvement in erythrogram, lipidogram and physical performance for high-intensity aerobic exercise. However, it was related to changes in leukocyte count, probably associated with inflammation. CONCLUSION The combination of the use of testosterone with physical training, followed by maximal effort test caused changes hematological and biochemical can be associated with improvement in physiological characteristics, with increase of the swimming time and decrease of visceral fat levels, improvement in aerobic metabolism of fatty acids and glucose in normal and diabetic animals.
Collapse
Affiliation(s)
- Romeu Paulo Martins Silva
- Centro de Ciências da Saúde e DesportoUniversidade Federal do AcreRio BrancoACBrasilCentro de Ciências da Saúde e Desporto, Universidade Federal do Acre (UFAC), Rio Branco, AC, Brasil
- Centro Universitário do Planalto de AraxáAraxáMGBrasilCentro Universitário do Planalto de Araxá (Uniaraxá), Araxá, MG, Brasil
| | - Rodrigo Otávio dos Santos
- Centro Universitário do Planalto de AraxáAraxáMGBrasilCentro Universitário do Planalto de Araxá (Uniaraxá), Araxá, MG, Brasil
| | - Nelson Eurípedes Matildes
- Centro Universitário do Planalto de AraxáAraxáMGBrasilCentro Universitário do Planalto de Araxá (Uniaraxá), Araxá, MG, Brasil
| | - Antônio Vicente Mundim
- Instituto de Genética e BioquímicaUniversidade Federal de UberlândiaUberlândiaMGBrasilInstituto de Genética e Bioquímica, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brasil
| | - Mario da Silva Garrote
- Instituto de Genética e BioquímicaUniversidade Federal de UberlândiaUberlândiaMGBrasilInstituto de Genética e Bioquímica, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brasil
| | - Pâmella Ferreira Rodrigues
- Centro Universitário do Planalto de AraxáAraxáMGBrasilCentro Universitário do Planalto de Araxá (Uniaraxá), Araxá, MG, Brasil
| | - Nilson Penha-Silva
- Instituto de Genética e BioquímicaUniversidade Federal de UberlândiaUberlândiaMGBrasilInstituto de Genética e Bioquímica, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brasil
| |
Collapse
|
44
|
Lima TI, Araujo HN, Menezes ES, Sponton CH, Araújo MB, Bomfim LH, Queiroz AL, Passos MA, e Sousa TA, Hirabara SM, Martins AR, Sampaio HC, Rodrigues A, Curi R, Carneiro EM, Boschero AC, Silveira LR. Role of microRNAs on the Regulation of Mitochondrial Biogenesis and Insulin Signaling in Skeletal Muscle. J Cell Physiol 2016; 232:958-966. [DOI: 10.1002/jcp.25645] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Tanes I. Lima
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
- Ribeirão Preto Medical School; Department of Biochemistry and Immunology; USPRP; Ribeirão Preto SP Brazil
| | - Hygor N. Araujo
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Eveline S. Menezes
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Carlos H. Sponton
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Michel B. Araújo
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Lucas H.M. Bomfim
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - André L. Queiroz
- Ribeirão Preto Medical School; Department of Biochemistry and Immunology; USPRP; Ribeirão Preto SP Brazil
| | - Madla A. Passos
- Ribeirão Preto Medical School; Department of Biochemistry and Immunology; USPRP; Ribeirão Preto SP Brazil
| | | | - Sandro M. Hirabara
- Institute of Physical Activity Sciences and Sports; Cruzeiro do Sul University; São Paulo SP Brazil
| | - Amanda R. Martins
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Helena C.L.B. Sampaio
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Alice Rodrigues
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Rui Curi
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - Everardo M. Carneiro
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Antônio C. Boschero
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| | - Leonardo R. Silveira
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; Unicamp; Campinas SP Brazil
| |
Collapse
|
45
|
Chen X, Gong Q, Wang CY, Zhang K, Ji X, Chen YX, Yu XJ. High-Fat Diet Induces Distinct Metabolic Response in Interleukin-6 and Tumor Necrosis Factor-α Knockout Mice. J Interferon Cytokine Res 2016; 36:580-588. [PMID: 27610743 DOI: 10.1089/jir.2016.0022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Quan Gong
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Chun-Yu Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Kun Zhang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Ji
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Xi Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| | - Xi-Jie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Raza H, John A, Shafarin J, Howarth FC. Exercise-induced alterations in pancreatic oxidative stress and mitochondrial function in type 2 diabetic Goto-Kakizaki rats. Physiol Rep 2016; 4:4/8/e12751. [PMID: 27095835 PMCID: PMC4848718 DOI: 10.14814/phy2.12751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/07/2016] [Indexed: 01/22/2023] Open
Abstract
Progressive metabolic complications accompanied by oxidative stress are the hallmarks of type 2 diabetes. The precise molecular mechanisms of the disease complications, however, remain elusive. Exercise-induced nontherapeutic management of type 2 diabetes is the first line of choice to control hyperglycemia and diabetes associated complications. In this study, using 11-month-old type 2 Goto-Kakizaki (GK) rats, we have investigated the effects of exercise on mitochondrial metabolic and oxidative stress in the pancreas. Our results showed an increase in theNADPHoxidase enzyme activity and reactive oxygen species (ROS) production inGKrats, which was inhibited after exercise. Increased lipid peroxidation and protein carbonylation andSODactivity were also inhibited after exercise. Interestingly, glutathione (GSH) level was markedly high in the pancreas ofGKdiabetic rats even after exercise. However,GSH-peroxidase andGSH-reductase activities were significantly reduced. Exercise also induced energy metabolism as observed by increased hexokinase and glutamate dehydrogenase activities. A significant decrease in the activities of mitochondrial ComplexesII/IIIandIVwere observed in theGKrats. Exercise improved only ComplexIVactivity suggesting increased utilization of oxygen. We also observed increased activities of cytochrome P450s in the pancreas ofGKrats which was reduced significantly after exercise.SDS-PAGEresults have shown a decreased expression ofNF-κB, Glut-2, andPPAR-ϒ inGKrats which was markedly increased after exercise. These results suggest differential oxidative stress and antioxidant defense responses after exercise. Our results also suggest improved mitochondrial function and energy utilization in the pancreas of exercisingGKrats.
Collapse
Affiliation(s)
- Haider Raza
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Annie John
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jasmin Shafarin
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
47
|
Bianchi MS, Bianchi S, Hernado-Insúa A, Martinez LM, Lago N, Libertun C, Chasseing NA, Montaner AD, Lux-Lantos VA. Proposed mechanisms for oligonucleotide IMT504 induced diabetes reversion in a mouse model of immunodependent diabetes. Am J Physiol Endocrinol Metab 2016; 311:E380-95. [PMID: 27329801 DOI: 10.1152/ajpendo.00104.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes (T1D) originates from autoimmune β-cell destruction. IMT504 is an immunomodulatory oligonucleotide that increases mesenchymal stem cell cloning capacity and reverts toxic diabetes in rats. Here, we evaluated long-term (20 doses) and short-term (2-6 doses) effects of IMT504 (20 mg·kg(-1)·day(-1) sc) in an immunodependent diabetes model: multiple low-dose streptozotocin-injected BALB/c mice (40 mg·kg(-1)·day(-1) ip for 5 consecutive days). We determined blood glucose, glucose tolerance, serum insulin, islet morphology, islet infiltration, serum cytokines, progenitor cell markers, immunomodulatory proteins, proliferation, apoptosis, and islet gene expression. IMT504 reduced glycemia, induced β-cell recovery, and impaired islet infiltration. IMT504 induced early blood glucose decrease and infiltration inhibition, increased β-cell proliferation and decreased apoptosis, increased islet indoleamine 2,3-dioxygenase (IDO) expression, and increased serum tumor necrosis factor and interleukin-6 (IL-6). IMT504 affected islet gene expression; preproinsulin-2, proglucagon, somatostatin, nestin, regenerating gene-1, and C-X-C motif ligand-1 cytokine (Cxcl1) increased in islets from diabetic mice and were decreased by IMT504. IMT504 downregulated platelet endothelial cell adhesion molecule-1 (Pecam1) in islets from control and diabetic mice, whereas it increased regenerating gene-2 (Reg2) in islets of diabetic mice. The IMT504-induced increase in IL-6 and islet IDO expression and decreased islet Pecam1 and Cxcl1 mRNA expression could participate in keeping leukocyte infiltration at bay, whereas upregulation of Reg2 may mediate β-cell regeneration. We conclude that IMT504 effectively reversed immunodependent diabetes in mice. Corroboration of these effects in a model of autoimmune diabetes more similar to human T1D could provide promising results for the treatment of this disease.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cell Proliferation/drug effects
- Chemokine CXCL1/drug effects
- Chemokine CXCL1/genetics
- Cytokines/drug effects
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Disease Models, Animal
- Glucose Tolerance Test
- Indoleamine-Pyrrole 2,3,-Dioxygenase/drug effects
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Insulin/genetics
- Insulin/metabolism
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Interleukin-6/metabolism
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Lithostathine/drug effects
- Lithostathine/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Nestin/drug effects
- Nestin/genetics
- Oligodeoxyribonucleotides/pharmacology
- Pancreatitis-Associated Proteins
- Platelet Endothelial Cell Adhesion Molecule-1/drug effects
- Platelet Endothelial Cell Adhesion Molecule-1/genetics
- Proglucagon/drug effects
- Proglucagon/genetics
- Protein Precursors/drug effects
- Protein Precursors/genetics
- Proteins/drug effects
- Proteins/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Somatostatin/drug effects
- Somatostatin/genetics
- Stem Cells/drug effects
- Stem Cells/metabolism
- Transcriptome/drug effects
- Tumor Necrosis Factor-alpha/drug effects
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- María S Bianchi
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Stefanía Bianchi
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | - Leandro M Martinez
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Néstor Lago
- Facultad de Medicina, Universidad de Buenos Aires. Buenos Aires, Argentina
| | - Carlos Libertun
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; Facultad de Medicina, Universidad de Buenos Aires. Buenos Aires, Argentina
| | - Norma A Chasseing
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | - Victoria A Lux-Lantos
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina;
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Skeletal muscle is gaining increased attention as an endocrine organ. Recently, novel myokines and new effects of already established myokines have been identified. The objective of this review is to give an update on the recent advances in the field. RECENT FINDINGS Several hundred putative myokines have been described, some of which are induced by contraction and differentially regulated between healthy and metabolically diseased individuals. Interleukin-6 (IL-6) is the prototype myokine, which was identified as a muscle-derived cytokine 15 years ago. Recently, IL-6 has been linked to β-cell survival and inhibition of cancer-cell growth. Moreover, trans-signaling appears to determine whether IL-6 acts as a proinflammatory or an anti-inflammatory cytokine. Irisin has been shown to be a secreted myokine, which contribute to circulating concentrations dependent on training status. IL-15 has been established as a cytokine mediating cross-talk between skeletal muscle and skin tissue, and decorin has been characterized as a contraction-induced myokine which apparently is differentially regulated between healthy and dysglycemic individuals. SUMMARY Skeletal muscle is an endocrine organ which, by the release of myokines, may influence metabolism in virtually all organs in the body. This knowledge may potentially open up for the possibility of designing new drugs that mimic the effects of myokine signaling.
Collapse
Affiliation(s)
- Kristian Karstoft
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | | |
Collapse
|
49
|
Berchtold LA, Prause M, Størling J, Mandrup-Poulsen T. Cytokines and Pancreatic β-Cell Apoptosis. Adv Clin Chem 2016; 75:99-158. [PMID: 27346618 DOI: 10.1016/bs.acc.2016.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery 30 years ago that inflammatory cytokines cause a concentration, activity, and time-dependent bimodal response in pancreatic β-cell function and viability has been a game-changer in the fields of research directed at understanding inflammatory regulation of β-cell function and survival and the causes of β-cell failure and destruction in diabetes. Having until then been confined to the use of pathophysiologically irrelevant β-cell toxic chemicals as a model of β-cell death, researchers could now mimic endocrine and paracrine effects of the cytokine response in vitro by titrating concentrations in the low to the high picomolar-femtomolar range and vary exposure time for up to 14-16h to reproduce the acute regulatory effects of systemic inflammation on β-cell secretory responses, with a shift to inhibition at high picomolar concentrations or more than 16h of exposure to illustrate adverse effects of local, chronic islet inflammation. Since then, numerous studies have clarified how these bimodal responses depend on discrete signaling pathways. Most interest has been devoted to the proapoptotic response dependent upon mainly nuclear factor κ B and mitogen-activated protein kinase activation, leading to gene expressional changes, endoplasmic reticulum stress, and triggering of mitochondrial dysfunction. Preclinical studies have shown preventive effects of cytokine antagonism in animal models of diabetes, and clinical trials demonstrating proof of concept are emerging. The full clinical potential of anticytokine therapies has yet to be shown by testing the incremental effects of appropriate dosing, timing, and combinations of treatments. Due to the considerable translational importance of enhancing the precision, specificity, and safety of antiinflammatory treatments of diabetes, we review here the cellular, preclinical, and clinical evidence of which of the death pathways recently proposed in the Nomenclature Committee on Cell Death 2012 Recommendations are activated by inflammatory cytokines in the pancreatic β-cell to guide the identification of antidiabetic targets. Although there are still scarce human data, the cellular and preclinical studies point to the caspase-dependent intrinsic apoptosis pathway as the prime effector of inflammatory β-cell apoptosis.
Collapse
Affiliation(s)
| | - M Prause
- University of Copenhagen, Copenhagen, Denmark
| | - J Størling
- Copenhagen Diabetes Research Center, Beta Cell Biology Group, Copenhagen University Hospital Herlev, Herlev, Denmark
| | | |
Collapse
|
50
|
Chaudhury A. Response: "Commentary: A Hypothesis for Examining Skeletal Muscle Biopsy-Derived Sarcolemmal nNOSµ as Surrogate for Enteric nNOSα Function". nNOS(skeletal muscle) may be Evidentiary for Enteric NO-Transmission Despite nNOSµ/α Differences. Front Med (Lausanne) 2016; 3:4. [PMID: 26942180 PMCID: PMC4761842 DOI: 10.3389/fmed.2016.00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/15/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Arun Chaudhury
- Arkansas Department of Health and GIM Foundation , Little Rock, AR , USA
| |
Collapse
|