1
|
Morikka J, Federico A, Möbus L, Inkala S, Pavel A, Sani S, Vaani M, Peltola S, Serra A, Greco D. Toxicogenomic assessment of in vitro macrophages exposed to profibrotic challenge reveals a sustained transcriptomic immune signature. Comput Struct Biotechnol J 2024; 25:194-204. [PMID: 39430886 PMCID: PMC11490883 DOI: 10.1016/j.csbj.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/27/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
Immune signalling is a crucial component in the progression of fibrosis. However, approaches for the safety assessment of potentially profibrotic substances, that provide information on mechanistic immune responses, are underdeveloped. This study aimed to develop a novel framework for assessing the immunotoxicity of fibrotic compounds. We exposed macrophages in vitro to multiple sublethal concentrations of the profibrotic agent bleomycin, over multiple timepoints, and generated RNA sequencing data. Using a toxicogenomic approach, we performed dose-dependent analysis to discover genes dysregulated by bleomycin exposure in a dose-responsive manner. A subset of immune genes displayed a sustained dose-dependent and differential expression response to profibrotic challenge. An immunoassay revealed cytokines and proteinases responding to bleomycin exposure that closely correlated to transcriptomic alterations, underscoring the integration between transcriptional immune response and external immune signalling activity. This study not only increases our understanding of the immunological mechanisms of fibrosis, but also offers an innovative framework for the toxicological evaluation of substances with potential fibrogenic effects on macrophage signalling. Our work brings a new immunotoxicogenomic direction for hazard assessment of fibrotic compounds, through the implementation of a time and resource efficient in vitro methodology.
Collapse
Affiliation(s)
- Jack Morikka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Lena Möbus
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Simo Inkala
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alisa Pavel
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Copenhagen, Denmark
| | - Saara Sani
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maaret Vaani
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sanna Peltola
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Kulkarni HS, Tague LK, Calabrese DR, Liao F, Liu Z, Garnica L, Shankar N, Wu X, Kulkarni DH, Bernardt C, Byers D, Chen C, Huang HJ, Witt CA, Hachem RR, Kreisel D, Atkinson JP, Greenland JR, Gelman AE. Impaired complement regulation drives chronic lung allograft dysfunction after lung transplantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.17.623951. [PMID: 39605452 PMCID: PMC11601477 DOI: 10.1101/2024.11.17.623951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A greater understanding of chronic lung allograft dysfunction (CLAD) pathobiology, the primary cause of mortality after lung transplantation, is needed to improve outcomes. The complement system links innate to adaptive immune responses and is activated early post-lung transplantation to form the C3 convertase, a critical enzyme that cleaves the central complement component C3. We hypothesized that LTx recipients with a genetic predisposition to enhanced complement activation have worse CLAD-free survival mediated through increased adaptive alloimmunity. We interrogated a known functional C3 polymorphism (C3R102G) that increases complement activation through impaired C3 convertase inactivation in two independent LTx recipient cohorts. C3R102G, identified in at least one out of three LTx recipients, was associated with worse CLAD-free survival, particularly in the subset of recipients who developed donor-specific antibodies (DSA). In a mouse orthotopic lung transplantation model, impaired recipient complement regulation resulted in more severe obstructive airway lesions when compared to wildtype controls, despite only moderate differences in graft-infiltrating effector T cells. Impaired complement regulation promoted the intragraft accumulation of memory B cells and antibody-secreting cells, resulting in increased DSA levels. In summary, genetic predisposition to complement activation is associated with B cell activation and worse CLAD-free survival.
Collapse
Affiliation(s)
- Hrishikesh S. Kulkarni
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, CA, USA
| | - Laneshia K. Tague
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel R. Calabrese
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| | - Fuyi Liao
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhiyi Liu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Lorena Garnica
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nishanth Shankar
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaobo Wu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Devesha H. Kulkarni
- Department of Medicine, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, CA, USA
| | - Cory Bernardt
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek Byers
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Catherine Chen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Howard J. Huang
- Department of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Chad A. Witt
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramsey R. Hachem
- Department of Internal Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - John P. Atkinson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John R. Greenland
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Magnusen AF, Pandey MK. Complement System and Adhesion Molecule Skirmishes in Fabry Disease: Insights into Pathogenesis and Disease Mechanisms. Int J Mol Sci 2024; 25:12252. [PMID: 39596318 PMCID: PMC11594573 DOI: 10.3390/ijms252212252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha (GLA) gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction. This review elucidates how the complement system, particularly through the activation of C3a and C5a, exacerbates disease pathology. The activation of these pathways leads to the upregulation of adhesion molecules, including vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), platelet and endothelial cell adhesion molecule 1 (PECAM1), and complement receptor 3 (CR3) on leukocytes and endothelial cells. This upregulation promotes the excessive recruitment of leukocytes, which in turn exacerbates disease pathology. Targeting complement components C3a, C5a, or their respective receptors, C3aR (C3a receptor) and C5aR1 (C5a receptor 1), could potentially reduce inflammation, mitigate tissue damage, and improve clinical outcomes for individuals with Fabry disease.
Collapse
Affiliation(s)
- Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
4
|
Kulkarni DH, Starick M, Aponte Alburquerque R, Kulkarni HS. Local complement activation and modulation in mucosal immunity. Mucosal Immunol 2024; 17:739-751. [PMID: 38838816 DOI: 10.1016/j.mucimm.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
The complement system is an evolutionarily conserved arm of innate immunity, which forms one of the first lines of host response to pathogens and assists in the clearance of debris. A deficiency in key activators/amplifiers of the cascade results in recurrent infection, whereas a deficiency in regulating the cascade predisposes to accelerated organ failure, as observed in colitis and transplant rejection. Given that there are over 60 proteins in this system, it has become an attractive target for immunotherapeutics, many of which are United States Food and Drug Administration-approved or in multiple phase 2/3 clinical trials. Moreover, there have been key advances in the last few years in the understanding of how the complement system operates locally in tissues, independent of its activities in circulation. In this review, we will put into perspective the abovementioned discoveries to optimally modulate the spatiotemporal nature of complement activation and regulation at mucosal surfaces.
Collapse
Affiliation(s)
- Devesha H Kulkarni
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marick Starick
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Rafael Aponte Alburquerque
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
5
|
Li X, Li J, Zeng W, Wang B, Du M, Liang L, Gao Y. Mingjing granule inhibits the subretinal fibrovascular membrane of two-stage laser-induced neovascular age-related macular degeneration in rats. Front Pharmacol 2024; 15:1384418. [PMID: 38983912 PMCID: PMC11231192 DOI: 10.3389/fphar.2024.1384418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
Objective The study aims to investigate the protective effect of Mingjing granule (MG) in a fibrovascular membrane rat model of neovascular age-related macular degeneration (nAMD) and explore the underlying mechanism. Methods The nAMD fibrovascular membrane model was established by two-stage laser photocoagulation. BN rats were randomly divided into four groups: the model group was gavaged with distilled water, the anti-VEGF group was given an intravitreous injection of ranibizumab, the MG + anti-VEGF group was gavaged with MG combined with an intravitreous injection of ranibizumab, and the normal group not modeled only fed conventionally. Lesions were evaluated by color fundus photograph, optical coherence tomography, fundus fluorescein angiography, and retinal pigment epithelial-choroid-sclera flat mount. The changes in the retinal structure were observed by histopathology. The expression of inflammatory cell markers F4/80, Iba-1, and glial fibrillary acidic protein (GFAP); the fibrosis-related factors collagen-1, fibronectin, α-smooth muscle actin (α-SMA), and transforming growth factor-beta (TGF-β); and the complement system-related factors C3a and C3aR in the retina were detected by immunofluorescence or qRT-PCR. Results The current study revealed that MG + anti-VEGF administration more significantly reduced the thickness of fibrovascular lesions, suppressed vascular leakage (exudation area and mean density value), inhibited the area of fibrovascular lesions, and restrained the formation of the fibrovascular membrane than the anti-VEGF agent alone in the two-stage laser-induced rat model. The fluorescence intensities of F4/80, Iba-1, collagen-1, fibronectin, TGF-β, and C3aR showed more significant inhibition in MG + anti-VEGF-treated rats than the anti-VEGF agent alone. The mRNA expression levels of F4/80, Iba-1, GFAP, collagen-1, fibronectin, α-SMA, TGF-β, and C3a showed lower levels in rats treated with MG + anti-VEGF than the anti-VEGF agent alone. Conclusion Combining MG with anti-VEGF treatment inhibits the growth of the fibrovascular membrane more effectively than using anti-VEGF treatment alone. The mechanism underlying this effect may involve limiting inflammatory cell aggregation, controlling complement system activation, and decreasing the expression of the fibrotic protein.
Collapse
Affiliation(s)
- Xiaoyu Li
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Ophthalmic Disease Project Group, China Evidence-based Medicine Center of Traditional Chinese Medicine, Beijing, China
| | - Jiaxian Li
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weixin Zeng
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoli Wang
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Maobo Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Liang
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Ophthalmic Disease Project Group, China Evidence-based Medicine Center of Traditional Chinese Medicine, Beijing, China
| | - Yun Gao
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Ophthalmic Disease Project Group, China Evidence-based Medicine Center of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Renaud L, Wilson CL, Lafyatis R, Schnapp LM, Feghali-Bostwick CA. Transcriptomic characterization of lung pericytes in systemic sclerosis-associated pulmonary fibrosis. iScience 2024; 27:110010. [PMID: 38868196 PMCID: PMC11167435 DOI: 10.1016/j.isci.2024.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Systemic sclerosis (SSc) is a chronic disease characterized by fibrosis and vascular abnormalities in the skin and internal organs, including the lung. SSc-associated pulmonary fibrosis (SSc-PF) is the leading cause of death in SSc patients. Pericytes are key regulators of vascular integrity and endothelial function. The role that pericytes play in SSc-PF remains unclear. We compared the transcriptome of pericytes from SSc-PF lungs (SScL) to pericytes from normal lungs (NORML). We identified 1,179 differentially expressed genes in SScL pericytes. Pathways enriched in SScL pericytes included prostaglandin, PI3K-AKT, calcium, and vascular remodeling signaling. Decreased cyclic AMP production and altered phosphorylation of AKT in response to prostaglandin E2 in SScL pericytes demonstrate the functional consequence of changes in the prostaglandin pathway that may contribute to fibrosis. The transcriptomic signature of SSc lung pericytes suggests that they promote vascular dysfunction and contribute to the loss of protection against lung inflammation and fibrosis.
Collapse
Affiliation(s)
- Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carole L. Wilson
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Robert Lafyatis
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Lynn M. Schnapp
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Medicine, University of Wisconsin, Madison, WI 53705, USA
| | | |
Collapse
|
7
|
Kang L, Kohen M, McCarthy I, Hammelef E, Kim HS, Bapputty R, Gubitosi-Klug R, Orge FH, Kern T, Medof ME. Critical Role of CD55 in Controlling Wound Healing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1142-1149. [PMID: 38372645 DOI: 10.4049/jimmunol.2300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Abstract
How reparative processes are coordinated following injury is incompletely understood. In recent studies, we showed that autocrine C3a and C5a receptor (C3ar1 and C5ar1) G protein-coupled receptor signaling plays an obligate role in vascular endothelial growth factor receptor 2 growth signaling in vascular endothelial cells. We documented the same interconnection for platelet-derived growth factor receptor growth signaling in smooth muscle cells, epidermal growth factor receptor growth signaling in epidermal cells, and fibroblast growth factor receptor signaling in fibroblasts, indicative of a generalized cell growth regulatory mechanism. In this study, we examined one physiological consequence of this signaling circuit. We found that disabling CD55 (also known as decay accelerating factor), which lifts restraint on autocrine C3ar1/C5ar1 signaling, concomitantly augments the growth of each cell type. The mechanism is heightened C3ar1/C5ar1 signaling resulting from the loss of CD55's restraint jointly potentiating growth factor production by each cell type. Examination of the effect of lifted CD55 restraint in four types of injury (burn, corneal denudation, ear lobe puncture, and reengraftment of autologous skin) showed that disabled CD55 function robustly accelerated healing in all cases, whereas disabled C3ar1/C5ar1 signaling universally retarded it. In wild-type mice with burns or injured corneas, applying a mouse anti-mouse CD55 blocking Ab (against CD55's active site) to wounds accelerated the healing rate by 40-70%. To our knowledge, these results provide new insights into mechanisms that underlie wound repair and open up a new tool for accelerating healing.
Collapse
Affiliation(s)
- Lorna Kang
- Institute of Pathology, Case Western Reserve University, Cleveland, OH
| | - Maryo Kohen
- Department of Ophthalmology, Case Western Reserve University, Cleveland, OH
| | - Isaac McCarthy
- Institute of Pathology, Case Western Reserve University, Cleveland, OH
| | - Emma Hammelef
- Institute of Pathology, Case Western Reserve University, Cleveland, OH
| | - Hae Suk Kim
- Institute of Pathology, Case Western Reserve University, Cleveland, OH
| | - R Bapputty
- Department of Ophthalmology, Case Western Reserve University, Cleveland, OH
- Department of Pediatrics, Rainbow Babies Hospitals, Cleveland Medical Center, Cleveland, OH; and
| | - Rose Gubitosi-Klug
- Department of Ophthalmology, Case Western Reserve University, Cleveland, OH
- Department of Pediatrics, Rainbow Babies Hospitals, Cleveland Medical Center, Cleveland, OH; and
| | - Faruk H Orge
- Department of Ophthalmology, Case Western Reserve University, Cleveland, OH
- Department of Pediatrics, Rainbow Babies Hospitals, Cleveland Medical Center, Cleveland, OH; and
| | - Timothy Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - M Edward Medof
- Institute of Pathology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
8
|
Wang Q, Goracci C, Sundar IK, Rahman I. Environmental tobacco smoke exposure exaggerates bleomycin-induced collagen overexpression during pulmonary fibrogenesis. J Inflamm (Lond) 2024; 21:9. [PMID: 38509574 PMCID: PMC10956237 DOI: 10.1186/s12950-024-00377-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024] Open
Abstract
Environmental tobacco smoke (ETS) is known to cause lung inflammatory and injurious responses. Smoke exposure is associated with the pathobiology related to lung fibrosis, whereas the mechanism that ETS exposure augments pulmonary fibrogenesis is unclear. We hypothesized that ETS exposure could exacerbate fibrotic responses via collagen dynamic dysregulation and complement activation. C57BL/6J and p16-3MR mice were exposed to ETS followed by bleomycin administration. ETS exposure exacerbated bleomycin-induced collagen and lysyl oxidase overexpression in the fibrotic lesion. ETS exposure also led to augmented bleomycin-induced upregulation of C3 and C3AR, which are pro-fibrotic markers. Moreover, overexpressed collagens and C3 levels were highly significant in males than females. The old mice (17 months old) were exposed to ETS and treated with bleomycin to induce fibrogenesis which is considered as an aging-associated disease. Fewer gene and protein dysregulations trends were identified between ETS exposure with the bleomycin group and the bleomycin alone group in old mice. Based on our findings, we suggested that ETS exposure increases the risk of developing severe lung fibrotic responses via collagen overexpression and lysyl oxidase-mediated collagen stabilization in the fibrotic lesion, and potentially affected the complement system activation induced by bleomycin. Further, male mice were more susceptible than females during fibrogenesis exacerbation. Thus ETS and bleomycin induced lung fibrotic changes via collagen-lysyl oxidase in an age-dependent mechanism.
Collapse
Affiliation(s)
- Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Chiara Goracci
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Isaac Kirubakaran Sundar
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA.
| |
Collapse
|
9
|
Bager CL, Blair JPM, Tang MHE, Mortensen JH, Bay-Jensen AC, Frederiksen P, Leeming D, Christiansen C, Karsdal MA. Citrullinated and MMP-degraded vimentin is associated with chronic pulmonary diseases and genetic variants in PADI3/PADI4 and CFH in postmenopausal women. Sci Rep 2023; 13:23039. [PMID: 38155185 PMCID: PMC10754934 DOI: 10.1038/s41598-023-50313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023] Open
Abstract
Citrullinated vimentin has been linked to several chronic and autoimmune diseases, but how citrullinated vimentin is associated with disease prevalence and genetic variants in a clinical setting remains unknown. The aim of this study was to obtain a better understanding of the genetic variants and pathologies associated with citrullinated and MMP-degraded vimentin. Patient Registry data, serum samples and genotypes were collected for a total of 4369 Danish post-menopausal women enrolled in the Prospective Epidemiologic and Risk Factor study (PERF). Circulating citrullinated and MMP-degraded vimentin (VICM) was measured. Genome-wide association studies (GWAS) and phenome wide association studies (PheWAS) with levels of VICM were performed. High levels of VICM were significantly associated with the prevalence of chronic pulmonary diseases and death from respiratory and cardiovascular diseases (CVD). GWAS identified 33 single nucleotide polymorphisms (SNPs) with a significant association with VICM. These variants were in the peptidylarginine deiminase 3/4 (PADI3/PADI4) and Complement Factor H (CFH)/KCNT2 gene loci on chromosome 1. Serum levels of VICM, a marker of citrullinated and MMP-degraded vimentin, were associated with chronic pulmonary diseases and genetic variance in PADI3/PADI4 and CFH/ KCNT2. This points to the potential for VICM to be used as an activity marker of both citrullination and inflammation, identifying responders to targeted treatment and patients likely to experience disease progression.
Collapse
Affiliation(s)
- Cecilie Liv Bager
- Nordic Bioscience, Biomarkers and Research, Hovedgade 205-207, 2730, Herlev, Denmark.
| | - Joseph P M Blair
- Nordic Bioscience, Biomarkers and Research, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Man-Hung Eric Tang
- Nordic Bioscience, Biomarkers and Research, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Joachim Høg Mortensen
- Nordic Bioscience, Biomarkers and Research, Hovedgade 205-207, 2730, Herlev, Denmark
| | | | - Peder Frederiksen
- Nordic Bioscience, Biomarkers and Research, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Diana Leeming
- Nordic Bioscience, Biomarkers and Research, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Claus Christiansen
- Nordic Bioscience, Biomarkers and Research, Hovedgade 205-207, 2730, Herlev, Denmark
| | - Morten Asser Karsdal
- Nordic Bioscience, Biomarkers and Research, Hovedgade 205-207, 2730, Herlev, Denmark
| |
Collapse
|
10
|
Zhou S, Wang Z, Gao L, Chen M, Duan Y, Zhou P, Liu Z, Wu C, Zhang J, Zhu Q. C5a/C5aR1 axis as a key driver promotes epithelial-to-mesenchymal transition in airway epithelial cells in silica nanoparticles-induced pulmonary fibrosis. Int Immunopharmacol 2023; 125:111112. [PMID: 37948857 DOI: 10.1016/j.intimp.2023.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
Previous studies have shown that silica nanoparticles (SiNPs) exposure can affect the respiratory, cardiovascular, reproductive and other systems, with the lung being the primary target organ for the direct effect, causing damage with a central feature of pulmonary inflammation and fibrosis. However, the underlying mechanisms of pulmonary fibrosis due to SiNPs are not fully understood. The aim of the study was to investigate the role of complement anaphylatoxin C5a in SiNPs-induced pulmonary fibrosis. A mouse model of SiNPs-induced pulmonary fibrosis was established, and pulmonary fibrosis-related indicators, epithelial-to-mesenchymal transition (EMT), C5a/C5aR1 and high mobility group protein B1 (HMGB1) proteins were measured. An in vitro study using the human lung epithelial cell line BEAS-2B investigated whether C5a leads to epithelial-to-mesenchymal trans-differentiation. In vivo studies revealed that SiNPs-induced pulmonary fibrosis mainly manifested as EMT trans-differentiation in airway epithelial cells, which subsequently led to excessive deposition of extracellular matrix (ECM). Furthermore, we found that C5a and C5aR1 proteins were also increased in SiNPs-induced pulmonary fibrosis tissue. In vitro studies also showed that C5a directly activated HMGB1/RAGE signaling and induced EMT in BEAS-2B cells. Finally, treatment of SiNPs-exposed mice with the C5aR1 inhibitor PMX205 effectively reduced C5aR1 levels and inhibited the activation of HMGB1/RAGE signaling and the expression of EMT-related proteins, culminating in a significant alleviation of pulmonary fibrosis. Taken together, our results suggest that C5a/C5aR1 is the main signaling pathway for SiNPs-induced pulmonary fibrosis, which induces EMT in airway epithelial cells via the HMGB1/RAGE axis.
Collapse
Affiliation(s)
- Sifan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhoujian Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Lei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Muyue Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuansheng Duan
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Pengcheng Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhibing Liu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Qixing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China.
| |
Collapse
|
11
|
Wang Q, Goracci C, Sundar IK, Rahman I. Environmental tobacco smoke exposure exaggerates bleomycin- induced collagen overexpression during pulmonary fibrogenesis. RESEARCH SQUARE 2023:rs.3.rs-3406872. [PMID: 37886473 PMCID: PMC10602094 DOI: 10.21203/rs.3.rs-3406872/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Environmental tobacco smoke (ETS) is known to cause lung inflammatory and injurious responses. Smoke exposure is associated with the pathobiology related to lung fibrosis, whereas the mechanism by which ETS exposure augments lung fibrogenesis is unclear. We hypothesized that ETS exposure could exacerbate fibrotic responses via collagen dynamic dysregulation and complement activation. C57BL/6J and p16-3MR mice were exposed to ETS followed by bleomycin administration. ETS exposure exacerbated bleomycin-induced collagen and lysyl oxidase overexpression in the fibrotic lesion. ETS exposure also led to augmented bleomycin-induced upregulation of C3 and C3AR, which are pro-fibrotic markers. Moreover, overexpressed collagens and C3 levels were highly significant in males than females. The old mice (17 months old) were exposed to ETS and treated with bleomycin to induce fibrogenesis, since fibrogenesis is an aging-associated disease. Fewer gene and protein dysregulations trends were identified between ETS exposure with the bleomycin group and the bleomycin alone group in old mice. Based on our findings, we suggested that ETS exposure increases the risk of developing severe lung fibrotic responses via collagen overexpression and lysyl oxidase-mediated collagen stabilization in the fibrotic lesion. ETS exposure also potentially affected the complement system activation induced by bleomycin. Further, male mice were more susceptible than females during fibrogenesis exacerbation.
Collapse
|
12
|
Sikkeland LIB, Ueland T, Lund MB, Durheim MT, Mollnes TE. A role for the terminal C5-C9 complement pathway in idiopathic pulmonary fibrosis. Front Med (Lausanne) 2023; 10:1236495. [PMID: 37621463 PMCID: PMC10444977 DOI: 10.3389/fmed.2023.1236495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by damage to the alveolar epithelium, leading to fibrosis and excessive accumulation of extracellular matrix in the interstitium of the lung. In the present study we performed high-resolution proteomic profiling of bronchoalveolar lavage (BAL) from IPF patients and controls, and found that the complement pathway was highly upregulated in IPF. The proteins C5, C6, C7, C8, and C9, all of which are part of the complement end product, TCC, were all upregulated. We also found that TCC levels were increased in plasma among IPF patients compared to controls, after adjustment for age, sex and BMI [mean (SD) 0.62 (0.24) vs. 0.33 (0.10), p = 0.031]. These findings suggest a role for the complement system in the pathogenesis of IPF.
Collapse
Affiliation(s)
- Liv I. B. Sikkeland
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Respiratory Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Thor Ueland
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Internal Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
- K. G. Jebsen, Thrombosis Research Center, University of Tromsø, Tromsø, Norway
| | - May B. Lund
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Respiratory Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Michael Thomas Durheim
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Respiratory Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tom Eirik Mollnes
- K. G. Jebsen, Thrombosis Research Center, University of Tromsø, Tromsø, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
13
|
Perico L, Morigi M, Pezzotta A, Locatelli M, Imberti B, Corna D, Cerullo D, Benigni A, Remuzzi G. SARS-CoV-2 spike protein induces lung endothelial cell dysfunction and thrombo-inflammation depending on the C3a/C3a receptor signalling. Sci Rep 2023; 13:11392. [PMID: 37452090 PMCID: PMC10349115 DOI: 10.1038/s41598-023-38382-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
The spike protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can interact with endothelial cells. However, no studies demonstrated the direct effect of the spike protein subunit 1 (S1) in inducing lung vascular damage and the potential mechanisms contributing to lung injury. Here, we found that S1 injection in mice transgenic for human angiotensin converting enzyme 2 (ACE2) induced early loss of lung endothelial thromboresistance at 3 days, as revealed by thrombomodulin loss and von Willebrand factor (vWF) increase. In parallel, vascular and epithelial C3 deposits and enhanced C3a receptor (C3aR) expression were observed. These changes preceded diffuse alveolar damage and lung vascular fibrin(ogen)/platelets aggregates at 7 days, as well as inflammatory cell recruitment and fibrosis. Treatment with C3aR antagonist (C3aRa) inhibited lung C3 accumulation and C3a/C3aR activation, limiting vascular thrombo-inflammation and fibrosis. Our study demonstrates that S1 triggers vascular dysfunction and activates complement system, instrumental to lung thrombo-inflammatory injury. By extension, our data indicate C3aRa as a valuable therapeutic strategy to limit S1-dependent lung pathology.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
| | - Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Anna Pezzotta
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Monica Locatelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Barbara Imberti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Daniela Corna
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Domenico Cerullo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
14
|
Triggianese P, Conigliaro P, De Martino E, Monosi B, Chimenti MS. Overview on the Link Between the Complement System and Auto-Immune Articular and Pulmonary Disease. Open Access Rheumatol 2023; 15:65-79. [PMID: 37214353 PMCID: PMC10198272 DOI: 10.2147/oarrr.s318826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Complement system (CS) dysregulation is a key factor in the pathogenesis of different autoimmune diseases playing a central role in many immune innate and adaptive processes. Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by ta breach of self-tolerance leading to a synovitis and extra-articular manifestations. The CS is activated in RA and seems not only to mediate direct tissue damage but also play a role in the initiation of RA pathogenetic mechanisms through interactions with citrullinated proteins. Interstitial lung disease (ILD) represents the most common extra-articular manifestation that can lead to progressive fibrosis. In this review, we focused on the evidence of CS dysregulation in RA and in ILD, and highlighted the role of the CS in both the innate and adaptive immune responses in the development of diseases, by using idiopathic pulmonary fibrosis as a model of lung disease. As a proof of concept, we dissected the evidence that several treatments used to treat RA and ILD such as glucocorticoids, pirfenidone, disease modifying antirheumatic drugs, targeted biologics such as tumor necrosis factor (TNF)-inhibitors, rituximab, tocilizumab, and nintedanib may act indirectly on the CS, suggesting that the CS might represent a potential therapeutic target in these complex diseases.
Collapse
Affiliation(s)
- Paola Triggianese
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Paola Conigliaro
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Erica De Martino
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Benedetta Monosi
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | - Maria Sole Chimenti
- Department of Systems Medicine, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
15
|
Hoeft K, Schaefer GJL, Kim H, Schumacher D, Bleckwehl T, Long Q, Klinkhammer BM, Peisker F, Koch L, Nagai J, Halder M, Ziegler S, Liehn E, Kuppe C, Kranz J, Menzel S, Costa I, Wahida A, Boor P, Schneider RK, Hayat S, Kramann R. Platelet-instructed SPP1 + macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent manner. Cell Rep 2023; 42:112131. [PMID: 36807143 PMCID: PMC9992450 DOI: 10.1016/j.celrep.2023.112131] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/11/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
Fibrosis represents the common end stage of chronic organ injury independent of the initial insult, destroying tissue architecture and driving organ failure. Here we discover a population of profibrotic macrophages marked by expression of Spp1, Fn1, and Arg1 (termed Spp1 macrophages), which expands after organ injury. Using an unbiased approach, we identify the chemokine (C-X-C motif) ligand 4 (CXCL4) to be among the top upregulated genes during profibrotic Spp1 macrophage differentiation. In vitro and in vivo studies show that loss of Cxcl4 abrogates profibrotic Spp1 macrophage differentiation and ameliorates fibrosis after both heart and kidney injury. Moreover, we find that platelets, the most abundant source of CXCL4 in vivo, drive profibrotic Spp1 macrophage differentiation. Single nuclear RNA sequencing with ligand-receptor interaction analysis reveals that macrophages orchestrate fibroblast activation via Spp1, Fn1, and Sema3 crosstalk. Finally, we confirm that Spp1 macrophages expand in both human chronic kidney disease and heart failure.
Collapse
Affiliation(s)
- Konrad Hoeft
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Gideon J L Schaefer
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Hyojin Kim
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - David Schumacher
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany; Department of Anesthesiology, RWTH Aachen University, Aachen, Germany
| | - Tore Bleckwehl
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Qingqing Long
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | | | - Fabian Peisker
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Lars Koch
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - James Nagai
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany; Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Maurice Halder
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Susanne Ziegler
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Elisa Liehn
- Institute for Molecular Medicine, University of South Denmark, Odense, Denmark
| | - Christoph Kuppe
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Jennifer Kranz
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany; Department of Urology, RWTH Aachen University, Aachen, Germany; Department of Urology and Kidney Transplantation, Martin-Luther-University, Halle (Saale), Germany
| | - Sylvia Menzel
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Ivan Costa
- Institute for Computational Genomics, RWTH Aachen University Hospital, Aachen, Germany; Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Adam Wahida
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany; Division of Gynecological Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Department of Pathology, RWTH Aachen University, Aachen, Germany
| | - Rebekka K Schneider
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Department of Cell Biology, Institute for Biomedical Technologies, RWTH Aachen University, Aachen, Germany
| | - Sikander Hayat
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany; Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany; Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
16
|
Vittal R, Fisher AJ, Thompson EL, Cipolla EM, Gu H, Mickler EA, Varre A, Agarwal M, Kim KK, Vasko MR, Moore BB, Lama VN. Overexpression of Decay Accelerating Factor Mitigates Fibrotic Responses to Lung Injury. Am J Respir Cell Mol Biol 2022; 67:459-470. [PMID: 35895592 PMCID: PMC9564933 DOI: 10.1165/rcmb.2021-0463oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
CD55 or decay accelerating factor (DAF), a ubiquitously expressed glycosylphosphatidylinositol (GPI)-anchored protein, confers a protective threshold against complement dysregulation which is linked to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Since lung fibrosis is associated with downregulation of DAF, we hypothesize that overexpression of DAF in fibrosed lungs will limit fibrotic injury by restraining complement dysregulation. Normal primary human alveolar type II epithelial cells (AECs) exposed to exogenous complement 3a or 5a, and primary AECs purified from IPF lungs demonstrated decreased membrane-bound DAF expression with concurrent increase in the endoplasmic reticulum (ER) stress protein, ATF6. Increased loss of extracellular cleaved DAF fragments was detected in normal human AECs exposed to complement 3a or 5a, and in lungs of IPF patients. C3a-induced ATF6 expression and DAF loss was inhibited using pertussis toxin (an enzymatic inactivator of G-protein coupled receptors), in murine AECs. Treatment with soluble DAF abrogated tunicamycin-induced C3a secretion and ER stress (ATF6 and BiP expression) and restored epithelial cadherin. Bleomycin-injured fibrotic mice subjected to lentiviral overexpression of DAF demonstrated diminished levels of local collagen deposition and complement activation. Further analyses showed diminished release of DAF fragments, as well as reduction in apoptosis (TUNEL and caspase 3/7 activity), and ER stress-related transcripts. Loss-of-function studies using Daf1 siRNA demonstrated worsened lung fibrosis detected by higher mRNA levels of Col1a1 and epithelial injury-related Muc1 and Snai1, with exacerbated local deposition of C5b-9. Our studies provide a rationale for rescuing fibrotic lungs via DAF induction that will restrain complement dysregulation and lung injury.
Collapse
Affiliation(s)
- Ragini Vittal
- Division of Pulmonary and Critical Care, Department of Internal Medicine and
| | - Amanda J. Fisher
- Division of Pulmonary and Critical Care, Department of Medicine and
| | - Eric L. Thompson
- Department of Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ellyse M. Cipolla
- Division of Pulmonary and Critical Care, Department of Internal Medicine and
| | - Hongmei Gu
- Division of Pulmonary and Critical Care, Department of Medicine and
| | | | - Ananya Varre
- Division of Pulmonary and Critical Care, Department of Internal Medicine and
| | - Manisha Agarwal
- Division of Pulmonary and Critical Care, Department of Internal Medicine and
| | - Kevin K. Kim
- Division of Pulmonary and Critical Care, Department of Internal Medicine and
| | - Michael R. Vasko
- Department of Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan; and
| | - Vibha N. Lama
- Division of Pulmonary and Critical Care, Department of Internal Medicine and
| |
Collapse
|
17
|
Cole A, Denton CP. Biomarkers in Systemic Sclerosis Associated Interstitial Lung Disease (SSc-ILD). CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2022. [DOI: 10.1007/s40674-022-00196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Abstract
Purpose of Review
Interstitial lung disease (ILD) is the leading cause of mortality in systemic sclerosis, a rare autoimmune disease characterised by fibrosis and vasculopathy. The variety of phenotypes in SSc-ILD have inspired multiple studies aimed at the identification of biomarkers which can provide disease-specific information but due to the complex pathogenesis of SSc-ILD, it has been challenging to validate such markers. We provide a comprehensive update on those most studied along with emerging biomarkers.
Recent Findings
We review the up-to-date findings with regard to the use of well-studied molecular biomarkers in SSc-ILD along with novel biomarkers offering promise as prognostic markers such as IGFBP-2 and IGFBP-7, the adipokine CTRP9, endothelial progenitor cells, and cellular markers such as CD21lo/neg B cells. Expression profiling data is being used in SSc patients to determine genetic and epigenetic clusters which shed further light on mechanisms involved in the pathogenesis of SSc-ILD and are likely to uncover novel biomarkers.
Summary
With the exception of autoantibodies, there are no routinely measured biomarkers in SSc-ILD and reliable validation of the many potential biomarkers is lacking. Identifying biomarkers which can offer diagnostic and prognostic certainty may help patients to receive preventative treatment as part of a personalised medicine approach.
Collapse
|
18
|
Llorián-Salvador M, Byrne EM, Szczepan M, Little K, Chen M, Xu H. Complement activation contributes to subretinal fibrosis through the induction of epithelial-to-mesenchymal transition (EMT) in retinal pigment epithelial cells. J Neuroinflammation 2022; 19:182. [PMID: 35831910 PMCID: PMC9447479 DOI: 10.1186/s12974-022-02546-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background We previously reported higher plasma levels of complement fragments C3a and C5a in neovascular Age-related Macular Degeneration (nAMD) patients with macular fibrosis. This study aimed to understand whether complement activation contributes to the development of macular fibrosis and the underlying mechanisms involved. Methods Complement activation was blocked using a C5 neutralizing antibody (BB5.1) in C57BL/6J mice after induction of subretinal fibrosis using the two-stage laser protocol. Fibrotic lesions were examined 10 days after the 2nd laser through fundus examination and immunohistochemistry. The expression of C5aR in fibrotic lesions and retinal pigment epithelial (RPE) cultures were examined by confocal microscopy. Primary murine RPE cells were treated with C3a or C5a (10–100 ng/mL) or TGF-β2 (10 ng/mL). Epithelial-to-mesenchymal transition (EMT) was assessed through various readouts. The expression of E-cadherin, vimentin, fibronectin, α-SMA, Slug, ERK/AKT and pSMAD2/3 were determined by Western blot and immunocytochemistry. Collagen contraction and wound-healing assays were used as functional readouts of EMT. The production of IL-6, TGF-β1, TGF-β2 and VEGF by RPE cells were determined by ELISA. PMX53 was used to block C5aR in RPE cultures and in vivo in mice with subretinal fibrosis. Results Extensive C5b-9 deposition was detected at the site of subretinal fibrosis. BB5.1 treatment completely abrogated complement activation and significantly reduced subretinal fibrosis. C5aR was detected in RPE and infiltrating MHC-II+ cells in subretinal fibrosis. In vitro, RPE cells constitutively express C5/C5a and C5aR, and their expression was increased by TGF-β2 treatment. C5a but not C3a increased fibronectin, α-SMA, vimentin and Slug expression, and decreased E-cadherin expression in RPE cells. C5a treatment also increased the contractility and migration of RPE cells and enhanced the production of VEGF and TGF-β1/2. C5a treatment induced pSmad2/3 and pERK1/2 expression in RPE cells and this was blocked by PMX53. PMX53 treatment significantly reduced sodium fluorescein leakage in the subretinal fibrosis model, while collagen-I+ lesions only mildly reduced. Conclusions Complement activation is critically involved in the development of subretinal fibrosis, partially through C5a–C5aR-mediated EMT in RPE cells. Targeting complement activation rather than C5a may be a novel approach for the management of macular fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02546-3.
Collapse
Affiliation(s)
- María Llorián-Salvador
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.,Vall d´Hebron Research Institute (VHIR), Universitat Autonòma de Barcelona, 08035, Barcelona, Spain
| | - Eimear M Byrne
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
| | - Manon Szczepan
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Karis Little
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Mei Chen
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK
| | - Heping Xu
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland, UK.
| |
Collapse
|
19
|
Savin IA, Markov AV, Zenkova MA, Sen’kova AV. Asthma and Post-Asthmatic Fibrosis: A Search for New Promising Molecular Markers of Transition from Acute Inflammation to Pulmonary Fibrosis. Biomedicines 2022; 10:biomedicines10051017. [PMID: 35625754 PMCID: PMC9138542 DOI: 10.3390/biomedicines10051017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Asthma is a heterogeneous pulmonary disorder, the progression and chronization of which leads to airway remodeling and fibrogenesis. To understand the molecular mechanisms of pulmonary fibrosis development, key genes forming the asthma-specific regulome and involved in lung fibrosis formation were revealed using a comprehensive bioinformatics analysis. The bioinformatics data were validated using a murine model of ovalbumin (OVA)-induced asthma and post-asthmatic fibrosis. The performed analysis revealed a range of well-known pro-fibrotic markers (Cat, Ccl2, Ccl4, Ccr2, Col1a1, Cxcl12, Igf1, Muc5ac/Muc5b, Spp1, Timp1) and a set of novel genes (C3, C3ar1, Col4a1, Col4a2, Cyp2e1, Fn1, Thbs1, Tyrobp) mediating fibrotic changes in lungs already at the stage of acute/subacute asthma-driven inflammation. The validation of genes related to non-allergic bleomycin-induced pulmonary fibrosis on asthmatic/fibrotic lungs allowed us to identify new universal genes (Col4a1 and Col4a2) associated with the development of lung fibrosis regardless of its etiology. The similarities revealed in the expression profiles of nodal fibrotic genes between asthma-driven fibrosis in mice and nascent idiopathic pulmonary fibrosis in humans suggest a tight association of identified genes with the early stages of airway remodeling and can be considered as promising predictors and early markers of pulmonary fibrosis.
Collapse
|
20
|
Qi R, Qin W. Role of Complement System in Kidney Transplantation: Stepping From Animal Models to Clinical Application. Front Immunol 2022; 13:811696. [PMID: 35281019 PMCID: PMC8913494 DOI: 10.3389/fimmu.2022.811696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Kidney transplantation is a life-saving strategy for patients with end-stage renal diseases. Despite the advances in surgical techniques and immunosuppressive agents, the long-term graft survival remains a challenge. Growing evidence has shown that the complement system, part of the innate immune response, is involved in kidney transplantation. Novel insights highlighted the role of the locally produced and intracellular complement components in the development of inflammation and the alloreactive response in the kidney allograft. In the current review, we provide the updated understanding of the complement system in kidney transplantation. We will discuss the involvement of the different complement components in kidney ischemia-reperfusion injury, delayed graft function, allograft rejection, and chronic allograft injury. We will also introduce the existing and upcoming attempts to improve allograft outcomes in animal models and in the clinical setting by targeting the complement system.
Collapse
Affiliation(s)
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
21
|
Wie sich COVID-19 in der 3D-Zellkultur simulieren lässt. BIOSPEKTRUM 2022; 28:43-46. [PMID: 35194332 PMCID: PMC8853259 DOI: 10.1007/s12268-022-1712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Kou W, Li B, Shi Y, Zhao Y, Yu Q, Zhuang J, Xu Y, Peng W. High complement protein C1q levels in pulmonary fibrosis and non-small cell lung cancer associated with poor prognosis. BMC Cancer 2022; 22:110. [PMID: 35078421 PMCID: PMC8790889 DOI: 10.1186/s12885-021-08912-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is the most common type of interstitial pneumonia. Lung cancer, mainly non-small cell lung cancer (NSCLC), is a complication of idiopathic pulmonary fibrosis. IPF is also an independent risk factor of lung cancer. Some studies have shown that the complement system can promote the progression of interstitial pulmonary fibrosis. In addition, C1q has also demonstrated to exert a tumor-promoting effect in many tumors. However, the role of C1q in idiopathic pulmonary fibrosis and lung cancer still remain unclear. METHODS We selected common differentially expressed genes in IPF and non-small cell lung cancer using datasets from GEO, and investigated common hub gene. The hub genes were validated in IPF by establishing mouse model of IPF and using another four datasets from the GEO. Multiple databases were analyzed including those of Kaplan-Meier Plotter, Tumor Immune Estimation Resource (TIMER2.0) and the Human Protein Atlas (HPA) for NSCLC. RESULTS In this study, 37 common DEGs were identified in IPF and NSCLC including 32 up-regulated genes and 5 down-regulated genes, and C1q was identified as common hub gene. The methylation status of C1q decreased and the expression levels of C1q increased in both lung cancer and idiopathic pulmonary fibrosis. The prognosis of non-small cell lung cancer and IPF patients with high levels of C1q is poor. CONCLUSIONS These results show that C1q participates in pulmonary fibrosis and non-small cell lung cancer, and may be a potential diagnostic / prognostic biomarker or a therapeutic target.
Collapse
Affiliation(s)
- Wenxin Kou
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Bo Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Yeifei Shi
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Yifan Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Qing Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Jianhui Zhuang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
23
|
Shiek SS, Mani MS, Kabekkodu SP, Dsouza HS. Health repercussions of environmental exposure to lead: Methylation perspective. Toxicology 2021; 461:152927. [PMID: 34492314 DOI: 10.1016/j.tox.2021.152927] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022]
Abstract
Lead (Pb) exposure has been a major public health concern for a long time now due to its permanent adverse effects on the human body. The process of lead toxicity has still not been fully understood, but recent advances in Omics technology have enabled researchers to evaluate lead-mediated alterations at the epigenome-wide level. DNA methylation is one of the widely studied and well-understood epigenetic modifications. Pb has demonstrated its ability to induce not just acute deleterious health consequences but also alters the epi-genome such that the disease manifestation happens much later in life as supported by Barkers Hypothesis of the developmental origin of health and diseases. Furthermore, these alterations are passed on to the next generation. Based on previous in-vivo, in-vitro, and human studies, this review provides an insight into the role of Pb in the development of several human disorders.
Collapse
Affiliation(s)
- Sadiya Sadiq Shiek
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Monica Shirley Mani
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Herman S Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
24
|
Liu T, Yang M, Xia Y, Jiang C, Li C, Jiang Z, Wang X. Microarray-based analysis of renal complement components reveals a therapeutic target for lupus nephritis. Arthritis Res Ther 2021; 23:223. [PMID: 34433493 PMCID: PMC8385907 DOI: 10.1186/s13075-021-02605-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background Screening abnormal pathways and complement components in the kidneys of patients with lupus nephritis (LN) and NZB/W mice may help to identify complement-related therapeutic targets for LN. Methods KEGG and GO enrichment assays were used to analyze kidney microarray data of LN patients and NZB/W mice. Immunohistochemistry and immunofluorescence assays were used to measure renal expression of complement-related proteins and TGFβ1. Cytokines were measured using RT-qPCR and ELISA. Results We screened the renal pathogenic pathways present in LN patients and NZB/W mice and selected the complement activation pathway for further study. The results indicated greater renal expression of C1qa, C1qb, C3, C3aR1, and C5aR1 at the mRNA and protein levels. C3 appeared to be a key factor in LN and the renal signaling downstream of C1 was inhibited. There were significant correlations between the expression of TGFβ1 and C3. Analysis of primary cell cultures indicated that TGFβ1 promoted the expression of C3 and that a TGFβ1 antagonist decreased the levels of C3 and C3aR. TGFβ1 inhibition significantly inhibited the deposition of complement-related factors in the kidneys of NZB/W mice. Conclusions At the onset of LN, there are significant increases in the renal levels of C3 and other complement pathway-related factors in patients with LN and NZB/W mice. C3 may lead to albuminuria and participate in the pathogenesis of LN. TGFβ1 promotes C3 synthesis, and TGFβ1 inhibition may block the progression of LN by inhibiting the synthesis of C3 and other complement components. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02605-9.
Collapse
Affiliation(s)
- Tao Liu
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mingyue Yang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Ying Xia
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chuan Jiang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chenxu Li
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhenyu Jiang
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Xiaosong Wang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
25
|
C5aR inhibition of nonimmune cells suppresses inflammation and maintains epithelial integrity in SARS-CoV-2-infected primary human airway epithelia. J Allergy Clin Immunol 2021; 147:2083-2097.e6. [PMID: 33852936 PMCID: PMC8056780 DOI: 10.1016/j.jaci.2021.03.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Background Excessive inflammation triggered by a hitherto undescribed mechanism is a hallmark of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and is associated with enhanced pathogenicity and mortality. Objective Complement hyperactivation promotes lung injury and was observed in patients suffering from Middle East respiratory syndrome-related coronavirus, SARS-CoV-1, and SARS-CoV-2 infections. Therefore, we investigated the very first interactions of primary human airway epithelial cells on exposure to SARS-CoV-2 in terms of complement component 3 (C3)-mediated effects. Methods For this, we used highly differentiated primary human 3-dimensional tissue models infected with SARS-CoV-2 patient isolates. On infection, viral load, viral infectivity, intracellular complement activation, inflammatory mechanisms, and tissue destruction were analyzed by real-time RT-PCR, high content screening, plaque assays, luminex analyses, and transepithelial electrical resistance measurements. Results Here, we show that primary normal human bronchial and small airway epithelial cells respond to SARS-CoV-2 infection by an inflated local C3 mobilization. SARS-CoV-2 infection resulted in exaggerated intracellular complement activation and destruction of the epithelial integrity in monolayer cultures of primary human airway cells and highly differentiated, pseudostratified, mucus-producing, ciliated respiratory tissue models. SARS-CoV-2–infected 3-dimensional cultures secreted significantly higher levels of C3a and the proinflammatory cytokines IL-6, monocyte chemoattractant protein 1, IL-1α, and RANTES. Conclusions Crucially, we illustrate here for the first time that targeting the anaphylotoxin receptors C3a receptor and C5a receptor in nonimmune respiratory cells can prevent intrinsic lung inflammation and tissue damage. This opens up the exciting possibility in the treatment of COVID-19.
Collapse
|
26
|
Ruigrok MJ, Frijlink HW, Melgert BN, Olinga P, Hinrichs WL. Gene therapy strategies for idiopathic pulmonary fibrosis: recent advances, current challenges, and future directions. Mol Ther Methods Clin Dev 2021; 20:483-496. [PMID: 33614824 PMCID: PMC7868939 DOI: 10.1016/j.omtm.2021.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic disease in which the lungs become irreversibly scarred, leading to declining lung function. As currently available drugs do not cure IPF, there remains a great medical need for more effective treatments. Perhaps this need could be addressed by gene therapies, which offer powerful and versatile ways to attenuate a wide range of processes involved in fibrosis. Despite the potential benefits of gene therapy, no one has reviewed the current state of knowledge regarding its application for treating IPF. We therefore analyzed publications that reported the use of gene therapies to treat pulmonary fibrosis in animals, as clinical studies have not been published yet. In this review, we first provide an introduction on the pathophysiology of IPF and the most well-established gene therapy approaches. We then present a comprehensive evaluation of published animal studies, after which we provide recommendations for future research to address challenges with respect to the selection and use of animal models as well as the development of delivery vectors and dosage forms. Addressing these considerations will bring gene therapies one step closer to clinical testing and thus closer to patients.
Collapse
Affiliation(s)
- Mitchel J.R. Ruigrok
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Barbro N. Melgert
- Department of Molecular Pharmacology, University of Groningen, Groningen Research Institute of Pharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
- University of Groningen, Groningen Research Institute for Asthma and COPD, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Wouter L.J. Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen Research Institute of Pharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
27
|
Gaurav R, Mikuls TR, Thiele GM, Nelson AJ, Niu M, Guda C, Eudy JD, Barry AE, Wyatt TA, Romberger DJ, Duryee MJ, England BR, Poole JA. High-throughput analysis of lung immune cells in a combined murine model of agriculture dust-triggered airway inflammation with rheumatoid arthritis. PLoS One 2021; 16:e0240707. [PMID: 33577605 PMCID: PMC7880471 DOI: 10.1371/journal.pone.0240707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/18/2020] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA)-associated lung disease is a leading cause of mortality in RA, yet the mechanisms linking lung disease and RA remain unknown. Using an established murine model of RA-associated lung disease combining collagen-induced arthritis (CIA) with organic dust extract (ODE)-induced airway inflammation, differences among lung immune cell populations were analyzed by single cell RNA-sequencing. Additionally, four lung myeloid-derived immune cell populations including macrophages, monocytes/macrophages, monocytes, and neutrophils were isolated by fluorescence cell sorting and gene expression was determined by NanoString analysis. Unsupervised clustering revealed 14 discrete clusters among Sham, CIA, ODE, and CIA+ODE treatment groups: 3 neutrophils (inflammatory, resident/transitional, autoreactive/suppressor), 5 macrophages (airspace, differentiating/recruited, recruited, resident/interstitial, and proliferative airspace), 2 T-cells (differentiating and effector), and a single cluster each of inflammatory monocytes, dendritic cells, B-cells and natural killer cells. Inflammatory monocytes, autoreactive/suppressor neutrophils, and recruited/differentiating macrophages were predominant with arthritis induction (CIA and CIA+ODE). By specific lung cell isolation, several interferon-related and autoimmune genes were disproportionately expressed among CIA and CIA+ODE (e.g. Oasl1, Oas2, Ifit3, Gbp2, Ifi44, and Zbp1), corresponding to RA and RA-associated lung disease. Monocytic myeloid-derived suppressor cells were reduced, while complement genes (e.g. C1s1 and Cfb) were uniquely increased in CIA+ODE mice across cell populations. Recruited and inflammatory macrophages/monocytes and neutrophils expressing interferon-, autoimmune-, and complement-related genes might contribute towards pro-fibrotic inflammatory lung responses following airborne biohazard exposures in setting of autoimmune arthritis and could be predictive and/or targeted to reduce disease burden.
Collapse
Affiliation(s)
- Rohit Gaurav
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
- * E-mail:
| | - Ted R. Mikuls
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Rheumatology & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Geoffrey M. Thiele
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Rheumatology & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Amy J. Nelson
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Meng Niu
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - James D. Eudy
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Austin E. Barry
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Todd A. Wyatt
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
- Department of Environmental, Agricultural & Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States of America
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Debra J. Romberger
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Pulmonary, Critical Care & Sleep, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Michael J. Duryee
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Rheumatology & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Bryant R. England
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, United States of America
- Division of Rheumatology & Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Jill A. Poole
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States of America
| |
Collapse
|
28
|
Huber-Lang MS, Ignatius A, Köhl J, Mannes M, Braun CK. Complement in trauma-Traumatised complement? Br J Pharmacol 2020; 178:2863-2879. [PMID: 32880897 DOI: 10.1111/bph.15245] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Physical trauma represents a major global burden. The trauma-induced response, including activation of the innate immune system, strives for regeneration but can also lead to post-traumatic complications. The complement cascade is rapidly activated by damaged tissue, hypoxia, exogenous proteases and others. Activated complement can sense, mark and clear both damaged tissue and pathogens. However, excessive and insufficient activation of complement can result in a dysfunctional immune and organ response. Similar to acute coagulopathy, complementopathy can develop with enhanced anaphylatoxin generation and an impairment of complement effector functions. Various remote organ effects are induced or modulated by complement activation. Frequently, established trauma treatments are double-edged. On one hand, they help stabilising haemodynamics and oxygen supply as well as injured organs and on the other hand, they also drive complement activation. Immunomodulatory approaches aim to reset trauma-induced disbalance of complement activation and thus may change surgical trauma management procedures to improve outcome. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institue of Orthopaedic Research and Biomechanics, University Hospital of Ulm, Ulm, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammatory Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Paediatrics and Adolescent Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
29
|
Khawaja AA, Chong DLW, Sahota J, Mikolasch TA, Pericleous C, Ripoll VM, Booth HL, Khan S, Rodriguez-Justo M, Giles IP, Porter JC. Identification of a Novel HIF-1α-α Mβ 2 Integrin-NET Axis in Fibrotic Interstitial Lung Disease. Front Immunol 2020; 11:2190. [PMID: 33178179 PMCID: PMC7594517 DOI: 10.3389/fimmu.2020.02190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Neutrophilic inflammation correlates with mortality in fibrotic interstitial lung disease (ILD) particularly in the most severe form, idiopathic pulmonary fibrosis (IPF), although the underlying mechanisms remain unclear. Neutrophil function is modulated by numerous factors, including integrin activation, inflammatory cytokines and hypoxia. Hypoxia has an important role in inflammation and may also contribute to pulmonary disease. We aimed to determine how neutrophil activation occurs in ILD and the relative importance of hypoxia. Using lung biopsies and bronchoalveolar lavage (BAL) fluid from ILD patients we investigated the extent of hypoxia and neutrophil activation in ILD lungs. Then we used ex vivo neutrophils isolated from healthy volunteers and BAL from patients with ILD and non-ILD controls to further investigate aberrant neutrophil activation in hypoxia and ILD. We demonstrate for the first time using intracellular staining, HIF-1α stabilization in neutrophils and endothelial cells in ILD lung biopsies. Hypoxia enhanced both spontaneous (+1.31-fold, p < 0.05) and phorbol 12-myristate 13-acetate (PMA)-induced (+1.65-fold, p < 0.001) neutrophil extracellular trap (NET) release, neutrophil adhesion (+8.8-fold, <0.05), and trans-endothelial migration (+1.9-fold, p < 0.05). Hypoxia also increased neutrophil expression of the αM (+3.1-fold, p < 0.001) and αX (+1.6-fold, p < 0.01) integrin subunits. Interestingly, NET formation was induced by αMβ2 integrin activation and prevented by cation chelation. Finally, we observed NET-like structures in IPF lung sections and in the BAL from ILD patients, and quantification showed increased cell-free DNA content (+5.5-fold, p < 0.01) and MPO-citrullinated histone H3 complexes (+21.9-fold, p < 0.01) in BAL from ILD patients compared to non-ILD controls. In conclusion, HIF-1α upregulation may augment neutrophil recruitment and activation within the lung interstitium through activation of β2 integrins. Our results identify a novel HIF-1α- αMβ2 integrin axis in NET formation for future exploration in therapeutic approaches to fibrotic ILD.
Collapse
Affiliation(s)
- Akif A. Khawaja
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Deborah L. W. Chong
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Jagdeep Sahota
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Theresia A. Mikolasch
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
- Interstitial Lung Disease Service, University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Charis Pericleous
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Vera M. Ripoll
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Helen L. Booth
- Interstitial Lung Disease Service, University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Saif Khan
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Manuel Rodriguez-Justo
- Department of Histopathology, University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Ian P. Giles
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Joanna C. Porter
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
- Interstitial Lung Disease Service, University College London Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
30
|
Gao S, Cui Z, Zhao MH. The Complement C3a and C3a Receptor Pathway in Kidney Diseases. Front Immunol 2020; 11:1875. [PMID: 32973774 PMCID: PMC7461857 DOI: 10.3389/fimmu.2020.01875] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
The pathogenesis of some kidney diseases is closely associated with complement activation, where the C3a/C3a receptor (C3aR) might play a crucial role. C3a/C3aR has dual roles and may exert anti-inflammatory or pro-inflammatory effects depending on different cell types and diseases. In the kidneys, C3aR is primarily expressed on the tubular epithelium and less in glomerular podocytes. C3aR expression is enhanced and the levels of C3a in the plasma and urine are increased in kidney diseases of several types, and are associated with disease progression and severity. The C3a/C3aR pathway facilitates the progression of glomerular and tubulointerstitial diseases, while it has opposite effects on urinary tract infections. Clinical trials targeting C3a/C3aR in kidney diseases are lacking. Here, we reviewed the studies on the C3a/C3aR pathway in kidney disease, with the aim of understanding in-depth its controversial roles and its potential therapeutic value.
Collapse
Affiliation(s)
- Shuang Gao
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Zhao Cui
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
31
|
Mohamed MME, Nicklin AD, Stover CM. The Value of Targeting Complement Components in Asthma. ACTA ACUST UNITED AC 2020; 56:medicina56080405. [PMID: 32806638 PMCID: PMC7466339 DOI: 10.3390/medicina56080405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/09/2023]
Abstract
Asthma is an important respiratory illness. Though pharmacological and biological treatment is well established and is staged according to endotypes and their responses to treatment, novel avenues are being explored. Our focus is complement. In this viewpoint, we evaluate the approach to target complement in this complex hypersensitivity reaction that develops chronicity and has a personal—as well as a societal—cost.
Collapse
|
32
|
Salhi S, Ribes D, Faguer S. Complement C5 inhibition reverses bleomycin-induced thrombotic microangiopathy. Clin Kidney J 2020; 14:1275-1276. [PMID: 33841872 PMCID: PMC8023184 DOI: 10.1093/ckj/sfaa101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 11/12/2022] Open
Abstract
Whether C5 blocking may improve the outcomes of patients developing chemotherapy-induced thrombotic microangiopathy (TMA) remains elusive. Lung fibrosis is a well-known complication of bleomycin, whereas TMAs are very rare (<20 cases described). Here, we report an exceptional case of a male patient that developed acute respiratory distress syndrome and TMA following administration of bleomycin, cisplatin and etoposide . Refractoriness to plasma exchanges prompted us to use eculizumab as salvage therapy. Eculizumab led to complete remission of the TMA before Day 2. However, the patient progressed towards refractory respiratory failure, suggesting that pathophysiological mechanisms of bleomycin-induced lung fibrosis and TMA differ.
Collapse
Affiliation(s)
- Sofiane Salhi
- Department of Nephrology and Organ Transplantation, Centre for Rare Renal Diseases, University Hospital of Toulouse, Toulouse, France
| | - David Ribes
- Department of Nephrology and Organ Transplantation, Centre for Rare Renal Diseases, University Hospital of Toulouse, Toulouse, France
| | - Stanislas Faguer
- Department of Nephrology and Organ Transplantation, Centre for Rare Renal Diseases, University Hospital of Toulouse, Toulouse, France.,Institut National de la Santé et de la Recherche Médicale, U1048-Institut des Maladies Métaboliques et Cardiovasculaires, French Intensive care Renal Network, Toulouse, France.,Université Paul Sabatier, Toulouse 3, Toulouse, France
| |
Collapse
|
33
|
Su KM, Lin TW, Liu LC, Yang YP, Wang ML, Tsai PH, Wang PH, Yu MH, Chang CM, Chang CC. The Potential Role of Complement System in the Progression of Ovarian Clear Cell Carcinoma Inferred from the Gene Ontology-Based Immunofunctionome Analysis. Int J Mol Sci 2020; 21:E2824. [PMID: 32316695 PMCID: PMC7216156 DOI: 10.3390/ijms21082824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/27/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is the second most common epithelial ovarian carcinoma (EOC). It is refractory to chemotherapy with a worse prognosis after the preliminary optimal debulking operation, such that the treatment of OCCC remains a challenge. OCCC is believed to evolve from endometriosis, a chronic immune/inflammation-related disease, so that immunotherapy may be a potential alternative treatment. Here, gene set-based analysis was used to investigate the immunofunctionomes of OCCC in early and advanced stages. Quantified biological functions defined by 5917 Gene Ontology (GO) terms downloaded from the Gene Expression Omnibus (GEO) database were used. DNA microarray gene expression profiles were used to convert 85 OCCCs and 136 normal controls into to the functionome. Relevant offspring were as extracted and the immunofunctionomes were rebuilt at different stages by machine learning. Several dysregulated pathogenic functions were found to coexist in the immunopathogenesis of early and advanced OCCC, wherein the complement-activation-alternative-pathway may be the headmost dysfunctional immunological pathway in duality for carcinogenesis at all OCCC stages. Several immunological genes involved in the complement system had dual influences on patients' survival, and immunohistochemistrical analysis implied the higher expression of C3a receptor (C3aR) and C5a receptor (C5aR) levels in OCCC than in controls.
Collapse
Affiliation(s)
- Kuo-Min Su
- Department of Obstetrics and Gynecology, Tri-service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (L.-C.L.); (M.-H.Y.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Tzu-Wei Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (T.-W.L.); (Y.-P.Y.); (M.-L.W.); (P.-H.T.)
| | - Li-Chun Liu
- Department of Obstetrics and Gynecology, Tri-service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (L.-C.L.); (M.-H.Y.)
- Division of Obstetrics and Gynecology, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei 105, Taiwan
| | - Yi-Pin Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (T.-W.L.); (Y.-P.Y.); (M.-L.W.); (P.-H.T.)
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (T.-W.L.); (Y.-P.Y.); (M.-L.W.); (P.-H.T.)
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan; (T.-W.L.); (Y.-P.Y.); (M.-L.W.); (P.-H.T.)
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Peng-Hui Wang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan
| | - Mu-Hsien Yu
- Department of Obstetrics and Gynecology, Tri-service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (L.-C.L.); (M.-H.Y.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Ming Chang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Cheng-Chang Chang
- Department of Obstetrics and Gynecology, Tri-service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (L.-C.L.); (M.-H.Y.)
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
34
|
Khan MA, Shamma T, Kazmi S, Altuhami A, Ahmed HA, Assiri AM, Broering DC. Hypoxia-induced complement dysregulation is associated with microvascular impairments in mouse tracheal transplants. J Transl Med 2020; 18:147. [PMID: 32234039 PMCID: PMC7110829 DOI: 10.1186/s12967-020-02305-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Complement Regulatory Proteins (CRPs), especially CD55 primarily negate complement factor 3-mediated injuries and maintain tissue homeostasis during complement cascade activation. Complement activation and regulation during alloimmune inflammation contribute to allograft injury and therefore we proposed to investigate a crucial pathological link between vascular expression of CD55, active-C3, T cell immunity and associated microvascular tissue injuries during allograft rejection. METHODS Balb/c→C57BL/6 allografts were examined for microvascular deposition of CD55, C3d, T cells, and associated tissue microvascular impairments during rejection in mouse orthotopic tracheal transplantation. RESULTS Our findings demonstrated that hypoxia-induced early activation of HIF-1α favors a cell-mediated inflammation (CD4+, CD8+, and associated proinflammatory cytokines, IL-2 and TNF-α), which proportionally triggers the downregulation of CRP-CD55, and thereby augments the uncontrolled release of active-C3, and Caspase-3 deposition on CD31+ graft vascular endothelial cells. These molecular changes are pathologically associated with microvascular deterioration (low tissue O2 and Blood flow) and subsequent airway epithelial injuries of rejecting allografts as compared to non-rejecting syngrafts. CONCLUSION Together, these findings establish a pathological correlation between complement dysregulation, T cell immunity, and microvascular associated injuries during alloimmune inflammation in transplantation.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.
| | - Talal Shamma
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Shadab Kazmi
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah Altuhami
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Hala Abdalrahman Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia.,Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Dieter Clemens Broering
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Ahmad S, Pandya C, Kindelin A, Bhatia K, Chaudhary R, Dwivedi AK, Eschbacher JM, Liu Q, Waters MF, Hoda MN, Ducruet AF. C3a receptor antagonist therapy is protective with or without thrombolysis in murine thromboembolic stroke. Br J Pharmacol 2020; 177:2466-2477. [PMID: 31975437 DOI: 10.1111/bph.14989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Intravenous thrombolysis (IVT) after stroke enhances C3a generation, which may abrogate the benefits of reperfusion. The C3aR antagonist SB290157 is neuroprotective following transient but not permanent middle cerebral artery occlusion (MCAo). SB290157 remains untested in thromboembolic (TE) models, which better approximate human stroke and also facilitate testing in combination with IVT. We hypothesized SB290157 would confer neuroprotection in TE stroke with and without "late" IVT. EXPERIMENTAL APPROACH We used two different models of TE stroke to examine the efficacy of SB290157 alone and in combination with late IVT. We evaluated the benefit of SB290157 in attenuating post-ischaemic behavioural deficits, infarction, brain oedema and haemorrhage. KEY RESULTS Plasma C3a was elevated 6 hr after TE stroke alongside increased cerebrovascular C3aR expression, which was sustained to 4 weeks. Increased C3aR expression also was visualized in human ischaemic brain. In a photothrombotic (PT) stroke model, which exhibits rapid spontaneous reperfusion, SB290157 given at 1 hr post-PT significantly improved neurofunction and reduced infarction at 48 hr. In an embolic (eMCAo) model, SB290157 administered at 2 hr improved histological and functional outcomes. Conversely, late IVT administered 4.5 hr post-eMCAo was ineffective likely due to increased haemorrhage and brain oedema. However, SB290157 administered prior to late IVT ameliorated haemorrhage and oedema and improved outcomes. CONCLUSIONS AND IMPLICATIONS We conclude that SB290157 is safe and effective with and without late IVT following TE stroke. Therefore, C3a receptor antagonist therapy represents a promising candidate for clinical translation in stroke, particularly as an adjuvant to IVT.
Collapse
Affiliation(s)
- Saif Ahmad
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Chirayu Pandya
- Department of Psychiatry, Augusta University, Augusta, Georgia
| | - Adam Kindelin
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Kanchan Bhatia
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Rafay Chaudhary
- College of Science and Mathematics, Augusta University, Augusta, Georgia
| | - Alok Kumar Dwivedi
- Division of Biostatistics and Epidemiology, Texas Tech University Health Science Center, El Paso, Texas
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Qiang Liu
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona.,Department of Neurology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Michael F Waters
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona.,Department of Neurology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Md Nasrul Hoda
- Department of Neurobiology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona.,Department of Neurology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona.,Department of Neurology, Augusta University, Augusta, Georgia
| | - Andrew F Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona
| |
Collapse
|
36
|
Shu C, Zha H, Long H, Wang X, Yang F, Gao J, Hu C, Zhou L, Guo B, Zhu B. C3a-C3aR signaling promotes breast cancer lung metastasis via modulating carcinoma associated fibroblasts. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:11. [PMID: 31931851 PMCID: PMC6958674 DOI: 10.1186/s13046-019-1515-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
Background Mounting evidence suggests that complement components promote tumor progression via modulating immune suppression, angiogenesis, or tumor cell proliferation. However, the role of C3a-C3aR signaling in regulating lung metastasis of breast cancer remains unknown. Methods We performed various ex-vivo and in-vivo assays. Genetic and pharmacological C3aR blockade models were applied to investigate the role of C3a-C3aR in metastasis of breast cancer. Results C3a-C3aR signaling in CAFs facilitates the metastasis of breast cancer. Mechanically, C3a-C3aR signaling augments pro-metastatic cytokine secretion and extracellular matrix components expression of CAFs via the activation of PI3K-AKT signaling. Genetic or pharmacological blockade of C3aR signaling effectively inhibited lung metastasis of breast cancer in mouse models. Conclusions C3a-C3aR signaling in CAFs facilitates the metastasis of breast cancer. Targeting C3aR signaling is a potential anti-metastasis strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Chi Shu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Haoran Zha
- Department of Oncology, The General Hospital of the PLA Rocket Force, Beijing, 100088, People's Republic of China
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Xinxin Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Fei Yang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Jianbao Gao
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Chunyan Hu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Li Zhou
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China
| | - Bo Guo
- Maternal & Child Health Research Institute, Baoan Women's and Children's Hospital, Jinan University, Shenzhen, 518101, People's Republic of China.
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China. .,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
37
|
The C5a/C5aR1 axis promotes progression of renal tubulointerstitial fibrosis in a mouse model of renal ischemia/reperfusion injury. Kidney Int 2019; 96:117-128. [DOI: 10.1016/j.kint.2019.01.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/30/2018] [Accepted: 01/10/2019] [Indexed: 12/22/2022]
|
38
|
Ahmed S, Misra DP, Agarwal V. Interleukin-17 pathways in systemic sclerosis-associated fibrosis. Rheumatol Int 2019; 39:1135-1143. [PMID: 31073660 DOI: 10.1007/s00296-019-04317-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
Fibrosis is unregulated tissue repair that may cause impairment of organ function, especially in end-organ damage. Systemic sclerosis (SSc) is the prototype systemic fibrosing disorder. Classical targets for fibrosis in SSc like transforming growth factor Beta (TGF-β), Interleukin-6 (IL-6), and multiple tyrosine kinases, have not yielded therapeutic benefit. There is multitude of evidence from across different tissues like the heart, lung, skin, liver, colon, and, to some extent, the kidney, that interleukin-17 (IL-17) and its downstream pathways are strongly associated with the initiation and propagation of fibrosis. Data from scleroderma patients, as well as from animal models of SSc, mirror these findings. Interestingly, hitherto unknown to be related to IL-17, newer molecules like Programmed Death-protein1 (PD-1), the phosphatase SHP2, along with known signal transducers like signal transducer and activator of transcription (STAT3), have been recently shown to be involved in the pathogenesis of fibrosis. Related molecules include the intracellular signalling molecules Ras/Erk, mammalian target organ of rapamycin (mTOR), and complement components. The biology of these pathways has not yet been fully elucidated to predict regulatory mechanisms, redundancies, and potential off-target effects. All these need to be better understood in the context of each other, in an effort to arrive at the optimal target to modulate fibrosis.
Collapse
Affiliation(s)
- Sakir Ahmed
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar, 751024, India
| | - Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, India.
| |
Collapse
|
39
|
Aristolochic acid I aggravates renal injury by activating the C3a/C3aR complement system. Toxicol Lett 2019; 312:118-124. [PMID: 31048001 DOI: 10.1016/j.toxlet.2019.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
Previous studies have reported that the complement system is unconventionally activated in many kinds of glomerulonephritis. Multiple complement components participate in the pathogenic process by triggering immune response or other intracellular signaling pathways. Here, we have investigated the role of C3a and its receptor C3aR in aristolochic acid nephropathy (AAN), which, is featured with progressive interstitial fibrosis. Over release of C3a and increased expression of C3aR parallels to the up-regulation of α-SMA and TGF-β1 in AAN, which appeared to promote epithelial-mesenchymal-transition (EMT). To identify the role of complement activation in AAN, we used an inhibitor of C3aR (C3aRA) to block the coupling of C3a to its receptor. Our results confirmed from decreased EMT, the protective effect of C3aRA in cell apoptosis and inflammatory response induced by aristolochic acid I. These results showed that C3a and its receptor C3aR played pathogenic roles in AAN, and renal tubular epithelial cells were potentially pivotal targets of complement activation that could cause pro-fibrotic effects.
Collapse
|
40
|
Bisht K, Canesin G, Cheytan T, Li M, Nemeth Z, Csizmadia E, Woodruff TM, Stec DE, Bulmer AC, Otterbein LE, Wegiel B. Deletion of Biliverdin Reductase A in Myeloid Cells Promotes Chemokine Expression and Chemotaxis in Part via a Complement C5a--C5aR1 Pathway. THE JOURNAL OF IMMUNOLOGY 2019; 202:2982-2990. [PMID: 30952817 DOI: 10.4049/jimmunol.1701443] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/11/2019] [Indexed: 12/22/2022]
Abstract
Biliverdin reductase (BVR)-A is a pleotropic enzyme converting biliverdin to bilirubin and a signaling molecule that has cytoprotective and immunomodulatory effects. We recently showed that biliverdin inhibits the expression of complement activation fragment 5a receptor one (C5aR1) in RAW 264.7 macrophages. In this study, we investigated the role of BVR-A in determining macrophage inflammatory phenotype and function via regulation of C5aR1. We assessed expression of C5aR1, M1-like macrophage markers, including chemokines (RANTES, IP-10), as well as chemotaxis in response to LPS and C5a in bone marrow-derived macrophages from BVR fl/fl and LysM-Cre:BVR fl / fl mice (conditional deletion of BVR-A in myeloid cells). In response to LPS, macrophages isolated from LysM-Cre:BVR fl/fl showed significantly elevated levels of C5aR1 as well as chemokines (RANTES, IP10) but not proinflammatory markers, such as iNOS and TNF. An increase in C5aR1 expression was also observed in peritoneal macrophages and several tissues from LysM-Cre:BVR fl/fl mice in a model of endotoxemia. In addition, knockdown of BVR-A resulted in enhanced macrophage chemotaxis toward C5a. Part of the effects of BVR-A deletion on chemotaxis and RANTES expression were blocked in the presence of a C5aR1 neutralizing Ab, confirming the role of C5a-C5aR1 signaling in mediating the effects of BVR. In summary, BVR-A plays an important role in regulating macrophage chemotaxis in response to C5a via modulation of C5aR1 expression. In addition, macrophages lacking BVR-A are characterized by the expression of M1 polarization-associated chemokines, the levels of which depend in part on C5aR1 signaling.
Collapse
Affiliation(s)
- Kavita Bisht
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215.,Cancer Care and Biology Program, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Giacomo Canesin
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Tasneem Cheytan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Mailin Li
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Zsuzsanna Nemeth
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Eva Csizmadia
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, Queensland 4072, Australia
| | - David E Stec
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, MS 39216; and
| | - Andrew C Bulmer
- School of Medical Science, Griffith University, Queensland 4222, Australia
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Barbara Wegiel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215;
| |
Collapse
|
41
|
Fan Z, Qin J, Wang D, Geng S. Complement C3a promotes proliferation, migration and stemness in cutaneous squamous cell carcinoma. J Cell Mol Med 2019; 23:3097-3107. [PMID: 30825266 PMCID: PMC6484302 DOI: 10.1111/jcmm.13959] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Background Complement C3 has been shown to be highly expressed in cutaneous squamous cell carcinoma (cSCC) tumour tissues and is correlated with tumour cell growth. This study aimed to investigate the mechanism of C3 in cSCC malignant transformation. Methods C3 expression was analysed in cSCC cell lines A431, Tca8113, SCC13, HSC‐5 and HSC‐1 and in immortalized HaCaT keratinocytes. Proliferation and migration of cSCC were determined after C3a exposure. Expression of cyclin D1, cyclin E, vascular endothelial growth factor (VEGF), pro‐matrix metalloproteinase 1 (pro‐MMP1), pro‐matrix metalloproteinase 2 (pro‐MMP2), stemness factors, GSK‐3β, and β‐catenin were analyzed. Tumour growth was examined in a murine xenograft model. Results C3 expression was much more highly expressed in all cSCC cell lines than in HaCaT cells. C3a treatment significantly promoted cSCC cell proliferation and migration and upregulated cyclin D1, cyclin E, VEGF, pro‐MMP1 and pro‐MMP2 expression, which were impeded by the C3aR antagonist. Moreover, the expression of stemness factors Sox‐2, Nanog, Oct‐4, c‐Myc and CD‐44 was stimulated by C3a and slowed by C3aR disruption. Knockdown of Sox‐2 by siRNA transfection suppressed cell proliferation and migration, constrained VEGF secretion and inhibited pro‐MMP1 and pro‐MMP2 expression. C3a also activated the Wnt and β‐catenin pathway in cSCC cells. Disruption of C3aR expression dampened tumour growth and the expression of Wnt‐1, β‐catenin and Sox‐2 in the xenograft model. Conclusions C3a enhanced cell proliferation, migration and stemness in cSCC, and this activity was correlated with activation of the Wnt and β‐catenin pathway.
Collapse
Affiliation(s)
- Zhuo Fan
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Dermatology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jingjing Qin
- Department of Dermatology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Dandan Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
42
|
Khan MA, Shamma T. Complement factor and T-cell interactions during alloimmune inflammation in transplantation. J Leukoc Biol 2018; 105:681-694. [PMID: 30536904 DOI: 10.1002/jlb.5ru0718-288r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/25/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
Complement factor and T-cell signaling during an effective alloimmune response plays a key role in transplant-associated injury, which leads to the progression of chronic rejection (CR). During an alloimmune response, activated complement factors (C3a and C5a) bind to their corresponding receptors (C3aR and C5aR) on a number of lymphocytes, including T-regulatory cells (Tregs), and these cell-molecular interactions have been vital to modulate an effective immune response to/from Th1-effector cell and Treg activities, which result in massive inflammation, microvascular impairments, and fibrotic remodeling. Involvement of the complement-mediated cell signaling during transplantation signifies a crucial role of complement components as a key therapeutic switch to regulate ongoing inflammatory state, and further to avoid the progression of CR of the transplanted organ. This review highlights the role of complement-T cell interactions, and how these interactions shunt the effector immune response during alloimmune inflammation in transplantation, which could be a novel therapeutic tool to protect a transplanted organ and avoid progression of CR.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Talal Shamma
- Organ Transplant Research Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
43
|
Okamoto T, Mathai SK, Hennessy CE, Hancock LA, Walts AD, Stefanski AL, Brown KK, Lynch DA, Cosgrove GP, Groshong SD, Cool CD, Schwarz MI, Banda NK, Thurman JM, Yang IV, Holers VM, Schwartz DA. The relationship between complement C3 expression and the MUC5B genotype in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2018; 315:L1-L10. [PMID: 29565179 PMCID: PMC6087895 DOI: 10.1152/ajplung.00395.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 01/12/2023] Open
Abstract
The common gain-of-function MUC5B promoter variant ( rs35705950 ) is the strongest risk factor for the development of idiopathic pulmonary fibrosis (IPF). While the role of complement in IPF is controversial, both MUC5B and the complement system play a role in lung host defense. The aim of this study was to evaluate the relationship between complement component 3 (C3) and MUC5B in patients with IPF and in bleomycin-induced lung injury in mice. To do this, we evaluated C3 gene expression in whole lung tissue from 300 subjects with IPF and 175 healthy controls. Expression of C3 was higher in IPF than healthy controls {1.40-fold increase [95% confidence interval (CI) 1.31-1.50]; P < 0.0001} and even greater among IPF subjects with the highest-risk IPF MUC5B promoter genotype [TT vs. GG = 1.59-fold (95% CI 1.15-2.20); P < 0.05; TT vs. GT = 1.66-fold (95% CI 1.20-2.30); P < 0.05]. Among subjects with IPF, C3 expression was significantly higher in the lung tissue without microscopic honeycombing than in the lung tissue with microscopic honeycombing [1.40-fold increase (95% CI 1.23- 1.59); P < 0.01]. In mice, while bleomycin exposure increased Muc5b protein expression, C3-deficient mice were protected from bleomycin-induced lung injury. In aggregate, our findings indicate that the MUC5B promoter variant is associated with higher C3 expression and suggest that the complement system may contribute to the pathogenesis of IPF.
Collapse
Affiliation(s)
- Tsukasa Okamoto
- Department of Medicine, University of Colorado , Aurora, Colorado
| | - Susan K Mathai
- Department of Medicine, University of Colorado , Aurora, Colorado
| | | | - Laura A Hancock
- Department of Medicine, University of Colorado , Aurora, Colorado
| | - Avram D Walts
- Department of Medicine, University of Colorado , Aurora, Colorado
| | | | | | | | | | | | - Carlyne D Cool
- Department of Medicine, University of Colorado , Aurora, Colorado
| | - Marvin I Schwarz
- Department of Medicine, University of Colorado , Aurora, Colorado
| | - Nirmal K Banda
- Department of Medicine, University of Colorado , Aurora, Colorado
| | - Joshua M Thurman
- Department of Medicine, University of Colorado , Aurora, Colorado
| | - Ivana V Yang
- Department of Medicine, University of Colorado , Aurora, Colorado
| | - V Michael Holers
- Department of Medicine, University of Colorado , Aurora, Colorado
| | - David A Schwartz
- Department of Medicine, University of Colorado , Aurora, Colorado
- National Jewish Health , Denver, Colorado
| |
Collapse
|
44
|
Fernandez-Godino R, Pierce EA. C3a triggers formation of sub-retinal pigment epithelium deposits via the ubiquitin proteasome pathway. Sci Rep 2018; 8:9679. [PMID: 29946065 PMCID: PMC6018664 DOI: 10.1038/s41598-018-28143-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/15/2018] [Indexed: 01/25/2023] Open
Abstract
The mechanisms that connect complement system activation and basal deposit formation in early stages of age-related macular degeneration (AMD) are insufficiently understood, which complicates the design of efficient therapies to prevent disease progression. Using human fetal (hf) retinal pigment epithelial (RPE) cells, we have established an in vitro model to investigate the effect of complement C3a on RPE cells and its role in the formation of sub-RPE deposits. The results of these studies revealed that C3a produced after C3 activation is sufficient to induce the formation of sub-RPE deposits via complement-driven proteasome inhibition. C3a binds the C3a receptor (C3aR), stimulates deposition of collagens IV and VI underneath the RPE, and impairs the extracellular matrix (ECM) turnover by increased MMP-2 activity, all mediated by downregulation of the ubiquitin proteasome pathway (UPP). The formation of basal deposits can be prevented by the addition of a C3aR antagonist, which restores the UPP activity and ECM turnover. These findings indicate that the cell-based model can be used to test potential therapeutic agents in vitro. The data suggest that modulation of C3aR-mediated events could be a therapeutic approach for treatment of early AMD.
Collapse
Affiliation(s)
- Rosario Fernandez-Godino
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 02114, USA.
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
45
|
Treprostinil inhibits proliferation and extracellular matrix deposition by fibroblasts through cAMP activation. Sci Rep 2018; 8:1087. [PMID: 29348469 PMCID: PMC5773699 DOI: 10.1038/s41598-018-19294-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/09/2017] [Indexed: 12/25/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by peripheral lung fibrosis and increased interstitial extracellular matrix (ECM) deposition. In IPF, tumor growth factor (TGF)-β1 which is the major stimulus of ECM deposition, and platelet derived growth factor (PDGF)-BB is a potent stimulus of fibrosis. Thus, the effect of Treprostinil on TGF-ß1 and PDGF-induced fibroblast proliferation and ECM deposition was investigated. Human peripheral lung fibroblasts of seven IPF patients and five lung donors were stimulated by PDGF, or TGF-β1, or the combination. Cells were pre-incubated (30 min) with either Treprostinil, forskolin, di-deoxyadenosine (DDA), or vehicle. Treprostinil time dependently activated cAMP thereby preventing PDGF-BB induced proliferation and TGF-β1 secretion. Cell counts indicated proliferation; α-smooth muscle actin (α-SMA) indicted differentiation, and collagen type-1 or fibronectin deposition remodeling. Myo-fibroblast indicating α-SMA expression was significantly reduced and its formation was altered by Treprostinil. Collagen type-I and fibronectin deposition were also reduced by Treprostinil. The effect of Treprostinil on collagen type-I deposition was cAMP sensitive as it was counteracted by DDA, while the effect on fibronectin was not cAMP mediated. Treprostinil antagonized the pro-fibrotic effects of both PDGF-BB and TGF-β1 in primary human lung fibroblasts. The data presented propose a therapeutic relevant anti-fibrotic effect of Treprostinil in IPF.
Collapse
|
46
|
Kulkarni HS, Liszewski MK, Brody SL, Atkinson JP. The complement system in the airway epithelium: An overlooked host defense mechanism and therapeutic target? J Allergy Clin Immunol 2018; 141:1582-1586.e1. [PMID: 29339260 DOI: 10.1016/j.jaci.2017.11.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/02/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in St Louis, St Louis, Mo; Division of Rheumatology, Department of Medicine, Washington University in St Louis, St Louis, Mo
| | - M Kathryn Liszewski
- Division of Rheumatology, Department of Medicine, Washington University in St Louis, St Louis, Mo
| | - Steven L Brody
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University in St Louis, St Louis, Mo
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University in St Louis, St Louis, Mo.
| |
Collapse
|
47
|
Anaphylatoxin Signaling in Retinal Pigment and Choroidal Endothelial Cells: Characteristics and Relevance to Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:45-51. [PMID: 29721926 DOI: 10.1007/978-3-319-75402-4_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the USA. Polymorphisms in various complement components are associated with an increased risk for AMD, and it has been hypothesized that an overactive complement system is partially responsible for the pathology of AMD. AMD is classified as early, intermediate, or late AMD, depending on the degree of the associated pathologies. Late AMD can be characterized as either lesions associated with neovascular AMD or geographic atrophy. Both sets of lesions are associated with pathology at the RPE/choroid interface, which include a thickening of Bruch's membrane, presence of drusen, and pigmentary alterations, and deterioration of the blood-retina barrier has been reported. These changes can lead to the slow degeneration and atrophy of the photoreceptors in the macula in dry AMD, or progress to choroidal neovascularization (CNV) and leakage of these new vessels in wet AMD. It has been shown previously that complement anaphylatoxins C3a and C5a, signaling via their respective G-protein-coupled receptors, can alter RPE cell function and promote choroidal neovascularization. However, it is important to note these components also play a role in tissue repair. Here we discuss anaphylatoxin signaling in AMD-related target cells and the potential implications for the design of anti-complement therapeutics.
Collapse
|
48
|
Complement 5a Receptor deficiency does not influence adverse cardiac remodeling after pressure-overload in mice. Sci Rep 2017; 7:17045. [PMID: 29213128 PMCID: PMC5719022 DOI: 10.1038/s41598-017-16957-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
Hypertension is one of the most common risk factors for the development heart failure in the general population. Inflammation plays a central role in this adverse remodeling and eventually to the development of heart failure. Circulating levels of Complement factor 5a (C5a) are increased in hypertensive patients and the C5a receptor is associated with the presence of cardiac fibrosis and inflammation in an experimental hypertension model. To test if C5aR is involved in adverse cardiac remodeling following pressure-overload, we induced transverse aortic constriction (TAC) in wildtype and C5a receptor deficient mice (C5aR-/-). Six weeks after TAC, C5aR-/- animals showed a similar degree of cardiac hypertrophy and decrease in cardiac function as wild type mice (End Systolic Volume; 50.30±5.32 µl vs. 55.81±8.16 µl). In addition, other features of adverse cardiac remodeling like cardiomyocyte cell size (WGA staining), fibrosis (picrosirius red staining) or collagen degradation (matrix metalloproteinase activity assay) did not differ either. In conclusion, full body C5aR deficiency does not affect adverse cardiac remodeling after pressure-overload. However, our finding are in contrast with C5a inhibition studies. Our observations do present the role of C5a-C5aR in adverse cardiac remodeling and heart failure as controversial at the least.
Collapse
|
49
|
Lacroix M, Tessier A, Dumestre-Pérard C, Vadon-Le Goff S, Gout E, Bruckner-Tuderman L, Kiritsi D, Nyström A, Ricard-Blum S, Moali C, Hulmes DJS, Thielens NM. Interaction of Complement Defence Collagens C1q and Mannose-Binding Lectin with BMP-1/Tolloid-like Proteinases. Sci Rep 2017; 7:16958. [PMID: 29209066 PMCID: PMC5717261 DOI: 10.1038/s41598-017-17318-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/19/2017] [Indexed: 12/26/2022] Open
Abstract
The defence collagens C1q and mannose-binding lectin (MBL) are immune recognition proteins that associate with the serine proteinases C1r/C1s and MBL-associated serine proteases (MASPs) to trigger activation of complement, a major innate immune system. Bone morphogenetic protein-1 (BMP-1)/tolloid-like proteinases (BTPs) are metalloproteinases with major roles in extracellular matrix assembly and growth factor signalling. Despite their different functions, C1r/C1s/MASPs and BTPs share structural similarities, including a specific CUB-EGF-CUB domain arrangement found only in these enzymes that mediates interactions with collagen-like proteins, suggesting a possible functional relationship. Here we investigated the potential interactions between the defence collagens C1q and MBL and the BTPs BMP-1 and mammalian tolloid-like-1 (mTLL-1). C1q and MBL bound to immobilized BMP-1 and mTLL-1 with nanomolar affinities. These interactions involved the collagen-like regions of the defence collagens and were inhibited by pre-incubation of C1q or MBL with their cognate complement proteinases. Soluble BMP-1 and mTLL-1 did not inhibit complement activation and the defence collagens were neither substrates nor inhibitors of BMP-1. Finally, C1q co-localized with BMP-1 in skin biopsies following melanoma excision and from patients with recessive dystrophic epidermolysis bullosa. The observed interactions provide support for a functional link between complement and BTPs during inflammation and tissue repair.
Collapse
Affiliation(s)
- Monique Lacroix
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Agnès Tessier
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, F-69367, Lyon, France
| | - Chantal Dumestre-Pérard
- Laboratoire d'Immunologie, Pôle de Biologie, CHU Grenoble Alpes, 38700, La Tronche, France.,BNI group, TIMC-IMAG UMR5525 Université Grenoble Alpes, 38706, La Tronche, France
| | - Sandrine Vadon-Le Goff
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, F-69367, Lyon, France
| | - Evelyne Gout
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sylvie Ricard-Blum
- Univ. Lyon, University Claude Bernard Lyon 1, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry (ICBMS), UMR 5246, F-69622, Villeurbanne, France
| | - Catherine Moali
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, F-69367, Lyon, France
| | - David J S Hulmes
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Tissue Biology and Therapeutic Engineering Unit, LBTI, UMR 5305, F-69367, Lyon, France.
| | | |
Collapse
|
50
|
Fisher AJ, Cipolla E, Varre A, Gu H, Mickler EA, Vittal R. Potential Mechanisms Underlying TGF-β-mediated Complement Activation in Lung Fibrosis. ACTA ACUST UNITED AC 2017; 3. [PMID: 29377033 DOI: 10.21767/2573-5365.100037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
While our previous studies suggest that limiting bleomycin-induced complement activation suppresses TGF-β signaling, the specific hierarchical interactions between TGF-β and complement in lung fibrosis are unclear. Herein, we investigated the mechanisms underlying TGF-β-induced complement activation in the pathogenesis of lung fibrosis. C57-BL6 mice were given intratracheal instillations of adenoviral vectors overexpressing TGF-β (Ad-TGFβ) or the firefly gene-luciferase (Ad-Luc; control). Two weeks later, mice with fibrotic lungs were instilled RNAi specific to receptors for C3a or C5a-C3ar or C5ar, and sacrificed at day 28. Histopathological analyses revealed that genetic silencing of C3ar or C5ar arrested the progression of TGF-β-induced lung fibrosis, collagen deposition and content (hydroxyproline, col1a1/2); and significantly suppressed local complement activation. With genetic silencing of either C3ar or C5ar, in Ad-TGFβ-injured lungs: we detected the recovery of Smad7 (TGF-β inhibitor) and diminished local release of DAF (membrane-bound complement inhibitor); in vitro: TGF-β-mediated loss of DAF was prevented. Conversely, blockade of the TGF-β receptor prevented C3a-mediated loss of DAF in both normal primary human alveolar and small airway epithelial cells. Of the 52 miRNAs analyzed as part of the Affymetrix array, normal primary human SAECs exposed to C3a, C5a or TGF-β caused discrete and overlapping miRNA regulation related to epithelial proliferation or apoptosis (miR-891A, miR-4442, miR-548, miR-4633), cellular contractility (miR-1197) and lung fibrosis (miR-21, miR-200C, miR-31HG, miR-503). Our studies present potential mechanisms by which TGF-β activates complement and promotes lung fibrosis.
Collapse
Affiliation(s)
- Amanda J Fisher
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ellyse Cipolla
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, USA
| | - Ananya Varre
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, USA
| | - Hongmei Gu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Elizabeth A Mickler
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ragini Vittal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, USA
| |
Collapse
|