1
|
Charvát V, Strnadová A, Myšková A, Sýkora D, Blechová M, Železná B, Kuneš J, Maletínská L, Pačesová A. Lipidized analogues of the anorexigenic CART (cocaine- and amphetamine-regulated transcript) neuropeptide show anorexigenic and neuroprotective potential in mouse model of monosodium-glutamate induced obesity. Eur J Pharmacol 2024; 980:176864. [PMID: 39084452 DOI: 10.1016/j.ejphar.2024.176864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
AIMS This study investigates the neuroprotective effects of lipidized analogues of 2-SS-CART(61-102) derived from anorexigenic neuropeptide cocaine- and amphetamine-regulated transcript peptide (CARTp) in light of the link between obesity, its comorbidities, and the development of Alzheimer's disease. METHODS We introduce novel lipidized analogues derived from 2-SS-CART(61-102), a specific analogue of natural CART(61-102), with two disulfide bridges. Using hypothermic PC12 cells, we tested the effect of the most potent analogues on Tau phosphorylation. We further described the anorexigenic and neuroprotective potential of subcutaneously (SC) injected lipidized CARTp analogue in a mouse model with prediabetes and obesity induced by neonatal monosodium glutamate (MSG) administration. RESULTS Compared to the non-lipidized 2-SS-CART(61-102), all lipidized analogues exhibited a potent binding affinity to PC12 cells and enhanced in vitro stability in rat plasma. Two most potent lipidized analogues attenuated hypothermia-induced Tau hyperphosphorylation at multiple epitopes. Subsequently, chronic SC treatment with palm-2-SS-CART(61-102) significantly decreased body weight and food intake, improved metabolic parameters, decreased level of pTau and increased neurogenesis in hippocampi of obese MSG mice. CONCLUSION Our unique CARTp analogue palm-2-SS-CART(61-102) shows promise as a potent anti-obesity and neuroprotective agent.
Collapse
Affiliation(s)
- Vilém Charvát
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anna Strnadová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Aneta Myšková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; University of Chemistry and Technology, Prague, Czech Republic
| | - David Sýkora
- University of Chemistry and Technology, Prague, Czech Republic
| | - Miroslava Blechová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Pačesová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Singh O, Basu S, Srivastava A, Pradhan DR, Dandapat P, Bathrachalam C, Singru PS. Cocaine- and Amphetamine-Regulated Transcript Peptide in the Central Nervous System of the Gecko, Hemidactylus leschenaultii: Molecular Characterization, Neuroanatomical Organization, and Regulation by Neuropeptide Y. J Comp Neurol 2024; 532:e25672. [PMID: 39380327 DOI: 10.1002/cne.25672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
Neuropeptide cocaine- and amphetamine-regulated transcript (CART) is widely expressed in the brains of teleosts, amphibians, birds, and mammals and has emerged as a conserved regulator of energy balance across these vertebrate phyla. However, as yet, there is no information on CART in the reptilian brain. We characterized the cDNA encoding CART and mapped CART-containing elements in the brain of gecko, Hemidactylus leschenaultii (hl) using a specific anti-CART antiserum. We report a 683-bp hlcart transcript containing a 336-bp open reading frame, which encodes a putative 111-amino acid hl-preproCART. The 89-amino acid hl-proCART generated from hl-preproCART produced two putative bioactive hl-CART-peptides. These bioactive CART-peptides were > 93% similar with those in rats/humans. Although reverse transcription-polymerase chain reaction (RT-PCR) detected hlcart-transcript in the brain, CART-containing neurons/fibers were widely distributed in the telencephalon, diencephalon, mesencephalon, rhombencephalon, spinal cord, and retina. The mitral cells in olfactory bulb, neurons in the paraventricular, periventricular, arcuate (Arc), Edinger-Westphal, and brainstem nuclei were intensely CART-positive. In view of antagonistic roles of neuropeptide Y (NPY) and CART in energy balance in the framework of mammalian hypothalamus, we probed CART-NPY interaction in the hypothalamus of H. leschenaultii. Double immunofluorescence showed a dense NPY-innervation of Arc CART neurons. Ex vivo hypothalamic slices treated with NPY/NPY-Y1-receptor agonist significantly reduced hlcart-mRNA levels in the Arc-containing tissues and CART-ir in the dorsal-Arc. However, CART-ir in ventral-Arc was unaffected. NPY via Y1-receptors may regulate energy balance by inhibiting dArc CART neurons. This study on CART in a reptilian brain fills the current void in literature and underscores the conserved feature of the neuropeptide across the entire vertebrate phyla.
Collapse
Affiliation(s)
- Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Sumela Basu
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Abhinav Srivastava
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| | - Dipti R Pradhan
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
| | - Pallabi Dandapat
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
| | - Chandramohan Bathrachalam
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Jiang LY, Tian J, Yang YN, Jia SH, Shu Q. Acupuncture for obesity and related diseases: Insight for regulating neural circuit. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:93-101. [PMID: 38519278 DOI: 10.1016/j.joim.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/07/2023] [Indexed: 03/24/2024]
Abstract
Obesity is defined as abnormal or excessive fat accumulation that may impair health. Obesity is associated with numerous pathological changes including insulin resistance, fatty liver, hyperlipidemias, and other obesity-related diseases. These comorbidities comprise a significant public health threat. Existing anti-obesity drugs have been limited by side effects that include depression, suicidal thoughts, cardiovascular complications and stroke. Acupuncture treatment has been shown to be effective for treating obesity and obesity-related conditions, while avoiding side effects. However, the mechanisms of acupuncture in treating obesity-related diseases, especially its effect on neural circuits, are not well understood. A growing body of research has studied acupuncture's effects on the endocrine system and other mechanisms related to the regulation of neural circuits. In this article, recent research that was relevant to the use of acupuncture to treat obesity and obesity-related diseases through the neuroendocrine system, as well as some neural circuits involved, was summarized. Based on this, acupuncture's potential ability to regulate neural circuits and its mechanisms of action in the endocrine system were reviewed, leading to a deeper mechanistic understanding of acupuncture's effects and providing insight and direction for future research about obesity. Please cite this article as: Jiang LY, Tian J, Yang YN, Jia SH, Shu Q. Acupuncture for obesity and related diseases: insight for regulating neural circuit. J Integr Med. 2024; 22(2): 93-101.
Collapse
Affiliation(s)
- Lin-Yan Jiang
- Department of Rehabilitation Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; School of Sports Medicine, Wuhan Sports University, Wuhan 430079, Hubei Province, China
| | - Jun Tian
- Department of Rehabilitation Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Ya-Nan Yang
- Department of Traditional Chinese Medicine, China Resources & Wu Gang General Hospital, Wuhan 430080, Hubei Province, China
| | - Shao-Hui Jia
- School of Sports Medicine, Wuhan Sports University, Wuhan 430079, Hubei Province, China
| | - Qing Shu
- Department of Rehabilitation Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; School of Sports Medicine, Wuhan Sports University, Wuhan 430079, Hubei Province, China.
| |
Collapse
|
4
|
Santiago-Marrero I, Liu F, Wang H, Arzola EP, Xiong WC, Mei L. Energy Expenditure Homeostasis Requires ErbB4, an Obesity Risk Gene, in the Paraventricular Nucleus. eNeuro 2023; 10:ENEURO.0139-23.2023. [PMID: 37669858 PMCID: PMC10521346 DOI: 10.1523/eneuro.0139-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Obesity affects more than a third adult population in the United States; the prevalence is even higher in patients with major depression disorders. GWAS studies identify the receptor tyrosine kinase ErbB4 as a risk gene for obesity and for major depression disorders. We found that ErbB4 was enriched in the paraventricular nucleus of the hypothalamus (PVH). To investigate its role in metabolism, we deleted ErbB4 by injecting a Cre-expressing virus into the PVH of ErbB4-floxed male mice and found that PVH ErbB4 deletion increased weight gain without altering food intake. ErbB4 PVH deletion also reduced nighttime activity and decreased intrascapular brown adipose tissue (iBAT) thermogenesis. Analysis of covariance (ANCOVA) revealed that ErbB4 PVH deletion reduced O2 consumption, CO2 production and heat generation in a manner independent of body weight. Immunostaining experiments show that ErbB4+ neurons in the PVH were positive for oxytocin (OXT); ErbB4 PVH deletion reduces serum levels of OXT. We characterized mice where ErbB4 was specifically mutated in OXT+ neurons and found reduction in energy expenditure, phenotypes similar to PVH ErbB4 deletion. Taken together, our data indicate that ErbB4 in the PVH regulates metabolism likely through regulation of OXT expressing neurons, reveal a novel function of ErbB4 and provide insight into pathophysiological mechanisms of depression-associated obesity.
Collapse
Affiliation(s)
- Ivan Santiago-Marrero
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Fang Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Emily P Arzola
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
- Chinese Institutes for Medical Research, Beijing 100005, China
- Capital Medical University, Beijing 100054, China
| |
Collapse
|
5
|
Greenwood M, Gillard BT, Farrukh R, Paterson A, Althammer F, Grinevich V, Murphy D, Greenwood MP. Transcription factor Creb3l1 maintains proteostasis in neuroendocrine cells. Mol Metab 2022; 63:101542. [PMID: 35803572 PMCID: PMC9294333 DOI: 10.1016/j.molmet.2022.101542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Dynamic changes to neuropeptide hormone synthesis and secretion by hypothalamic neuroendocrine cells is essential to ensure metabolic homeostasis. The specialised molecular mechanisms that allow neuroendocrine cells to synthesise and secrete vast quantities of neuropeptides remain ill defined. The objective of this study was to identify novel genes and pathways controlled by transcription factor and endoplasmic reticulum stress sensor Creb3l1 which is robustly activated in hypothalamic magnocellular neurones in response to increased demand for protein synthesis. METHODS We adopted a multiomic strategy to investigate specific roles of Creb3l1 in rat magnocellular neurones. We first performed chromatin immunoprecipitation followed by genome sequencing (ChIP-seq) to identify Creb3l1 genomic targets and then integrated this data with RNA sequencing data from physiologically stimulated and Creb3l1 knockdown magnocellular neurones. RESULTS The data converged on Creb3l1 targets that code for ribosomal proteins and endoplasmic reticulum proteins crucial for the maintenance of cellular proteostasis. We validated genes that compose the PERK arm of the unfolded protein response pathway including Eif2ak3, Eif2s1, Atf4 and Ddit3 as direct Creb3l1 targets. Importantly, knockdown of Creb3l1 in the hypothalamus led to a dramatic depletion in neuropeptide synthesis and secretion. The physiological outcomes from studies of paraventricular and supraoptic nuclei Creb3l1 knockdown animals were changes to food and water consumption. CONCLUSION Collectively, our data identify Creb3l1 as a comprehensive controller of the PERK signalling pathway in magnocellular neurones in response to physiological stimulation. The broad regulation of neuropeptide synthesis and secretion by Creb3l1 presents a new therapeutic strategy for metabolic diseases.
Collapse
Affiliation(s)
- Mingkwan Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Benjamin T Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Rizwan Farrukh
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Alex Paterson
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Ferdinand Althammer
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany.
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA.
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, United Kingdom.
| |
Collapse
|
6
|
Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol 2022; 915:174611. [PMID: 34798121 DOI: 10.1016/j.ejphar.2021.174611] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity is a major health crisis affecting over a third of the global population. This multifactorial disease is regulated via interoceptive neural circuits in the brain, whose alteration results in excessive body weight. Certain central neuronal populations in the brain are recognised as crucial nodes in energy homeostasis; in particular, the hypothalamic arcuate nucleus (ARC) region contains two peptide microcircuits that control energy balance with antagonistic functions: agouti-related peptide/neuropeptide-Y (AgRP/NPY) signals hunger and stimulates food intake; and pro-opiomelanocortin (POMC) signals satiety and reduces food intake. These neuronal peptides levels react to energy status and integrate signals from peripheral ghrelin, leptin, and insulin to regulate feeding and energy expenditure. To manage obesity comprehensively, it is crucial to understand cellular and molecular mechanisms of information processing in ARC neurons, since these regulate energy homeostasis. Importantly, a specific strategy focusing on ARC circuits needs to be devised to assist in treating obese patients and maintaining weight loss with minimal or no side effects. The aim of this review is to elucidate the recent developments in the study of AgRP-, NPY- and POMC-producing neurons, specific to their role in controlling metabolism. The impact of ghrelin, leptin, and insulin signalling via action of these neurons is also surveyed, since they also impact energy balance through this route. Lastly, we present key proteins, targeted genes, compounds, drugs, and therapies that actively work via these neurons and could potentially be used as therapeutic targets for treating obesity conditions.
Collapse
Affiliation(s)
- Muhammad Sufyan Vohra
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, Kent, CT2 7NH, United Kingdom
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
7
|
Wang XL, Li L. Microglia Regulate Neuronal Circuits in Homeostatic and High-Fat Diet-Induced Inflammatory Conditions. Front Cell Neurosci 2021; 15:722028. [PMID: 34720877 PMCID: PMC8549960 DOI: 10.3389/fncel.2021.722028] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are brain resident macrophages, which actively survey the surrounding microenvironment and promote tissue homeostasis under physiological conditions. During this process, microglia participate in synaptic remodeling, neurogenesis, elimination of unwanted neurons and cellular debris. The complex interplay between microglia and neurons drives the formation of functional neuronal connections and maintains an optimal neural network. However, activation of microglia induced by chronic inflammation increases synaptic phagocytosis and leads to neuronal impairment or death. Microglial dysfunction is implicated in almost all brain diseases and leads to long-lasting functional deficiency, such as hippocampus-related cognitive decline and hypothalamus-associated energy imbalance (i.e., obesity). High-fat diet (HFD) consumption triggers mediobasal hypothalamic microglial activation and inflammation. Moreover, HFD-induced inflammation results in cognitive deficits by triggering hippocampal microglial activation. Here, we have summarized the current knowledge of microglial characteristics and biological functions and also reviewed the molecular mechanism of microglia in shaping neural circuitries mainly related to cognition and energy balance in homeostatic and diet-induced inflammatory conditions.
Collapse
Affiliation(s)
- Xiao-Lan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lianjian Li
- Department of Surgery, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
8
|
Shewale SA, Deshbhratar SM, Ravikumar A, Bhargava SY. Cocaine and amphetamine regulated transcript peptide (CART) in the tadpole brain: Response to different energy states. Neuropeptides 2021; 88:102152. [PMID: 33932859 DOI: 10.1016/j.npep.2021.102152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/04/2021] [Accepted: 04/18/2021] [Indexed: 12/18/2022]
Abstract
Cocaine- and amphetamine-regulated transcript peptide (CART) is an anorexigenic neuropeptide known to play a key role in energy homeostasis across the vertebrate phyla. In the current study, we have investigated the response of the CART immunoreactive system to varying energy states in the brain of a tadpole model. The pro-metamorphic tadpoles of Euphlyctis cyanophlyctis were fasted, or intracranially injected with glucose or 2-deoxy-d-glucose (2DG; an antagonist to glucose inducing glucoprivation) and the response of the CART containing system in various neuroanatomical areas was studied using immunohistochemistry. Glucose administration increased the CART immunoreactivity in the entopeduncular neurons (EN), preoptic area (POA), ventral hypothalamus (vHy) and the Edinger Westphal nucleus (EW) while CART positive cells decrease in response to fasting and glucoprivation. A substantial decrease in CART was noted in the EW nucleus of tadpoles injected with 2DG. These regions might contain the glucose-sensing neurons and regulate food intake in anurans. Therefore, we speculate that the function of central CART and its antagonistic action with NPY in food and feeding circuitry of anurans is evolutionary conserved and might be responsible for glucose homeostasis.
Collapse
Affiliation(s)
- Swapnil A Shewale
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India; Department of Zoology, Bhavan's Hazarimal Somani College, Chowpatty, Mumbai 400 007, India
| | - Shantaj M Deshbhratar
- Department of Zoology, Bhavan's Hazarimal Somani College, Chowpatty, Mumbai 400 007, India
| | - Ameeta Ravikumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India
| | - Shobha Y Bhargava
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
9
|
Singh A, de Araujo AM, Krieger JP, Vergara M, Ip CK, de Lartigue G. Demystifying functional role of cocaine- and amphetamine-related transcript (CART) peptide in control of energy homeostasis: A twenty-five year expedition. Peptides 2021; 140:170534. [PMID: 33757831 PMCID: PMC8369463 DOI: 10.1016/j.peptides.2021.170534] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Cocaine- and amphetamine-related transcript (CART) is a neuropeptide first discovered in the striatum of the rat brain. Later, the genetic sequence and function of CART peptide (CARTp) was found to be conserved among multiple mammalian species. Over the 25 years, since its discovery, CART mRNA (Cartpt) expression has been reported widely throughout the central and peripheral nervous systems underscoring its role in diverse physiological functions. Here, we review the localization and function of CARTp as it relates to energy homeostasis. We summarize the expression changes of central and peripheral Cartpt in response to metabolic states and make use of available large data sets to gain additional insights into the anatomy of the Cartpt expressing vagal neurons and their expression patterns in the gut. Furthermore, we provide an overview of the role of CARTp as an anorexigenic signal and its effect on energy expenditure and body weight control with insights from both pharmacological and transgenic animal studies. Subsequently, we discuss the role of CARTp in the pathophysiology of obesity and review important new developments towards identifying a candidate receptor for CARTp signalling. Altogether, the field of CARTp research has made rapid and substantial progress recently, and we review the case for considering CARTp as a potential therapeutic target for stemming the obesity epidemic.
Collapse
Affiliation(s)
- Arashdeep Singh
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Alan Moreira de Araujo
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Jean-Philippe Krieger
- Department of Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Macarena Vergara
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Ong ZY, McNally GP. CART in energy balance and drug addiction: Current insights and mechanisms. Brain Res 2020; 1740:146852. [DOI: 10.1016/j.brainres.2020.146852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
|
11
|
González-García I, Milbank E, Martinez-Ordoñez A, Diéguez C, López M, Contreras C. HYPOTHesizing about central comBAT against obesity. J Physiol Biochem 2019; 76:193-211. [PMID: 31845114 DOI: 10.1007/s13105-019-00719-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
The hypothalamus is a brain region in charge of many vital functions. Among them, BAT thermogenesis represents an essential physiological function to maintain body temperature. In the metabolic context, it has now been established that energy expenditure attributed to BAT function can contribute to the energy balance in a substantial extent. Thus, therapeutic interest in this regard has increased in the last years and some studies have shown that BAT function in humans can make a real contribution to improve diabetes and obesity-associated diseases. Nevertheless, how the hypothalamus controls BAT activity is still not fully understood. Despite the fact that much has been known about the mechanisms that regulate BAT activity in recent years, and that the central regulation of thermogenesis offers a very promising target, many questions remain still unsolved. Among them, the possible human application of knowledge obtained from rodent studies, and drug administration strategies able to specifically target the hypothalamus. Here, we review the current knowledge of homeostatic regulation of BAT, including the molecular insights of brown adipocytes, its central control, and its implication in the development of obesity.
Collapse
Affiliation(s)
- Ismael González-García
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
| | - Edward Milbank
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Anxo Martinez-Ordoñez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
| | - Carlos Diéguez
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Miguel López
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Cristina Contreras
- Department of Physiology, Pharmacy School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
12
|
Nakhate KT, Subhedar NK, Kokare DM. Involvement of neuropeptide CART in the central effects of insulin on feeding and body weight. Pharmacol Biochem Behav 2019; 181:101-109. [PMID: 31054945 DOI: 10.1016/j.pbb.2019.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022]
Abstract
While insulin secreted from pancreas plays a pivotal role in the control of glucose homeostasis, it also interacts with hypothalamic sites and negatively influences the energy balance. The present study was undertaken to reveal the functional interaction between cocaine- and amphetamine-regulated transcript (CART), a well-known anorexic peptide, and insulin within the framework of hypothalamus in the regulation of feeding behavior and body weight. Insulin was administered daily by intracerebroventricular (icv) route, alone or in combination with CART (icv) for a period of seven days. Immediately thereafter, preweighed food was offered to the animals at the commencement of the dark phase. The food intake and body weight were measured daily just prior to next injection. Furthermore, brains of insulin-treated rats were processed for the immunohistochemical analysis of CART-containing elements in the hypothalamus. Treatment with insulin (6 mU, icv) for a period of 7 days caused a significant decrease in food intake and body weight as compared to control. Concomitant administration of CART (0.5 μg, icv) potentiated insulin-induced anorexia and weight loss. Insulin administration resulted in a significant increase in CART immunoreactivity in the hypothalamic arcuate, paraventricular, dorsomedial and ventromedial nuclei. We suggest that increased CART contents in the hypothalamus may be causally linked with anorexia and weight loss induced by insulin.
Collapse
Affiliation(s)
- Kartik T Nakhate
- Rungta College of Pharmaceutical Sciences and Research, Rungta Educational Campus, Kohka-Kurud Road, Bhilai 490 024, Chhattisgarh, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Near NCL, Pune 411 021, Maharashtra, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India.
| |
Collapse
|
13
|
Ahmadian-Moghadam H, Sadat-Shirazi MS, Zarrindast MR. Cocaine- and amphetamine-regulated transcript (CART): A multifaceted neuropeptide. Peptides 2018; 110:56-77. [PMID: 30391426 DOI: 10.1016/j.peptides.2018.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/15/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Over the last 35 years, the continuous discovery of novel neuropeptides has been the key to the better understanding of how the central nervous system has integrated with neuronal signals and behavioral responses. Cocaine and amphetamine-regulated transcript (CART) was discovered in 1995 in the rat striatum but later was found to be highly expressed in the hypothalamus. The widespread distribution of CART peptide in the brain complicated the understanding of the role played by this neurotransmitter. The main objective of the current compact review is to piece together the fragments of available information about origin, expression, distribution, projection, and function of CART peptides. Accumulative evidence suggests CART as a neurotransmitter and neuroprotective agent that is mainly involved in regulation of feeding, addiction, stress, anxiety, innate fear, neurological disease, neuropathic pain, depression, osteoporosis, insulin secretion, learning, memory, reproduction, vision, sleep, thirst and body temperature. In spite of the vast number of studies about the CART, the overall pictures about the CART functions are sketchy. First, there is a lack of information about cloned receptor, specific agonist and antagonist. Second, CART peptides are detected in discrete sets of neurons that can modulate countless activities and third; CART peptides exist in several fragments due to post-translational processing. For these reasons the overall picture about the CART peptides are sketchy and confounding.
Collapse
Affiliation(s)
- Hamid Ahmadian-Moghadam
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
14
|
Wen S, Wang C, Gong M, Zhou L. An overview of energy and metabolic regulation. SCIENCE CHINA-LIFE SCIENCES 2018; 62:771-790. [PMID: 30367342 DOI: 10.1007/s11427-018-9371-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/23/2018] [Indexed: 12/21/2022]
Abstract
The physiology and behaviors related to energy balance are monitored by the nervous and humoral systems. Because of the difficulty in treating diabetes and obesity, elucidating the energy balance mechanism and identifying critical targets for treatment are important research goals. Therefore, the purpose of this article is to describe energy regulation by the central nervous system (CNS) and peripheral humoral pathway. Homeostasis and rewarding are the basis of CNS regulation. Anorexigenic or orexigenic effects reflect the activities of the POMC/CART or NPY/AgRP neurons within the hypothalamus. Neurotransmitters have roles in food intake, and responsive brain nuclei have different functions related to food intake, glucose monitoring, reward processing. Peripheral gut- or adipose-derived hormones are the major source of peripheral humoral regulation systems. Nutrients or metabolites and gut microbiota affect metabolism via a discrete pathway. We also review the role of peripheral organs, the liver, adipose tissue, and skeletal muscle in peripheral regulation. We discuss these topics and how the body regulates metabolism.
Collapse
Affiliation(s)
- Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Chaoxun Wang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Min Gong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China.
| |
Collapse
|
15
|
Nakhate KT, Subhedar NK, Kokare DM. A role of neuropeptide CART in hyperphagia and weight gain induced by olanzapine treatment in rats. Brain Res 2018; 1695:45-52. [PMID: 29775565 DOI: 10.1016/j.brainres.2018.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 01/09/2023]
Abstract
Although olanzapine is highly efficacious and most widely used second generation antipsychotic drug, the success of treatment has been hampered by its propensity to induce weight gain. While the underlying neuronal mechanisms are unclear, their elucidation may help to target alternative pathways regulating energy balance. The present study was undertaken to define the role of cocaine- and amphetamine-regulated transcript (CART), a well-known anorexic peptide, in olanzapine-induced hyperphagia and body weight gain in female rats. Olanzapine was administered daily by intraperitoneal route, alone or in combination with CART (intracerebroventricular) for a period of two weeks. Immediately after drug administrations, preweighed food was offered to the animals at the commencement of the dark phase. The food intake and body weight were measured daily just prior to next injection. Furthermore, the brains of olanzapine-treated rats were processed for the immunohistochemical analysis of CART-containing elements in the hypothalamus. Treatment with olanzapine (0.5 mg/kg) for the duration of 14 days produced a significant increase in food intake and body weight as compared to control. However, concomitant administration of CART (0.5 µg) attenuated the olanzapine-induced hyperphagia and weight gain. Olanzapine administration resulted in a significant reduction in CART immunoreactivity in the hypothalamic arcuate, paraventricular, dorsomedial and ventromedial nuclei. We suggest that decreased CART contents in the hypothalamus may be causally linked with the hyperphagia and weight gain induced by olanzapine.
Collapse
Affiliation(s)
- Kartik T Nakhate
- Rungta College of Pharmaceutical Sciences and Research, Rungta Educational Campus, Kohka-Kurud Road, Bhilai 490 024, Chhattisgarh, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Near NCL, Pune 411 021, Maharashtra, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India.
| |
Collapse
|
16
|
García-Luna C, Soberanes-Chávez P, de Gortari P. Impaired hypothalamic cocaine- and amphetamine-regulated transcript expression in lateral hypothalamic area and paraventricular nuclei of dehydration-induced anorexic rats. J Neuroendocrinol 2017; 29. [PMID: 28984394 DOI: 10.1111/jne.12541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/14/2017] [Accepted: 10/02/2017] [Indexed: 11/28/2022]
Abstract
Negative energy balance promotes physiological adaptations that ensure the survival of animals. The hypothalamic-pituitary-thyroid axis regulates basal energy expenditure and its down-regulating adaptation to negative energy balance is well described: in fasting, the serum content of thyrotrophin (TSH) and thyroid hormones (TH) decreases, enhancing the survival odds of individuals. By contrast, dehydration-induced anorexic (DIA) rats present an impaired hypothalamic-pituitary-thyroid (HPT) axis adaptation despite their negative energy balance: increased circulating TSH levels. The implication of cocaine- and amphetamine-regulated transcript (CART), an anorexic peptide, in HPT axis function impairment and food-avoidance behaviour displayed by DIA animals is unknown. Because CART is co-expressed with the peptide that regulates the HPT axis in hypophysiotrophic paraventricular nucleus (PVN) neurones (TSH-releasing hormone), we analysed CART expression and possible implications with respect to high TSH levels of DIA animals. We examined whether changes in CART expression from the lateral hypothalamic area (LHA) and arcuate nucleus (ARC) could participate in food-avoidance of DIA rats. DIA and forced-food restricted (FFR) animals reduced their body weight and food intake. FFR rats had a down-regulation of their HPT axis (reduced serum TH and TSH content), whereas DIA animals had reduced TH but increased TSH levels. CART mRNA expression in the ARC decreased similarly between experimental groups and diminished in anterior, medial PVN and in LHA of FFR animals, whereas DIA animals showed unchanged levels. This impaired CART mRNA expression in the anterior PVN and LHA could be related to the aberrant feeding behaviour of DIA rats but not to their deregulated HPT axis function.
Collapse
Affiliation(s)
- C García-Luna
- Molecular Neurophysiology Laboratory, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - P Soberanes-Chávez
- Molecular Neurophysiology Laboratory, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - P de Gortari
- Molecular Neurophysiology Laboratory, Department of Neurosciences Research, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| |
Collapse
|
17
|
Hu J, Christian M. Hormonal factors in the control of the browning of white adipose tissue. Horm Mol Biol Clin Investig 2017; 31:hmbci-2017-0017. [PMID: 28731853 DOI: 10.1515/hmbci-2017-0017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/11/2017] [Indexed: 12/24/2022]
Abstract
Adipose tissue has been historically classified into anabolic white adipose tissue (WAT) and catabolic brown adipose tissue (BAT). Recent studies have revealed the plasticity of WAT, where white adipocytes can be induced into 'brown-like' heat-producing adipocytes (BRITE or beige adipocytes). Recruiting and activating BRITE adipocytes in WAT (so-called 'browning') is believed to provide new avenues for the treatment of obesity-related diseases. A number of hormonal factors have been found to regulate BRITE adipose development and activity through autocrine, paracrine and systemic mechanisms. In this mini-review we will discuss the impact of these factors on the browning process, especially those hormonal factors identified with direct effects on white adipocytes.
Collapse
Affiliation(s)
- Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P.R. China
| | - Mark Christian
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, CV4 7AL, Coventry, UK
| |
Collapse
|
18
|
Contreras C, Nogueiras R, Diéguez C, Rahmouni K, López M. Traveling from the hypothalamus to the adipose tissue: The thermogenic pathway. Redox Biol 2017; 12:854-863. [PMID: 28448947 PMCID: PMC5406580 DOI: 10.1016/j.redox.2017.04.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 01/13/2023] Open
Abstract
Brown adipose tissue (BAT) is a specialized tissue critical for non-shivering thermogenesis producing heat through mitochondrial uncoupling; whereas white adipose tissue (WAT) is responsible of energy storage in the form of triglycerides. Another type of fat has been described, the beige adipose tissue; this tissue emerges in existing WAT depots but with thermogenic ability, a phenomenon known as browning. Several peripheral signals relaying information about energy status act in the brain, particularly the hypothalamus, to regulate thermogenesis in BAT and browning of WAT. Different hypothalamic areas have the capacity to regulate the thermogenic process in brown and beige adipocytes through the sympathetic nervous system (SNS). This review discusses important concepts and discoveries about the central control of thermogenesis as a trip that starts in the hypothalamus, and taking the sympathetic roads to reach brown and beige fat to modulate thermogenic functions.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain.
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain.
| |
Collapse
|
19
|
Contreras C, Nogueiras R, Diéguez C, Medina-Gómez G, López M. Hypothalamus and thermogenesis: Heating the BAT, browning the WAT. Mol Cell Endocrinol 2016; 438:107-115. [PMID: 27498420 DOI: 10.1016/j.mce.2016.08.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/20/2022]
Abstract
Brown adipose tissue (BAT) has been also considered as the main thermogenic organ responsible of maintenance body temperature through heat production. However, a new type of thermogenic fat has been characterized during the last years, the beige or brite fat, that is developed from white adipose tissue (WAT) in response to different stimuli by a process known as browning. The activities of brown and beige adipocytes ameliorate metabolic disease, including obesity in mice and correlate with leanness in humans. Many genes and pathways that regulate brown and beige adipocyte biology have now been identified, providing a variety of promising therapeutic targets for metabolic disease. The hypothalamus is the main central place orchestrating the outflow signals that drive the sympathetic nerve activity to BAT and WAT, controlling heat production and energy homeostasis. Recent data have revealed new hypothalamic molecular mechanisms, such as hypothalamic AMP-activated protein kinase (AMPK), that control both thermogenesis and browning. This review provides an overview of the factors influencing BAT and WAT thermogenesis, with special focus on the integration of peripheral information on hypothalamic circuits controlling thermoregulation.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain.
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain
| | - Gema Medina-Gómez
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcón, Madrid, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15706, Spain.
| |
Collapse
|
20
|
Lau J, Shi YC, Herzog H. Temperature dependence of the control of energy homeostasis requires CART signaling. Neuropeptides 2016; 59:97-109. [PMID: 27080622 DOI: 10.1016/j.npep.2016.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/22/2016] [Accepted: 03/31/2016] [Indexed: 01/22/2023]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is a key neuropeptide with predominant expression in the hypothalamus central to the regulation of diverse biological processes, including food intake and energy expenditure. While there is considerable information on CART's role in the control of feeding, little is known about its thermoregulatory potential. Here we show the consequences of lack of CART signaling on major parameters of energy homeostasis in CART-/- mice under standard ambient housing (RT, 22°C), which is considered a mild cold exposure for mice, and thermoneutral conditions (TN, 30°C). WT mice kept at RT showed an increase in food intake, energy expenditure, BAT UCP-1 expression, and physical activity compared with TN condition, reflecting the augmented energy demand for thermogenesis at RT. On the molecular level, RT housing led to upregulated mRNA expression of TH, CRH, and TRH at the PVN, while NPY, AgRP and CART mRNA levels in the Arc were downregulated. CART-/- mice displayed elevated adiposity and diminished lean mass across both RT and TN. At RT, CART-/- mice showed unchanged food consumption yet greater body weight gain. In addition, an increase in energy expenditure and heightened BAT thermogenesis marked by UCP-1 protein expression was observed in the CART-/- mice. In contrast, TN-housed CART-/- mice exhibited lower weight gain than WT mice accompanied with pronounced reduction in basal feeding. These findings were correlated with reduced BAT temperature, but unchanged energy expenditure and UCP-1 levels. Interestingly, the respiratory exchange ratio for CART-/- mice, which shifted from lower at RT to higher at TN with respect to WT controls, indicates a transition of relative fuel source preference from fat to carbohydrate in the absence of CART signaling. Taken together, these results demonstrate that CART is a critical regulator of energy expenditure, energy partitioning and utilization dependent on the thermal environment.
Collapse
Affiliation(s)
- Jackie Lau
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney 2052, Australia
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney 2052, Australia.
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney 2052, Australia.
| |
Collapse
|
21
|
Shimizu H, Tanaka M, Osaki A. Transgenic mice overexpressing nesfatin/nucleobindin-2 are susceptible to high-fat diet-induced obesity. Nutr Diabetes 2016; 6:e201. [PMID: 26950482 PMCID: PMC4817075 DOI: 10.1038/nutd.2015.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/26/2015] [Accepted: 11/15/2015] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Nesfatin/Nucleobindin-2 (Nesf/NUCB2), a precursor of nesfatin-1, an anorexigenic protein, is ubiquitously expressed in peripheral tissues in addition to the hypothalamus. However, the role of intracellular Nesf/NUCB2 has not been established in the periphery. METHODS Nesf/NUCB2-transgenic (Tg) mice were generated, and chronological changes of body weight and daily food intake were measured in Nesf/NUCB2-Tg mice fed normal laboratory chow or 45% high-fat diet (HFD). In addition, changes of metabolic markers were evaluated in those mice. RESULTS No differences were observed in daily food intake and body weight between Nesf/NUCB2-Tg mice (n=11) and their non-Tg littermates (n=11) fed normal chow. Nesf/NUCB2-Tg mice showed increased mRNA expression of oxytocin and corticotropin-releasing hormone and decreased mRNA expression of cocaine- and amphetamine-related transcript in the hypothalamus. Nesf/NUCB2-Tg mice fed 45% HFD (n=6) showed significantly higher increase in body weight than their non-Tg littermates fed the same diet (n=8); however, no difference was observed in daily food intake between these two groups. Further, Nesf/NUCB2-Tg mice fed 45% HFD showed a significant increase in the weight of the liver, subcutaneous fat, and brown adipose tissue and decrease in the expression of uncoupling protein-1 in the subcutaneous fat. Blood glucose levels of Nesf/NUCB2-Tg mice fed 45% HFD were not different from those of their non-Tg littermates fed the same diet. Insulin levels of these Tg mice were significantly higher than those of their non-Tg littermates. Histological analysis showed marked fat deposition in the hepatocytes surrounding the hepatic central veins in Nesf/NUCB2-Tg mice fed 45% HFD. CONCLUSIONS Overexpression of Nesf/NUCB2 did not change food intake, but increased body weight only in Nesf/NUCB2-Tg mice fed HFD. The results of this study indicate that Nesf/NUCB2 was involved in the development of insulin resistance and fat deposition in the liver, independent of the modulation of energy intake.
Collapse
Affiliation(s)
- H Shimizu
- Department of Diabetes and Endocrinology, International University of Health and Welfare (IUHW) Hospital, Nasushiobara, Japan
| | - M Tanaka
- Center for Medical Science, IUHW, Otawara, Japan
| | - A Osaki
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
22
|
Interacting Neural Processes of Feeding, Hyperactivity, Stress, Reward, and the Utility of the Activity-Based Anorexia Model of Anorexia Nervosa. Harv Rev Psychiatry 2016; 24:416-436. [PMID: 27824637 PMCID: PMC5485261 DOI: 10.1097/hrp.0000000000000111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anorexia nervosa (AN) is a psychiatric illness with minimal effective treatments and a very high rate of mortality. Understanding the neurobiological underpinnings of the disease is imperative for improving outcomes and can be aided by the study of animal models. The activity-based anorexia rodent model (ABA) is the current best parallel for the study of AN. This review describes the basic neurobiology of feeding and hyperactivity seen in both ABA and AN, and compiles the research on the role that stress-response and reward pathways play in modulating the homeostatic drive to eat and to expend energy, which become dysfunctional in ABA and AN.
Collapse
|
23
|
Haliloglu B, Bereket A. Hypothalamic obesity in children: pathophysiology to clinical management. J Pediatr Endocrinol Metab 2015; 28:503-13. [PMID: 25781673 DOI: 10.1515/jpem-2014-0512] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/29/2015] [Indexed: 12/22/2022]
Abstract
Hypothalamic obesity (HyOb) is a complex neuroendocrine disorder caused by damage to the hypothalamus, which results in disruption of energy regulation. The key hypothalamic areas of energy regulation are the ARC (arcuate nucleus), the VMH (ventromedial hypothalamus), the PVN (paraventriculer nuclei) and the LHA (lateral hypothalamic area). These pathways can be disrupted mechanically by hypothalamic tumors, neurosurgery, inflammatory disorders, radiotherapy and trauma or functionally as such seen in genetic diseases. Rapid weight gain and severe obesity are the most striking features of HyOb and caused by hyperphagia, reduced basal metabolic rate (BMR) and decreased physical activity. HyOb is usually unresponsive to diet and exercise. Although, GLP-1 and its anologs seem to be a new agent, there is still no curative treatment. Thus, prevention is of prime importance and the clinicians should be alert and vigilant in patients at risk for development of HyOb.
Collapse
|
24
|
Contreras C, Gonzalez F, Fernø J, Diéguez C, Rahmouni K, Nogueiras R, López M. The brain and brown fat. Ann Med 2015; 47:150-68. [PMID: 24915455 PMCID: PMC4438385 DOI: 10.3109/07853890.2014.919727] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 04/25/2014] [Indexed: 02/06/2023] Open
Abstract
Brown adipose tissue (BAT) is a specialized organ responsible for thermogenesis, a process required for maintaining body temperature. BAT is regulated by the sympathetic nervous system (SNS), which activates lipolysis and mitochondrial uncoupling in brown adipocytes. For many years, BAT was considered to be important only in small mammals and newborn humans, but recent data have shown that BAT is also functional in adult humans. On the basis of this evidence, extensive research has been focused on BAT function, where new molecules, such as irisin and bone morphogenetic proteins, particularly BMP7 and BMP8B, as well as novel central factors and new regulatory mechanisms, such as orexins and the canonical ventomedial nucleus of the hypothalamus (VMH) AMP- activated protein kinase (AMPK)-SNS-BAT axis, have been discovered and emerged as potential drug targets to combat obesity. In this review we provide an overview of the complex central regulation of BAT and how different neuronal cell populations co-ordinately work to maintain energy homeostasis.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria , Santiago de Compostela, 15782 , Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The obesity epidemic continues rising as a global health challenge, despite the increasing public awareness and the use of lifestyle and medical interventions. The biomedical community is urged to develop new treatments to obesity. Excess energy is stored as fat in white adipose tissue (WAT), dysfunction of which lies at the core of obesity and associated metabolic disorders. By contrast, brown adipose tissue (BAT) burns fat and dissipates chemical energy as heat. The development and activation of "brown-like" adipocytes, also known as beige cells, result in WAT browning and thermogenesis. The recent discovery of brown and beige adipocytes in adult humans has sparked the exploration of the development, regulation, and function of these thermogenic adipocytes. The central nervous system drives the sympathetic nerve activity in BAT and WAT to control heat production and energy homeostasis. This review provides an overview of the integration of thermal, hormonal, and nutritional information on hypothalamic circuits in thermoregulation.
Collapse
Affiliation(s)
- Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- *Correspondence: Xiaoyong Yang, Section of Comparative Medicine, Yale University School of Medicine, P.O. Box 208016, New Haven, CT 06520-8016, USA,
| | - Hai-Bin Ruan
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
26
|
Lau J, Herzog H. CART in the regulation of appetite and energy homeostasis. Front Neurosci 2014; 8:313. [PMID: 25352770 PMCID: PMC4195273 DOI: 10.3389/fnins.2014.00313] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022] Open
Abstract
The cocaine- and amphetamine-regulated transcript (CART) has been the subject of significant interest for over a decade. Work to decipher the detailed mechanism of CART function has been hampered by the lack of specific pharmacological tools like antagonists and the absence of a specific CART receptor(s). However, extensive research has been devoted to elucidate the role of the CART peptide and it is now evident that CART is a key neurotransmitter and hormone involved in the regulation of diverse biological processes, including food intake, maintenance of body weight, reward and addiction, stress response, psychostimulant effects and endocrine functions (Rogge et al., 2008; Subhedar et al., 2014). In this review, we focus on knowledge gained on CART's role in controlling appetite and energy homeostasis, and also address certain species differences between rodents and humans.
Collapse
Affiliation(s)
- Jackie Lau
- Neuroscience Division, Garvan Institute of Medical Research Sydney, NSW, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research Sydney, NSW, Australia
| |
Collapse
|
27
|
Subhedar NK, Nakhate KT, Upadhya MA, Kokare DM. CART in the brain of vertebrates: circuits, functions and evolution. Peptides 2014; 54:108-30. [PMID: 24468550 DOI: 10.1016/j.peptides.2014.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 12/12/2022]
Abstract
Cocaine- and amphetamine-regulated transcript peptide (CART) with its wide distribution in the brain of mammals has been the focus of considerable research in recent years. Last two decades have witnessed a steady rise in the information on the genes that encode this neuropeptide and regulation of its transcription and translation. CART is highly enriched in the hypothalamic nuclei and its relevance to energy homeostasis and neuroendocrine control has been understood in great details. However, the occurrence of this peptide in a range of diverse circuitries for sensory, motor, vegetative, limbic and higher cortical areas has been confounding. Evidence that CART peptide may have role in addiction, pain, reward, learning and memory, cognition, sleep, reproduction and development, modulation of behavior and regulation of autonomic nervous system are accumulating, but an integration has been missing. A steady stream of papers has been pointing at the therapeutic potentials of CART. The current review is an attempt at piecing together the fragments of available information, and seeks meaning out of the CART elements in their anatomical niche. We try to put together the CART containing neuronal circuitries that have been conclusively demonstrated as well as those which have been proposed, but need confirmation. With a view to finding out the evolutionary antecedents, we visit the CART systems in sub-mammalian vertebrates and seek the answer why the system is shaped the way it is. We enquire into the conservation of the CART system and appreciate its functional diversity across the phyla.
Collapse
Affiliation(s)
- Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Sai Trinity Building, Sutarwadi, Pashan, Pune 411 021, Maharashtra, India.
| | - Kartik T Nakhate
- Rungta College of Pharmaceutical Sciences and Research, Rungta Educational Campus, Kohka-Kurud Road, Bhilai 490 024, Chhattisgarh, India
| | - Manoj A Upadhya
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India
| |
Collapse
|
28
|
Gavini CK, Mukherjee S, Shukla C, Britton SL, Koch LG, Shi H, Novak CM. Leanness and heightened nonresting energy expenditure: role of skeletal muscle activity thermogenesis. Am J Physiol Endocrinol Metab 2014; 306:E635-47. [PMID: 24398400 PMCID: PMC3948980 DOI: 10.1152/ajpendo.00555.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A high-calorie diet accompanied by low levels of physical activity (PA) accounts for the widespread prevalence of obesity today, and yet some people remain lean even in this obesogenic environment. Here, we investigate the cause for this exception. A key trait that predicts high PA in both humans and laboratory rodents is intrinsic aerobic capacity. Rats artificially selected as high-capacity runners (HCR) are lean and consistently more physically active than their low-capacity runner (LCR) counterparts; this applies to both males and females. Here, we demonstrate that HCR show heightened total energy expenditure (TEE) and hypothesize that this is due to higher nonresting energy expenditure (NREE; includes activity EE). After matching for body weight and lean mass, female HCR consistently had heightened nonresting EE, but not resting EE, compared with female LCR. Because of the dominant role of skeletal muscle in nonresting EE, we examined muscle energy use. We found that lean female HCR had higher muscle heat dissipation during activity, explaining their low economy of activity and high activity EE. This may be due to the amplified skeletal muscle expression levels of proteins involved in EE and reduced expression levels of proteins involved in energy conservation in HCR relative to LCR. This is also associated with an increased sympathetic drive to skeletal muscle in HCR compared with LCR. We find little support for the hypothesis that resting metabolic rate is correlated with maximal aerobic capacity if body size and composition are fully considered; rather, the critical factor appears to be activity thermogenesis.
Collapse
|
29
|
Lee SJ, Kirigiti M, Lindsley SR, Loche A, Madden CJ, Morrison SF, Smith MS, Grove KL. Efferent projections of neuropeptide Y-expressing neurons of the dorsomedial hypothalamus in chronic hyperphagic models. J Comp Neurol 2013; 521:1891-914. [PMID: 23172177 DOI: 10.1002/cne.23265] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/15/2012] [Accepted: 11/06/2012] [Indexed: 12/31/2022]
Abstract
The dorsomedial hypothalamus (DMH) has long been implicated in feeding behavior and thermogenesis. The DMH contains orexigenic neuropeptide Y (NPY) neurons, but the role of these neurons in the control of energy homeostasis is not well understood. NPY expression in the DMH is low under normal conditions in adult rodents but is significantly increased during chronic hyperphagic conditions such as lactation and diet-induced obesity (DIO). To understand better the role of DMH-NPY neurons, we characterized the efferent projections of DMH-NPY neurons using the anterograde tracer biotinylated dextran amine (BDA) in lactating rats and DIO mice. In both models, BDA- and NPY-colabeled fibers were limited mainly to the hypothalamus, including the paraventricular nucleus of the hypothalamus (PVH), lateral hypothalamus/perifornical area (LH/PFA), and anteroventral periventricular nucleus (AVPV). Specifically in lactating rats, BDA-and NPY-colabeled axonal swellings were in close apposition to cocaine- and amphetamine-regulated transcript (CART)-expressing neurons in the PVH and AVPV. Although the DMH neurons project to the rostral raphe pallidus (rRPa), these projections did not contain NPY immunoreactivity in either the lactating rat or the DIO mouse. Instead, the majority of BDA-labeled fibers in the rRPa were orexin positive. Furthermore, DMH-NPY projections were not observed within the nucleus of the solitary tract (NTS), another brainstem site critical for the regulation of sympathetic outflow. The present data suggest that NPY expression in the DMH during chronic hyperphagic conditions plays important roles in feeding behavior and thermogenesis by modulating neuronal functions within the hypothalamus, but not in the brainstem.
Collapse
Affiliation(s)
- Shin J Lee
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Nakhate KT, Subhedar NK, Bharne AP, Singru PS, Kokare DM. Involvement of cocaine- and amphetamine-regulated transcript peptide in the hyperphagic and body weight promoting effects of allopregnanolone in rats. Brain Res 2013; 1532:44-55. [DOI: 10.1016/j.brainres.2013.07.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/28/2013] [Accepted: 07/30/2013] [Indexed: 11/16/2022]
|
31
|
Tolerance to hypophagia induced by prolonged treatment with a CB1 antagonist is related to the reversion of anorexigenic neuropeptide gene expression in the hypothalamus. ACTA ACUST UNITED AC 2013; 182:12-8. [DOI: 10.1016/j.regpep.2012.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 10/01/2012] [Accepted: 12/17/2012] [Indexed: 12/23/2022]
|
32
|
Bartfai T, Conti B. Molecules affecting hypothalamic control of core body temperature in response to calorie intake. Front Genet 2012; 3:184. [PMID: 23097647 PMCID: PMC3466567 DOI: 10.3389/fgene.2012.00184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/31/2012] [Indexed: 01/07/2023] Open
Abstract
Core body temperature (CBT) and calorie intake are main components of energy homeostasis and two important regulators of health, longevity, and aging. In homeotherms, CBT can be influenced by calorie intake as food deprivation or calorie restriction (CR) lowers CBT whereas feeding has hyperthermic effects. The finding that in mice CBT prolonged lifespan independently of CR, suggested that the mechanisms modulating CBT may represent important regulators of aging. Here we summarize the current knowledge on the signaling molecules and their receptors that participate in the regulation of CBT responses to calorie intake. These include hypothalamic neuropeptides regulating feeding but also energy expenditure via modulation of thermogenesis. We also report studies indicating that nutrient signals can contribute to regulation of CBT by direct action on hypothalamic preoptic warm-sensitive neurons that in turn regulate adaptive thermogenesis and hence CBT. Finally, we show the role played by two orphans G protein-coupled receptor: GPR50 and GPR83, that were recently demonstrated to regulate temperature-dependent energy expenditure.
Collapse
Affiliation(s)
- Tamas Bartfai
- Department of Chemical Physiology, The Scripps Research Institute La Jolla, CA, USA
| | | |
Collapse
|
33
|
Xu L, Scheenen WJJM, Roubos EW, Kozicz T. Peptidergic Edinger-Westphal neurons and the energy-dependent stress response. Gen Comp Endocrinol 2012; 177:296-304. [PMID: 22166814 DOI: 10.1016/j.ygcen.2011.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 11/18/2022]
Abstract
The continuously changing environment demands for adequate stress responses to maintain the internal dynamic equilibrium of body and mind. A successful stress response requires energy, in an amount matching the severity of the stressor and the type of response ('fight, flight or freeze'). The stress response is generated by the central nervous system, which needs to be informed about both the threatening stressor and the availability of energy. In this review, evidence is considered for a role of the midbrain Edinger-Westphal centrally projecting neuron population (EWcp; synonym: non-preganglionic Edinger-Westphal nucleus) in the energy-dependent stress adaptation response. It deals with studies on the neurochemical organization of the EWcp with particular reference to the neuropeptides urocortin-1 and cocaine- and amphetamine-regulated transcript peptide, on the EWcp responses to different types of stressor (e.g., acute and chronic) and a changed energy state (e.g., fasting and leptin change), and on the sex-specificity of these responses. Finally, a model is presented for the way the EWcp might contribute to the coordination of the energy-dependent stress adaptation response.
Collapse
Affiliation(s)
- Lu Xu
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
34
|
Nishio SI, Gibert Y, Berekelya L, Bernard L, Brunet F, Guillot E, Le Bail JC, Sánchez JA, Galzin AM, Triqueneaux G, Laudet V. Fasting induces CART down-regulation in the zebrafish nervous system in a cannabinoid receptor 1-dependent manner. Mol Endocrinol 2012; 26:1316-26. [PMID: 22700585 DOI: 10.1210/me.2011-1180] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Central and peripheral mechanisms modulate food intake and energy balance in mammals and the precise role of the type 1 cannabinoid receptor (CB1) in these processes is still being explored. Using the zebrafish, Danio rerio, we show that rimonabant, a CB1-specific antagonist with an EC(50) of 5.15 × 10(-8) m, decreases embryonic yolk sac reserve use. We reveal a developmental overlap between CART genes and CB1 expression in the hypothalamus and medulla oblongata, two brain structures that play crucial roles in appetite regulation in mammals. We show that morpholino knockdown of CB1 or fasting decreases cocaine- and amphetamine-related transcript (CART)-3 expression. Strikingly, this down-regulation occurs only in regions coexpressing CB1 and CART3, reinforcing the link between CB1, CART, and appetite regulation. We show that rimonabant treatment impairs the fasting-induced down-regulation of CART expression in specific brain regions, whereas vehicle alone-treated embryos do not display this rescue of CART expression. Our data reveal that CB1 lies upstream of CART and signals the appetite through the down-regulation of CART expression. Thus, our results establish the zebrafish as a promising system to study appetite regulation.
Collapse
Affiliation(s)
- Shin-Ichi Nishio
- Institut de Genomique Fonctionelle de Lyon, Unité Mixte de Recherche 5242 du Centre National de la Recherche Scientifique, Université de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Roubos EW, Dahmen M, Kozicz T, Xu L. Leptin and the hypothalamo-pituitary-adrenal stress axis. Gen Comp Endocrinol 2012; 177:28-36. [PMID: 22293575 DOI: 10.1016/j.ygcen.2012.01.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/20/2022]
Abstract
Leptin is a 16-kDa protein mainly produced and secreted by white adipose tissue and informing various brain centers via leptin receptor long and short forms about the amount of fat stored in the body. In this way leptin exerts a plethora of regulatory functions especially related to energy intake and metabolism, one of which is controlling the activity of the hypothalamo-pituitary-adrenal (HPA) stress axis. First, this review deals with the basic properties of leptin's structure and signaling at the organ, cell and molecule level, from lower vertebrates to humans but with emphasis on rodents because these have been investigated in most detail. Then, attention is given to the various interactions of adipose leptin with the HPA-axis, at the levels of the hypothalamus (especially the paraventricular nucleus), the anterior lobe of the pituitary gland (action on corticotropes) and the adrenal gland, where it releases corticosteroids needed for adequate stress adaptation. Also, possible local production and autocrine and paracrine actions of leptin at the hypothalamic and pituitary levels of the HPA-axis are being considered. Finally, a schematic model is presented showing the ways peripherally and centrally produced leptin may modulate, via the HPA-axis, stress adaptation in conjunction with the control of energy homeostasis.
Collapse
Affiliation(s)
- Eric W Roubos
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
36
|
Sainsbury A, Zhang L. Role of the hypothalamus in the neuroendocrine regulation of body weight and composition during energy deficit. Obes Rev 2012; 13:234-57. [PMID: 22070225 DOI: 10.1111/j.1467-789x.2011.00948.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Energy deficit in lean or obese animals or humans stimulates appetite, reduces energy expenditure and possibly also decreases physical activity, thereby contributing to weight regain. Often overlooked in weight loss trials for obesity, however, is the effect of energy restriction on neuroendocrine status. Negative energy balance in lean animals and humans consistently inhibits activity of the hypothalamo-pituitary-thyroid, -gonadotropic and -somatotropic axes (or reduces circulating insulin-like growth factor-1 levels), while concomitantly activating the hypothalamo-pituitary-adrenal axis, with emerging evidence of similar changes in overweight and obese people during lifestyle interventions for weight loss. These neuroendocrine changes, which animal studies show may result in part from hypothalamic actions of orexigenic (e.g. neuropeptide Y, agouti-related peptide) and anorexigenic peptides (e.g. alpha-melanocyte-stimulating hormone, and cocaine and amphetamine-related transcript), can adversely affect body composition by promoting the accumulation of adipose tissue (particularly central adiposity) and stimulating the loss of lean body mass and bone. As such, current efforts to maximize loss of excess body fat in obese people may inadvertently be promoting long-term complications such as central obesity and associated health risks, as well as sarcopenia and osteoporosis. Future weight loss trials would benefit from assessment of the effects on body composition and key hormonal regulators of body composition using sensitive techniques.
Collapse
Affiliation(s)
- A Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| | | |
Collapse
|
37
|
Dandekar MP, Nakhate KT, Kokare DM, Subhedar NK. Effect of nicotine on feeding and body weight in rats: Involvement of cocaine- and amphetamine-regulated transcript peptide. Behav Brain Res 2011; 219:31-8. [DOI: 10.1016/j.bbr.2010.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/30/2010] [Accepted: 12/03/2010] [Indexed: 11/16/2022]
|
38
|
Remmers F, Delemarre-van de Waal HA. Developmental programming of energy balance and its hypothalamic regulation. Endocr Rev 2011; 32:272-311. [PMID: 21051592 DOI: 10.1210/er.2009-0028] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Developmental programming is an important physiological process that allows different phenotypes to originate from a single genotype. Through plasticity in early life, the developing organism can adopt a phenotype (within the limits of its genetic background) that is best suited to its expected environment. In humans, together with the relative irreversibility of the phenomenon, the low predictive value of the fetal environment for later conditions in affluent countries makes it a potential contributor to the obesity epidemic of recent decades. Here, we review the current evidence for developmental programming of energy balance. For a proper understanding of the subject, knowledge about energy balance is indispensable. Therefore, we first present an overview of the major hypothalamic routes through which energy balance is regulated and their ontogeny. With this background, we then turn to the available evidence for programming of energy balance by the early nutritional environment, in both man and rodent models. A wealth of studies suggest that energy balance can indeed be permanently affected by the early-life environment. However, the direction of the effects of programming appears to vary considerably, both between and within different animal models. Because of these inconsistencies, a comprehensive picture is still elusive. More standardization between studies seems essential to reach veritable conclusions about the role of developmental programming in adult energy balance and obesity.
Collapse
Affiliation(s)
- Floor Remmers
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Germany.
| | | |
Collapse
|
39
|
Nakhate KT, Kokare DM, Singru PS, Taksande AG, Kotwal SD, Subhedar NK. Hypothalamic cocaine- and amphetamine-regulated transcript peptide is reduced and fails to modulate feeding behavior in rats with chemically-induced mammary carcinogenesis. Pharmacol Biochem Behav 2010; 97:340-9. [DOI: 10.1016/j.pbb.2010.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 08/27/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022]
|
40
|
Gender differences in Nociceptin/Orphanin FQ-induced food intake in strains derived from rats prone (WOKW) and resistant (Dark Agouti) to metabolic syndrome: a possible involvement of the cocaine- and amphetamine-regulated transcript system. GENES AND NUTRITION 2010; 6:197-202. [PMID: 21484154 DOI: 10.1007/s12263-010-0189-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 10/09/2010] [Indexed: 12/16/2022]
Abstract
Our previous study found that when injected with Nociceptin/Orphanin FQ (N/OFQ) into the brain, male Dark Agouti (DA) rats, which are resistant to metabolic syndrome, have greater hyperphagia than male Wistar Ottawa Karlsburg W (WOKW) animals, which are prone to this disease. We attributed this difference to the fact that these two strains have different cocaine-amphetamine regulated transcript peptide (Cart) gene sequences and expression. In order to address this hypothesis, the present work focused on sex differences and analyzed not only male but also female N/OFQ-induced (0.25 and 0.5 nmol/rat) food intake in terms of their Cart and N/OFQ receptor gene expression in the hypothalamic area. In N/OFQ-naive WOKW females, cart gene expression is extremely elevated compared to N/OFQ-naive WOKW males. When male and female WOKW littermates are stimulated with N/OFQ, the food intake of females is significantly lower than that of the males. Granted, the N/OFQ feeding behavior experiments were not performed on the animals measured for Cart gene expression, but nonetheless, the responses observed in littermates point to an interesting avenue for further inquiry.
Collapse
|
41
|
Abstract
Hypothalamic obesity (HyOb) was first defined as the significant polyphagia and weight gain that occurs after extensive suprasellar operations for excision of hypothalamic tumours. However, polyphagia and weight gain complicate other disorders related to the hypothalamus, including those that cause structural damage to the hypothalamus like tumours, trauma, radiotherapy; genetic disorders such as Prader-Willi syndrome; side effects of psychotropic drugs; and mutations in several genes involved in hypothalamic satiety signalling. Moreover, 'simple' obesity is associated with polymorphisms in several genes involved in hypothalamic weight-regulating pathways. Thus, understanding HyOb may enhance our understanding of 'simple' obesity. This review will claim that HyOb is a far wider phenomenon than hitherto understood by the narrow definition of post-surgical weight gain. It will emphasize the similarity in clinical characteristics and therapeutic approaches for HyOb, as well as its mechanisms. HyOb, regardless of its aetiology, is a result of impairment in hypothalamic regulatory centres of body weight and energy expenditure. The pathophysiology includes loss of sensitivity to afferent peripheral humoral signals, such as, leptin on the one hand and dysfunctional afferent signals, on the other hand. The most important afferent signals deranged are energy regulation by the sympathetic nervous system and regulation of insulin secretion. Dys-regulation of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity and melatonin may also have a role in the development of HyOb. The complexity of the syndrome requires simultaneous targeting of several mechanisms that are deranged in the HyOb patient. We review the studies evaluating possible treatment strategies, including sympathomimetics, somatostatin analogues, triiodothyronine, sibutramine, and surgery.
Collapse
Affiliation(s)
- I Hochberg
- Rambam Medical Center and Rappaport Family Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
42
|
Silva LECM, Castro M, Amaral FC, Antunes-Rodrigues J, Elias LLK. Estradiol-induced hypophagia is associated with the differential mRNA expression of hypothalamic neuropeptides. Braz J Med Biol Res 2010; 43:759-66. [PMID: 20549137 DOI: 10.1590/s0100-879x2010007500059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 05/25/2010] [Indexed: 12/15/2022] Open
Abstract
Estradiol participates in the control of energy homeostasis, as demonstrated by an increase in food intake and in body weight gain after ovariectomy in rats. In the present study, female Wistar rats (200-230 g, N = 5-15 per group), with free access to chow, were individually housed in metabolic cages. We investigated food intake, body weight, plasma leptin levels, measured by specific radioimmunoassay, and the hypothalamic mRNA expression of orexigenic and anorexigenic neuropeptides, determined by real-time PCR, in ovariectomized rats with (OVX+E) and without (OVX) estradiol cypionate treatment (10 microg/kg body weight, sc, for 8 days). Hormonal and mRNA expression were determined at pre-feeding and 4 h after food intake. OVX+E rats showed lower food intake, less body weight gain and lower plasma leptin levels. In the OVX+E group, we also observed a reduction of neuropeptide Y (NPY), agouti-related protein (AgRP) and cocaine- and amphetamine-regulated transcript (CART) mRNA expression in the arcuate nucleus and a decrease in orexin A in the lateral hypothalamic area (LHA). There was an increase in leptin receptor (LepRb), melanocortin-4 receptor (MC4-R), CART, and mainly corticotropin-releasing hormone (CRH) mRNA in the paraventricular nucleus and LepRb and CART mRNA in the LHA. These data show that hypophagia induced by estradiol treatment is associated with reduced hypothalamic expression of orexigenic peptides such as NPY, AgRP and orexin A, and increased expression of the anorexigenic mediators MC4-R, LepRb and CRH. In conclusion, estradiol decreases food intake, and this effect seems to be mediated by peripheral factors such as leptin and the differential mRNA expression of neuropeptides in the hypothalamus.
Collapse
Affiliation(s)
- L E C M Silva
- Departamento de Fisiologia, Universidade de São Paulo
| | | | | | | | | |
Collapse
|
43
|
Peter L, Stengel A, Noetzel S, Inhoff T, Goebel M, Taché Y, Veh RW, Bannert N, Grötzinger C, Wiedenmann B, Klapp BF, Mönnikes H, Kobelt P. Peripherally injected CCK-8S activates CART positive neurons of the paraventricular nucleus in rats. Peptides 2010; 31:1118-1123. [PMID: 20307613 PMCID: PMC4040251 DOI: 10.1016/j.peptides.2010.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/10/2010] [Accepted: 03/10/2010] [Indexed: 01/23/2023]
Abstract
Cholecystokinin (CCK) plays a role in the short-term inhibition of food intake. Cocaine- and amphetamine-regulated transcript (CART) peptide has been observed in neurons of the paraventricular nucleus (PVN). It has been reported that intracerebroventricular injection of CART peptide inhibits food intake in rodents. The aim of the study was to determine whether intraperitoneally (ip) injected CCK-8S affects neuronal activity of PVN-CART neurons. Ad libitum fed male Sprague-Dawley rats received 6 or 10 microg/kg CCK-8S or 0.15M NaCl ip (n=4/group). The number of c-Fos-immunoreactive neurons was determined in the PVN, arcuate nucleus (ARC), and the nucleus of the solitary tract (NTS). CCK-8S dose-dependently increased the number of c-Fos-immunoreactive neurons in the PVN (mean+/-SEM: 102+/-6 vs. 150+/-5 neurons/section, p<0.05) and compared to vehicle treated rats (18+/-7, p<0.05 vs. 6 and 10 microg/kg CCK-8S). CCK-8S at both doses induced an increase in the number of c-Fos-immunoreactive neurons in the NTS (65+/-13, p<0.05, and 182+/-16, p<0.05). No effect on the number of c-Fos neurons was observed in the ARC. Immunostaining for CART and c-Fos revealed a dose-dependent increase of activated CART neurons (19+/-3 vs. 29+/-7; p<0.05), only few activated CART neuron were observed in the vehicle group (1+/-0). The present observation shows that CCK-8S injected ip induces an increase in neuronal activity in PVN-CART neurons and suggests that CART neurons in the PVN may play a role in the mediation of peripheral CCK-8S's anorexigenic effects.
Collapse
Affiliation(s)
- Lisa Peter
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology, Charité, Campus Virchow, Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Stengel
- Department of Medicine, Division of Digestive Diseases, CURE Digestive Diseases Research Center and Center for Neurobiology of Stress, UCLA and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Steffen Noetzel
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology, Charité, Campus Virchow, Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Inhoff
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology, Charité, Campus Virchow, Universitätsmedizin Berlin, Berlin, Germany
| | - Miriam Goebel
- Department of Medicine, Division of Digestive Diseases, CURE Digestive Diseases Research Center and Center for Neurobiology of Stress, UCLA and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Yvette Taché
- Department of Medicine, Division of Digestive Diseases, CURE Digestive Diseases Research Center and Center for Neurobiology of Stress, UCLA and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Rüdiger W. Veh
- Institute for Integrative Neuroanatomy, Charité, Campus Mitte, Universitätsmedizin Berlin, Berlin, Germany
| | | | - Carsten Grötzinger
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology, Charité, Campus Virchow, Universitätsmedizin Berlin, Berlin, Germany
| | - Bertram Wiedenmann
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology, Charité, Campus Virchow, Universitätsmedizin Berlin, Berlin, Germany
| | - Burghard F. Klapp
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy, Charité, Campus Mitte, Universitätsmedizin Berlin, Berlin, Germany
| | - Hubert Mönnikes
- Department of Medicine and Institute of Neurogastroenterology, Martin-Luther-Hospital, Berlin, Germany
| | - Peter Kobelt
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology, Charité, Campus Virchow, Universitätsmedizin Berlin, Berlin, Germany
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy, Charité, Campus Mitte, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
44
|
Sainsbury A, Zhang L. Role of the arcuate nucleus of the hypothalamus in regulation of body weight during energy deficit. Mol Cell Endocrinol 2010; 316:109-19. [PMID: 19822185 DOI: 10.1016/j.mce.2009.09.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 09/21/2009] [Accepted: 09/28/2009] [Indexed: 12/14/2022]
Abstract
Acute or long-term energy deficit in lean or obese rodents or humans stimulates food intake or appetite and reduces metabolic rate or energy expenditure. These changes contribute to weight regain in post-obese animals and humans. Some studies show that the reduction in metabolic rate with energy deficit in overweight people is transient. Energy restriction has been shown in some but not all studies to reduce physical activity, and this may represent an additional energy-conserving adaptation. Energy restriction up-regulates expression of the orexigenic neuropeptide Y, agouti related peptide and opioids and down-regulates that of the anorexigenic alpha-melanocyte stimulating hormone or its precursor pro-opioomelanocortin and the co-expressed cocaine and amphetamine-regulated transcript in the arcuate nucleus of the hypothalamus. Recapitulating these hypothalamic changes in sated animals mimics the effects of energy deficit, namely increased food intake, reduced physical activity and reduced metabolic rate, suggesting that these energy-conserving adaptations are at least partially mediated by the hypothalamus.
Collapse
Affiliation(s)
- A Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia.
| | | |
Collapse
|
45
|
Susaki E, Kaneko-Oshikawa C, Miyata K, Tabata M, Yamada T, Oike Y, Katagiri H, Nakayama KI. Increased E4 activity in mice leads to ubiquitin-containing aggregates and degeneration of hypothalamic neurons resulting in obesity. J Biol Chem 2010; 285:15538-15547. [PMID: 20190229 DOI: 10.1074/jbc.m110.105841] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Obesity has become a serious worldwide public health problem. Although neural degeneration in specific brain regions has been suggested to contribute to obesity phenotype in humans, a causal relationship between these two conditions has not been demonstrated experimentally. We now show that E4B (also known as UFD2a), a mammalian ubiquitin chain elongation factor (E4), induces the formation of intracellular aggregates positive for ubiquitin and the adaptor protein p62 when overexpressed in cultured cells or the brain. Mice transgenic for E4B manifested neural degeneration in association with aggregate formation, and they exhibited functional impairment specifically in a subset of hypothalamic neurons that regulate food intake and energy expenditure, resulting in development of hyperphagic obesity and related metabolic abnormalities. The neural pathology of E4B transgenic mice was similar to that of human neurodegenerative diseases associated with the formation of intracellular ubiquitin-positive deposits, indicating the existence of a link between such diseases and obesity and related metabolic disorders. Our findings thus provide experimental evidence for a role of hypothalamic neurodegeneration in obesity, and the E4B transgenic mouse should prove to be a useful animal model for studies of the relationship between neurodegenerative diseases and obesity.
Collapse
Affiliation(s)
- Etsuo Susaki
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012
| | - Chie Kaneko-Oshikawa
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556
| | - Mitsuhisa Tabata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556
| | - Tetsuya Yamada
- Division of Advanced Therapeutics for Metabolic Diseases, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556
| | - Hideki Katagiri
- Division of Advanced Therapeutics for Metabolic Diseases, Center for Translational and Advanced Animal Research, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012.
| |
Collapse
|
46
|
Pirnik Z, Maixnerová J, Matysková R, Koutová D, Zelezná B, Maletínská L, Kiss A. Effect of anorexinergic peptides, cholecystokinin (CCK) and cocaine and amphetamine regulated transcript (CART) peptide, on the activity of neurons in hypothalamic structures of C57Bl/6 mice involved in the food intake regulation. Peptides 2010; 31:139-44. [PMID: 19818819 DOI: 10.1016/j.peptides.2009.09.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 11/26/2022]
Abstract
The hypothalamus plays an important role in food consumption, receiving information about energy balance via hormonal, metabolic, and neural inputs. Its neurons produce neuropeptides influencing energy balance. Especially important to regulation of food consumption are certain hypothalamic structures, including the arcuate (ARC) and ventromedial (VMN) nuclei and the lateral hypothalamic area (LHA). We determined the impact of cholecystokinin (CCK) and cocaine and amphetamine regulated transcript (CART) peptide, on activity of ARC and VMN neurons and hypocretin (Hcrt) synthesizing neurons in LHA. ARC is an integrative nucleus regulating food consumption, VMN is considered to be a satiety centre, and LHA a hunger sensing centre. After overnight fasting, male C57Bl/6 mice received intraperitoneal injection of (i.p.) saline (SAL) or CCK (4microg/kg) or intracerebroventricular injection of (i.c.v.) CART peptide (0.1microg/mice) or CCK (i.p.) followed by CART peptide (i.c.v.) 5min later. Sixty minutes later, the presence of Fos or Fos/Hcrt immunostaining indicated activity of ARC and VMN neurons, as well as of Hcrt cells in LHA. CCK alone did not influence neuronal activity in any of the nuclei studied. CART peptide stimulated neurons in ARC and VMN (p<0.01) but decreased Hcrt neuronal activity in LHA (p<0.05). Co-administration of both peptides synergistically stimulated ARC neurons (p<0.01) and asynergistically inhibited LHA Hcrt neurons (p<0.01). Results indicate that CCK may modify the effect of CART peptide and thus substantially influence activity of neurons in hypothalamic structures involved in regulation of food intake.
Collapse
Affiliation(s)
- Zdeno Pirnik
- Laboratory of Functional Neuromorphology, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
47
|
Hindbrain cocaine- and amphetamine-regulated transcript induces hypothermia mediated by GLP-1 receptors. J Neurosci 2009; 29:6973-81. [PMID: 19474324 DOI: 10.1523/jneurosci.6144-08.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) peptides are widely distributed throughout the neuraxis, including regions associated with energy balance. CART's classification as a catabolic neuropeptide is based on its inhibitory effects on feeding, coexpression with arcuate nucleus proopiomelanocortin neurons, and on limited analysis of its energy expenditure effects. Here, we investigate whether (1) caudal brainstem delivery of CART produces energetic, cardiovascular, and glycemic effects, (2) forebrain-caudal brainstem neural communication is required for those effects, and (3) glucagon-like peptide-1 receptors (GLP-1Rs) contribute to the mediation of CART-induced effects. Core temperature (Tc), heart rate (HR), activity, and blood glucose were measured in rats injected fourth intracerebroventricularly with CART (0.1, 1.0, and 2.0 microg). Food was withheld during physiologic recording and returned for overnight measurement of intake and body weight. CART induced a long-lasting (>6 h) hypothermia: a 1.5 degrees C and 1.6 degrees C drop in Tc for the 1.0 and 2.0 microg doses. Hindbrain CART application reduced food intake and body weight and increased blood glucose levels; no change in HR or activity was observed. Supracollicular decerebration eliminated the hypothermic response observed in intact rats to hindbrain ventricular CART, suggesting that forebrain processing is required for hypothermia. Pretreatment with the GLP-1R antagonist (exendin-9-39) in control rats attenuated CART hypothermia and hypophagia, indicating that GLP-1R activation contributes to hypothermic and hypophagic effects of hindbrain CART, whereas CART-induced hyperglycemia was not altered by GLP-1R blockade. Data reveal a novel function of CART in temperature regulation and open possibilities for future studies on the clinical potential of the hypothermic effect.
Collapse
|
48
|
Inhoff T, Mönnikes H, Noetzel S, Stengel A, Goebel M, Dinh QT, Riedl A, Bannert N, Wisser AS, Wiedenmann B, Klapp BF, Taché Y, Kobelt P. Desacyl ghrelin inhibits the orexigenic effect of peripherally injected ghrelin in rats. Peptides 2008; 29:2159-68. [PMID: 18938204 PMCID: PMC2586396 DOI: 10.1016/j.peptides.2008.09.014] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 12/22/2022]
Abstract
Studies showed that the metabolic unlike the neuroendocrine effects of ghrelin could be abrogated by co-administered unacylated ghrelin. The aim was to investigate the interaction between ghrelin and desacyl ghrelin administered intraperitoneally on food intake and neuronal activity (c-Fos) in the arcuate nucleus in non-fasted rats. Ghrelin (13 microg/kg) significantly increased food intake within the first 30 min post-injection. Desacyl ghrelin at 64 and 127 microg/kg injected simultaneously with ghrelin abolished the stimulatory effect of ghrelin on food intake. Desacyl ghrelin alone at both doses did not alter food intake. Both doses of desacyl ghrelin injected separately in the light phase had no effects on food intake when rats were fasted for 12h. Ghrelin and desacyl ghrelin (64 microg/kg) injected alone increased the number of Fos positive neurons in the arcuate nucleus compared to vehicle. The effect on neuronal activity induced by ghrelin was significantly reduced when injected simultaneously with desacyl ghrelin. Double labeling revealed that nesfatin-1 immunoreactive neurons in the arcuate nucleus are activated by simultaneous injection of ghrelin and desacyl ghrelin. These results suggest that desacyl ghrelin suppresses ghrelin-induced food intake by curbing ghrelin-induced increased neuronal activity in the arcuate nucleus and recruiting nesfatin-1 immunopositive neurons.
Collapse
Affiliation(s)
- Tobias Inhoff
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology, Charité - Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany
| | - Hubert Mönnikes
- Department of Medicine and Institute of Neurogastroenterology, Martin-Luther-Hospital, Berlin, Germany
| | - Steffen Noetzel
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology, Charité - Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany
| | - Andreas Stengel
- Department of Medicine, CURE Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division UCLA, and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Miriam Goebel
- Department of Medicine, CURE Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division UCLA, and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Q. Thai Dinh
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy; Charité, Campus Mitte; Universitätsmedizin Berlin, Germany
| | - Andrea Riedl
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy; Charité, Campus Mitte; Universitätsmedizin Berlin, Germany
| | | | - Anna-Sophia Wisser
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology, Charité - Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany
| | - Bertram Wiedenmann
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology, Charité - Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany
| | - Burghard F. Klapp
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy; Charité, Campus Mitte; Universitätsmedizin Berlin, Germany
| | - Yvette Taché
- Department of Medicine, CURE Digestive Diseases Research Center, Center for Neurobiology of Stress, Digestive Diseases Division UCLA, and VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Peter Kobelt
- Department of Medicine, Division Hepatology, Gastroenterology, and Endocrinology, Charité - Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany
- Department of Medicine, Division Psychosomatic Medicine and Psychotherapy; Charité, Campus Mitte; Universitätsmedizin Berlin, Germany
| |
Collapse
|
49
|
Rogge G, Jones D, Hubert GW, Lin Y, Kuhar MJ. CART peptides: regulators of body weight, reward and other functions. Nat Rev Neurosci 2008; 9:747-58. [PMID: 18802445 PMCID: PMC4418456 DOI: 10.1038/nrn2493] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Over the past decade or so, CART (cocaine- and amphetamine-regulated transcript) peptides have emerged as major neurotransmitters and hormones. CART peptides are widely distributed in the CNS and are involved in regulating many processes, including food intake and the maintenance of body weight, reward and endocrine functions. Recent studies have produced a wealth of information about the location, regulation, processing and functions of CART peptides, but additional studies aimed at elucidating the physiological effects of the peptides and at characterizing the CART receptor(s) are needed to take advantage of possible therapeutic applications.
Collapse
Affiliation(s)
- G Rogge
- Neuroscience Division, Yerkes National Primate Research Center of Emory University, 954 Gatewood Road NE, Atlanta, Georgia 30329, USA
| | | | | | | | | |
Collapse
|
50
|
Füzesi T, Sánchez E, Wittmann G, Singru PS, Fekete C, Lechan RM. Regulation of cocaine- and amphetamine-regulated transcript-synthesising neurons of the hypothalamic paraventricular nucleus by endotoxin; implications for lipopolysaccharide-induced regulation of energy homeostasis. J Neuroendocrinol 2008; 20:1058-66. [PMID: 18624928 PMCID: PMC2714541 DOI: 10.1111/j.1365-2826.2008.01758.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Infectious diseases and the administration of bacterial lipopolysaccharide (LPS) result in decreased food intake and increased energy expenditure. Because the hypothalamic paraventricular nucleus (PVN) has pivotal roles in the regulation of energy homeostasis and expresses an anorexic peptide, cocaine- and amphetamine-regulated transcript (CART), we hypothesised that increased CART synthesis in this nucleus may contribute to LPS-induced changes in energy homeostasis. Therefore, we studied the effects of intraperitoneal administration of LPS on CART gene expression in the PVN by semiquantitative in situ hybridisation. LPS caused a rapid increase in CART mRNA levels in the PVN. One hour after treatment, the density of silver grains was increased by three-fold in the PVN, and remained elevated 3 h after treatment. Because the dorsal vagal complex, an important vegetative centre in the brainstem, is heavily innervated by CART-containing axons, we determined whether the retrograde tracer, cholera toxin B subunit (CTB), accumulates in CART neurons in the PVN following stereotaxic injection of the tracer into the dorsal vagal complex. One week after injection, CTB accumulated in CART neurons in the ventral, medial, and lateral parvocellular subdivisions of the PVN. In addition, LPS administration induced c-fos expression in a population of CART neurons in the PVN that project to the dorsal vagal complex. These data indicate that increased CART gene expression in neurons of PVN may contribute to LPS-induced anorexia, and suggest that this action may be mediated, at least in part, through a PVN-dorsal vagal complex pathway.
Collapse
Affiliation(s)
- T Füzesi
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|