1
|
Xu D, Ren Q, Liu Q, Liu M, Gong H, Liu Y, Yin Z, Zeng Z, Xia S, Zhang Y, Li J, Gao Q, Wang J, Li X. Hippocampal Glutamate Levels and Their Correlation With Subregion Volume in School-Aged Children With MRI-Negative Epilepsy: A Preliminary Study. J Magn Reson Imaging 2025; 61:1258-1268. [PMID: 38970314 DOI: 10.1002/jmri.29514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Abnormal levels of glutamate constitute a key pathophysiologic mechanism in epilepsy. The use of glutamate chemical exchange saturation transfer (GluCEST) imaging to measure glutamate levels in pediatric epilepsy is rarely reported in research. PURPOSE To investigate hippocampal glutamate level variations in pediatric epilepsy and the correlation between glutamate and hippocampal subregional volumes. STUDY TYPE Cross-sectional, prospective. SUBJECTS A total of 38 school-aged pediatric epilepsy patients with structurally normal MRI as determined by at least two independent radiologists (60% males; 8.7 ± 2.5 years; including 20 cases of focal pediatric epilepsy [FE] and 18 cases of generalized pediatric epilepsy [GE]) and 17 healthy controls (HC) (41% males; 9.0 ± 2.5 years). FIELD STRENGTH/SEQUENCE 3.0 T; 3D magnetization prepared rapid gradient echo (MPRAGE) and 2D turbo spin echo GluCEST sequences. ASSESSMENT The relative concentration of glutamate was calculated through pixel-wise magnetization transfer ratio asymmetry (MTRasym) analysis of the GluCEST data. Hippocampal subfield volumes were computed from MPRAGE data using FreeSurfer. STATISTICAL TESTS This study used t tests, one-way analysis of variance, Kruskal-Wallis tests, and Pearson correlation analysis. P < 0.05 was considered statistically significant. RESULTS The MTRasym values of both the left and right hippocampi were significantly elevated in GE (left: 2.51 ± 0.23 [GE] vs. 2.31 ± 0.12 [HCs], right: 2.50 ± 0.22 [GE] vs. 2.27 ± 0.22 [HCs]). The MTRasym values of the ipsilateral hippocampus were significantly elevated in FE (2.49 ± 0.28 [ipsilateral] vs. 2.29 ± 0.16 [HCs]). The MTRasym values of the ipsilateral hippocampus were significantly increased compared to the contralateral hippocampus in FE (2.49 ± 0.28 [ipsilateral] vs. 2.35 ± 0.34 [contralateral]). No significant differences in hippocampal volume were found between different groups (left hippocampus, P = 0.87; right hippocampus, P = 0.87). DATA CONCLUSION GluCEST imaging have potential for the noninvasive measurement of glutamate levels in the brains of children with epilepsy. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Donghao Xu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Qingfa Ren
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Quanyuan Liu
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Miaomiao Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - He Gong
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Yuwei Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Zhijie Yin
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Zhen Zeng
- Department of Radiology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Shuyuan Xia
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Yanyan Zhang
- Department of Pediatric Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Jie Li
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Quansheng Gao
- Environmental & Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin, China
| | - Jing Wang
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| |
Collapse
|
2
|
Subaşı Turgut F, Bulut M, Hattapoğlu S, Güneş M, Cemal Kaya M, Ekici F, Guli Çetinçakmak M, Kaplan İ, Atmaca M. The relationship between oxidative stress markers and 1H-Magnetic resonance spectroscopy findings in obsessive compulsive disorder. Brain Res 2024; 1833:148852. [PMID: 38494099 DOI: 10.1016/j.brainres.2024.148852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION The purpose of this study was to examine N-acetyl aspartate (NAA)/creatine (Cr) and glutamate, glutamine, and gamma-aminobutyric acid complex (Glx)/Cr levels in patients with obsessive compulsive disorder (OCD) and healthy controls' orbitofrontal cortex (OFC) and caudate nucleus (CN) by proton magnetic resonance spectroscopy (1H-MRS) method and to investigate their relationship with oxidative stress markers glutathione peroxidase (GPx) and superoxide dismutase (SOD). METHODS This study included patients with OCD (n = 25) and healthy controls (n = 25) ranging in age from 18 to 65. We used the ELISA method to evaluate serum SOD and GPx levels. Levels of NAA/Cr and Glx/Cr in the orbitofrontal cortex and caudate nucleus were measured using the 1H-MRS method. RESULTS Our study did not detect statistically significant differences in the orbitofrontal cortex Glx/Cr and NAA/Cr levels between the OCD patients and the control group. OCD patients exhibited a decrease in NAA/Cr levels, consistent with impaired neuronal integration, and an increase in Glx/Cr levels, consistent with hyperactivation, in the caudate nucleus compared to the control group. We observed a negative correlation between NAA/Cr levels in the caudate nucleus and the levels of SOD and GPx. CONCLUSIONS Our study is the first to assess CN and OFC together in OCD patients using 3 T MR, investigating the relationship between neurometabolite concentrations and oxidative stress parameters. The negative correlation we observed between NAA/Cr levels and SOD and GPx in the caudate nucleus suggests that increased oxidative stress in this brain region in OCD patients may contribute to impaired neuronal integration and functionality.
Collapse
Affiliation(s)
- Fatma Subaşı Turgut
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Mahmut Bulut
- Department of Psychiatry, Faculty of Medicine, Dicle University, Diyarbakır, Turkey.
| | - Salih Hattapoğlu
- Department of Radiology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Mehmet Güneş
- Department of Psychiatry, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Mehmet Cemal Kaya
- Department of Psychiatry, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Faysal Ekici
- Department of Radiology, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | | | - İbrahim Kaplan
- Department of Biochemistry, Faculty of Medicine, Dicle University, Diyarbakır, Turkey
| | - Murad Atmaca
- Department of Psychiatry, Faculty of Medicine, Fırat University, Elazığ, Turkey
| |
Collapse
|
3
|
Sheikh-Bahaei N, Chen M, Pappas I. Magnetic Resonance Spectroscopy (MRS) in Alzheimer's Disease. Methods Mol Biol 2024; 2785:115-142. [PMID: 38427192 DOI: 10.1007/978-1-0716-3774-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
MRS is a noninvasive technique to measure different metabolites in the brain. Changes in the levels of certain metabolites can be used as surrogate markers for Alzheimer's disease. They can potentially be used for diagnosis, prediction of prognosis, or even assessing response to treatment.There are different techniques for MRS acquisitions including STimulated Echo Acquisition Mode (STEAM) and Point Resolved Spectroscopy (PRESS). In terms of localization, single or multi-voxel methods can be used. Based on current data: 1. NAA, marker of neuronal integrity and viability, reduces in AD with longitudinal changes over the time as the disease progresses. There are data claiming that reduction of NAA is associated with tau accumulation, early neurodegenerative processes, and cognitive decline. Therefore, it can be used as a stage biomarker for AD to assess the severity of the disease. With advancement of disease modifying therapies, there is a potential role for NAA in the future to be used as a marker of response to treatment. 2. mI, marker of glial cell proliferation and activation, is associated with AB pathology and has early changes in the course of the disease. The NAA/mI ratio can be predictive of AD development with high specificity and can be utilized in the clinical setting to stratify cases for further evaluation with PET for potential treatments. 3. The changes in the level of other metabolites such as Chol, Glu, Gln, and GABA are controversial because of the lack of standardization of MRS techniques, current technical limitations, and possible region specific changes. 4. Ultrahigh field MRS and more advanced techniques can overcome many of these limitations and enable us to measure more metabolites with higher accuracy. 5. Standardization of MRS techniques, validation of metabolites' changes against PET using PET-guided technique, and longitudinal follow-ups to investigate the temporal changes of the metabolites in relation to other biomarkers and cognition will be crucial to confirm the utility of MRS as a potential noninvasive biomarker for AD.
Collapse
Affiliation(s)
- Nasim Sheikh-Bahaei
- Department of Radiology, Keck School of Medicine of USC, Los Angeles, CA, USA.
| | - Michelle Chen
- Keck School of Medicine of USC, USC, Los Angeles, CA, USA
| | - Ioannis Pappas
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, USC, Los Angeles, CA, USA
| |
Collapse
|
4
|
Ziegs T, Ruhm L, Wright A, Henning A. Mapping of glutamate metabolism using 1H FID-MRSI after oral administration of [1-13C]Glc at 9.4 T. Neuroimage 2023; 270:119940. [PMID: 36787828 PMCID: PMC10030312 DOI: 10.1016/j.neuroimage.2023.119940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/14/2023] Open
Abstract
Glutamate is the major excitatory transmitter in the brain and malfunction of the related metabolism is associated with various neurological diseases and disorders. The observation of labeling changes in the spectra after the administration of a 13C labelled tracer is a common tool to gain better insights into the function of the metabolic system. But so far, only a very few studies presenting the labeling effects in more than two voxels to show the spatial dependence of metabolism. In the present work, the labeling effects were measured in a transversal plane in the human brain using ultra-short TE and TR 1H FID-MRSI. The measurement set-up was most simple: The [1-13C]Glc was administered orally instead of intravenous and the spectra were measured with a pure 1H technique without the need of a 13C channel (as Boumezbeur et al. demonstrated in 2004). Thus, metabolic maps and enrichment curves could be obtained for more metabolites and in more voxels than ever before in human brain. Labeling changes could be observed in [4-13C]glutamate, [3-13C]glutamate+glutamine, [2-13C]glutamate+glutamine, [4-13C]glutamine, and [3-13C]aspartate with a high temporal (3.6 min) and spatial resolution (32 × 32 grid with nominal voxel size of 0.33 µL) in five volunteers.
Collapse
Affiliation(s)
- Theresia Ziegs
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany; IMPRS for Cognitive and Systems Neuroscience, Otfried-Müller-Str. 27, 72076 Tübingen, Germany.
| | - Loreen Ruhm
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany; IMPRS for Cognitive and Systems Neuroscience, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Andrew Wright
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany; IMPRS for Cognitive and Systems Neuroscience, Otfried-Müller-Str. 27, 72076 Tübingen, Germany
| | - Anke Henning
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, United States
| |
Collapse
|
5
|
Proton MR Spectroscopy of Pediatric Brain Disorders. Diagnostics (Basel) 2022; 12:diagnostics12061462. [PMID: 35741272 PMCID: PMC9222059 DOI: 10.3390/diagnostics12061462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
In vivo MR spectroscopy is a non -invasive methodology that provides information about the biochemistry of tissues. It is available as a “push-button” application on state-of-the-art clinical MR scanners. MR spectroscopy has been used to study various brain diseases including tumors, stroke, trauma, degenerative disorders, epilepsy/seizures, inborn errors, neuropsychiatric disorders, and others. The purpose of this review is to provide an overview of MR spectroscopy findings in the pediatric population and its clinical use.
Collapse
|
6
|
Clinical 1H MRS in childhood neurometabolic diseases-part 1: technique and age-related normal spectra. Neuroradiology 2022; 64:1101-1110. [PMID: 35178593 DOI: 10.1007/s00234-022-02917-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/10/2022] [Indexed: 12/11/2022]
Abstract
Despite its vigorous ability to detect and measure metabolic disturbances, 1H MRS remains underutilized in clinical practice. MRS increases diagnostic yield and provides therapeutic measures. Because many inborn metabolic errors are now treatable, early diagnosis is crucial to prevent or curb permanent brain injury. Therefore, patients with known or suspected inborn metabolic errors stand to benefit from the addition of MRS. With education and practice, all neuroradiologists can perform and interpret MRS notwithstanding their training and prior experience. In this two-part review, we cover the requisite concepts for clinical MRS interpretation including technical considerations and normal brain spectral patterns based on age, location, and methodology.
Collapse
|
7
|
Hadar PN, Kini LG, Nanga RPR, Shinohara RT, Chen SH, Shah P, Wisse LEM, Elliott MA, Hariharan H, Reddy R, Detre JA, Stein JM, Das S, Davis KA. Volumetric glutamate imaging (GluCEST) using 7T MRI can lateralize nonlesional temporal lobe epilepsy: A preliminary study. Brain Behav 2021; 11:e02134. [PMID: 34255437 PMCID: PMC8413808 DOI: 10.1002/brb3.2134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 03/18/2021] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Drug-resistant epilepsy patients show worse outcomes after resection when standard neuroimaging is nonlesional, which occurs in one-third of patients. In prior work, we employed 2-D glutamate imaging, Glutamate Chemical Exchange Saturation Transfer (GluCEST), to lateralize seizure onset in nonlesional temporal lobe epilepsy (TLE) based on increased ipsilateral GluCEST signal in the total hippocampus and hippocampal head. We present a significant advancement to single-slice GluCEST imaging, allowing for three-dimensional analysis of brain glutamate networks. METHODS The study population consisted of four MRI-negative, nonlesional TLE patients (two male, two female) with electrographically identified left temporal onset seizures. Imaging was conducted on a Siemens 7T MRI scanner using the CEST method for glutamate, while the advanced normalization tools (ANTs) pipeline and the Automated Segmentation of the Hippocampal Subfields (ASHS) method were employed for image analysis. RESULTS Volumetric GluCEST imaging was validated in four nonlesional TLE patients showing increased glutamate lateralized to the hippocampus of seizure onset (p = .048, with a difference among ipsilateral to contralateral GluCEST signal percentage ranging from -0.05 to 1.37), as well as increased GluCEST signal in the ipsilateral subiculum (p = .034, with a difference among ipsilateral to contralateral GluCEST signal ranging from 0.13 to 1.57). CONCLUSIONS The ability of 3-D, volumetric GluCEST to localize seizure onset down to the hippocampal subfield in nonlesional TLE is an improvement upon our previous 2-D, single-slice GluCEST method. Eventually, we hope to expand volumetric GluCEST to whole-brain glutamate imaging, thus enabling noninvasive analysis of glutamate networks in epilepsy and potentially leading to improved clinical outcomes.
Collapse
Affiliation(s)
- Peter N Hadar
- Penn Epilepsy Center, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Lohith G Kini
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravi Prakash Reddy Nanga
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie H Chen
- Penn Epilepsy Center, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Preya Shah
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura E M Wisse
- Penn Image Computing & Science Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark A Elliott
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hari Hariharan
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Detre
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel M Stein
- Department of Radiology, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sandhitsu Das
- Penn Image Computing & Science Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Penn Epilepsy Center, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Brain glucose uptake during transcranial direct current stimulation measured with functional [ 18F]FDG-PET. Brain Imaging Behav 2021; 14:477-484. [PMID: 31598826 PMCID: PMC7160063 DOI: 10.1007/s11682-019-00195-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Previous evidence indicates that transcranial direct stimulation (tDCS) is a neuromodulatory brain stimulation technique. Easy applicability, low side-effects and negligible costs facilitated its wide-spread application in efforts to modulate brain function, however neuronal mechanisms of tDCS are insufficiently understood. Hence, we investigated the immediate impact of tDCS on the brain's glucose consumption in a continuous infusion protocol with the radioligand 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) and positron emission tomography (PET). This novel functional PET (fPET) method is capable to reliably detect area-specific and dynamic absolute glucose demand related to neuronal activity in a single molecular imaging session. Fifteen healthy subjects underwent tDCS at 0.5, 1 and 2 mA (mA) at the bilateral dorsolateral prefrontal cortex (dlPFC, cathodal right) for 10 min during functional [18F]FDG-PET lasting 70 min. Active stimulation compared to sham did not yield significant changes in glucose consumption at any tested stimulation intensity in this paradigm. Exploratory investigation of aftereffects provided hints for increased glucose consumption with a delay of 5 min at 1 mA in the right posterior temporal cortex. This is the first study investigating changes of glucose consumption in the brain during tDCS. The lack of immediately increased glucose consumption indicates that energy demanding processes in the brain such as glutamatergic signaling might not be immediately increased by tDCS. However, our results implicate the need of fPET investigations for medium-term and long-term effects.
Collapse
|
9
|
Joo YH, Kim YK, Choi IG, Kim HJ, Son YD, Kim HK, Cumming P, Kim JH. In vivo glucose metabolism and glutamate levels in mGluR5 knockout mice: a multimodal neuroimaging study using [ 18F]FDG microPET and MRS. EJNMMI Res 2020; 10:116. [PMID: 33006705 PMCID: PMC7532251 DOI: 10.1186/s13550-020-00716-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
Background Perturbed functional coupling between the metabotropic glutamate receptor-5 (mGluR5) and N-methyl-d-aspartate (NMDA) receptor-mediated excitatory glutamatergic neurotransmission may contribute to the pathophysiology of psychiatric disorders such as schizophrenia. We aimed to establish the functional interaction between mGluR5 and NMDA receptors in brain of mice with genetic ablation of the mGluR5. Methods We first measured the brain glutamate levels with magnetic resonance spectroscopy (MRS) in mGluR5 knockout (KO) and wild-type (WT) mice. Then, we assessed brain glucose metabolism with [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography before and after the acute administration of an NMDA antagonist, MK-801 (0.5 mg/kg), in the same mGluR5 KO and WT mice. Results Between-group comparisons showed no significant differences in [18F]FDG standardized uptake values (SUVs) in brain of mGluR5 KO and WT mice at baseline, but widespread reductions in mGluR5 KO mice compared to WT mice after MK-801 administration (p < 0.05). The baseline glutamate levels did not differ significantly between the two groups. However, there were significant negative correlations between baseline prefrontal glutamate levels and regional [18F]FDG SUVs in mGluR5 KO mice (p < 0.05), but no such correlations in WT mice. Fisher’s Z-transformation analysis revealed significant between-group differences in these correlations (p < 0.05). Conclusions This is the first multimodal neuroimaging study in mGluR5 KO mice and the first report on the association between cerebral glucose metabolism and glutamate levels in living rodents. The results indicate that mGluR5 KO mice respond to NMDA antagonism with reduced cerebral glucose metabolism, suggesting that mGluR5 transmission normally moderates the net effects of NMDA receptor antagonism on neuronal activity. The negative correlation between glutamate levels and glucose metabolism in mGluR5 KO mice at baseline may suggest an unmasking of an inhibitory component of the glutamatergic regulation of neuronal energy metabolism.
Collapse
Affiliation(s)
- Yo-Han Joo
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Yun-Kwan Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - In-Gyu Choi
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Hyeon-Jin Kim
- Department of Biomedical Sciences, Seoul National University, Seoul, Republic of Korea.,Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young-Don Son
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, South Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea.,Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, South Korea
| | - Paul Cumming
- Institute of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland.,School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Jong-Hoon Kim
- Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea. .,Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, South Korea. .,Department of Psychiatry, Research Center for Psychiatry and Behavioral Sciences, Neuroscience Research Institute, Gachon University College of Medicine, Gil Medical Center, Gachon University, 1198 Guwol-dong, Namdong-gu, Incheon, 405-760, South Korea.
| |
Collapse
|
10
|
Sharma AA, Szaflarski JP. In Vivo Imaging of Neuroinflammatory Targets in Treatment-Resistant Epilepsy. Curr Neurol Neurosci Rep 2020; 20:5. [PMID: 32166626 DOI: 10.1007/s11910-020-1025-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Recent evidence indicates that chronic, low-level neuroinflammation underlies epileptogenesis. Targeted imaging of key neuroinflammatory cells, receptors, and tissues may enable localizing epileptogenic onset zone, especially in those patients who are treatment-resistant and considered MRI-negative. Finding a specific, sensitive neuroimaging-based biomarker could aid surgical planning and improve overall prognosis in eligible patients. This article reviews recent research on in vivo imaging of neuroinflammatory targets in patients with treatment-resistant, non-lesional epilepsy. RECENT FINDINGS A number of advanced approaches based on imaging neuroinflammation are being implemented in order to assist localization of epileptogenic onset zone. The most exciting tools are based on radioligand-based nuclear imaging or revisiting of existing technology in novel ways. The greatest limitations stem from gaps in knowledge about the exact function of neuroinflammatory targets (e.g., neurotoxic or neuroprotective). Further, lingering questions about each approach's specificity, reliability, and sensitivity must be addressed, and clinical utility must be validated before any novel method is incorporated into mainstream clinical practice. Current applications of imaging neuroinflammation in humans are limited and underutilized, but offer hope for finding sensitive and specific neuroimaging-based biomarker(s). Future work necessitates appreciation of investigations to date, significant findings, and neuroinflammatory targets worth exploring further.
Collapse
Affiliation(s)
- Ayushe A Sharma
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35249-0021, USA.
| | - Jerzy P Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35249-0021, USA.,University of Alabama at Birmingham Epilepsy Center, Birmingham, AL, USA
| |
Collapse
|
11
|
Lam J, DuBois JM, Rowley J, González-Otárula KA, Soucy JP, Massarweh G, Hall JA, Guiot MC, Rosa-Neto P, Kobayashi E. In vivo metabotropic glutamate receptor type 5 abnormalities localize the epileptogenic zone in mesial temporal lobe epilepsy. Ann Neurol 2019; 85:218-228. [PMID: 30597619 DOI: 10.1002/ana.25404] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Surgical specimens from patients with mesial temporal lobe epilepsy (MTLE) show abnormalities in tissue concentrations of metabotropic glutamate receptor type 5 (mGluR5). To clarify whether these abnormalities are specific to the epileptogenic zone (EZ), we characterized in vivo whole-brain mGluR5 availability in MTLE patients using positron emission tomography (PET) and [11 C]ABP688, a radioligand that binds specifically to the mGluR5 allosteric site. METHODS Thirty-one unilateral MTLE patients and 30 healthy controls underwent [11 C]ABP688 PET. We compared partial volume corrected [11 C]ABP688 nondisplaceable binding potentials (BPND ) between groups using region-of-interest and whole-brain voxelwise analyses. [18 F]Fluorodeoxyglucose (FDG) PET was acquired in 15 patients, for whom we calculated asymmetry indices of [11 C]ABP688 BPND and [18 F]FDG uptake to compare lateralization and localization differences. RESULTS [11 C]ABP688 BPND was focally reduced in the epileptogenic hippocampal head and amygdala (p < 0.001). Patients with hippocampal atrophy showed more extensive abnormalities, including the ipsilateral temporal neocortex (p = 0.006). [11 C]ABP688 BPND showed interhemispheric differences of higher magnitude and discriminated the epileptogenic structures more accurately when compared to [18 F]FDG uptake, which showed more widespread hypometabolism. Among 23 of 25 operated patients with >1 year of follow-up, 13 were seizure-free (Engel Ia) and showed significantly lower [11 C]ABP688 BPND in the ipsilateral entorhinal cortex. INTERPRETATION [11 C]ABP688 PET provides a focal biomarker for the EZ in MTLE with higher spatial accuracy compared to [18 F]FDG PET. Focally reduced mGluR5 availability in the EZ might reflect receptor internalization or conformational changes in response to excessive extracellular glutamate, supporting a potential role for mGluR5 as therapeutic target in human MTLE. Ann Neurol 2019; 1-11 ANN NEUROL 2019;85:218-228.
Collapse
Affiliation(s)
- Jack Lam
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jonathan M DuBois
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jared Rowley
- Translational Neuroimaging Laboratory, McGill University, Montreal, Quebec, Canada
| | - Karina A González-Otárula
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jean-Paul Soucy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,PET Unit, McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Gassan Massarweh
- PET Unit, McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Jeffery A Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Marie-Christine Guiot
- Department of Pathology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Translational Neuroimaging Laboratory, McGill University, Montreal, Quebec, Canada.,PET Unit, McConnell Brain Imaging Centre, McGill University, Montreal, Quebec, Canada
| | - Eliane Kobayashi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Bartnik-Olson BL, Ding D, Howe J, Shah A, Losey T. Glutamate metabolism in temporal lobe epilepsy as revealed by dynamic proton MRS following the infusion of [U 13-C] glucose. Epilepsy Res 2017; 136:46-53. [PMID: 28763722 DOI: 10.1016/j.eplepsyres.2017.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 12/27/2022]
Abstract
Focal metabolic dysfunction commonly observed in temporal lobe epilepsy (TLE), and is associated with the development of medical intractability and neurocognitive deficits. It has not been established if this dysfunction is due to cell loss or biochemical dysfunction in metabolic pathways. To explore this question, dynamic 1H MRS following an infusion of [U13- C] glucose was performed to measure glutamate (Glu) metabolism. Subjects (n=6) showed reduced Glu levels (p<0.01) in the ipsilateral mesial temporal lobe (MTL) compared with controls (n=4). However, the rate of 13C incorporation into Glu did not differ between those with epilepsy and controls (p=0.77). This suggests that reduced Glu concentrations in the region of the seizure focus are not due to disruptions in metabolic pathways, but may instead be due to neuronal loss or simplification.
Collapse
Affiliation(s)
| | - Daniel Ding
- School of Medicine, Loma Linda University, Loma Linda CA, United States
| | - John Howe
- School of Medicine, Loma Linda University, Loma Linda CA, United States
| | - Amul Shah
- School of Medicine, Loma Linda University, Loma Linda CA, United States
| | - Travis Losey
- Department of Neurology, Loma Linda University, Loma Linda CA, United States.
| |
Collapse
|
13
|
Davis KA, Nanga RPR, Das S, Chen SH, Hadar PN, Pollard JR, Lucas TH, Shinohara RT, Litt B, Hariharan H, Elliott MA, Detre JA, Reddy R. Glutamate imaging (GluCEST) lateralizes epileptic foci in nonlesional temporal lobe epilepsy. Sci Transl Med 2016; 7:309ra161. [PMID: 26468323 DOI: 10.1126/scitranslmed.aaa7095] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
When neuroimaging reveals a brain lesion, drug-resistant epilepsy patients show better outcomes after resective surgery than do the one-third of drug-resistant epilepsy patients who have normal brain magnetic resonance imaging (MRI). We applied a glutamate imaging method, GluCEST (glutamate chemical exchange saturation transfer), to patients with nonlesional temporal lobe epilepsy based on conventional MRI. GluCEST correctly lateralized the temporal lobe seizure focus on visual and quantitative analyses in all patients. MR spectra, available for a subset of patients and controls, corroborated the GluCEST findings. Hippocampal volumes were not significantly different between hemispheres. GluCEST allowed high-resolution functional imaging of brain glutamate and has potential to identify the epileptic focus in patients previously deemed nonlesional. This method may lead to improved clinical outcomes for temporal lobe epilepsy as well as other localization-related epilepsies.
Collapse
Affiliation(s)
- Kathryn Adamiak Davis
- Penn Epilepsy Center, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Prakash Reddy Nanga
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandhitsu Das
- Penn Image Computing & Science Lab, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie H Chen
- Penn Epilepsy Center, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter N Hadar
- Penn Epilepsy Center, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John R Pollard
- Penn Epilepsy Center, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy H Lucas
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Litt
- Penn Epilepsy Center, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hari Hariharan
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark A Elliott
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John A Detre
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury. Neural Plast 2016; 2016:4901014. [PMID: 27047695 PMCID: PMC4800097 DOI: 10.1155/2016/4901014] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/12/2016] [Accepted: 02/07/2016] [Indexed: 12/03/2022] Open
Abstract
Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI) of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.
Collapse
|
15
|
Villar M, Ayllón N, Alberdi P, Moreno A, Moreno M, Tobes R, Mateos-Hernández L, Weisheit S, Bell-Sakyi L, de la Fuente J. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells. Mol Cell Proteomics 2015; 14:3154-72. [PMID: 26424601 DOI: 10.1074/mcp.m115.051938] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 01/01/2023] Open
Abstract
Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host-pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick-Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These results support the use of this experimental approach to systematically identify cell pathways and molecular mechanisms involved in tick-pathogen interactions. Data are available via ProteomeXchange with identifier PXD002181.
Collapse
Affiliation(s)
- Margarita Villar
- From the ‡SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain;
| | - Nieves Ayllón
- From the ‡SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Pilar Alberdi
- From the ‡SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Andrés Moreno
- §Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - María Moreno
- §Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Raquel Tobes
- ¶Oh No Sequences! Research Group, Era7 Bioinformatics, Plaza Campo Verde n° 3 Ático, 18001 Granada, Spain
| | - Lourdes Mateos-Hernández
- From the ‡SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Sabine Weisheit
- ‖The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; **The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Lesley Bell-Sakyi
- ‖The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; **The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - José de la Fuente
- From the ‡SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; ‡‡Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078.
| |
Collapse
|
16
|
Differences between glioblastomas and primary central nervous system lymphomas in 1H-magnetic resonance spectroscopy. Jpn J Radiol 2015; 33:392-403. [DOI: 10.1007/s11604-015-0430-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 04/27/2015] [Indexed: 11/26/2022]
|
17
|
Lee JH, Choi Y, Jun C, Hong YS, Cho HB, Kim JE, Lyoo IK. Neurocognitive changes and their neural correlates in patients with type 2 diabetes mellitus. Endocrinol Metab (Seoul) 2014; 29:112-21. [PMID: 25031883 PMCID: PMC4091490 DOI: 10.3803/enm.2014.29.2.112] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
As the prevalence and life expectancy of type 2 diabetes mellitus (T2DM) continue to increase, the importance of effective detection and intervention for the complications of T2DM, especially neurocognitive complications including cognitive dysfunction and dementia, is receiving greater attention. T2DM is thought to influence cognitive function through an as yet unclear mechanism that involves multiple factors such as hyperglycemia, hypoglycemia, and vascular disease. Recent developments in neuroimaging methods have led to the identification of potential neural correlates of T2DM-related neurocognitive changes, which extend from structural to functional and metabolite alterations in the brain. The evidence indicates various changes in the T2DM brain, including global and regional atrophy, white matter hyperintensity, altered functional connectivity, and changes in neurometabolite levels. Continued neuroimaging research is expected to further elucidate the underpinnings of cognitive decline in T2DM and allow better diagnosis and treatment of the condition.
Collapse
Affiliation(s)
- Junghyun H Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
- Ewha Brain Institute, Ewha Womans University, Seoul, Korea
| | - Yera Choi
- Ewha Brain Institute, Ewha Womans University, Seoul, Korea
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Chansoo Jun
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
- Ewha Brain Institute, Ewha Womans University, Seoul, Korea
| | - Young Sun Hong
- Ewha Brain Institute, Ewha Womans University, Seoul, Korea
- Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Han Byul Cho
- Ewha Brain Institute, Ewha Womans University, Seoul, Korea
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Jieun E Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University Graduate School, Seoul, Korea
| | - In Kyoon Lyoo
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
- Ewha Brain Institute, Ewha Womans University, Seoul, Korea
| |
Collapse
|
18
|
Tylš F, Páleníček T, Horáček J. Psilocybin--summary of knowledge and new perspectives. Eur Neuropsychopharmacol 2014; 24:342-56. [PMID: 24444771 DOI: 10.1016/j.euroneuro.2013.12.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/17/2013] [Accepted: 12/02/2013] [Indexed: 12/01/2022]
Abstract
Psilocybin, a psychoactive alkaloid contained in hallucinogenic mushrooms, is nowadays given a lot of attention in the scientific community as a research tool for modeling psychosis as well as due to its potential therapeutic effects. However, it is also a very popular and frequently abused natural hallucinogen. This review summarizes all the past and recent knowledge on psilocybin. It briefly deals with its history, discusses the pharmacokinetics and pharmacodynamics, and compares its action in humans and animals. It attempts to describe the mechanism of psychedelic effects and objectify its action using modern imaging and psychometric methods. Finally, it describes its therapeutic and abuse potential.
Collapse
Affiliation(s)
- Filip Tylš
- Prague Psychiatric Center, Prague, Czech Republic; 3rd Faculty of Medicine, Charles University in Prague, Czech Republic.
| | - Tomáš Páleníček
- Prague Psychiatric Center, Prague, Czech Republic; 3rd Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Jiří Horáček
- Prague Psychiatric Center, Prague, Czech Republic; 3rd Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
19
|
An L, Li S, Murdoch JB, Araneta MF, Johnson C, Shen J. Detection of glutamate, glutamine, and glutathione by radiofrequency suppression and echo time optimization at 7 tesla. Magn Reson Med 2014; 73:451-8. [DOI: 10.1002/mrm.25150] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Li An
- National Institute of Mental Health, National Institutes of Health; Bethesda Maryland USA
| | - Shizhe Li
- National Institute of Mental Health, National Institutes of Health; Bethesda Maryland USA
| | - James B. Murdoch
- Toshiba Medical Research Institute USA; Mayfield Village Ohio USA
| | - Maria Ferraris Araneta
- National Institute of Mental Health, National Institutes of Health; Bethesda Maryland USA
| | - Christopher Johnson
- National Institute of Mental Health, National Institutes of Health; Bethesda Maryland USA
| | - Jun Shen
- National Institute of Mental Health, National Institutes of Health; Bethesda Maryland USA
| |
Collapse
|
20
|
R-flurbiprofen improves tau, but not Aß pathology in a triple transgenic model of Alzheimer's disease. Brain Res 2013; 1541:115-27. [PMID: 24161403 DOI: 10.1016/j.brainres.2013.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 10/10/2013] [Accepted: 10/15/2013] [Indexed: 11/24/2022]
Abstract
We have previously reported that chronic ibuprofen treatment improves cognition and decreases intracellular Aß and phosphorylated-tau levels in 3xTg-AD mice. Ibuprofen is a non-steroidal anti-inflammatory drug (NSAID) that independently of its anti-inflammatory effects has anti-amyloidogenic activity as a gamma-secretase modulator (GSM) and both activities have the potential to decrease Aß pathology. To further understand the effects of NSAIDs in 3xTg-AD mice, we treated 3xTg-AD mice with R-flurbiprofen, an enantiomer of the NSAID flurbiprofen that maintains the GSM activity but has greatly reduced anti-inflammatory activity, and analyzed its effect on cognition, Aß, tau, and the neurochemical profile of the hippocampus. Treatment with R-flurbiprofen from 5 to 7 months of age resulted in improved cognition on the radial arm water maze (RAWM) test and decreased the level of hyperphosphorylated tau immunostained with AT8 and PHF-1 antibodies. No significant changes in the level of Aß (using 6E10 and NU-1 antibodies) were detected. Using magnetic resonance spectroscopy (MRS) we found that R-flurbiprofen treatment decreased the elevated level of glutamine in 3xTg-AD mice down to the level detected in non-transgenic mice. Glutamine levels correlated with PHF-1 immunostained hyperphosphorylated tau. We also found an inverse correlation between the concentration of glutamate and learning across all the mice in the study. Glutamine and glutamate, neurochemicals that shuttles between neurons and astrocytes to maintain glutamate homeostasis in the synapses, deserve further attention as MR markers of cognitive function.
Collapse
|
21
|
Effects of intensive cognitive-behavioral therapy on cingulate neurochemistry in obsessive-compulsive disorder. J Psychiatr Res 2013; 47:494-504. [PMID: 23290560 PMCID: PMC3672238 DOI: 10.1016/j.jpsychires.2012.11.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 10/31/2012] [Accepted: 11/16/2012] [Indexed: 11/23/2022]
Abstract
The neurophysiological bases of cognitive-behavioral therapy (CBT) for obsessive-compulsive disorder (OCD) are incompletely understood. Previous studies, though sparse, implicate metabolic changes in pregenual anterior cingulate cortex (pACC) and anterior middle cingulate cortex (aMCC) as neural correlates of response to CBT. The goal of this pilot study was to determine the relationship between levels of the neurochemically interlinked metabolites glutamate + glutamine (Glx) and N-acetyl-aspartate + N-acetyl-aspartyl-glutamate (tNAA) in pACC and aMCC to pretreatment OCD diagnostic status and OCD response to CBT. Proton magnetic resonance spectroscopic imaging ((1)H MRSI) was acquired from pACC and aMCC in 10 OCD patients at baseline, 8 of whom had a repeat scan after 4 weeks of intensive CBT. pACC was also scanned (baseline only) in 8 age-matched healthy controls. OCD symptoms improved markedly in 8/8 patients after CBT. In right pACC, tNAA was significantly lower in OCD patients than controls at baseline and then increased significantly after CBT. Baseline tNAA also correlated with post-CBT change in OCD symptom severity. In left aMCC, Glx decreased significantly after intensive CBT. These findings add to evidence implicating the pACC and aMCC as loci of the metabolic effects of CBT in OCD, particularly effects on glutamatergic and N-acetyl compounds. Moreover, these metabolic responses occurred after just 4 weeks of intensive CBT, compared to 3 months for standard weekly CBT. Baseline levels of tNAA in the pACC may be associated with response to CBT for OCD. Lateralization of metabolite effects of CBT, previously observed in subcortical nuclei and white matter, may also occur in cingulate cortex. Tentative mechanisms for these effects are discussed. Comorbid depressive symptoms in OCD patients may have contributed to metabolite effects, although baseline and post-CBT change in depression ratings varied with choline-compounds and myo-inositol rather than Glx or tNAA.
Collapse
|
22
|
Baruth JM, Wall CA, Patterson MC, Port JD. Proton Magnetic Resonance Spectroscopy as a Probe into the Pathophysiology of Autism Spectrum Disorders (ASD): A Review. Autism Res 2013; 6:119-33. [DOI: 10.1002/aur.1273] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 12/08/2012] [Indexed: 12/25/2022]
Affiliation(s)
- Joshua M. Baruth
- Department of Psychiatry and Psychology; Mayo Clinic; Rochester; Minnesota
| | | | - Marc C. Patterson
- Departments of Neurology, Pediatric and Adolescent Medicine and Medical Genetics; Mayo Clinic Children's Center; Rochester; Minnesota
| | | |
Collapse
|
23
|
Elevated glutamatergic compounds in pregenual anterior cingulate in pediatric autism spectrum disorder demonstrated by 1H MRS and 1H MRSI. PLoS One 2012; 7:e38786. [PMID: 22848344 PMCID: PMC3407186 DOI: 10.1371/journal.pone.0038786] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 05/10/2012] [Indexed: 11/19/2022] Open
Abstract
Recent research in autism spectrum disorder (ASD) has aroused interest in anterior cingulate cortex and in the neurometabolite glutamate. We report two studies of pregenual anterior cingulate cortex (pACC) in pediatric ASD. First, we acquired in vivo single-voxel proton magnetic resonance spectroscopy ((1)H MRS) in 8 children with ASD and 10 typically developing controls who were well matched for age, but with fewer males and higher IQ. In the ASD group in midline pACC, we found mean 17.7% elevation of glutamate + glutamine (Glx) (p<0.05) and 21.2% (p<0.001) decrement in creatine + phosphocreatine (Cr). We then performed a larger (26 subjects with ASD, 16 controls) follow-up study in samples now matched for age, gender, and IQ using proton magnetic resonance spectroscopic imaging ((1)H MRSI). Higher spatial resolution enabled bilateral pACC acquisition. Significant effects were restricted to right pACC where Glx (9.5%, p<0.05), Cr (6.7%, p<0.05), and N-acetyl-aspartate + N-acetyl-aspartyl-glutamate (10.2%, p<0.01) in the ASD sample were elevated above control. These two independent studies suggest hyperglutamatergia and other neurometabolic abnormalities in pACC in ASD, with possible right-lateralization. The hyperglutamatergic state may reflect an imbalance of excitation over inhibition in the brain as proposed in recent neurodevelopmental models of ASD.
Collapse
|
24
|
Whiteside SPH, Abramowitz JS, Port JD. Decreased caudate N-acetyl-l-aspartic acid in pediatric obsessive-compulsive disorder and the effects of behavior therapy. Psychiatry Res 2012; 202:53-9. [PMID: 22704757 DOI: 10.1016/j.pscychresns.2011.11.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 11/17/2022]
Abstract
The current study used magnetic resonance spectroscopy (MRS) to investigate differences in absolute levels of neurochemicals in the head of the caudate nucleus (HOC) and anterior cingulate cortex (ACC) between 15 children with obsessive-compulsive disorder (OCD) and a matched control group, as well as the effects of behavior therapy on these chemicals. At baseline, absolute levels of N-acetyl-l-aspartate (NAA) in the left HOC were significantly lower in non-medicated patients (N=8) with OCD compared to medicated patients (N=5) and compared to matched controls (N=9). Exploratory analyses provided preliminary data suggesting that behavior therapy is associated with a decrease in Glx (glutamate+glutamine) in the right HOC (N=7). The baseline differences in NAA replicate previous finding from the adult literature and show a relationship between NAA in OCD across the lifespan. The changes in Glx raise the possibility that behavior therapy and medication treat OCD symptoms through similar pathways.
Collapse
|
25
|
O'Neill J, Piacentini JC, Chang S, Levitt JG, Rozenman M, Bergman L, Salamon N, Alger JR, McCracken JT. MRSI correlates of cognitive-behavioral therapy in pediatric obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36:161-8. [PMID: 21983143 PMCID: PMC4344316 DOI: 10.1016/j.pnpbp.2011.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/02/2011] [Accepted: 09/08/2011] [Indexed: 01/01/2023]
Abstract
BACKGROUND The brain mechanisms of cognitive-behavioral therapy (CBT), a highly effective treatment for pediatric obsessive-compulsive disorder (OCD), are unknown. Neuroimaging in adult OCD indicates that CBT is associated with metabolic changes in striatum, thalamus, and anterior cingulate cortex. We therefore probed putative metabolic effects of CBT on these brain structures in pediatric OCD using proton magnetic resonance spectroscopic imaging (1H MRSI). METHOD Five unmedicated OCD patients (4 ♀, 13.5±2.8) and 9 healthy controls (7 ♀, 13.0±2.5) underwent MRSI (1.5 T, repetition-time/echo-time=1500/30 ms) of bilateral putamen, thalamus and pregenual anterior cingulate cortex (pACC). Patients were rescanned after 12 weeks of exposure-based CBT. The Children's Yale-Brown Obsessive-Compulsive Scale (CY-BOCS) of OCD symptoms was administered before and after CBT. RESULTS Four of 5 patients responded to CBT (mean 32.8% CY-BOCS reduction). Multiple metabolite effects emerged. Pre-CBT, N-acetyl-aspartate+N-acetyl-aspartyl-glutamate (tNAA) in left pregenual anterior cingulate cortex (pACC) was 55.5% higher in patients than controls. Post-CBT, tNAA (15.0%) and Cr (23.9%) in left pACC decreased and choline compounds (Cho) in right thalamus increased (10.6%) in all 5 patients. In left thalamus, lower pre-CBT tNAA, glutamate+glutamine (Glx), and myo-inositol (mI) predicted greater post-CBT drop in CY-BOCS (r=0.98) and CY-BOCS decrease correlated with increased Cho. CONCLUSIONS Interpretations are offered in terms of the Glutamatergic Hypothesis of Pediatric OCD. Similar to 18FDG-PET in adults, objectively measurable regional MRSI metabolites may indicate pediatric OCD and predict its response to CBT.
Collapse
Affiliation(s)
- Joseph O'Neill
- Division of Child & Adolescent Psychiatry, Semel Institute for Neurosciences, Department of Radiological Sciences, UCLA School of Medicine, Los Angeles, CA 90024-1759, United States.
| | - John C. Piacentini
- Division of Child & Adolescent Psychiatry, Semel Institute for Neurosciences, UCLA School of Medicine, Los Angeles, California
| | - Susanna Chang
- Division of Child & Adolescent Psychiatry, Semel Institute for Neurosciences, UCLA School of Medicine, Los Angeles, California
| | - Jennifer G. Levitt
- Division of Child & Adolescent Psychiatry, Semel Institute for Neurosciences, UCLA School of Medicine, Los Angeles, California
| | - Michelle Rozenman
- Division of Child & Adolescent Psychiatry, Semel Institute for Neurosciences, UCLA School of Medicine, Los Angeles, California
| | - Lindsey Bergman
- Division of Child & Adolescent Psychiatry, Semel Institute for Neurosciences, UCLA School of Medicine, Los Angeles, California
| | - Noriko Salamon
- Department of Radiological Sciences, UCLA School of Medicine, Los Angeles, California
| | - Jeffry R. Alger
- Department of Neurology, UCLA School of Medicine, Los Angeles, California
| | - James T. McCracken
- Division of Child & Adolescent Psychiatry, Semel Institute for Neurosciences, UCLA School of Medicine, Los Angeles, California
| |
Collapse
|
26
|
Agarwal N, Renshaw PF. Proton MR spectroscopy-detectable major neurotransmitters of the brain: biology and possible clinical applications. AJNR Am J Neuroradiol 2011; 33:595-602. [PMID: 22207303 DOI: 10.3174/ajnr.a2587] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurotransmitters are chemical substances that, by definition, allow communication between neurons and permit most neuronal-glial interactions in the CNS. Approximately 80% of all neurons use glutamate, and almost all interneurons use GABA. A third neurotransmitter, NAAG, modulates glutamatergic neurotransmission. Concentration changes in these molecules due to defective synthetic machinery, receptor expression, or errors in their degradation and metabolism are accepted causes of several neurologic disorders. Knowledge of changes in neurotransmitter concentrations in the brain can add useful information in making a diagnosis, helping to pick the right drug of treatment, and monitoring patient response to drugs in a more objective manner. Recent advances in (1)H-MR spectroscopy hold promise in providing a more reliable in vivo detection of these neurotransmitters. In this article, we summarize the essential biology of 3 major neurotransmitters: glutamate, GABA, and NAAG. Finally we illustrate possible applications of (1)H-MR spectroscopy in neuroscience research.
Collapse
Affiliation(s)
- N Agarwal
- Department of Radiology, Hospital Santa Chiara of Trento, Trento, Italy.
| | | |
Collapse
|
27
|
Bédard MJ, Chantal S. Brain magnetic resonance spectroscopy in obsessive-compulsive disorder: the importance of considering subclinical symptoms of anxiety and depression. Psychiatry Res 2011; 192:45-54. [PMID: 21377338 DOI: 10.1016/j.pscychresns.2010.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 10/18/2022]
Abstract
Brain metabolite concentrations have recently been assessed in different cerebral regions presumably targeted in patients with obsessive-compulsive disorder (OCD) using magnetic resonance spectroscopy (MRS). However, results have been divergent. Possible confounding variables, such as the cerebral localisation of investigated regions and metabolites considered, as well as subclinical symptoms of anxiety and depression, could have affected these MRS profiles. The main goal of this study was to assess MRS metabolite differences between 13 individuals with OCD and 12 matched healthy controls in seven brain regions potentially involved in OCD. The secondary objective was to assess the relationships between levels of anxiety and depression and brain metabolite concentrations. No difference was found for N-acetylaspartate, glutamate-glutamine, myo-inositol (mI) and choline relative to creatine (Cr) concentration in either the left or right orbitofrontal area, left or right median temporal lobe, left or right thalamus or the anterior cingulate cortex. A significant negative correlation between the mI/Cr in the left orbitofrontal area and the severity of OCD symptomatology was observed while subclinical anxiety and depression were closely related to brain metabolite ratios. Thus, these subclinical symptoms, commonly associated with OCD, should be considered in assessing brain metabolite concentrations and may be central to the comprehension of this disorder.
Collapse
Affiliation(s)
- Marie-Josée Bédard
- Département de Psychologie, Université du Québec à Trois-Rivières, Trois-Rivieres, Quebec, Canada
| | | |
Collapse
|
28
|
Alkonyi B, Chugani HT, Juhász C. Transient focal cortical increase of interictal glucose metabolism in Sturge-Weber syndrome: implications for epileptogenesis. Epilepsia 2011; 52:1265-72. [PMID: 21480889 DOI: 10.1111/j.1528-1167.2011.03066.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate clinical correlates and longitudinal course of interictal focal cortical glucose hypermetabolism in children with Sturge-Weber syndrome (SWS). METHODS Fluorodeoxyglucose positron emission tomography (FDG-PET) scans of 60 children (age range 3 months to 15.2 years) with Sturge-Weber syndrome and epilepsy were assessed prospectively and serially for focal hypo- or hypermetabolism. Thirty-two patients had two or more consecutive PET scans. Age, seizure variables, and the occurrence of epilepsy surgery were compared between patients with and without focal hypermetabolism. The severity of focal hypermetabolism was also assessed and correlated with seizure variables. KEY FINDINGS Interictal cortical glucose hypermetabolism, ipsilateral to the angioma, was seen in nine patients, with the most common location in the frontal lobe. Age was lower in patients with hypermetabolism than in those without (p=0.022). In addition, time difference between the onset of first seizure and the first PET scan was much shorter in children with increased glucose metabolism than in those without (mean: 1.0 vs. 3.6 years; p=0.019). Increased metabolism was transient and switched to hypometabolism in all five children where follow-up scans were available. Focal glucose hypermetabolism occurred in 28% of children younger than the age of 2 years. Children with transient hypermetabolism had a higher rate of subsequent epilepsy surgery as compared to those without hypermetabolism (p=0.039). SIGNIFICANCE Interictal glucose hypermetabolism in young children with SWS is most often seen within a short time before or after the onset of first clinical seizures, that is, the presumed period of epileptogenesis. Increased glucose metabolism detected by PET predicts future demise of the affected cortex based on a progressive loss of metabolism and may be an imaging marker of the most malignant cases of intractable epilepsy requiring surgery in SWS.
Collapse
Affiliation(s)
- Bálint Alkonyi
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48201, U.S.A
| | | | | |
Collapse
|
29
|
Apostolova I, Block S, Buchert R, Osen B, Conradi M, Tabrizian S, Gensichen S, Schröder-Hartwig K, Fricke S, Rufer M, Weiss A, Hand I, Clausen M, Obrocki J. Effects of behavioral therapy or pharmacotherapy on brain glucose metabolism in subjects with obsessive-compulsive disorder as assessed by brain FDG PET. Psychiatry Res 2010; 184:105-16. [PMID: 20947317 DOI: 10.1016/j.pscychresns.2010.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 08/22/2010] [Accepted: 08/24/2010] [Indexed: 10/18/2022]
Abstract
This prospective study investigated the effect of pharmacotherapy (PT) and cognitive behavioral therapy (CBT) on cerebral glucose metabolism in adults with obsessive-compulsive disorder (OCD). Dynamic positron emission tomography (PET) of the brain with F-18-fluorodeoxyglucose (FDG) was performed before and after treatment in 16 subjects diagnosed for OCD for at least 2 years (PT: n=7). Pre-to-post-treatment change of scaled local metabolic rate of glucose (SLMRGlc) was assessed separately in therapy responders and non-responders. Correlation was tested between SLMRGlc change and change of OCD, depression, or anxiety symptoms. SLMRGlc increased in the right caudate after successful therapy. The increase tended to correlate with the improvement of OCD symptom severity. The finding of increased local caudate activity after successful therapy is in contrast to most previous studies. Possible explanations include effects of therapy on concomitant depression symptoms and/or the large proportion of early-onset OCD in the present sample.
Collapse
Affiliation(s)
- Ivayla Apostolova
- Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kim SY, Lee YJ, Kim H, Lee DW, Woo DC, Choi CB, Chae JH, Choe BY. Desipramine attenuates forced swim test-induced behavioral and neurochemical alterations in mice: an in vivo(1)H-MRS study at 9.4T. Brain Res 2010; 1348:105-13. [PMID: 20542016 DOI: 10.1016/j.brainres.2010.05.097] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/27/2010] [Accepted: 05/30/2010] [Indexed: 11/30/2022]
Abstract
The forced swim test (FST) is a behavioral paradigm that is predicative of antidepressant activity in rodents. The objective of this study was to examine the effects of desipramine (DMI) pretreatment on behavioral and regional neurochemical responses in the left dorsolateral prefrontal cortex (DLPFC) and hippocampus of mice exposed to the FST using proton magnetic resonance spectroscopy ((1)H-MRS). An ultra short echo stimulated echo acquisition (STEAM) localization sequence (TR/TM/TE=5000/20/2.2ms) was used to measure in vivo proton spectra from the left DLPFC (voxel volume: 7microl) and hippocampus (6microl) of C57BL/6 mice at 9.4T and acquired proton spectra post-processed offline with LCModel. The FST induced significant increase of glutamate (Glu) and myo-inositol (mIns) concentrations in the left DLPFC and hippocampus, respectively. In addition, creatine+phosphocreatine (Cr+PCr) concentrations in the left DLPFC were significantly decreased as compared to control. The metabolic alterations induced by the FST were reverted to level similar to control by acute DMI administration. Our results suggest that glutamatergic activity and glial cell dysfunction may contribute to the pathophysiological mechanisms underlying depression and that modulation of synaptic neurotransmitter concentrations represents a potential target for antidepressant drug development.
Collapse
Affiliation(s)
- Sang-Young Kim
- Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Stafstrom CE, Roopra A, Sutula TP. Seizure suppression via glycolysis inhibition with 2-deoxy-D-glucose (2DG). Epilepsia 2009; 49 Suppl 8:97-100. [PMID: 19049601 DOI: 10.1111/j.1528-1167.2008.01848.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metabolic regulation of neuronal excitability is increasingly recognized as a factor in seizure pathogenesis and control. Inhibiting or bypassing glycolysis may be one way through which the ketogenic diet provides an anticonvulsant effect. 2-deoxy-D-glucose (2DG), a nonmetabolizable glucose analog that partially inhibits glycolysis, was tested in several acute and chronic seizure models. Acutely, 2DG decreases the frequency of high-K(+)-, bicuculline- and 4-aminopyridine-induced interictal bursts in the CA3 region of hippocampal slices; 2DG also exerts anticonvulsant effects in vivo against perforant path kindling in rats. Chronically, 2DG has novel antiepileptic effects by retarding the progression of kindled seizures. Finally, 2DG has a favorable preliminary toxicity profile. These factors support the possibility that 2DG or other modifiers of glycolysis can be used as novel treatments for epilepsy.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Department of Neurology, University of Wisconsin, Madison, Wisconsin 53792, USA.
| | | | | |
Collapse
|
32
|
Nishida M, Asano E, Juhász C, Muzik O, Sood S, Chugani HT. Cortical glucose metabolism correlates negatively with delta-slowing and spike-frequency in epilepsy associated with tuberous sclerosis. Hum Brain Mapp 2008; 29:1255-64. [PMID: 17948886 DOI: 10.1002/hbm.20461] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of altered glucose metabolism seen on positron emission tomography (PET) in focal epilepsy is not fully understood. We determined the association between interictal glucose metabolism and interictal neuronal activity, using PET and electrocorticography (ECoG) measures derived from 865 intracranial electrode sites in 11 children with focal epilepsy associated with tuberous sclerosis complex (TSC) (age: 0.5-16 years) undergoing epilepsy surgery. A multiple linear regression analysis was applied to each patient, to determine whether the glucose uptake at each electrode site on interictal PET was predicted by ECoG amplitude powers and interictal spike-frequency measured in the given electrode site. The regression slopes as well as R-square values (an indicator of fitness of the regression models) were finally averaged across the 11 patients. The mean regression slope for delta amplitude power was -0.0025 (95% CI: -0.0045 to -0.0004; P = 0.02 based on one-sample t-test) and that for spike frequency was -0.023 (95% CI: -0.042 to -0.0038; P = 0.02). On the other hand, the mean regression slopes for the remaining ECoG amplitude powers (theta, alpha, sigma, beta, and gamma activities) were not significantly different from zero. The mean R-square value was 0.39. These results suggest that increased delta-slowing and frequent spike activity were independently and additively associated with glucose hypometabolism in children with focal epilepsy associated with TSC. Association between frequent interictal spike activity and low glucose metabolism may be attributed to slow-wave components following spike discharges on ECoG recording, and a substantial proportion of the variance in regional glucose metabolism on PET could be explained by electrophysiological traits derived from conventional subdural ECoG recording.
Collapse
Affiliation(s)
- Masaaki Nishida
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
33
|
A 1H magnetic resonance spectroscopy study in adults with obsessive compulsive disorder: relationship between metabolite concentrations and symptom severity. J Neural Transm (Vienna) 2008; 115:1051-62. [PMID: 18528631 DOI: 10.1007/s00702-008-0045-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Accepted: 12/20/2007] [Indexed: 10/22/2022]
Abstract
1H magnetic resonance spectroscopy (1H MRS) studies exploring brain metabolites, especially glutamine + glutamate (Glx), in obsessive compulsive disorder (OCD) are of vital interest for trying to understand more about the pathophysiology of OCD. Therefore, we conducted the present 1H MRS study with the aims of (1) comparing MRS metabolites in a group of adult patients with OCD and a group of healthy controls, and (2) examining the relationship between MRS metabolite concentrations and symptom severity in the patient group. Three brain regions were studied, the right caudate nucleus, the anterior gyrus cinguli and the occipital cortex bilaterally. Since multivariate analysis is a highly useful tool for extraction of 1H MRS data, we applied principal component analysis (PCA) and partial least square projection to latent structures (PLS) to the MRS data. PLS disclosed a strong relationship between several of the metabolites and OCD symptom severity, as measured with Yale-Brown obsessive-compulsive scale (YBOCS): the YBOCS score was found to be positively correlated to caudate creatine, Glx, glutamate, and choline compounds as well as occipital cortex myoinositol, and negatively correlated to occipital cortex Glx. The negative correlation between occipital cortex Glx and YBOCS was the most impressive. PCA did not reveal any tendency for a separation between the patients with OCD and controls with respect to MRS metabolites. The results are discussed in relation to corticostriatothalamocortical feedback and previous observations of poor visuospatial ability in OCD.
Collapse
|
34
|
Luborzewski A, Schubert F, Seifert F, Danker-Hopfe H, Brakemeier EL, Schlattmann P, Anghelescu I, Colla M, Bajbouj M. Metabolic alterations in the dorsolateral prefrontal cortex after treatment with high-frequency repetitive transcranial magnetic stimulation in patients with unipolar major depression. J Psychiatr Res 2007; 41:606-15. [PMID: 16600298 DOI: 10.1016/j.jpsychires.2006.02.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 01/19/2006] [Accepted: 02/10/2006] [Indexed: 11/24/2022]
Abstract
Neuroimaging studies suggest a specific role of anterior cingulate cortex (ACC) and left dorsolateral prefrontal cortex (DLPFC) in major depression. Stimulation of the latter by means of repetitive transcranial magnetic stimulation (rTMS) as an antidepressant intervention has increasingly been investigated in the past. The objective of the present study was to examine in vivo neurochemical alterations in both brain regions in 17 patients with unipolar major depression before and after 10 days of high-frequency (20Hz) rTMS of the left DLPFC using 3-tesla proton magnetic resonance spectroscopy. Six out of seventeen patients were treatment responders, defined as a 50% reduction of the Hamilton depression rating scale. No neurochemical alterations in the ACC were detected after rTMS. As compared to the non-responders, responders had lower baseline concentrations of DLPFC glutamate which increased after successful rTMS. Correspondingly, besides a correlation between clinical improvement and an increase in glutamate concentration, an interaction between glutamate concentration changes and stimulation intensity was observed. Our results indicate that metabolic, state-dependent changes within the left DLPFC in major depressive disorder involve the glutamate system and can be reversed in a dose-dependent manner by rTMS.
Collapse
Affiliation(s)
- Alexander Luborzewski
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Eschenallee 3, D-14050 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Choi JK, Dedeoglu A, Jenkins BG. Application of MRS to mouse models of neurodegenerative illness. NMR IN BIOMEDICINE 2007; 20:216-37. [PMID: 17451183 DOI: 10.1002/nbm.1145] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The rapid development of transgenic mouse models of neurodegenerative diseases, in parallel with the rapidly expanding growth of MR techniques for assessing in vivo, non-invasive, neurochemistry, offers the potential to develop novel markers of disease progression and therapy. In this review we discuss the interpretation and utility of MRS for the study of these transgenic mouse and rodent models of neurodegenerative diseases such as Alzheimer's (AD), Huntington's (HD) and Parkinson's disease (PD). MRS studies can provide a wealth of information on various facets of in vivo neurochemistry, including neuronal health, gliosis, osmoregulation, energy metabolism, neuronal-glial cycling, and molecular synthesis rates. These data provide information on the etiology, natural history and therapy of these diseases. Mouse models enable longitudinal studies with useful time frames for evaluation of neuroprotection and therapeutic interventions using many of the potential MRS markers. In addition, the ability to manipulate the genome in these models allows better mechanistic understanding of the roles of the observable neurochemicals, such as N-acetylaspartate, in the brain. The argument is made that use of MRS, combined with correlative histology and other MRI techniques, will enable objective markers with which potential therapies can be followed in a quantitative fashion.
Collapse
Affiliation(s)
- Ji-Kyung Choi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
36
|
A comparative study of bioradiography in human brain slices and preoperative PET imaging. Brain Res 2007; 1142:19-27. [DOI: 10.1016/j.brainres.2007.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 01/09/2007] [Accepted: 01/09/2007] [Indexed: 11/19/2022]
|
37
|
DeVito TJ, Drost DJ, Neufeld RWJ, Rajakumar N, Pavlosky W, Williamson P, Nicolson R. Evidence for cortical dysfunction in autism: a proton magnetic resonance spectroscopic imaging study. Biol Psychiatry 2007; 61:465-73. [PMID: 17276747 DOI: 10.1016/j.biopsych.2006.07.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/27/2006] [Accepted: 07/19/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Although brain imaging studies have reported neurobiological abnormalities in autism, the nature and distribution of the underlying neurochemical irregularities are unknown. The purpose of this study was to examine cerebral gray and white matter cellular neurochemistry in autism with proton magnetic resonance spectroscopic imaging (MRSI). METHODS Proton MRSI examinations were conducted in 26 males with autism (age 9.8 +/- 3.2 years) and 29 male comparison subjects (age 11.1 +/- 2.4 years). Estimates of cerebral gray and white matter concentrations of N-acetylaspartate (NAA), creatine + phosphocreatine, choline-containing compounds, myo-inositol, and glutamate + glutamine (Glx) were made by linear regression analysis of multi-slice MRSI data and compared between groups. Regional estimates of metabolite concentration were also made with multivariate linear regression, allowing for comparisons of frontal, temporal, and occipital gray matter, cerebral white matter, and the cerebellum. RESULTS Patients with autism exhibited significantly lower levels of gray matter NAA and Glx than control subjects. Deficits were widespread, affecting most cerebral lobes and the cerebellum. No significant differences were detected in cerebral white matter or cerebellar metabolite levels. CONCLUSIONS These results suggest widespread reductions in gray matter neuronal integrity and dysfunction of cortical and cerebellar glutamatergic neurons in patients with autism.
Collapse
Affiliation(s)
- Timothy J DeVito
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Shen J. 13C magnetic resonance spectroscopy studies of alterations in glutamate neurotransmission. Biol Psychiatry 2006; 59:883-7. [PMID: 16199016 DOI: 10.1016/j.biopsych.2005.07.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/11/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
Over the past a few years, significant progress has been made in refining the in vivo 13C magnetic resonance spectroscopy technique and in applying it to studying the alterations in the glutamate-glutamine cycling flux. Meanwhile, the details of the metabolic modeling are being rigorously debated. Recent evidence against fast alpha-ketoglutarate-glutamate exchange across the mitochondrial membrane is examined. Previous reports have indicated that glutamate release or 13C label incorporation into glutamine is attenuated at elevated concentrations of endogenous gamma-aminobutyric acid (GABA). A recent study has shown that phenelzine administration reduces the glutamate-glutamine cycling flux while raising endogenous GABA levels in vivo. Effects of several metabotropic glutamate receptor agonists and antagonists and brain disorders on the glutamate-glutamine cycle are also summarized.
Collapse
Affiliation(s)
- Jun Shen
- Molecular Imaging Branch, Mood and Anxiety Disorders Program, National Institute of Mental Health, Bethesda, Maryland 20892-1527, USA.
| |
Collapse
|
39
|
Whiteside SP, Port JD, Deacon BJ, Abramowitz JS. A magnetic resonance spectroscopy investigation of obsessive-compulsive disorder and anxiety. Psychiatry Res 2006; 146:137-47. [PMID: 16507346 DOI: 10.1016/j.pscychresns.2005.12.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 12/06/2005] [Accepted: 12/14/2005] [Indexed: 12/11/2022]
Abstract
The aim of the current study was to use proton magnetic resonance spectroscopy (MRS) to investigate potential irregularities in neurochemical compounds in obsessive-compulsive disorder (OCD) and the extent to which these irregularities are related to state anxiety. Single voxel MRS was used to image the head of the caudate nucleus (HOC) and orbitofrontal white matter (OFWM) bilaterally in adult patients with OCD and a control group. The results indicated that patients with OCD had increased levels of a combined measure of glutamate and glutamine (Glx/Cr) and N-acetyl-l-aspartic acid (NAA/Cr) relative to creatine in the right OFWM and reduced levels of myo-inositol relative to creatine (mI/Cr) in the HOC bilaterally. Correlational analyses indicated that Glx/Cr in the OFWM was related to OCD symptoms, while mI/Cr in the HOC was related to trait and/or state anxiety. Reanalysis of the significant group differences controlling for state anxiety symptoms erased three of the four group differences. These results are discussed in context of the methodological difficulties facing this area of research.
Collapse
Affiliation(s)
- Stephen P Whiteside
- Department of Psychiatry and Psychology, West 11, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, United States.
| | | | | | | |
Collapse
|
40
|
Rosenberg DR, Macmaster FP, Mirza Y, Smith JM, Easter PC, Banerjee SP, Bhandari R, Boyd C, Lynch M, Rose M, Ivey J, Villafuerte RA, Moore GJ, Renshaw P. Reduced anterior cingulate glutamate in pediatric major depression: a magnetic resonance spectroscopy study. Biol Psychiatry 2005; 58:700-4. [PMID: 16084860 DOI: 10.1016/j.biopsych.2005.05.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/25/2005] [Accepted: 05/04/2005] [Indexed: 11/30/2022]
Abstract
BACKGROUND Anterior cingulate cortex has been implicated in the pathogenesis of major depressive disorder (MDD). With single voxel proton magnetic resonance spectroscopy, we reported reductions in anterior cingulate glutamatergic concentrations (grouped value of glutamate and glutamine) in 14 pediatric MDD patients versus 14 case-matched healthy control subjects. These changes might reflect a change in glutamate, glutamine, or their combination. METHODS Fitting to individually quantify anterior cingulate glutamate and glutamine was performed in these subjects with a new basis set created from data acquired on a 1.5 Tesla General Electric Signa (GE Healthcare, Waukesha, Wisconsin) magnetic resonance imaging scanner with LCModel (Version 6.1-0; Max-Planck-Institute, Gottingen, Germany). RESULTS Reduced anterior cingulate glutamate was observed in MDD patients versus control subjects (8.79 +/- 1.68 vs. 11.46 +/- 1.55, respectively, p = .0002; 23% decrease). Anterior cingulate glutamine did not differ significantly between patients with MDD and control subjects. CONCLUSIONS These findings provide confirmatory evidence of anterior cingulate glutamate alterations in pediatric MDD.
Collapse
Affiliation(s)
- David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, Krystal JH, Spencer DD, Abi-Saab WM. Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 2005; 57:226-35. [PMID: 15668975 DOI: 10.1002/ana.20380] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Interictal brain energy metabolism and glutamate-glutamine cycling are impaired in epilepsy and may contribute to seizure generation. We used the zero-flow microdialysis method to measure the extracellular levels of glutamate, glutamine, and the major energy substrates glucose and lactate in the epileptogenic and the nonepileptogenic cortex and hippocampus of 38 awake epileptic patients during the interictal period. Depth electrodes attached to microdialysis probes were used to identify the epileptogenic and the nonepileptogenic sites. The epileptogenic hippocampus had surprisingly high basal glutamate levels, low glutamine/glutamate ratio, high lactate levels, and indication for poor glucose utilization. The epileptogenic cortex had only marginally increased glutamate levels. We propose that interictal energetic deficiency in the epileptogenic hippocampus could contribute to impaired glutamate reuptake and glutamate-glutamine cycling, resulting in persistently increased extracellular glutamate, glial and neuronal toxicity, increased lactate production together with poor lactate and glucose utilization, and ultimately worsening energy metabolism. Our data suggest that a different neurometabolic process underlies the neocortical epilepsies.
Collapse
Affiliation(s)
- Idil Cavus
- Department of Psychiatry, Yale University, New Haven, CT, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rosenberg DR, Mirza Y, Russell A, Tang J, Smith JM, Banerjee SP, Bhandari R, Rose M, Ivey J, Boyd C, Moore GJ. Reduced anterior cingulate glutamatergic concentrations in childhood OCD and major depression versus healthy controls. J Am Acad Child Adolesc Psychiatry 2004; 43:1146-53. [PMID: 15322418 DOI: 10.1097/01.chi.0000132812.44664.2d] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To examine in vivo glutamatergic neurochemical alterations in the anterior cingulate cortex of pediatric patients with obsessive-compulsive disorder (OCD) without major depressive disorder (MDD) versus pediatric patients with MDD without OCD and healthy controls. METHOD Single-voxel proton magnetic resonance spectroscopic examinations of the anterior cingulate cortex were conducted in 14 psychotropic-naïve children and adolescents with MDD without OCD, 10 to 19 years of age, 14 case-matched healthy controls, and 20 nondepressed, psychotropic-naïve pediatric patients with OCD 7 to 19 years of age. RESULTS Anterior cingulate glutamatergic concentrations were significantly reduced in both patients with OCD (15.1% decrease) and patients with MDD (18.7% decrease) compared with controls. Anterior cingulate glutamatergic concentrations did not differ significantly between patients with OCD and those with MDD. CONCLUSIONS Altered anterior cingulate glutamatergic neurotransmission may be involved in the pathogenesis of OCD and MDD. These preliminary findings further suggest that reduced anterior cingulate glutamate does not differentiate pediatric patients with OCD from pediatric patients with MDD.
Collapse
Affiliation(s)
- David R Rosenberg
- Departments of Psychiatry, Wayne State University, Detroit, MI, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Henry TR, Votaw JR. The role of positron emission tomography with [18F]fluorodeoxyglucose in the evaluation of the epilepsies. Neuroimaging Clin N Am 2004; 14:517-35, ix. [PMID: 15324862 DOI: 10.1016/j.nic.2004.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cerebral glucose metabolic mapping using positron emission tomography (PET) and 2-[18F]fluoro-2-deoxyglucose (FDG) has been extensively studied in the epilepsies. Regions of interictal glucose hypometabolism are highly associated with cerebral sites of seizure generation-propagation in focal epilepsies. The volume of reduced glucose metabolism is often widespread and even bilateral in focal epilepsies, although ictal onset zones typically are located at the sites of most severe hypometabolism within a larger volume of hypometabolism.
Collapse
Affiliation(s)
- Thomas R Henry
- Department of Neurology, Emory University School of Medicine, Woodruff Memorial Building, Suite 6000, PO Drawer V, 1639 Pierce Drive, Atlanta, GA 30322, USA.
| | | |
Collapse
|
44
|
Ryvlin P, Mauguière F. L’imagerie fonctionnelle chez l’adulte. Rev Neurol (Paris) 2004. [DOI: 10.1016/s0035-3787(04)71190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Krawczyk H, Gradowska W. Characterisation of the 1H and 13C NMR spectra of N-acetylaspartylglutamate and its detection in urine from patients with Canavan disease. J Pharm Biomed Anal 2003; 31:455-63. [PMID: 12615232 DOI: 10.1016/s0731-7085(02)00691-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1H and 13C NMR spectra of N-acetylaspartylglutamate (NAAG) have been recorded and interpreted. The values of the 1H chemical shifts and 1H-(1)H coupling constants at different pH were obtained by iterative computer fitting of 1-D 1H NMR spectra. This provided information on the solution conformation of the investigated molecule. Proton-decoupled high resolution 13C NMR spectra of NAAG have been measured in a series of dilute water solution of various acidity. These data have provided a basis for unequivocal determination of the presence of NAAG in the urine sample of a patient suffering from Canavan disease. NMR spectroscopy provides a possibility of detecting NAAG in body fluids.
Collapse
Affiliation(s)
- Hanna Krawczyk
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | | |
Collapse
|
46
|
van Gelder NM, Sherwin AL. Metabolic parameters of epilepsy: adjuncts to established antiepileptic drug therapy. Neurochem Res 2003; 28:353-65. [PMID: 12608709 DOI: 10.1023/a:1022433421761] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hughlings Jackson at the turn of the century defined epilepsy as a disorder originating in a "morbid nutrition" of the neuron. With the advances in modern neurochemistry, it is becoming increasingly clear that a chronic seizure predisposition or a lowering of the brain's discharge threshold can be demarcated by a number of biochemical markers. They include a tendency for an increased release of glutamate with or without GABAergic impairment, (intra)neural tissue alterations in water redistribution/osmolarity or other distortions of the cytoarchitecture, and an elevation of ionic calcium inside the cell. These changes are dominantly shared parameters of the seizure prone brain. Magnetic resonance spectroscopy (MRS) shows that cerebral levels of glutamate + glutamine (Glx) are increased interictally in epileptogenic regions in human partial epilepsy; other findings using this technique suggest damage to (cellular/mitochondrial) membranes, denoted by N-acetyl-aspartic acid (NAA) changes and a decreased energy capability. The merging of previous in vitro and ex vivo findings in neurophysiology and neurochemistry with magnetic resonance spectroscopy technology provides a powerful new methodology to interpret and to obtain clinical insight into the metabolic alterations that underlie an epileptogenic process. In this review some of these basic neurochemical and electrophysiological mechanisms are discussed. In addition, certain adjuncts to established antiepileptic drug therapy are suggested in the hope that over the long term they may help in correcting the primary metabolic deficits.
Collapse
Affiliation(s)
- Nico M van Gelder
- Queen's University, Department of Chemistry, Kingston, Ontario, Canada.
| | | |
Collapse
|
47
|
Lundberg S, Weis J, Eeg-Olofsson O, Raininko R. Hippocampal region asymmetry assessed by 1H-MRS in rolandic epilepsy. Epilepsia 2003; 44:205-10. [PMID: 12558575 DOI: 10.1046/j.1528-1157.2003.26802.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE In a previous study, we reported hippocampal abnormalities on magnetic resonance imaging (MRI) in six of 18 children with rolandic epilepsy (RE). In this study, metabolic changes were analyzed in the hippocampal region with proton magnetic resonance spectroscopy (1H-MRS). METHODS In 13 children with electroclinically typical RE and 15 healthy controls, 1H-MRS results of both hippocampal regions were analyzed. The voxels, 2 x 2 x 4-cm each, were placed to include the head and body of the hippocampus. A PRESS sequence with TR 2,000 ms and TE 32 ms was used. Total N-acetylaspartate (tNAA), glutamine and glutamate (Glx), and choline compounds (tCho) were related to total creatine (tCr), and asymmetry indices (AIs) were calculated. MRI was performed in all 13 patients and in 13 controls. RESULTS The tNAA/tCr AI of the hippocampal region was significantly higher in children with RE than in control children (z = 4.49; p < 0.001). The AIs of Glx/tCr and tCho/tCr did not show a significant difference between the groups. Lateralization of the interictal epileptiform activity corresponded with the lower tNAA/tCr ratio in 10 of 13 patients. MRI revealed a hippocampal asymmetry in four of 13 in the RE group, three of them showed concordance between the lateralization of the lower tNAA/tCr ratio and the smaller hippocampus. In the control group, a subtle asymmetry in four of 13 children was found. CONCLUSIONS A significant asymmetry of the hippocampal regions, measured by tNAA/tCr ratios, indicates an abnormal neuronal function in children with RE.
Collapse
Affiliation(s)
- Staffan Lundberg
- Department of Women's and Children's Health, Section for Pediatrics, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | |
Collapse
|
48
|
Pandey P, Shah J, Juhász C, Pfund Z, Chugani HT. Spontaneous long-term remission of intractable partial epilepsy in childhood. J Child Neurol 2002; 17:466-70. [PMID: 12174973 DOI: 10.1177/088307380201700616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drug-resistant partial epilepsy in children often has a major impact on cognitive development, and early surgical intervention has been advocated to prevent adverse neurobehavioral effects of seizures in such patients. We report a 5-year-old boy who had cryptogenic partial epilepsy of right parietal origin as documented by ictal electroencephalogram (EEG) and glucose metabolism positron emission tomographic (PET) scan. His atonic seizures could not be controlled by multiple antiepilepsy drugs; therefore, cortical resection was scheduled. However, his seizures remitted spontaneously after 1 year of failed medical treatment. The epileptiform abnormality disappeared on the follow-up EEGs, and a glucose PET scan also normalized. This boy has fully retained his cognitive and motor functions and has remained seizure free in the past 4z\x years off medications.
Collapse
Affiliation(s)
- Pratima Pandey
- Department of Transitional Medicine, Children's Hospital of Michigan/Detroit Medical Center, Wayne State University School of Medicine, 48201, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
Asphyxia and other insults to the developing brain are responsible for several human neurodevelopmental disorders. The pattern of neonatal brain injury differs from that seen in the adult nervous system, and there are wide differences in regional vulnerability. Recent evidence suggests that two events that contribute to this pattern of selective vulnerability are developmental changes in excitatory glutamate-containing neurotransmitter circuits and the propensity for immature neurons to die by apoptosis rather than necrosis. Developmental up-regulation of NMDA receptors with enhanced function and increased expression of caspase-3 at critical periods in development are linked to these mechanisms. Although these molecular changes enhance the developing brain's capacity for plasticity by helping to prune redundant synapses and neurons, they can become "Achilles heels" in the face of a brain energy crisis.
Collapse
Affiliation(s)
- Michael V Johnston
- Department of Neurology and Pediatrics and Kenedy Kreger Research Institute, John Hopkins University School of Medicine, Baltimore, Maryland 21205,USA.
| | | | | |
Collapse
|
50
|
Hutchinson PJ, O'Connell MT, Kirkpatrick PJ, Pickard JD. How can we measure substrate, metabolite and neurotransmitter concentrations in the human brain? Physiol Meas 2002; 23:R75-109. [PMID: 12051319 DOI: 10.1088/0967-3334/23/2/202] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cerebral injury and disease is associated with fundamental derangements in metabolism, with changes in the concentration of important substrates (e.g. glucose), metabolites (e.g. lactate) and neurotransmitters (e.g. glutamate and y-aminobutyric acid) in addition to changes in oxygen utilization. The ability to measure these substances in the human brain is increasing our understanding of the pathophysiology of trauma, stroke, epilepsy and tumours. There are several techniques in clinical practice already in use and new methods are under evaluation. Such techniques include the use of cerebral probes (e.g. microdialysis. voltammetry and spectrophotometry) and functional imaging (e.g. positron emission tomography and magnetic resonance spectroscopy). This review describes these techniques in terms of their principles and clinical applications.
Collapse
Affiliation(s)
- P J Hutchinson
- Department of Neurosurgery and Wolfson Brain Imaging Centre, Addenbrooke's Hospital, University of Cambridge, UK.
| | | | | | | |
Collapse
|