1
|
Adeniyi-Ipadeola GO, Hankins JD, Kambal A, Zeng XL, Patil K, Poplaski V, Bomidi C, Nguyen-Phuc H, Grimm SL, Coarfa C, Stossi F, Crawford SE, Blutt SE, Speer AL, Estes MK, Ramani S. Infant and adult human intestinal enteroids are morphologically and functionally distinct. mBio 2024; 15:e0131624. [PMID: 38953637 PMCID: PMC11323560 DOI: 10.1128/mbio.01316-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Human intestinal enteroids (HIEs) are gaining recognition as physiologically relevant models of the intestinal epithelium. While HIEs from adults are used extensively in biomedical research, few studies have used HIEs from infants. Considering the dramatic developmental changes that occur during infancy, it is important to establish models that represent infant intestinal characteristics and physiological responses. We established jejunal HIEs from infant surgical samples and performed comparisons to jejunal HIEs from adults using RNA sequencing (RNA-Seq) and morphologic analyses. We then validated differences in key pathways through functional studies and determined whether these cultures recapitulate known features of the infant intestinal epithelium. RNA-Seq analysis showed significant differences in the transcriptome of infant and adult HIEs, including differences in genes and pathways associated with cell differentiation and proliferation, tissue development, lipid metabolism, innate immunity, and biological adhesion. Validating these results, we observed a higher abundance of cells expressing specific enterocyte, goblet cell, and enteroendocrine cell markers in differentiated infant HIE monolayers, and greater numbers of proliferative cells in undifferentiated 3D cultures. Compared to adult HIEs, infant HIEs portray characteristics of an immature gastrointestinal epithelium including significantly shorter cell height, lower epithelial barrier integrity, and lower innate immune responses to infection with an oral poliovirus vaccine. HIEs established from infant intestinal tissues reflect characteristics of the infant gut and are distinct from adult cultures. Our data support the use of infant HIEs as an ex vivo model to advance studies of infant-specific diseases and drug discovery for this population. IMPORTANCE Tissue or biopsy stem cell-derived human intestinal enteroids are increasingly recognized as physiologically relevant models of the human gastrointestinal epithelium. While enteroids from adults and fetal tissues have been extensively used for studying many infectious and non-infectious diseases, there are few reports on enteroids from infants. We show that infant enteroids exhibit both transcriptomic and morphological differences compared to adult cultures. They also differ in functional responses to barrier disruption and innate immune responses to infection, suggesting that infant and adult enteroids are distinct model systems. Considering the dramatic changes in body composition and physiology that begin during infancy, tools that appropriately reflect intestinal development and diseases are critical. Infant enteroids exhibit key features of the infant gastrointestinal epithelium. This study is significant in establishing infant enteroids as age-appropriate models for infant intestinal physiology, infant-specific diseases, and responses to pathogens.
Collapse
Affiliation(s)
| | - Julia D. Hankins
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Amal Kambal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core, Houston, Texas, USA
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core, Houston, Texas, USA
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Victoria Poplaski
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hoa Nguyen-Phuc
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sandra L. Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Gulf Coast Consortium Center for Advanced Microscopy and Image Informatics, Houston, Texas, USA
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core, Houston, Texas, USA
| | - Allison L. Speer
- Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, Texas, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Adeniyi-Ipadeola GO, Hankins JD, Kambal A, Zeng XL, Patil K, Poplaski V, Bomidi C, Nguyen-Phuc H, Grimm SL, Coarfa C, Stossi F, Crawford SE, Blutt SE, Speer AL, Estes MK, Ramani S. Infant and Adult Human Intestinal Enteroids are Morphologically and Functionally Distinct. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.19.541350. [PMID: 37292968 PMCID: PMC10245709 DOI: 10.1101/2023.05.19.541350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background & Aims Human intestinal enteroids (HIEs) are gaining recognition as physiologically relevant models of the intestinal epithelium. While HIEs from adults are used extensively in biomedical research, few studies have used HIEs from infants. Considering the dramatic developmental changes that occur during infancy, it is important to establish models that represent infant intestinal characteristics and physiological responses. Methods We established jejunal HIEs from infant surgical samples and performed comparisons to jejunal HIEs from adults using RNA sequencing (RNA-Seq) and morphologic analyses. We validated differences in key pathways through functional studies and determined if these cultures recapitulate known features of the infant intestinal epithelium. Results RNA-Seq analysis showed significant differences in the transcriptome of infant and adult HIEs, including differences in genes and pathways associated with cell differentiation and proliferation, tissue development, lipid metabolism, innate immunity, and biological adhesion. Validating these results, we observed a higher abundance of cells expressing specific enterocyte, goblet cell and enteroendocrine cell markers in differentiated infant HIE monolayers, and greater numbers of proliferative cells in undifferentiated 3D cultures. Compared to adult HIEs, infant HIEs portray characteristics of an immature gastrointestinal epithelium including significantly shorter cell height, lower epithelial barrier integrity, and lower innate immune responses to infection with an oral poliovirus vaccine. Conclusions HIEs established from infant intestinal tissues reflect characteristics of the infant gut and are distinct from adult cultures. Our data support the use of infant HIEs as an ex-vivo model to advance studies of infant-specific diseases and drug discovery for this population.
Collapse
Affiliation(s)
| | - Julia D. Hankins
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Amal Kambal
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Victoria Poplaski
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Carolyn Bomidi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Hoa Nguyen-Phuc
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Sandra L. Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
- Center for Precision and Environmental Health, Baylor College of Medicine, Houston, TX
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Golf Coast Consortium Center for Advanced Microscopy and Image Informatics, Houston, TX
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core
| | - Allison L. Speer
- Department of Pediatric Surgery, The University of Texas Health Science Center, Houston, TX
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
- Texas Medical Center Digestive Diseases Center Gastrointestinal Experimental Model Systems (GEMS) Core
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
3
|
Li C, Sun Y, He T, Lu Y, Szeto IMY, Duan S, Zhang Y, Liu B, Zhang Y, Zhang W, He J, Li Y. Synergistic effect of lactoferrin and osteopontin on intestinal barrier injury. Int J Biol Macromol 2023; 253:127416. [PMID: 37838132 DOI: 10.1016/j.ijbiomac.2023.127416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Several studies indicate that the disruption of the intestinal epithelial barrier can lead to inflammatory bowel disease (IBD). Recent evidence has increasingly demonstrated that lactoferrin (LF) and osteopontin (OPN) can alleviate intestinal barrier injury. However, the potential synergistic effects of these two proteins and the mechanisms underlying their effects remain unclear. To address this question, we developed a lipopolysaccharide-induced intestinal barrier injury model in C57BL/6 N mice. Our findings demonstrated that the combination of LF and OPN at a 1:5 ratio exerts the strongest protective effect on the intestinal barrier, and it is more effective than LF or OPN alone. This protection is evidenced by the decrease in serum diamine oxidase (DAO) activity (1.66-fold decrease) and D-lactic content (1.51-fold decrease) and the reduced rate of FITC-labeled glucan transport across the jejunum (3.18-fold decrease). Moreover, the protein combination significantly promoted villi length (1.66-fold increase) and crypt depth (1.57-fold increase), improved tight junction protein structure and expression, and boosted the number of absorptive cells (4.34-fold increase) in the intestinal epithelium. Furthermore, the combination promoted crypt cell proliferation and differentiation via Notch signaling. In summary, our findings provide scientific evidence supporting the use of dietary intervention strategies for preventing IBD.
Collapse
Affiliation(s)
- Chuangang Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Functional Daily, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yanan Sun
- Key Laboratory of Functional Daily, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Tingchao He
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing 100070, China
| | - Yao Lu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing 100070, China; National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Sufang Duan
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing 100070, China
| | - Yifan Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Biao Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Inner Mongolia Yili Industrial Group, Co. Ltd., Yili Maternal and Infant Nutrition Institute (YMINI), Beijing 100070, China
| | - Yiran Zhang
- Key Laboratory of Functional Daily, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wen Zhang
- Key Laboratory of Functional Daily, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Yixuan Li
- Key Laboratory of Functional Daily, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Donovan SM, Aghaeepour N, Andres A, Azad MB, Becker M, Carlson SE, Järvinen KM, Lin W, Lönnerdal B, Slupsky CM, Steiber AL, Raiten DJ. Evidence for human milk as a biological system and recommendations for study design-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 4. Am J Clin Nutr 2023; 117 Suppl 1:S61-S86. [PMID: 37173061 PMCID: PMC10356565 DOI: 10.1016/j.ajcnut.2022.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 05/15/2023] Open
Abstract
Human milk contains all of the essential nutrients required by the infant within a complex matrix that enhances the bioavailability of many of those nutrients. In addition, human milk is a source of bioactive components, living cells and microbes that facilitate the transition to life outside the womb. Our ability to fully appreciate the importance of this matrix relies on the recognition of short- and long-term health benefits and, as highlighted in previous sections of this supplement, its ecology (i.e., interactions among the lactating parent and breastfed infant as well as within the context of the human milk matrix itself). Designing and interpreting studies to address this complexity depends on the availability of new tools and technologies that account for such complexity. Past efforts have often compared human milk to infant formula, which has provided some insight into the bioactivity of human milk, as a whole, or of individual milk components supplemented with formula. However, this experimental approach cannot capture the contributions of the individual components to the human milk ecology, the interaction between these components within the human milk matrix, or the significance of the matrix itself to enhance human milk bioactivity on outcomes of interest. This paper presents approaches to explore human milk as a biological system and the functional implications of that system and its components. Specifically, we discuss study design and data collection considerations and how emerging analytical technologies, bioinformatics, and systems biology approaches could be applied to advance our understanding of this critical aspect of human biology.
Collapse
Affiliation(s)
- Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, IL, USA.
| | - Nima Aghaeepour
- Department of Anesthesiology, Pain, and Perioperative Medicine, Department of Pediatrics, and Department of Biomedical Data Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Aline Andres
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Meghan B Azad
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Department of Pediatrics and Child Health and Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Martin Becker
- Department of Anesthesiology, Pain, and Perioperative Medicine, Department of Pediatrics, and Department of Biomedical Data Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kirsi M Järvinen
- Department of Pediatrics, Division of Allergy and Immunology and Center for Food Allergy, University of Rochester Medical Center, New York, NY, USA
| | - Weili Lin
- Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, CA, USA
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, CA, USA; Department of Food Science and Technology, University of California, Davis, CA, USA
| | | | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Zhang J, Long X, Liao Q, Chai J, Zhang T, Chen L, He H, Yuan Y, Wan K, Wang J, Liu A. Distinct Gut Microbiome Induced by Different Feeding Regimes in Weaned Piglets. Genes (Basel) 2022; 14:49. [PMID: 36672790 PMCID: PMC9858795 DOI: 10.3390/genes14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
It is well accepted that the gut microbiota of breast-fed (BF) and formula-fed (FF) infants are significantly different. However, there is still a limited number of studies comparing the gut microbiota of BF and FF piglets, despite increasing numbers of FF piglets in the modern pig industry. The present study identified the differences in gut microbiota composition between BF- and FF-weaned Rongchang piglets at 30 days old, using pair-end sequencing on the Illumina HiSeq 2500 platform. The BF piglets had lower microbiota diversities than FF piglets (p < 0.05), and the community structures were well clustered as a result of each feeding pattern. Firmicutes and Bacteroidetes represented the most dominant phyla, and Ruminococcus, Prevotella, and Gemmiger were prominent genera in all piglets. Ruminococcus, Prevotella, Oscillospira, Eubacterium, Gemmiger, Dorea, and Lactobacillus populations were significantly higher, while Treponema and Coprococcus were significantly lower in BF piglets compared to FF piglets (p < 0.05). The metabolism pathways in the BF piglets were significantly different from FF piglets, which included carbohydrate and amino acid metabolism (p < 0.05). In addition, the top 10 abundance of microbiota were more or less significantly associated with the two phenotypes (p < 0.05). Collectively, these findings provide probable explanations for the importance of BF in neonates and support a theoretical basis for feeding regimes in indigenous Chinese piglets.
Collapse
Affiliation(s)
- Jie Zhang
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xi Long
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Qinfeng Liao
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China
| | - Jie Chai
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Tinghuan Zhang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Li Chen
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Hang He
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China
| | - Yancong Yuan
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Kun Wan
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| |
Collapse
|
6
|
Noel G, In JG, Lemme-Dumit JM, DeVine LR, Cole RN, Guerrerio AL, Campbell JD, Kovbasnjuk O, Pasetti MF. Human Breast Milk Enhances Intestinal Mucosal Barrier Function and Innate Immunity in a Healthy Pediatric Human Enteroid Model. Front Cell Dev Biol 2021; 9:685171. [PMID: 34327199 PMCID: PMC8313895 DOI: 10.3389/fcell.2021.685171] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Breastfeeding has been associated with long lasting health benefits. Nutrients and bioactive components of human breast milk promote cell growth, immune development, and shield the infant gut from insults and microbial threats. The molecular and cellular events involved in these processes are ill defined. We have established human pediatric enteroids and interrogated maternal milk's impact on epithelial cell maturation and function in comparison with commercial infant formula. Colostrum applied apically to pediatric enteroid monolayers reduced ion permeability, stimulated epithelial cell differentiation, and enhanced tight junction function by upregulating occludin. Breast milk heightened the production of antimicrobial peptide α-defensin 5 by goblet and Paneth cells, and modulated cytokine production, which abolished apical release of pro-inflammatory GM-CSF. These attributes were not found in commercial infant formula. Epithelial cells exposed to breast milk elevated apical and intracellular pIgR and enabled maternal IgA translocation. Proteomic data revealed a breast milk-induced molecular pattern associated with tissue remodeling and homeostasis. Using a novel ex vivo pediatric enteroid model, we have identified distinct cellular and molecular events involved in human milk-mediated improvement of human intestinal physiology and immunity.
Collapse
Affiliation(s)
- Gaelle Noel
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Julie G. In
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico Health Science Center, Albuquerque, NM, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jose M. Lemme-Dumit
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Lauren R. DeVine
- Department of Biological Chemistry, Johns Hopkins Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Robert N. Cole
- Department of Biological Chemistry, Johns Hopkins Mass Spectrometry and Proteomics Facility, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Anthony L. Guerrerio
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - James D. Campbell
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Olga Kovbasnjuk
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of New Mexico Health Science Center, Albuquerque, NM, United States
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marcela F. Pasetti
- Department of Pediatrics, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Chapron BD, Chapron A, Leeder JS. Recent advances in the ontogeny of drug disposition. Br J Clin Pharmacol 2021; 88:4267-4284. [PMID: 33733546 DOI: 10.1111/bcp.14821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Developmental changes that occur throughout childhood have long been known to impact drug disposition. However, pharmacokinetic studies in the paediatric population have historically been limited due to ethical concerns arising from incorporating children into clinical trials. As such, much of the early work in the field of developmental pharmacology was reliant on difficult-to-interpret in vitro and in vivo animal studies. Over the last 2 decades, our understanding of the mechanistic processes underlying age-related changes in drug disposition has advanced considerably. Progress has largely been driven by technological advances in mass spectrometry-based methods for quantifying proteins implicated in drug disposition, and in silico tools that leverage these data to predict age-related changes in pharmacokinetics. This review summarizes our current understanding of the impact of childhood development on drug disposition, particularly focusing on research of the past 20 years, but also highlighting select examples of earlier foundational research. Equally important to the studies reviewed herein are the areas that we cannot currently describe due to the lack of research evidence; these gaps provide a map of drug disposition pathways for which developmental trends still need to be characterized.
Collapse
Affiliation(s)
- Brian D Chapron
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Alenka Chapron
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA
| | - J Steven Leeder
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Department of Pediatrics, Children's Mercy Hospital, Kansas City, MO, USA.,Schools of Medicine and Pharmacy, University of Missouri-Kansas City, MO, USA
| |
Collapse
|
8
|
Jena A, Montoya CA, Mullaney JA, Dilger RN, Young W, McNabb WC, Roy NC. Gut-Brain Axis in the Early Postnatal Years of Life: A Developmental Perspective. Front Integr Neurosci 2020; 14:44. [PMID: 32848651 PMCID: PMC7419604 DOI: 10.3389/fnint.2020.00044] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence suggests that alterations in the development of the gastrointestinal (GI) tract during the early postnatal period can influence brain development and vice-versa. It is increasingly recognized that communication between the GI tract and brain is mainly driven by neural, endocrine, immune, and metabolic mediators, collectively called the gut-brain axis (GBA). Changes in the GBA mediators occur in response to the developmental changes in the body during this period. This review provides an overview of major developmental events in the GI tract and brain in the early postnatal period and their parallel developmental trajectories under physiological conditions. Current knowledge of GBA mediators in context to brain function and behavioral outcomes and their synthesis and metabolism (site, timing, etc.) is discussed. This review also presents hypotheses on the role of the GBA mediators in response to the parallel development of the GI tract and brain in infants.
Collapse
Affiliation(s)
- Ankita Jena
- School of Food & Advanced Technology, College of Sciences, Massey University, Palmerston North, New Zealand.,The Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition & Health, Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| | - Carlos A Montoya
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition & Health, Grasslands Research Centre, AgResearch, Palmerston North, New Zealand
| | - Jane A Mullaney
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition & Health, Grasslands Research Centre, AgResearch, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Ryan N Dilger
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Wayne Young
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,Food Nutrition & Health, Grasslands Research Centre, AgResearch, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Warren C McNabb
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Nicole C Roy
- The Riddet Institute, Massey University, Palmerston North, New Zealand.,High-Value Nutrition National Science Challenge, Auckland, New Zealand.,Liggins Institute, The University of Auckland, Auckland, New Zealand.,Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Syed S, Yeruva S, Herrmann J, Sailer A, Sadiq K, Iqbal N, Kabir F, Ahmed K, Qureshi S, Moore SR, Turner J, Ali SA. Environmental Enteropathy in Undernourished Pakistani Children: Clinical and Histomorphometric Analyses. Am J Trop Med Hyg 2018; 98:1577-1584. [PMID: 29611507 PMCID: PMC6086170 DOI: 10.4269/ajtmh.17-0306] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite nutrition interventions, stunting thought to be secondary to underlying environmental enteropathy (EE) remains pervasive among infants residing in resource-poor countries and remains poorly characterized. From a birth cohort of 380 children, 65 malnourished infants received 12 weeks of nutritional supplementation with ready-to-use therapeutic food (RUTF). Eleven children with insufficient response to RUTF underwent upper endoscopy with duodenal biopsies, which were compared with U.S., age-matched specimens for healthy, celiac disease, non-celiac villous atrophy, non-celiac intraepithelial lymphocytosis, and graft-versus-host disease patients. Of the 11 children biopsied, EE was found in 10 (91%) with one subject with celiac disease. Morphometry demonstrated decreased villus-to-crypt (V:C) ratios in EE relative to healthy and non-celiac lymphocytosis patients. Environmental enteropathy villus volumes were significantly decreased relative to healthy controls. In EE, average CD3+ cells per 100 epithelial cells and per 1,000 µm2 of lamina propria and the number of lamina propria CD20+ B-cell aggregates were increased relative to all other groups. Our results indicate that V:C ratios are reduced in EE but are less severe than in celiac disease. Environmental enteropathy intraepithelial and lamina propria T lymphocytosis is of greater magnitude than that in celiac disease. The increases in lamina propria B and T lymphocytes suggest that non-cytolytic lymphocytic activation may be a more prominent feature of EE relative to celiac disease. These results provide new insights into shared yet distinct histological and immunological features of EE and celiac disease in children.
Collapse
Affiliation(s)
- Sana Syed
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pediatrics, University of Virginia, Charlottesville, Virginia.,Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan.,Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sunil Yeruva
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeremy Herrmann
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anne Sailer
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Kamran Sadiq
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Najeeha Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Furqan Kabir
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Kumail Ahmed
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Shahida Qureshi
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Sean R Moore
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Jerrold Turner
- Department of Pathology, University of Chicago, Chicago, Illinois.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - S Asad Ali
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
10
|
Yeruva L, Spencer NE, Saraf MK, Hennings L, Bowlin AK, Cleves MA, Mercer K, Chintapalli SV, Shankar K, Rank RG, Badger TM, Ronis MJJ. Formula diet alters small intestine morphology, microbial abundance and reduces VE-cadherin and IL-10 expression in neonatal porcine model. BMC Gastroenterol 2016; 16:40. [PMID: 27005303 PMCID: PMC4804644 DOI: 10.1186/s12876-016-0456-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/15/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Breastfeeding is associated with a variety of positive health outcomes in children and is recommended exclusively for the first 6 months of life; however, 50-70 % of infants in the US are formula-fed. To test the hypothesis that immune system development and function in neonates and infants are significantly influenced by diet, 2-day old piglets were fed soy or milk formula (n = 6/group/gender) until day 21 and compared to a sow-fed group (n = 6/gender). METHODS Histomorphometric analyses of ileum, jejunum and Peyer's patches were carried out, to determine the inflammation status, mRNA and protein expression of pro-inflammatory, anti-inflammatory and growth-related chemokines and cytokines. RESULTS In formula-fed animals, increases in ileum and jejunum villus height and crypt depth were observed in comparison to sow-fed animals (jejunum, p < 0.01 villus height, p < 0.04 crypt depth; ileum p < 0.001 villus height, p < 0.002 crypt depth). In formula-fed the lymphoid follicle size (p < 0.01) and germinal centers (p < 0.01) with in the Peyer's patch were significantly decreased in comparison to sow-fed, indicating less immune education. In ileum, formula diet induced significant up-regulation of AMCFII, IL-8, IL-15, VEGFA, LIF, FASL, CXCL11, CCL4, CCL25 and down-regulation of IL-6, IL-9, IL-10, IL-27, IFNA4, CSF3, LOC100152038, and LOC100736831 at the transcript level. We have confirmed some of the mRNA data by measuring protein, and significant down-regulation of anti-inflammatory molecule IL-10 in comparison to sow-fed piglets was observed. To further determine the membrane protein expression in the ileum, VE-cadherin, occludin, and claudin-3, Western blot analyses were conducted. Sow fed piglets showed significantly more VE-Cadherin, which associated with levels of calcium, and putrescine measured. It is possible that differences in GI tract and immune development are related to shifts in the microbiome; notably, there were 5-fold higher amounts of Lactobacillaceae spp and 3 fold higher Clostridia spp in the sow fed group in comparison to milk formula-fed piglets, whereas in milk formula-fed pigs Enterobacteriaceae spp was 5-fold higher. CONCLUSION In conclusion, formula diet alters GI morphology, microbial abundance, intestinal barrier protein VE-cadherin and anti-inflammatory molecule IL-10 expression. Further characterization of formula effects could lead to modification of infant formula to improve immune function, reduce inflammation and prevent conditions such as allergies and infections.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Calcium/metabolism
- Cytokines/drug effects
- Cytokines/genetics
- Cytokines/metabolism
- Diet
- Down-Regulation
- Fas Ligand Protein/drug effects
- Fas Ligand Protein/genetics
- Fas Ligand Protein/metabolism
- Gastrointestinal Microbiome/drug effects
- Humans
- Ileum/drug effects
- Ileum/metabolism
- Ileum/microbiology
- Ileum/pathology
- Infant Formula/pharmacology
- Infant, Newborn
- Interferon-alpha/drug effects
- Interferon-alpha/genetics
- Interferon-alpha/metabolism
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Interleukin-15/genetics
- Interleukin-15/metabolism
- Interleukin-27/genetics
- Interleukin-27/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Interleukin-8/drug effects
- Interleukin-8/genetics
- Interleukin-8/metabolism
- Interleukin-9/genetics
- Interleukin-9/metabolism
- Intestine, Small/drug effects
- Intestine, Small/metabolism
- Intestine, Small/microbiology
- Intestine, Small/pathology
- Jejunum/drug effects
- Jejunum/metabolism
- Jejunum/microbiology
- Jejunum/pathology
- Leukemia Inhibitory Factor/drug effects
- Leukemia Inhibitory Factor/genetics
- Leukemia Inhibitory Factor/metabolism
- Milk
- Peyer's Patches/drug effects
- Peyer's Patches/immunology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Soy Foods
- Swine
- Up-Regulation
- Vascular Endothelial Growth Factor A/drug effects
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Laxmi Yeruva
- />Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
- />Arkansas Children’s Hospital Research Institute, Little Rock, USA
- />Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | | | - Manish K. Saraf
- />Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
- />Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Leah Hennings
- />Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Anne K. Bowlin
- />Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
- />Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Mario A. Cleves
- />Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
- />Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Kelly Mercer
- />Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
- />Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Sree V. Chintapalli
- />Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
- />Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Kartik Shankar
- />Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
- />Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Roger G. Rank
- />Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
- />Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Thomas M. Badger
- />Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202 USA
- />Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Martin J. J. Ronis
- />Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA USA
| |
Collapse
|
11
|
Cao W, Liu G, Fang T, Wu X, Jia G, Zhao H, Chen X, Wu C, Wang J, Cai J. Effects of spermine on the morphology, digestive enzyme activities, and antioxidant status of jejunum in suckling rats. RSC Adv 2015. [DOI: 10.1039/c5ra15793e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Spermine is a ubiquitous cellular component that plays vital roles in the maintenance of nucleic acids, regulation of kinase activities, protein synthesis, control of ion channel activities and renewal of the gut epithelium.
Collapse
|
12
|
van de Heijning BJM, Berton A, Bouritius H, Goulet O. GI symptoms in infants are a potential target for fermented infant milk formulae: a review. Nutrients 2014; 6:3942-67. [PMID: 25255831 PMCID: PMC4179197 DOI: 10.3390/nu6093942] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 12/27/2022] Open
Abstract
Besides pre- and pro-biotic-containing infant formulae, fermented infant formulae are commonly used to relieve or prevent symptoms of gastrointestinal (GI) discomfort in young infants. During the fermentation process in cow's milk-based formulae, the beneficial bacteria modulate the product by forming several beneficial compounds, which contribute to the alleviation of the symptoms observed. This review summarizes the clinical evidence on the impact of fermented infant formulae on common pediatric GI-symptoms. The potential mechanisms involved are discussed: i.e., the lactose and protein (in-) digestibility, effects on gastric emptying and gut transit and modulation of the colonic microbiota. Although initial evidence indicates a beneficial effect of fermented formulae on GI discomfort in newborns, validation and confirmation of the clinical proof obtained so far is warranted, as well as further research to (more fully) understand the mode of action.
Collapse
Affiliation(s)
| | - Amelie Berton
- Nutricia Research, Early Life Nutrition, P.O. Box 80141, 3508 TC Utrecht, The Netherlands.
| | - Hetty Bouritius
- Nutricia Research, Early Life Nutrition, P.O. Box 80141, 3508 TC Utrecht, The Netherlands.
| | - Olivier Goulet
- Department of Pediatric Gastroenterology-Hepatology and Nutrition, Necker Children's Hospital, University of Paris, 75015 Paris, France.
| |
Collapse
|
13
|
Batchelor HK, Fotaki N, Klein S. Paediatric oral biopharmaceutics: key considerations and current challenges. Adv Drug Deliv Rev 2014; 73:102-26. [PMID: 24189013 DOI: 10.1016/j.addr.2013.10.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 09/30/2013] [Accepted: 10/25/2013] [Indexed: 12/23/2022]
Abstract
The complex process of oral drug absorption is influenced by a host of drug and formulation properties as well as their interaction with the gastrointestinal environment in terms of drug solubility, dissolution, permeability and pre-systemic metabolism. For adult dosage forms the use of biopharmaceutical tools to aid in the design and development of medicinal products is well documented. This review considers current literature evidence to guide development of bespoke paediatric biopharmaceutics tools and reviews current understanding surrounding extrapolation of adult methodology into a paediatric population. Clinical testing and the use of in silico models were also reviewed. The results demonstrate that further work is required to adequately characterise the paediatric gastrointestinal tract to ensure that biopharmaceutics tools are appropriate to predict performance within this population. The most vulnerable group was found to be neonates and infants up to 6 months where differences from adults were greatest.
Collapse
|
14
|
|
15
|
De Vos M, Huygelen V, Willemen S, Fransen E, Casteleyn C, Van Cruchten S, Michiels J, Van Ginneken C. Artificial rearing of piglets: Effects on small intestinal morphology and digestion capacity. Livest Sci 2014. [DOI: 10.1016/j.livsci.2013.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Oswari H, Prayitno L, Dwipoerwantoro PG, Firmansyah A, Makrides M, Lawley B, Kuhn-Sherlock B, Cleghorn G, Tannock GW. Comparison of stool microbiota compositions, stool alpha1-antitrypsin and calprotectin concentrations, and diarrhoeal morbidity of Indonesian infants fed breast milk or probiotic/prebiotic-supplemented formula. J Paediatr Child Health 2013; 49:1032-9. [PMID: 23782263 DOI: 10.1111/jpc.12307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2013] [Indexed: 01/01/2023]
Abstract
AIM The composition of faecal microbiota of babies is known to be influenced by diet. Faecal calprotectin and α1-antitrypsin concentrations may be associated with mucosal permeability and inflammation. We aimed to assess whether there was any difference after consumption of a probiotic/prebiotic formula on faecal microbiota composition, calprotectin and α1-antitrypsin levels, and diarrhoea in comparison with breast milk-fed Indonesian infants. METHODS One hundred sixty infants, 2 to 6 weeks old, were recruited to the study. They were either breastfed or formula fed (80 per group). Faecal samples were collected at recruitment and 3 months later. Bacterial groups characteristic of the human faecal microbiota were quantified in faeces by quantitative polymerase chain reaction. Calprotectin and α1-antitrypsin concentrations were measured using commercial kits. Details of diarrhoeal morbidity were documented and rated for severity. RESULTS The compositions of the faecal microbiota of formula-fed compared with breast milk-fed children were similar except that the probiotic strain Bifidobacterium animalis subsp. lactis DR10 was more abundant after 3 months consumption of the formula. Alpha1-antitrypsin levels were higher in breastfed compared with formula-fed infants. The occurrence of diarrhoea did not differ between the groups of babies. CONCLUSION Feeding Indonesian babies with a probiotic/prebiotic formula did not produce marked differences in the composition of the faecal microbiota in comparison with breast milk. Detrimental effects of formula feeding on biomarkers of mucosal health were not observed.
Collapse
Affiliation(s)
- Hanifah Oswari
- Department of Child Health, University of Indonesia, Jakarta, Indonesia
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bacteriological, biochemical, and immunological modifications in human colostrum after Holder pasteurisation. J Pediatr Gastroenterol Nutr 2013; 56:560-8. [PMID: 23274339 DOI: 10.1097/mpg.0b013e31828393ed] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE The objective of this work was to evaluate the effect of Holder pasteurisation of human colostrum on a variety of microbiological, biochemical, and immunological parameters. METHODS Colostrum samples from 10 donors, and 8 samples of mature milk used as controls, were heated at 62.5°C for 30 minutes. Bacterial counts and the concentration of furosine, lactose, myoinositol, glucose, lactulose, cytokines, and immunoglobulins were determined before and after the heat treatment. RESULTS Mean bacterial counts in nonpasteurised colostrum samples oscillated between 2.72 and 4.13 log10 colony-forming units per millilitre in the agar media tested. Holder pasteurisation led to the destruction of the bacteria originally present in the samples. Furosine was detected in all samples before pasteurisation and increased significantly after the heat treatment (from 6.60 to 20.59 mg/100 g protein). Lactulose content was below the detection limit in nonpasteurised colostrum, but it was detected in all samples and quantified in 7 of them (from 10.68 to 38.02 mg/L) after Holder pasteurisation. Lactose, glucose, and myoinositol concentrations did not change after Holder pasteurisation. The concentrations of most cytokines and immunoglobulins were significantly higher in colostrum than in mature milk samples. Immunoglobulin content, both in colostrum and in milk samples, was reduced during pasteurisation, whereas, among cytokines, only macrophage inflammatory protein-1β, interleukin-7, and granulocyte-macrophage-colony-stimulating factor concentrations were affected by this heat treatment. CONCLUSIONS Lactulose and furosine content could be used as heat treatment indicators in colostrum samples. Holder pasteurisation modified the immunological profile of both colostrum and mature milk.
Collapse
|
18
|
Boudry G, Morise A, Seve B, LE Huërou-Luron I. Effect of milk formula protein content on intestinal barrier function in a porcine model of LBW neonates. Pediatr Res 2011; 69:4-9. [PMID: 20856168 DOI: 10.1203/pdr.0b013e3181fc9d13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Our study aimed at investigating the impact of the level of protein in milk formula on intestinal structure, barrier function, and its nervous regulation in normal and LBW neonates using a porcine model. Normal birth weight (NBW) or LBW piglets were fed from d7 to d28 of age either with a high protein (HP) or with an adequate protein (AP) formula or stayed with their mother [mother fed (MF)]. The proximal jejunum and distal ileum were sampled at d28 for morphometry analysis and ex vivo permeability measurement in Ussing chambers. Formula feeding induced a trophic effect on the jejunum and ileum of both NBW and LBW piglets, which exhibited longer villi than MF animals, irrespective of the type of formula. In NBW piglets, intestinal permeability was not altered by formula feeding. On the contrary, LBW piglets fed with HP formula, but not AP, exhibited a greater ileal permeability than MF piglets. Feeding the HP formula also disturbed jejunal and ileal regulation of permeability by acetylcholine and vasoactive intestinal peptide (VIP) in LBW compared with MF LBW piglets. In conclusion, the level of protein in formulas did not modify intestinal structure and function in NBW individuals but dramatically modified intestinal barrier function physiology in LBW individuals.
Collapse
Affiliation(s)
- Gaëlle Boudry
- Unité Mixte de Recherche 1079, Institut National de la Recherche Agronomique, Saint-Gilles F-35590, France.
| | | | | | | |
Collapse
|
19
|
Parenteral and enteral feeding in preterm piglets differently affects extracellular matrix proteins, enterocyte proliferation and apoptosis in the small intestine. Br J Nutr 2010; 104:989-97. [DOI: 10.1017/s0007114510001613] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The preterm intestine is immature and responds differently to total parenteral nutrition (TPN) and enteral nutrition, compared with the term intestine. We hypothesised that in preterms, diet composition and feeding route affect mucosal morphology, enterocyte mitosis and apoptosis, and the distribution of laminin-1, fibronectin and collagen IV (extracellular matrix proteins (ECMP)). Preterm piglets (93·5 % of gestation) were delivered via caesarean section and birth weight-matched allocated to one of the four experimental groups: the piglets were either euthanised immediately after delivery, after 3 d of TPN or after 2 d enteral feeding with colostrum or milk formula, following 3 d of TPN. We combined immunohistochemistry, image analysis and stereological measurements to describe the intestinal mucosal layer. No significant changes occurred after 3 d of TPN. Feeding colostrum or milk replacer for 2 d after TPN was associated with an increased crypt depth. Only enteral feeding with colostrum resulted in an increased villus height and mitotic index. Neither TPN nor enteral feeding changed the distribution pattern of ECMP or the occurrence of bifid crypts. The immature distribution pattern of ECMP in TPN-fed piglets, coupled with unchanged enterocyte mitosis and apoptosis indices, illustrates that feeding preterm pigs 3 d TPN does not lead to mucosal atrophy. Despite the invariable distribution of ECMP, colostrum was associated with crypt hyperplasia resulting in an increased villus height. These data illustrate that some mechanisms regulating cell turnover are immature in preterms and may in part explain the abnormal gut responses to TPN and enteral feeding in prematurely born pigs.
Collapse
|
20
|
Breast- v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev 2010; 23:23-36. [PMID: 20450531 DOI: 10.1017/s0954422410000065] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The health benefits of breast-feeding have been recognised for a long time. In particular, breast-feeding is associated with lower incidence of necrotising enterocolitis and diarrhoea during the early period of life and with lower incidence of inflammatory bowel diseases, type 2 diabetes and obesity later in life. The higher nutritional and protective degree of human milk is related to its nutritional composition that changes over the lactation period and to the biological activities of specific components while lower growth rate of breast-fed infants may be attributed to their self-regulation of milk intake at a lower level than formula-fed infants. Many results now suggest that the developmental changes in intestinal and pancreatic function that occur postnatally are modulated by the diet. Indeed, formula-feeding induces intestinal hypertrophy and accelerates maturation of hydrolysis capacities; it increases intestinal permeability and bacterial translocation, but does not induce evident differences in microbiota composition. Whether these changes would be beneficial for enhancing absorptive capacities and for educating the gut-associated immune system remains to be further studied. Moreover, it is evident that formula-feeding increases basal blood glucose and decreases plasma ketone body concentrations, while discrepancies on postprandial glycaemia, insulin and incretin responses in both human studies and experimental studies are inconclusive. Manipulating the composition of formula, by reducing protein content, adding prebiotics, growth factors or secretory IgA can modulate intestinal and pancreatic function development, and thereby may reduce the differential responses between breast-fed and formula-fed neonates. However, the developmental responses of the digestive tract to different feeding strategies must be elucidated in terms of sensitivity to developing diseases, taking into account the major role of the intestinal microbiota.
Collapse
|
21
|
Crypt fission peaks early during infancy and crypt hyperplasia broadly peaks during infancy and childhood in the small intestine of humans. J Pediatr Gastroenterol Nutr 2008; 47:153-7. [PMID: 18664866 DOI: 10.1097/mpg.0b013e3181604d27] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Postnatal growth of the small intestine occurs by crypt hyperplasia and by the less recognised mechanism of crypt fission. How the small intestine grows is largely extrapolated from animals and is poorly described in humans. AIM To investigate crypt fission and crypt hyperplasia as mechanisms of intestinal growth in humans. PATIENTS AND METHODS Proximal intestinal samples were taken from 3 neonates at surgical anastomosis, and duodenal biopsies were taken at endoscopy from 16 infants (mean age 0.7, range 0.3-1.7 years), 14 children (mean age 7.9, range 2.4-16.2 years), and 39 adults. Morphometric measures of villous area, crypt length (measure of crypt hyperplasia), and percentage of bifid crypts (measure of crypt fission) were assessed by a microdissection technique. RESULTS Mean crypt fission rates in neonates, infants, children, and adults were 7.8%, 15%, 4.9%, and 1.7%, respectively. In particular, crypt fission peaked at 18% in 5 infants from 6 to 12 months of age. Mean crypt length was 123 microm in neonates, 287 microm in infants, 277 microm in children, and 209 microm in adults. Thus, crypt hyperplasia had a broad peak during infancy and childhood. CONCLUSIONS We conclude that crypt fission was present predominantly during infancy, and crypt hyperplasia occurred during both infancy and childhood.
Collapse
|
22
|
Mei J, Xu RJ. Transient changes of transforming growth factor-β expression in the small intestine of the pig in association with weaning. Br J Nutr 2007; 93:37-45. [PMID: 15705223 DOI: 10.1079/bjn20041302] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is well known that early weaning causes marked changes in intestinal structure and function, and transforming growth factor-β (TGF-β) is believed to play an important regulatory role in post-weaning adaptation of the small intestine. The present study examined the distribution and expression intensity of TGF-β in the small intestinal mucosa of pre- and post-weaning pigs using a specific immunostaining technique and Western blot analysis. The level of TGF-β in the intestinal mucosa, as estimated by Western blot analysis, did not change significantly during weaning. However, when examined by the immunostaining technique, TGF-β1 (one of the TGF-β isoforms dominantly expressed in the tissue) at the intestinal villus epithelium, particularly at the apical membrane of the epithelium, decreased significantly 4 d after weaning, while the staining intensity increased significantly at the intestinal crypts compared with that in pre-weaning pigs. These changes were transient, with the immunostaining intensity for TGF-β1 at the intestinal villi and the crypts returning to the pre-weaning level by 8 d post-weaning. The transient decrease in TGF-β1 level at the intestinal villus epithelium was associated with obvious intestinal villus atrophy and marked reduction of mucosal digestive enzyme activities. Furthermore, the number of leucocytes staining positively for TGF-β1 increased significantly in the pig intestinal lamina propria 4 d after weaning. These findings strongly suggest that TGF-β plays an important role in the post-weaning adaptation process in the intestine of the pig.
Collapse
Affiliation(s)
- Jie Mei
- Department of Zoology, The University of Hong Kong, Pokfulam Road, Hong Kong
| | | |
Collapse
|
23
|
Donovan SM. Role of human milk components in gastrointestinal development: Current knowledge and future NEEDS. The journal The Journal of Pediatrics 2006. [DOI: 10.1016/j.jpeds.2006.06.052] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Abstract
Antibiotics are increasingly prescribed in the peripartum period, for both maternal and fetal indications. Their effective use undoubtedly reduces the incidence of specific invasive infections in the newborn, such as group B streptococcal septicaemia. However, the total burden of infectious neonatal disease may not be reduced, particularly if broad-spectrum agents are used, as the pattern of infections has been shown to alter to allow dominance of previously uncommon organisms. This area has been relatively understudied, and there are almost no studies of long-term outcome. Recent findings suggest that such long-term data should be sought. First, there is evidence that organisms initially colonising the gut at birth may establish chronic persistence in many children, in contrast to prompt clearance if first encountered in later infancy, childhood or adulthood. Second, there is a rapidly advancing basic scientific data showing that individual members of the gut flora specifically induce gene activation within the host, modulating mucosal and systemic immune function and having an additional impact on metabolic programming. We thus review the published data on the impact of perinatal antibiotic regimens upon composition of the flora and later health outcomes in young children and summarise the recent scientific findings on the potential importance of gut flora composition on immune tolerance and metabolism.
Collapse
|
25
|
Cummins AG, Jones BJ, Thompson FM. Postnatal epithelial growth of the small intestine in the rat occurs by both crypt fission and crypt hyperplasia. Dig Dis Sci 2006; 51:718-23. [PMID: 16614994 DOI: 10.1007/s10620-006-3197-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 08/05/2005] [Indexed: 01/13/2023]
Abstract
Studies of growth of the small intestine have largely concentrated on crypt hyperplasia rather than crypt fission. The aim of this study was to investigate quantitatively both crypt fission and crypt hyperplasia. DAxPVG/c rats were killed at 7, 11, 14, 17, 19, 21, 25, 55, and 72-73 days of life. Samples of jejunum at one third of the intestinal length were taken for morphometry (villous area, crypt area, percentage of bifid crypts, and crypt mitotic count) by microdissection. Growth factors and their receptors were assessed by oligonucleotide microarray. Crypt fission was 10.5%, 5.2%, and 1.5% at days 11, 25, and 72-73 of life, respectively. Crypt hyperplasia increased from day 21. No conventional growth factor was identified during crypt fission. We conclude that crypt fission contributes to growth of the small intestine prior to weaning and crypt hyperplasia to growth after weaning.
Collapse
Affiliation(s)
- Adrian G Cummins
- Department of Gastroenterology and Hepatology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.
| | | | | |
Collapse
|
26
|
Gareau MG, Jury J, Yang PC, MacQueen G, Perdue MH. Neonatal maternal separation causes colonic dysfunction in rat pups including impaired host resistance. Pediatr Res 2006; 59:83-8. [PMID: 16326990 DOI: 10.1203/01.pdr.0000190577.62426.45] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous studies have shown that early life stress in the form of intermittent maternal separation (MS) predisposes adult rats to develop stress-induced intestinal mucosal dysfunction and visceral hypersensitivity. However, the mechanism involved in the functional abnormalities is unclear. Our aim was to study immature animals during or shortly after exposure to MS to determine whether there are early pathophysiological changes in the gut. Sprague-Dawley rat pups were individually separated from the dam for 3 h/d from 4 to 21 d of age; nonseparated (NS) control pups remained in the home cage with the dam. On d 19-20, d 24-25, and d 29-30, blood was collected for corticosterone measurement, and colonic tissues were removed for functional and morphologic assessment. Corticosteroid levels were elevated in MS pups compared with NS, indicating that MS was indeed stressful. The distal colon demonstrated significantly enhanced ion secretion and macromolecular permeability at d 19-20 and d 24-25, returning to normal by d 29-30. Electron microscopy and bacterial culture studies indicated bacteria adhering to and penetrating into the colonic epithelium of the MS pups at all time points, while such events were rare in NS pups. The pathophysiological changes were inhibited by injecting pups sc with a corticotropin-releasing hormone (CRH) receptor antagonist daily during MS. Our studies indicate that early psychological trauma predisposes neonatal rats to develop persistent mucosal barrier dysfunction, including impaired host defense to luminal bacteria, by a mechanism involving peripheral CRH receptors.
Collapse
Affiliation(s)
- Mélanie G Gareau
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | |
Collapse
|
27
|
Shira EB, Sklan D, Friedman A. Impaired immune responses in broiler hatchling hindgut following delayed access to feed. Vet Immunol Immunopathol 2005; 105:33-45. [PMID: 15797473 DOI: 10.1016/j.vetimm.2004.12.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 11/04/2004] [Accepted: 12/10/2004] [Indexed: 12/21/2022]
Abstract
One of the key stimulators of intestinal development in the chick is physical exposure to feed, while feed withholding delays the onset of gut development. A delay of 24-72 h in onset of feeding is quite common in the poultry industry due to variation in hatching time and hatchery treatments. As intestinal development occurs in concert with the development of the gut associated lymphoid tissue (GALT), we investigated the effects of short term feed withholding on development of GALT in broiler hatchlings. GALT activity was determined by antibody production (systemic and locally in the gut), distribution of B and T lymphocytes in the gut, expression of lymphocyte specific genes, and distribution of B and T lymphocytes in the cloacal bursa. Our findings show that while development of GALT in the foregut (duodenum, jejunum, ileum) was only slightly and temporarily impeded by feed withholding, GALT activity in the hindgut and the gut-related cloacal bursa was significantly delayed during the first 2 weeks of life: Systemic and intestinal antibody responses following rectal immunization to antigen were lower, colonization of the hindgut (cecum and colon) by T and B lymphocytes was delayed, as well as the expression of chIL-2 mRNA in hindgut T lymphocytes. We also found that the increase of B and T population size in the cloacal bursa was delayed with time. Full recovery occurred from 2 weeks of age. The 2-week vulnerable period should be seriously considered in circumstances where hatchlings are in transit for extended periods from hatcheries to farms.
Collapse
Affiliation(s)
- Enav Bar Shira
- Section of Immunology, Department of Animal Sciences, Faculty of Agriculture, Food and Environmental Sciences, Hebrew University of Jerusalem, POB 12, Rehovot 76100, Israel
| | | | | |
Collapse
|
28
|
Olafsdottir E, Aksnes L, Fluge G, Berstad A. Faecal calprotectin levels in infants with infantile colic, healthy infants, children with inflammatory bowel disease, children with recurrent abdominal pain and healthy children. Acta Paediatr 2002. [PMID: 11883817 DOI: 10.1111/j.1651-2227.2002.tb01638.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED This study investigated faecal calprotectin concentration, a measure of intestinal inflammation, in infants and children with abdominal pain. Faecal calprotectin was measured by an enzyme-linked immunosorbent assay kit in spot stool samples in 76 infants with typical infantile colic, 7 infants with transient lactose intolerance and 27 healthy infants. All infants were 2-10 wk of age. In addition, 19 children with recurrent abdominal pain (RAP; mean age 11.5 y), 17 with inflammatory bowel disease (IBD; mean age 11.1 y; 10 had Crohn's disease and 7 ulcerative colitis) and 24 healthy children (mean age 5.3 y) were studied. In infants with infantile colic the mean faecal calprotectin concentration was not different from that in healthy infants (278 +/- 105 vs 277 +/- 109 mg kg(-1), p = 0.97) or in infants with transient lactose intolerance (300.3 +/- 124 mg kg(-1), p = 0.60). The calprotectin level was similar in boys and girls and fell significantly with age (p = 0.04). Children with IBD had faecal calprotectin levels (293 +/- 218 mg kg(-1)) much higher than healthy children (40 +/- 28 mg kg(-1), p < 0.0001) and children with RAP without identified organic disease (18 +/- 24 mg kg(-1), p < 0.0001). CONCLUSION Faecal calprotectin may differentiate between functional abdominal pain and IBD in school-aged children. In young infants high faecal calprotectin levels are normal.
Collapse
Affiliation(s)
- E Olafsdottir
- Department of Paediatrics, University of Bergen, Norway.
| | | | | | | |
Collapse
|
29
|
Masjedi M, Tivey DR, Thompson FM, Cummins AG. Activation of the gut-associated lymphoid tissue with expression of interleukin-2 receptors that peaks during weaning in the rat. J Pediatr Gastroenterol Nutr 1999; 29:556-62. [PMID: 10554123 DOI: 10.1097/00005176-199911000-00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Weaning exposes the intestinal mucosa to food and bacterial antigens at an age when the immune system is believed to be immature and functionally defective. The purpose of this study was to investigate changes in activation and phenotype of immune cells of the gut-associated lymphoid tissue during weaning. METHODS Litters of infant rats were studied from pre- to postweaned life. The activation status, assessed by interleukin-2 receptor (IL-2R) expression, and phenotype of cells in the gut-associated lymphoid tissue were examined by immunostaining. RESULTS Interleukin-2 receptor expression peaked two to four-fold at midweaning (day 21) in mesenteric lymph nodes, jejunal lamina propria, Peyer's patches, and intraepithelial lymphocytes, compared with adult animals (day 70). CD45+ cells expanded in the lamina propria, epithelium, and lymphocyte-filled villi. With CD45 as the denominator, 10% to 50% of lymphocytes in the lamina propria and epithelium were alphabetaT-cell receptor (TCR)+, but the remaining cells had a null phenotype, because there were low numbers of gammadeltaTCR+ T cells, B cells, and macrophages. Natural killer cells peaked at midweaning in the lamina propria (9%) and epithelium (20%) but were less than 5% of CD45+ cells after weaning. CONCLUSIONS Rather than being immature or functionally inactive, the gut-associated lymphoid tissue reacts appropriately during weaning with expression of IL-2R and expansion of alphabetaTCR+ T-cells.
Collapse
Affiliation(s)
- M Masjedi
- Gastroenterology Unit, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | | | | | | |
Collapse
|