1
|
Akurati S, Hanlon EC. Beyond the Scale: Exploring the Endocannabinoid System's Impact on Obesity. Curr Diab Rep 2024; 25:6. [PMID: 39543055 DOI: 10.1007/s11892-024-01562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE OF REVIEW This review explores the role of the endocannabinoid system (ECS) in regulating energy balance, food intake, and metabolism, with a focus on how ECS dysregulation contributes to obesity. The goal is to provide insights into the mechanisms underlying obesity and its associated metabolic disorders. RECENT FINDINGS Recent research indicates that the ECS significantly influences food intake, fat storage, insulin sensitivity, and inflammation, all of which are central to the development and progression of obesity. New research areas include the interaction between the ECS and gut microbiota, circadian rhythms of the ECS, and the impact of genetic and epigenetic factors on ECS function. Interest in the therapeutic potential of targeting the ECS has grown, with earlier treatments like CB1 receptor antagonists showing mixed results in efficacy and safety. Evidence from both animal and human studies highlight the impact of elevated levels of the endocannabinoids anandamide and 2-AG on food intake, insulin resistance, visceral fat accumulation, and metabolic disturbances associated with obesity. The review explores the interaction between the ECS and other physiological systems, including gut-brain communication, circadian rhythms, as well as leptin and ghrelin signaling. Additionally, genetic and epigenetic factors influencing ECS function are examined, emphasizing their contribution to obesity susceptibility. While therapeutic approaches targeting the ECS, particularly CB1 receptor antagonism, have shown potential in managing obesity, the review acknowledges the challenges posed by central nervous system side effects in earlier treatments like rimonabant. However, recent advancements in peripherally restricted CB1 antagonists offer renewed hope for safer and more effective obesity treatments. The review concludes by addressing future research directions and therapeutic strategies to combat this global health challenge.
Collapse
Affiliation(s)
- Sneha Akurati
- Leonard M Miller School of Medicine, University of Miami, 1600 NW 10th Ave #1140, Miami, FL, 33136, USA
| | - Erin C Hanlon
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago, 5841 S. Maryland Ave, MC1027, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Cho H, Oh DE, Nam Y, Lee SH, Kim TH. Bioelectronic sensing platform emulating the human endocannabinoid system for assessing and modulating of cannabinoid activity. Biosens Bioelectron 2024; 264:116686. [PMID: 39173339 DOI: 10.1016/j.bios.2024.116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/01/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Cannabinoids are involved in physiological and neuromodulatory processes through their interactions with the human cannabinoid receptor-based endocannabinoid system. Their association with neurodegenerative diseases and brain reward pathways underscores the importance of evaluating and modulating cannabinoid activity for both understanding physiological mechanisms and developing therapeutic drugs. The use of agonists and antagonists could be strategic approaches for modulation. In this study, we introduce a bioelectronic sensor designed to monitor cannabinoid binding to receptors and assess their agonistic and antagonistic properties. We produced human cannabinoid receptor 1 (hCB1R) via an Escherichia coli expression system and incorporated it into nanodiscs (NDs). These hCB1R-NDs were then immobilized on a single-walled carbon nanotube field-effect transistor (swCNT-FET) to construct a bioelectronic sensing platform. This novel system can sensitively detect the cannabinoid ligand anandamide (AEA) at concentrations as low as 1 fM, demonstrating high selectivity and real-time response. It also successfully identified the hCB1R agonist Δ9-tetrahydrocannabinol and observed that the hCB1R antagonist rimonabant diminished the sensor signal upon AEA binding, indicating the antagonism-based modulation of ligand interaction. Consequently, our bioelectronic sensing platform holds potential for ligand detection and analysis of agonism and antagonism.
Collapse
Affiliation(s)
- Hyunju Cho
- Department of Chemistry, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Da Eun Oh
- Department of Chemistry, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Youngju Nam
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Seung Hwan Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
3
|
Davies-Owen J, Christiansen P, Roberts CA. Associations Between Motivations for Cannabis Use and "the Munchies": Construct Validity of the Cannabinoid Eating Experience Questionnaire. Subst Use Misuse 2024; 60:20-27. [PMID: 39279236 DOI: 10.1080/10826084.2024.2403121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
BACKGROUND The Cannabis Eating Experience Questionnaire (CEEQ) was developed and validated with a two-factor structure for the assessment of cannabis effects on both the appetitive factors that initiate eating and the hedonic factors that maintain an eating episode. The relationship between the CEEQ and cannabis use motives has not yet been considered. The study aimed to confirm the two-factor structure of the CEEQ and explore associations with the five-factor Marijuana Motives Questionnaire (MMQ). METHOD Cannabis users (N = 546) completed the CEEQ alongside the MMQ in an online survey. RESULTS Confirmatory factor analysis (CFA) confirmed the two-factor structure of the CEEQ and the five-factor structure of the MMQ. Structural equation modeling (SEM) tested associations between each factor of the CEEQ and cannabis use motives. Cannabis use motives of "enhancement" and "conformity" were both positively associated with "hedonic" and "appetitive" subscales of the CEEQ, and "coping" was associated with increased "appetitive" scores. The "social" cannabis use motive was negatively associated with both "hedonic" and "appetitive" subscales on CEEQ, and "expansion" was negatively associated with the "appetitive" subscale. CONCLUSION We provide further support for the construct validity of the CEEQ that provides a useful assessment of cannabis effects on hedonic and appetitive aspects of eating and show for the first time that cannabis use motives influence eating experiences in distinct ways. Further understanding of the relationship between cannabis use motives and the effects of cannabis on appetite may prove a useful for informing therapeutic applications of cannabis stimulating appetite or promoting weight gain.
Collapse
Affiliation(s)
- Jennifer Davies-Owen
- Department of Psychological Sciences, Institute of Population Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UKingdom
| | - Paul Christiansen
- Department of Psychological Sciences, Institute of Population Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UKingdom
| | - Carl Alexander Roberts
- Department of Psychological Sciences, Institute of Population Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UKingdom
| |
Collapse
|
4
|
Merrill RM. A National Survey of Marijuana Use Among U.S. Adults According to Obesity Status, 2016-2022. Cannabis Cannabinoid Res 2024. [PMID: 39158998 DOI: 10.1089/can.2024.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Background and Objective: Research has linked marijuana use with lower body mass index (BMI). The current study explores the correlation between marijuana use on BMI in the general U.S. population. It reports the prevalence of marijuana in adults in relation to BMI, overall and across the levels of important variables. Materials and Methods: This study used a probability sample of U.S. adults 18 years of age and older from the 2016 through 2022 Behavioral Risk Factor Surveillance System, a telephone-administered survey. The survey collects data from a representative sample regarding health-related risk behaviors, chronic health conditions, and use of preventive services. The primary outcome variables are current (at least once in the last 30 days) and daily (at least 20 of the last 30 days) marijuana use. Results: The study sample consists of 735,921 participants in the surveys that completed the optional module on marijuana use. Prevalence of marijuana use in adults doubled during the study period (7.48% to 14.91%). The increase directly corresponds with a shift toward legalization of medical and recreational marijuana. On average, the prevalence of use is 9% higher when medical marijuana is legal and 81% higher when recreational marijuana is legal (vs. not legal). For obese individuals, prevalence of current marijuana use is 35% lower than for nonobese individuals on average. Lower prevalence of marijuana use in obese individuals is consistently observed across the levels of certain demographic variables, employment status, tobacco smoking history, marijuana legalization status, and certain medical conditions (asthma, arthritis, and depression). In 2022, the adjusted odds of current or daily marijuana use are significantly lower and similar among obese (vs. non-obese) (0.68, 0.69, respectively), such that reduced obesity does not require daily use. Similarly, the adjusted odds of current marijuana use decrease in similar fashion to daily marijuana use with higher BMI weight classification. Conclusion: Marijuana use is correlated with lower BMI. As legalization and prevalence of the drug in the U.S. increases, the prevalence of obesity may decline. However, clinicians should view this outcome along with the known health risks associated with marijuana use.
Collapse
Affiliation(s)
- Ray M Merrill
- Department of Public Health, College of Life Sciences, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
5
|
Jung KM, Lin L, Piomelli D. Overactivation of the Endocannabinoid System in Adolescence Disrupts Adult Adipose Organ Function in Mice. Cells 2024; 13:461. [PMID: 38474425 PMCID: PMC10930932 DOI: 10.3390/cells13050461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
Cannabis use stimulates calorie intake, but epidemiological studies show that people who regularly use it are leaner than those who don't. Two explanations have been proposed for this paradoxical finding. One posits that Δ9-tetrahydrocannabinol (THC) in cannabis desensitizes adipose CB1 cannabinoid receptors, stopping their stimulating effects on lipogenesis and adipogenesis. Another explanation is that THC exposure in adolescence, when habitual cannabis use typically starts, produces lasting changes in the developing adipose organ, which impacts adult systemic energy use. Here, we consider these possibilities in the light of a study which showed that daily THC administration in adolescent mice produces an adult metabolic phenotype characterized by reduced fat mass, partial resistance to obesity and dyslipidemia, and impaired thermogenesis and lipolysis. The phenotype, whose development requires activation of CB1 receptors in differentiated adipocytes, is associated with overexpression of myocyte proteins in the adipose organ with unchanged CB1 expression. We propose that adolescent exposure to THC causes lasting adipocyte dysfunction and the consequent emergence of a metabolic state that only superficially resembles healthy leanness. A corollary of this hypothesis, which should be addressed in future studies, is that CB1 receptors and their endocannabinoid ligands may contribute to the maintenance of adipocyte differentiation during adolescence.
Collapse
Affiliation(s)
- Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; (K.-M.J.); (L.L.)
| | - Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; (K.-M.J.); (L.L.)
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; (K.-M.J.); (L.L.)
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Scott C, Hall S, Zhou J, Lehmann C. Cannabinoids and the Endocannabinoid System in Early SARS-CoV-2 Infection and Long COVID-19-A Scoping Review. J Clin Med 2023; 13:227. [PMID: 38202234 PMCID: PMC10779964 DOI: 10.3390/jcm13010227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Coronavirus disease-19 (COVID-19) is a highly contagious illness caused by the SARS-CoV-2 virus. The clinical presentation of COVID-19 is variable, often including symptoms such as fever, cough, headache, fatigue, and an altered sense of smell and taste. Recently, post-acute "long" COVID-19 has emerged as a concern, with symptoms persisting beyond the acute infection. Vaccinations remain one of the most effective preventative methods against severe COVID-19 outcomes and the development of long-term COVID-19. However, individuals with underlying health conditions may not mount an adequate protective response to COVID-19 vaccines, increasing the likelihood of severe symptoms, hospitalization, and the development of long-term COVID-19 in high-risk populations. This review explores the potential therapeutic role of cannabinoids in limiting the susceptibility and severity of infection, both pre- and post-SARS-CoV-19 infection. Early in the SARS-CoV-19 infection, cannabinoids have been shown to prevent viral entry, mitigate oxidative stress, and alleviate the associated cytokine storm. Post-SARS-CoV-2 infection, cannabinoids have shown promise in treating symptoms associated with post-acute long COVID-19, including depression, anxiety, post-traumatic stress injury, insomnia, pain, and decreased appetite. While current research primarily focuses on potential treatments for the acute phase of COVID-19, there is a gap in research addressing therapeutics for the early and post-infectious phases. This review highlights the potential for future research to bridge this gap by investigating cannabinoids and the endocannabinoid system as a potential treatment strategy for both early and post-SARS-CoV-19 infection.
Collapse
Affiliation(s)
- Cassidy Scott
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (C.S.); (J.Z.)
| | - Stefan Hall
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (C.S.); (J.Z.)
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (C.S.); (J.Z.)
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| |
Collapse
|
7
|
Ge H, Ji B, Fang J, Wang J, Li J, Wang J. Discovery of Potent and Selective CB2 Agonists Utilizing a Function-Based Computational Screening Protocol. ACS Chem Neurosci 2023; 14:3941-3958. [PMID: 37823773 PMCID: PMC10623575 DOI: 10.1021/acschemneuro.3c00580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023] Open
Abstract
Nowadays, the identification of agonists and antagonists represents a great challenge in computer-aided drug design. In this work, we developed a computational protocol enabling us to design/screen novel chemicals that are likely to serve as selective CB2 agonists. The principle of this protocol is that by calculating the ligand-residue interaction profile (LRIP) of a ligand binding to a specific target, the agonist-antagonist function of a compound is then able to be determined after statistical analysis and free energy calculations. This computational protocol was successfully applied in CB2 agonist development starting from a lead compound, and a success rate of 70% was achieved. The functions of the synthesized derivatives were determined by in vitro functional assays. Moreover, the identified potent CB2 agonists and antagonists strongly interact with the key residues identified using the already known potent CB2 agonists/antagonists. The analysis of the interaction profile of compound 6, a potent agonist, showed strong interactions with F2.61, I186, and F2.64, while compound 39, a potent antagonist, showed strong interactions with L17, W6.48, V6.51, and C7.42. Still, some residues including V3.32, T3.33, S7.39, F183, W5.43, and I3.29 are hotspots for both CB2 agonists and antagonists. More significantly, we identified three hotspot residues in the loop, including I186 for agonists, L17 for antagonists, and F183 for both. These hotspot residues are typically not considered in CB1/CB2 rational ligand design. In conclusion, LRIP is a useful concept in rationally designing a compound to possess a certain function.
Collapse
Affiliation(s)
- Haixia Ge
- School
of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Beihong Ji
- Department
of Pharmaceutical Sciences and Computational Chemical Genomics Screening
Center, School of Pharmacy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jiahui Fang
- Chinese
Academy of Sciences Key Laboratory of Receptor Research, National
Center for Drug Screening, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiayang Wang
- School
of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Jing Li
- Chinese
Academy of Sciences Key Laboratory of Receptor Research, National
Center for Drug Screening, Shanghai Institute
of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Junmei Wang
- Department
of Pharmaceutical Sciences and Computational Chemical Genomics Screening
Center, School of Pharmacy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
8
|
He Y, Zheng J, Ye B, Dai Y, Nie K. Chemotherapy-induced gastrointestinal toxicity: Pathogenesis and current management. Biochem Pharmacol 2023; 216:115787. [PMID: 37666434 DOI: 10.1016/j.bcp.2023.115787] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Chemotherapy is the most common treatment for malignant tumors. However, chemotherapy-induced gastrointestinal toxicity (CIGT) has been a major concern for cancer patients, which reduces their quality of life and leads to treatment intolerance and even cessation. Nevertheless, prevention and treatment for CIGT are challenging, due to the prevalence and complexity of the condition. Chemotherapeutic drugs directly damage gastrointestinal mucosa to induce CIGT, including nausea, vomiting, anorexia, gastrointestinal mucositis, and diarrhea, etc. The pathogenesis of CIGT involves multiple factors, such as gut microbiota disorders, inflammatory responses and abnormal neurotransmitter levels, that synergistically contribute to its occurrence and development. In particular, the dysbiosis of gut microbiota is usually linked to abnormal immune responses that increases inflammatory cytokines' expression, which is a common characteristic of many types of CIGT. Chemotherapy-induced intestinal neurotoxicity is also a vital concern in CIGT. Currently, modern medicine is the dominant treatment of CIGT, however, traditional Chinese medicine (TCM) has attracted interest as a complementary and alternative therapy that can greatly alleviate CIGT. Accordingly, this review aimed to comprehensively summarize the pathogenesis and current management of CIGT using PubMed and Google Scholar databases, and proposed that future research for CIGT should focus on the gut microbiota, intestinal neurotoxicity, and promising TCM therapies, which may help to develop more effective interventions and optimize managements of CIGT.
Collapse
Affiliation(s)
- Yunjing He
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingrui Zheng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Binbin Ye
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongzhao Dai
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ke Nie
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Yan W, Kan X, Wang Y, Zhang Y. Expression of key genes involved in lipid deposition in intramuscular adipocytes of sheep under high glucose conditions. J Anim Physiol Anim Nutr (Berl) 2023; 107:444-452. [PMID: 35754149 DOI: 10.1111/jpn.13750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
The intramuscular fat (IMF) content in sheep is associated with IMF deposition, which is affected by intramuscular adipocyte hypertrophy. In this study, we established an in vitro high glucose model of intramuscular adipocytes of sheep to investigate the expression of cannabinoid receptor 1 (CB1) gene, fatty acid-binding protein 4 (FABP4) gene, lipid metabolism-associated genes (acetyl-CoA carboxylase [ACC], fatty acid synthase [FAS], and stearoyl-CoA desaturase 1 [SCD1]), and transcription factors (liver X receptor [LXRα]), sterol regulatory element-binding transcription factor 1 [SREBF-1], and carbohydrate-responsive element-binding protein [ChREBP]) as well as the changes in the lipid and triglyceride (TG) levels in intramuscular adipocytes. The results showed that the differentiated mature adipocytes had a spherical shape, and the number and volume of the lipid droplets gradually increased over time under high glucose conditions. The lipid and TG levels in intramuscular adipocytes of sheep continuously increased under high glucose conditions. Furthermore, CB1, FABP4, ACC, FAS, SCD1, LXRα, SREBF-1, and ChREBP were highly expressed under high glucose conditions, suggesting that the energetic nutrients also affect the expression of the CB1 gene, which works in coordination with lipid metabolism-associated genes and are beneficial for lipid deposition in the intramuscular adipocytes of sheep.
Collapse
Affiliation(s)
- Wei Yan
- School of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Xiangdong Kan
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Yutao Wang
- College of Life and Geographic Sciences, Kashi University, Kashi, China.,Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang, Uygur Autonomous Region, Kashi, China
| | - Yonghao Zhang
- College of Life and Geographic Sciences, Kashi University, Kashi, China.,Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang, Uygur Autonomous Region, Kashi, China
| |
Collapse
|
10
|
Pérez R, Glaser T, Villegas C, Burgos V, Ulrich H, Paz C. Therapeutic Effects of Cannabinoids and Their Applications in COVID-19 Treatment. Life (Basel) 2022; 12:2117. [PMID: 36556483 PMCID: PMC9784976 DOI: 10.3390/life12122117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Cannabis sativa is one of the first medicinal plants used by humans. Its medical use remains controversial because it is a psychotropic drug whose use has been banned. Recently, however, some countries have approved its use, including for recreational and medical purposes, and have allowed the scientific study of its compounds. Cannabis is characterized by the production of special types of natural products called phytocannabinoids that are synthesized exclusively by this genus. Phytocannabinoids and endocannabinoids are chemically different, but both pharmacologically modulate CB1, CB2, GRP55, GRP119 and TRPV1 receptor activities, involving activities such as memory, sleep, mood, appetite and motor regulation, pain sensation, neuroinflammation, neurogenesis and apoptosis. Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are phytocannabinoids with greater pharmacological potential, including anti-inflammatory, neuroprotective and anticonvulsant activities. Cannabidiol is showing promising results for the treatment of COVID-19, due to its capability of acting on the unleashed cytokine storm, on the proteins necessary for both virus entry and replication and on the neurological consequences of patients who have been infected by the virus. Here, we summarize the latest knowledge regarding the advantages of using cannabinoids in the treatment of COVID-19.
Collapse
Affiliation(s)
- Rebeca Pérez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - Talita Glaser
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, SP, Brazil
| | - Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - Viviana Burgos
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Temuco 4780000, Chile
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, SP, Brazil
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
11
|
Gianquinto E, Sodano F, Rolando B, Kostrzewa M, Allarà M, Mahmoud AM, Kumar P, Spyrakis F, Ligresti A, Chegaev K. N-[1,3-Dialkyl(aryl)-2-oxoimidazolidin-4-ylidene]-aryl(alkyl)sulphonamides as Novel Selective Human Cannabinoid Type 2 Receptor (hCB2R) Ligands; Insights into the Mechanism of Receptor Activation/Deactivation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238152. [PMID: 36500256 PMCID: PMC9738591 DOI: 10.3390/molecules27238152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cannabinoid type 1 (hCB1) and type 2 (hCB2) receptors are pleiotropic and crucial targets whose signaling contributes to physiological homeostasis and its restoration after injury. Being predominantly expressed in peripheral tissues, hCB2R represents a safer therapeutic target than hCB1R, which is highly expressed in the brain, where it regulates processes related to cognition, memory, and motor control. The development of hCB2R ligands represents a therapeutic opportunity for treating diseases such as pain, inflammation and cancer. Identifying new selective scaffolds for cannabinoids and determining the structural determinants responsible for agonism and antagonism are priorities in drug design. In this work, a series of N-[1,3-dialkyl(aryl)-2-oxoimidazolidin-4-ylidene]-aryl(alkyl)sulfonamides is designed and synthesized and their affinity for human hCB1R and hCB2R is determined. Starting with a scaffold selected from the NIH Psychoactive Drug Screening Program Repository, through a combination of molecular modeling and structure-activity relationship studies, we were able to identify the chemical features leading to finely tuned hCB2R selectivity. In addition, an in silico model capable of predicting the functional activity of hCB2R ligands was proposed and validated. The proposed receptor activation/deactivation model enabled the identification of four pure hCB2R-selective agonists that can be used as a starting point for the development of more potent ligands.
Collapse
Affiliation(s)
- Eleonora Gianquinto
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Federica Sodano
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Magdalena Kostrzewa
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Marco Allarà
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Ali Mokhtar Mahmoud
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Poulami Kumar
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
| | - Alessia Ligresti
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
- Correspondence: (A.L.); (K.C.); Tel.: +39-0818675093 (A.L.); +39-0116707140 (K.C.)
| | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy
- Correspondence: (A.L.); (K.C.); Tel.: +39-0818675093 (A.L.); +39-0116707140 (K.C.)
| |
Collapse
|
12
|
Feingold CL, Smiley A. Healthy Sleep Every Day Keeps the Doctor Away. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10740. [PMID: 36078455 PMCID: PMC9518120 DOI: 10.3390/ijerph191710740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
When one considers the big picture of their health, sufficient sleep may often go overlooked as a keystone element in this picture. Insufficient sleep in either quality or duration is a growing problem for our modern society. It is essential to look at what this means for our health because insufficient sleep increases our risks of innumerable lifechanging diseases. Beyond increasing the risk of developing these diseases, it also makes the symptoms and pathogenesis of many diseases worse. Additionally, consistent quality sleep can not only improve our physical health but has also been shown to improve mental health and overall quality of life. Substandard sleep health could be a root cause for numerous issues individuals may be facing in their lives. It is essential that physicians take the time to learn about how to educate their patients on sleep health and try to work with them on an individual level to help motivate lifestyle changes. Facilitating access to sleep education for their patients is one way in which physicians can help provide patients with the tools to improve their sleep health. Throughout this paper, we will review the mechanisms behind the relationship between insufficient sleep health and chronic disease and what the science says about how inadequate sleep health negatively impacts the overall health and the quality of our lives. We will also explain the lifechanging effects of sufficient sleep and how we can help patients get there.
Collapse
Affiliation(s)
| | - Abbas Smiley
- Westchester Medical Center, New York Medical College, New York, NY 10595, USA
| |
Collapse
|
13
|
Piper NBC, Whitfield EA, Stewart GD, Xu X, Furness SGB. Targeting appetite and satiety in diabetes and obesity, via G protein-coupled receptors. Biochem Pharmacol 2022; 202:115115. [PMID: 35671790 DOI: 10.1016/j.bcp.2022.115115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes and obesity have reached pandemic proportions throughout the world, so much so that the World Health Organisation coined the term "Globesity" to help encapsulate the magnitude of the problem. G protein-coupled receptors (GPCRs) are highly tractable drug targets due to their wide involvement in all aspects of physiology and pathophysiology, indeed, GPCRs are the targets of approximately 30% of the currently approved drugs. GPCRs are also broadly involved in key physiologies that underlie type 2 diabetes and obesity including feeding reward, appetite and satiety, regulation of blood glucose levels, energy homeostasis and adipose function. Despite this, only two GPCRs are the target of approved pharmaceuticals for treatment of type 2 diabetes and obesity. In this review we discuss the role of these, and select other candidate GPCRs, involved in various facets of type 2 diabetic or obese pathophysiology, how they might be targeted and the potential reasons why pharmaceuticals against these targets have not progressed to clinical use. Finally, we provide a perspective on the current development pipeline of anti-obesity drugs that target GPCRs.
Collapse
Affiliation(s)
- Noah B C Piper
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emily A Whitfield
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gregory D Stewart
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Sebastian G B Furness
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia; Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
14
|
Distinct Effects of Cannabidiol on Sphingolipid Metabolism in Subcutaneous and Visceral Adipose Tissues Derived from High-Fat-Diet-Fed Male Wistar Rats. Int J Mol Sci 2022; 23:ijms23105382. [PMID: 35628194 PMCID: PMC9142011 DOI: 10.3390/ijms23105382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Available data suggest that cannabidiol (CBD) may ameliorate symptoms of insulin resistance by modulating the sphingolipid concentrations in particular organs. However, it is not entirely clear whether its beneficial actions also involve adipose tissues in a state of overnutrition. The aim of the study was to evaluate the effect of CBD on sphingolipid metabolism pathways and, as a result, on the development of insulin resistance in subcutaneous (SAT) and visceral (VAT) adipose tissues of an animal model of HFD-induced insulin resistance. Our experiment was performed on Wistar rats that were fed with a high-fat diet and/or received intraperitoneal CBD injections. We showed that CBD significantly lowered the ceramide content in VAT by reducing its de novo synthesis and increasing its catabolism. However, in SAT, CBD decreased the ceramide level through the inhibition of salvage and de novo synthesis pathways. All of these changes restored adipose tissues’ sensitivity to insulin. Our study showed that CBD sensitized adipose tissue to insulin by influencing the metabolism of sphingolipids under the conditions of increased availability of fatty acids in the diet. Therefore, we believe that CBD use may be considered as a potential therapeutic strategy for treating or reducing insulin resistance, T2DM, and metabolic syndrome.
Collapse
|
15
|
Neurohormonal Changes in the Gut–Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. Int J Mol Sci 2022; 23:ijms23063339. [PMID: 35328759 PMCID: PMC8954280 DOI: 10.3390/ijms23063339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut–brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut–brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed.
Collapse
|
16
|
Causative Mechanisms of Childhood and Adolescent Obesity Leading to Adult Cardiometabolic Disease: A Literature Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The past few decades have shown a worrisome increase in the prevalence of obesity and its related illnesses. This increasing burden has a noteworthy impact on overall worldwide mortality and morbidity, with significant economic implications as well. The same trend is apparent regarding pediatric obesity. This is a particularly concerning aspect when considering the well-established link between cardiovascular disease and obesity, and the fact that childhood obesity frequently leads to adult obesity. Moreover, most obese adults have a history of excess weight starting in childhood. In addition, given the cumulative character of both time and severity of exposure to obesity as a risk factor for associated diseases, the repercussions of obesity prevalence and related morbidity could be exponential in time. The purpose of this review is to outline key aspects regarding the current knowledge on childhood and adolescent obesity as a cardiometabolic risk factor, as well as the most common etiological pathways involved in the development of weight excess and associated cardiovascular and metabolic diseases.
Collapse
|
17
|
Miralpeix C, Reguera AC, Fosch A, Zagmutt S, Casals N, Cota D, Rodríguez-Rodríguez R. Hypothalamic endocannabinoids in obesity: an old story with new challenges. Cell Mol Life Sci 2021; 78:7469-7490. [PMID: 34718828 PMCID: PMC8557709 DOI: 10.1007/s00018-021-04002-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022]
Abstract
The crucial role of the hypothalamus in the pathogenesis of obesity is widely recognized, while the precise molecular and cellular mechanisms involved are the focus of intense research. A disrupted endocannabinoid system, which critically modulates feeding and metabolic functions, through central and peripheral mechanisms, is a landmark indicator of obesity, as corroborated by investigations centered on the cannabinoid receptor CB1, considered to offer promise in terms of pharmacologically targeted treatment for obesity. In recent years, novel insights have been obtained, not only into relation to the mode of action of CB receptors, but also CB ligands, non-CB receptors, and metabolizing enzymes considered to be part of the endocannabinoid system (particularly the hypothalamus). The outcome has been a substantial expansion in knowledge of this complex signaling system and in drug development. Here we review recent literature, providing further evidence on the role of hypothalamic endocannabinoids in regulating energy balance and the implication for the pathophysiology of obesity. We discuss how these lipids are dynamically regulated in obesity onset, by diet and metabolic hormones in specific hypothalamic neurons, the impact of gender, and the role of endocannabinoid metabolizing enzymes as promising targets for tackling obesity and related diseases.
Collapse
Affiliation(s)
- Cristina Miralpeix
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 3300, Bordeaux, France.
| | - Ana Cristina Reguera
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
| | - Anna Fosch
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
| | - Sebastian Zagmutt
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 3300, Bordeaux, France
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain.
| |
Collapse
|
18
|
Gjermeni E, Kirstein AS, Kolbig F, Kirchhof M, Bundalian L, Katzmann JL, Laufs U, Blüher M, Garten A, Le Duc D. Obesity-An Update on the Basic Pathophysiology and Review of Recent Therapeutic Advances. Biomolecules 2021; 11:1426. [PMID: 34680059 PMCID: PMC8533625 DOI: 10.3390/biom11101426] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity represents a major public health problem with a prevalence increasing at an alarming rate worldwide. Continuous intensive efforts to elucidate the complex pathophysiology and improve clinical management have led to a better understanding of biomolecules like gut hormones, antagonists of orexigenic signals, stimulants of fat utilization, and/or inhibitors of fat absorption. In this article, we will review the pathophysiology and pharmacotherapy of obesity including intersection points to the new generation of antidiabetic drugs. We provide insight into the effectiveness of currently approved anti-obesity drugs and other therapeutic avenues that can be explored.
Collapse
Affiliation(s)
- Erind Gjermeni
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany;
- Department of Cardiology, Median Centre for Rehabilitation Schmannewitz, 04774 Dahlen, Germany;
| | - Anna S. Kirstein
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Florentien Kolbig
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Michael Kirchhof
- Department of Cardiology, Median Centre for Rehabilitation Schmannewitz, 04774 Dahlen, Germany;
| | - Linnaeus Bundalian
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany;
| | - Julius L. Katzmann
- Klinik und Poliklinik für Kardiologie, University Clinic Leipzig, 04103 Leipzig, Germany; (J.L.K.); (U.L.)
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, University Clinic Leipzig, 04103 Leipzig, Germany; (J.L.K.); (U.L.)
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103 Leipzig, Germany; (A.S.K.); (F.K.); (A.G.)
| | - Diana Le Duc
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany;
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany;
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Abu-Ghosh S, Dubinsky Z, Verdelho V, Iluz D. Unconventional high-value products from microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 329:124895. [PMID: 33713898 DOI: 10.1016/j.biortech.2021.124895] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Microalgae have gained significant importance in biotechnology development, providing valuable goods and services in multiple applications. Although there is a rising market for most of these applications, the incorporation and introduction of microalgae into new venues will extend in the near future. These advances are due to the vast biodiversity of microalgal species, recent genetic engineering tools, and culture techniques. There are three main possible approaches for novel algal compounds from: (1) recently isolated yet less known microalgae; (2) selectively stressed conditions; and (3) enzymatically adjusted compounds from conventional molecules. All these approaches can be combined in a specific manner. This review discusses the opportunities, potential and limitations of introducing novel microalgae-based products, and how the recent technologies can be deployed to make these products financially viable. To give an outlook to the future, an analysis of the developments and predicted future market that further enlarge the promise of cultivating microalgae for commercial purposes are considered.
Collapse
Affiliation(s)
- Said Abu-Ghosh
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Zvy Dubinsky
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Vitor Verdelho
- General Manager of the European Algae Biomass Association (EABA), Portugal
| | - David Iluz
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Department of Environmental Sciences and Agriculture, Beit Berl Academic College, Israel; Talpiot academic College, Holon, Israel
| |
Collapse
|
20
|
Abstract
The aim of this work was to review studies in which genetic variants were assessed with respect to metabolic response to treatment with novel glucose-lowering drugs: dipeptidyl peptidase-4 inhibitors (DPP-4i), glucagon-like peptide-1 receptor agonists (GLP-1 RA) and sodium-glucose cotransporter 2 inhibitors (SGLT2i). In total, 22 studies were retrieved from the literature (MEDLINE). Variants of the GLP-1 receptor gene (GLP1R) were associated with a smaller reduction in HbA1c in response to DPP-4i. Variants of a number of other genes (KCNQ1, KCNJ11, CTRB1/2, PRKD1, CDKAL1, IL6 promoter region, TCF7L2, DPP4, PNPLA3) have also been related to DPP-4i response, although replication studies are lacking. The GLP1R gene was also reported to play a role in the response to GLP-1 RA, with larger weight reductions being reported in carriers of GLP1R variant alleles. There were variants of a few other genes (CNR1, TCF7L2, SORCS1) described to be related to GLP-1 RA. For SGLT2i, studies have focused on genes affecting renal glucose reabsorption (e.g. SLC5A2) but no relationship between SLC5A2 variants and response to empagliflozin has been found. The relevance of the included studies is limited due to small genetic effects, low sample sizes, limited statistical power, inadequate statistics (lack of gene-drug interactions), inadequate accounting for confounders and effects modifiers, and a lack of replication studies. Most studies have been based on candidate genes. Genome-wide association studies, in that respect, may be a more promising approach to providing novel insights. However, the identification of distinct subgroups of type 2 diabetes might also be necessary before pharmacogenetic studies can be successfully used for a stratified prescription of novel glucose-lowering drugs.
Collapse
Affiliation(s)
- Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Brenda Bongaerts
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
21
|
Price TR, Baskaran SA, Moncada KL, Minamoto Y, Klemashevich C, Jayuraman A, Sucholdoski JS, Tedeschi LO, Steiner JM, Pillai SD, Walzem RL. Whole and Isolated Protein Fractions Differentially Affect Gastrointestinal Integrity Markers in C57Bl/6 Mice Fed Diets with a Moderate-Fat Content. Nutrients 2021; 13:nu13041251. [PMID: 33920187 PMCID: PMC8069602 DOI: 10.3390/nu13041251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Various proteins or protein fractions reportedly positively affect gastrointestinal integrity and inflammation in diets providing >45% energy as fat. This study tested whether benefits were seen in diets providing 30% of energy as fat. Purified diets (PD) with isolated soy protein (ISP), dried whole milk powder (DWMP), milk fat globule membrane (MFGM), or milk protein concentrate (MPC) as protein sources were fed to C57BL/6J mice (n = 15/diet group) for 13 weeks. MFGM-fed mice were heaviest (p < 0.005) but remained within breeder norms. Growth rates and gut motility were similar for all PD-fed mice. FITC-dextran assessed gut permeability was lowest in DWMP and MFGM (p = 0.054); overall, plasma endotoxin and unprovoked circulating cytokines indicated a non-inflammatory state for all PD-fed mice. Despite differences in cecal butyrate and intestinal gene expression, all PDs supported gastrointestinal health. Whole milk provided more positive effects compared to its fractions. However, ISP-fed mice showed a >370%, (p < 0.006) increase in colonic myeloperoxidase activity indicative of tissue neutrophil infiltration. Surprisingly, FITC-dextran and endotoxin outcomes were many folds better in PD-fed mice than mice (strain, vendor, age and sex matched) fed a “chow-type” nutritionally adequate non-PD. Additional variables within a diet’s matrix appear to affect routine indicators or gastrointestinal health.
Collapse
Affiliation(s)
- Tara R. Price
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA;
| | - Sangeetha A. Baskaran
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
| | - Kristin L. Moncada
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
| | - Yasushi Minamoto
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Cory Klemashevich
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (C.K.); (A.J.)
| | - Arul Jayuraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (C.K.); (A.J.)
| | - Jan S. Sucholdoski
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Luis O. Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
| | - Jörg M. Steiner
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Suresh D. Pillai
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, USA
| | - Rosemary L. Walzem
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
- Correspondence:
| |
Collapse
|
22
|
Manasrah N, Al Sbihi AF, Al Qasem S, Naik R, Hettiarachchi M. Recurrent Spontaneous Pneumothorax Associated With Marijuana Abuse: Case Report and Literature Review. Cureus 2021; 13:e13205. [PMID: 33717745 PMCID: PMC7943398 DOI: 10.7759/cureus.13205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Marijuana is the most commonly used illicit recreational drug in the United States. Growing public support for marijuana law reform has resulted in a significant increase in its use. The harmful pulmonary consequences of chronic marijuana smoking are less researched and discussed than those of tobacco smoking. We present a case of recurrent spontaneous pneumothorax in a patient with heavy, persistent marijuana abuse who has no past medical or surgical histories and denied smoking cigarettes or other illicit substance use.
Collapse
Affiliation(s)
- Nouraldeen Manasrah
- Internal Medicine, Detroit Medical Center (DMC) Sinai-Grace Hospital, Detroit, USA
| | - Ali F Al Sbihi
- Internal Medicine, Detroit Medical Center (DMC) Sinai-Grace Hospital, Detroit, USA
| | | | - Rohan Naik
- Cardiology, University of Connecticut School of Medicine, Farmington, USA
| | | |
Collapse
|
23
|
Breijyeh Z, Jubeh B, Bufo SA, Karaman R, Scrano L. Cannabis: A Toxin-Producing Plant with Potential Therapeutic Uses. Toxins (Basel) 2021; 13:117. [PMID: 33562446 PMCID: PMC7915118 DOI: 10.3390/toxins13020117] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
For thousands of years, Cannabis sativa has been utilized as a medicine and for recreational and spiritual purposes. Phytocannabinoids are a family of compounds that are found in the cannabis plant, which is known for its psychotogenic and euphoric effects; the main psychotropic constituent of cannabis is Δ9-tetrahydrocannabinol (Δ9-THC). The pharmacological effects of cannabinoids are a result of interactions between those compounds and cannabinoid receptors, CB1 and CB2, located in many parts of the human body. Cannabis is used as a therapeutic agent for treating pain and emesis. Some cannabinoids are clinically applied for treating chronic pain, particularly cancer and multiple sclerosis-associated pain, for appetite stimulation and anti-emesis in HIV/AIDS and cancer patients, and for spasticity treatment in multiple sclerosis and epilepsy patients. Medical cannabis varies from recreational cannabis in the chemical content of THC and cannabidiol (CBD), modes of administration, and safety. Despite the therapeutic effects of cannabis, exposure to high concentrations of THC, the main compound that is responsible for most of the intoxicating effects experienced by users, could lead to psychological events and adverse effects that affect almost all body systems, such as neurological (dizziness, drowsiness, seizures, coma, and others), ophthalmological (mydriasis and conjunctival hyperemia), cardiovascular (tachycardia and arterial hypertension), and gastrointestinal (nausea, vomiting, and thirst), mainly associated with recreational use. Cannabis toxicity in children is more concerning and can cause serious adverse effects such as acute neurological symptoms (stupor), lethargy, seizures, and even coma. More countries are legalizing the commercial production and sale of cannabis for medicinal use, and some for recreational use as well. Liberalization of cannabis laws has led to increased incidence of toxicity, hyperemesis syndrome, lung disease cardiovascular disease, reduced fertility, tolerance, and dependence with chronic prolonged use. This review focuses on the potential therapeutic effects of cannabis and cannabinoids, as well as the acute and chronic toxic effects of cannabis use on various body systems.
Collapse
Affiliation(s)
- Zeinab Breijyeh
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem Abu Dis P144, Palestine; (Z.B.); (B.J.)
| | - Buthaina Jubeh
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem Abu Dis P144, Palestine; (Z.B.); (B.J.)
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
- Department of Geography, Environmental Management & Energy Studies, University of Johannesburg, Johannesburg 2092, South Africa
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem Abu Dis P144, Palestine; (Z.B.); (B.J.)
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Laura Scrano
- Department of European Cultures (DICEM), University of Basilicata, 75100 Matera, Italy;
| |
Collapse
|
24
|
Berk K, Bzdega W, Konstantynowicz-Nowicka K, Charytoniuk T, Zywno H, Chabowski A. Phytocannabinoids-A Green Approach toward Non-Alcoholic Fatty Liver Disease Treatment. J Clin Med 2021; 10:393. [PMID: 33498537 PMCID: PMC7864168 DOI: 10.3390/jcm10030393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent chronic liver disease in adults in developed countries, with a global prevalence as high as one billion. The pathogenesis of NAFLD is a multifactorial and multi-step process. Nowadays, a growing body of research suggests the considerable role of the endocannabinoid system (ECS) as a complex cell-signaling system in NAFLD development. Although increased endocannabinoid tone in the liver highly contributes to NAFLD development, the complex effects and impacts of plant-derived cannabinoids in the aspect of NAFLD pathophysiology are yet not fully understood, and effective medications are still in demand. In our review, we present the latest reports describing the role of ECS in NAFLD, focusing primarily on two types of cannabinoid receptors. Moreover, we sum up the recent literature on the clinical use of natural cannabinoids in NAFLD treatment. This review is useful for understanding the importance of ECS in NAFLD development, and it also provides the basis for more extensive clinical phytocannabinoids testing in patients suffering from NAFLD.
Collapse
Affiliation(s)
- Klaudia Berk
- Department of Physiology, Medical University of Bialystok, 15-089 Białystok, Poland; (W.B.); (K.K.-N.); (T.C.); (H.Z.); (A.C.)
| | | | | | | | | | | |
Collapse
|
25
|
Bobrich M, Schwarz R, Ramer R, Borchert P, Hinz B. A simple LC-MS/MS method for the simultaneous quantification of endocannabinoids in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1161:122371. [DOI: 10.1016/j.jchromb.2020.122371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 01/15/2023]
|
26
|
Abstract
Addiction is commonly identified with habitual nonmedical self-administration of drugs. It is usually defined by characteristics of intoxication or by characteristics of withdrawal symptoms. Such addictions can also be defined in terms of the brain mechanisms they activate; most addictive drugs cause elevations in extracellular levels of the neurotransmitter dopamine. Animals unable to synthesize or use dopamine lack the conditioned reflexes discussed by Pavlov or the appetitive behavior discussed by Craig; they have only unconditioned consummatory reflexes. Burst discharges (phasic firing) of dopamine-containing neurons are necessary to establish long-term memories associating predictive stimuli with rewards and punishers. Independent discharges of dopamine neurons (tonic or pacemaker firing) determine the motivation to respond to such cues. As a result of habitual intake of addictive drugs, dopamine receptors expressed in the brain are decreased, thereby reducing interest in activities not already stamped in by habitual rewards.
Collapse
Affiliation(s)
- Roy A Wise
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA; .,Behavioral Genetics Laboratory, McLean Hospital, Belmont, Massachusetts 02478, USA;
| | - Mykel A Robble
- Behavioral Genetics Laboratory, McLean Hospital, Belmont, Massachusetts 02478, USA;
| |
Collapse
|
27
|
Effects of Perioperative Cannabis Use on Bariatric Surgical Outcomes: a Systematic Review. Obes Surg 2020; 31:299-306. [PMID: 32970257 DOI: 10.1007/s11695-020-04962-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
|
28
|
Jain U, Soni S, Balhara YPS, Khanuja M, Chauhan N. Dual-Layered Nanomaterial-Based Molecular Pattering on Polymer Surface Biomimetic Impedimetric Sensing of a Bliss Molecule, Anandamide Neurotransmitter. ACS OMEGA 2020; 5:10750-10758. [PMID: 32455194 PMCID: PMC7240810 DOI: 10.1021/acsomega.0c00285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/14/2020] [Indexed: 05/08/2023]
Abstract
In this endeavor, a novel electrochemical biosensor was designed using multiwall carbon nanotubes (MWCNTs)- and nickel nanoparticles (NiNPs)-embedded anandamide (AEA) imprinted polymer. The NiNPs so synthesized were mortared with MWCNTs and molecularly imprinted polymer (MIP), which enhanced sensitivity and selectivity of the developed sensor, respectively. The characterization methods of AEA-based MIP included X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) analysis, which supported the successful synthesis of the polymer. Electrochemical studies of fabricated sensor were performed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy in potentiostatic mode (PEIS). In this first phase of AEA-specific sensor development, MWCNT/NiNP/MIP@SPE was found to successfully discriminate between different concentrations of AEA. The developed sensing platform demonstrated a 100 pM-1 nM linear range with a 0.01 nM detection limit (LOD), 0.0149 mA/pM sensitivity, and 50% stability within 4 months. The sensor demonstrated selectivity toward AEA: although acetylcholine (ACh) and dopamine acted as strong interfering components because of their chemical similarity, the spiked AEA samples demonstrated ∼90% recoveries. Hence, our results have passed the first step in AEA detection at home, although with a clinical setup, future advancement is still required.
Collapse
Affiliation(s)
- Utkarsh Jain
- Amity
Institute of Nanotechnology (AINT), Amity
University Uttar Pradesh (AUUP), Noida 201313, Uttar Pradesh, India
| | - Shringika Soni
- Amity
Institute of Nanotechnology (AINT), Amity
University Uttar Pradesh (AUUP), Noida 201313, Uttar Pradesh, India
| | - Yatan Pal Singh Balhara
- Department
of Psychiatry and NDDTC, All India Institute
of Medical Science (AIIMS), New Delhi 110029, India
| | - Manika Khanuja
- Centre
for Nanoscience & Nanotechnology, Jamia
Millia Islamia (A Central University), New Delhi 110025, India
| | - Nidhi Chauhan
- Amity
Institute of Nanotechnology (AINT), Amity
University Uttar Pradesh (AUUP), Noida 201313, Uttar Pradesh, India
| |
Collapse
|
29
|
Tarragon E, Moreno JJ. Cannabinoids, Chemical Senses, and Regulation of Feeding Behavior. Chem Senses 2020; 44:73-89. [PMID: 30481264 DOI: 10.1093/chemse/bjy068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The herb Cannabis sativa has been traditionally used in many cultures and all over the world for thousands of years as medicine and recreation. However, because it was brought to the Western world in the late 19th century, its use has been a source of controversy with respect to its physiological effects as well as the generation of specific behaviors. In this regard, the CB1 receptor represents the most relevant target molecule of cannabinoid components on nervous system and whole-body energy homeostasis. Thus, the promotion of CB1 signaling can increase appetite and stimulate feeding, whereas blockade of CB1 suppresses hunger and induces hypophagia. Taste and flavor are sensory experiences involving the oral perception of food-derived chemicals and drive a primal sense of acceptable or unacceptable for what is sampled. Therefore, research within the last decades focused on deciphering the effect of cannabinoids on the chemical senses involved in food perception and consequently in the pattern of feeding. In this review, we summarize the data on the effect of cannabinoids on chemical senses and their influences on food intake control and feeding behavior.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Department of Psychobiology, Faculty of Health Sciences, University Jaume I of Castellon, Castellon, Spain.,Department of Psychobiology and Methodology on Behavioral Sciences, Faculty of Psychology, Universidad Complutense de Madrid, Campus de Somosaguas, Ctra. de Húmera, Madrid, Spain
| | - Juan José Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Campus Torribera, Barcelona, Spain.,IBEROBN Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
30
|
Xing C, Zhuang Y, Xu TH, Feng Z, Zhou XE, Chen M, Wang L, Meng X, Xue Y, Wang J, Liu H, McGuire TF, Zhao G, Melcher K, Zhang C, Xu HE, Xie XQ. Cryo-EM Structure of the Human Cannabinoid Receptor CB2-G i Signaling Complex. Cell 2020; 180:645-654.e13. [PMID: 32004460 DOI: 10.1016/j.cell.2020.01.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/01/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023]
Abstract
Drugs selectively targeting CB2 hold promise for treating neurodegenerative disorders, inflammation, and pain while avoiding psychotropic side effects mediated by CB1. The mechanisms underlying CB2 activation and signaling are poorly understood but critical for drug design. Here we report the cryo-EM structure of the human CB2-Gi signaling complex bound to the agonist WIN 55,212-2. The 3D structure reveals the binding mode of WIN 55,212-2 and structural determinants for distinguishing CB2 agonists from antagonists, which are supported by a pair of rationally designed agonist and antagonist. Further structural analyses with computational docking results uncover the differences between CB2 and CB1 in receptor activation, ligand recognition, and Gi coupling. These findings are expected to facilitate rational structure-based discovery of drugs targeting the cannabinoid system.
Collapse
Affiliation(s)
- Changrui Xing
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute and Departments of Computational Biology and of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Youwen Zhuang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ting-Hai Xu
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute and Departments of Computational Biology and of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - X Edward Zhou
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Maozi Chen
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lei Wang
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xing Meng
- David Van Andel Advanced Cryo-Electron Microscopy Suite, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ying Xue
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junmei Wang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Heng Liu
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Terence Francis McGuire
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gongpu Zhao
- David Van Andel Advanced Cryo-Electron Microscopy Suite, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Karsten Melcher
- Center for Cancer and Cell Biology, Program for Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Cheng Zhang
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - H Eric Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screen Center, School of Pharmacy, and NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute and Departments of Computational Biology and of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
31
|
Effect of cannabinoid-serotonin interactions in the regulation of neuropeptide Y1 receptors expression in rats: the role of CB1 and 5-HT2C receptor. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s00580-019-03081-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractNeuropeptide Y (NPY) is involved in a diversity of critical functions such as circadian rhythms, energy homeostasis, and appetite regulation in the hypothalamus. It has identified as a crucial participant in adjusting energy intake and energy storage as fat via central neuropeptide Y1 receptor (NPY1R), leading to obesity and metabolic disorders. The present study was expected to investigate the interaction between 2-AG (CB1R agonist), m-CPP (5HT2CR agonist), SB-242084 (5HT2CR antagonist), and SR-141716A (CB1R antagonist) by mediating through the NPY1R for treating or preventing obesity, metabolic disorders, and other abnormalities. The expression level of NPY1R mRNA has studied on the rat brain by real-time quantitative PCR assay. Based on our findings, intracerebroventricular (ICV) injection of combined 2-AG (1 μg) + m-CPP (2.5 μg) has antagonistic interaction in the expression of the NPY1R gene (P < 0.001). Moreover, the ICV co-injection of SB-242084 (3 μg) + SR-141716A (1 μg) has antagonistic interaction in the NPY1R gene expression (P < 0.001). Co-administration of 2-AG (1 μg) + SB-242084 (3 μg) amplified NPY1R gene expression (P < 0.001), while the ICV co-injection of m-CPP (2.5 μg) + SR-141716A (1 μg) decreased NPY1R gene expression in the hypothalamus (P < 0.001). These results revealed the interference in cannabinoid and serotonergic systems via CB1 and 5HT2C receptors in the expression of NPY1R mRNA in the hypothalamic area of rats.
Collapse
|
32
|
Roberts CA, Jager G, Christiansen P, Kirkham TC. Exploring the munchies: An online survey of users' experiences of cannabis effects on appetite and the development of a Cannabinoid Eating Experience Questionnaire. J Psychopharmacol 2019; 33:1149-1159. [PMID: 31347452 DOI: 10.1177/0269881119862526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cannabis intoxication is commonly reported to increase appetite and enhance appreciation of food (the 'munchies'). These effects are attributed to activation of the endocannabinoid system. However, the psychological changes that underlie these phenomena are under-researched. We report here the results of an extensive online survey of cannabis users with an exploratory Cannabinoid Eating Experience Questionnaire (CEEQ). METHOD Frequent cannabis users completed a 46-item questionnaire about their eating behaviour under the influence of cannabis. An English-speaking sample (n=591) provided data for the initial exploratory validation of the scale. A second Dutch-language survey (n=163) was used for confirmatory factor analysis. Test-retest reliability was based on a third English-speaking sample (n=40) who completed the revised, 28-item CEEQ twice across 2 weeks. RESULTS Principal components analysis provided a two-factor solution. Factor 1 (hedonic) comprised 14 items that related primarily to the enjoyment and altered sensory aspects of eating. Factor 2 (appetitive) comprised a further 14 items related to motivational factors that instigate or promote eating. The two-factor structure was supported by confirmatory factor analysis. Both the hedonic and appetitive subscales had good internal reliability (α=0.92 for each subscale, in two independent samples). Good test-retest reliability was obtained for the revised 28-item questionnaire (ps<.01 for Total CEEQ and each subscale). CONCLUSION The Cannabinoid Eating Experience Questionnaire provided a valid, reliable assessment of the psychological features of cannabis-induced alterations to appetite. Our data confirm that cannabis principally influences the motivational factors that lead to the initiation of eating and the hedonic factors implicated in maintaining eating.
Collapse
Affiliation(s)
- Carl A Roberts
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Gerry Jager
- Wageningen University and Research Centre, Wageningen, Netherlands
| | - Paul Christiansen
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Tim C Kirkham
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
33
|
Tawfik GM, Hashan MR, Abdelaal A, Tieu TM, Huy NT. A commentary on the medicinal use of marijuana. Trop Med Health 2019; 47:35. [PMID: 31148941 PMCID: PMC6534865 DOI: 10.1186/s41182-019-0161-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/01/2019] [Indexed: 11/10/2022] Open
Abstract
Background Lately, the number of people using marijuana in the USA has dramatically increased. In 2018, many states have legalized marijuana use for both medical and recreational purposes, thus exploring the evidence behind medical marijuana use became essential. Muslim majority countries enforce rigorous rules as marijuana has been a long-debated issue due to the stigma associated with its use as a treatment. Marijuana has a high beneficial effect in managing chronic pain in adults and relieving spasticity symptoms in multiple sclerosis, obstructive sleep apnea syndrome, and fibromyalgia. As well as, used as pain management, and as anti-emetic in treatment of chemotherapy-induced vomiting and nausea. Marijuana is requested from more than one-third of posttraumatic stress disorder patients due to its significant clinical improvement in nightmares and subsidence disorder symptoms. Marijuana adversely affects the body’s resistance to many infections, compromising their immune response. Its recreational use has led to an increasing trend in the occurrence of major acute cardiovascular events as stroke, epilepsy, acute myocardial infarction, congestive heart failure, and arrhythmia. Conclusion Many countries started to allow medicinal use of marijuana due to its beneficial effect in managing chronic pain, spasticity symptoms in multiple sclerosis, obstructive sleep apnea syndrome, fibromyalgia, and posttraumatic stress disorder. But literature lacks benefit-harm analysis for marijuana usage in medicine. Therefore, evidence-based report of short- and long-term health effects of marijuana use—both harmful and beneficial effects—is crucial for further marijuana prescription in healthcare settings.
Collapse
Affiliation(s)
- Gehad Mohamed Tawfik
- 1Faculty of Medicine, Ain Shams University, Cairo, Egypt.,http://www.onlineresearchclub.org
| | - Mohammad Rashidul Hashan
- http://www.onlineresearchclub.org.,3Respiratory and Enteric Infections Department, Infectious Disease Division, International Centre for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Abdelaziz Abdelaal
- http://www.onlineresearchclub.org.,4Faculty of Medicine, Tanta University, Gharbia, Egypt
| | - Thuan Minh Tieu
- http://www.onlineresearchclub.org.,5Faculty of Health Sciences, McMaster University, Hamilton, ON Canada
| | - Nguyen Tien Huy
- 6Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| |
Collapse
|
34
|
Scherma M, Masia P, Satta V, Fratta W, Fadda P, Tanda G. Brain activity of anandamide: a rewarding bliss? Acta Pharmacol Sin 2019; 40:309-323. [PMID: 30050084 DOI: 10.1038/s41401-018-0075-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022] Open
Abstract
Anandamide is a lipid mediator that acts as an endogenous ligand of CB1 receptors. These receptors are also the primary molecular target responsible for the pharmacological effects of Δ9-tetrahydrocannabinol, the psychoactive ingredient in Cannabis sativa. Several studies demonstrate that anandamide exerts an overall modulatory effect on the brain reward circuitry. Several reports suggest its involvement in the addiction-producing actions of other abused drugs, and it can also act as a behavioral reinforcer in animal models of drug abuse. Importantly, all these effects of anandamide appear to be potentiated by pharmacological inhibition of its metabolic degradation. Enhanced brain levels of anandamide after treatment with inhibitors of fatty acid amide hydrolase, the main enzyme responsible for its degradation, seem to affect the rewarding and reinforcing actions of many drugs of abuse. In this review, we will provide an overview from a preclinical perspective of the current state of knowledge regarding the behavioral pharmacology of anandamide, with a particular emphasis on its motivational/reinforcing properties. We will also discuss how modulation of anandamide levels through inhibition of enzymatic metabolic pathways could provide a basis for developing new pharmaco-therapeutic tools for the treatment of substance use disorders.
Collapse
|
35
|
Laleh P, Yaser K, Alireza O. Oleoylethanolamide: A novel pharmaceutical agent in the management of obesity-an updated review. J Cell Physiol 2018; 234:7893-7902. [PMID: 30537148 DOI: 10.1002/jcp.27913] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/16/2018] [Indexed: 01/05/2023]
Abstract
Obesity as a multifactorial disorder has been shown a dramatically growing trend recently. Besides genetic and environmental factors, dysregulation of the endocannabinoid system tone is involved in the pathogenesis of obesity. This study reviewed the potential efficacy of Oleoylethanolamide (OEA) as an endocannabinoid-like compound in the energy homeostasis and appetite control in people with obesity. OEA as a lipid mediator and bioactive endogenous ethanolamide fatty acid is structurally similar to the endocannabinoid system compounds; nevertheless, it is unable to induce to the cannabinoid receptors. Unlike endocannabinoids, OEA negatively acts on the food intake and suppress appetite via various mechanisms. Indeed, OEA as a ligand of PPAR-α, GPR-119, and TRPV1 receptors participates in the regulation of energy intake and energy expenditure, feeding behavior, and weight gain control. OEA delays meal initiation, reduces meal size, and increases intervals between meals. Considering side effects of some approaches used for the management of obesity such as antiobesity drugs and surgery as well as based on sufficient evidence about the protective effects of OEA in the improvement of common abnormalities in people with obese, its supplementation as a novel efficient and FDA approved pharmaceutical agent can be recommended.
Collapse
Affiliation(s)
- Payahoo Laleh
- Department of Nutrition, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Khajebishak Yaser
- Talented Student Center, Student Research Committee, Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ostadrahimi Alireza
- Department of Nutrition, Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Demin KA, Meshalkina DA, Kysil EV, Antonova KA, Volgin AD, Yakovlev OA, Alekseeva PA, Firuleva MM, Lakstygal AM, de Abreu MS, Barcellos LJG, Bao W, Friend AJ, Amstislavskaya TG, Rosemberg DB, Musienko PE, Song C, Kalueff AV. Zebrafish models relevant to studying central opioid and endocannabinoid systems. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:301-312. [PMID: 29604314 DOI: 10.1016/j.pnpbp.2018.03.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022]
Abstract
The endocannabinoid and opioid systems are two interplaying neurotransmitter systems that modulate drug abuse, anxiety, pain, cognition, neurogenesis and immune activity. Although they are involved in such critical functions, our understanding of endocannabinoid and opioid physiology remains limited, necessitating further studies, novel models and new model organisms in this field. Zebrafish (Danio rerio) is rapidly emerging as one of the most effective translational models in neuroscience and biological psychiatry. Due to their high physiological and genetic homology to humans, zebrafish may be effectively used to study the endocannabinoid and opioid systems. Here, we discuss current models used to target the endocannabinoid and opioid systems in zebrafish, and their potential use in future translational research and high-throughput drug screening. Emphasizing the high degree of conservation of the endocannabinoid and opioid systems in zebrafish and mammals, we suggest zebrafish as an excellent model organism to study these systems and to search for the new drugs and therapies targeting their evolutionarily conserved mechanisms.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Darya A Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Russian Research Center for Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Elana V Kysil
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Kristina A Antonova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Andrey D Volgin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Medical Military Academy, St. Petersburg, Russia
| | - Oleg A Yakovlev
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Medical Military Academy, St. Petersburg, Russia
| | - Polina A Alekseeva
- Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Maria M Firuleva
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Leonardo J G Barcellos
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil; Graduate Programs in Environmental Sciences, and Bio-Experimentation, University of Passo Fundo (UPF), Passo Fundo, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Wandong Bao
- School of Pharmacy, Southwest University, Chongqing, China
| | - Ashton J Friend
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Tulane University School of Science and Engineering, New Orleans, LA, USA
| | - Tamara G Amstislavskaya
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Neuroscience Department, Novosibirsk State University, Novosibirsk, Russia
| | - Denis B Rosemberg
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Pavel E Musienko
- Laboratory of Neuroprosthetics, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Motor Physiology, Pavlov Institute of Physiology RAS, St. Petersburg, Russia; Laboratory of Neurophysiology and Experimental Neurorehabilitation, St. Petersburg State Research Institute of Phthysiopulmonology, Ministry of Health, St. Petersburg, Russia; Russian Research Center of Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Research and Development Center, Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Laboratory of Translational Biopsychiatry, Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Neuroscience Department, Novosibirsk State University, Novosibirsk, Russia; ZENEREI Research Center, Slidell, LA, USA; Russian Research Center of Radiology and Surgical Technologies, Ministry of Health, St. Petersburg, Russia; Ural Federal University, Ekaterinburg, Russia; Aquatic Laboratory, Institute of Experimental Medicine, Almazov National Medical Research Centre, St. Petersburg, Russia.
| |
Collapse
|
37
|
Jehle J, Schöne B, Bagheri S, Avraamidou E, Danisch M, Frank I, Pfeifer P, Bindila L, Lutz B, Lütjohann D, Zimmer A, Nickenig G. Elevated levels of 2-arachidonoylglycerol promote atherogenesis in ApoE-/- mice. PLoS One 2018; 13:e0197751. [PMID: 29813086 PMCID: PMC5973571 DOI: 10.1371/journal.pone.0197751] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/08/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) is a known modulator of inflammation and ligand to both, pro-inflammatory cannabinoid receptor 1 (CB1) and anti-inflammatory CB2. While the role of both receptors in atherogenesis has been studied extensively, the significance of 2-AG for atherogenesis is less well characterized. METHODS The impact of 2-AG on atherogenesis was studied in two treatment groups of ApoE-/- mice. One group received the monoacylglycerol lipase (MAGL)-inhibitor JZL184 [5 mg/kg i.p.], which impairs 2-AG degradation and thus causes elevated 2-AG levels, the other group received vehicle for four weeks. Simultaneously, both groups were fed a high-cholesterol diet. The atherosclerotic plaque burden was assessed in frozen sections through the aortic sinus following oil red O staining and infiltrating macrophages were detected by immunofluorescence targeting CD68. In vitro, the effect of 2-AG on B6MCL macrophage migration was assessed by Boyden chamber experiments. Transcription of adhesion molecules and chemokine receptors in macrophages was assessed by qPCR. RESULTS As expected, application of the MAGL-inhibitor JZL184 resulted in a significant increase in 2-AG levels in vascular tissue (98.2 ± 16.1 nmol/g vs. 27.3 ± 4.5 nmol/g; n = 14-16; p < 0.001). ApoE-/- mice with elevated 2-AG levels displayed a significantly increased plaque burden compared to vehicle treated controls (0.44 ± 0.03 vs. 0.31 ± 0.04; n = 14; p = 0.0117). This was accompanied by a significant increase in infiltrating macrophages within the atherosclerotic vessel wall (0.33 ± 0.02 vs. 0.27 ± 0.01; n = 13-14; p = 0.0076). While there was no alteration to the white blood counts of JZL184-treated animals, 2-AG enhanced macrophage migration in vitro by 1.8 ± 0.2 -fold (n = 4-6; p = 0.0393) compared to vehicle, which was completely abolished by co-administration of either CB1- or CB2-receptor-antagonists. qPCR analyses of 2-AG-stimulated macrophages showed an enhanced transcription of the chemokine CCL5 (1.59 ± 0.23 -fold; n = 5-6; p = 0.0589) and its corresponding receptors CCR1 (2.04 ± 0.46 -fold; n = 10-11; p = 0.0472) and CCR5 (2.45 ± 0.62 -fold; n = 5-6; p = 0.0554). CONCLUSION Taken together, elevated 2-AG levels appear to promote atherogenesis in vivo. Our data suggest that 2-AG promotes macrophage migration, possibly by the CCL5-CCR5/CCR1 axis, and thereby contributes to vascular inflammation. Thus, decreasing vascular 2-AG levels might represent a promising therapeutic strategy in patients suffering from atherosclerosis and coronary heart disease.
Collapse
Affiliation(s)
- Julian Jehle
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
- * E-mail:
| | - Benedikt Schöne
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Sayeh Bagheri
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Elina Avraamidou
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Melina Danisch
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Imke Frank
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Philipp Pfeifer
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dieter Lütjohann
- Insitute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Andreas Zimmer
- Department of Molecular Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
38
|
Nash AI. Crosstalk between insulin and dopamine signaling: A basis for the metabolic effects of antipsychotic drugs. J Chem Neuroanat 2017; 83-84:59-68. [DOI: 10.1016/j.jchemneu.2016.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/14/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
|
39
|
Abstract
Inflammatory bowel diseases (IBDs) often take a chronic debilitating course. Given the chronicity of IBD, the limitations of the available medications, their potential side effects, and the impact of the disease on patients' quality of life, it is not surprising IBD patients are ranked among the highest users of complementary and alternative medicine (CAM). Since CAM has become very popular in real-life practice of Western Communities, caregivers must gain more knowledge about these therapies, their mechanism of action, benefits, and risks. This article reviews and discusses up-to-date scientific and clinical data regarding the most prevalent herbal CAM therapies.
Collapse
|
40
|
Individual and combined effects of cannabis and tobacco on drug reward processing in non-dependent users. Psychopharmacology (Berl) 2017; 234:3153-3163. [PMID: 28733813 PMCID: PMC5660839 DOI: 10.1007/s00213-017-4698-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022]
Abstract
RATIONALE Cannabis and tobacco are often smoked simultaneously in joints, and this practice may increase the risks of developing tobacco and/or cannabis use disorders. Currently, there is no human experimental research on how these drugs interact on addiction-related measures. OBJECTIVES This study aimed to investigate how cannabis and tobacco, each alone and combined together in joints, affected individuals' demand for cannabis puffs and cigarettes, explicit liking of drug and non-drug-related stimuli and craving. METHOD A double-blind, 2 (active cannabis, placebo cannabis) × 2 (active tobacco, placebo tobacco) crossover design was used with 24 non-dependent cannabis and tobacco smokers. They completed a pleasantness rating task (PRT), a marijuana purchase task (MPT) and a cigarette purchase task (CPT) alongside measures of craving pre- and post-drug administration. RESULTS Relative to placebo cannabis, active cannabis reduced liking of cannabis-associated stimuli and increased response time to all stimuli except cigarette-related stimuli. Relative to placebo cannabis, active cannabis decreased demand for cannabis puffs (trends for breakpoint and elasticity) and cigarettes (breakpoint, P max, O max) on several characteristics of the purchase tasks. We found no evidence that active tobacco, both alone or combined with cannabis, had an effect on liking, demand or craving. CONCLUSIONS Acutely, cannabis reduced liking of cannabis-related stimuli and demand for cannabis itself. Acute cannabis also reduced demand for cigarettes on the CPT. Acute tobacco administration did not affect demand or pleasantness ratings for cigarettes themselves or cannabis. In non-dependent cannabis and tobacco co-users, tobacco did not influence the rewarding effects of cannabis.
Collapse
|
41
|
Sabia JJ, Swigert J, Young T. The Effect of Medical Marijuana Laws on Body Weight. HEALTH ECONOMICS 2017; 26:6-34. [PMID: 26602324 DOI: 10.1002/hec.3267] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 06/14/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
This study is the first to examine the effects of medical marijuana laws (MMLs) on body weight, physical wellness, and exercise. Using data from the 1990 to 2012 Behavioral Risk Factor Surveillance System and a difference-in-difference approach, we find that the enforcement of MMLs is associated with a 2% to 6% decline in the probability of obesity. We find some evidence of age-specific heterogeneity in mechanisms. For older individuals, MML-induced increases in physical mobility may be a relatively important channel, while for younger individuals, a reduction in consumption of alcohol, a substitute for marijuana, appears more important. These findings are consistent with the hypothesis that MMLs may be more likely to induce marijuana use for health-related reasons among older individuals, and cause substitution toward lower-calorie recreational 'highs' among younger individuals. Our estimates suggest that MMLs induce a $58 to $115 per-person annual reduction in obesity-related medical costs. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Joseph J Sabia
- Department of Economics, San Diego State University, San Diego, CA, USA
| | - Jeffrey Swigert
- Department of Policy Analysis and Management, Cornell University, Ithaca, NY, USA
| | - Timothy Young
- Department of Economics, San Diego State University, San Diego, CA, USA
| |
Collapse
|
42
|
Bodnar RJ. Conditioned flavor preferences in animals: Merging pharmacology, brain sites and genetic variance. Appetite 2016; 122:17-25. [PMID: 27988368 DOI: 10.1016/j.appet.2016.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022]
Abstract
The elucidation of the behavioral, neurochemical, neuroanatomical and genetic substrates mediating the development of conditioned flavor preferences (CFP) is one of the multi-faceted scientific contributions that Dr. Anthony Sclafani has made to the study of food intake. This review summarizes the results of thirty-five publications over nearly twenty years of collaborations between the Sclafani and Bodnar laboratories. This includes the different approaches employed to study the orosensory (flavor-flavor) and post-ingestive (flavor-nutrient) processes underlying CFP including its acquisition (learning) and expression. It describes how CFP is elicited by different sugars (sucrose, glucose, fructose) and fats (corn oil) in rats, and how strain-specific CFP effects can be observed through the use of inbred mouse strains to evaluate genetic variance. The roles of pharmacological substrates (dopamine, glutamate, opioids, acetylcholine, GABA, cannabinoids) mediating sugar- and fat-CFP acquisition and expression are elucidated. Finally, neuroanatomical sites of action (nucleus accumbens, amygdala, medial prefrontal and orbital frontal cortices, lateral hypothalamus) are evaluated at which dopamine signaling mediates acquisition and expression of different forms of CFP.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College and the Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States.
| |
Collapse
|
43
|
Robinson MJF, Fischer AM, Ahuja A, Lesser EN, Maniates H. Roles of "Wanting" and "Liking" in Motivating Behavior: Gambling, Food, and Drug Addictions. Curr Top Behav Neurosci 2016; 27:105-136. [PMID: 26407959 DOI: 10.1007/7854_2015_387] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The motivation to seek out and consume rewards has evolutionarily been driven by the urge to fulfill physiological needs. However in a modern society dominated more by plenty than scarcity, we tend to think of motivation as fueled by the search for pleasure. Here, we argue that two separate but interconnected subcortical and unconscious processes direct motivation: "wanting" and "liking." These two psychological and neuronal processes and their related brain structures typically work together, but can become dissociated, particularly in cases of addiction. In drug addiction, for example, repeated consumption of addictive drugs sensitizes the mesolimbic dopamine system, the primary component of the "wanting" system, resulting in excessive "wanting" for drugs and their cues. This sensitizing process is long-lasting and occurs independently of the "liking" system, which typically remains unchanged or may develop a blunted pleasure response to the drug. The result is excessive drug-taking despite minimal pleasure and intense cue-triggered craving that may promote relapse long after detoxification. Here, we describe the roles of "liking" and "wanting" in general motivation and review recent evidence for a dissociation of "liking" and "wanting" in drug addiction, known as the incentive sensitization theory (Robinson and Berridge 1993). We also make the case that sensitization of the "wanting" system and the resulting dissociation of "liking" and "wanting" occurs in both gambling disorder and food addiction.
Collapse
Affiliation(s)
- M J F Robinson
- Department of Psychology, Wesleyan University, 207 High Street, Judd Hall, Middletown, CT, 06459, USA.
| | - A M Fischer
- Department of Psychology, Wesleyan University, 207 High Street, Judd Hall, Middletown, CT, 06459, USA
| | - A Ahuja
- Department of Psychology, Wesleyan University, 207 High Street, Judd Hall, Middletown, CT, 06459, USA
| | - E N Lesser
- Department of Psychology, Wesleyan University, 207 High Street, Judd Hall, Middletown, CT, 06459, USA
| | - H Maniates
- Department of Psychology, Wesleyan University, 207 High Street, Judd Hall, Middletown, CT, 06459, USA
| |
Collapse
|
44
|
Amedee AM, Nichols WA, LeCapitaine NJ, Stouwe CV, Birke LL, Lacour N, Winsauer PJ, Molina PE. Chronic Δ⁹-tetrahydrocannabinol administration may not attenuate simian immunodeficiency virus disease progression in female rhesus macaques. AIDS Res Hum Retroviruses 2014; 30:1216-25. [PMID: 25113915 DOI: 10.1089/aid.2014.0108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Persons living with HIV/AIDS (PLWHA) frequently use cannabinoids, either recreationally by smoking marijuana or therapeutically (delta-9-tetrahydrocannabinol; Δ(9)-THC dronabinol). Previously, we demonstrated that chronic Δ(9)-THC administration decreases early mortality in male simian immunodeficiency virus (SIV)-infected macaques. In this study, we sought to examine whether similar protective effects resulted from chronic cannabinoid administration in SIV-infected female rhesus macaques. Clinical and viral parameters were evaluated in eight female rhesus macaques that received either Δ(9)-THC (0.18-0.32 mg/kg, intramuscularly, twice daily) or vehicle (VEH) starting 28 days prior to intravenous inoculation with SIVmac251. SIV disease progression was assessed by changes in body weight, mortality, viral levels in plasma and mucosal sites, and lymphocyte subsets. In contrast to our results in male animals, chronic Δ(9)-THC did not protect SIV-infected female rhesus macaques from early mortality. Markers of SIV disease, including viral load and CD4(+)/CD8(+) ratio, were not altered by Δ(9)-THC compared to control females; however, females that received chronic Δ(9)-THC did not gain as much weight as control animals. In addition, Δ(9)-THC administration increased total CXCR4 expression in both peripheral and duodenal CD4(+) and CD8(+) T lymphocytes prior to SIV inoculation. Although protection from early mortality was not evident, chronic Δ(9)-THC did not affect clinical markers of SIV disease progression. The contrasting effects of chronic Δ(9)-THC in males versus females remain to be explained, but highlight the need for further studies to explore the sex-dependent effects of Δ(9)-THC and other cannabinoids on the HIV disease course and their implications for virus transmission.
Collapse
Affiliation(s)
- Angela M. Amedee
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Whitney A. Nichols
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nicole J. LeCapitaine
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Curtis Vande Stouwe
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Leslie L. Birke
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nedra Lacour
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Peter J. Winsauer
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E. Molina
- Departments of Physiology, Pharmacology, and Microbiology, Immunology, & Parasitology and the Alcohol and Drug Abuse Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
45
|
Panagopoulos VN, Ralevski E. The role of ghrelin in addiction: a review. Psychopharmacology (Berl) 2014; 231:2725-40. [PMID: 24947976 DOI: 10.1007/s00213-014-3640-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/19/2014] [Indexed: 12/24/2022]
Abstract
RATIONALE Ghrelin is a fast-acting hormone that is produced primarily by the stomach and by the brain although in smaller quantities. The regulation and the secretion of ghrelin are complex and not limited to aspects of feeding. Ghrelin exerts powerful effects on multiple processes, and it has been demonstrated that it mediates the rewarding properties of food as well as of drugs of abuse. OBJECTIVES The purpose of this review is to summarize the findings of preclinical and clinical studies related to ghrelin's possible role in addiction for each specific class of substances. Questions related to ghrelin's involvement in addiction are highlighted. Recurrent methodological issues that render the interpretation of the findings challenging are discussed. Also, the potential of targeting ghrelin as a pharmacologic treatment strategy for addiction is explored. RESULTS Ghrelin signaling is implicated in the mediation of behavioral and biochemical effects of drugs of abuse that are cardinal for the development of addiction, especially for alcohol, nicotine, and stimulants. The available literature implicating ghrelin in opioid or cannabis use disorders is currently limited and inconclusive. CONCLUSIONS There is intriguing, although not always consistent, evidence for the involvement of ghrelin signaling in aspects of addiction, especially in the cases of alcohol, nicotine, and stimulants. Further research, particularly in humans, is recommended to replicate and expand on the findings of the current literature. Improved and novel methodologies that take into account the volatile and complex nature of ghrelin are required to clarify the inconsistencies of the findings.
Collapse
Affiliation(s)
- Vassilis N Panagopoulos
- Department of Psychiatry, VA St. Louis Health Care System, 915 North Grand Blvd, St. Louis, MO, 63106, USA
| | | |
Collapse
|
46
|
Venkatesan T, Sengupta J, Lodhi A, Schroeder A, Adams K, Hogan WJ, Wang Y, Andrews C, Storr M. An Internet survey of marijuana and hot shower use in adults with cyclic vomiting syndrome (CVS). Exp Brain Res 2014; 232:2563-70. [PMID: 24792504 DOI: 10.1007/s00221-014-3967-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/15/2014] [Indexed: 12/28/2022]
Abstract
Cyclic vomiting syndrome (CVS) is a chronic disorder characterized by episodic nausea and vomiting. A large proportion of patients use marijuana to control their symptoms. Several case reports implicate marijuana as a cause of intractable vomiting with compulsive hot water bathing considered pathognomonic of "cannabinoid hyperemesis." We sought to examine the relationship between marijuana use and CVS. Patients >18 years of age diagnosed by a health care provider were invited to participate in an anonymous internet-based survey. A total of 514 patients participated and 437 completed questions about marijuana use. Mean age was 34 ± 12 years with patients being predominantly female (63%), Caucasian (92%) and from the USA (82%). Nineteen percent never used marijuana and 81% did. Fifty-four percent used marijuana for health issues and 43% for recreational purposes. Users stated that it improved nausea, appetite, general well-being, stress levels and vomiting. Users were more likely to be male and have an associated anxiety disorder. Sixty-seven percent of patients reported taking hot showers/baths for symptom relief, and this was associated with marijuana use. (OR 2.54, CI 1.50-4.31, P = 0.0006). Eighty-one percent of patients with CVS who completed an internet survey reported frequent use of marijuana. With marijuana use, patients noted the greatest improvement with stress levels, appetite and nausea. Marijuana users were more likely to be male and have associated anxiety. Hot showers were not pathognomonic of marijuana use though they were more likely to be associated with its use.
Collapse
Affiliation(s)
- Thangam Venkatesan
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, 9200, W. Wisconsin Ave., Milwaukee, WI, 53226, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Vida M, Rivera P, Gavito AL, Suárez J, Pavón FJ, Arrabal S, Romero-Cuevas M, Bautista D, Martínez A, de Fonseca FR, Serrano A, Baixeras E. CB1 blockade potentiates down-regulation of lipogenic gene expression in perirenal adipose tissue in high carbohydrate diet-induced obesity. PLoS One 2014; 9:e90016. [PMID: 24587189 PMCID: PMC3934980 DOI: 10.1371/journal.pone.0090016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/30/2014] [Indexed: 01/07/2023] Open
Abstract
De novo lipogenesis and hypercaloric diets are thought to contribute to increased fat mass, particularly in abdominal fat depots. CB1 is highly expressed in adipose tissue, and CB1-mediated signalling is associated with stimulation of lipogenesis and diet-induced obesity, though its contribution to increasing fat deposition in adipose tissue is controversial. Lipogenesis is regulated by transcription factors such as liver X receptor (LXR), sterol-response element binding protein (SREBP) and carbohydrate-responsive-element-binding protein (ChREBP). We evaluated the role of CB1 in the gene expression of these factors and their target genes in relation to lipogenesis in the perirenal adipose tissue (PrAT) of rats fed a high-carbohydrate diet (HCHD) or a high-fat diet (HFD). Both obesity models showed an up-regulated gene expression of CB1 and Lxrα in this adipose pad. The Srebf-1 and ChREBP gene expressions were down-regulated in HFD but not in HCHD. The expression of their target genes encoding for lipogenic enzymes showed a decrease in diet-induced obesity and was particularly dramatic in HFD. In HCHD, CB1 blockade by AM251 reduced the Srebf-1 and ChREBP expression and totally abrogated the remnant gene expression of their target lipogenic enzymes. The phosphorylated form of the extracellular signal-regulated kinase (ERK-p), which participates in the CB1-mediated signalling pathway, was markedly present in the PrAT of obese rats. ERK-p was drastically repressed by AM251 indicating that CB1 is actually functional in PrAT of obese animals, though its activation loses the ability to stimulate lipogenesis in PrAT of obese rats. Even so, the remnant expression levels of lipogenic transcription factors found in HCHD-fed rats are still dependent on CB1 activity. Hence, in HCHD-induced obesity, CB1 blockade may help to further potentiate the reduction of lipogenesis in PrAT by means of inducing down-regulation of the ChREBP and Srebf-1 gene expression, and consequently in the expression of lipogenic enzymes.
Collapse
Affiliation(s)
- Margarita Vida
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | - Patricia Rivera
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | - Ana Luisa Gavito
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | - Francisco Javier Pavón
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | - Sergio Arrabal
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | - Miguel Romero-Cuevas
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | - Dolores Bautista
- Unidad de Gestión Clínica de Anatomía Patológica, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Ana Martínez
- Instituto de Química Médica Lora Tamayo, Consejo Superior de Investigaciones Científicas. Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, Spain
- * E-mail: (EB); (AS)
| | - Elena Baixeras
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- * E-mail: (EB); (AS)
| |
Collapse
|
48
|
Vallée M, Vitiello S, Bellocchio L, Hébert-Chatelain E, Monlezun S, Martin-Garcia E, Kasanetz F, Baillie GL, Panin F, Cathala A, Roullot-Lacarrière V, Fabre S, Hurst DP, Lynch DL, Shore DM, Deroche-Gamonet V, Spampinato U, Revest JM, Maldonado R, Reggio PH, Ross RA, Marsicano G, Piazza PV. Pregnenolone can protect the brain from cannabis intoxication. Science 2014; 343:94-8. [PMID: 24385629 DOI: 10.1126/science.1243985] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pregnenolone is considered the inactive precursor of all steroid hormones, and its potential functional effects have been largely uninvestigated. The administration of the main active principle of Cannabis sativa (marijuana), Δ(9)-tetrahydrocannabinol (THC), substantially increases the synthesis of pregnenolone in the brain via activation of the type-1 cannabinoid (CB1) receptor. Pregnenolone then, acting as a signaling-specific inhibitor of the CB1 receptor, reduces several effects of THC. This negative feedback mediated by pregnenolone reveals a previously unknown paracrine/autocrine loop protecting the brain from CB1 receptor overactivation that could open an unforeseen approach for the treatment of cannabis intoxication and addiction.
Collapse
Affiliation(s)
- Monique Vallée
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000 Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vidot DC, Prado G, Hlaing WM, Arheart KL, Messiah SE. Emerging issues for our nation's health: the intersection of marijuana use and cardiometabolic disease risk. J Addict Dis 2014; 33:1-8. [PMID: 24471513 PMCID: PMC3992187 DOI: 10.1080/10550887.2014.882718] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Current marijuana use rates are the highest they have been in the past decade and are not likely to decrease given the legalization of marijuana for medicinal and recreational use. Concurrently, the nation is facing epidemic levels of obesity, cardiovascular disease, and diabetes mellitus; but, little is known about the intersecting relationships of marijuana use and cardiometabolic health. The objective of this study was to explore emerging issues in context with the intersection of cardiometabolic risk and marijuana use. This topic has potential important implications for our nation's health as we relax our approach to marijuana but continue to have unacceptable rates of cardiometabolic illnesses.
Collapse
Affiliation(s)
- Denise C. Vidot
- Division of Epidemiology, Department of Public Health Sciences, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA 33130
- Division of Pediatric Clinical Research, Department of Pediatrics, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA 33130
| | - Guillermo Prado
- Division of Prevention Science, Department of Public Health Sciences, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA 33130
| | - WayWay M. Hlaing
- Division of Epidemiology, Department of Public Health Sciences, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA 33130
| | - Kristopher L. Arheart
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA 33130
| | - Sarah E. Messiah
- Division of Epidemiology, Department of Public Health Sciences, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA 33130
- Division of Pediatric Clinical Research, Department of Pediatrics, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA 33130
| |
Collapse
|
50
|
Marichal-Cancino BA, Manrique-Maldonado G, Altamirano-Espinoza AH, Ruiz-Salinas I, González-Hernández A, MaassenVanDenBrink A, Villalón CM. Analysis of anandamide- and lysophosphatidylinositol-induced inhibition of the vasopressor responses produced by sympathetic stimulation or noradrenaline in pithed rats. Eur J Pharmacol 2013; 721:168-77. [DOI: 10.1016/j.ejphar.2013.09.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/09/2013] [Accepted: 09/08/2013] [Indexed: 12/28/2022]
|