1
|
Baillie JK, Angus D, Burnham K, Calandra T, Calfee C, Gutteridge A, Hacohen N, Khatri P, Langley R, Ma'ayan A, Marshall J, Maslove D, Prescott HC, Rowan K, Scicluna BP, Seymour C, Shankar-Hari M, Shapiro N, Joost Wiersinga W, Singer M, Randolph AG. Causal inference can lead us to modifiable mechanisms and informative archetypes in sepsis. Intensive Care Med 2024:10.1007/s00134-024-07665-4. [PMID: 39432104 PMCID: PMC7616750 DOI: 10.1007/s00134-024-07665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
Medical progress is reflected in the advance from broad clinical syndromes to mechanistically coherent diagnoses. By this metric, research in sepsis is far behind other areas of medicine-the word itself conflates multiple different disease mechanisms, whilst excluding noninfectious syndromes (e.g., trauma, pancreatitis) with similar pathogenesis. New technologies, both for deep phenotyping and data analysis, offer the capability to define biological states with extreme depth. Progress is limited by a fundamental problem: observed groupings of patients lacking shared causal mechanisms are very poor predictors of response to treatment. Here, we discuss concrete steps to identify groups of patients reflecting archetypes of disease with shared underlying mechanisms of pathogenesis. Recent evidence demonstrates the role of causal inference from host genetics and randomised clinical trials to inform stratification analyses. Genetic studies can directly illuminate drug targets, but in addition they create a reservoir of statistical power that can be divided many times among potential patient subgroups to test for mechanistic coherence, accelerating discovery of modifiable mechanisms for testing in trials. Novel approaches, such as subgroup identification in-flight in clinical trials, will improve efficiency. Within the next decade, we expect ongoing large-scale collaborative projects to discover and test therapeutically relevant sepsis archetypes.
Collapse
Affiliation(s)
- J Kenneth Baillie
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK.
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK.
- International Sepsis Forum, Murphy, NC, USA.
| | - Derek Angus
- International Sepsis Forum, Murphy, NC, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA
- UPMC Health System, Pittsburgh, PA, USA
| | | | - Thierry Calandra
- International Sepsis Forum, Murphy, NC, USA
- Service of Immunology and Allergy, Department of Medicine, Lausanne, Switzerland
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Carolyn Calfee
- International Sepsis Forum, Murphy, NC, USA
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA, USA
| | | | | | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Palo Alto, CA, USA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Raymond Langley
- College of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Avi Ma'ayan
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Marshall
- International Sepsis Forum, Murphy, NC, USA
- Unity Health Toronto, Toronto, ON, Canada
| | - David Maslove
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
| | - Hallie C Prescott
- International Sepsis Forum, Murphy, NC, USA
- University of Michigan, Ann Arbor, MI, USA
| | - Kathy Rowan
- International Sepsis Forum, Murphy, NC, USA
- Intensive Care National Audit & Research Centre, London, UK
| | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei hospital, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, Biomedical Sciences bldg., University of Malta, Msida, Malta
| | - Christopher Seymour
- International Sepsis Forum, Murphy, NC, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Manu Shankar-Hari
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK
- International Sepsis Forum, Murphy, NC, USA
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Nathan Shapiro
- International Sepsis Forum, Murphy, NC, USA
- Harvard University, Boston, USA
| | - W Joost Wiersinga
- International Sepsis Forum, Murphy, NC, USA
- Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mervyn Singer
- International Sepsis Forum, Murphy, NC, USA
- University College London, London, UK
| | - Adrienne G Randolph
- International Sepsis Forum, Murphy, NC, USA
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
- Departments of Anaesthesia and Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Monneret G, Haem Rahimi M, Lukaszewicz AC, Venet F, Gossez M. Shadows and lights in sepsis immunotherapy. Expert Opin Pharmacother 2024:1-9. [PMID: 39417719 DOI: 10.1080/14656566.2024.2418987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Sepsis remains a major global public health challenge. The host's response in sepsis involves both an exaggerated inflammatory reaction and immunosuppressive mechanisms. A better understanding of this response has shed light on the failure of anti-inflammatory therapies administered under the 'one size fits all' approach during the last decades. AREAS COVERED To date, patients' management has moved toward a comprehensive precision medicine approach that aims to personalize immunotherapy, whether anti-inflammatory or immunostimulatory. Large Prospective interventional randomized controlled trials validating this approach are about to start. A crucial prerequisite for these studies is to stratify patients based on biomarkers that will help defining the patients' immuno-inflammatory trajectory. EXPERT OPINION Some biomarkers are already available in routine clinical care, while improvements are anticipated through the standardized use of transcriptomics and other multi-omics technologies in this field. With these precautions in mind, it is reasonable to anticipate improvement in outcomes in sepsis.
Collapse
Affiliation(s)
- Guillaume Monneret
- Hospices Civils de Lyon, Immunology Laboratory, Hôpital E. Herriot, Lyon, France
- Université de Lyon, EA 7426 Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Lyon, France
| | - Muzhda Haem Rahimi
- Hospices Civils de Lyon, Immunology Laboratory, Hôpital E. Herriot, Lyon, France
- Université de Lyon, EA 7426 Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Lyon, France
| | - Anne-Claire Lukaszewicz
- Université de Lyon, EA 7426 Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Lyon, France
- Hospices Civils de Lyon, Anesthesiology and Critical Care Medicine department, Hôpital E. Herriot, Lyon, France
| | - Fabienne Venet
- Hospices Civils de Lyon, Immunology Laboratory, Hôpital E. Herriot, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon France
| | - Morgane Gossez
- Hospices Civils de Lyon, Immunology Laboratory, Hôpital E. Herriot, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon France
| |
Collapse
|
3
|
Yang M, Zhuang J, Hu W, Li J, Wang Y, Zhang Z, Liu C, Chen H. Enhancing Patient Selection in Sepsis Clinical Trials Design Through an AI Enrichment Strategy: Algorithm Development and Validation. J Med Internet Res 2024; 26:e54621. [PMID: 39231425 PMCID: PMC11411223 DOI: 10.2196/54621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/22/2024] [Accepted: 07/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Sepsis is a heterogeneous syndrome, and enrollment of more homogeneous patients is essential to improve the efficiency of clinical trials. Artificial intelligence (AI) has facilitated the identification of homogeneous subgroups, but how to estimate the uncertainty of the model outputs when applying AI to clinical decision-making remains unknown. OBJECTIVE We aimed to design an AI-based model for purposeful patient enrollment, ensuring that a patient with sepsis recruited into a trial would still be persistently ill by the time the proposed therapy could impact patient outcome. We also expected that the model could provide interpretable factors and estimate the uncertainty of the model outputs at a customized confidence level. METHODS In this retrospective study, 9135 patients with sepsis requiring vasopressor treatment within 24 hours after sepsis onset were enrolled from Beth Israel Deaconess Medical Center. This cohort was used for model development, and 10-fold cross-validation with 50 repeats was used for internal validation. In total, 3743 patients with sepsis from the eICU Collaborative Research Database were used as the external validation cohort. All included patients with sepsis were stratified based on disease progression trajectories: rapid death, recovery, and persistent ill. A total of 148 variables were selected for predicting the 3 trajectories. Four machine learning algorithms with 3 different setups were used. We estimated the uncertainty of the model outputs using conformal prediction (CP). The Shapley Additive Explanations method was used to explain the model. RESULTS The multiclass gradient boosting machine was identified as the best-performing model with good discrimination and calibration performance in both validation cohorts. The mean area under the receiver operating characteristic curve with SD was 0.906 (0.018) for rapid death, 0.843 (0.008) for recovery, and 0.807 (0.010) for persistent ill in the internal validation cohort. In the external validation cohort, the mean area under the receiver operating characteristic curve (SD) was 0.878 (0.003) for rapid death, 0.764 (0.008) for recovery, and 0.696 (0.007) for persistent ill. The maximum norepinephrine equivalence, total urine output, Acute Physiology Score III, mean systolic blood pressure, and the coefficient of variation of oxygen saturation contributed the most. Compared to the model without CP, using the model with CP at a mixed confidence approach reduced overall prediction errors by 27.6% (n=62) and 30.7% (n=412) in the internal and external validation cohorts, respectively, as well as enabled the identification of more potentially persistent ill patients. CONCLUSIONS The implementation of our model has the potential to reduce heterogeneity and enroll more homogeneous patients in sepsis clinical trials. The use of CP for estimating the uncertainty of the model outputs allows for a more comprehensive understanding of the model's reliability and assists in making informed decisions based on the predicted outcomes.
Collapse
Affiliation(s)
- Meicheng Yang
- State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Jinqiang Zhuang
- Emergency Intensive Care Unit (EICU), The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Key Laboratory of Big Data Analysis and Knowledge Services of Yangzhou City, Yangzhou University, Yangzhou, China
| | - Wenhan Hu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jianqing Li
- State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Yu Wang
- Key Laboratory of Big Data Analysis and Knowledge Services of Yangzhou City, Yangzhou University, Yangzhou, China
| | - Zhongheng Zhang
- Department of Emergency Medicine, Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyu Liu
- State Key Laboratory of Digital Medical Engineering, School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Hui Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Kim MJ, Choi EJ, Choi EJ. Evolving Paradigms in Sepsis Management: A Narrative Review. Cells 2024; 13:1172. [PMID: 39056754 PMCID: PMC11274781 DOI: 10.3390/cells13141172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Sepsis, a condition characterized by life-threatening organ dysfunction due to a dysregulated host response to infection, significantly impacts global health, with mortality rates varying widely across regions. Traditional therapeutic strategies that target hyperinflammation and immunosuppression have largely failed to improve outcomes, underscoring the need for innovative approaches. This review examines the development of therapeutic agents for sepsis, with a focus on clinical trials addressing hyperinflammation and immunosuppression. It highlights the frequent failures of these trials, explores the underlying reasons, and outlines current research efforts aimed at bridging the gap between theoretical advancements and clinical applications. Although personalized medicine and phenotypic categorization present promising directions, this review emphasizes the importance of understanding the complex pathogenesis of sepsis and developing targeted, effective therapies to enhance patient outcomes. By addressing the multifaceted nature of sepsis, future research can pave the way for more precise and individualized treatment strategies, ultimately improving the management and prognosis of sepsis patients.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea;
| | - Eun-Joo Choi
- Department of Anesthesiology and Pain Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Eun-Jung Choi
- Department of Anatomy, School of Medicine, Daegu Catholic University, Duryugongwon-ro 17gil, Nam-gu, Daegu 42472, Republic of Korea
| |
Collapse
|
5
|
Fujikawa M, Ueda M, Maruyama K. Role of Kynurenine and Its Derivatives in the Neuroimmune System. Int J Mol Sci 2024; 25:7144. [PMID: 39000249 PMCID: PMC11241229 DOI: 10.3390/ijms25137144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
In recent years, there has been a growing realization of intricate interactions between the nervous and immune systems, characterized by shared humoral factors and receptors. This interplay forms the basis of the neuroimmune system, the understanding of which will provide insights into the pathogenesis of neurological diseases, in which the involvement of the immune system has been overlooked. Kynurenine and its derivatives derived from tryptophan have long been implicated in the pathogenesis of various neurological diseases. Recent studies have revealed their close association not only with neurological disorders but also with sepsis-related deaths. This review provides an overview of the biochemistry of kynurenine and its derivatives, followed by a discussion of their role via the modulation of the neuroimmune system in various diseases.
Collapse
Affiliation(s)
- Makoto Fujikawa
- Department of Pharmacology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| | - Masashi Ueda
- Department of Pharmacology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| | - Kenta Maruyama
- Department of Pharmacology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Aichi, Japan
| |
Collapse
|
6
|
Kondo T, Okada Y, Shizuya S, Yamaguchi N, Hatakeyama S, Maruyama K. Neuroimmune modulation by tryptophan derivatives in neurological and inflammatory disorders. Eur J Cell Biol 2024; 103:151418. [PMID: 38729083 DOI: 10.1016/j.ejcb.2024.151418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
The nervous and immune systems are highly developed, and each performs specialized physiological functions. However, they work together, and their dysfunction is associated with various diseases. Specialized molecules, such as neurotransmitters, cytokines, and more general metabolites, are essential for the appropriate regulation of both systems. Tryptophan, an essential amino acid, is converted into functional molecules such as serotonin and kynurenine, both of which play important roles in the nervous and immune systems. The role of kynurenine metabolites in neurodegenerative and psychiatric diseases has recently received particular attention. Recently, we found that hyperactivity of the kynurenine pathway is a critical risk factor for septic shock. In this review, we first outline neuroimmune interactions and tryptophan derivatives and then summarized the changes in tryptophan metabolism in neurological disorders. Finally, we discuss the potential of tryptophan derivatives as therapeutic targets for neuroimmune disorders.
Collapse
Affiliation(s)
- Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Saika Shizuya
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Kenta Maruyama
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan.
| |
Collapse
|
7
|
Slim MA, van Mourik N, Bakkerus L, Fuller K, Acharya L, Giannidis T, Dionne JC, Oczkowski SJW, Netea MG, Pickkers P, Giamarellos-Bourboulis EJ, Müller MCA, van der Poll T, Wiersinga WJ, Vlaar APJ, van Vught LA. Towards personalized medicine: a scoping review of immunotherapy in sepsis. Crit Care 2024; 28:183. [PMID: 38807151 PMCID: PMC11134696 DOI: 10.1186/s13054-024-04964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Despite significant progress in our understanding of the pathophysiology of sepsis and extensive clinical research, there are few proven therapies addressing the underlying immune dysregulation of this life-threatening condition. The aim of this scoping review is to describe the literature evaluating immunotherapy in adult patients with sepsis, emphasizing on methods providing a "personalized immunotherapy" approach, which was defined as the classification of patients into a distinct subgroup or subphenotype, in which a patient's immune profile is used to guide treatment. Subgroups are subsets of sepsis patients, based on any cut-off in a variable. Subphenotypes are subgroups that can be reliably discriminated from other subgroup based on data-driven assessments. Included studies were randomized controlled trials and cohort studies investigating immunomodulatory therapies in adults with sepsis. Studies were identified by searching PubMed, Embase, Cochrane CENTRAL and ClinicalTrials.gov, from the first paper available until January 29th, 2024. The search resulted in 15,853 studies. Title and abstract screening resulted in 1409 studies (9%), assessed for eligibility; 771 studies were included, of which 282 (37%) were observational and 489 (63%) interventional. Treatment groups included were treatments targeting the innate immune response, the complement system, coagulation and endothelial dysfunction, non-pharmalogical treatment, pleiotropic drugs, immunonutrition, concomitant treatments, Traditional Chinese Medicine, immunostimulatory cytokines and growth factors, intravenous immunoglobulins, mesenchymal stem cells and immune-checkpoint inhibitors. A personalized approach was incorporated in 70 studies (9%). Enrichment was applied using cut-offs in temperature, laboratory, biomarker or genetic variables. Trials often showed conflicting results, possibly due to the lack of patient stratification or the potential influence of severity and timing on immunomodulatory therapy results. When a personalized approach was applied, trends of clinical benefit for several interventions emerged, which hold promise for future clinical trials using personalized immunotherapy.
Collapse
Affiliation(s)
- Marleen A Slim
- Department of Intensive Care Medicine, Amsterdam University Medical Center, Meibergdreef 9, Room G3-220, 1105 AZ, Amsterdam, The Netherlands.
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Niels van Mourik
- Department of Intensive Care Medicine, Amsterdam University Medical Center, Meibergdreef 9, Room G3-220, 1105 AZ, Amsterdam, The Netherlands
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lieke Bakkerus
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Lydia Acharya
- Department of Medicine, McMaster University, Hamilton, Canada
| | | | - Joanna C Dionne
- Department of Medicine, McMaster University, Hamilton, Canada
- The Guidelines in Intensive Care Development and Evaluation (GUIDE) Group, Research Institute St. Joseph's Healthcare Hamilton, Hamilton, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
- Division of Gastroenterology, McMaster University, Hamilton, ON, Canada
| | - Simon J W Oczkowski
- Department of Medicine, McMaster University, Hamilton, Canada
- The Guidelines in Intensive Care Development and Evaluation (GUIDE) Group, Research Institute St. Joseph's Healthcare Hamilton, Hamilton, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Marcella C A Müller
- Department of Intensive Care Medicine, Amsterdam University Medical Center, Meibergdreef 9, Room G3-220, 1105 AZ, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander P J Vlaar
- Department of Intensive Care Medicine, Amsterdam University Medical Center, Meibergdreef 9, Room G3-220, 1105 AZ, Amsterdam, The Netherlands
| | - Lonneke A van Vught
- Department of Intensive Care Medicine, Amsterdam University Medical Center, Meibergdreef 9, Room G3-220, 1105 AZ, Amsterdam, The Netherlands
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Wu Y, Wang L, Li Y, Cao Y, Wang M, Deng Z, Kang H. Immunotherapy in the context of sepsis-induced immunological dysregulation. Front Immunol 2024; 15:1391395. [PMID: 38835773 PMCID: PMC11148279 DOI: 10.3389/fimmu.2024.1391395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Sepsis is a clinical syndrome caused by uncontrollable immune dysregulation triggered by pathogen infection, characterized by high incidence, mortality rates, and disease burden. Current treatments primarily focus on symptomatic relief, lacking specific therapeutic interventions. The core mechanism of sepsis is believed to be an imbalance in the host's immune response, characterized by early excessive inflammation followed by late immune suppression, triggered by pathogen invasion. This suggests that we can develop immunotherapeutic treatment strategies by targeting and modulating the components and immunological functions of the host's innate and adaptive immune systems. Therefore, this paper reviews the mechanisms of immune dysregulation in sepsis and, based on this foundation, discusses the current state of immunotherapy applications in sepsis animal models and clinical trials.
Collapse
Affiliation(s)
- Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Li
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuan Cao
- Department of Emergency Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zihui Deng
- Department of Basic Medicine, Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Hongjun Kang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
9
|
Li G, Yang Z, Yang C, Xie Y, Gong S, Lv S, Xiao B, Wang J, Weng Q, Wang J, Yu F. Single-cell RNA sequencing reveals cell-cell communication and potential biomarker in sepsis and septic shock patients. Int Immunopharmacol 2024; 132:111938. [PMID: 38593502 DOI: 10.1016/j.intimp.2024.111938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Sepsis is a disease characterized by infection-induced multiorgan dysfunction, which can progress to septic shock if not promptly treated. Early identification of sepsis is crucial for its treatment. However, there are currently limited specific biomarkers for sepsis or septic shock. This study aims to identify potential biomarkers for sepsis and septic shock. METHODS We analyzed single-cell transcriptomic data of peripheral blood mononuclear cells (PBMCs) from healthy individuals, sepsis and septic shock patients, identified differences in gene expression and cell-cell communication between different cell types during disease progression. Moreover, our analyses were further validated with flow cytometry and bulk RNA-seq data. RESULTS Our study elucidates the alterations in cellular proportions and cell-cell communication among healthy controls, sepsis, and septic shock patients. We identified a specific augmentation in the Resistin signaling within sepsis monocytes, mediated via RETN-CAP1 ligand-receptor pairs. Additionally, we observed enhanced IL16 signaling within monocytes from septic shock patients, mediated through IL16-CD4 ligand-receptor pairs. Subsequently, we confirmed our findings by validating the increase in CAP-1+ monocytes in sepsis and IL16+ monocytes in septic shock in mouse models. And a significant upregulation of CAP-1 and IL16 was also observed in the bulk RNA-seq data from patients with sepsis and septic shock. Furthermore, we identified four distinct clusters of CD14+ monocytes, highlighting the heterogeneity of monocytes in the progress of sepsis. CONCLUSIONS In summary, our work demonstrates changes in cell-cell communication of healthy controls, sepsis and septic shock, confirming that the molecules CAP-1 and IL16 on monocytes may serve as potential diagnostic markers for sepsis and septic shock, respectively. These findings provide new insights for early diagnosis and stratified treatment of the disease.
Collapse
Affiliation(s)
- Guilin Li
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Zhaoxu Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Chen Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Yaochen Xie
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Shuchen Gong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Shuying Lv
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Boneng Xiao
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Taizhou 318000, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Taizhou 318000, China; Beijing Life Science Academy, Beijing 102200, China.
| | - Feng Yu
- Department of Colorectal Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| |
Collapse
|
10
|
Cajander S, Kox M, Scicluna BP, Weigand MA, Mora RA, Flohé SB, Martin-Loeches I, Lachmann G, Girardis M, Garcia-Salido A, Brunkhorst FM, Bauer M, Torres A, Cossarizza A, Monneret G, Cavaillon JM, Shankar-Hari M, Giamarellos-Bourboulis EJ, Winkler MS, Skirecki T, Osuchowski M, Rubio I, Bermejo-Martin JF, Schefold JC, Venet F. Profiling the dysregulated immune response in sepsis: overcoming challenges to achieve the goal of precision medicine. THE LANCET. RESPIRATORY MEDICINE 2024; 12:305-322. [PMID: 38142698 DOI: 10.1016/s2213-2600(23)00330-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 12/26/2023]
Abstract
Sepsis is characterised by a dysregulated host immune response to infection. Despite recognition of its significance, immune status monitoring is not implemented in clinical practice due in part to the current absence of direct therapeutic implications. Technological advances in immunological profiling could enhance our understanding of immune dysregulation and facilitate integration into clinical practice. In this Review, we provide an overview of the current state of immune profiling in sepsis, including its use, current challenges, and opportunities for progress. We highlight the important role of immunological biomarkers in facilitating predictive enrichment in current and future treatment scenarios. We propose that multiple immune and non-immune-related parameters, including clinical and microbiological data, be integrated into diagnostic and predictive combitypes, with the aid of machine learning and artificial intelligence techniques. These combitypes could form the basis of workable algorithms to guide clinical decisions that make precision medicine in sepsis a reality and improve patient outcomes.
Collapse
Affiliation(s)
- Sara Cajander
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Matthijs Kox
- Department of Intensive Care Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Brendon P Scicluna
- Department of Applied Biomedical Science, Faculty of Health Sciences, Mater Dei hospital, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Raquel Almansa Mora
- Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Stefanie B Flohé
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ignacio Martin-Loeches
- St James's Hospital, Dublin, Ireland; Hospital Clinic, Institut D'Investigacions Biomediques August Pi i Sunyer, Universidad de Barcelona, Barcelona, Spain
| | - Gunnar Lachmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine, Berlin, Germany
| | - Massimo Girardis
- Department of Intensive Care and Anesthesiology, University Hospital of Modena, Modena, Italy
| | - Alberto Garcia-Salido
- Hospital Infantil Universitario Niño Jesús, Pediatric Critical Care Unit, Madrid, Spain
| | - Frank M Brunkhorst
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Antoni Torres
- Pulmonology Department. Hospital Clinic of Barcelona, University of Barcelona, Ciberes, IDIBAPS, ICREA, Barcelona, Spain
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Guillaume Monneret
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Université Claude Bernard Lyon-1, Hôpital E Herriot, Lyon, France
| | | | - Manu Shankar-Hari
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | | | - Martin Sebastian Winkler
- Department of Anesthesiology and Intensive Care, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany; Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Jesus F Bermejo-Martin
- Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain; School of Medicine, Universidad de Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red en Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Venet
- Immunology Laboratory, Hôpital E Herriot - Hospices Civils de Lyon, Lyon, France; Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Ecole Normale Supeérieure de Lyon, Universiteé Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
11
|
Slim MA, Turgman O, van Vught LA, van der Poll T, Wiersinga WJ. Non-conventional immunomodulation in the management of sepsis. Eur J Intern Med 2024; 121:9-16. [PMID: 37919123 DOI: 10.1016/j.ejim.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
Sepsis remains a critical global health issue, demanding novel therapeutic strategies. Traditional immunomodulation treatments such as corticosteroids, specific modifiers of cytokines, complement or coagulation, growth factors or immunoglobulins, have so far fallen short. Meanwhile the number of studies investigating non-conventional immunomodulatory strategies is expanding. This review provides an overview of adjunctive treatments with herbal-based medicine, immunonutrition, vasopressors, sedative treatments and targeted temperature management, used to modulate the immune response in patients with sepsis. Herbal-based medicine, notably within traditional Chinese medicine, shows promise. Xuebijing injection and Shenfu injection exhibit anti-inflammatory and immune-modulatory effects, and the potential to lower 28-day mortality in sepsis. Selenium supplementation has been reported to reduce the occurrence of ventilator-associated pneumonia among sepsis patients, but study results are conflicting. Likewise, the immune-suppressive effects of omega-3 fatty acids have been associated with improved clinical outcomes in sepsis. The immunomodulating properties of supportive treatments also gain interest. Vasopressors like norepinephrine exhibit dual dosage-dependent roles, potentially promoting both pro- and anti-inflammatory effects. Dexmedetomidine, a sedative, demonstrates anti-inflammatory properties, reducing sepsis mortality rates in some studies. Temperature management, particularly maintaining higher body temperature, has also been associated with improved outcomes in small scale human trials. In conclusion, emerging non-conventional immunomodulatory approaches, including herbal medicine, immunonutrition, and targeted supportive therapies, hold potential for sepsis treatment, but their possible implementation into everyday clinical practice necessitates further research and stringent clinical validation in different settings.
Collapse
Affiliation(s)
- M A Slim
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Department of Intensive Care, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.
| | - O Turgman
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - L A van Vught
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Department of Intensive Care, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - T van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Department of Medicine, Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - W J Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Department of Medicine, Division of Infectious Diseases, Amsterdam University Medical Centers - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Shen B, Shen Q, Zeng Q, Zhang L, Li X. Silenced-C5ar1 improved multiple organ injury in sepsis rats via inhibiting neutrophil extracellular trap. J Mol Histol 2024; 55:69-81. [PMID: 38165570 PMCID: PMC10830609 DOI: 10.1007/s10735-023-10172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/21/2023] [Indexed: 01/04/2024]
Abstract
Sepsis has a systemic inflammatory response syndrome caused by infection. While neutrophils play contradictory roles in different stages of sepsis. Neutrophils have been proven to play an antibacterial role by producing neutrophil extracellular traps (NETs). Although the NET is beneficial to bacteria resistance, abnormal NET increases tissue damage. The complement C5a receptor 1 (C5ar1) is a gene related to strong inflammatory reactions and is found to be associated with inflammatory factors. This study found that there were 45 down-regulated genes and 704 up-regulated genes in sepsis rats by transcriptome sequencing. And those genes were significantly related to inflammation and immunity by GO and KEGG enrichment analysis involving the chemokine signaling pathway, the Toll-like receptor (TLR) signaling pathway, and the Fc gamma R-mediated phagocytosis. Additionally, the C5ar1 gene was significantly upregulated with interesting potential in sepsis and used for further study. This study used cecum ligation and puncture (CLP) rats that were respectively injected intravenously with PBS or the lentivirus vector to explore the effect of C5ar1 on CLP rats. It demonstrated that silenced- C5ar1 inhibited the ALT, AST, BUN, and CREA levels, improved the lung and spleen injury, and reduced the TNF-α, IL-6, IL-1β, IL-10, cf-DNA, and cfDNA/MPO levels. Additionally, silenced C5ar1 inhibited the TLR2, TLR4, and peptidylarginine deiminase 4 expression levels, which suggested the improvement of silenced C5ar1 on sepsis via inhibiting NETs and the TLR signaling pathway. This study provides a basis and new direction for the study of treatment on sepsis.
Collapse
Affiliation(s)
- Bin Shen
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, 313000, China
| | - Qikai Shen
- Department of Intensive Care Units, Huzhou Central Hospital, Huzhou, 313000, China
| | - Qingqiu Zeng
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, 313000, China
| | - Lingyan Zhang
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, 313000, China
| | - Xiaofeng Li
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, 313000, China.
| |
Collapse
|
13
|
Bode C, Weis S, Sauer A, Wendel-Garcia P, David S. Targeting the host response in sepsis: current approaches and future evidence. Crit Care 2023; 27:478. [PMID: 38057824 PMCID: PMC10698949 DOI: 10.1186/s13054-023-04762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Sepsis, a dysregulated host response to infection characterized by organ failure, is one of the leading causes of death worldwide. Disbalances of the immune response play an important role in its pathophysiology. Patients may develop simultaneously or concomitantly states of systemic or local hyperinflammation and immunosuppression. Although a variety of effective immunomodulatory treatments are generally available, attempts to inhibit or stimulate the immune system in sepsis have failed so far to improve patients' outcome. The underlying reason is likely multifaceted including failure to identify responders to a specific immune intervention and the complex pathophysiology of organ dysfunction that is not exclusively caused by immunopathology but also includes dysfunction of the coagulation system, parenchymal organs, and the endothelium. Increasing evidence suggests that stratification of the heterogeneous population of septic patients with consideration of their host response might led to treatments that are more effective. The purpose of this review is to provide an overview of current studies aimed at optimizing the many facets of host response and to discuss future perspectives for precision medicine approaches in sepsis.
Collapse
Affiliation(s)
- Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Sebastian Weis
- Institute for Infectious Disease and Infection Control, University Hospital Jena, Friedrich-Schiller University Jena, Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute-HKI, Jena, Germany
| | - Andrea Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Pedro Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Gallant RM, Snyder JM, Ayres JS. Fluoxetine promotes immunometabolic defenses to mediate host-pathogen cooperation during sepsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.18.567681. [PMID: 38013994 PMCID: PMC10680848 DOI: 10.1101/2023.11.18.567681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are some of the most prescribed drugs in the world. While they are used for their ability to increase serotonergic signaling in the brain, SSRIs are also known to have a broad range of effects beyond the brain, including immune and metabolic effects. Recent studies have demonstrated that SSRIs are protective in animal models and humans against several infections, including sepsis and COVID-19, however the mechanisms underlying this protection are largely unknown. Here we mechanistically link two previously described effects of the SSRI fluoxetine in mediating protection against sepsis. We show that fluoxetine-mediated protection is independent of peripheral serotonin, and instead increases levels of circulating IL-10. IL-10 is necessary for protection from sepsis-induced hypertriglyceridemia and cardiac triglyceride accumulation, allowing for metabolic reprogramming of the heart. Our work reveals a beneficial "off-target" effect of fluoxetine, and reveals a protective immunometabolic defense mechanism with therapeutic potential.
Collapse
Affiliation(s)
- Robert M Gallant
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
- Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jessica M Snyder
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle WA
| | - Janelle S Ayres
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
- Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Lead contact
| |
Collapse
|
15
|
Zhang D, Wang L, Wang Z, Shi X, Tang W, Jiang L, Bo Ran Yi BYCH, Lv X, Hu C, Xiao D. Immunological responses of septic rats to combination therapy with thymosin α1 and vitamin C. Open Life Sci 2023; 18:20220551. [PMID: 36816800 PMCID: PMC9922062 DOI: 10.1515/biol-2022-0551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 02/10/2023] Open
Abstract
This study investigated the effect of combined thymosin α1 and vitamin C (Tα1 + VitC) on the immunological responses of septic rats. Five groups were designed. The septic model was established by the cecal ligation puncture (CLP) method. The sham group did not undergo CLP, the model group was given normal saline solution, the Tα1 group was given Tα1 (200 µg/kg), the VitC group was given VitC (200 mg/kg), and the Tα1 + VitC group was given Tα1 + VitC. Specimens for immunological analyses were collected at 6, 12, 24, and 48 h posttreatment in each group except for the sham group (only at 48 h). CD4 + CD25 + T cells in the peripheral blood and dendritic cell (DC) proportions in the spleen were analyzed by flow cytometry. Tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), transforming growth factor-β (TGF-ß1), and nuclear factor kappa-B (NF-κB) were measured by ELISA. CD4 + CD25 + T cells and OX62 + DCs levels significantly increased in the model group and decreased in the Tα1 and/or VitC treatment groups. Similarly, the levels of TNF-α, IL-6, TGF-ß1, and NF-κB significantly increased in the model group and decreased in the Tα1, VitC, and Tα1 + VitC groups, indicating that combined Tα1 and VitC therapy may help regulate the immunological state of patients with sepsis, thereby improving prognosis.
Collapse
Affiliation(s)
- Daquan Zhang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Lu Wang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Zhigao Wang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Xiaohui Shi
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Wen Tang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Long Jiang
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Ba Yin Cha Han Bo Ran Yi
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Xinwei Lv
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Congyu Hu
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| | - Dong Xiao
- Department of Critical Care Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, Xinjiang, China
| |
Collapse
|
16
|
Friedrich JO, Harhay MO, Angus DC, Burns KEA, Cook DJ, Fergusson DA, Finfer S, Hébert P, Rowan K, Rubenfeld G, Marshall JC. Mortality As a Measure of Treatment Effect in Clinical Trials Recruiting Critically Ill Patients. Crit Care Med 2023; 51:222-230. [PMID: 36661450 DOI: 10.1097/ccm.0000000000005721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES All-cause mortality is a common measure of treatment effect in ICU-based randomized clinical trials (RCTs). We sought to understand the performance characteristics of a mortality endpoint by evaluating its temporal course, responsiveness to differential treatment effects, and impact when used as an outcome measure in trials of acute illness. DATA SOURCES We searched OVID Medline for RCTs published from 1990 to 2018. STUDY SELECTION We reviewed RCTs that had randomized greater than or equal to 100 patients, were published in one of five high-impact general medical or eight critical care journals, and reported mortality at two or more distinct time points. We excluded trials recruiting pediatric or neonatal patients and cluster RCTs. DATA EXTRACTION Mortality by randomization group was recorded from the article or estimated from survival curves. Trial impact was assessed by inclusion of results in clinical practice guidelines. DATA SYNTHESIS From 2,592 potentially eligible trials, we included 343 RCTs (228,784 adult patients). While one third of all deaths by 180 days had occurred by day 7, the risk difference between study arms continued to increase until day 60 (p = 0.01) and possibly day 90 (p = 0.07) and remained stable thereafter. The number of deaths at ICU discharge approximated those at 28-30 days (95% [interquartile range [IQR], 86-106%]), and deaths at hospital discharge approximated those at 60 days (99% [IQR, 94-104%]). Only 13 of 43 interventions (30.2%) showing a mortality benefit have been adopted into widespread clinical practice. CONCLUSIONS Our findings provide a conceptual framework for choosing a time horizon and interpreting mortality outcome in trials of acute illness. Differential mortality effects persist for 60 to 90 days following recruitment. Location-based measures approximate time-based measures for trials conducted outside the United States. The documentation of a mortality reduction has had a modest impact on practice.
Collapse
Affiliation(s)
- Jan O Friedrich
- Department of Critical Care Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Michael O Harhay
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Derek C Angus
- CRISMA Centre, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Karen E A Burns
- Department of Critical Care Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | | | | | | | - Paul Hébert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Kathy Rowan
- The Intensive Care National Audit and Resource Centre (ICNARC), London, United Kingdom
| | - Gordon Rubenfeld
- Department of Critical Care Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - John C Marshall
- Department of Critical Care Medicine, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
- Department of Surgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Abstract
Heterogeneity in sepsis and acute respiratory distress syndrome (ARDS) is increasingly being recognized as one of the principal barriers to finding efficacious targeted therapies. The advent of multiple high-throughput biological data ("omics"), coupled with the widespread access to increased computational power, has led to the emergence of phenotyping in critical care. Phenotyping aims to use a multitude of data to identify homogenous subgroups within an otherwise heterogenous population. Increasingly, phenotyping schemas are being applied to sepsis and ARDS to increase understanding of these clinical conditions and identify potential therapies. Here we present a selective review of the biological phenotyping schemas applied to sepsis and ARDS. Further, we outline some of the challenges involved in translating these conceptual findings to bedside clinical decision-making tools.
Collapse
Affiliation(s)
- Pratik Sinha
- Division of Clinical & Translational Research and Division of Critical Care, Department of Anesthesia, Washington University, St. Louis, Missouri, USA;
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine; Center for Translational Lung Biology; and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine; Philadelphia, Pennsylvania, USA
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy & Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
18
|
Elrod J, Kiwit A, Lenz M, Rohde H, Börnigen D, Alawi M, Mohr C, Pagerols Raluy L, Trochimiuk M, Knopf J, Reinshagen K, Herrmann M, Boettcher M. Midgut Volvulus Adds a Murine, Neutrophil-Driven Model of Septic Condition to the Experimental Toolbox. Cells 2023; 12:cells12030366. [PMID: 36766707 PMCID: PMC9913099 DOI: 10.3390/cells12030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Severe infections that culminate in sepsis are associated with high morbidity and mortality. Despite continuous efforts in basis science and clinical research, evidence based-therapy is mostly limited to basic causal and supportive measures. Adjuvant therapies often remain without clear evidence. The objective of this study was to evaluate the septic volvulus ischemia-reperfusion model in comparison to two already established models and the role of neutrophil extacellular traps (NETs) in this model. METHODS The technique of the murine model of midgut volvulus was optimized and was compared to two established models of murine sepsis, namely cecal ligation and puncture (CLP) and intra-peritoneal (i.p.) injection of lipopolysaccharide (LPS). RESULTS Midgut volvulus for 15 min caused a comparable mortality (38%) as CLP (55%) and peritoneal LPS injection (25%) at 48 h. While oxidative stress was comparable, levels of circulating free DNA (cfDNA), and splenic/hepatic and pulmonary translocation of bacteria were decreased and increased, respectively at 48 h. DNases were increased compared to the established models. Proteomic analysis revealed an upregulation of systemic Epo, IL-1b, Prdx5, Parp1, Ccl2 and IL-6 at 48 h in comparison to the healthy controls. DISCUSSION AND CONCLUSION Midgut volvulus is a stable and physiological model for sepsis. Depending on the duration and subsequent tissue damage, it represents a combination of ischemia-reperfusion injury and hyperinflammation.
Collapse
Affiliation(s)
- Julia Elrod
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Antonia Kiwit
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Moritz Lenz
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Daniela Börnigen
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christoph Mohr
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Magdalena Trochimiuk
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Ulmenweg 18, 91054 Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Correspondence:
| |
Collapse
|
19
|
Ginseng Sprouts Attenuate Mortality and Systemic Inflammation by Modulating TLR4/NF-κB Signaling in an LPS-Induced Mouse Model of Sepsis. Int J Mol Sci 2023; 24:ijms24021583. [PMID: 36675101 PMCID: PMC9860726 DOI: 10.3390/ijms24021583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Sepsis leads to multi-organ failure due to aggressive systemic inflammation, which is one of the main causes of death clinically. This study aimed to evaluate whether ginseng sprout extracts (GSE) can rescue sepsis and explore its underlying mechanisms. C57BL/6J male mice (n = 15/group) were pre-administered with GSE (25, 50, and 100 mg/kg, p.o) for 5 days, and a single injection of lipopolysaccharide (LPS, 30 mg/kg, i.p) was administered to construct a sepsis model. Additionally, RAW264.7 cells were treated with LPS with/without GSE/its main components (Rd and Re) to explain the mechanisms corresponding to the animal-derived effects. LPS injection led to the death of all mice within 38 h, while GSE pretreatment delayed the time to death. GSE pretreatment also notably ameliorated LPS-induced systemic inflammation such as histological destruction in both the lung and liver, along with reductions in inflammatory cytokines, such as TNF-α, IL-6, and IL-1β, in both tissues and serum. Additionally, GSE markedly diminished the drastic secretion of nitric oxide (NO) by suppressing the expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2) in both tissues. Similar changes in TNF-α, IL-1β, NO, iNOS, and COX2 were observed in LPS-stimulated RAW264.7 cells, and protein expression data and nuclear translocation assays suggested GSE could modulate LPS-binding protein (LBP), Toll-like receptor 4 (TLR4), and NF-κB. Ginsenoside Rd could be a major active component in GSE that produces the anti-sepsis effects. Our data support that ginseng sprouts could be used as an herbal resource to reduce the risk of sepsis. The corresponding mechanisms may involve TLR4/NF-κB signaling and a potentially active component.
Collapse
|
20
|
Zhu W, Zhang Y, Wang Y. Immunotherapy strategies and prospects for acute lung injury: Focus on immune cells and cytokines. Front Pharmacol 2022; 13:1103309. [PMID: 36618910 PMCID: PMC9815466 DOI: 10.3389/fphar.2022.1103309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a disastrous condition, which can be caused by a wide range of diseases, such as pneumonia, sepsis, traumas, and the most recent, COVID-19. Even though we have gained an improved understanding of acute lung injury/acute respiratory distress syndrome pathogenesis and treatment mechanism, there is still no effective treatment for acute lung injury/acute respiratory distress syndrome, which is partly responsible for the unacceptable mortality rate. In the pathogenesis of acute lung injury, the inflammatory storm is the main pathological feature. More and more evidences show that immune cells and cytokines secreted by immune cells play an irreplaceable role in the pathogenesis of acute lung injury. Therefore, here we mainly reviewed the role of various immune cells in acute lung injury from the perspective of immunotherapy, and elaborated the crosstalk of immune cells and cytokines, aiming to provide novel ideas and targets for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Wenfang Zhu
- Department of Respiratory Medicine, Anhui Chest Hospital, Hefei, China
| | - Yiwen Zhang
- Department of Respiratory Medicine, Anhui Chest Hospital, Hefei, China,*Correspondence: Yiwen Zhang, ; Yinghong Wang,
| | - Yinghong Wang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China,*Correspondence: Yiwen Zhang, ; Yinghong Wang,
| |
Collapse
|
21
|
Marshall JC, Leligdowicz A. Gaps and opportunities in sepsis translational research. EBioMedicine 2022; 86:104387. [PMID: 36470831 PMCID: PMC9783171 DOI: 10.1016/j.ebiom.2022.104387] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Infection initiates sepsis, but the clinical disease arises through the innate immune response of the host. A rapidly evolving understanding of the biology of that response has not been paralleled by the development of successful new treatment. The COVID-19 pandemic has begun to change this revealing the promise of distinct therapeutic approaches and the feasibility of new approaches to evaluate them. We review the history of mediator-targeted therapy for sepsis and explore the conceptual, biological, technological, and organizational challenges that must be addressed to enable the development of effective treatments for a leading cause of global morbidity and mortality.
Collapse
Affiliation(s)
- John C Marshall
- Departments of Surgery and Critical Care Medicine, Unity Health Toronto, University of Toronto, Canada.
| | - Aleksandra Leligdowicz
- Departments of Medicine and Critical Care Medicine, University of Western Ontario, Canada
| |
Collapse
|
22
|
Liu M, Wang Z, Zhang J, Ye D, Wang M, Xu Y, Zhao M, Feng Y, Lu X, Pan H, Pan W, Wei C, Tian D, Li W, Lyu J, Ye J, Wan J. IL-12p40 deletion aggravates lipopolysaccharide-induced cardiac dysfunction in mice. Front Cardiovasc Med 2022; 9:950029. [PMID: 36186987 PMCID: PMC9523082 DOI: 10.3389/fcvm.2022.950029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundCardiac dysfunction is one of the most common complications of sepsis and is associated with the adverse outcomes and high mortality of sepsis patients. IL-12p40, the common subunit of IL-12 and IL-23, has been shown to be involved in a variety of inflammation-related diseases, such as psoriasis and inflammatory bowel disease. However, the role of IL-12p40 in lipopolysaccharide (LPS)-induced cardiac dysfunction remains obscure. This study aimed to explore the role of IL-12p40 in LPS-induced cardiac dysfunction and its potential mechanisms.MethodsIn this study, mice were treated with LPS and the cardiac expression of IL-12p40 was determined. Then, IL-12p40–/– mice were used to detect the role and mechanisms of IL-12p40 in LPS-induced cardiac injury. In addition, monocytes were adoptively transferred to IL-12p40–/– mice to explore their effects on LPS-induced cardiac dysfunction.ResultsThe results showed that cardiac IL-12p40 expression was significantly increased after treated with LPS. In addition, IL-12p40 deletion significantly aggravated LPS-induced cardiac dysfunction, evidenced by the increased serum levels of cardiomyocyte injury markers and heart injury scores, as well as by the deteriorated cardiac function. Moreover, IL-12p40 deletion increased LPS-induced monocyte accumulation and cardiac expression of inflammatory cytokines, as well as enhanced the activation of the NF-κB and MAPK pathways. Furthermore, adoptive transfer WT mouse monocytes to IL-12p40−/− mice alleviated LPS-induced cardiac dysfunction and decreased the phosphorylation of p65.ConclusionIL-12p40 deletion significantly aggravated LPS-induced cardiac injury and cardiac dysfunction in mice by regulating the NF-κB and MAPK signaling pathways, and this process was related to monocytes. Therefore, IL-12p40 show a protective role in SIC, and IL-12p40 deficiency or anti-IL-12p40 monoclonal antibodies may be detrimental to patients with SIC.
Collapse
Affiliation(s)
- Menglin Liu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan Tian
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenqiang Li
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjun Lyu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Jing Ye
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Jun Wan
| |
Collapse
|
23
|
The End of “One Size Fits All” Sepsis Therapies: Toward an Individualized Approach. Biomedicines 2022; 10:biomedicines10092260. [PMID: 36140361 PMCID: PMC9496597 DOI: 10.3390/biomedicines10092260] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 12/20/2022] Open
Abstract
Sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response to an infection, remains a major challenge for clinicians and trialists. Despite decades of research and multiple randomized clinical trials, a specific therapeutic for sepsis is not available. The evaluation of therapeutics targeting components of host response anomalies in patients with sepsis has been complicated by the inability to identify those in this very heterogeneous population who are more likely to benefit from a specific intervention. Additionally, multiple and diverse host response aberrations often co-exist in sepsis, and knowledge of which dysregulated biological organ system or pathway drives sepsis-induced pathology in an individual patient is limited, further complicating the development of effective therapies. Here, we discuss the drawbacks of previous attempts to develop sepsis therapeutics and delineate a future wherein interventions will be based on the host response profile of a patient.
Collapse
|
24
|
Precision Medicine in Sepsis and Septic Shock. J Clin Med 2022; 11:jcm11185332. [PMID: 36142979 PMCID: PMC9501229 DOI: 10.3390/jcm11185332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
|
25
|
Shapiro L, Scherger S, Franco-Paredes C, Gharamti AA, Fraulino D, Henao-Martinez AF. Chasing the Ghost: Hyperinflammation Does Not Cause Sepsis. Front Pharmacol 2022; 13:910516. [PMID: 35814227 PMCID: PMC9260244 DOI: 10.3389/fphar.2022.910516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022] Open
Abstract
Sepsis is infection sufficient to cause illness in the infected host, and more severe forms of sepsis can result in organ malfunction or death. Severe forms of Coronavirus disease-2019 (COVID-19), or disease following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are examples of sepsis. Following infection, sepsis is thought to result from excessive inflammation generated in the infected host, also referred to as a cytokine storm. Sepsis can result in organ malfunction or death. Since COVID-19 is an example of sepsis, the hyperinflammation concept has influenced scientific investigation and treatment approaches to COVID-19. However, decades of laboratory study and more than 100 clinical trials designed to quell inflammation have failed to reduce sepsis mortality. We examine theoretical support underlying widespread belief that hyperinflammation or cytokine storm causes sepsis. Our analysis shows substantial weakness of the hyperinflammation approach to sepsis that includes conceptual confusion and failure to establish a cause-and-effect relationship between hyperinflammation and sepsis. We conclude that anti-inflammation approaches to sepsis therapy have little chance of future success. Therefore, anti-inflammation approaches to treat COVID-19 are likewise at high risk for failure. We find persistence of the cytokine storm concept in sepsis perplexing. Although treatment approaches based on the hyperinflammation concept of pathogenesis have failed, the concept has shown remarkable resilience and appears to be unfalsifiable. An approach to understanding this resilience is to consider the hyperinflammation or cytokine storm concept an example of a scientific paradigm. Thomas Kuhn developed the idea that paradigms generate rules of investigation that both shape and restrict scientific progress. Intrinsic features of scientific paradigms include resistance to falsification in the face of contradictory data and inability of experimentation to generate alternatives to a failing paradigm. We call for rejection of the concept that hyperinflammation or cytokine storm causes sepsis. Using the hyperinflammation or cytokine storm paradigm to guide COVID-19 treatments is likewise unlikely to provide progress. Resources should be redirected to more promising avenues of investigation and treatment.
Collapse
Affiliation(s)
- Leland Shapiro
- Division of Infectious Diseases, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sias Scherger
- Division of Infectious Diseases, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Carlos Franco-Paredes
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Hospital Infantil de México, Federico Gomez, Mexico City, Mexico
| | - Amal A. Gharamti
- Department of Internal Medicine, Yale University, Waterbury, CT, United States
| | - David Fraulino
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrés F. Henao-Martinez
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
26
|
Tsuchida T, Wada T, Mizugaki A, Oda Y, Kayano K, Yamakawa K, Tanaka S. Protocol for a Sepsis Model Utilizing Fecal Suspension in Mice: Fecal Suspension Intraperitoneal Injection Model. Front Med (Lausanne) 2022; 9:765805. [PMID: 35646946 PMCID: PMC9134078 DOI: 10.3389/fmed.2022.765805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background Various animal models of sepsis have been developed to optimize sepsis treatment. However, therapeutic agents that were successful in animal models were rarely effective in human clinical trials. The cecal ligation and puncture (CLP) model is currently the gold standard for sepsis studies. However, its limitations include the high variability among researchers and the difficulty in comparing animals with different cecum shapes and sizes. In this study, we established a protocol for the creation of a simple and accessible sepsis rodent model using fecal suspensions that minimized differences in technical effects among researchers and individual differences in animals. Methods A mouse model of sepsis using fecal suspension intraperitoneal injection (FSI) was created using fresh stool excreted within 24 h. The collected fresh stool was dissolved in saline solution and filtered. The obtained fecal suspension was injected intraperitoneally into the mice. Moreover, fecal suspensions with different concentrations were prepared, and the survival rates were compared among the fecal suspensions for each concentration. To assess the validity of the FSI as a sepsis model, CLP and FSI with similar mortality rates were compared pathologically, physiologically, immunologically, and bacteriologically. Histopathological comparison was evaluated by hematoxylin-eosin and Gram staining of the parenchymal organs. Physiological evaluation was performed by comparing the respiratory rate, body temperature, and blood gas analysis results. Immunological assessment was performed using multiplex analysis. Bacteriological comparisons were performed by culturing ascites fluid. Results The FSI model increased mortality in proportion to the fecal suspension concentration. The mortality rate was reduced with antibiotic administration. In various comparative experiments conducted using the FSI and CLP models, both models showed findings consistent with sepsis. Furthermore, the FSI model showed less variability among the individuals in each test. Conclusion This is the first detailed and accurate report of a protocol for creating a sepsis model using fecal suspension. The FSI model is a minimally invasive and accessible sepsis rodent model. Its clinical validity as a sepsis model was proven via histological, physiological, microbiological, and immunological evaluation methods. The FSI model minimizes individual differences between mice and helps to conduct accurate studies after the onset of sepsis.
Collapse
Affiliation(s)
- Takumi Tsuchida
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Wada
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- *Correspondence: Takeshi Wada,
| | - Asumi Mizugaki
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, WPI-ICReDD, Hokkaido University, Sapporo, Japan
| | - Katsuhide Kayano
- Department of Emergency Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Kazuma Yamakawa
- Department of Emergency Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, WPI-ICReDD, Hokkaido University, Sapporo, Japan
| |
Collapse
|
27
|
Abstract
Despite its heterogeneous phenotypes, sepsis or life-threatening dysfunction in response to infection is often treated empirically. Identifying patient subgroups with unique pathophysiology and treatment response is critical to the advancement of sepsis care. However, phenotyping methods and results are as heterogeneous as the disease itself. This scoping review evaluates the prognostic capabilities and treatment implications of adult sepsis and septic shock phenotyping methods. DATA SOURCES Medline and Embase. STUDY SELECTION We included clinical studies that described sepsis or septic shock and used any clustering method to identify sepsis phenotypes. We excluded conference abstracts, literature reviews, comments, letters to the editor, and in vitro studies. We assessed study quality using a validated risk of bias tool for observational cohort and cross-sectional studies. DATA EXTRACTION We extracted population, methodology, validation, and phenotyping characteristics from 17 studies. DATA SYNTHESIS Sepsis phenotyping methods most frequently grouped patients based on the degree of inflammatory response and coagulopathy using clinical, nongenomic variables. Five articles clustered patients based on genomic or transcriptomic data. Seven articles generated patient subgroups with differential response to sepsis treatments. Cluster clinical characteristics and their associations with mortality and treatment response were heterogeneous across studies, and validity was evaluated in nine of 17 articles, hindering pooled analysis of results and derivation of universal truths regarding sepsis phenotypes, their prognostic capabilities, and their associations with treatment response. CONCLUSIONS Sepsis phenotyping methods can identify high-risk patients and those with high probability of responding well to targeted treatments. Research quality was fair, but achieving generalizability and clinical impact of sepsis phenotyping will require external validation and direct comparison with alternative approaches.
Collapse
|
28
|
Nociceptor-derived Reg3γ prevents endotoxic death by targeting kynurenine pathway in microglia. Cell Rep 2022; 38:110462. [PMID: 35263589 DOI: 10.1016/j.celrep.2022.110462] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 11/21/2022] Open
Abstract
Nociceptors can fine-tune local or systemic immunity, but the mechanisms of nociceptive modulation in endotoxic death remain largely unknown. Here, we identified C-type lectin Reg3γ as a nociceptor-enriched hormone that protects the host from endotoxic death. During endotoxemia, nociceptor-derived Reg3γ penetrates the brain and suppresses the expression of microglial indoleamine dioxygenase 1, a critical enzyme of the kynurenine pathway, via the Extl3-Bcl10 axis. Endotoxin-administered nociceptor-null mice and nociceptor-specific Reg3γ-deficient mice exhibit a high mortality rate accompanied by decreased brain HK1 phosphorylation and ATP production despite normal peripheral inflammation. Such metabolic arrest is only observed in the brain, and aberrant production of brain quinolinic acid, a neurotoxic metabolite of the kynurenine pathway, causes HK1 suppression. Strikingly, the central administration of Reg3γ protects mice from endotoxic death by enhancing brain ATP production. By identifying nociceptor-derived Reg3γ as a microglia-targeted hormone, this study provides insights into the understanding of tolerance to endotoxic death.
Collapse
|
29
|
Lucas R, Hadizamani Y, Enkhbaatar P, Csanyi G, Caldwell RW, Hundsberger H, Sridhar S, Lever AA, Hudel M, Ash D, Ushio-Fukai M, Fukai T, Chakraborty T, Verin A, Eaton DC, Romero M, Hamacher J. Dichotomous Role of Tumor Necrosis Factor in Pulmonary Barrier Function and Alveolar Fluid Clearance. Front Physiol 2022; 12:793251. [PMID: 35264975 PMCID: PMC8899333 DOI: 10.3389/fphys.2021.793251] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/30/2021] [Indexed: 02/04/2023] Open
Abstract
Alveolar-capillary leak is a hallmark of the acute respiratory distress syndrome (ARDS), a potentially lethal complication of severe sepsis, trauma and pneumonia, including COVID-19. Apart from barrier dysfunction, ARDS is characterized by hyper-inflammation and impaired alveolar fluid clearance (AFC), which foster the development of pulmonary permeability edema and hamper gas exchange. Tumor Necrosis Factor (TNF) is an evolutionarily conserved pleiotropic cytokine, involved in host immune defense against pathogens and cancer. TNF exists in both membrane-bound and soluble form and its mainly -but not exclusively- pro-inflammatory and cytolytic actions are mediated by partially overlapping TNFR1 and TNFR2 binding sites situated at the interface between neighboring subunits in the homo-trimer. Whereas TNFR1 signaling can mediate hyper-inflammation and impaired barrier function and AFC in the lungs, ligand stimulation of TNFR2 can protect from ventilation-induced lung injury. Spatially distinct from the TNFR binding sites, TNF harbors within its structure a lectin-like domain that rather protects lung function in ARDS. The lectin-like domain of TNF -mimicked by the 17 residue TIP peptide- represents a physiological mediator of alveolar-capillary barrier protection. and increases AFC in both hydrostatic and permeability pulmonary edema animal models. The TIP peptide directly activates the epithelial sodium channel (ENaC) -a key mediator of fluid and blood pressure control- upon binding to its α subunit, which is also a part of the non-selective cation channel (NSC). Activity of the lectin-like domain of TNF is preserved in complexes between TNF and its soluble TNFRs and can be physiologically relevant in pneumonia. Antibody- and soluble TNFR-based therapeutic strategies show considerable success in diseases such as rheumatoid arthritis, psoriasis and inflammatory bowel disease, but their chronic use can increase susceptibility to infection. Since the lectin-like domain of TNF does not interfere with TNF's anti-bacterial actions, while exerting protective actions in the alveolar-capillary compartments, it is currently evaluated in clinical trials in ARDS and COVID-19. A more comprehensive knowledge of the precise role of the TNFR binding sites versus the lectin-like domain of TNF in lung injury, tissue hypoxia, repair and remodeling may foster the development of novel therapeutics for ARDS.
Collapse
Affiliation(s)
- Rudolf Lucas
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States,*Correspondence: Rudolf Lucas,
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland
| | - Perenlei Enkhbaatar
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Robert W. Caldwell
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Harald Hundsberger
- Department of Medical Biotechnology, University of Applied Sciences, Krems, Austria,Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Supriya Sridhar
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Alice Ann Lever
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Martina Hudel
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Dipankar Ash
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tohru Fukai
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute for Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Douglas C. Eaton
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Maritza Romero
- Vascular Biology Center, Augusta University, Augusta, GA, United States,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States,Department of Anesthesiology and Perioperative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung Bern, Bern, Switzerland,Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, Bern, Switzerland,Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine, and Environmental Medicine, Faculty of Medicine, University Medical Centre of the Saarland, Saarland University, Homburg, Germany,Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, Homburg, Germany,Jürg Hamacher,
| |
Collapse
|
30
|
Kang K, Luo Y, Gao Y, Zhang J, Wang C, Fei D, Yang W, Meng X, Ye M, Gao Y, Liu H, Du X, Ji Y, Wei J, Xie W, Wang J, Zhao M, Yu K. Continuous Renal Replacement Therapy With oXiris Filter May Not be an Effective Resolution to Alleviate Cytokine Release Syndrome in Non-AKI Patients With Severe and Critical COVID-19. Front Pharmacol 2022; 13:817793. [PMID: 35185571 PMCID: PMC8854969 DOI: 10.3389/fphar.2022.817793] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
In this study, we aimed to determine whether continuous renal replacement therapy (CRRT) with oXiris filter may alleviate cytokine release syndrome (CRS) in non-AKI patients with severe and critical coronavirus disease 2019 (COVID-19). A total of 17 non-AKI patients with severe and critical COVID-19 treated between February 14 and March 26, 2020 were included and randomly divided into intervention group and control group according to the random number table. Patients in the intervention group immediately received CRRT with oXiris filter plus conventional treatment, while those in the control group only received conventional treatment. Demographic data were collected and collated at admission. During ICU hospitalization, the concentrations of circulating cytokines and inflammatory chemokines, including IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ, were quantitatively measured daily to reflect the degree of CRS induced by SARS-CoV-2 infection. Clinical data, including the severity of COVID-19 white blood cell count (WBC), neutrophil proportion (NEUT%), lymphocyte count (LYMPH), lymphocyte percentage (LYM%), platelet (PLT), C-reaction protein (CRP), high sensitivity C-reactive protein (hs-CRP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TB), albumin (ALB), serum creatinine (SCr), D-Dimer, fibrinogen (FIB), IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ, number of hospital days and sequential organ failure assessment (SOFA) score were obtained and collated from medical records, and then compared between the two groups. Age, and SCr significantly differed between the two groups. Besides the IL-2 concentration that was significantly lower on day 2 than that on day 1 in the intervention group, and the IL-6 concentrations that were significantly higher on day 1, and day 2 in the intervention group compared to the control group, similar to the IL-10 concentration on day 5, there were no significant differences between the two groups. To sum up, CRRT with oXiris filter may not effectively alleviate CRS in non-AKI patients with severe and critical COVID-19. Thus, its application in these patients should be considered with caution to avoid increasing the unnecessary burden on society and individuals and making the already overwhelmed medical system even more strained (IRB number: IRB-AF/SC-04).
Collapse
Affiliation(s)
- Kai Kang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yunpeng Luo
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yang Gao
- Department of Critical Care Medicine, the Sixth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- Institute of Critical Care Medicine, the Sino Russian Medical Research Center of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Jiannan Zhang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Changsong Wang
- Institute of Critical Care Medicine, the Sino Russian Medical Research Center of Harbin Medical University, Harbin Medical University, Harbin, China
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Dongsheng Fei
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Wei Yang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Xianglin Meng
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Ming Ye
- Department of Critical Care Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yan Gao
- Department of Critical Care Medicine, the Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Haitao Liu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Xue Du
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yuanyuan Ji
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Jieling Wei
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Wanqiu Xie
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Jun Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Mingyan Zhao
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- *Correspondence: Mingyan Zhao, ; Kaijiang Yu,
| | - Kaijiang Yu
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- Institute of Critical Care Medicine, the Sino Russian Medical Research Center of Harbin Medical University, Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- The Cell Transplantation Key Laboratory of National Health Commission, Harbin, China
- *Correspondence: Mingyan Zhao, ; Kaijiang Yu,
| |
Collapse
|
31
|
Chen L, Shi Q, Ma X, Niu Y, Chong M, Ma L. WITHDRAWN: Serum exosomes mediate septic inflammation and liver and kidney injuries by up-regulating the expression of inflammatory factors. Biochem Biophys Res Commun 2022. [DOI: 10.1016/j.bbrc.2022.02.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
32
|
Hussain M, Khurram Syed S, Fatima M, Shaukat S, Saadullah M, Alqahtani AM, Alqahtani T, Bin Emran T, Alamri AH, Barkat MQ, Wu X. Acute Respiratory Distress Syndrome and COVID-19: A Literature Review. J Inflamm Res 2022; 14:7225-7242. [PMID: 34992415 PMCID: PMC8710428 DOI: 10.2147/jir.s334043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an overwhelming inflammatory disorder of the lung due to direct and indirect insults to the lungs. ARDS is characterized by increased vascular permeability, protein-rich edema, diffuse alveolar infiltrate, and loss of aerated lung tissue, leading to decreased lung compliance, tachypnea, and severe hypoxemia. COVID-19 is generally associated with ARDS, and it has gained prime importance since it started. The mortality rate is alarmingly high in COVID-19-related ARDS patients regardless of advances in mechanical ventilation. Several pharmacological agents, including corticosteroids, nitric oxide, neuromuscular blocker, anti-TNF, statins, and exogenous surfactant, have been studied and some are under investigation, like ketoconazole, lisofylline, N-acetylcysteine, prostaglandins, prostacyclin, and fish oil. The purpose of this review is to appraise the understanding of the pathophysiology of ARDS, biomarkers, and clinical trials of pharmacological therapies of ARDS and COVID-19-related ARDS.
Collapse
Affiliation(s)
- Musaddique Hussain
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology Lahore, Lahore, 54000, Pakistan
| | - Mobeen Fatima
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Saira Shaukat
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Malik Saadullah
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Ali H Alamri
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Muhammad Qasim Barkat
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City, 310000, People's Republic of China
| | - Ximei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City, 310000, People's Republic of China
| |
Collapse
|
33
|
van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis. Immunity 2021; 54:2450-2464. [PMID: 34758337 DOI: 10.1016/j.immuni.2021.10.012] [Citation(s) in RCA: 337] [Impact Index Per Article: 112.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to an infection. This recently implemented definition does not capture the heterogeneity or the underlying pathophysiology of the syndrome, which is characterized by concurrent unbalanced hyperinflammation and immune suppression. Here, we review current knowledge of aberrant immune responses during sepsis and recent initiatives to stratify patients with sepsis into subgroups that are more alike from a clinical and/or pathobiological perspective, which could be key for identification of patients who are more likely to benefit from specific immune interventions.
Collapse
Affiliation(s)
- Tom van der Poll
- Amsterdam University Medical Centers, University of Amsterdam, Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.
| | - Manu Shankar-Hari
- King's College London, Department of Infectious Diseases, School of Immunology and Microbial Sciences, London, UK; Guy's and St Thomas' NHS Foundation Trust, Department of Intensive Care Medicine, London, UK
| | - W Joost Wiersinga
- Amsterdam University Medical Centers, University of Amsterdam, Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
34
|
Megha KB, Joseph X, Akhil V, Mohanan PV. Cascade of immune mechanism and consequences of inflammatory disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153712. [PMID: 34511264 PMCID: PMC8373857 DOI: 10.1016/j.phymed.2021.153712] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 05/12/2023]
Abstract
Inflammatory responses arise as an outcome of tissues or organs exposure towards harmful stimuli like injury, toxic chemicals or pathogenic microorganism. It is a complex cascade of immune mechanism to overcome from tissue injury and to initiate the healing process by recruiting various immune cells, chemical mediators such as the vasoactive peptides and amines, pro-inflammatory cytokines, eicosanoids and acute-phase proteins to prevent tissue damage and ultimately complete restoration of the tissue function. The cytokines exhibits a central function in communication between the cells, inflammatory response initiation, amplification and their regulation. This review covers the importance of inflammatory responses; the significance of cytokines in inflammation and numerous inflammatory disorders/ailments due to the abrupt expression of cytokines and the hyper-inflammatory response or cytokine storm associated with poor prognosis in COVID-19 pandemic. Also highlighting the importance of naturally derived anti-inflammatory metabolites to overcome the side-effects of currently prevailing anti-inflammatory drugs.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - X Joseph
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - V Akhil
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| |
Collapse
|
35
|
Ashley BK, Hassan U. Point-of-critical-care diagnostics for sepsis enabled by multiplexed micro and nanosensing technologies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1701. [PMID: 33650293 PMCID: PMC8447248 DOI: 10.1002/wnan.1701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 12/14/2020] [Accepted: 01/08/2021] [Indexed: 11/12/2022]
Abstract
Sepsis is responsible for the highest economic and mortality burden in critical care settings around the world, prompting the World Health Organization in 2018 to designate it as a global health priority. Despite its high universal prevalence and mortality rate, a disproportionately low amount of sponsored research funding is directed toward diagnosis and treatment of sepsis, when early treatment has been shown to significantly improve survival. Additionally, current technologies and methods are inadequate to provide an accurate and timely diagnosis of septic patients in multiple clinical environments. For improved patient outcomes, a comprehensive immunological evaluation is critical which is comprised of both traditional testing and quantifying recently proposed biomarkers for sepsis. There is an urgent need to develop novel point-of-care, low-cost systems which can accurately stratify patients. These point-of-critical-care sensors should adopt a multiplexed approach utilizing multimodal sensing for heterogenous biomarker detection. For effective multiplexing, the sensors must satisfy criteria including rapid sample to result delivery, low sample volumes for clinical sample sparring, and reduced costs per test. A compendium of currently developed multiplexed micro and nano (M/N)-based diagnostic technologies for potential applications toward sepsis are presented. We have also explored the various biomarkers targeted for sepsis including immune cell morphology changes, circulating proteins, small molecules, and presence of infectious pathogens. An overview of different M/N detection mechanisms are also provided, along with recent advances in related nanotechnologies which have shown improved patient outcomes and perspectives on what future successful technologies may encompass. This article is categorized under: Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Brandon K. Ashley
- Department of Biomedical Engineering, Rutgers, State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Umer Hassan
- Department of Biomedical Engineering, Rutgers, State University of New Jersey, Piscataway, NJ, 08854, USA
- Department of Electrical Engineering, Rutgers, State University of New Jersey, Piscataway, NJ, 08854, USA
- Global Health Institute, Rutgers, State University of New Jersey. Piscataway, NJ, 08854, USA
| |
Collapse
|
36
|
Wang M, Wei J, Shang F, Zang K, Zhang P. Down-regulation of lncRNA SNHG5 relieves sepsis-induced acute kidney injury by regulating the miR-374a-3p/TLR4/NF-κB pathway. J Biochem 2021; 169:575-583. [PMID: 33479745 DOI: 10.1093/jb/mvab008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is an acute systemic infectious disease engendered by infectious factors, which can cause the dysfunction of multiple organs, including acute kidney injury (AKI). Recently, more and more researchers are focussing on long noncoding RNA (lncRNA) that is closely associated with the development and progression of various diseases; however, the role and mechanism of lncRNA in sepsis-induced AKI are not fully understood. Here, we found a significant increase in the expression of lncRNA small nuclear RNA host gene 5 (SNHG5) in the serum of patients with sepsis than healthy controls. Similar results were obtained from mouse model of sepsis. Further investigations revealed that knockdown of SNHG5 improves the viability and reduces the rate of apoptosis and the generation of inflammatory cytokines in HK-2 and TCMK-1 cells treated with lipopolysaccharide. Mechanistically, we showed that SNHG5 can combine with microRNA-374a-3p (miR-374a-3p), which inhibits nuclear factor-κB (NF-κB) activity by targeting TLR4. In conclusion, our results demonstrate that SNHG5 may regulate sepsis-induced AKI via the miR-374a-3p/TLR4/NF-κB pathway, therefore providing a new insight into the treatment of this disease.
Collapse
Affiliation(s)
- Min Wang
- Department of Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 Beijing West Road, Huai'an 223300, China
| | - Jilou Wei
- Department of Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 Beijing West Road, Huai'an 223300, China
| | - Futai Shang
- Department of Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 Beijing West Road, Huai'an 223300, China
| | - Kui Zang
- Department of Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 Beijing West Road, Huai'an 223300, China
| | - Peng Zhang
- Department of Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 Beijing West Road, Huai'an 223300, China
| |
Collapse
|
37
|
Abstract
Sepsis is a host immune disorder induced by infection. It can lead to multiple organ dysfunction syndrome (MODS), which has high morbidity and mortality. There has been great progress in the clinical diagnosis and treatment of sepsis, such as improvements in pathogen detection technology, innovations regarding anti-infection drugs, and the development of organ function support. Abnormal immune responses triggered by pathogens, ranging from excessive inflammation to immunosuppression, are recognized to be an important cause of the high mortality rate. However, no drugs have been approved specifically for treating sepsis. Here, we review the recent research progress on immune responses in sepsis to provide a theoretical basis for the treatment of sepsis. Constructing and optimizing a dynamic immune system treatment regimen based on anti-infection treatment, fluid replacement, organ function support, and timely use of immunomodulatory interventions may improve the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Jian Chen
- Department of Intensive Care Medicine, The First Affiliated Hospital of, USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Department of Geriatrics, The First Affiliated Hospital of, USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
38
|
Li HP, He X, Zhang L, Li CX, Li SQ, Li QY. Therapeutic Agents Rounding Up the Immunopathology of COVID-19. Ther Clin Risk Manag 2021; 17:657-668. [PMID: 34234442 PMCID: PMC8254585 DOI: 10.2147/tcrm.s313003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 pandemic has caused more than 3 million deaths globally during the past year. The direct attack from SARS-CoV-2 and hyperactivated immune response contribute to the progress and deterioration of COVID-19. After the virus invades, the activation and release of cytokines/chemokines cause "cytokine storm", leading to acute respiratory distress syndrome (ARDS) and multiple organs dysfunction syndrome (MODS). Eliminating virus and blocking cytokines are important checkpoints of COVID-19 therapy, and several agents targeting immunopathology, including interferons, thymosin, glucocorticoids and immunoglobulin, have shown therapeutic effects in severe patients with COVID-19. Herein, we reviewed the practice evidences and concluded that several agents rounding up the immunopathology of COVID-19 may be the alternative approaches under the scenario of the lacking of effective antiviral drugs.
Collapse
Affiliation(s)
- Hong Peng Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
- Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Xuan He
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Liu Zhang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
- Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Chuan Xiang Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
- Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
- Department of Respiratory Medicine, Wuhan No.3 Hospital, Wuhan, 430000, People’s Republic of China
| | - Shi Qi Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
- Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| | - Qing Yun Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
- Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People’s Republic of China
| |
Collapse
|
39
|
Maruyama K, Kidoya H, Takemura N, Sugisawa E, Takeuchi O, Kondo T, Eid MMA, Tanaka H, Martino MM, Takakura N, Takayama Y, Akira S, Vandenbon A, Kumagai Y. Zinc Finger Protein St18 Protects against Septic Death by Inhibiting VEGF-A from Macrophages. Cell Rep 2021; 32:107906. [PMID: 32668247 DOI: 10.1016/j.celrep.2020.107906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/22/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Zinc finger protein St18 was initially reported as candidate tumor suppressor gene, and also suggested that fibroblast St18 positively regulates NF-κB activation. Despite the pleiotropic functions of St18, little is known about its roles in macrophages. Here, we report that myeloid St18 is a potent inhibitor of VEGF-A. Mice lacking St18 in myeloid lineages exhibit increased retinal vasculature with enhanced serum VEGF-A concentrations. Despite the normal activation of NF-κB target genes, these mice are highly susceptible to LPS-induced shock, polymicrobial sepsis, and experimental colitis, accompanied by enhanced vascular and intestinal leakage. Pharmacological inhibition of VEGF signaling rescued the high mortality rate of myeloid-specific St18-deficient mice in response to inflammation. Mechanistically, St18 directly binds to Sp1 and attenuates its activity, leading to the suppression of Sp1 target gene VEGF-A. Using mouse genetic and pharmacological models, we reveal myeloid St18 as a critical septic death protector.
Collapse
Affiliation(s)
- Kenta Maruyama
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan; Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi 444-8787, Japan.
| | - Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Naoki Takemura
- Department of Mucosal Immunology, School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Erika Sugisawa
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Osamu Takeuchi
- Laboratory of Infection and Prevention, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkaido 060-8636, Japan
| | | | - Hiroki Tanaka
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yasunori Takayama
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Aichi 444-8787, Japan; Department of Physiological Sciences, Graduate University for Advanced Studies, Aichi 444-8787, Japan
| | - Shizuo Akira
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Alexis Vandenbon
- Laboratory of Infection and Prevention, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Yutaro Kumagai
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
40
|
Barker G, Leeuwenburgh C, Brusko T, Moldawer L, Reddy ST, Guirgis FW. Lipid and Lipoprotein Dysregulation in Sepsis: Clinical and Mechanistic Insights into Chronic Critical Illness. J Clin Med 2021; 10:1693. [PMID: 33920038 PMCID: PMC8071007 DOI: 10.3390/jcm10081693] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
In addition to their well-characterized roles in metabolism, lipids and lipoproteins have pleiotropic effects on the innate immune system. These undergo clinically relevant alterations during sepsis and acute inflammatory responses. High-density lipoprotein (HDL) plays an important role in regulating the immune response by clearing bacterial toxins, supporting corticosteroid release, decreasing platelet aggregation, inhibiting endothelial cell apoptosis, reducing the monocyte inflammatory response, and inhibiting expression of endothelial cell adhesion molecules. It undergoes quantitative as well as qualitative changes which can be measured using the HDL inflammatory index (HII). Pro-inflammatory, or dysfunctional HDL (dysHDL) lacks the ability to perform these functions, and we have also found it to independently predict adverse outcomes and organ failure in sepsis. Another important class of lipids known as specialized pro-resolving mediators (SPMs) positively affect the escalation and resolution of inflammation in a temporal fashion. These undergo phenotypic changes in sepsis and differ significantly between survivors and non-survivors. Certain subsets of sepsis survivors go on to have perilous post-hospitalization courses where this inflammation continues in a low grade fashion. This is associated with immunosuppression in a syndrome of persistent inflammation, immunosuppression, and catabolism syndrome (PICS). The continuous release of tissue damage-related patterns and viral reactivation secondary to immunosuppression feed this chronic cycle of inflammation. Animal data indicate that dysregulation of endogenous lipids and SPMs play important roles in this process. Lipids and their associated pathways have been the target of many clinical trials in recent years which have not shown mortality benefit. These results are limited by patient heterogeneity and poor animal models. Considerations of sepsis phenotypes and novel biomarkers in future trials are important factors to be considered in future research. Further characterization of lipid dysregulation and chronic inflammation during sepsis will aid mortality risk stratification, detection of sepsis, and inform individualized pharmacologic therapies.
Collapse
Affiliation(s)
- Grant Barker
- Department of Emergency Medicine, College of Medicine-Jacksonville, University of Florida, 655 West 8th Street, Jacksonville, FL 32209, USA;
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL 32603, USA;
| | - Todd Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA;
| | - Lyle Moldawer
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32608, USA;
| | - Srinivasa T. Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA;
| | - Faheem W. Guirgis
- Department of Emergency Medicine, College of Medicine-Jacksonville, University of Florida, 655 West 8th Street, Jacksonville, FL 32209, USA;
| |
Collapse
|
41
|
Yin A, Chen W, Cao L, Li Q, Zhu X, Wang L. FAM96A knock-out promotes alternative macrophage polarization and protects mice against sepsis. Clin Exp Immunol 2021; 203:433-447. [PMID: 33232517 PMCID: PMC7874832 DOI: 10.1111/cei.13555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Sepsis is an intractable clinical syndrome characterized by organ dysfunction when the body over-responds to an infection. Sepsis has a high fatality rate and lacks effective treatment. Family with sequence similarity 96 member A (FAM96A) is an evolutionarily conserved protein with high expression in the immune system and is related to cytosolic iron assembly and tumour suppression; however, research has been rarely conducted on its immune functions. Our study found that Fam96a-/- mice significantly resisted lesions during sepsis simulated by caecal ligation and puncture (CLP) or endotoxicosis models. After a challenge with lipopolysaccharide (LPS) or infection, Fam96a-/- mice exhibited less organ damage, longer survival and better bacterial clearance with decreased levels of proinflammatory cytokines. While screening several subsets of immune cells, FAM96A-expressing macrophages as the key cell type inhibited sepsis development. In-vivo macrophage depletion or adoptive transfer experiments abrogated significant differences in the survival of sepsis between Fam96a-/- and wild-type mice. Results of the bone marrow-derived macrophage (BMDM) polarization experiment indicated that FAM96A deficiency promotes the transformation of uncommitted monocytes/macrophages (M0) into M2 macrophages, secreting fewer proinflammatory cytokines. FAM96A may mediate an immunometabolism shift - from oxidative phosphorylation (OXPHOS) to glycolysis - in macrophages during sepsis, mirrored by reactive oxygen species (ROS) and glucose uptake. These data demonstrate that FAM96A regulates inflammatory response and provide a novel genomic insight for sepsis treatment.
Collapse
Affiliation(s)
- A. Yin
- Center for Human Disease GenomicsDepartment of ImmunologyHealth Science CenterSchool of Basic Medical SciencesPeking UniversityBeijingChina
- Key Laboratory of Medical ImmunologySchool of Basic Medical SciencePeking UniversityMinistry of HealthBeijingPR China
| | - W. Chen
- Center for Human Disease GenomicsDepartment of ImmunologyHealth Science CenterSchool of Basic Medical SciencesPeking UniversityBeijingChina
- Key Laboratory of Medical ImmunologySchool of Basic Medical SciencePeking UniversityMinistry of HealthBeijingPR China
| | - L. Cao
- Center for Human Disease GenomicsDepartment of ImmunologyHealth Science CenterSchool of Basic Medical SciencesPeking UniversityBeijingChina
- Key Laboratory of Medical ImmunologySchool of Basic Medical SciencePeking UniversityMinistry of HealthBeijingPR China
| | - Q. Li
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - X. Zhu
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - L. Wang
- Center for Human Disease GenomicsDepartment of ImmunologyHealth Science CenterSchool of Basic Medical SciencesPeking UniversityBeijingChina
- Key Laboratory of Medical ImmunologySchool of Basic Medical SciencePeking UniversityMinistry of HealthBeijingPR China
| |
Collapse
|
42
|
Molloy EJ. The Doctor's Dilemma: lessons from GB Shaw in a modern pandemic COVID-19. Pediatr Res 2021; 89:701-703. [PMID: 32344425 DOI: 10.1038/s41390-020-0927-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/20/2022]
Abstract
In the current COVID 19 pandemic, the only treatments are supportive as no definitive pharmacological intervention is available. The heterogeneity of the immune response in different patient groups is clear with less severe illness in children. Understanding these disparities is particularly important as severely affected patients with COVID19 cannot always be predicted before they experience a cytokine storm and multiorgan dysfunction. Over 100 years ago, the concept of individualised immunotherapy was introduced by Sir Almroth Wright and immortalised in GB Shaw's play The Doctor's Dilemma. Shaw's play The Doctor's Dilemma explores the issues of private medical practice, equality of health care delivery, rationing of scarce resources (intensive care) and high-risk therapies. The play also describes the dilemma of rationing of resources and selecting the correct patient for new experimental therapies. Immunological theories of the time are now reflected in current understanding of inflammatory responses in sepsis and immunomodulation during the COVID19 pandemic.
Collapse
Affiliation(s)
- Eleanor J Molloy
- Paediatrics, Trinity College, the University of Dublin, Dublin, Ireland. .,Trinity Translational Medicine Institute (TTMI) & Trinity Research in Childhood Centre (TRICC), Trinity College Dublin, Dublin, Ireland. .,Paediatrics & Neonatology, Children's Hospital Ireland (CHI) at Tallaght & Crumlin, Dublin, Ireland. .,Coombe Women and Infants University Hospital, Dublin, Ireland.
| |
Collapse
|
43
|
Hu S, Pi Q, Xu X, Yan J, Guo Y, Tan W, He A, Cheng Z, Luo S, Xia Y. Disrupted eNOS activity and expression account for vasodilator dysfunction in different stage of sepsis. Life Sci 2021; 264:118606. [PMID: 33091444 DOI: 10.1016/j.lfs.2020.118606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
AIMS Sepsis is a severe endothelial dysfunction syndrome. The role of endothelial nitric oxide synthase (eNOS) in endothelial dysfunction induced by sepsis is controversial. To explore the role of eNOS in vascular dysfunction. MAIN METHODS The effect of sepsis on vasodilation and eNOS levels was examined in septic mouse arteries and in cell models. KEY FINDINGS In early sepsis mouse arteries, endothelium-dependent relaxation decreased and phosphorylation of the inhibitory Thr495 site in endothelial nitric oxide synthase increased. Mechanically, the phosphorylation of endothelial nitric oxide synthase at Thr497 in bovine aortic endothelial cells occurred in a protein kinase C-α dependent manner. In late sepsis, both nitric oxide-dependent relaxation responses and endothelial nitric oxide synthase levels were decreased in septic mice arteries. Endothelial nitric oxide synthase levels expression levels decreased in tumor necrosis factor-α-treated human umbilical vein endothelial cells and this could be prevented by the ubiquitin proteasome inhibitor (MG-132). MG-132 could reverse the decrease in endothelial nitric oxide synthase expression and improve nitric oxide-dependent vasodilator dysfunction in septic mice arteries. SIGNIFICANCE These data indicate that vasodilator dysfunction is induced by the increased phosphorylation of endothelial nitric oxide synthase in early sepsis and its degradation in late sepsis.
Collapse
Affiliation(s)
- Shupeng Hu
- Division of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Qiangzhong Pi
- Division of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xiudan Xu
- Emergency Ward, The First People's Hospital of Shangqiu, Henan 476000, China
| | - Jianghong Yan
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Wanying Tan
- Sichuan Academy of Chinese Medicine Science, Chengdu 610000, China
| | - An He
- Division of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Zhe Cheng
- Division of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Suxin Luo
- Division of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Yong Xia
- Division of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Institute of Life Science, Chongqing Medical University, Chongqing 400016, China; Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, 473 West 12(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
44
|
Sevransky JE, Agarwal A, Jabaley CS, Rochwerg B. Standardized Care Is Better Than Individualized Care for the Majority of Critically Ill Patients. Crit Care Med 2021; 49:151-155. [PMID: 33060504 PMCID: PMC8635275 DOI: 10.1097/ccm.0000000000004676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jonathan E Sevransky
- Division of Pulmonary, Allergy, Critical Care, and Sleep and Emory Center for Critical Care, Emory University, Atlanta, GA
| | - Ankita Agarwal
- Division of Pulmonary, Allergy, Critical Care, and Sleep and Emory Center for Critical Care, Emory University, Atlanta, GA
| | - Craig S Jabaley
- Department of Anesthesiology and Emory Center for Critical Care, Emory University, Atlanta, GA
| | - Bram Rochwerg
- Department of Medicine, Evidence and Impact, McMaster University, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
45
|
Biochemical Research of the Effects of Essential Oil Obtained from the Fruit of Myrtus communis L. on Cell Damage Associated with Lipopolysaccharide-Induced Endotoxemia in a Human Umbilical Cord Vein Endothelial Cells. Biochem Genet 2020; 59:315-334. [PMID: 33044583 DOI: 10.1007/s10528-020-10005-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/04/2018] [Indexed: 01/16/2023]
Abstract
The aim of this study to investigate the potential effects of essential oils and compounds obtained from MC fruit on sepsis induced endothelial cell damage in human umbilical cord vein endothelial cells (HUVECs) at molecular and cellular levels on in vitro sepsis model. A sepsis model was induced by the application of LPS. The HUVEC treatment groups were as follows: control, LPS, MC, MC plus LPS, 1.8 cineole, 1.8 cineole plus LPS, α-pinene, α-pinene plus LPS, α-terpineol, and α-terpineol plus LPS. Following the treatments, cell proliferation was analyzed using the xCELLigence® system. The mRNA expression of various cytokines [tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and IL-6] and endothelial nitric oxide (eNOS) were determined by quantitative polymerase chain reaction (qPCR) analysis. The 1.8 cineole and α-pinene treatments at specific doses showed toxic effects on α-terpineine, although it did not result in a change in the cellular index as compared with that of the control group. The application of LPS to HUVECs led to a significant decrease in the cellular index, depending on the treatment time. It did not correct the decreased cell index of MC plus LPS and α-terpineol plus LPS groups as compared with that of the LPS-only group. The 1.8 cineole plus LPS treatment and α-pinene plus LPS treatment significantly increased the cell index as compared with that of the LPS-only treatment, and the cell index in these groups was closer to that of the control. According to the results of the qPCR analysis, neither the MC-only treatment nor the α-terpineol-only treatment significantly reduced cellular damage caused by LPS-induced increases in TNF-α, IL-1β, IL-6, and eNOS mRNA expression. However, both the 1.8 cineole treatment and α-pinene treatments significantly decreased TNF-α, IL-1β, IL-6, and eNOS mRNA expression induced by LPS. Volatile oil obtained from MC fruit and the MC compound α-terpineol had no effect on the decreased cell index and increased cytokine response due to LPS-induced endothelial cell damage. However, 1.8 cineole and α-pinene, other major components of MC fruit, ameliorated LPS-induced damage in HUVECs at cellular and biomolecular levels (TNF-α, IL-1β, IL-6, and eNOS).
Collapse
|
46
|
Nowill AE, de Campos-Lima PO. Immune Response Resetting as a Novel Strategy to Overcome SARS-CoV-2-Induced Cytokine Storm. THE JOURNAL OF IMMUNOLOGY 2020; 205:2566-2575. [PMID: 32958687 DOI: 10.4049/jimmunol.2000892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/30/2020] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which rapidly became a pandemic of global proportions. Sepsis is commonly present with high lethality in the severe forms of the disease. The virus-induced cytokine storm puts the immune system in overdrive at the expense of the pathogen-specific immune response and is likely to underlie the most advanced COVID-19 clinical features, including sepsis-related multiple organ dysfunction as well as the pathophysiological changes found in the lungs. We review the major therapeutic strategies that have been considered for sepsis and might be amenable to repurposing for COVID-19. We also discuss two different immunization strategies that have the potential to confer antiviral heterologous protection: innate-induced trained immunity and adaptive-induced immune response resetting.
Collapse
Affiliation(s)
- Alexandre E Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas SP 13083-888, Brazil;
| | - Pedro O de Campos-Lima
- Boldrini Children's Center, Campinas SP 13083-210, Brazil; and .,Functional and Molecular Biology Graduate Program, Institute of Biology, State University of Campinas, Campinas SP 13083-865, Brazil
| |
Collapse
|
47
|
Monneret G, Benlyamani I, Gossez M, Bermejo-Martin JF, Martín-Fernandez M, Sesques P, Wallet F, Venet F. COVID-19: What type of cytokine storm are we dealing with? J Med Virol 2020; 93:197-198. [PMID: 32681651 PMCID: PMC7405026 DOI: 10.1002/jmv.26317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Guillaume Monneret
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression (PI3)," Claude Bernard Lyon 1 University Hospices Civils de Lyon-bioMérieux, Lyon, France.,Immunology Department, Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Ihsane Benlyamani
- Immunology Department, Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Morgane Gossez
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression (PI3)," Claude Bernard Lyon 1 University Hospices Civils de Lyon-bioMérieux, Lyon, France.,Immunology Department, Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Jesus F Bermejo-Martin
- Biomedical research Department, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain.,Biomedical research Department, Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain
| | - Marta Martín-Fernandez
- Biomedical research Department, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain.,Biomedical research Department, Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain
| | - Pierre Sesques
- Medical Intensive Care Unit, Hospices Civils de Lyon, Lyon Sud Teaching Hospital, Lyon, France
| | - Florent Wallet
- Department of Hematology, Hospices Civils de Lyon, Lyon Sud Teaching Hospital, Lyon, France
| | - Fabienne Venet
- EA 7426 "Pathophysiology of Injury-Induced Immunosuppression (PI3)," Claude Bernard Lyon 1 University Hospices Civils de Lyon-bioMérieux, Lyon, France.,Immunology Department, Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
48
|
Hall MW, Joshi I, Leal L, Ooi EE. Immune modulation in COVID-19: Strategic considerations for personalized therapeutic intervention. Clin Infect Dis 2020; 74:144-148. [PMID: 32604407 PMCID: PMC7337699 DOI: 10.1093/cid/ciaa904] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Indexed: 12/26/2022] Open
Abstract
We are learning that the host response to severe acute respiratory syndrome coronavirus 2 ( SARS-CoV-2) infection is complex and highly dynamic. Effective initial host defense in the lung is associated with mild symptoms and disease resolution. Viral evasion of the immune response can lead to refractory alveolar damage, ineffective lung repair mechanisms, and systemic inflammation with associated organ dysfunction. The immune response in these patients is highly variable and can include moderate to severe systemic inflammation and/or marked systemic immune suppression. There is unlikely to be a “one size fits all” approach to immunomodulation in patients with coronavirus disease 2019 (COVID-19). We believe that a personalized, immunophenotype-driven approach to immunomodulation that may include anticytokine therapy in carefully selected patients and immunostimulatory therapies in others is the shortest path to success in the study and treatment of patients with critical illness due to COVID-19.
Collapse
Affiliation(s)
- Mark W Hall
- Division of Critical Care, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Eng Eong Ooi
- Duke-National University of Singapore Medical School, Singapore
| |
Collapse
|
49
|
Ritter C, Constantino L, Michels M, Gonçalves RC, Fraga C, Damásio D, Dal-Pizzol F. Stratification to predict the response to antioxidant. Rev Bras Ter Intensiva 2020; 32:108-114. [PMID: 32401970 PMCID: PMC7206955 DOI: 10.5935/0103-507x.20200016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022] Open
Abstract
Objective To examine the effectiveness of stratification to identify and target antioxidant therapy for animal models of lethal sepsis and in patients who develop sustained hypotension. Methods Rats were subjected to sepsis induced by cecal ligation and puncture. Animals were divided into two groups: those with high and low plasma levels of interleukin-6. Following stratification, N-acetylcysteine plus deferoxamine or saline was administered to animals starting 3 and 12 hours after surgery. N-Acetylcysteine plus deferoxamine or placebo was administered within 12 hours of meeting the inclusion criteria in hypotensive patients. Results N-Acetylcysteine plus deferoxamine increased survival in the cecal ligation and puncture model when administered 3 and 12 hours after sepsis induction. When dividing animals that received antioxidants using plasma interleukin-6 levels, the protective effect was observed only in those animals with high IL-6 levels. The antioxidant effect of N-acetylcysteine + deferoxamine was similar in the two groups, but a significant decrease in plasma interleukin-6 levels was observed in the high-interleukin-6-level group. Compared with patients treated with antioxidants in the low-interleukin-6 subgroup, those in the high-interleukin-6 subgroup had a lower incidence of acute kidney injury but were not different in terms of acute kidney injury severity or intensive care unit mortality. Conclusion Targeting antioxidant therapy to a high inflammatory phenotype would select a responsive population.
Collapse
Affiliation(s)
- Cristiane Ritter
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Larissa Constantino
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Monique Michels
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Renata Casagrande Gonçalves
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Cassiana Fraga
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brasil
| | - Danusa Damásio
- Centro de Pesquisa, Hospital São José, Criciúma, SC, Brasil
| | - Felipe Dal-Pizzol
- Programa de Pós-Graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brasil
| |
Collapse
|
50
|
|