1
|
Wagner TA, Tierney C, Huang S, Nichols S, Malee KM, Montañez NA, Coletti A, Spiegel HM, Krotje C, Bone F, Wilkins M, Abuogi L, Purswani M, Bearden A, Wiznia A, Agwu A, Chadwick EG, Richman D, Gandhi M, Mehta P, Macatangay B, Spector SA, Spudich S, Persaud D, Chahroudi A. Prevalence of detectable HIV-DNA and HIV-RNA in cerebrospinal fluid of youth with perinatal HIV and impaired cognition on antiretroviral therapy. AIDS 2024; 38:1494-1504. [PMID: 38814693 PMCID: PMC11239098 DOI: 10.1097/qad.0000000000003937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVE Central nervous system (CNS) HIV infection can impact cognition and may be an obstacle to cure in adolescents and young adults with perinatal HIV (AYAPHIV). IMPAACT2015 enrolled AYAPHIV on suppressive antiretroviral therapy (ART) with cognitive impairment to detect and quantify HIV in blood and cerebrospinal fluid (CSF). DESIGN IMPAACT2015 was a U.S.-based multi-site, exploratory, observational study. METHODS Cognitive impairment was defined as NIH Toolbox Fluid Cognition Composite score (FCCS) more than 1 standard deviation below age-adjusted normative group mean. Cell-free HIV-RNA and cell-associated HIV pol/gag -DNA and 10 biomarkers of inflammation/neuronal injury were measured in paired CSF and blood. ART exposure concentrations were quantified in hair. RESULTS Among 24 participants, 20 had successful CSF collection and 18 also met viral suppression criteria. Nine of 18 (50%) were female sex-at-birth, and 14 of 18 (78%) were black. Median (range) age was 20 years (13-27), time on ART was 18.3 years (8.0-25.5), and FCCS was 68 (53-80). HIV-DNA was detected in PBMCs from all participants. In CSF, two of 18 (11%, 95% CI: 1.4-34.7%) participants had detectable cell-free HIV-RNA, while HIV gag or pol -DNA was detectable in 13 of 18 (72%, 95% confidence interval: 47-90). Detectable HIV-DNA in CSF was associated with male sex-at-birth ( P = 0.051), lower CD4 + cell count at enrollment ( P = 0.016), and higher PBMC HIV pol -DNA copies ( P = 0.058). Hair antiretroviral concentrations and biomarkers were not associated with CSF HIV-DNA detection. CONCLUSION We found that a high proportion of AYAPHIV with neurocognitive impairment had CSF cells harboring HIV-DNA during long-term virologic suppression. This evidence of persistent HIV-DNA in CSF suggests that the CNS should be considered in treatment and cure studies.
Collapse
Affiliation(s)
- Thor A. Wagner
- University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Camlin Tierney
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sharon Huang
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Kathleen M. Malee
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | | | | | - Hans M.L. Spiegel
- Kelly Government Solutions, Contractor to NIAID/NIH/HHS, Rockville, MD, USA
| | | | | | - Megan Wilkins
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lisa Abuogi
- University of Colorado Denver, Denver, CO, USA
| | | | | | | | - Allison Agwu
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ellen G. Chadwick
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | | | - Monica Gandhi
- University of California San Francisco, San Francisco, CA, USA
| | - Patrick Mehta
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Stephen A. Spector
- University of California San Diego, San Diego, CA, USA
- Rady Children's Hospital, San Diego, San Diego, CA, USA
| | | | | | - Ann Chahroudi
- Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
2
|
Alagaratnam J, Stöhr W, Hamlyn E, Porter K, Toombs J, Heslegrave A, Zetterberg H, Gisslén M, Underwood J, Schechter M, Kaleebu P, Tambussi G, Kinloch S, Miro JM, Kelleher AD, Babiker A, Frater J, Winston A, Fidler S. Impact of interrupting antiretroviral therapy started during primary HIV-1 infection on plasma neurofilament light chain protein, a marker of neuronal injury: The SPARTAC trial. J Virus Erad 2024; 10:100381. [PMID: 38988673 PMCID: PMC11234014 DOI: 10.1016/j.jve.2024.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Objective Antiretroviral therapy (ART)-conferred suppression of HIV replication limits neuronal injury and inflammation. ART interruption tests efficacy in HIV cure trials and viral rebound after ART interruption may induce neuronal injury. We investigated the impact of protocol-defined ART interruption, commenced during primary HIV-1 infection (PHI) on a biomarker of neuro-axonal injury (neurofilament light protein (NfL)), and its associations with inflammation (D-dimer and interleukin-6 (IL-6)) and HIV-1 reservoir size (total HIV-1 DNA). Design Retrospective study measuring plasma NfL in 83 participants enrolled in SPARTAC randomised to receive 48-weeks ART initiated during PHI, followed by ART interruption. Methods NfL (Simoa immunoassay, Quanterix™) was measured before ART, after 48 weeks on ART, and 12 weeks after stopping ART. Plasma D-dimer and IL-6, and total HIV-1 DNA in peripheral CD4+ T-cells results were available in a subset of participants. Longitudinal NfL changes were assessed using mixed models, and associations with clinical and laboratory parameters using linear regression. Results NfL decreased following 48-weeks ART (geometric mean 6.9 to 5.8 pg/mL, p = 0.006) with no further significant change up to 12-weeks post-stopping ART despite viral rebound in the majority of participants (median 1.7 to 3.9 plasma HIV-1 RNA log10 copies/mL). Higher baseline NfL was independently associated with higher plasma HIV-1 RNA (p = 0.020) and older age (p = 0.002). While NfL was positively associated with D-dimer (n = 48; p = 0.002), there was no significant association with IL-6 (n = 48) or total HIV-1 DNA (n = 51). Conclusions Using plasma NfL as a surrogate marker, a decrease in neuro-axonal injury was observed in a cohort of participants following ART initiation during PHI, with no evidence of neuro-axonal injury rebound following ART interruption for up to 12 weeks, despite viral rebound in the majority of participants.
Collapse
Affiliation(s)
- Jasmini Alagaratnam
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Genitourinary Medicine/ HIV Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Wolfgang Stöhr
- Medical Research Council Clinical Trials Unit at University College London, London, United Kingdom
| | - Elizabeth Hamlyn
- Caldecot Centre, Kings College Hospital NHS Foundation Trust, London, United Kingdom
| | - Kholoud Porter
- Institute for Global Health, University College London, London, United Kingdom
| | - Jamie Toombs
- UK Dementia Research Institute at University College London, London, United Kingdom
| | - Amanda Heslegrave
- UK Dementia Research Institute at University College London, London, United Kingdom
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Jonathan Underwood
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mauro Schechter
- Projeto Praça Onze, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Entebbe, Uganda
| | | | - Sabine Kinloch
- Department of Infection and Immunity, Royal Free Hospital, Pond Street, London, United Kingdom
| | - Jose M Miro
- Infectious Diseases Service, Hospital Clinic - IDIBAPS. University of Barcelona, Barcelona, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Abdel Babiker
- Medical Research Council Clinical Trials Unit at University College London, London, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute of Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Alan Winston
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Genitourinary Medicine/ HIV Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Sarah Fidler
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- Genitourinary Medicine/ HIV Department, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
3
|
Erdos T, Masuda M, Venketaraman V. Glutathione in HIV-Associated Neurocognitive Disorders. Curr Issues Mol Biol 2024; 46:5530-5549. [PMID: 38921002 PMCID: PMC11202908 DOI: 10.3390/cimb46060330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
A large portion of patients with Human Immunodeficiency Virus (HIV) have neurologic sequelae. Those with better-controlled HIV via antiretroviral therapies generally have less severe neurologic symptoms. However, for many patients, antiretrovirals do not adequately resolve symptoms. Since much of the pathogenesis of HIV/AIDS (Autoimmune Deficiency Syndrome) involves oxidative stress either directly, through viral interaction, or indirectly, through inflammatory mechanisms, we have reviewed relevant trials of glutathione supplementation in each of the HIV-associated neurocognitive diseases and have found disease-specific results. For diseases for which trials have not been completed, predicted responses to glutathione supplementation are made based on relevant mechanisms seen in the literature. It is not sufficient to conclude that all HIV-associated neurocognitive disorders (HAND) will benefit from the antioxidant effects of glutathione supplementation. The potential effects of glutathione supplementation in patients with HAND are likely to differ based on the specific HIV-associated neurocognitive disease.
Collapse
Affiliation(s)
| | | | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (T.E.); (M.M.)
| |
Collapse
|
4
|
Barker CT, Wang FB, Vaidya NK. Modeling Antiretrovial Treatment to Mitigate HIV in the Brain: Impact of the Blood-Brain Barrier. Bull Math Biol 2023; 85:105. [PMID: 37730794 DOI: 10.1007/s11538-023-01204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 08/04/2023] [Indexed: 09/22/2023]
Abstract
Current research in Human Immunodeficiency Virus (HIV) focuses on eradicating virus reservoirs that prevent or dampen the effectiveness of antiretroviral treatment (ART). One such reservoir, the brain, reduces treatment efficacy via the blood-brain barrier (BBB), causing an obstacle to drug penetration into the brain. In this study, we develop a mathematical model to examine the impact of the BBB on ART effectiveness for mitigating brain HIV. A thorough analysis of the model allowed us to fully characterize the global threshold dynamics with the viral clearance and persistence in the brain for the basic reproduction number less than unity and greater than unity, respectively. Our model showed that the BBB has a significant role in inhibiting the effect of ART within the brain despite the effective viral load suppression in the plasma. The level of impact, however, depends on factors such as the CNS Penetration Effectiveness (CPE) score, the slope of the drug dose-response curves, the ART initiation timing, and the number of drugs in the ART protocol. These results suggest that reducing the plasma viral load to undetectable levels due to some drug regimen may not necessarily indicate undetectable levels of HIV in the brain. Thus, the effect of the BBB on viral suppression in the brain must be considered for developing proper treatment protocols against HIV infection.
Collapse
Affiliation(s)
- Colin T Barker
- Department of Mathematics and Computer Science, Drury University, Missouri, USA
| | - Feng-Bin Wang
- Department of Natural Science in the Center for General Education, Chang Gung University, Taoyuan 333, Guishan, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 204, Keelung Branch, Taiwan
- National Center for Theoretical Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Naveen K Vaidya
- Department of Mathematics and Statistics, San Diego State University, California, San Diego, USA.
- Computational Science Research Center, San Diego State University, California, San Diego, USA.
- Viral Information Institute, San Diego State University, California, San Diego, USA.
| |
Collapse
|
5
|
Dua D, Stubbs O, Urasa S, Rogathe J, Duijinmaijer A, Howlett W, Dekker M, Kisoli A, Mukaetova-Ladinska EB, Gray WK, Lewis T, Walker RW, Dotchin CL, Lwezuala B, Makupa PC, Paddick SM. The prevalence and outcomes of depression in older HIV-positive adults in Northern Tanzania: a longitudinal study. J Neurovirol 2023; 29:425-439. [PMID: 37227670 PMCID: PMC10501928 DOI: 10.1007/s13365-023-01140-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
Studies of depression and its outcomes in older people living with HIV (PLWH) are currently lacking in sub-Saharan Africa. This study aims to investigate the prevalence of psychiatric disorders in PLWH aged ≥ 50 years in Tanzania focussing on prevalence and 2-year outcomes of depression. PLWH aged ≥ 50 were systematically recruited from an outpatient clinic and assessed using the Mini-International Neuropsychiatric Interview (MINI). Neurological and functional impairment was assessed at year 2 follow-up. At baseline, 253 PLWH were recruited (72.3% female, median age 57, 95.5% on cART). DSM-IV depression was highly prevalent (20.9%), whereas other DSM-IV psychiatric disorders were uncommon. At follow-up (n = 162), incident cases of DSM-IV depression decreased from14.2 to 11.1% (χ2: 2.48, p = 0.29); this decline was not significant. Baseline depression was associated with increased functional and neurological impairment. At follow-up, depression was associated with negative life events (p = 0.001), neurological impairment (p < 0.001), and increased functional impairment (p = 0.018), but not with HIV and sociodemographic factors. In this setting, depression appears highly prevalent and associated with poorer neurological and functional outcomes and negative life events. Depression may be a future intervention target.
Collapse
Affiliation(s)
- Damneek Dua
- Newcastle University, Campus for Ageing and Vitality, Westgate Road, NE4 6BE, Newcastle upon Tyne, UK
| | - Oliver Stubbs
- Newcastle University, Campus for Ageing and Vitality, Westgate Road, NE4 6BE, Newcastle upon Tyne, UK
| | - Sarah Urasa
- Kilimanjaro Christian Medical University College, Moshi, Kilimanjaro, Tanzania
| | - Jane Rogathe
- Kilimanjaro Christian Medical University College, Moshi, Kilimanjaro, Tanzania
| | | | - William Howlett
- Kilimanjaro Christian Medical University College, Moshi, Kilimanjaro, Tanzania
| | - Marieke Dekker
- Kilimanjaro Christian Medical University College, Moshi, Kilimanjaro, Tanzania
| | - Aloyce Kisoli
- Kilimanjaro Christian Medical University College, Moshi, Kilimanjaro, Tanzania
| | | | - William K Gray
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, North Shields, UK
| | - Thomas Lewis
- Cumbria Northumberland Tyne and Wear NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Richard W Walker
- Newcastle University, Campus for Ageing and Vitality, Westgate Road, NE4 6BE, Newcastle upon Tyne, UK
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, North Shields, UK
| | - Catherine L Dotchin
- Newcastle University, Campus for Ageing and Vitality, Westgate Road, NE4 6BE, Newcastle upon Tyne, UK
- Northumbria Healthcare NHS Foundation Trust, North Tyneside General Hospital, North Shields, UK
| | | | - Philip C Makupa
- Mawenzi Regional Referral Hospital, Moshi, Kilimanjaro, Tanzania
| | - Stella Maria Paddick
- Newcastle University, Campus for Ageing and Vitality, Westgate Road, NE4 6BE, Newcastle upon Tyne, UK.
| |
Collapse
|
6
|
Mykris TM, Weinhold J, Winchester LC, Scarsi KK, Fletcher CV, Podany AT, Avedissian SN. Quantification of nine antiretroviral drugs in cerebrospinal fluid: An approach to overcome sample collection tube adsorption. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1227:123810. [PMID: 37429153 PMCID: PMC10529871 DOI: 10.1016/j.jchromb.2023.123810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
A highly sensitive LC-MS/MS methods were developed and validated to quantify nine antiretrovirals (atazanavir [ATV], tenofovir [TFV], emtricitabine [FTC], darunavir [DRV], dolutegravir [DTG], efavirenz [EFV], lamivudine [3TC], raltegravir [RAL], and ritonavir [RTV]) in human cerebral spinal fluid (CSF). The approach remedies adsorption issues caused by polypropylene based sample collection tubes. 1% ammonium hydroxide in methanol was added in an amount equal to the volume of each quality control (QC) or patient sample. Protein precipitation was utilized with a CSF sample volume of 100 μL and a 100 μL of methanol:ACN and vortexed. Chromatographic separation was achieved with a 3 × 100 ACE® C18 column for ATV, DRV, DTG, EFV, RTV and RAL, and a 2 × 100 Polar RP column for TFV/FTC/3TC. Mobile phase was methanol:water:formic acid (70:30:0.1, v/v/v) for ATV, DRV, DTG, EFV and RTV (10 uL injection, flow rate: 1.00 mL/min), ACN:water:formic acid (35:65:0.1, v/v/v) for RAL (50 uL injection, flow rate: 1.00 mL/min), ACN:water:formic acid (2:98:0.1, v/v/v) for TFV, FTC and 3TC (50 uL injection, flow rate: 0.35 mL/min). Column temperature was 40° C across all assays. The mass spectrometer was operated in positive, multiple-reaction-monitoring (MRM) mode with electrospray ionization (ESI) for all analytes with the exception of EFV, which was operated in negative, MRM mode with ESI. The assay was linear over the calibration range of 1 to 250 ng/mL for all analytes. The addition of 1% ammonium hydroxide in sample tubes overcame up to 44% negative bias in QC samples and allowed the methods to meet full validation criteria.
Collapse
Affiliation(s)
- Timothy M Mykris
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center. Omaha, NE, USA
| | - Jonathan Weinhold
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center. Omaha, NE, USA
| | - Lee C Winchester
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center. Omaha, NE, USA
| | - Kimberly K Scarsi
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center. Omaha, NE, USA; Division of Infectious Diseases, Department of Medicine, University of Nebraska Medical Center. Omaha, NE, USA
| | - Courtney V Fletcher
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center. Omaha, NE, USA; Division of Infectious Diseases, Department of Medicine, University of Nebraska Medical Center. Omaha, NE, USA
| | - Anthony T Podany
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center. Omaha, NE, USA.
| | - Sean N Avedissian
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center. Omaha, NE, USA.
| |
Collapse
|
7
|
Oliveira MF, Pankow A, Vollbrecht T, Kumar NM, Cabalero G, Ignacio C, Zhao M, Vitomirov A, Gouaux B, Nakawawa M, Murrell B, Ellis RJ, Gianella S. Evaluation of Archival HIV DNA in Brain and Lymphoid Tissues. J Virol 2023; 97:e0054323. [PMID: 37184401 PMCID: PMC10308944 DOI: 10.1128/jvi.00543-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023] Open
Abstract
HIV reservoirs persist in anatomic compartments despite antiretroviral therapy (ART). Characterizing archival HIV DNA in the central nervous system (CNS) and other tissues is crucial to inform cure strategies. We evaluated paired autopsy brain-frontal cortex (FC), occipital cortex (OCC), and basal ganglia (BG)-and peripheral lymphoid tissues from 63 people with HIV. Participants passed away while virally suppressed on ART at the last visit and without evidence of CNS opportunistic disease. We quantified total HIV DNA in all participants and obtained full-length HIV-envelope (FL HIV-env) sequences from a subset of 14 participants. We detected HIV DNA (gag) in most brain (65.1%) and all lymphoid tissues. Lymphoid tissues had higher HIV DNA levels than the brain (P < 0.01). Levels of HIV gag between BG and FC were similar (P > 0.2), while OCC had the lowest levels (P = 0.01). Females had higher HIV DNA levels in tissues than males (gag, P = 0.03; 2-LTR, P = 0.05), suggesting possible sex-associated mechanisms for HIV reservoir persistence. Most FL HIV-env sequences (n = 143) were intact, while 42 were defective. Clonal sequences were found in 8 out of 14 participants, and 1 participant had clonal defective sequences in the brain and spleen, suggestive of cell migration. From 10 donors with paired brain and lymphoid sequences, we observed evidence of compartmentalized sequences in 2 donors. Our data further the idea that the brain is a site for archival HIV DNA during ART where compartmentalized provirus may occur in a subset of people. Future studies assessing FL HIV-provirus and replication competence are needed to further evaluate the HIV reservoirs in tissues. IMPORTANCE HIV infection of the brain is associated with adverse neuropsychiatric outcomes, despite efficient antiretroviral treatment. HIV may persist in reservoirs in the brain and other tissues, which can seed virus replication if treatment is interrupted, representing a major challenge to cure HIV. We evaluated reservoirs and genetic features in postmortem brain and lymphoid tissues from people with HIV who passed away during suppressed HIV replication. We found a differential distribution of HIV reservoirs across brain regions which was lower than that in lymphoid tissues. We observed that most HIV reservoirs in tissues had intact envelope sequences, suggesting they could potentially generate replicative viruses. We found that women had higher HIV reservoir levels in brain and lymphoid tissues than men, suggesting possible sex-based mechanisms of maintenance of HIV reservoirs in tissues, warranting further investigation. Characterizing the archival HIV DNA in tissues is important to inform future HIV cure strategies.
Collapse
Affiliation(s)
- Michelli F Oliveira
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Alec Pankow
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Vollbrecht
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Nikesh M Kumar
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gemma Cabalero
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Caroline Ignacio
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Mitchell Zhao
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Andrej Vitomirov
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Ben Gouaux
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Masato Nakawawa
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Ben Murrell
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Ronald J Ellis
- Department of Neurosciences and Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Sara Gianella
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Elevation of cell-associated HIV-1 transcripts in CSF CD4+ T cells, despite effective antiretroviral therapy, is linked to brain injury. Proc Natl Acad Sci U S A 2022; 119:e2210584119. [PMID: 36413502 PMCID: PMC9860316 DOI: 10.1073/pnas.2210584119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antiretroviral therapy (ART) can attain prolonged undetectable HIV-1 in plasma and cerebrospinal fluid (CSF), but brain injury remains prevalent in people living with HIV-1 infection (PLHIV). We investigated cell-associated (CA)-HIV-1 RNA transcripts in cells in CSF and blood, using the highly sensitive Double-R assay, together with proton Magnetic Resonance Spectroscopy (1H MRS) of major brain metabolites, in sixteen PLHIV. 14/16 CSF cell samples had quantifiable CA-HIV-1 RNA, at levels significantly higher than in their PBMCs (median 9,266 vs 185 copies /106 CD4+ T-cells; p<0.0001). In individual PLHIV, higher levels of HIV-1 transcripts in CSF cells were associated with greater brain injury in the frontal white matter (Std β=-0.73; p=0.007) and posterior cingulate (Std β=-0.61; p=0.03). 18-colour flow cytometry revealed that the CSF cells were 91% memory T-cells, equally CD4+ and CD8+ T-cells, but fewer B cells (0.4 %), and monocytes (3.1%). CXCR3+CD49d+integrin β7-, CCR5+CD4+ T-cells were highly enriched in CSF, compared with PBMC (p <0.001). However, CA-HIV-1 RNA could not be detected in 10/16 preparations of highly purified monocytes from PBMC, and was extremely low in the other six. Our data show that elevated HIV-1 transcripts in CSF cells were associated with brain injury, despite suppressive ART. The cellular source is most likely memory CD4+ T cells from blood, rather than trafficking monocytes. Future research should focus on inhibitors of this transcription to reduce local production of potentially neurotoxic and inflammatory viral products.
Collapse
|
9
|
Nühn MM, Gumbs SBH, Buchholtz NVEJ, Jannink LM, Gharu L, de Witte LD, Wensing AMJ, Lewin SR, Nijhuis M, Symons J. Shock and kill within the CNS: A promising HIV eradication approach? J Leukoc Biol 2022; 112:1297-1315. [PMID: 36148896 PMCID: PMC9826147 DOI: 10.1002/jlb.5vmr0122-046rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023] Open
Abstract
The most studied HIV eradication approach is the "shock and kill" strategy, which aims to reactivate the latent reservoir by latency reversing agents (LRAs) and allowing elimination of these cells by immune-mediated clearance or viral cytopathic effects. The CNS is an anatomic compartment in which (persistent) HIV plays an important role in HIV-associated neurocognitive disorder. Restriction of the CNS by the blood-brain barrier is important for maintenance of homeostasis of the CNS microenvironment, which includes CNS-specific cell types, expression of transcription factors, and altered immune surveillance. Within the CNS predominantly myeloid cells such as microglia and perivascular macrophages are thought to be a reservoir of persistent HIV infection. Nevertheless, infection of T cells and astrocytes might also impact HIV infection in the CNS. Genetic adaptation to this microenvironment results in genetically distinct, compartmentalized viral populations with differences in transcription profiles. Because of these differences in transcription profiles, LRAs might have different effects within the CNS as compared with the periphery. Moreover, reactivation of HIV in the brain and elimination of cells within the CNS might be complex and could have detrimental consequences. Finally, independent of activity on latent HIV, LRAs themselves can have adverse neurologic effects. We provide an extensive overview of the current knowledge on compartmentalized (persistent) HIV infection in the CNS and on the "shock and kill" strategy. Subsequently, we reflect on the impact and promise of the "shock and kill" strategy on the elimination of persistent HIV in the CNS.
Collapse
Affiliation(s)
- Marieke M. Nühn
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Stephanie B. H. Gumbs
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Ninée V. E. J. Buchholtz
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lisanne M. Jannink
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lavina Gharu
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lot D. de Witte
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands,Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
| | - Annemarie M. J. Wensing
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Victorian Infectious Diseases ServiceThe Royal Melbourne Hospital at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVICAustralia
| | - Monique Nijhuis
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Jori Symons
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| |
Collapse
|
10
|
Khan N, Halcrow PW, Afghah Z, Baral A, Geiger J, Chen X. HIV-1 Tat endocytosis and retention in endolysosomes affects HIV-1 Tat-induced LTR transactivation in astrocytes. FASEB J 2022; 36:e22184. [PMID: 35113458 PMCID: PMC9627655 DOI: 10.1096/fj.202101722r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/11/2022]
Abstract
The presence of latent HIV-1 reservoirs in the periphery and brain represents a major obstacle to curing HIV-1 infection. As an essential protein for HIV-1 viral replication, HIV-1 Tat, mostly intracellular, has been implicated in latent HIV-1 infection. From HIV-1 infected cells, HIV-1 Tat is actively secreted and bystander cells uptake the released Tat whereupon it is endocytosed and internalized into endolysosomes. However, to activate the HIV-1 LTR promoter and increase HIV-1 replication, HIV-1 Tat must first escape from the endolysosomes and then enter the nucleus. Here, we tested the hypothesis that HIV-1 Tat can accumulate in endolysosomes and contribute to the activation of latent HIV-1 in astrocytes. Using U87MG astrocytoma cells expressing HIV-1 LTR-driven luciferase and primary human astrocytes we found that exogenous HIV-1 Tat enters endolysosomes, resides in endolysosomes for extended periods of time, and induces endolysosome de-acidification as well as enlargement. The weak base chloroquine promoted the release of HIV-1 Tat from endolysosomes and induced HIV-1 LTR transactivation. Similar results were observed by activating endolysosome Toll-like receptor 3 (TLR3) and TLR7/8. Conversely, pharmacological block of TLRs and knocking down expression levels of TLR3 and TLR7, but not TLR8, prevented endolysosome leakage and attenuated HIV-1 Tat-mediated HIV-1 LTR transactivation. Our findings suggest that HIV-1 Tat accumulation in endolysosomes may play an important role in controlling HIV-1 transactivation.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Peter W. Halcrow
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Zahra Afghah
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Aparajita Baral
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Jonathan D. Geiger
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Xuesong Chen
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| |
Collapse
|
11
|
Retroviral infection of human neurospheres and use of stem Cell EVs to repair cellular damage. Sci Rep 2022; 12:2019. [PMID: 35132117 PMCID: PMC8821538 DOI: 10.1038/s41598-022-05848-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
HIV-1 remains an incurable infection that is associated with substantial economic and epidemiologic impacts. HIV-associated neurocognitive disorders (HAND) are commonly linked with HIV-1 infection; despite the development of combination antiretroviral therapy (cART), HAND is still reported to affect at least 50% of HIV-1 infected individuals. It is believed that the over-amplification of inflammatory pathways, along with release of toxic viral proteins from infected cells, are primarily responsible for the neurological damage that is observed in HAND; however, the underlying mechanisms are not well-defined. Therefore, there is an unmet need to develop more physiologically relevant and reliable platforms for studying these pathologies. In recent years, neurospheres derived from induced pluripotent stem cells (iPSCs) have been utilized to model the effects of different neurotropic viruses. Here, we report the generation of neurospheres from iPSC-derived neural progenitor cells (NPCs) and we show that these cultures are permissive to retroviral (e.g. HIV-1, HTLV-1) replication. In addition, we also examine the potential effects of stem cell derived extracellular vesicles (EVs) on HIV-1 damaged cells as there is abundant literature supporting the reparative and regenerative properties of stem cell EVs in the context of various CNS pathologies. Consistent with the literature, our data suggests that stem cell EVs may modulate neuroprotective and anti-inflammatory properties in damaged cells. Collectively, this study demonstrates the feasibility of NPC-derived neurospheres for modeling HIV-1 infection and, subsequently, highlights the potential of stem cell EVs for rescuing cellular damage induced by HIV-1 infection.
Collapse
|
12
|
Sonti S, Tyagi K, Pande A, Daniel R, Sharma AL, Tyagi M. Crossroads of Drug Abuse and HIV Infection: Neurotoxicity and CNS Reservoir. Vaccines (Basel) 2022; 10:vaccines10020202. [PMID: 35214661 PMCID: PMC8875185 DOI: 10.3390/vaccines10020202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Drug abuse is a common comorbidity in people infected with HIV. HIV-infected individuals who abuse drugs are a key population who frequently experience suboptimal outcomes along the HIV continuum of care. A modest proportion of HIV-infected individuals develop HIV-associated neurocognitive issues, the severity of which further increases with drug abuse. Moreover, the tendency of the virus to go into latency in certain cellular reservoirs again complicates the elimination of HIV and HIV-associated illnesses. Antiretroviral therapy (ART) successfully decreased the overall viral load in infected people, yet it does not effectively eliminate the virus from all latent reservoirs. Although ART increased the life expectancy of infected individuals, it showed inconsistent improvement in CNS functioning, thus decreasing the quality of life. Research efforts have been dedicated to identifying common mechanisms through which HIV and drug abuse lead to neurotoxicity and CNS dysfunction. Therefore, in order to develop an effective treatment regimen to treat neurocognitive and related symptoms in HIV-infected patients, it is crucial to understand the involved mechanisms of neurotoxicity. Eventually, those mechanisms could lead the way to design and develop novel therapeutic strategies addressing both CNS HIV reservoir and illicit drug use by HIV patients.
Collapse
Affiliation(s)
- Shilpa Sonti
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (S.S.); (A.L.S.)
| | - Kratika Tyagi
- Department of Biotechnology, Banasthali Vidyapith, Vanasthali, Jaipur 304022, Rajasthan, India;
| | - Amit Pande
- Cell Culture Laboratory, ICAR-Directorate of Coldwater Fisheries Research, Bhimtal, Nainital 263136, Uttarakhand, India;
| | - Rene Daniel
- Farber Hospitalist Service, Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Adhikarimayum Lakhikumar Sharma
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (S.S.); (A.L.S.)
| | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (S.S.); (A.L.S.)
- Correspondence: ; Tel.: +1-215-503-5157 or +1-703-909-9420
| |
Collapse
|
13
|
Borrajo A, Spuch C, Penedo MA, Olivares JM, Agís-Balboa RC. Important role of microglia in HIV-1 associated neurocognitive disorders and the molecular pathways implicated in its pathogenesis. Ann Med 2021; 53:43-69. [PMID: 32841065 PMCID: PMC7877929 DOI: 10.1080/07853890.2020.1814962] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
The development of effective combined anti-retroviral therapy (cART) led to a significant reduction in the death rate associated with human immunodeficiency virus type 1 (HIV-1) infection. However, recent studies indicate that considerably more than 50% of all HIV-1 infected patients develop HIV-1-associated neurocognitive disorder (HAND). Microglia are the foremost cells infected by HIV-1 in the central nervous system (CNS), and so, are also likely to contribute to the neurotoxicity observed in HAND. The activation of microglia induces the release of pro-inflammatory markers and altered secretion of cytokines, chemokines, secondary messengers, and reactive oxygen species (ROS) which activate signalling pathways that initiate neuroinflammation. In turn, ROS and inflammation also play critical roles in HAND. However, more efforts are required to understand the physiology of microglia and the processes involved in their activation in order to better understand the how HIV-1-infected microglia are involved in the development of HAND. In this review, we summarize the current state of knowledge about the involvement of oxidative stress mechanisms and role of HIV-induced ROS in the development of HAND. We also examine the academic literature regarding crucial HIV-1 pathogenicity factors implicated in neurotoxicity and inflammation in order to identify molecular pathways that could serve as potential therapeutic targets for treatment of this disease. KEY MESSAGES Neuroinflammation and excitotoxicity mechanisms are crucial in the pathogenesis of HAND. CNS infiltration by HIV-1 and immune cells through the blood brain barrier is a key process involved in the pathogenicity of HAND. Factors including calcium dysregulation and autophagy are the main challenges involved in HAND.
Collapse
Affiliation(s)
- A. Borrajo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Roma, Italy
| | - C. Spuch
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - M. A. Penedo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - J. M. Olivares
- Department of Psychiatry, Área Sanitaria de Vigo, Vigo, Spain
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - R. C. Agís-Balboa
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| |
Collapse
|
14
|
Weichseldorfer M, Affram Y, Heredia A, Rikhtegaran-Tehrani Z, Sajadi MM, Williams SP, Tagaya Y, Benedetti F, Ramadhani HO, Denaro F, Munawwar A, Bryant J, Zella D, Reitz M, Romerio F, Latinovic OS. Combined cART including Tenofovir Disoproxil, Emtricitabine, and Dolutegravir has potent therapeutic effects in HIV-1 infected humanized mice. J Transl Med 2021; 19:453. [PMID: 34717655 PMCID: PMC8557591 DOI: 10.1186/s12967-021-03120-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/16/2021] [Indexed: 01/17/2023] Open
Abstract
HIV-1 reservoirs persist in the presence of combined antiretroviral therapy (cART). However, cART has transformed HIV-1 infection into a chronic disease marked by control of HIV-1 viral load and mortality reduction. Major challenges remain, including viral resistance upon termination of cART and persistence and identification of tissue distribution of HIV-1 reservoirs. Thus, appropriate animal models that best mimic HIV-1 pathogenesis are important, and the current study complements our previously published validation of the CD34+ hematopoietic humanized mouse model for this purpose. Here we analyze viral suppression using the recently developed combination of antiretrovirals that include Tenofovir Disoproxil (TDF), Emtricitabine (FTC), and Dolutegravir (DTG), a choice based on recent clinical outcomes showing its improved antiretroviral potency, CD4+ T cell preservation, tolerability, and prevention of viral drug resistance compared to that of previous regimens. We used quantitative Airyscan-based super resolution confocal microscopy of selected mouse tissues. Our data allowed us to identify specific solid tissue reservoirs of human T cells expressing the HIV-1 core protein p24. In particular, lymph node, brain, spleen, and liver were visualized as reservoirs for residual infected cells. Marked reduction of viral replication was evident. Considering that detection and visualization of cryptic sites of HIV-1 infection in tissues are clearly crucial steps towards HIV-1 eradication, appropriate animal models with pseudo-human immune systems are needed. In fact, current studies with humans and non-human primates have limited sample availability at multiple stages of infection and cannot easily analyze the effects of differently administered combined antiretroviral treatments on multiple tissues. That is easier to manage when working with humanized mouse models, although we realize the limitations due to low human cell recovery and thus the number of cells available for thorough and comprehensive analyses. Nonetheless, our data further confirm that the CD34+ humanized mouse model is a potentially useful pre-clinical model to study and improve current anti-HIV-1 therapies.
Collapse
Affiliation(s)
- Matthew Weichseldorfer
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Yvonne Affram
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.,Department of Microbial Pathogenesis and Immunology, University of Texas A and M Health Science Center, Bryan, TX, 77843, USA
| | - Alonso Heredia
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | | | - Mohammad M Sajadi
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Sumiko P Williams
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Yutaka Tagaya
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Francesca Benedetti
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.,Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Habib O Ramadhani
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Frank Denaro
- Morgan State University, College of Bio Sciences, Baltimore, MD, 21011, USA
| | - Arshi Munawwar
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Joseph Bryant
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Davide Zella
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.,Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Marvin Reitz
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Fabio Romerio
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21201, USA
| | - Olga S Latinovic
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA. .,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Weichseldorfer M, Reitz M, Latinovic OS. Past HIV-1 Medications and the Current Status of Combined Antiretroviral Therapy Options for HIV-1 Patients. Pharmaceutics 2021; 13:pharmaceutics13111798. [PMID: 34834213 PMCID: PMC8621549 DOI: 10.3390/pharmaceutics13111798] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Combined antiretroviral therapy (cART) is treatment with a combination of several antiretroviral drugs that block multiple stages in the virus replication cycle. An estimated 60% of the 38 million HIV-1 patients globally receive some form of cART. The benefits of cART for controlling HIV-1 replication, transmission, and infection rates have led to its universal recommendation. Implementation has caused a substantial reduction in morbidity and mortality of persons living with HIV-1/AIDS (PLWHA). More specifically, standard cART has provided controlled, undetectable levels of viremia, high treatment efficacy, reduction in pill burden, and an improved lifestyle in HIV-1 patients overall. However, HIV-1 patients living with AIDS (HPLA) generally show high viral loads upon cART interruption. Latently infected resting CD4+ T cells remain a major barrier to curing infected patients on long-term cART. There is a critical need for more effective compounds and therapies that not only potently reactivate latently infected cells, but also lead to the death of these reactivated cells. Efforts are ongoing to better control ongoing viral propagation, including the identification of appropriate animal models that best mimic HIV-1 pathogenesis, before proceeding with clinical trials. Limited toxicity profiles, improved drug penetration to certain tissues, and extended-release formulations are needed to cover gaps in existing HIV-1 treatment options. This review will cover past, current, and new cART strategies recently approved or in ongoing development.
Collapse
Affiliation(s)
- Matthew Weichseldorfer
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Marvin Reitz
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Olga S. Latinovic
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
16
|
Khan N, Halcrow PW, Lakpa LK, Rehan M, Chen X, Geiger JD. Endolysosome iron restricts Tat-mediated HIV-1 LTR transactivation by increasing HIV-1 Tat oligomerization and β-catenin expression. J Neurovirol 2021; 27:755-773. [PMID: 34550543 DOI: 10.1007/s13365-021-01016-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022]
Abstract
HIV-1 transactivator of transcription (Tat) protein is required for HIV-1 replication, and it has been implicated in the pathogenesis of HIV-1-associated neurocognitive disorder (HAND). HIV-1 Tat can enter cells via receptor-mediated endocytosis where it can reside in endolysosomes; upon its escape from these acidic organelles, HIV-1 Tat can enter the cytosol and nucleus where it activates the HIV-1 LTR promoter. Although it is known that HIV-1 replication is affected by the iron status of people living with HIV-1 (PLWH), very little is known about how iron affects HIV-1 Tat activation of the HIV-1 LTR promoter. Because HIV-1 proteins de-acidify endolysosomes and endolysosome de-acidification affects subcellular levels and actions of iron, we tested the hypothesis that the endolysosome pool of iron is sufficient to affect Tat-induced HIV-1 LTR transactivation. Ferric (Fe3+) and ferrous (Fe2+) iron both restricted Tat-mediated HIV-1 LTR transactivation. Chelation of endolysosome iron with deferoxamine (DFO) and 2-2 bipyridyl, but not chelation of cytosolic iron with deferiprone and deferasirox, significantly enhanced Tat-mediated HIV-1 LTR transactivation. In the presence of iron, HIV-1 Tat increasingly oligomerized and DFO prevented the oligomerization. DFO also reduced protein expression levels of the HIV-1 restriction agent beta-catenin in the cytosol and nucleus. These findings suggest that DFO increases HIV-1 LTR transactivation by increasing levels of the more active dimeric form of Tat relative to the less active oligomerized form of Tat, increasing the escape of dimeric Tat from endolysosomes, and/or reducing beta-catenin protein expression levels. Thus, intracellular iron might play a significant role in regulating HIV-1 replication, and these findings raise cautionary notes for chelation therapies in PLWH.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Peter W Halcrow
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Leo K Lakpa
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Xuesong Chen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.
| |
Collapse
|
17
|
Bedwell GJ, Jang S, Li W, Singh PK, Engelman AN. rigrag: high-resolution mapping of genic targeting preferences during HIV-1 integration in vitro and in vivo. Nucleic Acids Res 2021; 49:7330-7346. [PMID: 34165568 PMCID: PMC8287940 DOI: 10.1093/nar/gkab514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 12/19/2022] Open
Abstract
HIV-1 integration favors recurrent integration gene (RIG) targets and genic proviruses can confer cell survival in vivo. However, the relationship between initial RIG integrants and how these evolve in patients over time are unknown. To address these shortcomings, we built phenomenological models of random integration in silico, which were used to identify 3718 RIGs as well as 2150 recurrent avoided genes from 1.7 million integration sites across 10 in vitro datasets. Despite RIGs comprising only 13% of human genes, they harbored 70% of genic HIV-1 integrations across in vitro and patient-derived datasets. Although previously reported to associate with super-enhancers, RIGs tracked more strongly with speckle-associated domains. While depletion of the integrase cofactor LEDGF/p75 significantly reduced recurrent HIV-1 integration in vitro, LEDGF/p75 primarily occupied non-speckle-associated regions of chromatin, suggesting a previously unappreciated dynamic aspect of LEDGF/p75 functionality in HIV-1 integration targeting. Finally, we identified only six genes from patient samples-BACH2, STAT5B, MKL1, MKL2, IL2RB and MDC1-that displayed enriched integration targeting frequencies and harbored proviruses that likely contributed to cell survival. Thus, despite the known preference of HIV-1 to target cancer-related genes for integration, we conclude that genic proviruses play a limited role to directly affect cell proliferation in vivo.
Collapse
Affiliation(s)
- Gregory J Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wen Li
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Parmit K Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Sonti S, Sharma AL, Tyagi M. HIV-1 persistence in the CNS: Mechanisms of latency, pathogenesis and an update on eradication strategies. Virus Res 2021; 303:198523. [PMID: 34314771 DOI: 10.1016/j.virusres.2021.198523] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 12/20/2022]
Abstract
Despite four decades of research into the human immunodeficiency virus (HIV-1), a successful strategy to eradicate the virus post-infection is lacking. The major reason for this is the persistence of the virus in certain anatomical reservoirs where it can become latent and remain quiescent for as long as the cellular reservoir is alive. The Central Nervous System (CNS), in particular, is an intriguing anatomical compartment that is tightly regulated by the blood-brain barrier. Targeting the CNS viral reservoir is a major challenge owing to the decreased permeability of drugs into the CNS and the cellular microenvironment that facilitates the compartmentalization and evolution of the virus. Therefore, despite effective antiretroviral (ARV) treatment, virus persists in the CNS, and leads to neurological and neurocognitive deficits. To date, viral eradication strategies fail to eliminate the virus from the CNS. To facilitate the improvement of the existing elimination strategies, as well as the development of potential therapeutic targets, the aim of this review is to provide an in-depth understanding of HIV latency in CNS and the onset of HIV-1 associated neurological disorders.
Collapse
Affiliation(s)
- Shilpa Sonti
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
19
|
Wen J, Cheever T, Wang L, Wu D, Reed J, Mascola J, Chen X, Liu C, Pegu A, Sacha JB, Lu Y, Haigwood NL, Chen ISY. Improved delivery of broadly neutralizing antibodies by nanocapsules suppresses SHIV infection in the CNS of infant rhesus macaques. PLoS Pathog 2021; 17:e1009738. [PMID: 34283885 PMCID: PMC8323878 DOI: 10.1371/journal.ppat.1009738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/30/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) directed to HIV-1 have shown promise at suppressing viremia in animal models. However, the use of bNAbs for the central nervous system (CNS) infection is confounded by poor penetration of the blood brain barrier (BBB). Typically, antibody concentrations in the CNS are extremely low; with levels in cerebrospinal fluid (CSF) only 0.1% of blood concentrations. Using a novel nanotechnology platform, which we term nanocapsules, we show effective transportation of the human bNAb PGT121 across the BBB in infant rhesus macaques upon systemic administration up to 1.6% of plasma concentration. We demonstrate that a single dose of PGT121 encased in nanocapsules when delivered at 48h post-infection delays early acute infection with SHIVSF162P3 in infants, with one of four animals demonstrating viral clearance. Importantly, the nanocapsule delivery of PGT121 improves suppression of SHIV infection in the CNS relative to controls. In patients where HIV-1 is fully suppressed by antiretroviral drugs, HIV-1 still persists in reservoirs. If antiretroviral drugs are stopped, the virus will emerge from these reservoirs and re-seeds systemically. The central nervous system (CNS) is proposed to be a tissue compartment that harbors other HIV-1 reservoirs. A key obstacle that constrains the treatment for the CNS infection is the blood–brain barrier (BBB), a highly restrictive barrier separating the circulating blood from the brain and extracellular fluid in the CNS, which impedes ~98% of the small molecule therapeutics and almost all macromolecules including broadly neutralizing antibodies (bNAbs) directed to HIV-1. Our “nanocapsule” strategy is based on a nanotechnology wherein bNAb molecules are encapsulated within nanocapsules of which the surface contains abundant choline and acetylcholine analogues. This design allows the nanocapsules to effectively cross the BBB to deliver bNAbs into the CNS upon systemic administration and show an impact of bNAb on CNS reservoirs in SHIV infected infant macaques.
Collapse
Affiliation(s)
- Jing Wen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles (UCLA), UCLA AIDS Institute, Los Angeles, California, United States of America
| | - Tracy Cheever
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Lan Wang
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles (UCLA), UCLA AIDS Institute, Los Angeles, California, United States of America
| | - Di Wu
- Department of Chemical and Biomolecular Engineering, School of Engineering, UCLA, Los Angeles, California, United States of America
| | - Jason Reed
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - John Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda Maryland, United States of America
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda Maryland, United States of America
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda Maryland, United States of America
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda Maryland, United States of America
| | - Jonah B Sacha
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America.,Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, School of Engineering, UCLA, Los Angeles, California, United States of America
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Irvin S Y Chen
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles (UCLA), UCLA AIDS Institute, Los Angeles, California, United States of America
| |
Collapse
|
20
|
Sanna PP, Fu Y, Masliah E, Lefebvre C, Repunte-Canonigo V. Central nervous system (CNS) transcriptomic correlates of human immunodeficiency virus (HIV) brain RNA load in HIV-infected individuals. Sci Rep 2021; 11:12176. [PMID: 34108514 PMCID: PMC8190104 DOI: 10.1038/s41598-021-88052-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/26/2021] [Indexed: 11/08/2022] Open
Abstract
To generate new mechanistic hypotheses on the pathogenesis and disease progression of neuroHIV and identify novel therapeutic targets to improve neuropsychological function in people with HIV, we investigated host genes and pathway dysregulations associated with brain HIV RNA load in gene expression profiles of the frontal cortex, basal ganglia, and white matter of HIV+ patients. Pathway analyses showed that host genes correlated with HIV expression in all three brain regions were predominantly related to inflammation, neurodegeneration, and bioenergetics. HIV RNA load directly correlated particularly with inflammation genesets representative of cytokine signaling, and this was more prominent in white matter and the basal ganglia. Increases in interferon signaling were correlated with high brain HIV RNA load in the basal ganglia and the white matter although not in the frontal cortex. Brain HIV RNA load was inversely correlated with genesets that are indicative of neuronal and synaptic genes, particularly in the cortex, indicative of synaptic injury and neurodegeneration. Brain HIV RNA load was inversely correlated with genesets that are representative of oxidative phosphorylation, electron transfer, and the tricarboxylic acid cycle in all three brain regions. Mitochondrial dysfunction has been implicated in the toxicity of some antiretrovirals, and these results indicate that mitochondrial dysfunction is also associated with productive HIV infection. Genes and pathways correlated with brain HIV RNA load suggest potential therapeutic targets to ameliorate neuropsychological functioning in people living with HIV.
Collapse
Affiliation(s)
- Pietro Paolo Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Yu Fu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Eliezer Masliah
- Division of Neuroscience and Laboratory of Neurogenetics, National Institute On Aging, National Institutes of Health, Bethesda, MD, USA
| | - Celine Lefebvre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- , Paris, France
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
21
|
Li H, McLaurin KA, Illenberger JM, Mactutus CF, Booze RM. Microglial HIV-1 Expression: Role in HIV-1 Associated Neurocognitive Disorders. Viruses 2021; 13:924. [PMID: 34067600 PMCID: PMC8155894 DOI: 10.3390/v13050924] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
The persistence of HIV-1 viral reservoirs in the brain, despite treatment with combination antiretroviral therapy (cART), remains a critical roadblock for the development of a novel cure strategy for HIV-1. To enhance our understanding of viral reservoirs, two complementary studies were conducted to (1) evaluate the HIV-1 mRNA distribution pattern and major cell type expressing HIV-1 mRNA in the HIV-1 transgenic (Tg) rat, and (2) validate our findings by developing and critically testing a novel biological system to model active HIV-1 infection in the rat. First, a restricted, region-specific HIV-1 mRNA distribution pattern was observed in the HIV-1 Tg rat. Microglia were the predominant cell type expressing HIV-1 mRNA in the HIV-1 Tg rat. Second, we developed and critically tested a novel biological system to model key aspects of HIV-1 by infusing F344/N control rats with chimeric HIV (EcoHIV). In vitro, primary cultured microglia were treated with EcoHIV revealing prominent expression within 24 h of infection. In vivo, EcoHIV expression was observed seven days after stereotaxic injections. Following EcoHIV infection, microglia were the major cell type expressing HIV-1 mRNA, results that are consistent with observations in the HIV-1 Tg rat. Within eight weeks of infection, EcoHIV rats exhibited neurocognitive impairments and synaptic dysfunction, which may result from activation of the NogoA-NgR3/PirB-RhoA signaling pathway and/or neuroinflammation. Collectively, these studies enhance our understanding of HIV-1 viral reservoirs in the brain and offer a novel biological system to model HIV-associated neurocognitive disorders and associated comorbidities (i.e., drug abuse) in rats.
Collapse
Affiliation(s)
| | | | | | | | - Rosemarie M. Booze
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA; (H.L.); (K.A.M.); (J.M.I.); (C.F.M.)
| |
Collapse
|
22
|
Mina Y, Wu T, Hsieh HC, Hammoud DA, Shah S, Lau CY, Ham L, Snow J, Horne E, Ganesan A, Rapoport SI, Tramont EC, Reich DS, Agan BK, Nath A, Smith BR. Association of White Matter Hyperintensities With HIV Status and Vascular Risk Factors. Neurology 2021; 96:e1823-e1834. [PMID: 33637630 PMCID: PMC8105972 DOI: 10.1212/wnl.0000000000011702] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To test the hypothesis that brain white matter hyperintensities (WMH) are more common in people living with HIV (PLWH), even in the setting of well-controlled infection, and to identify clinical measures that correlate with these abnormalities. METHODS Research brain MRI scans, acquired within longitudinal studies evaluating neurocognitive outcomes, were reviewed to determine WMH load using the Fazekas visual rating scale in PLWH with well-controlled infection (antiretroviral therapy for at least 1 year and plasma viral load <200 copies/mL) and in sociodemographically matched controls without HIV (CWOH). The primary outcome measure of this cross-sectional analysis was increased WMH load, determined by total Fazekas score ≥2. Multiple logistic regression analysis was performed to evaluate the effect of HIV serostatus on WMH load and to identify MRI, CSF, and clinical variables that associate with WMH in the PLWH group. RESULTS The study included 203 PLWH and 58 CWOH who completed a brain MRI scan between April 2014 and March 2019. The multiple logistic regression analysis, with age and history of tobacco use as covariates, showed that the adjusted odds ratio of the PLWH group for increased WMH load is 3.7 (95% confidence interval 1.8-7.5; p = 0.0004). For the PLWH group, increased WMH load was associated with older age, male sex, tobacco use, hypertension, and hepatitis C virus coinfection, and also with the presence of measurable tumor necrosis factor α in CSF. CONCLUSION Our results suggest that HIV serostatus affects the extent of brain WMH. This effect is mainly associated with aging and modifiable comorbidities.
Collapse
Affiliation(s)
- Yair Mina
- From the National Institute of Neurological Disorders and Stroke (Y.M., T.W., E.H., D.S.R., A.N., B.R.S.), Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (D.A.H., S.S.), National Institute of Allergy and Infectious Diseases (C.-Y.L., E.C.T.), National Institute of Mental Health (L.H., J.S.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel Aviv University, Israel; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics (H.-C.H., A.G., B.K.A.), Uniformed Services University of the Health Sciences; and Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (H.-C.H., A.G., B.K.A.), Bethesda, MD
| | - Tianxia Wu
- From the National Institute of Neurological Disorders and Stroke (Y.M., T.W., E.H., D.S.R., A.N., B.R.S.), Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (D.A.H., S.S.), National Institute of Allergy and Infectious Diseases (C.-Y.L., E.C.T.), National Institute of Mental Health (L.H., J.S.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel Aviv University, Israel; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics (H.-C.H., A.G., B.K.A.), Uniformed Services University of the Health Sciences; and Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (H.-C.H., A.G., B.K.A.), Bethesda, MD
| | - Hsing-Chuan Hsieh
- From the National Institute of Neurological Disorders and Stroke (Y.M., T.W., E.H., D.S.R., A.N., B.R.S.), Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (D.A.H., S.S.), National Institute of Allergy and Infectious Diseases (C.-Y.L., E.C.T.), National Institute of Mental Health (L.H., J.S.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel Aviv University, Israel; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics (H.-C.H., A.G., B.K.A.), Uniformed Services University of the Health Sciences; and Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (H.-C.H., A.G., B.K.A.), Bethesda, MD
| | - Dima A Hammoud
- From the National Institute of Neurological Disorders and Stroke (Y.M., T.W., E.H., D.S.R., A.N., B.R.S.), Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (D.A.H., S.S.), National Institute of Allergy and Infectious Diseases (C.-Y.L., E.C.T.), National Institute of Mental Health (L.H., J.S.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel Aviv University, Israel; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics (H.-C.H., A.G., B.K.A.), Uniformed Services University of the Health Sciences; and Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (H.-C.H., A.G., B.K.A.), Bethesda, MD
| | - Swati Shah
- From the National Institute of Neurological Disorders and Stroke (Y.M., T.W., E.H., D.S.R., A.N., B.R.S.), Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (D.A.H., S.S.), National Institute of Allergy and Infectious Diseases (C.-Y.L., E.C.T.), National Institute of Mental Health (L.H., J.S.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel Aviv University, Israel; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics (H.-C.H., A.G., B.K.A.), Uniformed Services University of the Health Sciences; and Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (H.-C.H., A.G., B.K.A.), Bethesda, MD
| | - Chuen-Yen Lau
- From the National Institute of Neurological Disorders and Stroke (Y.M., T.W., E.H., D.S.R., A.N., B.R.S.), Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (D.A.H., S.S.), National Institute of Allergy and Infectious Diseases (C.-Y.L., E.C.T.), National Institute of Mental Health (L.H., J.S.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel Aviv University, Israel; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics (H.-C.H., A.G., B.K.A.), Uniformed Services University of the Health Sciences; and Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (H.-C.H., A.G., B.K.A.), Bethesda, MD
| | - Lillian Ham
- From the National Institute of Neurological Disorders and Stroke (Y.M., T.W., E.H., D.S.R., A.N., B.R.S.), Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (D.A.H., S.S.), National Institute of Allergy and Infectious Diseases (C.-Y.L., E.C.T.), National Institute of Mental Health (L.H., J.S.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel Aviv University, Israel; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics (H.-C.H., A.G., B.K.A.), Uniformed Services University of the Health Sciences; and Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (H.-C.H., A.G., B.K.A.), Bethesda, MD
| | - Joseph Snow
- From the National Institute of Neurological Disorders and Stroke (Y.M., T.W., E.H., D.S.R., A.N., B.R.S.), Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (D.A.H., S.S.), National Institute of Allergy and Infectious Diseases (C.-Y.L., E.C.T.), National Institute of Mental Health (L.H., J.S.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel Aviv University, Israel; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics (H.-C.H., A.G., B.K.A.), Uniformed Services University of the Health Sciences; and Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (H.-C.H., A.G., B.K.A.), Bethesda, MD
| | - Elizabeth Horne
- From the National Institute of Neurological Disorders and Stroke (Y.M., T.W., E.H., D.S.R., A.N., B.R.S.), Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (D.A.H., S.S.), National Institute of Allergy and Infectious Diseases (C.-Y.L., E.C.T.), National Institute of Mental Health (L.H., J.S.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel Aviv University, Israel; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics (H.-C.H., A.G., B.K.A.), Uniformed Services University of the Health Sciences; and Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (H.-C.H., A.G., B.K.A.), Bethesda, MD
| | - Anuradha Ganesan
- From the National Institute of Neurological Disorders and Stroke (Y.M., T.W., E.H., D.S.R., A.N., B.R.S.), Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (D.A.H., S.S.), National Institute of Allergy and Infectious Diseases (C.-Y.L., E.C.T.), National Institute of Mental Health (L.H., J.S.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel Aviv University, Israel; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics (H.-C.H., A.G., B.K.A.), Uniformed Services University of the Health Sciences; and Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (H.-C.H., A.G., B.K.A.), Bethesda, MD
| | - Stanley I Rapoport
- From the National Institute of Neurological Disorders and Stroke (Y.M., T.W., E.H., D.S.R., A.N., B.R.S.), Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (D.A.H., S.S.), National Institute of Allergy and Infectious Diseases (C.-Y.L., E.C.T.), National Institute of Mental Health (L.H., J.S.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel Aviv University, Israel; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics (H.-C.H., A.G., B.K.A.), Uniformed Services University of the Health Sciences; and Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (H.-C.H., A.G., B.K.A.), Bethesda, MD
| | - Edmund C Tramont
- From the National Institute of Neurological Disorders and Stroke (Y.M., T.W., E.H., D.S.R., A.N., B.R.S.), Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (D.A.H., S.S.), National Institute of Allergy and Infectious Diseases (C.-Y.L., E.C.T.), National Institute of Mental Health (L.H., J.S.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel Aviv University, Israel; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics (H.-C.H., A.G., B.K.A.), Uniformed Services University of the Health Sciences; and Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (H.-C.H., A.G., B.K.A.), Bethesda, MD
| | - Daniel S Reich
- From the National Institute of Neurological Disorders and Stroke (Y.M., T.W., E.H., D.S.R., A.N., B.R.S.), Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (D.A.H., S.S.), National Institute of Allergy and Infectious Diseases (C.-Y.L., E.C.T.), National Institute of Mental Health (L.H., J.S.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel Aviv University, Israel; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics (H.-C.H., A.G., B.K.A.), Uniformed Services University of the Health Sciences; and Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (H.-C.H., A.G., B.K.A.), Bethesda, MD
| | - Brian K Agan
- From the National Institute of Neurological Disorders and Stroke (Y.M., T.W., E.H., D.S.R., A.N., B.R.S.), Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (D.A.H., S.S.), National Institute of Allergy and Infectious Diseases (C.-Y.L., E.C.T.), National Institute of Mental Health (L.H., J.S.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel Aviv University, Israel; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics (H.-C.H., A.G., B.K.A.), Uniformed Services University of the Health Sciences; and Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (H.-C.H., A.G., B.K.A.), Bethesda, MD
| | - Avindra Nath
- From the National Institute of Neurological Disorders and Stroke (Y.M., T.W., E.H., D.S.R., A.N., B.R.S.), Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (D.A.H., S.S.), National Institute of Allergy and Infectious Diseases (C.-Y.L., E.C.T.), National Institute of Mental Health (L.H., J.S.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel Aviv University, Israel; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics (H.-C.H., A.G., B.K.A.), Uniformed Services University of the Health Sciences; and Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (H.-C.H., A.G., B.K.A.), Bethesda, MD
| | - Bryan R Smith
- From the National Institute of Neurological Disorders and Stroke (Y.M., T.W., E.H., D.S.R., A.N., B.R.S.), Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center (D.A.H., S.S.), National Institute of Allergy and Infectious Diseases (C.-Y.L., E.C.T.), National Institute of Mental Health (L.H., J.S.), and National Institute on Alcohol Abuse and Alcoholism (S.I.R.), National Institutes of Health, Bethesda, MD; Sackler Faculty of Medicine (Y.M.), Tel Aviv University, Israel; Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics (H.-C.H., A.G., B.K.A.), Uniformed Services University of the Health Sciences; and Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (H.-C.H., A.G., B.K.A.), Bethesda, MD.
| |
Collapse
|
23
|
Delshadi R, Bahrami A, McClements DJ, Moore MD, Williams L. Development of nanoparticle-delivery systems for antiviral agents: A review. J Control Release 2021; 331:30-44. [PMID: 33450319 PMCID: PMC7803629 DOI: 10.1016/j.jconrel.2021.01.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic has resulted in unprecedented increases in sickness, death, economic disruption, and social disturbances globally. However, the virus (SARS-CoV-2) that caused this pandemic is only one of many viruses threatening public health. Consequently, it is important to have effective means of preventing viral transmission and reducing its devastating effects on human and animal health. Although many antivirals are already available, their efficacy is often limited because of factors such as poor solubility, low permeability, poor bioavailability, un-targeted release, adverse side effects, and antiviral resistance. Many of these problems can be overcome using advanced antiviral delivery systems constructed using nanotechnology principles. These delivery systems consist of antivirals loaded into nanoparticles, which may be fabricated from either synthetic or natural materials. Nevertheless, there is increasing emphasis on the development of antiviral delivery systems from natural substances, such as lipids, phospholipids, surfactants, proteins, and polysaccharides, due to health and environmental issues. The composition, morphology, dimensions, and interfacial characteristics of nanoparticles can be manipulated to improve the handling, stability, and potency of antivirals. This article outlines the major classes of antivirals, summarizes the challenges currently limiting their efficacy, and highlights how nanoparticles can be used to overcome these challenges. Recent studies on the application of antiviral nanoparticle-based delivery systems are reviewed and future directions are described.
Collapse
Affiliation(s)
- Rana Delshadi
- Food Science and Technology Graduate, Menomonie, WI, USA
| | - Akbar Bahrami
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | | | - Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Leonard Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| |
Collapse
|
24
|
New-Aaron M, Ganesan M, Dagur RS, Kharbanda KK, Poluektova LY, Osna NA. Pancreatogenic Diabetes: Triggering Effects of Alcohol and HIV. BIOLOGY 2021; 10:108. [PMID: 33546230 PMCID: PMC7913335 DOI: 10.3390/biology10020108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Multiorgan failure may not be completely resolved among people living with HIV despite HAART use. Although the chances of organ dysfunction may be relatively low, alcohol may potentiate HIV-induced toxic effects in the organs of alcohol-abusing, HIV-infected individuals. The pancreas is one of the most implicated organs, which is manifested as diabetes mellitus or pancreatic cancer. Both alcohol and HIV may trigger pancreatitis, but the combined effects have not been explored. The aim of this review is to explore the literature for understanding the mechanisms of HIV and alcohol-induced pancreatotoxicity. We found that while premature alcohol-inducing zymogen activation is a known trigger of alcoholic pancreatitis, HIV entry through C-C chemokine receptor type 5(CCR5)into pancreatic acinar cells may also contribute to pancreatitis in people living with HIV (PLWH). HIV proteins induce oxidative and ER stresses, causing necrosis. Furthermore, infiltrative immune cells induce necrosis on HIV-containing acinar cells. When necrotic products interact with pancreatic stellate cells, they become activated, leading to the release of both inflammatory and profibrotic cytokines and resulting in pancreatitis. Effective therapeutic strategies should block CCR5 and ameliorate alcohol's effects on acinar cells.
Collapse
Affiliation(s)
- Moses New-Aaron
- Department of Environmental Health, Occupational Health and Toxicology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
| | - Murali Ganesan
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Raghubendra Singh Dagur
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K. Kharbanda
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Natalia A. Osna
- Department of Environmental Health, Occupational Health and Toxicology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veteran Affairs Nebraska—Western Iowa Health Care System, Omaha, NE 68105, USA; (M.G.); (R.S.D.); (K.K.K.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
25
|
Britton MK, Porges EC, Bryant V, Cohen RA. Neuroimaging and Cognitive Evidence for Combined HIV-Alcohol Effects on the Central Nervous System: A Review. Alcohol Clin Exp Res 2021; 45:290-306. [PMID: 33296091 PMCID: PMC9486759 DOI: 10.1111/acer.14530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022]
Abstract
Alcohol use disorder (AUD) among people living with HIV (PLWH) is a significant public health concern. Despite the advent of effective antiretroviral therapy, up to 50% of PLWH still experience worsened neurocognition, which comorbid AUD exacerbates. We report converging lines of neuroimaging and neuropsychological evidence linking comorbid HIV/AUD to dysfunction in brain regions linked to executive function, learning and memory, processing speed, and motor control, and consequently to impairment in daily life. The brain shrinkage, functional network alterations, and brain metabolite disruption seen in individuals with HIV/AUD have been attributed to several interacting pathways: viral proteins and EtOH are directly neurotoxic and exacerbate each other's neurotoxic effects; EtOH reduces antiretroviral adherence and increases viral replication; AUD and HIV both increase gut microbial translocation, promoting systemic inflammation and HIV transport into the brain by immune cells; and HIV may compound alcohol's damaging effects on the liver, further increasing inflammation. We additionally review the neurocognitive effects of aging, Hepatitis C coinfection, obesity, and cardiovascular disease, tobacco use, and nutritional deficiencies, all of which have been shown to compound cognitive changes in HIV, AUD, and in their comorbidity. Finally, we examine emerging questions in HIV/AUD research, including genetic and cognitive protective factors, the role of binge drinking in HIV/AUD-linked cognitive decline, and whether neurocognitive and brain functions normalize after drinking cessation.
Collapse
Affiliation(s)
- Mark K. Britton
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
| | - Eric C. Porges
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
| | - Vaughn Bryant
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
- University of Florida, Department of Epidemiology, 2004 Mowry Road, Gainesville, FL 32610
| | - Ronald A. Cohen
- University of Florida, Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory, Cognitive Aging and Memory Clinical Translational Research Program; 1225 Center Drive, Gainesville, Florida 32607
| |
Collapse
|
26
|
Marino J, Maubert ME, Mele AR, Spector C, Wigdahl B, Nonnemacher MR. Functional impact of HIV-1 Tat on cells of the CNS and its role in HAND. Cell Mol Life Sci 2020; 77:5079-5099. [PMID: 32577796 PMCID: PMC7674201 DOI: 10.1007/s00018-020-03561-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/08/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat) is a potent mediator involved in the development of HIV-1-associated neurocognitive disorders (HAND). Tat is expressed even in the presence of antiretroviral therapy (ART) and is able to enter the central nervous system (CNS) through a variety of ways, where Tat can interact with microglia, astrocytes, brain microvascular endothelial cells, and neurons. The presence of low concentrations of extracellular Tat alone has been shown to lead to dysregulated gene expression, chronic cell activation, inflammation, neurotoxicity, and structural damage in the brain. The reported effects of Tat are dependent in part on the specific HIV-1 subtype and amino acid length of Tat used. HIV-1 subtype B Tat is the most common subtype in North American and therefore, most studies have been focused on subtype B Tat; however, studies have shown many genetic, biologic, and pathologic differences between HIV subtype B and subtype C Tat. This review will focus primarily on subtype B Tat where the full-length protein is 101 amino acids, but will also consider variants of Tat, such as Tat 72 and Tat 86, that have been reported to exhibit a number of distinctive activities with respect to mediating CNS damage and neurotoxicity.
Collapse
Affiliation(s)
- Jamie Marino
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Monique E Maubert
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Cassandra Spector
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th St, Philadelphia, PA, 19102, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Barker CT, Vaidya NK. Modeling HIV-1 infection in the brain. PLoS Comput Biol 2020; 16:e1008305. [PMID: 33211686 PMCID: PMC7714358 DOI: 10.1371/journal.pcbi.1008305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/03/2020] [Accepted: 09/04/2020] [Indexed: 11/19/2022] Open
Abstract
While highly active antiretroviral therapy (HAART) is successful in controlling the replication of Human Immunodeficiency Virus (HIV-1) in many patients, currently there is no cure for HIV-1, presumably due to the presence of reservoirs of the virus. One of the least studied viral reservoirs is the brain, which the virus enters by crossing the blood-brain barrier (BBB) via macrophages, which are considered as conduits between the blood and the brain. The presence of HIV-1 in the brain often leads to HIV associated neurocognitive disorders (HAND), such as encephalitis and early-onset dementia. In this study we develop a novel mathematical model that describes HIV-1 infection in the brain and in the plasma coupled via the BBB. The model predictions are consistent with data from macaques infected with a mixture of simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV). Using our model, we estimate the rate of virus transport across the BBB as well as viral replication inside the brain, and we compute the basic reproduction number. We also carry out thorough sensitivity analysis to define the robustness of the model predictions on virus dynamics inside the brain. Our model provides useful insight into virus replication within the brain and suggests that the brain can be an important reservoir causing long-term viral persistence.
Collapse
Affiliation(s)
- Colin T. Barker
- Department of Mathematics and Computer Science, Drury University, Missouri, USA
- Department of Mathematics and Statistics, University of Missouri-Kansas City, Missouri, USA
| | - Naveen K. Vaidya
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
- Computational Science Research Center, San Diego State University, San Diego, California, USA
- Viral Information Institute, San Diego State University, San Diego, California, USA
- * E-mail:
| |
Collapse
|
28
|
Gulati S, Singh P, Diwan A, Mongia A, Kumar S. Functionalized gold nanoparticles: promising and efficient diagnostic and therapeutic tools for HIV/AIDS. RSC Med Chem 2020; 11:1252-1266. [PMID: 34095839 PMCID: PMC8126886 DOI: 10.1039/d0md00298d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Functionalized gold nanoparticles are recognized as promising vehicles in the diagnosis and treatment of human immunodeficiency virus (HIV) owing to their excellent biocompatibility with biomolecules (like DNA or RNA), their potential for multivalency and their unique optical and structural properties. In this context, this review article focuses on the diverse detection abilities and delivery and uptake methodologies of HIV by targeting genes and proteins using gold nanoparticles on the basis of different shapes and sizes in order to promote its effective expression. In addition, recent trends in gold nanoparticle mediated HIV detection, delivery and uptake and treatment are highlighted considering their cytotoxic effects on healthy human cells.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Parinita Singh
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Anchita Diwan
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Ayush Mongia
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi Delhi-110021 India
| |
Collapse
|
29
|
Abstract
HIV-1 can cross the blood-brain barrier (BBB) to penetrate the brain and infect target cells, causing neurocognitive disorders as a result of neuroinflammation and brain damage. The HIV-1 envelope spike gp160 is partially required for viral transcytosis across the BBB endothelium. But do antibodies developing in infected individuals and targeting the HIV-1 gp160 glycoproteins block HIV-1 transcytosis through the BBB? We addressed this issue and discovered that anti-gp160 antibodies do not block HIV-1 transport; instead, free viruses and those in complex with antibodies can transit across BBB endothelial cells. Importantly, we found that only neutralizing antibodies could inhibit posttranscytosis viral infectivity, highlighting their ability to protect susceptible brain cells from HIV-1 infection. HIV-1 can cross the blood-brain barrier (BBB) to penetrate the brain and infect target cells, causing neurocognitive disorders as a result of neuroinflammation and brain damage. Here, we examined whether antibodies targeting the HIV-1 envelope glycoproteins interfere with the transcytosis of virions across the human BBB endothelium. We found that although the viral envelope spike gp160 is required for optimal endothelial cell endocytosis, no anti-gp160 antibodies blocked the BBB transcytosis of HIV-1 in vitro. Instead, both free viruses and those in complex with antibodies transited across endothelial cells in the BBB model, as observed by confocal microscopy. HIV-1 infectious capacity was considerably altered by the transcytosis process but still detectable, even in the presence of nonneutralizing antibodies. Only virions bound by neutralizing antibodies lacked posttranscytosis infectivity. Overall, our data support the role of neutralizing antibodies in protecting susceptible brain cells from HIV-1 infection despite their inability to inhibit viral BBB endocytic transport.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The application of immunotherapies to HIV presents a new horizon of treatment options, but little is known about what impact they may have on the central nervous system (CNS). Here we review the most promising immunotherapeutic strategies that can be used to target HIV in the CNS and focus on identifying their potential benefits while exploring the challenges that remain in their application. RECENT FINDINGS We have identified five immunotherapeutic strategies that hold potential in managing CNS disease among HIV-infected patients. These include broadly neutralizing antibodies, multi-affinity antibodies, CAR-T cell therapy, checkpoint inhibitors, and therapeutic vaccines. Each class of immunotherapy presents unique mechanisms by which CNS viremia and latency may be addressed but are faced with several challenges. CAR-T cell therapy and multi-affinity antibodies seem to hold promise, but combination therapy is likely to be most effective. However, more human trials are needed before the clinical benefits of these therapies are realized.
Collapse
Affiliation(s)
- Andrew Kapoor
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - C Sabrina Tan
- Division of Infectious Diseases, Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue E/CLS 1011, Boston, MA, 02215, USA.
| |
Collapse
|
31
|
Whyte-Allman SK, Bendayan R. HIV-1 Sanctuary Sites-the Role of Membrane-Associated Drug Transporters and Drug Metabolic Enzymes. AAPS JOURNAL 2020; 22:118. [PMID: 32875457 DOI: 10.1208/s12248-020-00498-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Despite significant advances in the treatment of human immunodeficiency virus-1 (HIV) infection with highly active antiretroviral drug therapy, the persistence of the virus in cellular and anatomic reservoirs is a major obstacle preventing total HIV eradication. Viral persistence could result from a variety of contributing factors including, but not limited to, non-adherence to treatment and adverse drug reactions, latently infected cells carrying replication-competent virus, drug-drug interactions, and inadequate antiretroviral drug (ARV) concentrations reached in several anatomic sites such as the brain, testis, and gut-associated lymphoid tissues. The distribution of ARVs at specific sites of infection is primarily dependent on drug physicochemical properties and drug plasma protein binding, as well as drug efflux, influx, and metabolic processes. A thorough understanding of the functional roles of drug transporters and metabolic enzymes in the disposition of ARVs in immune cell types and tissues that are characterized as HIV reservoirs and sanctuaries is critical to overcome the challenge of suboptimal drug distribution at sites of persistent HIV infection. This review summarizes the current knowledge related to the expression and function of drug transporters and metabolic enzymes in HIV cellular and anatomic reservoirs, and their potential contribution to drug-drug interactions and insufficient drug concentration at these sites.
Collapse
Affiliation(s)
- Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.
| |
Collapse
|
32
|
Ultradeep sequencing reveals HIV-1 diversity and resistance compartmentalization during HIV-encephalopathy. AIDS 2020; 34:1609-1614. [PMID: 32701585 DOI: 10.1097/qad.0000000000002616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To examine viral diversity and resistance mutations in different brain areas in cases of HIV-encephalopathy. DESIGN Twelve postmortem brain areas from three cases of possible or certain HIV-encephalopathy were analyzed. METHODS After amplification of the reverse transcriptase and the V3 loop region of the gp120 protein, ultradeep sequencing was performed with Illumina technology. Phylogenetic analysis was performed with Fastree v2.1 using the generalized time-reversible (GTR) model. Identification of resistant viral variants was performed on Geneious software, according to HIV-1 genotypic drug resistance interpretation's algorithms, 2018 administered by the French Agency for Research on AIDS and Viral Hepatitis. RESULTS Phylogenetic analysis revealed significant inter-regional and intra-regional diversity reflecting persistent HIV-1 viral replication in the different brain areas. Although some cerebral regions shared HIV-variants, most of them harbored a specific HIV-subpopulation reflecting HIV compartmentalization in the central nervous system. Furthermore, proportion and distribution of resistance mutations to nucleoside and non-nucleoside reverse transcriptase inhibitors differed among different brain areas of the same case suggesting that penetration of antiretroviral treatment may differ from one compartment to another. CONCLUSION This study, performed with a powerful sequencing technique, confirmed HIV compartmentalization in the central nervous system already shown by classical sequencing, suggesting that there are several reservoirs within the brain.
Collapse
|
33
|
Gianella S, Chaillon A, Chun TW, Sneller MC, Ignacio C, Vargas-Meneses MV, Caballero G, Ellis RJ, Kovacs C, Benko E, Huibner S, Kaul R. HIV RNA Rebound in Seminal Plasma after Antiretroviral Treatment Interruption. J Virol 2020; 94:e00415-20. [PMID: 32434884 PMCID: PMC7375368 DOI: 10.1128/jvi.00415-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
If strategies currently in development succeed in eradicating HIV reservoirs in peripheral blood and lymphoid tissues, residual sources of virus may remain in anatomic compartments. Paired blood and semen samples were collected from 12 individuals enrolled in a randomized, double-blind, placebo-controlled therapeutic vaccine clinical trial in people with HIV (PWH) who began antiretroviral therapy (ART) during acute or early infection (ClinicalTrials registration no. NCT01859325). After the week 56 visit (postintervention), all participants interrupted ART. At the first available time points after viral rebound, we sequenced HIV-1 env (C2-V3), gag (p24), and pol (reverse transcriptase) regions amplified from cell-free HIV RNA in blood and seminal plasma using the MiSeq Illumina platform. Comprehensive sequence and phylogenetic analyses were performed to evaluate viral population structure, compartmentalization, and viral diversity in blood and seminal plasma. Compared to that in blood, HIV RNA rebound in semen occurred significantly later (median of 66 versus 42 days post-ART interruption, P < 0.01) and reached lower levels (median 164 versus 16,090 copies/ml, P < 0.01). Three of five participants with available sequencing data presented compartmentalized viral rebound between blood and semen in one HIV coding region. Despite early ART initiation, HIV RNA molecular diversity was higher in semen than in blood in all three coding regions for most participants. Higher HIV RNA molecular diversity in the genital tract (compared to that in blood plasma) and evidence of compartmentalization illustrate the distinct evolutionary dynamics between these two compartments after ART interruption. Future research should evaluate whether the genital compartment might contribute to viral rebound in some PWH interrupting ART.IMPORTANCE To cure HIV, we likely need to target the reservoirs in all anatomic compartments. Here, we used sophisticated statistical and phylogenetic methods to analyze blood and semen samples collected from 12 persons with HIV who began antiretroviral therapy (ART) during very early HIV infection and who interrupted their ART as part of a clinical trial. First, we found that HIV RNA rebound in semen occurred significantly later and reached lower levels than in blood. Second, we found that the virus in semen was genetically different in some participants compared to that in blood. Finally, we found increased HIV RNA molecular diversity in semen compared to that in blood in almost all study participants. These data suggest that the HIV RNA populations emerging from the genital compartment after ART interruption might not be the same as those emerging from blood plasma. Future research should evaluate whether the genital compartment might contribute to viral rebound in some people with HIV (PWH) interrupting ART.
Collapse
Affiliation(s)
- Sara Gianella
- University of California, San Diego, La Jolla, California, USA
| | | | - Tae-Wook Chun
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael C Sneller
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | | | - Gemma Caballero
- University of California, San Diego, La Jolla, California, USA
| | - Ronald J Ellis
- University of California, San Diego, La Jolla, California, USA
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Sanja Huibner
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Ortiz-Rodriguez A, Arevalo MA. The Contribution of Astrocyte Autophagy to Systemic Metabolism. Int J Mol Sci 2020; 21:E2479. [PMID: 32260050 PMCID: PMC7177973 DOI: 10.3390/ijms21072479] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/20/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
Autophagy is an essential mechanism to maintain cellular homeostasis. Besides its role in controlling the quality of cytoplasmic components, it participates in nutrient obtaining and lipid mobilization under stressful conditions. Furthermore, autophagy is involved in the regulation of systemic metabolism as its blockade in hypothalamic neurons can affect the central regulation of metabolism and impact body energy balance. Moreover, hypothalamic autophagy can be altered during obesity, one of the main alterations of metabolism nowadays. In this review, we focus on the role of astrocytes, essential cells for brain homeostasis, which represent key metabolic regulators. Astrocytes can sense metabolic signals in the hypothalamus and modulate systemic functions as glucose homeostasis and feeding response. Moreover, the response of astrocytes to obesity has been widely studied. Astrocytes are important mediators of brain inflammation and can be affected by increased levels of saturated fatty acids associated with obesity. Although autophagy plays important roles for astrocyte homeostasis and functioning, the contribution of astrocyte autophagy to systemic metabolism has not been analyzed yet. Furthermore, how obesity can impact astrocyte autophagy is poorly understood. More studies are needed in order to understand the contribution of astrocyte autophagy to metabolism.
Collapse
Affiliation(s)
- Ana Ortiz-Rodriguez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain;
| | - Maria-Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
35
|
Singh A, Kutscher HL, Bulmahn JC, Mahajan SD, He GS, Prasad PN. Laser ablation for pharmaceutical nanoformulations: Multi-drug nanoencapsulation and theranostics for HIV. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2020; 25:102172. [PMID: 32061722 PMCID: PMC7176552 DOI: 10.1016/j.nano.2020.102172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/06/2020] [Accepted: 01/31/2020] [Indexed: 02/08/2023]
Abstract
We introduce the use of laser ablation to develop a multi-drug encapsulating theranostic nanoformulation for HIV-1 antiretroviral therapy. Laser ablated nanoformulations of ritonavir, atazanavir, and curcumin, a natural product that has both optical imaging and pharmacologic properties, were produced in an aqueous media containing Pluronic® F127. Cellular uptake was confirmed with the curcumin fluorescence signal localized in the cytoplasm. Formulations produced with F127 had improved water dispersibility, are ultrasmall in size (20-25 nm), exhibit enhanced cellular uptake in microglia, improve blood-brain barrier (BBB) crossing in an in vitro BBB model, and reduce viral p24 by 36 fold compared to formulations made without F127. This work demonstrates that these ultrasmall femtosecond laser-ablated nanoparticles are effective in delivering drugs across the BBB for brain therapy and show promise as an effective method to formulate nanoparticles for brain theranostics, reducing the need for organic solvents during preparation.
Collapse
Affiliation(s)
- Ajay Singh
- Institute for Lasers, Photonics and Biophotonics,
Department of Chemistry, University at Buffalo, The State University of New York,
Buffalo, NY 14260, USA
| | - Hilliard L. Kutscher
- Institute for Lasers, Photonics and Biophotonics,
Department of Chemistry, University at Buffalo, The State University of New York,
Buffalo, NY 14260, USA.,Department of Anesthesiology, University at Buffalo, The
State University of New York, Buffalo, NY 14203, USA.,Department of Medicine, Division of Allergy, Immunology,
and Rheumatology, State University of New York at Buffalo, Clinical Translational
Research Center, Buffalo, NY 14203, USA
| | - Julia C. Bulmahn
- Institute for Lasers, Photonics and Biophotonics,
Department of Chemistry, University at Buffalo, The State University of New York,
Buffalo, NY 14260, USA
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology,
and Rheumatology, State University of New York at Buffalo, Clinical Translational
Research Center, Buffalo, NY 14203, USA
| | - Guang S. He
- Institute for Lasers, Photonics and Biophotonics,
Department of Chemistry, University at Buffalo, The State University of New York,
Buffalo, NY 14260, USA
| | - Paras N. Prasad
- Institute for Lasers, Photonics and Biophotonics,
Department of Chemistry, University at Buffalo, The State University of New York,
Buffalo, NY 14260, USA.,Corresponding Author Paras N. Prasad, 427 Natural
Sciences Complex., Buffalo New York 14260-3000, Phone: 716-645-4148, Fax:
716-645-6945,
| |
Collapse
|
36
|
Absence of peripapillary retinal nerve-fiber-layer thinning in combined antiretroviral therapy-treated, well-sustained aviremic persons living with HIV. PLoS One 2020; 15:e0229977. [PMID: 32155200 PMCID: PMC7064175 DOI: 10.1371/journal.pone.0229977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/18/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose To compare peripapillary retinal nerve-fiber–layer (pRNFL) thickness, total retina macular volume, and ganglion-cell-layer (GCL) macular volume and thickness between persons living with HIV (PLHIVs) with well-controlled infections and good immune recovery, and sex- and age-matched HIV-uninfected controls (HUCs). Methods This prospective cross-sectional study (www.clinicaltrials.gov identifier: NCT02003989) included 56 PLHIVs, infected for ≥10 [median 20.2] years and with sustained plasma HIV-load suppression on combined antiretroviral therapy (cART) for ≥5 years, and 56 matched HUCs. Participants underwent spectral-domain optical coherence tomography (SD-OCT) with thorough ophthalmological examinations and brain magnetic resonance imaging (MRI). Their overall and quadrant pRNFL thicknesses, total macular volumes, and GCL macular volumes and thicknesses were compared. Cerebral small-vessel diseases (CSVD) complied with STRIVE criteria. Results Median [interquartile range, IQR] ages of PLHIVs and HUCs, respectively, were 52 [46–60] and 52 [44–60] years. Median [IQR] PLHIVs’ nadir CD4+ T-cell count and current CD4/CD8 T-cell ratio were 249/μL [158–350] and 0.95 [0.67–1.10], respectively; HIV-seropositivity duration was 20.2 [15.9–24.5] years; cART duration was 16.8 [12.6–18.6] years; and aviremia duration was 11.4 [7.8–13.6] years. No significant between-group pRNFL thickness, total macular volume, macular GCL-volume and -thickness differences were found. MRI-detected CSVD in 21 (38%) PLHIVs and 14 (25%) HUCs was associated with overall thinner pRNFLs, and smaller total retina and GCL macular volumes, independently of HIV status. Conclusions SD-OCT could not detect pRNFL thinning or macular GCL-volume reduction in well-sustained, aviremic, cART-treated PLHIVs who achieved good immune recovery. However, CSVD was associated with thinner pRNFLs and GCLs, independently of HIV status.
Collapse
|
37
|
Khan N, Halcrow PW, Lakpa KL, Afghah Z, Miller NM, Dowdy SF, Geiger JD, Chen X. Two-pore channels regulate Tat endolysosome escape and Tat-mediated HIV-1 LTR transactivation. FASEB J 2020; 34:4147-4162. [PMID: 31950548 PMCID: PMC7079041 DOI: 10.1096/fj.201902534r] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022]
Abstract
HIV-1 Tat is essential for HIV-1 replication and appears to play an important role in the pathogenesis of HIV-associated neurological complications. Secreted from infected or transfected cells, Tat has the extraordinary ability to cross the plasma membrane. In the brain, Tat can be taken up by CNS cells via receptor-mediated endocytosis. Following endocytosis and its internalization into endolysosomes, Tat must be released in order for it to activate the HIV-1 LTR promoter and facilitate HIV-1 viral replication in the nucleus. However, the underlying mechanisms whereby Tat escapes endolysosomes remain unclear. Because Tat disrupts intracellular calcium homeostasis, we investigated the involvement of calcium in Tat endolysosome escape and subsequent LTR transactivation. We demonstrated that chelating endolysosome calcium with high-affinity rhodamine-dextran or chelating cytosolic calcium with BAPTA-AM attenuated Tat endolysosome escape and LTR transactivation. Significantly, we demonstrated that pharmacologically blocking and knocking down the endolysosome-resident two-pore channels (TPCs) attenuated Tat endolysosome escape and LTR transactivation. This calcium-mediated effect appears to be selective for TPCs because knocking down TRPML1 calcium channels was without effect. Our findings suggest that calcium released from TPCs is involved in Tat endolysosome escape and subsequent LTR transactivation. TPCs might represent a novel therapeutic target against HIV-1 infection and HIV-associated neurological complications.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Peter W. Halcrow
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Koffi L. Lakpa
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Zahra Afghah
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Nicole M. Miller
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Steven F. Dowdy
- Department of Cellular and Molecular MedicineUniversity of California San Diego (UCSD) School of MedicineLa JollaCAUSA
| | - Jonathan D. Geiger
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| | - Xuesong Chen
- Department of Biomedical SciencesUniversity of North Dakota School of Medicine and Health SciencesGrand ForksNDUSA
| |
Collapse
|
38
|
HIV-related decreased brain activity during a semantic memory task is reflected in spontaneous brain functional connectivity. HEALTH PSYCHOLOGY REPORT 2020. [DOI: 10.5114/hpr.2020.94720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Abreu C, Shirk EN, Queen SE, Beck SE, Mangus LM, Pate KAM, Mankowski JL, Gama L, Clements JE. Brain macrophages harbor latent, infectious simian immunodeficiency virus. AIDS 2019; 33 Suppl 2:S181-S188. [PMID: 31789817 PMCID: PMC7058191 DOI: 10.1097/qad.0000000000002269] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: The current review examines the role of brain macrophages, that is perivascular macrophages and microglia, as a potential viral reservoir in antiretroviral therapy (ART) treated, simian immunodeficiency virus (SIV)-infected macaques. The role, if any, of latent viral reservoirs of HIV and SIV in the central nervous system during ART suppression is an unresolved issue. HIV and SIV infect both CD4 lymphocytes and myeloid cells in blood and tissues during acute and chronic infection. HIV spread to the brain occurs during acute infection by the infiltration of activated CD4 lymphocytes and monocytes from blood and is established in both embryonically derived resident microglia and monocyte-derived perivascular macrophages. ART controls viral replication in peripheral blood and cerebrospinal fluid in HIV-infected individuals but does not directly eliminate infected cells in blood, tissues or brain. Latently infected resting CD4 lymphocytes in blood and lymphoid tissues are a well recognized viral reservoir that can rebound once ART is withdrawn. In contrast, central nervous system resident microglia and perivascular macrophages in brain have not been examined as potential reservoirs for HIV during suppressive ART. Macrophages in tissues are long-lived cells that are HIV and SIV infected in tissues such as gut, lung, spleen, lymph node and brain and contribute to ongoing inflammation in tissues. However, their potential role in viral persistence and latency or their potential to rebound in the absence ART has not been examined. It has been shown that measurement of HIV latency by HIV DNA PCR in CD4 lymphocytes overestimates the size of the latent reservoirs of HIV that contribute to rebound that is cells containing the genomes of replicative viruses. Thus, the quantitative viral outgrowth assay has been used as a reliable measure of the number of latent cells that harbor infectious viral DNA and, may constitute a functional latent reservoir. Using quantitative viral outgrowth assays specifically designed to quantitate latently infected CD4 lymphocytes and myeloid cells in an SIV macaque model, we demonstrated that macrophages in brain harbor SIV genomes that reactivate and produce infectious virus in this assay, demonstrating that these cells have the potential to be a reservoir.
Collapse
Affiliation(s)
- Celina Abreu
- Department of Molecular and Comparative Pathobiology
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology
| | | | - Sarah E Beck
- Department of Molecular and Comparative Pathobiology
| | - Lisa M Mangus
- Department of Molecular and Comparative Pathobiology
| | | | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology
- Department of Neurology
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology
- Department of Neurology
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Rivera J, Isidro RA, Loucil-Alicea RY, Cruz ML, Appleyard CB, Isidro AA, Chompre G, Colon-Rivera K, Noel RJ. Infusion of HIV-1 Nef-expressing astrocytes into the rat hippocampus induces enteropathy and interstitial pneumonitis and increases blood-brain-barrier permeability. PLoS One 2019; 14:e0225760. [PMID: 31774879 PMCID: PMC6881014 DOI: 10.1371/journal.pone.0225760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022] Open
Abstract
Even though HIV-1 replication can be suppressed by combination antiretroviral therapy (cART) inflammatory processes still occur, contributing to comorbidities. Comorbidities are attributed to variety of factors, including HIV-1 mediated inflammation. Several HIV-1 proteins mediate central nervous system (CNS) inflammation, including Nef. Nef is an early HIV-1 protein, toxic to neurons and glia and is sufficient to cause learning impairment similar to some deficits observed in HIV-1 associated neurocognitive disorders. To determine whether hippocampal Nef expression by astrocytes contributes to comorbidities, specifically peripheral inflammation, we infused Sprague Dawley rats with GFP- (control) or Nef-transfected astrocytes into the right hippocampus. Brain, lung, and ileum were collected postmortem for the measurement of inflammatory markers. Increased blood-brain-barrier permeability and serum IL-1β levels were detected in the Nef-treated rats. The lungs of Nef-treated rats demonstrated leukocyte infiltration, macrophage upregulation, and enhanced vascular permeability. Ileal tissue showed reactive follicular lymphoid hyperplasia, increased permeability and macrophage infiltration. The intracerebroventricular application of IL-1 receptor antagonist reduced infiltration of immune cells into ileum and lung, indicating the important role of IL-1β in mediating the spread of inflammation from the brain to other tissues. This suggests that localized expression of a single viral protein, HIV-1 Nef, can contribute to a broader inflammatory response by upregulation of IL-1β. Further, these results suggest that Nef contributes to the chronic inflammation seen in HIV patients, even in those whose viremia is controlled by cART.
Collapse
Affiliation(s)
- Jocelyn Rivera
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, United States of America
| | - Raymond A. Isidro
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Raisa Y. Loucil-Alicea
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Myrella L. Cruz
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Caroline B. Appleyard
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Angel A. Isidro
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Gladys Chompre
- Department of Biology, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico, United States of America
| | - Krystal Colon-Rivera
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, United States of America
| | - Richard J. Noel
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
41
|
Wallet C, De Rovere M, Van Assche J, Daouad F, De Wit S, Gautier V, Mallon PWG, Marcello A, Van Lint C, Rohr O, Schwartz C. Microglial Cells: The Main HIV-1 Reservoir in the Brain. Front Cell Infect Microbiol 2019; 9:362. [PMID: 31709195 PMCID: PMC6821723 DOI: 10.3389/fcimb.2019.00362] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Despite efficient combination of the antiretroviral therapy (cART), which significantly decreased mortality and morbidity of HIV-1 infection, a definitive HIV cure has not been achieved. Hidden HIV-1 in cellular and anatomic reservoirs is the major hurdle toward a functional cure. Microglial cells, the Central Nervous system (CNS) resident macrophages, are one of the major cellular reservoirs of latent HIV-1. These cells are believed to be involved in the emergence of drugs resistance and reseeding peripheral tissues. Moreover, these long-life reservoirs are also involved in the development of HIV-1-associated neurocognitive diseases (HAND). Clearing these infected cells from the brain is therefore crucial to achieve a cure. However, many characteristics of microglial cells and the CNS hinder the eradication of these brain reservoirs. Better understandings of the specific molecular mechanisms of HIV-1 latency in microglial cells should help to design new molecules and new strategies preventing HAND and achieving HIV cure. Moreover, new strategies are needed to circumvent the limitations associated to anatomical sanctuaries with barriers such as the blood brain barrier (BBB) that reduce the access of drugs.
Collapse
Affiliation(s)
- Clementine Wallet
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Marco De Rovere
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Jeanne Van Assche
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Fadoua Daouad
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Stéphane De Wit
- Division of Infectious Diseases, Saint-Pierre University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| |
Collapse
|
42
|
[The HIV reservoir in resting CD4 T-cells: Barrier on the road to an HIV cure]. MMW Fortschr Med 2019; 160:32-35. [PMID: 29943331 DOI: 10.1007/s15006-018-0653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
BK channels regulate extracellular Tat-mediated HIV-1 LTR transactivation. Sci Rep 2019; 9:12285. [PMID: 31439883 PMCID: PMC6706582 DOI: 10.1038/s41598-019-48777-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/05/2019] [Indexed: 01/22/2023] Open
Abstract
HIV-1 Tat is essential for HIV-1 replication and plays an important role in latent HIV-1 infection, HIV-1 associated neurological complication, and other HIV-1 comorbidities. Secreted from HIV-1 infected or transfected cells, Tat can be up-taken into cells by receptor-mediated endocytosis and internalized into endolysosomes. To reach nucleus where it can facilitate HIV-1 viral replication, exogenous Tat has to escape the degradation by endolysosomes. Because of findings that endolysosome de-acidification with, for example, the weak-base anti-malarial drug chloroquine prevents exogenous Tat degradation and enhances the amount of Tat available to activate HIV-1 LTR, we hypothesize that acidifying endolysosomes may enhance Tat degradation in endolysosomes and restrict LTR transactivation. Here, we determined the involvement of endolysosome-resident transient receptor potential mucolipin 1 channel (TRPML1) and the big conductance Ca2+-activated potassium (BK) channel in regulating endolysosome pH, as well as Tat-mediated HIV-1 LTR transactivation in U87MG cells stably integrated with HIV-1 LTR luciferase reporter. Activating TRPML1 channels with ML-SA1 acidified endolysosomes and restricted Tat-mediated HIV-1 LTR transactivation. These effects of ML-SA1 appeared to be mediated through activation of BK channels, because the effects of ML-SA1 on Tat-mediated HIV-1 LTR transactivation were blocked using pharmacological inhibitors or shRNA knock-down of BK channels. On the other hand, activating TRPML1 and BK channels enhanced cellular degradation of exogenous Tat. These results suggest that acidifying endolysosomes by activating TRPML1 or BK channels may provide therapeutic benefit against latent HIV-1 infection, HIV-1 associated neurocognitive disorders, and other HIV-1 comorbidities.
Collapse
|
44
|
Denton PW, Søgaard OS, Tolstrup M. Impacts of HIV Cure Interventions on Viral Reservoirs in Tissues. Front Microbiol 2019; 10:1956. [PMID: 31497010 PMCID: PMC6712158 DOI: 10.3389/fmicb.2019.01956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
HIV reservoirs persist in infected individuals despite combination antiretroviral therapy and can be identified in secondary lymphoid tissues, in intestinal tissues, in the central nervous system as well as in blood. Clinical trials have begun to explore effects of small molecule interventions to perturb the latent viral infection, but only limited information is available regarding the impacts of HIV cure-related clinical interventions on viral reservoirs found in tissues. Of the 14 HIV cure-related clinical trials since 2012 that have evaluated the effects of small molecule interventions in vivo, four trials have examined the impacts of the interventions in peripheral blood as well as other tissues that harbor persistent HIV. The additional tissues examined include cerebral spinal fluid, intestines and lymph nodes. We provide a comparison contrast analyses of the data across anatomical compartments tested in these studies to reveal where peripheral blood analyses reflect outcomes in other tissues as well as where the data reveal differences between tissue outcomes. We also summarize the current knowledge on these topics and highlight key open questions that need to be addressed experimentally to move the HIV cure research field closer to the development of an intervention strategy capable of eliciting long-term antiretroviral free remission of HIV disease.
Collapse
Affiliation(s)
- Paul W Denton
- Department of Biology, University of Nebraska Omaha, Omaha, NE, United States
| | - Ole S Søgaard
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Martin Tolstrup
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
45
|
Spudich S, Robertson KR, Bosch RJ, Gandhi RT, Cyktor JC, Mar H, Macatangay BJ, Lalama CM, Rinaldo C, Collier AC, Godfrey C, Eron JJ, McMahon D, Jacobs JL, Koontz D, Hogg E, Vecchio A, Mellors JW. Persistent HIV-infected cells in cerebrospinal fluid are associated with poorer neurocognitive performance. J Clin Invest 2019; 129:3339-3346. [PMID: 31305262 PMCID: PMC6668666 DOI: 10.1172/jci127413] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUNDPersistence of HIV in sanctuary sites despite antiretroviral therapy (ART) presents a barrier to HIV remission and may affect neurocognitive function. We assessed HIV persistence in cerebrospinal fluid (CSF) and associations with inflammation and neurocognitive performance during long-term ART.METHODSParticipants enrolled in the AIDS Clinical Trials Group (ACTG) HIV Reservoirs Cohort Study (A5321) underwent concurrent lumbar puncture, phlebotomy, and neurocognitive assessment. Cell-associated HIV DNA and HIV RNA (CA-DNA, CA-RNA) were measured by quantitative PCR (qPCR). in peripheral blood mononuclear cells (PBMCs) and in cell pellets from CSF. In CSF supernatant and blood plasma, cell-free HIV RNA was quantified by qPCR with single copy sensitivity, and inflammatory biomarkers were measured by enzyme immunoassay.RESULTSSixty-nine participants (97% male, median age 50 years, CD4 696 cells/mm3, plasma HIV RNA <100 copies/mL) were assessed after a median 8.6 years of ART. In CSF, cell-free RNA was detected in 4%, CA-RNA in 9%, and CA-DNA in 48% of participants (median level 2.1 copies/103 cells). Detection of cell-free CSF HIV RNA was associated with higher plasma HIV RNA (P = 0.007). CSF inflammatory biomarkers did not correlate with HIV persistence measures. Detection of CSF CA-DNA HIV was associated with worse neurocognitive outcomes including global deficit score (P = 0.005), even after adjusting for age and nadir CD4 count.CONCLUSIONHIV-infected cells persist in CSF in almost half of individuals on long-term ART, and their detection is associated with poorer neurocognitive performance.FUNDINGThis observational study, AIDS Clinical Trials Group (ACTG) HIV Reservoirs Cohort Study (A5321), was supported by the National Institutes of Health (NIAID and NIMH).
Collapse
Affiliation(s)
| | - Kevin R. Robertson
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ronald J. Bosch
- Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | - Hanna Mar
- Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | | | | | | | - Joseph J. Eron
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Dianna Koontz
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evelyn Hogg
- Social & Scientific Systems, Silver Spring, Maryland, USA
| | - Alyssa Vecchio
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
46
|
Thompson CG, Rosen EP, Prince HMA, White N, Sykes C, de la Cruz G, Mathews M, Deleage C, Estes JD, Charlins P, Mulder LR, Kovarova M, Adamson L, Arora S, Dellon ES, Peery AF, Shaheen NJ, Gay C, Muddiman DC, Akkina R, Garcia JV, Luciw P, Kashuba ADM. Heterogeneous antiretroviral drug distribution and HIV/SHIV detection in the gut of three species. Sci Transl Med 2019; 11:eaap8758. [PMID: 31270274 PMCID: PMC8273920 DOI: 10.1126/scitranslmed.aap8758] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/28/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022]
Abstract
HIV replication within tissues may increase in response to a reduced exposure to antiretroviral drugs. Traditional approaches to measuring drug concentrations in tissues are unable to characterize a heterogeneous drug distribution. Here, we used mass spectrometry imaging (MSI) to visualize the distribution of six HIV antiretroviral drugs in gut tissue sections from three species (two strains of humanized mice, macaques, and humans). We measured drug concentrations in proximity to CD3+ T cells that are targeted by HIV, as well as expression of HIV or SHIV RNA and expression of the MDR1 drug efflux transporter in gut tissue from HIV-infected humanized mice, SHIV-infected macaques, and HIV-infected humans treated with combination antiretroviral drug therapy. Serial 10-μm sections of snap-frozen ileal and rectal tissue were analyzed by MSI for CD3+ T cells and MDR1 efflux transporter expression by immunofluorescence and immunohistochemistry, respectively. The tissue slices were analyzed for HIV/SHIV RNA expression by in situ hybridization and for antiretroviral drug concentrations by liquid chromatography-mass spectrometry. The gastrointestinal tissue distribution of the six drugs was heterogeneous. Fifty percent to 60% of CD3+ T cells did not colocalize with detectable drug concentrations in the gut tissue. In all three species, up to 90% of HIV/SHIV RNA was found to be expressed in gut tissue with no exposure to drug. These data suggest that there may be gut regions with little to no exposure to antiretroviral drugs, which may result in low-level HIV replication contributing to HIV persistence.
Collapse
Affiliation(s)
- Corbin G Thompson
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elias P Rosen
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Heather M A Prince
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole White
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig Sykes
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriela de la Cruz
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michelle Mathews
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, USA
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Paige Charlins
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Leila R Mulder
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Martina Kovarova
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lourdes Adamson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Shifali Arora
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Evan S Dellon
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anne F Peery
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas J Shaheen
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cynthia Gay
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David C Muddiman
- W.M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - J Victor Garcia
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul Luciw
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Angela D M Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
47
|
Pandey HS, Seth P. Friends Turn Foe-Astrocytes Contribute to Neuronal Damage in NeuroAIDS. J Mol Neurosci 2019; 69:286-297. [PMID: 31236774 DOI: 10.1007/s12031-019-01357-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes play a wide variety of roles in the central nervous system (CNS). Various facets of astrocyte-neuron interplay, investigated for the past few decades, have placed these most abundant and important glial cell types to be of supreme importance for the maintenance of the healthy CNS. Interestingly, glial dysfunctions have proven to be the major contributor to neuronal loss in several CNS disorders and pathologies. Specifically, in the field of neuroAIDS, glial dysfunction-mediated neuronal stress is a major factor contributing to the HIV-1 neuropathogenesis. As there is increasing evidence that astrocytes harbor HIV-1 and serve as "safe haven" for the dormant virus in the brain, the indirect pathway of neuronal damage has taken over the direct neuronal damage in its contribution to HIV-1 neuropathogenesis. In this review, we provide a brief insight into the astrocyte functions and dysfunctions in different CNS conditions with an elaborated insight into neuroAIDS. Detailed understanding of the role of astrocytes in neuroAIDS will help in the better therapeutic management of the neurological problems associated with HIV-1 patients.
Collapse
Affiliation(s)
- Hriday Shanker Pandey
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Nainwal Road, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Nainwal Road, NH-8, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
48
|
Chahroudi A, Wagner TA, Persaud D. CNS Persistence of HIV-1 in Children: the Untapped Reservoir. Curr HIV/AIDS Rep 2019; 15:382-387. [PMID: 30159813 DOI: 10.1007/s11904-018-0412-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE OF REVIEW The central nervous system (CNS) represents a potential HIV-1 reservoir that may need to be specifically targeted by remission strategies. Perinatally HIV-1-infected children and youth are exposed to HIV-1 at a critical period of brain development. This review summarizes the current literature regarding HIV-1 and the CNS in perinatal infection. RECENT FINDINGS HIV-1-associated encephalopathy is prevalent with perinatal infection and neurocognitive impairment persists even following antiretroviral treatment (ART)-mediated suppression of viremia. Compartmentalization of HIV-1 between plasma and CSF of ART-naïve, perinatally infected children suggests the presence of a CNS reservoir; however, similar studies have not yet been conducted with ART suppression. CSF viral escape where CSF and plasma virus concentrations are discordant has been reported in this population, but larger studies with well-defined virologic and immunologic parameters are needed. A better understanding of HIV-1 persistence in the CNS with perinatal infection is essential for improving long-term neurocognitive outcomes and for designing strategies to induce HIV-1 remission in this population.
Collapse
Affiliation(s)
- Ann Chahroudi
- Emory University School of Medicine, Atlanta, GA, USA
| | - Thor A Wagner
- Seattle Children's Hospital and University of Washington, Seattle, WA, USA
| | - Deborah Persaud
- Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 1170, Baltimore, MD, 21205, USA.
| |
Collapse
|
49
|
|
50
|
HIV brain latency as measured by CSF BcL11b relates to disrupted brain cellular energy in virally suppressed HIV infection. AIDS 2019; 33:433-441. [PMID: 30475266 DOI: 10.1097/qad.0000000000002076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We investigated whether HIV brain latency was associated with brain injury in virally suppressed HIV infection. DESIGN Observational cross-sectional and longitudinal study. METHODS The study included 26 virally suppressed HIV-infected men (61.5% with HIV-associated neurocognitive disorder) who undertook cerebrospinal fluid (CSF) analyses at baseline. They also completed a proton magnetic resonance spectroscopy (1H MRS) and neuropsychological assessments at baseline and 18 months. To quantify whether there was residual brain HIV transcription, we measured CSF HIV-tat. As an HIV brain latency biomarker, we used concentrations of CSF BcL11b - a microglia transcription factor that inhibits HIV transcription. Concurrently, we assessed neuroinflammation with CSF neopterin, neuronal injury with CSF neurofilament light-chain (NFL), and in-vivo neurochemistry with 1H MRS of N-acetyl aspartate (NAA), choline (Cho), creatine, myo-inositol (MI), glutamine/glutamate (Glx) in the frontal white matter (FWM), posterior cingulate cortex (PCC), and caudate nucleus area. RESULTS Baseline adjusted regression models for neopterin, NFL, and tat showed that a higher CSF BcL11b was consistently associated with lower FWM creatine (when adjusted for neopterin: β = -0.30, P = 0.15; when adjusted for NFL: β = -0.47, P = 0.04; and when adjusted for tat: β = -0.47, P = 0.02). In longitudinal analyses, we found no time effect, but a consistent BcL11b altering effect on FWM creatine. The effect reached a significant moderate effect size range when corrected for CSF NFL (β = -0.36, P = 0.02) and CSF tat (β = -0.34, P = 0.02). CONCLUSIONS Reduced frontal white matter total creatine may indicate subclinical HIV brain latency-related injury. H MRS may offer a noninvasive option to measure HIV brain latency.
Collapse
|