1
|
Das G, Kameswaran S, Ramesh B, Bangeppagari M, Nath R, Das Talukdar A, Shin HS, Patra JK. Anti-Aging Effect of Traditional Plant-Based Food: An Overview. Foods 2024; 13:3785. [PMID: 39682858 DOI: 10.3390/foods13233785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Aging is a complex process that involves many physiological mechanisms that gradually impair normal cellular and tissue function and make us more susceptible to diseases and death. It is influenced by intrinsic factors like cellular function and extrinsic factors like pollution and UV radiation. Recent scientific studies show that traditional plant-based foods and supplements can help mitigate the effects of aging. Nutraceuticals, which are dietary supplements with medicinal properties, have gained attention for their ability to prevent chronic and age-related diseases. Antioxidants like flavonoids, carotenoids, ascorbic acid, terpenes, tannins, saponins, alkaloids, minerals, etc. found in plants are key to managing oxidative stress, which is a major cause of aging. Well-known plant-based supplements from Bacopa monnieri, Curcuma longa, Emblica officinalis, Ginkgo biloba, Glycyrrhiza glabra, and Panax ginseng have been found to possess medicinal properties. These supplements have been shown to improve cognitive function, reduce oxidative stress, improve overall health, and potentially extend life and enhance the excellence of life. The obtained benefits from these plant species are due to the presence of their bioactive secondary metabolites, such as bacosides in Bacopa monnieri, curcumin in Curcuma longa, ginsenosides in Panax ginseng, and many more. These compounds not only protect against free radical damage but also modulate key biological pathways of aging. Also, traditional fermented foods (tempeh and kimchi), which are rich in probiotics and bioactive compounds, support gut health, boost immune function, and have anti-aging properties. The molecular mechanisms behind these benefits are the activation of nutrient-sensing pathways like AMPK, SIRT/NAD+, and mTOR, which are important for cellular homeostasis and longevity. This review shows the potential of traditional plant-based foods and dietary supplements for healthy aging, and more studies are needed to prove their efficacy and safety in humans. Incorporating these natural products into our diet may be a practical and effective way to counteract the effects of aging and overall well-being. The foremost goal of this review is to emphasize the importance of supporting the body's antioxidant system by consuming the right balance of natural ingredients in the diet.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Srinivasan Kameswaran
- Department of Botany, Vikrama Simhapuri University College, Kavali 524201, Andhra Pradesh, India
| | - Bellamkonda Ramesh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Manjunatha Bangeppagari
- Department of Cell Biology and Molecular Genetics, Sri DevarajUrs Academy of Higher Education and Research (A Deemed to Be University), Tamaka, Kolar 563103, Karnataka, India
| | - Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
- Department of Biotechnology and Microbiology, School of Natural Sciences, Techno India University, Agartala 799004, Tripura, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| |
Collapse
|
2
|
Bilkei-Gorzo A, Schurmann B, Schneider M, Kraemer M, Nidadavolu P, Beins EC, Müller CE, Dvir-Ginzberg M, Zimmer A. Bidirectional Effect of Long-Term Δ 9-Tetrahydrocannabinol Treatment on mTOR Activity and Metabolome. ACS Pharmacol Transl Sci 2024; 7:2637-2649. [PMID: 39296258 PMCID: PMC11406684 DOI: 10.1021/acsptsci.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 09/21/2024]
Abstract
Brain aging is associated with cognitive decline, reduced synaptic plasticity, and altered metabolism. The activity of mechanistic target of rapamycin (mTOR) has a major impact on aging by regulating cellular metabolism. Although reduced mTOR signaling has a general antiaging effect, it can negatively affect the aging brain by reducing synaptogenesis and thus cognitive functions. Increased mTOR activity facilitates aging and is responsible for the amnestic effect of the cannabinoid receptor 1 agonist Δ9-tetrahydrocannabinol (THC) in higher doses. Long-term low-dose Δ9-THC had an antiaging effect on the brain by restoring cognitive abilities and synapse densities in old mice. Whether changes in mTOR signaling and metabolome are associated with its positive effects on the aging brain is an open question. Here, we show that Δ9-THC treatment has a tissue-dependent and dual effect on mTOR signaling and the metabolome. In the brain, Δ9-THC treatment induced a transient increase in mTOR activity and in the levels of amino acids and metabolites involved in energy production, followed by an increased synthesis of synaptic proteins. Unexpectedly, we found a similar reduction in the mTOR activity in adipose tissue and in the level of amino acids and carbohydrate metabolites in blood plasma as in animals on a low-calorie diet. Thus, long-term Δ9-THC treatment first increases the level of energy and synaptic protein production in the brain, followed by a reduction in mTOR activity and metabolic processes in the periphery. Our study suggests that a dual effect on mTOR activity and the metabolome could be the basis for an effective antiaging and pro-cognitive medication.
Collapse
Affiliation(s)
- Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| | - Britta Schurmann
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| | - Marion Schneider
- Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
| | - Michael Kraemer
- Institute of Forensic Medicine, Medical Faculty, University of Bonn, Bonn 53111, Germany
| | - Prakash Nidadavolu
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| | - Eva C Beins
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| | - Christa E Müller
- Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
| | - Mona Dvir-Ginzberg
- Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| |
Collapse
|
3
|
Wang YH, Lin CW, Huang CW. Polyunsaturated Fatty Acids as Potential Treatments for COVID-19-Induced Anosmia. Biomedicines 2024; 12:2085. [PMID: 39335598 PMCID: PMC11428228 DOI: 10.3390/biomedicines12092085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Some individuals with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) experience anosmia, or loss of smell. Although the prevalence of anosmia has decreased with the emergence of the Omicron variant, it remains a significant concern. This review examines the potential role of polyunsaturated fatty acids (PUFAs), particularly omega-3 PUFAs, in treating COVID-19-induced anosmia by focusing on the underlying mechanisms of the condition. Omega-3 PUFAs are known for their anti-inflammatory, neuroprotective, and neurotransmission-enhancing properties, which could potentially aid in olfactory recovery. However, study findings are inconsistent. For instance, a placebo-controlled randomized clinical trial found no significant effect of omega-3 PUFA supplementation on olfactory recovery in patients with COVID-19-induced anosmia. These mixed results highlight the limitations of existing research, including small sample sizes, lack of placebo controls, short follow-up periods, and combined treatments. Therefore, more rigorous, large-scale studies are urgently needed to definitively assess the therapeutic potential of omega-3 PUFAs for olfactory dysfunction. Further research is also crucial to explore the broader role of PUFAs in managing viral infections and promoting sensory recovery.
Collapse
Affiliation(s)
- Yu-Han Wang
- Department of Education, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chung-Wei Lin
- Department of Education, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chiung-Wei Huang
- Department of Physiology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
4
|
Li Y, Chang P, Sankaran S, Jang H, Nie Y, Zeng A, Hussain S, Wu JY, Chen X, Shi L. Bioorthogonal Stimulated Raman Scattering Imaging Uncovers Lipid Metabolic Dynamics in Drosophila Brain During Aging. GEN BIOTECHNOLOGY 2023; 2:247-261. [PMID: 37363411 PMCID: PMC10286263 DOI: 10.1089/genbio.2023.0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Studies have shown that brain lipid metabolism is associated with biological aging and influenced by dietary and genetic manipulations; however, the underlying mechanisms are elusive. High-resolution imaging techniques propose a novel and potent approach to understanding lipid metabolic dynamics in situ. Applying deuterium water (D2O) probing with stimulated Raman scattering (DO-SRS) microscopy, we revealed that lipid metabolic activity in Drosophila brain decreased with aging in a sex-dependent manner. Female flies showed an earlier occurrence of lipid turnover decrease than males. Dietary restriction (DR) and downregulation of insulin/IGF-1 signaling (IIS) pathway, two scenarios for lifespan extension, led to significant enhancements of brain lipid turnover in old flies. Combining SRS imaging with deuterated bioorthogonal probes (deuterated glucose and deuterated acetate), we discovered that, under DR treatment and downregulation of IIS pathway, brain metabolism shifted to use acetate as a major carbon source for lipid synthesis. For the first time, our study directly visualizes and quantifies spatiotemporal alterations of lipid turnover in Drosophila brain at the single organelle (lipid droplet) level. Our study not only demonstrates a new approach for studying brain lipid metabolic activity in situ but also illuminates the interconnection of aging, dietary, and genetic manipulations on brain lipid metabolic regulation.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Phyllis Chang
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Shriya Sankaran
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Hongje Jang
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Yuhang Nie
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Audrey Zeng
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Sahran Hussain
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Jane Y. Wu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Xu Chen
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Lingyan Shi
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Kasuya J, Johnson W, Chen HL, Kitamoto T. Dietary Supplementation with Milk Lipids Leads to Suppression of Developmental and Behavioral Phenotypes of Hyperexcitable Drosophila Mutants. Neuroscience 2023; 520:1-17. [PMID: 37004908 PMCID: PMC10200772 DOI: 10.1016/j.neuroscience.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Dietary modifications often have a profound impact on the penetrance and expressivity of neurological phenotypes that are caused by genetic defects. Our previous studies in Drosophila melanogaster revealed that seizure-like phenotypes of gain-of-function voltage-gated sodium (Nav) channel mutants (paraShu, parabss1, and paraGEFS+), as well as other seizure-prone "bang-sensitive" mutants (eas and sda), were drastically suppressed by supplementation of a standard diet with milk whey. In the current study we sought to determine which components of milk whey are responsible for the diet-dependent suppression of their hyperexcitable phenotypes. Our systematic analysis reveals that supplementing the diet with a modest amount of milk lipids (0.26% w/v) mimics the effects of milk whey. We further found that a minor milk lipid component, α-linolenic acid, contributed to the diet-dependent suppression of adult paraShu phenotypes. Given that lipid supplementation during the larval stages effectively suppressed adult paraShu phenotypes, dietary lipids likely modify neural development to compensate for the defects caused by the mutations. Consistent with this notion, lipid feeding fully rescued abnormal dendrite development of class IV sensory neurons in paraShu larvae. Overall, our findings demonstrate that milk lipids are sufficient to ameliorate hyperexcitable phenotypes in Drosophila mutants, providing a foundation for future investigation of the molecular and cellular mechanisms by which dietary lipids modify genetically induced abnormalities in neural development, physiology, and behavior.
Collapse
Affiliation(s)
- Junko Kasuya
- Department of Anesthesia, Carver College of Medicine, University of Iowa, 1-376 BSB, 51 Newton Road, Iowa City, IA 52242, United States.
| | - Wayne Johnson
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, United States; Interdisciplinary Graduate Program in Genetics, University of Iowa, IA 52242, United States.
| | - Hung-Lin Chen
- Interdisciplinary Graduate Program in Genetics, University of Iowa, IA 52242, United States
| | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics, University of Iowa, IA 52242, United States.
| |
Collapse
|
6
|
Evidence that complement and coagulation proteins are mediating the clinical response to omega-3 fatty acids: A mass spectrometry-based investigation in subjects at clinical high-risk for psychosis. Transl Psychiatry 2022; 12:454. [PMID: 36307392 PMCID: PMC9616837 DOI: 10.1038/s41398-022-02217-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022] Open
Abstract
Preliminary evidence indicates beneficial effects of omega-3 polyunsaturated fatty acids (PUFAs) in early psychosis. The present study investigates the molecular mechanism of omega-3 PUFA-associated therapeutic effects in clinical high-risk (CHR) participants. Plasma samples of 126 CHR psychosis participants at baseline and 6-months follow-up were included. Plasma protein levels were quantified using mass spectrometry and erythrocyte omega-3 PUFA levels were quantified using gas chromatography. We examined the relationship between change in polyunsaturated PUFAs (between baseline and 6-month follow-up) and follow-up plasma proteins. Using mediation analysis, we investigated whether plasma proteins mediated the relationship between change in omega-3 PUFAs and clinical outcomes. A 6-months change in omega-3 PUFAs was associated with 24 plasma proteins at follow-up. Pathway analysis revealed the complement and coagulation pathway as the main biological pathway to be associated with change in omega-3 PUFAs. Moreover, complement and coagulation pathway proteins significantly mediated the relationship between change in omega-3 PUFAs and clinical outcome at follow-up. The inflammatory protein complement C5 and protein S100A9 negatively mediated the relationship between change in omega-3 PUFAs and positive symptom severity, while C5 positively mediated the relationship between change in omega-3 and functional outcome. The relationship between change in omega-3 PUFAs and cognition was positively mediated through coagulation factor V and complement protein C1QB. Our findings provide evidence for a longitudinal association of omega-3 PUFAs with complement and coagulation protein changes in the blood. Further, the results suggest that an increase in omega-3 PUFAs decreases symptom severity and improves cognition in the CHR state through modulating effects of complement and coagulation proteins.
Collapse
|
7
|
Bjørklund G, Shanaida M, Lysiuk R, Butnariu M, Peana M, Sarac I, Strus O, Smetanina K, Chirumbolo S. Natural Compounds and Products from an Anti-Aging Perspective. Molecules 2022; 27:7084. [PMID: 36296673 PMCID: PMC9610014 DOI: 10.3390/molecules27207084] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is a very complex process that is accompanied by a degenerative impairment in many of the major functions of the human body over time. This inevitable process is influenced by hereditary factors, lifestyle, and environmental influences such as xenobiotic pollution, infectious agents, UV radiation, diet-borne toxins, and so on. Many external and internal signs and symptoms are related with the aging process and senescence, including skin dryness and wrinkles, atherosclerosis, diabetes, neurodegenerative disorders, cancer, etc. Oxidative stress, a consequence of the imbalance between pro- and antioxidants, is one of the main provoking factors causing aging-related damages and concerns, due to the generation of highly reactive byproducts such as reactive oxygen and nitrogen species during the metabolism, which result in cellular damage and apoptosis. Antioxidants can prevent these processes and extend healthy longevity due to the ability to inhibit the formation of free radicals or interrupt their propagation, thereby lowering the level of oxidative stress. This review focuses on supporting the antioxidant system of the organism by balancing the diet through the consumption of the necessary amount of natural ingredients, including vitamins, minerals, polyunsaturated fatty acids (PUFA), essential amino acids, probiotics, plants' fibers, nutritional supplements, polyphenols, some phytoextracts, and drinking water.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| | - Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Ioan Sarac
- Chemistry & Biochemistry Discipline, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, 300645 Timisoara, Romania
- CONEM Romania Biotechnology and Environmental Sciences Group, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timisoara, Romania
| | - Oksana Strus
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Kateryna Smetanina
- Department of Organic Chemistry and Pharmacy, Lesya Ukrainka Volyn National University, 43025 Lutsk, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134 Verona, Italy
| |
Collapse
|
8
|
Montazer M, Ebrahimpour-Koujan S, Surkan PJ, Azadbakht L. Effects of Fish-Oil Consumption on Psychological Function Outcomes in Psychosis: A Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2022; 13:2149-2164. [PMID: 36166847 PMCID: PMC9879727 DOI: 10.1093/advances/nmac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 02/02/2023] Open
Abstract
Research on the effects of fish oil on clinical symptoms and psychosocial functioning in people with psychosis has been inconsistent. We conducted this systematic review and meta-analysis to summarize the available data on the effects of oral intake of fish oil on psychological functioning in patients with psychosis. Three online databases including PubMed, Scopus, and Web of Science were searched to identify relevant studies published by April 2021. The exposure was oral fish-oil supplementation. The Positive and Negative Syndrome Scale (PANSS), the Brief Psychiatric Rating Scale (BPRS), and the Global Assessment of Functioning (GAF) were our outcome measures. Seventeen randomized clinical trials involving 1390 patients were included. No change in PANSS was observed following oral fish-oil intake [weighted mean difference (WMD): -0.87; 95% CI: -16.99, 15.26; P = 0.92]. In a nonlinear dose-response analysis, a significant inverse association was observed between <10 wk of fish-oil supplementation and PANSS (WMD: -10; P-nonlinearity = 0.02). Although analysis of 4 studies showed a nonsignificant reduction in BPRS after fish-oil intake (WMD: -2.990; 95% CI: -6.42, 0.44; P = 0.08), a nonlinear dose-response analysis revealed significant inverse associations between dose (>2200 mg/d) and duration of fish-oil supplementation (<15 wk) with BPRS score (WMD: -8; P-nonlinearity = 0.04). Combined effect sizes from 6 randomized clinical trials showed significant increases in GAF after oral administration of fish oil (WMD: 6.66; 95% CI: 3.39, 9.93; P < 0.001). In conclusion, we did not find any significant changes in PANSS and BPRS scores following fish-oil supplementation. Nevertheless, oral fish-oil intake significantly contributed to improvement in GAF scores. This is the first meta-analysis to examine the effects of fish oil on the psychological functioning scores of PANSS, BPRS, and GAF simultaneously.
Collapse
Affiliation(s)
- Mohsen Montazer
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraiya Ebrahimpour-Koujan
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran,Autoimmune Bullous Disease Research Center, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pamela J Surkan
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | |
Collapse
|
9
|
Decandia D, Landolfo E, Sacchetti S, Gelfo F, Petrosini L, Cutuli D. n-3 PUFA Improve Emotion and Cognition during Menopause: A Systematic Review. Nutrients 2022; 14:1982. [PMID: 35565948 PMCID: PMC9100978 DOI: 10.3390/nu14091982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Women show an increased risk of cognitive impairment and emotional disorders, such as anxiety and depression, when approaching menopause. Data on risk and protection factors have yielded robust evidence on the effects of lifestyle factors, such as diet, in preserving emotional and cognitive functioning. This review focused on the effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) on anxiety, depression, and cognition during the menopausal transition. This systematic review considered all articles published until 31 December 2021, and the search was performed on two databases, PubMed and Scopus. The fields of interest were "menopause", "n-3 PUFA" and "emotional and cognitive aspects". Out of the 361 articles found on PubMed and 283 on Scopus, 17 met inclusion criteria. They encompassed 11 human and 6 animal studies. Most studies reported relieved depressive symptoms in relation to n-3 PUFA intake. While controversial results were found on anxiety and cognition in humans, n-3 PUFA consistently reduced anxiety symptoms and improved cognition in animal studies. Taken together, n-3 PUFA intake shows beneficial effects on emotional and cognitive behaviours during menopause transition. However, further investigations could increase knowledge about the effectiveness of n-3 PUFA on psychological well-being in this delicate period of feminine life.
Collapse
Affiliation(s)
- Davide Decandia
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy; (E.L.); (S.S.); (F.G.); (L.P.); (D.C.)
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy; (E.L.); (S.S.); (F.G.); (L.P.); (D.C.)
| | - Stefano Sacchetti
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy; (E.L.); (S.S.); (F.G.); (L.P.); (D.C.)
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy; (E.L.); (S.S.); (F.G.); (L.P.); (D.C.)
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy; (E.L.); (S.S.); (F.G.); (L.P.); (D.C.)
| | - Debora Cutuli
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy; (E.L.); (S.S.); (F.G.); (L.P.); (D.C.)
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| |
Collapse
|
10
|
Murphy RA, Devarshi PP, Ekimura S, Marshall K, Hazels Mitmesser S. Long-chain omega-3 fatty acid serum concentrations across life stages in the USA: an analysis of NHANES 2011-2012. BMJ Open 2021; 11:e043301. [PMID: 33972333 PMCID: PMC8112395 DOI: 10.1136/bmjopen-2020-043301] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/18/2020] [Accepted: 04/25/2021] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVE To determine reference ranges of circulating long-chain (LC) omega-3 fatty acids: eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) in a nationally representative population of Americans. To provide context, serum concentrations of LC omega-3 were compared with concentrations associated with consuming the recommended amount of EPA and DHA by the Dietary Guidelines for Americans (DGA) and the Omega-3 Index (EPA+DHA). DESIGN Cross-sectional population-based study. SETTING The National Health and Nutrition Examination Survey 2011-2012 cycle. PARTICIPANTS Participants with fatty acids measured in serum: 945 children, age 3-19 years, and 1316 adults, age 20 and older. MAIN MEASURE Serum EPA, DPA, DHA and sum of LC omega-3 fatty acids expressed as per cent of total fatty acids. RESULTS Among children, mean (SE) serum concentrations of EPA, DHA and omega-3s were 0.28% (0.01), 1.07% (0.02) and 1.75% (0.03). Among adults, mean (SE) of EPA, DHA and omega-3s were 0.61% (0.02), 1.38% (0.05) and 2.43% (0.08), all of which were significantly higher than corresponding serum fatty acid concentrations in children (p<0.001). Despite recommendations for higher intake, pregnant and/or breastfeeding women had mean (SE) EPA, DHA and LC omega-3 concentrations of 0.34% (0.07), 1.52% (0.08) and 2.18% (0.15), which were comparable to women of childbearing age; p=0.17, p=0.10 and p=0.73. Over 95% of children and 68% of adults had LC omega-3 concentrations below those associated with the DGA recommendation. Approximately 89% of adults had an Omega-3 Index in the high cardiovascular risk category. CONCLUSIONS Contemporary reference ranges for circulating LC omega-3s are critical for setting public health recommendations. Our findings show the need for continued emphasis on regular consumption of LC omega-3s among Americans, particularly considering the importance of LC omega-3s in cardiovascular health, brain health and development throughout life.
Collapse
Affiliation(s)
- Rachel A Murphy
- BC Cancer Research Centre, Vancouver, British Columbia, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
11
|
Xu ZJ, Li Q, Ding L, Shi HH, Xue CH, Mao XZ, Wang YM, Zhang TT. A comparative study of the effects of phosphatidylserine rich in DHA and EPA on Aβ-induced Alzheimer's disease using cell models. Food Funct 2021; 12:4411-4423. [PMID: 33876786 DOI: 10.1039/d1fo00286d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is an age-dependent, irreversible neurodegenerative disease, and one of the pathological features is amyloid-β (Aβ) deposition. Previous studies have shown that phosphatidylserine (PS) enriched with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exhibited significant effects in preventing and alleviating the progress of AD. However, no studies have focused on the differences in the preventive effects on AD between EPA-PS and DHA-PS. Here, the effects of EPA-PS and DHA-PS on Aβ production, Aβ-induced neurotoxicity and Aβ clearance have been studied. The results show that DHA-PS significantly reduced Aβ production in CHO-APP/PS1 cells compared to EPA-PS. Moreover, both EPA-PS and DHA-PS significantly protected the primary hippocampal neurons against Aβ-induced toxicity by inhibiting the mitochondrial-dependent apoptotic pathway and phosphorylation of JNK and p38. Compared to DHA-PS, EPA-PS administration significantly improved the Aβ phagocytic capacity of BV2 cells. In addition, EPA-PS and DHA-PS significantly promoted the neurite outgrowth of primary hippocampal neurons. These findings might provide dietary guidance for the prevention of AD as well as a reference for the development of related functional foods.
Collapse
Affiliation(s)
- Zhen-Jing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cutuli D, Landolfo E, Nobili A, De Bartolo P, Sacchetti S, Chirico D, Marini F, Pieroni L, Ronci M, D'Amelio M, D'Amato FR, Farioli-Vecchioli S, Petrosini L. Behavioral, neuromorphological, and neurobiochemical effects induced by omega-3 fatty acids following basal forebrain cholinergic depletion in aged mice. ALZHEIMERS RESEARCH & THERAPY 2020; 12:150. [PMID: 33198763 PMCID: PMC7667851 DOI: 10.1186/s13195-020-00705-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Background In recent years, mechanistic, epidemiologic, and interventional studies have indicated beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) against brain aging and age-related cognitive decline, with the most consistent effects against Alzheimer’s disease (AD) confined especially in the early or prodromal stages of the pathology. In the present study, we investigated the action of n-3 PUFA supplementation on behavioral performances and hippocampal neurogenesis, volume, and astrogliosis in aged mice subjected to a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valuable model to mimic one of the most reliable hallmarks of early AD neuropathology. Methods Aged mice first underwent mu-p75-saporin immunotoxin intraventricular lesions to obtain a massive cholinergic depletion and then were orally supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks. Four weeks after the beginning of the dietary supplementation, anxiety levels as well as mnesic, social, and depressive-like behaviors were evaluated. Subsequently, hippocampal morphological and biochemical analyses and n-3 PUFA brain quantification were carried out. Results The n-3 PUFA treatment regulated the anxiety alterations and reverted the novelty recognition memory impairment induced by the cholinergic depletion in aged mice. Moreover, n-3 PUFA preserved hippocampal volume, enhanced neurogenesis in the dentate gyrus, and reduced astrogliosis in the hippocampus. Brain levels of n-3 PUFA were positively related to mnesic abilities. Conclusions The demonstration that n-3 PUFA are able to counteract behavioral deficits and hippocampal neurodegeneration in cholinergically depleted aged mice promotes their use as a low-cost, safe nutraceutical tool to improve life quality at old age, even in the presence of first stages of AD.
Collapse
Affiliation(s)
- Debora Cutuli
- IRCCS Fondazione Santa Lucia, Rome, Italy. .,University of Rome "Sapienza", Rome, Italy.
| | - Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Rome, Italy.,University of Rome "Sapienza", Rome, Italy
| | - Annalisa Nobili
- IRCCS Fondazione Santa Lucia, Rome, Italy.,University "Campus Bio-Medico", Rome, Italy
| | - Paola De Bartolo
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Doriana Chirico
- Institute of Biochemistry and Cell Biology, CNR, Monterotondo, Italy
| | - Federica Marini
- Università Cattolica del Sacro Cuore, Rome, Italy.,IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | | | - Maurizio Ronci
- Department of Pharmacy, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Marcello D'Amelio
- IRCCS Fondazione Santa Lucia, Rome, Italy.,University "Campus Bio-Medico", Rome, Italy
| | | | | | | |
Collapse
|
13
|
Rathnayake AU, Abuine R, Kim YJ, Byun HG. Anti-Alzheimer's Materials Isolated from Marine Bio-resources: A Review. Curr Alzheimer Res 2020; 16:895-906. [PMID: 31647396 DOI: 10.2174/1567205016666191024144044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 08/12/2019] [Accepted: 09/08/2019] [Indexed: 12/15/2022]
Abstract
The most common type of dementia found in the elderly population is Alzheimer's disease. The disease not only impacts the patients and their families but also the society therefore, the main focus of researchers is to search new bioactive materials for treating AD. The marine environment is a rich source of functional ingredients and to date, we can find sufficient research relating to anti- Alzheimer's compounds isolated from marine environment. Therefore, this review focuses on the anti- Alzheimer's material from marine bio-resources and then expounds on the anti-Alzheimer's compounds from marine seaweed, marine animal and marine microorganisms. Moreover, because of the complexity of the disease, different hypothesizes have been elaborated and active compounds have been isolated to inhibit different stages of pathophysiological mechanisms. Sulfated polysaccharides, glycoprotein, and enzymatic hydrolysates from marine seaweeds, peptides, dietary omega-3 polyunsaturated fatty acids and skeletal polysaccharide from marine animals and secondary metabolites from marine microorganism are summarized in this review under the anti-Alzheimer's compounds from the marine.
Collapse
Affiliation(s)
| | - Racheal Abuine
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Yong-Jae Kim
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Hee-Guk Byun
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung 25457, Korea
| |
Collapse
|
14
|
Hsu MC, Huang YS, Ouyang WC. Beneficial effects of omega-3 fatty acid supplementation in schizophrenia: possible mechanisms. Lipids Health Dis 2020; 19:159. [PMID: 32620164 PMCID: PMC7333328 DOI: 10.1186/s12944-020-01337-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Schizophrenia is a serious long-term psychotic disorder marked by positive and negative symptoms, severe behavioral problems and cognitive function deficits. The cause of this disorder is not completely clear, but is suggested to be multifactorial, involving both inherited and environmental factors. Since human brain regulates all behaviour, studies have focused on identifying changes in neurobiology and biochemistry of brain in schizophrenia. Brain is the most lipid rich organ (approximately 50% of brain dry weight). Total brain lipids is constituted of more than 60% of phospholipids, in which docosahexaenoic acid (DHA, 22:6n-3) is the most abundant (more than 40%) polyunsaturated fatty acid (PUFA) in brain membrane phospholipids. Results from numerous studies have shown significant decreases of PUFAs, in particular, DHA in peripheral blood (plasma and erythrocyte membranes) as well as brain of schizophrenia patients at different developmental phases of the disorder. PUFA deficiency has been associated to psychotic symptoms and cognitive deficits in schizophrenia. These findings have led to a number of clinical trials examining whether dietary omega-3 fatty acid supplementation could improve the course of illness in patients with schizophrenia. Results are inconsistent. Some report beneficial whereas others show not effective. The discrepancy can be attributed to the heterogeneity of patient population. METHODS In this review, results from recent experimental and clinical studies, which focus on illustrating the role of PUFAs in the development of schizophrenia were examined. The rationale why omega-3 supplementation was beneficial on symptoms (presented by subscales of the positive and negative symptom scale (PANSS), and cognitive functions in certain patients but not others was reviewed. The potential mechanisms underlying the beneficial effects were discussed. RESULTS Omega-3 fatty acid supplementation reduced the conversion rate to psychosis and improved both positive and negative symptoms and global functions in adolescents at ultra-high risk for psychosis. Omega-3 fatty acid supplementation could also improve negative symptoms and global functions in the first-episode patients with schizophrenia, but improve mainly total or general PANSS subscales in chronic patients. Patients with low PUFA (particularly DHA) baseline in blood were more responsive to the omega-3 fatty acid intervention. CONCLUSION Omega-3 supplementation is more effective in reducing psychotic symptom severity in young adults or adolescents in the prodromal phase of schizophrenia who have low omega-3 baseline. Omega-3 supplementation was more effective in patients with low PUFA baseline. It suggests that patients with predefined lipid levels might benefit from lipid treatments, but more controlled clinical trials are warranted.
Collapse
Affiliation(s)
- Mei-Chi Hsu
- Department of Nursing, I-Shou University, No.8, Yida Road, Jiaosu Village Yanchao District, Kaohsiung, 82445 Taiwan
| | - Yung-Sheng Huang
- College of Medicine, I-Shou University, No.8, Yida Road, Jiaosu Village Yanchao District, Kaohsiung, 82445 Taiwan
| | - Wen-Chen Ouyang
- Department of Geriatric Psychiatry, Jianan Psychiatric Center, Ministry of Health and Welfare, No.539, Yuzhong Rd., Rende Dist., Tainan City, 71742 Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, No.452, Huanqiu Rd. Luzhu Dist, Kaohsiung, 82144 Taiwan
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708 Taiwan
| |
Collapse
|
15
|
Chew H, Solomon VA, Fonteh AN. Involvement of Lipids in Alzheimer's Disease Pathology and Potential Therapies. Front Physiol 2020; 11:598. [PMID: 32581851 PMCID: PMC7296164 DOI: 10.3389/fphys.2020.00598] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Lipids constitute the bulk of the dry mass of the brain and have been associated with healthy function as well as the most common pathological conditions of the brain. Demographic factors, genetics, and lifestyles are the major factors that influence lipid metabolism and are also the key components of lipid disruption in Alzheimer's disease (AD). Additionally, the most common genetic risk factor of AD, APOE ϵ4 genotype, is involved in lipid transport and metabolism. We propose that lipids are at the center of Alzheimer's disease pathology based on their involvement in the blood-brain barrier function, amyloid precursor protein (APP) processing, myelination, membrane remodeling, receptor signaling, inflammation, oxidation, and energy balance. Under healthy conditions, lipid homeostasis bestows a balanced cellular environment that enables the proper functioning of brain cells. However, under pathological conditions, dyshomeostasis of brain lipid composition can result in disturbed BBB, abnormal processing of APP, dysfunction in endocytosis/exocytosis/autophagocytosis, altered myelination, disturbed signaling, unbalanced energy metabolism, and enhanced inflammation. These lipid disturbances may contribute to abnormalities in brain function that are the hallmark of AD. The wide variance of lipid disturbances associated with brain function suggest that AD pathology may present as a complex interaction between several metabolic pathways that are augmented by risk factors such as age, genetics, and lifestyles. Herewith, we examine factors that influence brain lipid composition, review the association of lipids with all known facets of AD pathology, and offer pointers for potential therapies that target lipid pathways.
Collapse
Affiliation(s)
- Hannah Chew
- Huntington Medical Research Institutes, Pasadena, CA, United States
- University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Alfred N. Fonteh
- Huntington Medical Research Institutes, Pasadena, CA, United States
| |
Collapse
|
16
|
Wu D, Yang CC, Chen KY, Lin YC, Wu PJ, Hsieh PH, Nakao Y, Ow MYL, Hsieh YC, Hu CJ. Hydrolyzed Chicken Extract (ProBeptigen ®) on Cognitive Function in Healthy Middle-Aged People: A Randomized Double-Blind Trial. Nutrients 2020; 12:nu12051362. [PMID: 32397609 PMCID: PMC7284526 DOI: 10.3390/nu12051362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/16/2022] Open
Abstract
Cognitive decline is an important issue of global public health. Cognitive aging might begin at middle adulthood, the period particularly vulnerable to stress in lifespan. Essence of chicken (EOC) has consistently demonstrated its beneficial effects on various cognitive domains as nutritional supplementation. This study primarily aimed to examine the cognitive enhancement effects of ProBeptigen® (previously named CMI-168), hydrolyzed peptides extracted from EOC, in healthy middle-aged people under mild stress. Ninety healthy subjects were randomly assigned into the ProBeptigen® or placebo group for eight weeks. Neurocognitive assessment, event-related potentials (ERPs), and blood tests were conducted before, during, and after the treatment. The ProBeptigen® group outperformed placebo group on Logical Memory subtests of Wechsler Memory Scale-third edition (WMS-III) and Spatial Working Memory task in the Cambridge Neuropsychological Test Automated Battery (CANTAB). The anti-inflammatory effects of ProBeptigen® in humans were also confirmed, with progressively declining high-sensitivity C-reactive protein (hs-CRP) levels. Regular dietary supplementation of ProBeptigen® is suggested to improve verbal short- and long-term memory as well as spatial working memory, and reduce inflammation in middle-aged healthy individuals with stress. The effects of ProBeptigen® on cognition warrant further investigation. (NCT03612752)
Collapse
Affiliation(s)
- Dean Wu
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei 235, Taiwan; (D.W.); (C.-C.Y.); (K.-Y.C.); (P.-J.W.); (P.-H.H.)
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Cheng-Chang Yang
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei 235, Taiwan; (D.W.); (C.-C.Y.); (K.-Y.C.); (P.-J.W.); (P.-H.H.)
- Research Center for Brain and Consciousness, Taipei Medical University, Taipei 235, Taiwan
| | - Kuan-Yu Chen
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei 235, Taiwan; (D.W.); (C.-C.Y.); (K.-Y.C.); (P.-J.W.); (P.-H.H.)
| | - Ying-Chin Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Family Medicine, Wanfang Hospital, Taipei 116, Taiwan
| | - Pei-Jung Wu
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei 235, Taiwan; (D.W.); (C.-C.Y.); (K.-Y.C.); (P.-J.W.); (P.-H.H.)
| | - Pei-Hsiu Hsieh
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei 235, Taiwan; (D.W.); (C.-C.Y.); (K.-Y.C.); (P.-J.W.); (P.-H.H.)
| | - Yoshihiro Nakao
- Research and Development, BRAND’S Suntory Asia, Singapore 138623, Singapore; (Y.N.); (M.Y.L.O.)
| | - Mandy Y. L. Ow
- Research and Development, BRAND’S Suntory Asia, Singapore 138623, Singapore; (Y.N.); (M.Y.L.O.)
| | - Yi-Chen Hsieh
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (Y.-C.H.); (C.-J.H.)
| | - Chaur-Jong Hu
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei 235, Taiwan; (D.W.); (C.-C.Y.); (K.-Y.C.); (P.-J.W.); (P.-H.H.)
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (Y.-C.H.); (C.-J.H.)
| |
Collapse
|
17
|
Li J, Elkhoury K, Barbieux C, Linder M, Grandemange S, Tamayol A, Francius G, Arab-Tehrany E. Effects of Bioactive Marine-Derived Liposomes on Two Human Breast Cancer Cell Lines. Mar Drugs 2020; 18:md18040211. [PMID: 32295082 PMCID: PMC7230201 DOI: 10.3390/md18040211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/16/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the leading cause of death from cancer among women. Higher consumption of dietary marine n-3 long-chain polyunsaturated fatty acids (LC-PUFAs) is associated with a lower risk of breast cancer. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are two n-3 LC-PUFAs found in fish and exert anticancer effects. In this study, natural marine-derived lecithin that is rich in various polyunsaturated fatty acids (PUFAs) was extracted from salmon heads and transformed into nanoliposomes. These nanoliposomes were characterized and cultured with two breast cancer lines (MCF-7 and MDA-MB-231). The nanoliposomes decreased the proliferation and the stiffness of both cancer cell types. These results suggest that marine-derived lecithin possesses anticancer properties, which may have an impact on developing new liposomal delivery strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Jie Li
- CRAN, CNRS-Université de Lorraine, F-54506 Vandœuvre-lès-Nancy, France; (J.L.); (C.B.); (S.G.)
| | - Kamil Elkhoury
- LIBio, Université de Lorraine, F-54000 Nancy, France; (K.E.); (M.L.)
| | - Claire Barbieux
- CRAN, CNRS-Université de Lorraine, F-54506 Vandœuvre-lès-Nancy, France; (J.L.); (C.B.); (S.G.)
| | - Michel Linder
- LIBio, Université de Lorraine, F-54000 Nancy, France; (K.E.); (M.L.)
| | - Stéphanie Grandemange
- CRAN, CNRS-Université de Lorraine, F-54506 Vandœuvre-lès-Nancy, France; (J.L.); (C.B.); (S.G.)
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT 06269, USA;
| | - Grégory Francius
- LCPME, CNRS-Université de Lorraine, F-54600 Villers-lès-Nancy, France;
| | - Elmira Arab-Tehrany
- LIBio, Université de Lorraine, F-54000 Nancy, France; (K.E.); (M.L.)
- Correspondence: ; Tel.: +33-3-7274-4105
| |
Collapse
|
18
|
Neuroprotective Role of Dietary Supplementation with Omega-3 Fatty Acids in the Presence of Basal Forebrain Cholinergic Neurons Degeneration in Aged Mice. Int J Mol Sci 2020; 21:ijms21051741. [PMID: 32143275 PMCID: PMC7084583 DOI: 10.3390/ijms21051741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 01/05/2023] Open
Abstract
As major components of neuronal membranes, omega-3 polyunsaturated fatty acids (n-3 PUFA) exhibit a wide range of regulatory functions. Recent human and animal studies indicate that n-3 PUFA may exert beneficial effects on aging processes. Here we analyzed the neuroprotective influence of n-3 PUFA supplementation on behavioral deficits, hippocampal neurogenesis, volume loss, and astrogliosis in aged mice that underwent a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valid model to mimic a key component of the cognitive deficits associated with dementia. Aged mice were supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks and then cholinergically depleted with mu-p75-saporin immunotoxin. Two weeks after lesioning, mice were behaviorally tested to assess anxious, motivational, social, mnesic, and depressive-like behaviors. Subsequently, morphological and biochemical analyses were performed. In lesioned aged mice the n-3 PUFA pre-treatment preserved explorative skills and associative retention memory, enhanced neurogenesis in the dentate gyrus, and reduced volume and VAChT levels loss as well as astrogliosis in hippocampus. The present findings demonstrating that n-3 PUFA supplementation before cholinergic depletion can counteract behavioral deficits and hippocampal neurodegeneration in aged mice advance a low-cost, non-invasive preventive tool to enhance life quality during aging.
Collapse
|
19
|
Pogačnik L, Ota A, Poklar Ulrih N. An Overview of Crucial Dietary Substances and Their Modes of Action for Prevention of Neurodegenerative Diseases. Cells 2020; 9:E576. [PMID: 32121302 PMCID: PMC7140513 DOI: 10.3390/cells9030576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/16/2020] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases, namely Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis are becoming one of the main health concerns due to the increasing aging of the world's population. These diseases often share the same biological mechanisms, including neuroinflammation, oxidative stress, and/or protein fibrillation. Recently, there have been many studies published pointing out the possibilities to reduce and postpone the clinical manifestation of these deadly diseases through lifelong consumption of some crucial dietary substances, among which phytochemicals (e.g., polyphenols) and endogenous substances (e.g., acetyl-L-carnitine, coenzyme Q10, n-3 poysaturated fatty acids) showed the most promising results. Another important issue that has been pointed out recently is the availability of these substances to the central nervous system, where they have to be present in high enough concentrations in order to exhibit their neuroprotective properties. As so, such the aim of this review is to summarize the recent findings regarding neuroprotective substances, their mechanisms of action, as well as to point out therapeutic considerations, including their bioavailability and safety for humans.
Collapse
Affiliation(s)
| | | | - Nataša Poklar Ulrih
- Department of Food Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (L.P.); (A.O.)
| |
Collapse
|
20
|
Prokopiou E, Kolovos P, Georgiou C, Kalogerou M, Potamiti L, Sokratous K, Kyriacou K, Georgiou T. Omega-3 fatty acids supplementation protects the retina from age-associated degeneration in aged C57BL/6J mice. BMJ Open Ophthalmol 2019; 4:e000326. [PMID: 31799410 PMCID: PMC6861077 DOI: 10.1136/bmjophth-2019-000326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/28/2019] [Accepted: 09/22/2019] [Indexed: 11/03/2022] Open
Abstract
Objective To evaluate the therapeutic effects of omega-3 (ω3) fatty acids in the retina of aged mice when the blood arachidonic acid (AA)/eicosapentaenoic acid (EPA) ratio is maintained between 1.0 and 1.5. Methods and analysis Aged (24-month-old) wild-type C57BL/6J mice were allocated to two groups: ω3 treated and untreated. Treatment with ω3 was by daily gavage administration of EPA and docosahexaenoic acid for 60 days. Gas chromatography was used to identify and quantify fatty acids in the blood and retina. To count lipofuscin granules and measure the photoreceptor layer, eyecups were examined histologically using transmission electron microscopy and light microscopy. We also analysed eyecups using mass spectrometry-based proteomics. Results AA levels were lower, and EPA levels were higher, in the blood and retinas of the ω3-treated group than in the untreated group, resulting in a lower AA/EPA ratio. The ω3-treated group also showed significantly fewer lipofuscin granules and a thicker outer nuclear layer than the untreated group. Proteomic analysis revealed significantly greater expression of myelin basic protein, myelin regulatory factor-like protein, myelin proteolipid protein and glial fibrillar acidic protein in the ω3-treated group than in the untreated group. Three different pathways were significantly affected by ω3 treatment: fatty acid elongation, biosynthesis of unsaturated fatty acids and metabolic pathways. Conclusion Two months of ω3 supplementation (when the blood AA/EPA~1.0-1.5) in aged mice reduced lipofuscin granule formation in the retina and protected the photoreceptor layer, suggesting that ω3 supplementation slows normal age-related retinal degeneration.
Collapse
Affiliation(s)
- Ekatherine Prokopiou
- Ophthalmos Research and Educational Institute, Nicosia, Cyprus.,University of Nicosia Medical School, Nicosia, Cyprus
| | | | | | - Maria Kalogerou
- Ophthalmos Research and Educational Institute, Nicosia, Cyprus
| | - Louiza Potamiti
- Department of Electron Microscopy/Molecular Pathology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kleitos Sokratous
- Department of Electron Microscopy/Molecular Pathology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Bioinformatics Group, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Tassos Georgiou
- Ophthalmos Research and Educational Institute, Nicosia, Cyprus
| |
Collapse
|
21
|
Johnson AA, Stolzing A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 2019; 18:e13048. [PMID: 31560163 PMCID: PMC6826135 DOI: 10.1111/acel.13048] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/11/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
An emerging body of data suggests that lipid metabolism has an important role to play in the aging process. Indeed, a plethora of dietary, pharmacological, genetic, and surgical lipid‐related interventions extend lifespan in nematodes, fruit flies, mice, and rats. For example, the impairment of genes involved in ceramide and sphingolipid synthesis extends lifespan in both worms and flies. The overexpression of fatty acid amide hydrolase or lysosomal lipase prolongs life in Caenorhabditis elegans, while the overexpression of diacylglycerol lipase enhances longevity in both C. elegans and Drosophila melanogaster. The surgical removal of adipose tissue extends lifespan in rats, and increased expression of apolipoprotein D enhances survival in both flies and mice. Mouse lifespan can be additionally extended by the genetic deletion of diacylglycerol acyltransferase 1, treatment with the steroid 17‐α‐estradiol, or a ketogenic diet. Moreover, deletion of the phospholipase A2 receptor improves various healthspan parameters in a progeria mouse model. Genome‐wide association studies have found several lipid‐related variants to be associated with human aging. For example, the epsilon 2 and epsilon 4 alleles of apolipoprotein E are associated with extreme longevity and late‐onset neurodegenerative disease, respectively. In humans, blood triglyceride levels tend to increase, while blood lysophosphatidylcholine levels tend to decrease with age. Specific sphingolipid and phospholipid blood profiles have also been shown to change with age and are associated with exceptional human longevity. These data suggest that lipid‐related interventions may improve human healthspan and that blood lipids likely represent a rich source of human aging biomarkers.
Collapse
|
22
|
Alugoju P, Narsimulu D, Bhanu JU, Satyanarayana N, Periyasamy L. Role of quercetin and caloric restriction on the biomolecular composition of aged rat cerebral cortex: An FTIR study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 220:117128. [PMID: 31146210 DOI: 10.1016/j.saa.2019.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
Aging brain is characterized by a change in biomolecular composition leading to a diverse range of neurological diseases. Anti-aging research is of current interest, to lessen the burden of age-related macromolecular damage through antioxidant supplementation and caloric restriction. However, data concerning the effect of these anti-aging regimens on age-related biomolecular changes in rat brain is still lacking. In the present study, for the first time, we employed Fourier transform infrared (FTIR) spectroscopy, to investigate the effect of quercetin, caloric restriction (CR) and combination of both on alterations in the composition of lipids and proteins of aged rat brain cerebral cortex. Aged male Wistar rats (21 months old) were divided into four groups: Control (CONT), fed pellet diet; Quercetin (QUER), fed quercetin (50 mg/kg/day); CR (caloric restriction) (fed 40% reduced CONT), and CRQ (40% CR and 50 mg/kg/day QUER). Three-month-old rats served as young control (YOUNG). Our short-term study (45 days) shows decreased band area of unsaturated lipids, decreased area ratios of olefinic/lipid and CH2 antisymmetric stretching (2925 cm-1)/lipids in CONT group compared to young rats, suggesting age-associated lipid peroxidation in aged rats. A slight decrease in the frequency of CH2 antisymmetric mode of lipids (whereas no change in CH2 symmetric mode), but a decrease in bandwidths of both CH2 antisymmetric and symmetric modes of lipids was observed for CONT group compared to YOUNG. Further, a significant decrease in the peak area of infrared bands of proteins and an increase in the peak area of the CO band of lipids was observed in the CONT group. Our data also show that lower levels of α-helical structures and higher levels of random coils, representing altered protein secondary structure composition in the CONT group compared to YOUNG group. Reduction in neuronal cell density and shrinked nucleus was also observed in aged rats. Increase in the accumulation of oxidative mediated damage to macromolecules and diminished antioxidant levels, could be the possible reason for the age-related alterations in the composition of lipids and proteins. However, the combination of quercetin and CR, but not either treatment alone, significantly prevented the age associated alterations in the lipid and protein profiles in the rat cerebral cortex. Further, our results help to understand the mechanism of action of antioxidants under non-restriction and CR conditions, this might help in the development of novel anti-aging treatments to ameliorate oxidative stress in age-related disorders.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India
| | - D Narsimulu
- Department of Physics, Pondicherry University, Puducherry 605 014, India
| | - J Udaya Bhanu
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India
| | - N Satyanarayana
- Department of Physics, Pondicherry University, Puducherry 605 014, India
| | - Latha Periyasamy
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605 014, India.
| |
Collapse
|
23
|
Chudoba C, Wardelmann K, Kleinridders A. Molecular effects of dietary fatty acids on brain insulin action and mitochondrial function. Biol Chem 2019; 400:991-1003. [PMID: 30730834 DOI: 10.1515/hsz-2018-0477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 01/28/2019] [Indexed: 01/17/2023]
Abstract
The prevalence of obesity and its co-morbidities such as insulin resistance and type 2 diabetes are tightly linked to increased ingestion of palatable fat enriched food. Thus, it seems intuitive that the brain senses elevated amounts of fatty acids (FAs) and affects adaptive metabolic response, which is connected to mitochondrial function and insulin signaling. This review will address the effect of dietary FAs on brain insulin and mitochondrial function with a special emphasis on the impact of different FAs on brain function and metabolism.
Collapse
Affiliation(s)
- Chantal Chudoba
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Kristina Wardelmann
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - André Kleinridders
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| |
Collapse
|
24
|
Fiocco AJ, Krieger L, D'Amico D, Parrott MD, Laurin D, Gaudreau P, Greenwood C, Ferland G. A systematic review of existing peripheral biomarkers of cognitive aging: Is there enough evidence for biomarker proxies in behavioral modification interventions?: An initiative in association with the nutrition, exercise and lifestyle team of the Canadian Consortium on Neurodegeneration in Aging. Ageing Res Rev 2019; 52:72-119. [PMID: 31059801 DOI: 10.1016/j.arr.2019.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/09/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Peripheral biomarkers have shown significant value in predicting brain health and may serve as a useful proxy measurement in the assessment of evidence-based lifestyle behavior modification programs, including physical activity and nutrition programs, that aim to maintain cognitive function in late life. The aim of this systematic review was to elucidate which peripheral biomarkers are robustly associated with cognitive function among relatively healthy non-demented older adults. Following the standards for systematic reviews (PICO, PRIMSA), and employing MEDLINE and Scopus search engines, 222 articles were included in the review. Based on the review of biomarker proxies of cognitive health, it is recommended that a comprehensive biomarker panel, or biomarker signature, be developed as a clinical end point for behavior modification trials aimed at enhancing cognitive function in late life. The biomarker signature should take a multisystemic approach, including lipid, immune/inflammatory, and metabolic biomarkers in the biological signature index of cognitive health.
Collapse
Affiliation(s)
| | - Laura Krieger
- Department of Psychology, Ryerson University, Toronto, ON, Canada
| | - Danielle D'Amico
- Department of Psychology, Ryerson University, Toronto, ON, Canada
| | | | - Danielle Laurin
- Laval University, Centre de recherche du CHU de Québec, QC, Canada
| | | | | | | |
Collapse
|
25
|
Metz VG, Segat HJ, Dias VT, Barcelos RCS, Maurer LH, Stiebe J, Emanuelli T, Burger ME, Pase CS. Omega-3 decreases D1 and D2 receptors expression in the prefrontal cortex and prevents amphetamine-induced conditioned place preference in rats. J Nutr Biochem 2019; 67:182-189. [PMID: 30951972 DOI: 10.1016/j.jnutbio.2019.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 02/13/2019] [Accepted: 02/28/2019] [Indexed: 01/09/2023]
Abstract
Amphetamine (AMPH) abuse is a serious public health problem due to the high addictive potential of this drug, whose use is related to severe brain neurotoxicity and memory impairments. So far, therapies for psychostimulant addiction have had limited efficacy. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have shown beneficial influences on the prevention and treatment of several diseases that affect the central nervous system. Here, we assessed the influence of fish oil (FO), which is rich in n-3 PUFA, on withdrawal and relapse symptoms following re-exposure to AMPH. Male Wistar rats received d,l-AMPH or vehicle in the conditioned place preference (CPP) paradigm for 14 days. Then, half of each experimental group was treated with FO (3 g/kg, p.o.) for 14 days. Subsequently, animals were re-exposed to AMPH-CPP for three additional days, in order to assess relapse behavior. Our findings have evidenced that FO prevented relapse induced by AMPH reconditioning. While FO prevented AMPH-induced oxidative damages in the prefrontal cortex, molecular assays allowed us to observe that it was also able to modulate dopaminergic cascade markers (DAT, TH, VMAT-2, D1R and D2R) in the same brain area, thus preventing AMPH-induced molecular changes. To the most of our knowledge, this is the first study to show a natural alternative tool which is able to prevent psychostimulant relapse following drug withdrawal. This non-invasive and healthy nutraceutical may be considered as an adjuvant treatment in detoxification clinics.
Collapse
Affiliation(s)
- Vinícia Garzella Metz
- Programa de Pós-Graduação em Farmacologia-Universidade Federal de Santa Maria, RS, Brazil
| | - Hecson Jesser Segat
- Programa de Pós-Graduação em Bioquímica Toxicológica - Universidade Federal de Santa Maria, RS, Brazil
| | - Verônica Tironi Dias
- Programa de Pós-Graduação em Farmacologia-Universidade Federal de Santa Maria, RS, Brazil
| | | | - Luana Haselein Maurer
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos-Universidade Federal de Santa Maria, RS, Brazil
| | - Jéssica Stiebe
- Departamento de Tecnologia e Ciências dos Alimentos - Universidade Federal de Santa Maria, RS, Brazil
| | - Tatiana Emanuelli
- Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos-Universidade Federal de Santa Maria, RS, Brazil
| | | | - Camila Simonetti Pase
- Programa de Pós-Graduação em Farmacologia-Universidade Federal de Santa Maria, RS, Brazil; Universidade Federal do Pampa, Campus Uruguaiana, RS, Brazil.
| |
Collapse
|
26
|
Hennebelle M, Metherel AH, Kitson AP, Otoki Y, Yang J, Lee KSS, Hammock BD, Bazinet RP, Taha AY. Brain oxylipin concentrations following hypercapnia/ischemia: effects of brain dissection and dissection time. J Lipid Res 2019; 60:671-682. [PMID: 30463986 PMCID: PMC6399504 DOI: 10.1194/jlr.d084228] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 10/12/2018] [Indexed: 01/12/2023] Open
Abstract
PUFAs are precursors to bioactive oxylipin metabolites that increase in the brain following CO2-induced hypercapnia/ischemia. It is not known whether the brain-dissection process and its duration also alter these metabolites. We applied CO2 with or without head-focused microwave fixation for 2 min to evaluate the effects of CO2-induced asphyxiation, dissection, and dissection time on brain oxylipin concentrations. Compared with head-focused microwave fixation (control), CO2 followed by microwave fixation prior to dissection increased oxylipins derived from lipoxygenase (LOX), 15-hydroxyprostaglandin dehydrogenase (PGDH), cytochrome P450 (CYP), and soluble epoxide hydrolase (sEH) enzymatic pathways. This effect was enhanced when the duration of postmortem ischemia was prolonged by 6.4 min prior to microwave fixation. Brains dissected from rats subjected to CO2 without microwave fixation showed greater increases in LOX, PGDH, CYP and sEH metabolites compared with all other groups, as well as increased cyclooxygenase metabolites. In nonmicrowave-irradiated brains, sEH metabolites and one CYP metabolite correlated positively and negatively with dissection time, respectively. This study presents new evidence that the dissection process and its duration increase brain oxylipin concentrations, and that this is preventable by microwave fixation. When microwave fixation is not available, lipidomic studies should account for dissection time to reduce these artifacts.
Collapse
Affiliation(s)
- Marie Hennebelle
- Departments of Food Science and Technology University of California, Davis, Davis, CA
| | - Adam H Metherel
- Department of Nutritional Sciences Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alex P Kitson
- Department of Nutritional Sciences Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yurika Otoki
- Departments of Food Science and Technology University of California, Davis, Davis, CA
- Food and Biodynamic Laboratory Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Jun Yang
- Entomology and Nematology, University of California, Davis, Davis, CA
- College of Agriculture and Environmental Sciences, and Comprehensive Cancer Center University of California, Davis, Davis, CA
| | - Kin Sing Stephen Lee
- Departments of Food Science and Technology University of California, Davis, Davis, CA
- College of Agriculture and Environmental Sciences, and Comprehensive Cancer Center University of California, Davis, Davis, CA
| | - Bruce D Hammock
- Entomology and Nematology, University of California, Davis, Davis, CA
- College of Agriculture and Environmental Sciences, and Comprehensive Cancer Center University of California, Davis, Davis, CA
| | - Richard P Bazinet
- Department of Nutritional Sciences Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ameer Y Taha
- Departments of Food Science and Technology University of California, Davis, Davis, CA
| |
Collapse
|
27
|
Hashimoto K. Role of Soluble Epoxide Hydrolase in Metabolism of PUFAs in Psychiatric and Neurological Disorders. Front Pharmacol 2019; 10:36. [PMID: 30761004 PMCID: PMC6363819 DOI: 10.3389/fphar.2019.00036] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammation plays a key role in the pathogenesis of a number of psychiatric and neurological disorders. Soluble epoxide hydrolases (sEH), enzymes present in all living organisms, metabolize epoxy fatty acids (EpFAs) to corresponding 1,2-diols by the addition of a molecule of water. Accumulating evidence suggests that sEH in the metabolism of polyunsaturated fatty acids (PUFAs) plays a key role in inflammation. Preclinical studies demonstrated that protein expression of sEH in the prefrontal cortex, striatum, and hippocampus from mice with depression-like phenotype was higher than control mice. Furthermore, protein expression of sEH in the parietal cortex from patients with major depressive disorder was higher than controls. Interestingly, Ephx2 knock-out (KO) mice exhibit stress resilience after chronic social defeat stress. Furthermore, the sEH inhibitors have antidepressant effects in animal models of depression. In addition, pharmacological inhibition or gene KO of sEH protected against dopaminergic neurotoxicity in the striatum after repeated administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in an animal model of Parkinson’s disease (PD). Protein expression of sEH in the striatum from MPTP-treated mice was higher than control mice. A number of studies using postmortem brain samples showed that the deposition of protein aggregates of α-synuclein, termed Lewy bodies, is evident in multiple brain regions of patients from PD and dementia with Lewy bodies (DLB). Moreover, the expression of the sEH protein in the striatum from patients with DLB was significantly higher compared with controls. Interestingly, there was a positive correlation between sEH expression and the ratio of phosphorylated α-synuclein to α-synuclein in the striatum. In the review, the author discusses the role of sEH in the metabolism of PUFAs in inflammation-related psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Center for Forensic Mental Health, Chiba University, Chiba, Japan
| |
Collapse
|
28
|
Wang CC, Guo Y, Zhou MM, Xue CH, Chang YG, Zhang TT, Wang YM. Comparative studies of DHA-enriched phosphatidylcholine and recombination of DHA-ethyl ester with egg phosphatidylcholine on ameliorating memory and cognitive deficiency in SAMP8 mice. Food Funct 2019; 10:938-950. [DOI: 10.1039/c8fo01822g] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DHA-PLs (DHA-PC) could not be substituted by recombination of commercial fish oil with DHA-free PC in alleviating age-related memory loss and cognitive deficiency in SAMP8 mice.
Collapse
Affiliation(s)
- Cheng-Cheng Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Ying Guo
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Miao-Miao Zhou
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Chang-Hu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology
| | - Yao-Guang Chang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Tian-Tian Zhang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
| | - Yu-Ming Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao 266003
- P. R. China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology
| |
Collapse
|
29
|
Chitre NM, Moniri NH, Murnane KS. Omega-3 Fatty Acids as Druggable Therapeutics for Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:735-749. [PMID: 31724519 PMCID: PMC7204890 DOI: 10.2174/1871527318666191114093749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/07/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders are commonly associated with a complex pattern of pathophysiological hallmarks, including increased oxidative stress and neuroinflammation, which makes their treatment challenging. Omega-3 Fatty Acids (O3FA) are natural products with reported neuroprotective, anti-inflammatory, and antioxidant effects. These effects have been attributed to their incorporation into neuronal membranes or through the activation of intracellular or recently discovered cell-surface receptors (i.e., Free-Fatty Acid Receptors; FFAR). Molecular docking studies have investigated the roles of O3FA as agonists of FFAR and have led to the development of receptor-specific targeted agonists for therapeutic purposes. Moreover, novel formulation strategies for targeted delivery of O3FA to the brain have supported their development as therapeutics for neurodegenerative disorders. Despite the compelling evidence of the beneficial effects of O3FA for several neuroprotective functions, they are currently only available as unregulated dietary supplements, with only a single FDA-approved prescription product, indicated for triglyceride reduction. This review highlights the relative safety and efficacy of O3FA, their drug-like properties, and their capacity to be formulated in clinically viable drug delivery systems. Interestingly, the presence of cardiac conditions such as hypertriglyceridemia is associated with brain pathophysiological hallmarks of neurodegeneration, such as neuroinflammation, thereby further suggesting potential therapeutic roles of O3FA for neurodegenerative disorders. Taken together, this review article summarizes and integrates the compelling evidence regarding the feasibility of developing O3FA and their synthetic derivatives as potential drugs for neurodegenerative disorders.
Collapse
Affiliation(s)
- Neha M. Chitre
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| | - Nader H. Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| | - Kevin S. Murnane
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| |
Collapse
|
30
|
Huun MU, Garberg HT, Buonocore G, Longini M, Belvisi E, Bazzini F, Proietti F, Saugstad OD, Solberg R. Regional differences of hypothermia on oxidative stress following hypoxia-ischemia: a study of DHA and hypothermia on brain lipid peroxidation in newborn piglets. J Perinat Med 2018; 47:82-89. [PMID: 30110254 DOI: 10.1515/jpm-2017-0355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
Abstract
Background Oxidative stress plays an important part in the pathophysiology of hypoxic-ischemic encephalopathy (HIE) and is reliably measured through prostanoids following lipid peroxidation of polyunsaturated fatty acids (PUFAs). The aim of the study is to measure oxidative stress in the prefrontal cortex, white matter and hippocampus in the brains of hypoxic-ischemic piglets treated with docosahexaenoic acid (DHA) and therapeutic hypothermia (TH) and investigate the additive effects of DHA on hypothermia by factorial design. Methods Fifty-five piglets were randomized as having severe global hypoxia (n=48) or not (sham, n=7). Hypoxic piglets were further randomized: vehicle (VEH), DHA, VEH+hypothermia (HT) or HT+DHA. A total of 5 mg/kg DHA was given intravenously 210 min after the end of hypoxia. Brain tissues were analyzed using liquid chromatography triple quadrupole mass spectrometry technique (LC-MS). A two-way analysis of variance (ANOVA) was performed with DHA and HT as main effects. Results In the white matter, we found main effects of DHA on DH-isoprostanes (P=0.030) and a main effect of HT on F4-neuroprostanes (F4-NeuroPs) (P=0.007), F2-isoprostanes (F2-IsoPs) (P=0.043) and DH-isoprostanes (P=0.023). In the cortex, the ANOVA analysis showed the interactions of main effects between DHA and HT for neurofuranes (NeuroFs) (P=0.092) and DH-isoprostanes (P=0.015) as DHA significantly reduced lipid peroxidation in the absence of HT. DHA compared to VEH significantly reduced NeuroFs (P=0.019) and DH-isoprostanes (P=0.010). No differences were found in the hippocampus. Conclusion After severe hypoxia, HT reduced lipid peroxidation in the white matter but not in the cortical gray matter. HT attenuated the reducing effect of DHA on lipid peroxidation in the cortex. Further studies are needed to determine whether DHA can be an effective add-on therapy for TH.
Collapse
Affiliation(s)
- Marianne U Huun
- Department of Pediatric Research, Institute of Surgical Research, University of Oslo, Oslo University Hospital Rikshospitalet, Postboks 4950 Nydalen, 0424 Oslo, Norway, Tel.: +47 97060117
| | - Håvard T Garberg
- Department of Pediatric Research, Institute of Surgical Research, University of Oslo, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mariangela Longini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Elisa Belvisi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Francesco Bazzini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Fabrizio Proietti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ola Didrik Saugstad
- Department of Pediatric Research, Institute of Surgical Research, University of Oslo, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Rønnaug Solberg
- Department of Pediatric Research, Institute of Surgical Research, University of Oslo, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway
| |
Collapse
|
31
|
Champigny CM, Cormier RPJ, Simard CJ, St-Coeur PD, Fortin S, Pichaud N. Omega-3 Monoacylglyceride Effects on Longevity, Mitochondrial Metabolism and Oxidative Stress: Insights from Drosophila melanogaster. Mar Drugs 2018; 16:md16110453. [PMID: 30453574 PMCID: PMC6266923 DOI: 10.3390/md16110453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/06/2018] [Accepted: 11/10/2018] [Indexed: 12/12/2022] Open
Abstract
During the last decade, essential polyunsaturated fatty acids (PUFAs) such as eicosatetraenoic acid (EPA) and docosahexaenoic acid (DHA) derived from marine sources have been investigated as nonpharmacological dietary supplements to improve different pathological conditions, as well as aging. The aim of this study was to determine the effects of dietary n-3 PUFA monoacylglycerides (MAG, both EPA and DHA) on the mitochondrial metabolism and oxidative stress of a short-lifespan model, Drosophila melanogaster, sampled at five different ages. Our results showed that diets supplemented with MAG-EPA and MAG-DHA increased median lifespan by 14.6% and decreased mitochondrial proton leak resulting in an increase of mitochondrial coupling. The flies fed on MAG-EPA also had higher electron transport system capacity and mitochondrial oxidative capacities. Moreover, both n-3 PUFAs delayed the occurrence of lipid peroxidation but only flies fed the MAG-EPA diet showed maintenance of superoxide dismutase activity during aging. Our study therefore highlights the potential of n-3 PUFA monoacylglycerides as nutraceutical compounds to delay the onset of senescence by acting directly or indirectly on the mitochondrial metabolism and suggests that Drosophila could be a relevant model for the study of the fundamental mechanisms linking the effects of n-3 PUFAs to aging.
Collapse
Affiliation(s)
- Camille M Champigny
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada.
| | - Robert P J Cormier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada.
| | - Chloé J Simard
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada.
| | - Patrick-Denis St-Coeur
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada.
| | | | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada.
| |
Collapse
|
32
|
Zeinsteger PA, Barberón JL, Leaden PJ, Palacios A. Antioxidant properties of Calendula officinalis L. (Asteraceae) on Fe2+-initiated peroxidation of rat brain mitochondria. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Zhou MM, Che HX, Huang JQ, Zhang TT, Xu J, Xue CH, Wang YM. Comparative Study of Different Polar Groups of EPA-Enriched Phospholipids on Ameliorating Memory Loss and Cognitive Deficiency in Aged SAMP8 Mice. Mol Nutr Food Res 2018; 62:e1700637. [DOI: 10.1002/mnfr.201700637] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/10/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Miao-miao Zhou
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Hong-xia Che
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Jia-qi Huang
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Tian-tian Zhang
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Jie Xu
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Chang-hu Xue
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| | - Yu-ming Wang
- College of Food Science and Engineering; Ocean University of China; Qingdao P.R. China
| |
Collapse
|
34
|
Freitas HR, Ferreira GDC, Trevenzoli IH, Oliveira KDJ, de Melo Reis RA. Fatty Acids, Antioxidants and Physical Activity in Brain Aging. Nutrients 2017; 9:nu9111263. [PMID: 29156608 PMCID: PMC5707735 DOI: 10.3390/nu9111263] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 12/25/2022] Open
Abstract
Polyunsaturated fatty acids and antioxidants are important mediators in the central nervous system. Lipid derivatives may control the production of proinflammatory agents and regulate NF-κB activity, microglial activation, and fatty acid oxidation; on the other hand, antioxidants, such as glutathione and ascorbate, have been shown to signal through transmitter receptors and protect against acute and chronic oxidative stress, modulating the activity of different signaling pathways. Several authors have investigated the role of these nutrients in the brains of the young and the aged in degenerative diseases such as Alzheimer’s and Parkinson’s, and during brain aging due to adiposity- and physical inactivity-mediated metabolic disturbances, chronic inflammation, and oxidative stress. Through a literature review, we aimed to highlight recent data on the role of adiposity, fatty acids, antioxidants, and physical inactivity in the pathophysiology of the brain and in the molecular mechanisms of senescence. Data indicate the complexity and necessity of endogenous/dietary antioxidants for the maintenance of redox status and the control of neuroglial signaling under stress. Recent studies also indicate that omega-3 and -6 fatty acids act in a competitive manner to generate mediators for energy metabolism, influencing feeding behavior, neural plasticity, and memory during aging. Finding pharmacological or dietary resources that mitigate or prevent neurodegenerative affections continues to be a great challenge and requires additional effort from researchers, clinicians, and nutritionists in the field.
Collapse
Affiliation(s)
- Hércules Rezende Freitas
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.
| | - Gustavo da Costa Ferreira
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.
- Laboratory of Neuroenergetics and Inborn Errors of Metabolism, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.
| | - Isis Hara Trevenzoli
- Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.
| | - Karen de Jesus Oliveira
- Laboratory of Endocrine Physiology and Metabology, Biomedical Institute, Universidade Federal Fluminense, Niterói 24210-130, Brazil.
| | - Ricardo Augusto de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil.
| |
Collapse
|
35
|
Kumar Singh P, Kumar Singh M, Singh Yadav R, Kumar Dixit R, Mehrotra A, Nath R. Attenuation of Lead-Induced Neurotoxicity by Omega-3 Fatty Acid in Rats. Ann Neurosci 2017; 24:221-232. [PMID: 29849446 DOI: 10.1159/000481808] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/10/2017] [Indexed: 01/10/2023] Open
Abstract
Background Lead is widely distributed in the environment and has been found to be associated with various health problems including neurodegenerative diseases. Purpose In view of the increasing health risk caused by lead, this study has been carried out to investigate the neuroprotective effect of omega-3 fatty acid (omega-3FA) in lead-induced neurotoxicity in rats. Methods Biochemical parameters including oxidative stress in brain regions, lead levels in blood and brain regions and histopathological examination of brain regions of rats were carried out in the present study. Results Rats exposed to lead (lead acetate 7.5 mg/kg body weight p.o. for 14 days) caused a significant increase in the levels of lipid peroxidation, protein carbonyl content, ROS production and decreased the activities of glutathione peroxidase, superoxide dismutase and catalase in the cerebellum and cerebral cortex, respectively, as compared to controls. Abnormal histopathological changes and increase in the levels of lead in blood and brain were also observed as compared to controls. Co-treatment of lead with omega-3FA (750 mg/kg body weight p.o. for 14 days) decreased the levels of lipid peroxidation, protein carbonyl content, ROS production and increased the activities of glutathione peroxidase, superoxide dismutase and catalase and showed protection in the histopathological study as compared to rats treated with lead alone. Conclusions The result of the present study shows that lead-induced oxidative stress and histopathological alteration in the brain region were significantly protected with co-treatment of lead and omega-3FA. This could be due to its strong antioxidant potential and metal-binding property.
Collapse
Affiliation(s)
- Pramod Kumar Singh
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, India
| | - Manish Kumar Singh
- Department of Biochemistry, Moti Lal Nehru Medical College, Allahabad, India
| | - Rajesh Singh Yadav
- Department of Criminology and Forensic Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Rakesh Kumar Dixit
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, India
| | - Anju Mehrotra
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, India
| | - Rajendra Nath
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, India
| |
Collapse
|
36
|
Singh PK, Singh MK, Yadav RS, Nath R, Mehrotra A, Rawat A, Dixit RK. Omega-3 fatty acid attenuates oxidative stress in cerebral cortex, cerebellum, and hippocampus tissue and improves neurobehavioral activity in chronic lead-induced neurotoxicity. Nutr Neurosci 2017; 22:83-97. [PMID: 28760072 DOI: 10.1080/1028415x.2017.1354542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Objectives: In view of the increasing risk of lead on human health, the present study has been carried out to investigate the neuroprotective effect of omega-3 fatty acid on chronic lead-induced neurotoxicity and behavioral impairment in rats. Methods: Different neurobehavioral parameters, biochemical assays, and histopathological analyses in brain regions of rats were conducted. Results: Rats exposed to different doses of lead (lead acetate 2.5, 5.0, 7.5 mg/kg body weight p.o. for 90 days) caused a significant decrease in body weight, brain weight, and behavioral changes as compared to controls. Abnormal histopathological and increased levels of lead in blood and brain regions increased the levels of ROS, LPO, PCC and decreased the levels of GSH with concomitant reduction in SOD, CAT, and GPx activities in the brain region of rats treated with different doses of lead as compared to controls. Co-treatment of lead with omega-3 fatty acid (500 mg/kg body weight p.o. for 90 days) decreased the levels of ROS, LPO, PCC, and increased the level of GSH, also increased SOD, CAT, and GPx activity and showed improvements in behavioral as well as histopathological changes as compared to lead-treated groups. Discussion: Our results proved that omega-3 fatty acid improved behavioral deficits, altered histopathological and oxidative stress in lead-intoxicated rats. Among three different doses, 2.5 mg/kg b.wt. of lead along with omega-3 fatty acid was the most preventive dose for the neurotoxicity. This work reveals the potential of omega-fatty acid as a protective drug for lead neurotoxicity.
Collapse
Affiliation(s)
- Pramod Kumar Singh
- a Department of Pharmacology and Therapeutics , King George's Medical University , Lucknow 226 003 , UP , India
| | - Manish Kumar Singh
- b Department of Biochemistry , Moti Lal Nehru Medical College , Allahabad , UP , India
| | - Rajesh Singh Yadav
- c Department of Criminology and Forensic Science , Dr. Harisingh Gour Central University , Sagar 470003 , MP , India
| | - Rajendra Nath
- a Department of Pharmacology and Therapeutics , King George's Medical University , Lucknow 226 003 , UP , India
| | - Anju Mehrotra
- a Department of Pharmacology and Therapeutics , King George's Medical University , Lucknow 226 003 , UP , India
| | - Akash Rawat
- a Department of Pharmacology and Therapeutics , King George's Medical University , Lucknow 226 003 , UP , India
| | - Rakesh Kumar Dixit
- a Department of Pharmacology and Therapeutics , King George's Medical University , Lucknow 226 003 , UP , India
| |
Collapse
|
37
|
Parga JA, García-Garrote M, Martínez S, Raya Á, Labandeira-García JL, Rodríguez-Pallares J. Prostaglandin EP2 Receptors Mediate Mesenchymal Stromal Cell-Neuroprotective Effects on Dopaminergic Neurons. Mol Neurobiol 2017; 55:4763-4776. [DOI: 10.1007/s12035-017-0681-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/29/2017] [Indexed: 12/20/2022]
|
38
|
Freitas HR, Isaac AR, Malcher-Lopes R, Diaz BL, Trevenzoli IH, De Melo Reis RA. Polyunsaturated fatty acids and endocannabinoids in health and disease. Nutr Neurosci 2017; 21:695-714. [PMID: 28686542 DOI: 10.1080/1028415x.2017.1347373] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are lipid derivatives of omega-3 (docosahexaenoic acid, DHA, and eicosapentaenoic acid, EPA) or of omega-6 (arachidonic acid, ARA) synthesized from membrane phospholipids and used as a precursor for endocannabinoids (ECs). They mediate significant effects in the fine-tune adjustment of body homeostasis. Phyto- and synthetic cannabinoids also rule the daily life of billions worldwide, as they are involved in obesity, depression and drug addiction. Consequently, there is growing interest to reveal novel active compounds in this field. Cloning of cannabinoid receptors in the 90s and the identification of the endogenous mediators arachidonylethanolamide (anandamide, AEA) and 2-arachidonyglycerol (2-AG), led to the characterization of the endocannabinoid system (ECS), together with their metabolizing enzymes and membrane transporters. Today, the ECS is known to be involved in diverse functions such as appetite control, food intake, energy balance, neuroprotection, neurodegenerative diseases, stroke, mood disorders, emesis, modulation of pain, inflammatory responses, as well as in cancer therapy. Western diet as well as restriction of micronutrients and fatty acids, such as DHA, could be related to altered production of pro-inflammatory mediators (e.g. eicosanoids) and ECs, contributing to the progression of cardiovascular diseases, diabetes, obesity, depression or impairing conditions, such as Alzheimer' s disease. Here we review how diets based in PUFAs might be linked to ECS and to the maintenance of central and peripheral metabolism, brain plasticity, memory and learning, blood flow, and genesis of neural cells.
Collapse
Affiliation(s)
- Hércules Rezende Freitas
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Alinny Rosendo Isaac
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | | | - Bruno Lourenço Diaz
- c Laboratory of Inflammation, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Isis Hara Trevenzoli
- d Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Ricardo Augusto De Melo Reis
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| |
Collapse
|
39
|
Wahl D, Cogger VC, Solon-Biet SM, Waern RVR, Gokarn R, Pulpitel T, Cabo RD, Mattson MP, Raubenheimer D, Simpson SJ, Le Couteur DG. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev 2016; 31:80-92. [PMID: 27355990 PMCID: PMC5035589 DOI: 10.1016/j.arr.2016.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022]
Abstract
Old age is the greatest risk factor for most neurodegenerative diseases. During recent decades there have been major advances in understanding the biology of aging, and the development of nutritional interventions that delay aging including calorie restriction (CR) and intermittent fasting (IF), and chemicals that influence pathways linking nutrition and aging processes. CR influences brain aging in many animal models and recent findings suggest that dietary interventions can influence brain health and dementia in older humans. The role of individual macronutrients in brain aging also has been studied, with conflicting results about the effects of dietary protein and carbohydrates. A new approach known as the Geometric Framework (GF) has been used to unravel the complex interactions between macronutrients (protein, fat, and carbohydrate) and total energy on outcomes such as aging. These studies have shown that low-protein, high-carbohydrate (LPHC) diets are optimal for lifespan in ad libitum fed animals, while total calories have minimal effect once macronutrients are taken into account. One of the primary purposes of this review is to explore the notion that macronutrients may have a more translational potential than CR and IF in humans, and therefore there is a pressing need to use GF to study the impact of diet on brain aging. Furthermore, given the growing recognition of the role of aging biology in dementia, such studies might provide a new approach for dietary interventions for optimizing brain health and preventing dementia in older people.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Rosilene V R Waern
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Rahul Gokarn
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Faculty of Veterinary Science, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia.
| |
Collapse
|
40
|
Wen M, Xu J, Ding L, Zhang L, Du L, Wang J, Wang Y, Xue C. Eicosapentaenoic acid-enriched phospholipids improve Aβ1–40-induced cognitive deficiency in a rat model of Alzheimer's disease. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
41
|
Abstract
The present review examines the pig as a model for physiological studies in human subjects related to nutrient sensing, appetite regulation, gut barrier function, intestinal microbiota and nutritional neuroscience. The nutrient-sensing mechanisms regarding acids (sour), carbohydrates (sweet), glutamic acid (umami) and fatty acids are conserved between humans and pigs. In contrast, pigs show limited perception of high-intensity sweeteners and NaCl and sense a wider array of amino acids than humans. Differences on bitter taste may reflect the adaptation to ecosystems. In relation to appetite regulation, plasma concentrations of cholecystokinin and glucagon-like peptide-1 are similar in pigs and humans, while peptide YY in pigs is ten to twenty times higher and ghrelin two to five times lower than in humans. Pigs are an excellent model for human studies for vagal nerve function related to the hormonal regulation of food intake. Similarly, the study of gut barrier functions reveals conserved defence mechanisms between the two species particularly in functional permeability. However, human data are scant for some of the defence systems and nutritional programming. The pig model has been valuable for studying the changes in human microbiota following nutritional interventions. In particular, the use of human flora-associated pigs is a useful model for infants, but the long-term stability of the implanted human microbiota in pigs remains to be investigated. The similarity of the pig and human brain anatomy and development is paradigmatic. Brain explorations and therapies described in pig, when compared with available human data, highlight their value in nutritional neuroscience, particularly regarding functional neuroimaging techniques.
Collapse
|
42
|
Cutuli D, Pagani M, Caporali P, Galbusera A, Laricchiuta D, Foti F, Neri C, Spalletta G, Caltagirone C, Petrosini L, Gozzi A. Effects of Omega-3 Fatty Acid Supplementation on Cognitive Functions and Neural Substrates: A Voxel-Based Morphometry Study in Aged Mice. Front Aging Neurosci 2016; 8:38. [PMID: 26973513 PMCID: PMC4777728 DOI: 10.3389/fnagi.2016.00038] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
Human and experimental studies have revealed putative neuroprotective and pro-cognitive effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) in aging, evidencing positive correlations between peripheral n-3 PUFA levels and regional grey matter (GM) volume, as well as negative correlations between dietary n-3 PUFA levels and cognitive deficits. We recently showed that n-3 PUFA supplemented aged mice exhibit better hippocampal-dependent mnesic functions, along with enhanced cellular plasticity and reduced neurodegeneration, thus supporting a role of n-3 PUFA supplementation in preventing cognitive decline during aging. To corroborate these initial results and develop new evidence on the effects of n-3 PUFA supplementation on brain substrates at macro-scale level, here we expanded behavioral analyses to the emotional domain (anxiety and coping skills), and carried out a fine-grained regional GM volumetric mapping by using high-resolution MRI-based voxel-based morphometry. The behavioral effects of 8 week n-3 PUFA supplementation were measured on cognitive (discriminative, spatial and social) and emotional (anxiety and coping) abilities of aged (19 month-old at the onset of study) C57B6/J mice. n-3 PUFA supplemented mice showed better mnesic performances as well as increased active coping skills. Importantly, these effects were associated with enlarged regional hippocampal, retrosplenial and prefrontal GM volumes, and with increased post mortem n-3 PUFA brain levels. These findings indicate that increased dietary n-3 PUFA intake in normal aging can improve fronto-hippocampal GM structure and function, an effect present also when the supplementation starts at late age. Our data are consistent with a protective role of n-3 PUFA supplementation in counteracting cognitive decline, emotional dysfunctions and brain atrophy.
Collapse
Affiliation(s)
- Debora Cutuli
- Santa Lucia FoundationRome, Italy; University of Rome "Sapienza"Rome, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Istituto Italiano di TecnologiaRovereto, Italy; Center for Mind and Brain Sciences, University of TrentoRovereto, Italy
| | - Paola Caporali
- Santa Lucia FoundationRome, Italy; University of Rome "Sapienza"Rome, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia Rovereto, Italy
| | | | - Francesca Foti
- Santa Lucia FoundationRome, Italy; University of Rome "Sapienza"Rome, Italy
| | | | | | - Carlo Caltagirone
- Santa Lucia FoundationRome, Italy; University of Rome "Tor Vergata"Rome, Italy
| | - Laura Petrosini
- Santa Lucia FoundationRome, Italy; University of Rome "Sapienza"Rome, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia Rovereto, Italy
| |
Collapse
|
43
|
Jackson PA, Forster JS, Bell JG, Dick JR, Younger I, Kennedy DO. DHA Supplementation Alone or in Combination with Other Nutrients Does not Modulate Cerebral Hemodynamics or Cognitive Function in Healthy Older Adults. Nutrients 2016; 8:86. [PMID: 26867200 PMCID: PMC4772049 DOI: 10.3390/nu8020086] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/25/2016] [Accepted: 02/02/2016] [Indexed: 12/25/2022] Open
Abstract
A number of recent trials have demonstrated positive effects of dietary supplementation with the omega-3 polyunsaturated fatty acids (n-3 PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on measures of cognitive function in healthy young and older adults. One potential mechanism by which EPA, and DHA in particular, may exert these effects is via modulation of cerebral hemodynamics. In order to investigate the effects of DHA alone or provided as one component of a multinutrient supplement (also including Gingko biloba, phosphatidylserine and vitamins B₉ and B₁₂) on measures of cerebral hemodynamics and cognitive function, 86 healthy older adults aged 50-70 years who reported subjective memory deficits were recruited to take part in a six month daily dietary supplementation trial. Relative changes in the concentration of oxygenated hemoglobin and deoxygenated hemoglobin were assessed using Near Infrared Spectroscopy (NIRS) during the performance of cognitive tasks prior to and following the intervention period. Performance on the cognitive tasks was also assessed. No effect of either active treatment was found for any of the NIRS measures or on the cognitive performance tasks, although the study was limited by a number of factors. Further work should continue to evaluate more holistic approaches to cognitive aging.
Collapse
Affiliation(s)
- Philippa A Jackson
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.
| | - Joanne S Forster
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.
| | - J Gordon Bell
- Institute of Aquaculture, University of Stirling, Stirlingshire FK9 4LA, UK.
| | - James R Dick
- Institute of Aquaculture, University of Stirling, Stirlingshire FK9 4LA, UK.
| | - Irene Younger
- Institute of Aquaculture, University of Stirling, Stirlingshire FK9 4LA, UK.
| | - David O Kennedy
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.
| |
Collapse
|
44
|
Jackson PA, Pialoux V, Corbett D, Drogos L, Erickson KI, Eskes GA, Poulin MJ. Promoting brain health through exercise and diet in older adults: a physiological perspective. J Physiol 2016; 594:4485-98. [PMID: 27524792 DOI: 10.1113/jp271270] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/01/2015] [Indexed: 01/08/2023] Open
Abstract
The rise in incidence of age-related cognitive impairment is a global health concern. Ageing is associated with a number of changes in the brain that, collectively, contribute to the declines in cognitive function observed in older adults. Structurally, the ageing brain atrophies as white and grey matter volumes decrease. Oxidative stress and inflammation promote endothelial dysfunction thereby hampering cerebral perfusion and thus delivery of energy substrates and nutrients. Further, the development of amyloid plaques and neurofibrillary tangles contributes to neuronal loss. Of interest, there are substantial inter-individual differences in the degree to which these physical and functional changes impact upon cognitive function as we grow older. This review describes how engaging in physical activity and cognitive activities and adhering to a Mediterranean style diet promote 'brain health'. From a physiological perspective, we discuss the effects of these modifiable lifestyle behaviours on the brain, and how some recent human trials are beginning to show some promise as to the effectiveness of lifestyle behaviours in combating cognitive impairment. Moreover, we propose that these lifestyle behaviours, through numerous mechanisms, serve to increase brain, cerebrovascular and cognitive reserve, thereby preserving and enhancing cognitive function for longer.
Collapse
Affiliation(s)
- Philippa A Jackson
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle upon Tyne, UK
| | - Vincent Pialoux
- Centre de Recherche et d'Innovation sur le Sport, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, Ontario, Canada
| | - Lauren Drogos
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gail A Eskes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Marc J Poulin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
45
|
Ghasemifard S, Sinclair AJ, Kaur G, Lewandowski P, Turchini GM. What Is the Most Effective Way of Increasing the Bioavailability of Dietary Long Chain Omega-3 Fatty Acids--Daily vs. Weekly Administration of Fish Oil? Nutrients 2015; 7:5628-45. [PMID: 26184297 PMCID: PMC4517018 DOI: 10.3390/nu7075241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 12/28/2022] Open
Abstract
The recommendations on the intake of long chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFA) vary from eating oily fish ("once to twice per week") to consuming specified daily amounts of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) ("250-500 mg per day"). It is not known if there is a difference in the uptake/bioavailability between regular daily consumption of supplementsvs. consuming fish once or twice per week. In this study, the bioavailability of a daily dose of n-3 LC-PUFA (Constant treatment), representing supplements, vs. a large weekly dose of n-3 LC-PUFA (Spike treatment), representing consuming once or twice per week, was assessed. Six-week old healthy male Sprague-Dawley rats were fed either a Constant treatment, a Spike treatment or Control treatment (no n-3 LC-PUFA), for six weeks. The whole body, tissues and faeces were analysed for fatty acid content. The results showed that the major metabolic fate of the n-3 LC-PUFA (EPA+docosapentaenoic acid (DPA) + DHA) was towards catabolism (β-oxidation) accounting for over 70% of total dietary intake, whereas deposition accounted less than 25% of total dietary intake. It was found that significantly more n-3 LC-PUFA were β-oxidised when originating from the Constant treatment (84% of dose), compared with the Spike treatment (75% of dose). Conversely, it was found that significantly more n-3 LC-PUFA were deposited when originating from the Spike treatment (23% of dose), than from the Constant treatment (15% of dose). These unexpected findings show that a large dose of n-3 LC-PUFA once per week is more effective in increasing whole body n-3 LC-PUFA content in rats compared with a smaller dose delivered daily.
Collapse
Affiliation(s)
| | | | - Gunveen Kaur
- Centre for Physical Activity and Nutrition Research (CPAN), School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Australia.
| | | | - Giovanni M Turchini
- School of Life and Environmental Sciences, Deakin University, Warrnambool 3280, Australia.
| |
Collapse
|
46
|
Rémond D, Shahar DR, Gille D, Pinto P, Kachal J, Peyron MA, Dos Santos CN, Walther B, Bordoni A, Dupont D, Tomás-Cobos L, Vergères G. Understanding the gastrointestinal tract of the elderly to develop dietary solutions that prevent malnutrition. Oncotarget 2015; 6:13858-98. [PMID: 26091351 PMCID: PMC4546438 DOI: 10.18632/oncotarget.4030] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022] Open
Abstract
Although the prevalence of malnutrition in the old age is increasing worldwide a synthetic understanding of the impact of aging on the intake, digestion, and absorption of nutrients is still lacking. This review article aims at filling the gap in knowledge between the functional decline of the aging gastrointestinal tract (GIT) and the consequences of malnutrition on the health status of elderly. Changes in the aging GIT include the mechanical disintegration of food, gastrointestinal motor function, food transit, chemical food digestion, and functionality of the intestinal wall. These alterations progressively decrease the ability of the GIT to provide the aging organism with adequate levels of nutrients, what contributes to the development of malnutrition. Malnutrition, in turn, increases the risks for the development of a range of pathologies associated with most organ systems, in particular the nervous-, muscoskeletal-, cardiovascular-, immune-, and skin systems. In addition to psychological, economics, and societal factors, dietary solutions preventing malnutrition should thus propose dietary guidelines and food products that integrate knowledge on the functionality of the aging GIT and the nutritional status of the elderly. Achieving this goal will request the identification, validation, and correlative analysis of biomarkers of food intake, nutrient bioavailability, and malnutrition.
Collapse
Affiliation(s)
- Didier Rémond
- UMR 1019, UNH, CRNH Auvergne, INRA, 63000 Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, 63000 Clermont-Ferrand, France
| | - Danit R. Shahar
- Department of Public Health, The S. Daniel Abraham International Center for Health and Nutrition, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Doreen Gille
- Institute for Food Sciences IFS, Agroscope, Federal Department of Economic Affairs, Education and Research EAER, 3003 Berne, Switzerland
| | - Paula Pinto
- Escola Superior Agrária, Insituto Politécnico de Santarém, 2001-904 Santarem, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | | | - Marie-Agnès Peyron
- UMR 1019, UNH, CRNH Auvergne, INRA, 63000 Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, 63000 Clermont-Ferrand, France
| | - Claudia Nunes Dos Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - Barbara Walther
- Institute for Food Sciences IFS, Agroscope, Federal Department of Economic Affairs, Education and Research EAER, 3003 Berne, Switzerland
| | - Alessandra Bordoni
- Department of Agri-Food Sciences and Technologies, University of Bologna, 47521 Cesena, Italy
| | - Didier Dupont
- UMR 1253, Science et Technologie du Lait & de l'Œuf, INRA, 35000 Rennes, France
| | | | - Guy Vergères
- Institute for Food Sciences IFS, Agroscope, Federal Department of Economic Affairs, Education and Research EAER, 3003 Berne, Switzerland
| |
Collapse
|
47
|
Dyall SC. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 2015; 7:52. [PMID: 25954194 PMCID: PMC4404917 DOI: 10.3389/fnagi.2015.00052] [Citation(s) in RCA: 528] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/28/2015] [Indexed: 12/19/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) exhibit neuroprotective properties and represent a potential treatment for a variety of neurodegenerative and neurological disorders. However, traditionally there has been a lack of discrimination between the different omega-3 PUFAs and effects have been broadly accredited to the series as a whole. Evidence for unique effects of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and more recently docosapentaenoic acid (DPA) is growing. For example, beneficial effects in mood disorders have more consistently been reported in clinical trials using EPA; whereas, with neurodegenerative conditions such as Alzheimer’s disease, the focus has been on DHA. DHA is quantitatively the most important omega-3 PUFA in the brain, and consequently the most studied, whereas the availability of high purity DPA preparations has been extremely limited until recently, limiting research into its effects. However, there is now a growing body of evidence indicating both independent and shared effects of EPA, DPA and DHA. The purpose of this review is to highlight how a detailed understanding of these effects is essential to improving understanding of their therapeutic potential. The review begins with an overview of omega-3 PUFA biochemistry and metabolism, with particular focus on the central nervous system (CNS), where DHA has unique and indispensable roles in neuronal membranes with levels preserved by multiple mechanisms. This is followed by a review of the different enzyme-derived anti-inflammatory mediators produced from EPA, DPA and DHA. Lastly, the relative protective effects of EPA, DPA and DHA in normal brain aging and the most common neurodegenerative disorders are discussed. With a greater understanding of the individual roles of EPA, DPA and DHA in brain health and repair it is hoped that appropriate dietary recommendations can be established and therapeutic interventions can be more targeted and refined.
Collapse
Affiliation(s)
- Simon C Dyall
- Faculty of Health and Social Sciences, Bournemouth University Bournemouth, UK
| |
Collapse
|