1
|
David C, Verney C, Si-Tahar M, Guillon A. Evaluating the evidence for GM-CSF as a host-directed therapy in respiratory infections. Cytokine 2025; 189:156902. [PMID: 39999678 DOI: 10.1016/j.cyto.2025.156902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Novel therapeutic approaches are needed to treat respiratory infections due to the rising antimicrobial resistance and the lack of effective antiviral therapies. A promising avenue to overcome treatment failure is to develop strategies that target the host immune response rather than the pathogen itself. Granulocyte-macrophage colony-stimulating factor (GM-CSF) plays a critical role in controlling homeostasis in lungs, alveolar macrophages being the most sensitive cells to GM-CSF signaling. In this review, we discuss the importance of GM-CSF secretion for lung homeostasis and its alteration during respiratory infections. We also present the pre-clinical evidence and clinical investigations evaluating GM-CSF-based treatments (administration or inhibition) as a therapeutic strategy for treating respiratory infections, highlighting both supporting and contradictory findings.
Collapse
Affiliation(s)
- Camille David
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Tours, France
| | - Charles Verney
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Tours, France
| | - Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France; Université de Tours, Tours, France; CHRU de Tours, Service de Médecine Intensive Réanimation, Tours, France.
| |
Collapse
|
2
|
Jacob S, Jacob SA, Thoppil J. Targeting sepsis through inflammation and oxidative metabolism. World J Crit Care Med 2025; 14:101499. [DOI: 10.5492/wjccm.v14.i1.101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
Infection is a public health problem and represents a spectrum of disease that can result in sepsis and septic shock. Sepsis is characterized by a dysregulated immune response to infection. Septic shock is the most severe form of sepsis which leads to distributive shock and high mortality rates. There have been significant advances in sepsis management mainly focusing on early identification and therapy. However, complicating matters is the lack of reliable diagnostic tools and the poor specificity and sensitivity of existing scoring tools i.e., systemic inflammatory response syndrome criteria, sequential organ failure assessment (SOFA), or quick SOFA. These limitations have underscored the modest progress in reducing sepsis-related mortality. This review will focus on novel therapeutics such as oxidative stress targets, cytokine modulation, endothelial cell modulation, etc., that are being conceptualized for the management of sepsis and septic shock.
Collapse
Affiliation(s)
- Salena Jacob
- Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, United States
| | - Sanjana Ann Jacob
- Dell School of Medicine, University of Texas at Austin Medical School, Austin, TX 78712, United States
| | - Joby Thoppil
- Emergency Medicine, UT Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
3
|
Antcliffe DB, Peronnet E, Pène F, Strålin K, Brealey D, Blein S, Cleaver R, Cronhjort M, Diehl JL, Voiriot G, Fleurie A, Lannsjö C, Lukaszewicz AC, Mårtensson J, Pham T, De Prost N, Ricard JD, Singer M, Terraz G, Timsit JF, Unge C, Vieillard-Baron A, Wahlin RR, Llitjos JF, Gordon AC. An international observational study validating gene-expression sepsis immune subgroups. Crit Care 2025; 29:98. [PMID: 40033354 DOI: 10.1186/s13054-025-05319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/15/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Sepsis gene-expression sub-phenotypes with prognostic and theranostic potential have been discovered. These have been identified retrospectively and have not been translated to methods that could be deployed at the bedside. We aimed to identify subgroups of septic patients at high-risk of poor outcome, using a rapid, multiplex RNA-based test. METHODS Adults with sepsis, in the intensive care unit (ICU) were recruited from 17 sites in the United Kingdom, Sweden and France. Blood was collected at days 2-5 (S1), 6-8 (S2) and 13-15 (S3) after ICU admission and analyzed centrally. Patients were assigned into 'high' and 'low' risk groups using two models previously developed for the Immune-Profiling Panel prototype on the bioMérieux FilmArray® system. RESULTS 357 patients were recruited (March 2021-November 2022). 69% were male with a median age of 67 years, APACHE II score of 21 and a 30% 90-day mortality rate. The proportions of high-risk patients decreased over the three sampling times (model 1: 53%, 40%, 15% and model 2: 81%, 74%, 37%). In model 1, 90-day mortality was higher in a high-risk group at each time (S1: 35% vs 24%, p = 0.04; S2: 43% vs 20%, p < 0.001; S3: 52% vs 24%, p = 0.007). In model 2, mortality was only significantly different at the second sampling time (S1: 30% vs 27%, p = 0.77; S2: 34% vs 14%, p = 0.002; S3: 35% vs 23%, p = 0.13). CONCLUSIONS Gene-expression diagnostics can identify patients with sepsis at high-risk of poor outcomes and could be used to identify patients for precision medicine trials. REGISTRATION ISRCTN11364482 Registered 24th September 2020.
Collapse
Affiliation(s)
- David B Antcliffe
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, London, UK
| | - Estelle Peronnet
- bioMérieux, Lyon, France
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux, Lyon, France
| | - Frédéric Pène
- Assistance Publique - Hôpitaux de Paris, Hôpital Cochin, DMU Réanimation-Urgences, Service de Médecine Intensive Réanimation; Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris, France
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - David Brealey
- Division of Critical Care University College London Hospitals and NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | | | - Richard Cleaver
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, London, UK
| | | | - Jean-Luc Diehl
- Inserm, Innovative Therapies in Haemostasis, Université Paris Cité, 75006, Paris, France
- Service de Médecine Intensive Réanimation, AP-HP, Hôpital Européen Georges Pompidou, 75015, Paris, France
| | - Guillaume Voiriot
- Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, DMU APPROCHES, Service de Médecine Intensive Réanimation; Centre de Recherche Saint-Antoine UMRS_938 INSERM, Sorbonne Université, Paris, France
| | - Aurore Fleurie
- bioMérieux, Lyon, France
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux, Lyon, France
| | - Claudia Lannsjö
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | - Johan Mårtensson
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Tài Pham
- AP-HP, Hôpital de Bicêtre, DMU CORREVE, Service de Médecine Intensive-Réanimation, FHU SEPSIS, Groupe de Recherche Clinique CARMAS, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Inserm U1018, Equipe d'Epidémiologie Respiratoire Intégrative, Centre de Recherche en Epidémiologie et Santé des Populations, Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Villejuif, France
| | - Nicolas De Prost
- AP-HP, GHU Henri Mondor, DMU Médecine, Service de Médecine Intensive Réanimation, IMRB, INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Jean-Damien Ricard
- Assistance Publique - Hôpitaux de Paris, Hôpital Louis Mourier, DMU ESPRIT, Service de Médecine Intensive Réanimation, Université Paris Cité, IAME, UMR 1137, INSERM, Colombes, France
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, UK
| | - Gabriel Terraz
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux, Lyon, France
| | - Jean-François Timsit
- AP-HP, Bichat Hospital, Medical and Infectious Diseases ICU (Mi2), 75018, Paris, France
- IAME, INSERM, Université Paris-Cité, 75018, Paris, France
| | | | - Antoine Vieillard-Baron
- Medical and Surgical ICU, University Hospital Ambroise Pare, GHU Paris-Saclay, APHP, Université Versailles Saint Quentin en Yvelines, CESP, UMR1018, Boulogne, Paris, France
| | | | - Jean-François Llitjos
- bioMérieux, Lyon, France
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1 - Hospices Civils de Lyon - bioMérieux, Lyon, France
| | - Anthony C Gordon
- Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, London, UK.
| |
Collapse
|
4
|
Yu ZH, Tian GX, Wang YD, Liu TY, Shi P, Ying JY, Chen WM, Zhou YF, Lu GP, Zhang CY. The effect of GM-CSF and predictors of treatment outcome in pediatric septic shock patients. Ital J Pediatr 2025; 51:25. [PMID: 39901277 PMCID: PMC11792208 DOI: 10.1186/s13052-025-01863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/12/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Pediatric septic shock is a critical condition associated with high mortality rates, largely due to sepsis-induced immunosuppression. Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been explored as a therapeutic intervention to counteract this immunosuppression. Despite its potential, the efficacy of GM-CSF in pediatric septic shock has not been clearly established. This study aims to investigate the impact of GM-CSF administration on survival rates and to identify key predictors of treatment outcomes in pediatric septic shock patients. METHODS We conducted a retrospective cohort study at the Pediatric Intensive Care Unit (PICU) of Children's Hospital of Fudan University, Shanghai, from January 1, 2019, to December 31, 2023. The study included pediatric patients diagnosed with septic shock, analyzing their demographic data, GM-CSF and adjunctive therapies, laboratory results, and clinical outcomes. We employed univariate and multivariate logistic regression models to assess the influence of GM-CSF on 28-day mortality and identify significant predictors of treatment outcomes. RESULTS The study included 200 pediatric patients, with 66 receiving GM-CSF treatment and 134 not treated with GM-CSF. The initial comparison showed a higher 28-day mortality in the GM-CSF group (59.1%) compared to the non-GM-CSF group (35.1%, P = 0.001). Notably, after adjustment for confounding factors, multivariate analysis revealed that the effect of GM-CSF treatment on 28-day mortality among pediatric septic shock patients did not reach statistical significance, with an odds ratio (OR) of 0.472 and a 95% confidence interval (CI) ranging from 0.153 to 1.457 (P = 0.192). However, the analysis indicated a potential trend suggesting that GM-CSF treatment may contribute to a reduction in 28-day mortality. In addition, significant predictors of treatment outcomes included hematopoietic stem cell transplantation (HSCT), lactic acid (LAC) levels, hospital-acquired septic shock (HASS), red blood cell (RBC) count, and platelet (PLT) count. CONCLUSIONS GM-CSF treatment may benefit pediatric septic shock patients, especially those with higher lactic acid, and lower RBC and platelet counts. These factors, which are significant predictors of outcomes, should be monitored during therapy.
Collapse
Affiliation(s)
- Zhen-Hao Yu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Gui-Xiang Tian
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yao-Dong Wang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Ting-Yan Liu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Peng Shi
- Clinical Research Unit, Children's Hospital of Fudan University, Shanghai, China
| | - Jia-Yun Ying
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Wei-Ming Chen
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yu-Feng Zhou
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guo-Ping Lu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China.
- School of Public Health & Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, China.
| | - Cai-Yan Zhang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Bhavani SV, Spicer A, Sinha P, Malik A, Lopez-Espina C, Schmalz L, Watson GL, Bhargava A, Khan S, Urdiales D, Updike L, Dagan A, Davila H, Demarco C, Evans N, Gosai F, Iyer K, Kurtzman N, Palagiri AV, Sims M, Smith S, Syed A, Sarma D, Reddy B, Verhoef PA, Churpek MM. Distinct immune profiles and clinical outcomes in sepsis subphenotypes based on temperature trajectories. Intensive Care Med 2024; 50:2094-2104. [PMID: 39382693 DOI: 10.1007/s00134-024-07669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE Sepsis is a heterogeneous syndrome. Identification of sepsis subphenotypes with distinct immune profiles could lead to targeted therapies. This study investigates the immune profiles of patients with sepsis following distinct body temperature patterns (i.e., temperature trajectory subphenotypes). METHODS Hospitalized patients from four hospitals between 2018 and 2022 with suspicion of infection were included. A previously validated temperature trajectory algorithm was used to classify study patients into temperature trajectory subphenotypes. Microbiological profiles, clinical outcomes, and levels of 31 biomarkers were compared between these subphenotypes. RESULTS The 3576 study patients were classified into four temperature trajectory subphenotypes: hyperthermic slow resolvers (N = 563, 16%), hyperthermic fast resolvers (N = 805, 23%), normothermic (N = 1693, 47%), hypothermic (N = 515, 14%). The mortality rate was significantly different between subphenotypes, with the highest rate in hypothermics (14.2%), followed by hyperthermic slow resolvers 6%, normothermic 5.5%, and lowest in hyperthermic fast resolvers 3.6% (p < 0.001). After multiple testing correction for the 31 biomarkers tested, 20 biomarkers remained significantly different between temperature trajectories: angiopoietin-1 (Ang-1), C-reactive protein (CRP), feline McDonough sarcoma-like tyrosine kinase 3 ligand (Flt-3l), granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF), interleukin (IL)-15, IL-1 receptor antagonist (RA), IL-2, IL-6, IL-7, interferon gamma-induced protein 10 (IP-10), monocyte chemoattractant protein-1 (MCP-1), human macrophage inflammatory protein 3 alpha (MIP-3a), neutrophil gelatinase-associated lipocalin (NGAL), pentraxin-3, thrombomodulin, tissue factor, soluble triggering receptor expressed on myeloid cells-1 (sTREM-1), and vascular cellular adhesion molecule-1 (vCAM-1).The hyperthermic fast and slow resolvers had the highest levels of most pro- and anti-inflammatory cytokines. Hypothermics had suppressed levels of most cytokines but the highest levels of several coagulation markers (Ang-1, thrombomodulin, tissue factor). CONCLUSION Sepsis subphenotypes identified using the universally available measurement of body temperature had distinct immune profiles. Hypothermic patients, who had the highest mortality rate, also had the lowest levels of most pro- and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Sivasubramanium V Bhavani
- School of Medicine, Emory University, Atlanta, GA, USA.
- Emory Critical Care Center, Atlanta, GA, USA.
| | - Alexandra Spicer
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Pratik Sinha
- School of Medicine, Washington University, St. Louis, MO, USA
| | - Albahi Malik
- School of Medicine, Emory University, Atlanta, GA, USA
| | | | | | | | | | | | | | | | - Alon Dagan
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | - Neil Evans
- Davis School of Medicine, University of California, Sacramento, CA, USA
| | - Falgun Gosai
- OSF Saint Francis Medical Center, Peoria, IL, USA
| | | | - Niko Kurtzman
- School of Medicine, Emory University, Atlanta, GA, USA
| | | | | | | | | | - Deesha Sarma
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Philip A Verhoef
- University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | | |
Collapse
|
6
|
Topsakal S, Ozmen O, Asci H, Gulal A, Ozcan KN, Aydin B. Dapagliflozin prevents reproductive damage caused by acute systemic inflammation through antioxidant, anti-inflammatory, and antiapoptotic mechanisms. Basic Clin Pharmacol Toxicol 2024; 135:561-574. [PMID: 39234999 DOI: 10.1111/bcpt.14077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Dapagliflozin (DPG) is a sodium-glucose cotransporter-2 (SGLT2) inhibitor that has been suggested to possess anti-inflammatory properties in diabetes. The aim of this study is to evaluate the role of DPG administration in preventing lipopolysaccharide (LPS)-induced damage in the female genital system. Thirty-two female Wistar Albino rats were randomly allocated into four groups: control group, LPS group, LPS + DPG group and DPG group. At the end of the experimental phase, ovary, fallopian tube and uterus tissues were collected for histopathological, immunohistochemical, genetic and biochemical analyses. The findings showed that LPS caused histopathological changes characterized by marked hyperaemia, mild to moderate haemorrhage, oedema and neutrophil leucocyte infiltrations and degenerative and necrotic changes in the female genital tract. In addition, it decreased total antioxidant status (TAS), increased total oxidant status (TOS) and oxidative stress index (OSI) levels. LPS also increased the expressions of Cas-3, G-CSF and IL-1β in the ovary, fallopian tubes and uterus immunohistochemically. While Claudin-1 expression decreased, NLRP3 and AQP4 gene expressions increased due to LPS. However, DPG treatment prevented all these changes. The results of this study indicate that, DPG can be used to prevent LPS-induced lesions in the female reproductive system.
Collapse
Affiliation(s)
- Senay Topsakal
- Faculty of Medicine, Department of Endocrinology and Metabolism, Pamukkale University, Denizli
| | - Ozlem Ozmen
- Faculty of Veterinary Medicine, Department of Pathology, Burdur Mehmet Akif Ersoy University, Burdur, Türkiye
| | - Halil Asci
- Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Türkiye
| | - Abdurrahman Gulal
- Faculty of Medicine, Department of Pharmacology, Suleyman Demirel University, Isparta, Türkiye
- Suleyman Demirel University, Institute of Health Sciences, Isparta, Türkiye
| | - Kadriye Nilay Ozcan
- Faculty of Medicine, Department of Gynaecology and Obstetrics, Suleyman Demirel University, Isparta, Türkiye
| | - Bunyamin Aydin
- Kutahya Evliya Celebi Training and Research Hospital, Division of Endocrinology and Metabolism, Kutahya Health Sciences University, Kutahya, Türkiye
| |
Collapse
|
7
|
Fu Y, Zhang S, Yue Q, An Z, Zhao M, Zhao C, Sun X, Li K, Li B, Zhao L, Su L. The preventative effects of Lactococcus Lactis metabolites against LPS-induced sepsis. Front Microbiol 2024; 15:1404652. [PMID: 39086654 PMCID: PMC11288810 DOI: 10.3389/fmicb.2024.1404652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Sepsis is a syndrome of organ dysfunction caused by a dysregulated host response to infection and septic shock. Currently, antibiotic therapy is the standard treatment for sepsis, but it can lead to drug resistance. The disturbance of the gut microbiota which is affected by sepsis could lead to the development of organ failure. It is reported that probiotics could shape the gut microbiota, potentially controlling a variety of intestinal diseases and promoting whole-body health. Methods In this study, we evaluated the preventive effects of intra- and extracellular products of probiotics on sepsis. The extracellular products of Lactococcus lactis (L. lactis) were identified through the in vivo cell experiments. The preventive effect and mechanism of L. lactis extracellular products on mouse sepsis were further explored through HE staining, mouse survival rate measurement, chip analysis, etc. Results L. lactis extracellular products increase cell survival and significantly reduce inflammatory factors secreted in a cellular sepsis model. In in vivo experiments in mice, our samples attenuated sepsis-induced pulmonary edema and inflammatory infiltrates in the lungs of mice, and reduced mortality and inflammatory factor levels within the serum of mice. Finally, the mechanism of sepsis prevention by lactic acid bacteria is suggested. Extracellular products of L. lactis could effectively prevent sepsis episodes. Discussion In animal experiments, we reported that extracellular products of L. lactis can effectively prevent sepsis, and preliminarily discussed the pathological mechanism, which provides more ideas for the prevention of sepsis. In the future, probiotics may be considered a new way to prevent sepsis.
Collapse
Affiliation(s)
- Yue Fu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Zaiyong An
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Minghan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chen Zhao
- Shandong Baoyuan Biotechnology Co., Ltd., Jinan, China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Kunlun Li
- Shandong Chenzhang Biotechnology Co., Ltd., Jinan, China
| | - Baojun Li
- Shandong Baoyuan Biotechnology Co., Ltd., Jinan, China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Shandong Chenzhang Biotechnology Co., Ltd., Jinan, China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Shandong Baoyuan Biotechnology Co., Ltd., Jinan, China
- Shengsheng Xiangrong Biotechnology (Shandong) Co., Ltd., Jinan, China
| |
Collapse
|
8
|
Jang JH, Choi E, Kim T, Yeo HJ, Jeon D, Kim YS, Cho WH. Navigating the Modern Landscape of Sepsis: Advances in Diagnosis and Treatment. Int J Mol Sci 2024; 25:7396. [PMID: 39000503 PMCID: PMC11242529 DOI: 10.3390/ijms25137396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Sepsis poses a significant threat to human health due to its high morbidity and mortality rates worldwide. Traditional diagnostic methods for identifying sepsis or its causative organisms are time-consuming and contribute to a high mortality rate. Biomarkers have been developed to overcome these limitations and are currently used for sepsis diagnosis, prognosis prediction, and treatment response assessment. Over the past few decades, more than 250 biomarkers have been identified, a few of which have been used in clinical decision-making. Consistent with the limitations of diagnosing sepsis, there is currently no specific treatment for sepsis. Currently, the general treatment for sepsis is conservative and includes timely antibiotic use and hemodynamic support. When planning sepsis-specific treatment, it is important to select the most suitable patient, considering the heterogeneous nature of sepsis. This comprehensive review summarizes current and evolving biomarkers and therapeutic approaches for sepsis.
Collapse
Affiliation(s)
- Jin Ho Jang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eunjeong Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Taehwa Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hye Ju Yeo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Doosoo Jeon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yun Seong Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woo Hyun Cho
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea; (J.H.J.); (E.C.); (T.K.); (H.J.Y.); (D.J.); (Y.S.K.)
- Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
9
|
Vogeler M, Schenz J, Müller E, Weigand M, Fischer D. [The Immune System of the Critically Ill Patient]. Anasthesiol Intensivmed Notfallmed Schmerzther 2024; 59:96-112. [PMID: 38354730 DOI: 10.1055/a-2070-3516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Critically ill patients often experience a dysregulated immune response, leading to immune dysfunction. Sepsis, trauma, severe infections, and certain medical conditions can trigger a state of systemic inflammation, known as the cytokine storm. This hyperactive immune response can cause collateral damage to healthy tissues and organs, exacerbating the patient's condition. On the other hand, some critically ill patients may suffer from immune paralysis which can increase the risk of nosocomial infections.Fever is an evolutionary adaptation that evolved as an effective defense mechanism to fight invading pathogens. By raising body temperature, fever enhances the immune response, inhibits pathogen growth, promotes recovery, and aids in the formation of immune memory. Understanding the role of fever in the context of immune defense is crucial for optimizing medical interventions and supporting the body's natural ability to combat infections.Future Directions: Advancements in immunology research and technology hold promise for better understanding the immune system's complexities in critically ill patients. Personalized medicine approaches may be developed to tailor therapies to individual patients based on their immune profile, optimizing treatment outcomes. Based on recent studies prognostic parameters such as lymphocyte count, IL-10 concentration and mHLA-DR expression can be used to stratify the immunological response pattern in septic patients.Conclusion: The immune system's response in critically ill patients is a multifaceted process, involving intricate interactions between various immune cells, cytokines, and organs. Striking the delicate balance between immune activation and suppression remains a significant challenge in clinical practice. Continued research and therapeutic innovations are vital to improve patient outcomes and reduce the burden of critical illness on healthcare systems.
Collapse
|
10
|
Luo B, Sun HT, Wang YT, Zhang JC, Xu B, Ji XZ, Xie RZ, Liu Q, Chen RJ. Clinical efficacy of rhGM-CSF gel and medical collagen sponge on deep second-degree burns of infants: A randomized clinical trial. Medicine (Baltimore) 2024; 103:e36304. [PMID: 38181297 PMCID: PMC10766287 DOI: 10.1097/md.0000000000036304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/03/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND This study aimed to observe clinical efficacy of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) gel, medical collagen sponge and rhGM-CSF gel in combination with medical collagen sponge on deep second-degree burns of head, face or neck in infants. METHODS A total of 108 infants with deep second-degree burns on head, face or neck were randomly divided into rhGM-CSF group, medical collagen sponge group, and rhGM-CSF + medical collagen sponge group. The scab dissolving time, healing time, bacterial positive rate and Vancouver scar scale were evaluated and analyzed. RESULTS The data analysis showed that scab dissolving time and healing time were shorter in rhGM-CSF + medical collagen sponge group than that in rhGM-CSF group and medical collagen sponge group, and the difference was statistically significant (P < .05). Bacterial positive rate was lower in rhGM-CSF + medical collagen sponge group than that in rhGM-CSF group and medical collagen sponge group (P < .05). After 3 months, score of Vancouver scar scale (scar thickness, pliability, pigmentation and vascularity) was less in rhGM-CSF + medical collagen sponge group than that in rhGM-CSF group and medical collagen sponge group (P < .05). CONCLUSION rhGM-CSF gel in combination with medical collagen sponge is significantly effective in treating deep second-degree burns of head, face or neck in infants. This combination is beneficial for infection control, acceleration of scab dissolving and wound healing, and reduction of scar hyperplasia and pigmentation, which is worthy of clinical application and promotion.
Collapse
Affiliation(s)
- Bin Luo
- Department of Burns, Wenzhou Medical District of NO.906 Hospital of Joint Logistics Support Force of PLA, Wenzhou, China
| | - Hai-Tao Sun
- Department of Orthopedics, Naval Hospital of Eastern Theater, Zhoushan, China
| | - Yu-Ting Wang
- Department of General Surgery, the Second Medical Center of Chinese PLA Hospital, Beijing, China
| | - Jin-Cheng Zhang
- Department of Burns, Wenzhou Medical District of NO.906 Hospital of Joint Logistics Support Force of PLA, Wenzhou, China
| | - Bai Xu
- Department of Burns, Wenzhou Medical District of NO.906 Hospital of Joint Logistics Support Force of PLA, Wenzhou, China
| | - Xian-Zhen Ji
- Department of Burns, Wenzhou Medical District of NO.906 Hospital of Joint Logistics Support Force of PLA, Wenzhou, China
| | - Rui-Zhang Xie
- Department of Burns, Wenzhou Medical District of NO.906 Hospital of Joint Logistics Support Force of PLA, Wenzhou, China
| | - Qiong Liu
- Department of Burns, Wenzhou Medical District of NO.906 Hospital of Joint Logistics Support Force of PLA, Wenzhou, China
| | - Ru-Jun Chen
- Department of Burns, Wenzhou Medical District of NO.906 Hospital of Joint Logistics Support Force of PLA, Wenzhou, China
| |
Collapse
|
11
|
Vacheron CH, Lepape A, Venet F, Monneret G, Gueyffier F, Boutitie F, Vallin H, Schwebel C, Maucort-Boulch D, Friggeri A. Granulocyte-macrophage colony-stimulating factor (GM-CSF) in patients presenting sepsis-induced immunosuppression: The GRID randomized controlled trial. J Crit Care 2023; 78:154330. [PMID: 37267804 DOI: 10.1016/j.jcrc.2023.154330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 06/04/2023]
Abstract
PURPOSE Septic shock is associated in some patients with a profound immunosuppression. We hypothesized that GM-CSF would reduce the occurrence of ICU-acquired infections in immunosuppressed septic patients. METHODS Randomized double-blind trial conducted between 2015 and 2018. Adult patients, admitted to ICU, with severe sepsis or septic shock presenting with sepsis-induced immunosuppression defined by mHLA-DR < 8000 ABC (antibodies bound per cell) at day 3 were included. Patients were randomized to receive GM-CSF 125 μg/m2 or placebo for 5 days at a 1:1 ratio. The primary outcome was the difference in the number of patients presenting≥1 ICU-acquired infection at day 28 or ICU discharge. RESULTS The study was prematurely stopped because of insufficient recruitment. A total of 98 patients were included, 54 in the intervention group and 44 in the placebo group. The two groups were similar except for a higher body mass index and McCabe score in the intervention group. No significant difference was observed between groups regarding ICU-acquired infection (11% vs 11%, p = 1.000), 28-day mortality (24% vs 27%,p = 0.900), or the number or localization of the ICU infections. CONCLUSION GM-CSF had no effect on the prevention of ICU-acquired infection in sepsis immunosuppression, but any conclusion is limited by the early termination of the study leading to low number of included patients.
Collapse
Affiliation(s)
- Charles-Hervé Vacheron
- Département d'Anesthésie Réanimation, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France; CIRI-Centre International de Recherche en Infectiologie (Team PHE3ID), Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, Lyon 69007, France; Université Lyon 1.
| | - Alain Lepape
- Département d'Anesthésie Réanimation, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France; REA REZO Infections & Antibiorésistance en Réanimation, Hôpital Henry Gabrielle, Villa Alice, 20 route de Vourles, Saint Genis-Laval 69 230, France; CIRI-Centre International de Recherche en Infectiologie (Team PHE3ID), Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, Lyon 69007, France.
| | - Fabienne Venet
- Hospices Civils de Lyon, Edouard Herriot Hospital, Immunology Laboratory, 5 place d'Arsonval, Lyon 69437 CEDEX 03, France; CIRI, Centre International de Recherche en Infectiologie 5team NLRP3-Sepsis), Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon F-69007, France.
| | - Guillaume Monneret
- Laboratoire d'Immunologie, Hôpital E. Herriot Hospices, Civils de Lyon, Lyon, France; EA7426 - Université Lyon 1, Lyon, France.
| | - Francois Gueyffier
- Hospices Civils de Lyon, Pôle de Santé Publique, Lyon F-69003, France; CNRS et Université Lyon 1, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne F-69100, France.
| | - Florent Boutitie
- Hospices Civils de Lyon, Service de Biostatistique, Lyon F-69003, France; Université Lyon 1, Villeurbanne F-69100, France; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, Villeurbanne F-69100, France.
| | - Helene Vallin
- Hospices civiles de lyon, 3 Quai des Célestins, Lyon, FranceUniversité Lyon 1 8 Av. Rockefeller, Lyon, France.
| | - Carole Schwebel
- Service de Médecine Intensive-Réanimation, CHU Grenoble Alpes, La Tronche 38700, France; Université Grenoble-Alpes, U 1039 Radiopharmaceutiques Biocliniques, La Tronche 38700, France.
| | - Delphine Maucort-Boulch
- Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, Lyon F-69003, France; Université Lyon 1, Villeurbanne F-69100, France; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, Villeurbanne F-69100, France.
| | - Arnaud Friggeri
- Département d'Anesthésie Réanimation, Centre Hospitalier Lyon Sud Hospices Civils de Lyon, Pierre-Bénite, France; CIRI-Centre International de Recherche en Infectiologie (Team PHE3ID), Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d'Italie, Lyon 69007, France.
| |
Collapse
|
12
|
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1615. [PMID: 38004480 PMCID: PMC10675245 DOI: 10.3390/ph16111615] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotics have revolutionized medicine, saving countless lives since their discovery in the early 20th century. However, the origin of antibiotics is now overshadowed by the alarming rise in antibiotic resistance. This global crisis stems from the relentless adaptability of microorganisms, driven by misuse and overuse of antibiotics. This article explores the origin of antibiotics and the subsequent emergence of antibiotic resistance. It delves into the mechanisms employed by bacteria to develop resistance, highlighting the dire consequences of drug resistance, including compromised patient care, increased mortality rates, and escalating healthcare costs. The article elucidates the latest strategies against drug-resistant microorganisms, encompassing innovative approaches such as phage therapy, CRISPR-Cas9 technology, and the exploration of natural compounds. Moreover, it examines the profound impact of antibiotic resistance on drug development, rendering the pursuit of new antibiotics economically challenging. The limitations and challenges in developing novel antibiotics are discussed, along with hurdles in the regulatory process that hinder progress in this critical field. Proposals for modifying the regulatory process to facilitate antibiotic development are presented. The withdrawal of major pharmaceutical firms from antibiotic research is examined, along with potential strategies to re-engage their interest. The article also outlines initiatives to overcome economic challenges and incentivize antibiotic development, emphasizing international collaborations and partnerships. Finally, the article sheds light on government-led initiatives against antibiotic resistance, with a specific focus on the Middle East. It discusses the proactive measures taken by governments in the region, such as Saudi Arabia and the United Arab Emirates, to combat this global threat. In the face of antibiotic resistance, a multifaceted approach is imperative. This article provides valuable insights into the complex landscape of antibiotic development, regulatory challenges, and collaborative efforts required to ensure a future where antibiotics remain effective tools in safeguarding public health.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11437, Saudi Arabia;
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
13
|
Goldschmidt JH, Chou L, Chan PK, Chen L, Robert N, Kinsey J, Pitts K, Nestor M, Rock EP, Lazarus HM. Real-world outcomes of 18,186 metastatic solid tumor outpatients: Baseline blood cell counts correlate with survival after immune checkpoint inhibitor therapy. Cancer Med 2023; 12:20783-20797. [PMID: 37962239 PMCID: PMC10709745 DOI: 10.1002/cam4.6645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Patient survival in advanced/metastatic melanoma, non-small cell lung cancer (NSCLC), and renal cell carcinoma (RCC) has improved with immune checkpoint inhibitors (ICI). Biomarkers' role in prognosis and treatment has been limited by conflicting trial results. METHODS This retrospective, observational study analyzed baseline demographic, clinical, laboratory, and treatment data versus outcomes of The US Oncology Network adult outpatients. Patients with advanced/metastatic melanoma, NSCLC, or RCC treated between January 1, 2015 and November 30, 2020 were given ICI monotherapy or combination therapy with ipilimumab, pembrolizumab, nivolumab, or atezolizumab. Treatment outcomes (overall survival [OS], time to treatment discontinuation, time to next treatment) were followed longitudinally until May 31, 2021, last patient record, or date of death. Baseline blood cell counts, including absolute monocyte count (AMC), absolute lymphocyte count (ALC), monocyte-to-lymphocyte ratio (MLR), absolute neutrophil count (ANC), and eosinophil count, were subdivided into quintiles for univariate and multivariable Cox regression analyses. RESULTS Data from 18,186 patients with advanced/metastatic melanoma (n = 3314), NSCLC (n = 12,416), and RCC (n = 2456) were analyzed. Better OS correlated with increased baseline serum albumin concentration, increased eosinophil and lymphocyte counts, and Western United States physician practice location. Decreased OS correlated with increased AMC, MLR, ANC, age, and worse Eastern Cooperative Oncology Group performance status. CONCLUSIONS To our knowledge, this study is the largest to date to associate baseline survival indicators and outcomes in outpatients with advanced/metastatic melanoma, NSCLC, or RCC and receiving ICIs. Results may inform disease-specific prognostic models and help providers identify patients most likely to benefit from ICI therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Joyce Kinsey
- Partner Therapeutics, IncLexingtonMassachusettsUSA
| | | | - Matt Nestor
- Partner Therapeutics, IncLexingtonMassachusettsUSA
| | | | - Hillard M. Lazarus
- Department of Medicine, Division of Hematology and OncologyCase Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
14
|
Paine R, Chasse R, Halstead ES, Nfonoyim J, Park DJ, Byun T, Patel B, Molina-Pallete G, Harris ES, Garner F, Simms L, Ahuja S, McManus JL, Roychowdhury DF. Inhaled Sargramostim (Recombinant Human Granulocyte-Macrophage Colony-Stimulating Factor) for COVID-19-Associated Acute Hypoxemia: Results of the Phase 2, Randomized, Open-Label Trial (iLeukPulm). Mil Med 2023; 188:e2629-e2638. [PMID: 36458916 PMCID: PMC10363010 DOI: 10.1093/milmed/usac362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 07/25/2023] Open
Abstract
INTRODUCTION Granulocyte-macrophage colony-stimulating factor (GM-CSF), a protein produced in the lung, is essential for pulmonary host defense and alveolar integrity. Prior studies suggest potential benefits in several pulmonary conditions, including acute respiratory distress syndrome and viral infections. This trial evaluated the effect of the addition of inhaled sargramostim (yeast-derived, glycosylated recombinant human GM-CSF) to standard of care (SOC) on oxygenation and clinical outcomes in patients with COVID-19-associated acute hypoxemia. MATERIALS AND METHODS A randomized, controlled, open-label trial of hospitalized adults with COVID-19-associated hypoxemia (oxygen saturation <93% on ≥2 L/min oxygen supplementation and/or PaO2/FiO2 <350) randomized 2:1 to inhaled sargramostim (125 mcg twice daily for 5 days) plus SOC versus SOC alone. Institutional SOC before and during the study was not limited. Primary outcomes were change in the alveolar-arterial oxygen gradient (P(A-a)O2) by day 6 and the percentage of patients intubated within 14 days. Safety evaluations included treatment-emergent adverse events. Efficacy analyses were based on the modified intent-to-treat population, the subset of the intent-to-treat population that received ≥1 dose of any study treatment (sargramostim and/or SOC). An analysis of covariance approach was used to analyze changes in oxygenation measures. The intubation rate was analyzed using the chi-squared test. All analyses are considered descriptive. The study was institutional review board approved. RESULTS In total, 122 patients were treated (sargramostim, n = 78; SOC, n = 44). The sargramostim arm experienced greater improvement in P(A-a)O2 by day 6 compared to SOC alone (least squares [LS] mean change from baseline [SE]: -102.3 [19.4] versus -30.5 [26.9] mmHg; LS mean difference: -71.7 [SE 33.2, 95% CI -137.7 to -5.8]; P = .033; n = 96). By day 14, 11.5% (9/78) of sargramostim and 15.9% (7/44) of SOC arms required intubation (P = .49). The 28-day mortality was 11.5% (9/78) and 13.6% (6/44) in the sargramostim and SOC arms, respectively (hazard ratio 0.85; P = .76). Treatment-emergent adverse events occurred in 67.9% (53/78) and 70.5% (31/44) on the sargramostim and SOC arms, respectively. CONCLUSIONS The addition of inhaled sargramostim to SOC improved P(A-a)O2, a measure of oxygenation, by day 6 in hospitalized patients with COVID-19-associated acute hypoxemia and was well tolerated. Inhaled sargramostim is delivered directly to the lung, minimizing systemic effects, and is simple to administer making it a feasible treatment option in patients in settings where other therapy routes may be difficult. Although proportionally lower rates of intubation and mortality were observed in sargramostim-treated patients, this study was insufficiently powered to demonstrate significant changes in these outcomes. However, the significant improvement in gas exchange with sargramostim shows this inhalational treatment enhances pulmonary efficiency in this severe respiratory illness. These data provide strong support for further evaluation of sargramostim in high-risk patients with COVID-19.
Collapse
Affiliation(s)
- Robert Paine
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Robert Chasse
- Department of Pulmonary and Critical Care, TidalHealth Peninsula Regional Medical Center, Salisbury, MD 21801, USA
| | - E Scott Halstead
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Penn State University, Hershey, PA 17033, USA
| | - Jay Nfonoyim
- Department of Medicine and Critical Care, Richmond University Medical Center, Staten Island, NY 10310, USA
| | - David J Park
- Department of Hematology and Oncology, Providence St. Jude Medical Center, Fullerton, CA 92835, USA
| | - Timothy Byun
- Department of Hematology and Medical Oncology, Providence St. Joseph Hospital, Orange, CA 92868, USA
| | - Bela Patel
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Guido Molina-Pallete
- Department of Pulmonary and Critical Care, Great Plains Health, North Platte, NE 69101, USA
| | - Estelle S Harris
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Fiona Garner
- Partner Therapeutics, Inc., Lexington, MA 02421, USA
| | - Lorinda Simms
- Partner Therapeutics, Inc., Lexington, MA 02421, USA
| | - Sanjeev Ahuja
- Partner Therapeutics, Inc., Lexington, MA 02421, USA
| | | | | |
Collapse
|
15
|
Witt H, Yan Z, Henann D, Franck C, Reichner J. Mechanosensitive traction force generation is regulated by the neutrophil activation state. Sci Rep 2023; 13:11098. [PMID: 37423937 DOI: 10.1038/s41598-023-37997-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/30/2023] [Indexed: 07/11/2023] Open
Abstract
The generation of traction forces by neutrophils regulates many crucial effector functions responsible for host defense, such as attachment, spreading, migration, phagocytosis, and NETosis. The activation state of the cell is a strong determinant of the functional efficacy of the neutrophil; however, the effect of activation on traction force production has not yet been determined experimentally. Previously, the mapping of cellular-generated forces produced by human neutrophils via a Traction Force Microscopy (TFM) method has required a three-dimensional imaging modality to capture out-of-plane forces, such as confocal or multiphoton techniques. A method newly developed in our laboratories can capture out-of-plane forces using only a two-dimensional imaging modality. This novel technique-combined with a topology-based single particle tracking algorithm and finite element method calculations-can construct high spatial frequency three-dimensional traction fields, allowing for traction forces in-plane and out-of-plane to the substrate to now be differentially visualized and quantified with a standard epifluorescence microscope. Here we apply this technology to determine the effect of neutrophil activation on force generation. Sepsis is a systemic inflammatory response that causes dysregulated neutrophil activation in vivo. We found that neutrophils from septic patients produced greater total forces than neutrophils from healthy donors and that the majority of this dysregulation occurred in-plane to the substrate. Ex vivo activation of neutrophils from healthy donors showed differential consequences depending on activation stimuli with mechanosensitive force decreases observed in some cases. These findings demonstrate the feasibility of epifluorescence-based microscopy in mapping traction forces to ask biologically significant questions regarding neutrophil function.
Collapse
Affiliation(s)
- Hadley Witt
- Graduate Program in Pathobiology, Brown University, Providence, RI, 02912, USA.
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, 02903, USA.
| | - Zicheng Yan
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - David Henann
- School of Engineering, Brown University, Providence, RI, 02912, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jonathan Reichner
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Providence, RI, 02903, USA.
| |
Collapse
|
16
|
Marques A, Torre C, Pinto R, Sepodes B, Rocha J. Treatment Advances in Sepsis and Septic Shock: Modulating Pro- and Anti-Inflammatory Mechanisms. J Clin Med 2023; 12:2892. [PMID: 37109229 PMCID: PMC10142733 DOI: 10.3390/jcm12082892] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Sepsis is currently defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection, and it affects over 25 million people every year. Even more severe, septic shock is a subset of sepsis defined by persistent hypotension, and hospital mortality rates are higher than 40%. Although early sepsis mortality has greatly improved in the past few years, sepsis patients who survive the hyperinflammation and subsequent organ damage often die from long-term complications, such as secondary infection, and despite decades of clinical trials targeting this stage of the disease, currently, no sepsis-specific therapies exist. As new pathophysiological mechanisms have been uncovered, immunostimulatory therapy has emerged as a promising path forward. Highly investigated treatment strategies include cytokines and growth factors, immune checkpoint inhibitors, and even cellular therapies. There is much to be learned from related illnesses, and immunotherapy trials in oncology, as well as the recent COVID-19 pandemic, have greatly informed sepsis research. Although the journey ahead is a long one, the stratification of patients according to their immune status and the employment of combination therapies represent a hopeful way forward.
Collapse
Affiliation(s)
- Adriana Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
| | - Carla Torre
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
| | - Rui Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
- Joaquim Chaves Saúde, Joaquim Chaves Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.M.); (C.T.); (R.P.); (B.S.)
| |
Collapse
|
17
|
Lin Z. More than a key-the pathological roles of SARS-CoV-2 spike protein in COVID-19 related cardiac injury. SPORTS MEDICINE AND HEALTH SCIENCE 2023:S2666-3376(23)00024-0. [PMID: 37361919 PMCID: PMC10062797 DOI: 10.1016/j.smhs.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 06/28/2023] Open
Abstract
Cardiac injury is common in hospitalized coronavirus disease 2019 (COVID-19) patients and cardiac abnormalities have been observed in a significant number of recovered COVID-19 patients, portending long-term health issues for millions of infected individuals. To better understand how Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, CoV-2 for short) damages the heart, it is critical to fully comprehend the biology of CoV-2 encoded proteins, each of which may play multiple pathological roles. For example, CoV-2 spike glycoprotein (CoV-2-S) not only engages angiotensin converting enzyme II (ACE2) to mediate virus infection but also directly activates immune responses. In this work, the goal is to review the known pathological roles of CoV-2-S in the cardiovascular system, thereby shedding lights on the pathogenesis of COVID-19 related cardiac injury.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Masonic Medical Research Institute, 2150 Bleecker Street, Utica, NY, 13501, USA
| |
Collapse
|
18
|
Joshi I, Carney WP, Rock EP. Utility of monocyte HLA-DR and rationale for therapeutic GM-CSF in sepsis immunoparalysis. Front Immunol 2023; 14:1130214. [PMID: 36825018 PMCID: PMC9942705 DOI: 10.3389/fimmu.2023.1130214] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Sepsis, a heterogeneous clinical syndrome, features a systemic inflammatory response to tissue injury or infection, followed by a state of reduced immune responsiveness. Measurable alterations occur in both the innate and adaptive immune systems. Immunoparalysis, an immunosuppressed state, associates with worsened outcomes, including multiple organ dysfunction syndrome, secondary infections, and increased mortality. Multiple immune markers to identify sepsis immunoparalysis have been proposed, and some might offer clinical utility. Sepsis immunoparalysis is characterized by reduced lymphocyte numbers and downregulation of class II human leukocyte antigens (HLA) on innate immune monocytes. Class II HLA proteins present peptide antigens for recognition by and activation of antigen-specific T lymphocytes. One monocyte class II protein, mHLA-DR, can be measured by flow cytometry. Downregulated mHLA-DR indicates reduced monocyte responsiveness, as measured by ex-vivo cytokine production in response to endotoxin stimulation. Our literature survey reveals low mHLA-DR expression on peripheral blood monocytes correlates with increased risks for infection and death. For mHLA-DR, 15,000 antibodies/cell appears clinically acceptable as the lower limit of immunocompetence. Values less than 15,000 antibodies/cell are correlated with sepsis severity; and values at or less than 8000 antibodies/cell are identified as severe immunoparalysis. Several experimental immunotherapies have been evaluated for reversal of sepsis immunoparalysis. In particular, sargramostim, a recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF), has demonstrated clinical benefit by reducing hospitalization duration and lowering secondary infection risk. Lowered infection risk correlates with increased mHLA-DR expression on peripheral blood monocytes in these patients. Although mHLA-DR has shown promising utility for identifying sepsis immunoparalysis, absence of a standardized, analytically validated method has thus far prevented widespread adoption. A clinically useful approach for patient inclusion and identification of clinically correlated output parameters could address the persistent high unmet medical need for effective targeted therapies in sepsis.
Collapse
Affiliation(s)
- Ila Joshi
- Development and Regulatory Department, Partner Therapeutics, Inc., Lexington, MA, United States,*Correspondence: Ila Joshi,
| | - Walter P. Carney
- Walt Carney Biomarkers Consulting, LLC., North Andover, MA, United States
| | - Edwin P. Rock
- Development and Regulatory Department, Partner Therapeutics, Inc., Lexington, MA, United States
| |
Collapse
|
19
|
Prakash V, Arora V, Jindal A, Maiwall R, Sarin SK. Combination of GM CSF and carbapenem is superior to carbapenem monotherapy in difficult-to-treat spontaneous bacterial peritonitis: A randomized controlled trial. Liver Int 2023; 43:1298-1306. [PMID: 36748109 DOI: 10.1111/liv.15534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 12/21/2022] [Accepted: 01/31/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND Patients with cirrhosis and treatment non-responsive spontaneous bacterial peritonitis (SBP) have high mortality. We aimed to investigate whether GM-CSF can improve SBP response rates. PATIENTS AND METHODS In this open-label RCT, 131 cirrhosis patients with difficult-to-treat SBP (DTT SBP) were randomized to receive meropenem alone (1 g IV thrice daily for 5 days) (MERO Group, n = 66) or in combination with GM-CSF (1.5 mcg/Kg daily IV till resolution or till 5d) (MEROGM Group, n = 65). The primary end-point was SBP early-response (reduction in absolute neutrophil count (ANC) by >25% after 48 h). Secondary end-points included SBP resolution at day 5. RESULTS Patients in MEROGM group in comparison to MERO group had higher SBP early-response (60% vs. 31.8%; p = .001) and SBP resolution rates (55.4% vs. 24.2%; p = .0003). Patients in the combination arm also had better resolution of pneumonia {8/17 (47.05%) vs. 2/19 (10.5%), p = .02} and lower incidence of new-onset AKI (15.4% vs. 31.8%, p = .02), HE (18.5% vs. 34.8%, p = .04) and infections (21.5% vs. 37.9%, p = .05). In comparison to MERO group, 7-day survival was higher in MEROGM group (89.2% vs. 78.7%, p = .03), though the 28-day survival was comparable (78.4% vs. 71.2%; p = .66). None of the patients developed treatment-related severe adverse effects requiring discontinuation of therapy. CONCLUSIONS The addition of GM-CSF to meropenem significantly improves response rates in DTT SBP patients within 48 h. Early use of GMCSF modulates host immune response, and enhances antibiotic response with higher SBP resolution. The use of GMCSF needs to be considered in combating difficult SBP in cirrhosis patients.
Collapse
Affiliation(s)
- Vikash Prakash
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vinod Arora
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ankur Jindal
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
20
|
Kirkham AM, Bailey AJM, Masurekar A, Shorr R, Bredeson C, Sabloff M, Allan DS. Can GCSF-stimulated donor lymphocyte infusions improve outcomes for relapsed disease following allogeneic hematopoietic cell transplantation? A systematic review and meta-analysis. Leuk Lymphoma 2022; 63:3276-3287. [PMID: 36098248 DOI: 10.1080/10428194.2022.2118530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Donor lymphocyte infusions (DLI) can produce graft-versus tumor effects to treat relapse after allogeneic hematopoietic cell transplantation, however, durable responses remain uncommon. A systematic review and meta-analysis are needed to clarify whether DLI collected after stimulation with granulocyte colony-stimulating factor (GCSF; G-DLI) can improve clinical outcomes. Sixteen studies (4 controlled) involving 585 patients were identified in a systematic search up to 17 September 2020. A meta-analysis demonstrated no significant difference in the risk of all-cause mortality (RR: 0.94, 95% CI 0.52-1.68, p = 0.82; n = 3 studies) or relapse-related mortality (RR: 0.72, 0.44-1.18, p = 0.19; n = 3 studies) between G-DLI and conventional DLI (C-DLI) groups. G-DLI products had similar mean CD3+ cells compared to C-DLI products, but median CD34+ cells/kg were increased. No improvement in disease progression, complete response rates, or risk of developing GVHD was observed with G-DLI, however, greater non-relapse mortality was observed compared to C-DLI. Alternative approaches to enhancing graft-versus-tumor effects are needed.
Collapse
Affiliation(s)
- Aidan M Kirkham
- Clinical Epidemiology & Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Canada.,Faculty of Medicine, Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Canada
| | - Adrian J M Bailey
- Clinical Epidemiology & Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Ashish Masurekar
- Clinical Epidemiology & Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Canada.,Transplant and Cellular Therapy Division, The Ottawa Hospital, Ottawa, Canada.,Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Risa Shorr
- Medical Information and Learning Services Division, The Ottawa Hospital, Ottawa, Canada
| | - Christopher Bredeson
- Clinical Epidemiology & Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Transplant and Cellular Therapy Division, The Ottawa Hospital, Ottawa, Canada.,Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Mitchell Sabloff
- Clinical Epidemiology & Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Department of Medicine, The Ottawa Hospital, Ottawa, Canada.,Leukemia Program, The Ottawa Hospital, Ottawa, Canada
| | - David S Allan
- Clinical Epidemiology & Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Canada.,Faculty of Medicine, Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Transplant and Cellular Therapy Division, The Ottawa Hospital, Ottawa, Canada.,Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| |
Collapse
|
21
|
Bivona Iii JJ, Mank MM, Stapleton RD, Files DC, Toth MJ, Poynter ME. Skeletal Muscle Myofibers Directly Contribute to LPS-Induced Systemic Inflammatory Tone. Front Pharmacol 2022; 13:917917. [PMID: 35814217 PMCID: PMC9260049 DOI: 10.3389/fphar.2022.917917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022] Open
Abstract
The abundance, anatomical distribution, and vascularity of skeletal muscle make it a potentially important contributor to local cytokine production and systemic cytokine abundance during inflammatory events. An orchestrated balance between the production of pro- and anti-inflammatory mediators is necessary for proper immune function, yet the contribution of the body's largest organ system, comprised primarily of skeletal muscle myocytes that fuse to form myofibers, to this process is largely unknown. Endotoxin (lipopolysaccharide, LPS) stimulates toll-like receptor 4 (TLR4) to induce the production of several pro-inflammatory cytokines, including interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2), by a of myriad cell types. We sought to quantify the influence of myofibers on systemic cytokine concentrations following an acute endotoxemia challenge. To accomplish this, we generated muscle specific conditional knockouts for TLR4 (TLR4SMKO), IL-6 (IL6SMKO), and CCL2 (CCL2SMKO). We administered low concentrations of intravenous LPS (IV LPS) to these receptor and effector knockout mice and collected samples after 3 h. Using gene expression analysis of gastrocnemius muscle and serum cytokine measurements after IV LPS, we determined that deletion of myofiber IL-6 or CCL2 led to a 93% and 57% reduction of these specific cytokines in the systemic circulation, respectively. Myofiber specific TLR4 deletion decreased the expression of IL-6, CCL2, and C-X-C motif chemokine ligand 1 (CXCL1) in the gastrocnemius muscle. These data indicate the critical involvement and direct contribution of myofibers during the early systemic inflammatory cytokine response to endotoxin.
Collapse
Affiliation(s)
- Joseph J Bivona Iii
- Department of Medicine and Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Madeleine M Mank
- Department of Medicine and Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Renee D Stapleton
- Department of Medicine and Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - D Clark Files
- Department of Internal Medicine, Section on Pulmonary, Critical Care, Allergy and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Michael J Toth
- Department of Medicine and Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Matthew E Poynter
- Department of Medicine and Vermont Lung Center, University of Vermont Larner College of Medicine, Burlington, VT, United States
| |
Collapse
|
22
|
Azia I, Mukumbang FC, Shernaaz C, Nyembezi A. Role of religious beliefs on antiretroviral treatment adherence among Pentecostal Christians in sub-Saharan Africa: a scoping review protocol. BMJ Open 2022; 12:e052750. [PMID: 35365516 PMCID: PMC8977748 DOI: 10.1136/bmjopen-2021-052750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Sub-Saharan Africa continues to be disproportionately affected by HIV/AIDS. As such, several countries in sub-Saharan Africa are implementing the UNAIDS' recommendation to test and treat people living with HIV (PLHIV) irrespective of their CD4 count. However, most of the antiretroviral treatment (ART) programmes, in this region, continue to struggle with poor adherence to treatment stemming from patient-related factors including their religious beliefs. Unfortunately, the role of religious beliefs on ART adherence has been underexplored in the literature. In this study protocol, we propose the steps of a scoping review to explore, identify and map the literature on the impact of religious beliefs on adherence to ART among Pentecostals living with HIV in sub-Saharan Africa. METHODS AND ANALYSIS We will use Arksey and O'Malley's framework and the Joanna Briggs Institute methodology guidelines to conduct this scoping review. The following databases will be searched for relevant literature: Web of Science, PubMed/Medline, Psych-ARTICLES, Academic Search Complete, Cumulative Index of Nursing, Allied Health, Google Scholar and published articles from conference proceedings. Studies published between January 2010 and February 2022 will be eligible. The identified literature will be independently screened for eligibility by two reviewers based on predetermined inclusion and exclusion criteria. An Excel form will be designed to electronically capture data from studies that meet the inclusion criteria. Finally, we will use a narrative synthesis to summarise the data extracted to report on the nature of existing evidence and the impact of religious beliefs on ART adherence. ETHICS AND DISSEMINATION Ethical approval will not be required for the scoping review since it will entail synthesising information from already published articles and conference proceedings. The study findings will be disseminated through publication in a scientific journal and presented at conferences and workshops aimed at improving adherence to ART in PLHIV.
Collapse
Affiliation(s)
- Ivo Azia
- School of Public Health, University of the Western Cape Faculty of Community and Health Sciences, Cape Town, South Africa
| | - Ferdinand C Mukumbang
- Department of Global Health, School of Public Health and Community Medicine, University of Washington, Seattle, Washington, USA
| | - Carelse Shernaaz
- Department of Social Work, University of the Western Cape Faculty of Community and Health Sciences, Cape Town, South Africa
| | - Anam Nyembezi
- School of Public Health, University of the Western Cape, Cape Town, Western Cape, South Africa
| |
Collapse
|
23
|
Morales-Mantilla DE, Kain B, Le D, Flores AR, Paust S, King KY. Hematopoietic stem and progenitor cells improve survival from sepsis by boosting immunomodulatory cells. eLife 2022; 11:74561. [PMID: 35166205 PMCID: PMC8846591 DOI: 10.7554/elife.74561] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
New therapeutic strategies to reduce sepsis-related mortality are urgently needed, as sepsis accounts for one in five deaths worldwide. Since hematopoietic stem and progenitor cells (HSPCs) are responsible for producing blood and immune cells, including in response to immunological stress, we explored their potential for treating sepsis. In a mouse model of Group A Streptococcus (GAS)-induced sepsis, severe immunological stress was associated with significant depletion of bone marrow HSPCs and mortality within approximately 5–7 days. We hypothesized that the inflammatory environment of GAS infection drives rapid HSPC differentiation and depletion that can be rescued by infusion of donor HSPCs. Indeed, infusion of 10,000 naïve HSPCs into GAS-infected mice resulted in rapid myelopoiesis and a 50–60% increase in overall survival. Surprisingly, mice receiving donor HSPCs displayed a similar pathogen load compared to untreated mice. Flow cytometric analysis revealed a significantly increased number of myeloid-derived suppressor cells in HSPC-infused mice, which correlated with reduced inflammatory cytokine levels and restored HSPC levels. These findings suggest that HSPCs play an essential immunomodulatory role that may translate into new therapeutic strategies for sepsis.
Collapse
Affiliation(s)
- Daniel E Morales-Mantilla
- Graduate Program in Immunology, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, United States
| | - Bailee Kain
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, United States.,Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, United States
| | - Duy Le
- Graduate Program in Immunology, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, United States
| | - Anthony R Flores
- Division of Infectious Diseases, Department of Pediatrics, UTHSC/McGovern Medical School, Houston, United States
| | - Silke Paust
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, United States
| | - Katherine Y King
- Graduate Program in Immunology, Baylor College of Medicine, Houston, United States.,Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, United States.,Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, United States
| |
Collapse
|
24
|
Lan J, Zhang H, Zhao H, Liu L, Shi Q, Li D, Ju X. Cord Blood Natural Killer Cells Inhibit Sepsis Caused by Feces-Induced Acute Peritonitis via Increasing Endothelium Integrity. Cell Transplant 2022; 31:9636897221090257. [PMID: 35438589 PMCID: PMC9021520 DOI: 10.1177/09636897221090257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sepsis is associated with acute peritonitis, which can be induced by lipopolysaccharide exposure and feces. Generally, lipopolysaccharide induces mono-microbial peritonitis, whereas feces cause poly-microbial peritonitis; the latter is a more complicated and closer to the clinical diseases. Although several reports have discussed the mechanism of immune response in peritonitis-induced sepsis, however, the role of natural killer (NK) cells in sepsis, especially the relationship between NK cells and stabilization of the vascular endothelial barrier, is still unclear. Accordingly, in this study, we assessed the roles of NK cells in an acute sepsis model in mice. NK cells were injected via the tail vein into mice with acute sepsis, and nitric oxide (NO), anti-inflammatory cytokine, and angiogenic factors were tested to explore the effects of NK cells on sepsis. The survival rate of septic model mice infused with NK cells was significantly improved compared with the control group. Interestingly, the levels of NO, interleukin-10, and vascular endothelial growth factor (VEGF) decreased in NK cells therapy group. After the injection of NK cells, CD31 positive endothelial cells significantly increased in the kidneys and liver, although the expression of VEGF, ANGPT-1, and ET-1 was downregulated. Consistent with our hypothesis, the transfusion of NK cells into mice with sepsis blocked inflammation and increased endothelium integrity. Overall, these findings suggest that NK cells may block sepsis by modulating the VEGF pathway.
Collapse
Affiliation(s)
- Jing Lan
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Linghong Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.,Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Qing Shi
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.,Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Dong Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.,Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China.,Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
25
|
Mechanisms and modulation of sepsis-induced immune dysfunction in children. Pediatr Res 2022; 91:447-453. [PMID: 34952937 PMCID: PMC9752201 DOI: 10.1038/s41390-021-01879-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/20/2021] [Accepted: 11/19/2021] [Indexed: 02/06/2023]
Abstract
Immunologic responses during sepsis vary significantly among patients and evolve over the course of illness. Sepsis has a direct impact on the immune system due to adverse alteration of the production, maturation, function, and apoptosis of immune cells. Dysregulation in both the innate and adaptive immune responses during sepsis leads to a range of phenotypes consisting of both hyperinflammation and immunosuppression that can result in immunoparalysis. In this review, we discuss components of immune dysregulation in sepsis, biomarkers and functional immune assays to aid in immunophenotyping patients, and evolving immunomodulatory therapies. Important research gaps for the future include: (1) Defining how age, host factors including prior exposures, and genetics impact the trajectory of sepsis in children, (2) Developing tools for rapid assessment of immune function in sepsis, and (3) Assessing how evolving pediatric sepsis endotypes respond differently to immunomodulation. Although multiple promising immunomodulatory agents exist or are in development, access to rapid immunophenotyping will be needed to identify which children are most likely to benefit from which therapy. Advancements in the ability to perform multidimensional endotyping will be key to developing a personalized approach to children with sepsis. IMPACT: Immunologic responses during sepsis vary significantly among patients and evolve over the course of illness. The resulting spectrum of immunoparalysis that can occur due to sepsis can increase morbidity and mortality in children and adults. This narrative review summarizes the current literature surrounding biomarkers and functional immunologic assays for immune dysregulation in sepsis, with a focus on immunomodulatory therapies that have been evaluated in sepsis. A precision approach toward diagnostic endotyping and therapeutics, including gene expression, will allow for optimal clinical trials to evaluate the efficacy of individualized and targeted treatments for pediatric sepsis.
Collapse
|
26
|
Singh GK, Bhatnagar A, Mitra D, Sharma P, Singh A, Mitra B. Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) Induced Severe Atypical Rash in a Patient of Non-Hodgkin's Lymphoma. Indian J Dermatol 2022; 67:150-151. [PMID: 36092242 PMCID: PMC9455089 DOI: 10.4103/ijd.ijd_66_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) infusion has been reported with the development of transient maculopapular rash with spontaneous resolution. A 54-year-old Indian female developed intense erythematous generalised rash involving the face, trunk, extremities, palms and soles following GM-CSF infusion. Focal exudation and purpura were seen. Infusion was stopped and she was managed with a short course of systemic steroids. As yet, the development of such an atypical, severe rash following this cytokine infusion has not been reported in the literature.
Collapse
Affiliation(s)
- Gautam Kumar Singh
- From the Departments of Dermatology, Venereology and Leprosy, Base Hospital Delhi Cantt, Affiliated Faculty, Army College of Medical Sciences, Delhi, India
| | - Anuj Bhatnagar
- Department of Dermatology, Venereology and Leprosy, Command Hospital Air Force, Bengaluru, Karnataka, India
| | - Debdeep Mitra
- Department of Dermatology, Venereology and Leprosy, Command Hospital Air Force, Bengaluru, Karnataka, India,Address for correspondence: Dr. Debdeep Mitra, Dermatology, Venereology and Leprosy, Base Hospital Delhi Cantt and Army College of Medical Sciences, Delhi - 110 010, India. E-mail:
| | - Pooja Sharma
- From the Departments of Dermatology, Venereology and Leprosy, Base Hospital Delhi Cantt, Affiliated Faculty, Army College of Medical Sciences, Delhi, India
| | - Abhay Singh
- Department of Dermatology, Venereology and Leprosy, Base Hospital Delhi Cantt, Delhi, India
| | - Barnali Mitra
- Pediatrics, Base Hospital Delhi Cantt, Affiliated Faculty, Army College of Medical Sciences, Delhi, India
| |
Collapse
|
27
|
Bioinformatics Analysis for Identifying Pertinent Pathways and Genes in Sepsis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2085173. [PMID: 34760021 PMCID: PMC8575597 DOI: 10.1155/2021/2085173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/16/2021] [Indexed: 11/18/2022]
Abstract
Purpose Sepsis becomes the main death reason in hospitals with rising incidence, causing a growing economic and medical burden. However, the genes related to the pathogenesis and prognosis of sepsis are still unclear, which is a problem that needs to be solved urgently. Materials and Methods Gene expression profiles of GSE69528 were obtained from the National Center for Biotechnology Information. Limma software package got employed to search for differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were used for enrichment analysis. Protein-protein interaction (PPI) network was built by the Search Tool for the Retrieval of Interacting Genes (STRING) database. Results We screened 101 DEGs, containing 81 upregulated DEGs and 20 downregulated DEGs. GO analysis demonstrated that the upregulated DEGs were chiefly concentrated in negative regulation of response to interferon-gamma and regulation of granulocyte differentiation. KEGG analysis revealed that the pathways of upregulated DEGs were concentrated in prion diseases, complement and coagulation cascades, and Staphylococcus aureus infection. The PPI network constructed by upregulated DEGs contained 67 nodes (proteins) and 110 edges (interactions). Analysis of bioinformatics results showed that CEACAM8, MPO, and RETN were hub genes of sepsis. Conclusion Our analysis reveals a series of signal pathways and key genes related to the mechanism of sepsis, which are promising biotargets and biomarkers of sepsis.
Collapse
|
28
|
Rathi S, Hussaini T, Yoshida EM. Granulocyte colony stimulating factor: A potential therapeutic rescue in severe alcoholic hepatitis and decompensated cirrhosis. Ann Hepatol 2021; 20:100211. [PMID: 32533952 DOI: 10.1016/j.aohep.2020.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Liver cirrhosis accounts for over 2 million deaths annually worldwide. A subset of these patients - those with alcoholic hepatitis and decompensated cirrhosis, have abysmal short-term survival. Liver transplant is the only intervention of proven survival benefit; however organ availability is a major limitation. It is thus imperative to assess potential benefit of experimental therapies as a bridge to transplant. Stem cell therapies have shown some promise in patients with end-stage liver disease. Of these, bone-marrow derived hematopoietic stem cells have generated the most interest. Animal as well as human data suggest biological plausibility of stem cell translocation from bone marrow to liver, giving credence to cytokine therapies based on bone marrow stimulation. Granulocyte colony stimulating factor has been the most frequently used cytokine for this purpose. This intervention has shown encouraging results in terms of safety as well as survival benefits in small clinical trials. The evidence, however, is sparse and heterogeneous. In this review we describe the biological plausibility, mechanisms of action, and clinical evidence of the use of cytokine based stem cell therapy in patients with end-stage liver disease.
Collapse
Affiliation(s)
- Sahaj Rathi
- Division of Gastroenterology, University of British Columbia and Vancouver General Hospital, Canada
| | - Trana Hussaini
- Division of Gastroenterology, University of British Columbia and Vancouver General Hospital, Canada
| | - Eric M Yoshida
- Division of Gastroenterology, University of British Columbia and Vancouver General Hospital, Canada.
| |
Collapse
|
29
|
Ustunova S, Haciosmanoglu E, Bulut H, Elibol B, Kilic A, Hekimoglu R, Tunc S, Atmaca R, Kaygusuz I, Tunc S, Tunc GB, Meral I. A low direct electrical signal attenuates oxidative stress and inflammation in septic rats. PLoS One 2021; 16:e0257177. [PMID: 34499695 PMCID: PMC8428794 DOI: 10.1371/journal.pone.0257177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
Electrical stimulation is proposed to exert an antimicrobial effect according to studies performed using bacterial and cell cultures. Therefore, we investigated the effects of electrification on inflammation in septic rats. Twenty-eight male Wistar albino rats were divided into 4 groups: healthy control (C), electrified healthy (E), sepsis (S), and electrified sepsis (SE) groups. Staphylococcus aureus (1 x 109 colonies) in 1 ml of medium was intraperitoneally injected into rats to produce a sepsis model. The rats in the E and SE groups were exposed to a low direct electrical signal (300 Hz and 2.5 volts) for 40 min and 1 and 6 h after bacterial infection. Immediately after the second electrical signal application, blood and tissue samples of the heart, lung, and liver were collected. An antibacterial effect of a low direct electrical signal was observed in the blood of rats. The effects of electrical signals on ameliorating changes in the histological structure of tissues, blood pH, gases, viscosity and cell count, activities of some important enzymes, oxidative stress parameters, inflammation and tissue apoptosis were observed in the SE group compared to the S group. Low direct electrical signal application exerts antibacterial, antioxidant, anti-inflammatory and antiapoptotic effects on septic rats due to the induction of electrolysis in body fluids without producing any tissue damage.
Collapse
Affiliation(s)
- Savas Ustunova
- Department of Physiology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ebru Haciosmanoglu
- Department of Biophysics, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Huri Bulut
- Department of Biochemistry, School of Medicine, Istinye University, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Aysu Kilic
- Department of Physiology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Rumeysa Hekimoglu
- Department of Histology & Embryology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | | | | | | | | | | | - Ismail Meral
- Department of Physiology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
30
|
Mehta Y, Dixit SB, Zirpe K, Sud R, Gopal PB, Koul PA, Mishra VK, Ansari AS, Chamle VS. Therapeutic Approaches in Modulating the Inflammatory and Immunological Response in Patients With Sepsis, Acute Respiratory Distress Syndrome, and Pancreatitis: An Expert Opinion Review. Cureus 2021; 13:e18393. [PMID: 34692364 PMCID: PMC8526068 DOI: 10.7759/cureus.18393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Immunomodulation has long been an adjunct approach in treating critically ill patients with sepsis, acute respiratory distress syndrome (ARDS), and acute pancreatitis (AP). Hyperactive immune response with immunopathogenesis leads to organ dysfunction and alters the clinical outcomes in critically ill. Though the immune response in the critically ill might have been overlooked, it has gathered greater attention during this novel coronavirus disease 2019 (COVID-19) pandemic. Modulating hyperactive immune response, the cytokine storm, especially with steroids, has shown to improve the outcomes in COVID-19 patients. In this review, we find that immune response pathogenesis in critically ill patients with sepsis, ARDS, and AP is nearly similar. The use of immunomodulators such as steroids, broad-spectrum serine protease inhibitors such as ulinastatin, thymosin alpha, intravenous immunoglobulins, and therapies such as CytoSorb and therapeutic plasma exchange may help in improving the clinical outcomes in these conditions. As the experience of the majority of physicians in using such therapeutics may be limited, we provide our expert comments regarding immunomodulation to optimize outcomes in patients with sepsis/septic shock, ARDS, and AP.
Collapse
Affiliation(s)
- Yatin Mehta
- Institute of Critical Care and Anesthesiology, Medanta - The Medicity, Gurugram, IND
| | | | - Kapil Zirpe
- Neurocritical Care, Grant Medical Foundation, Ruby Hall Clinic, Pune, IND
| | - Randhir Sud
- Institute of Digestive & Hepatobiliary Sciences, Medanta - The Medicity, Gurugram, IND
| | - Palepu B Gopal
- Department of Critical Care, Continental Hospitals, Hyderabad, IND
| | - Parvaiz A Koul
- Department of Pulmonary Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, IND
| | - Vijay K Mishra
- Medica Institute of Critical Care, Bhagwan Mahavir Medica Superspecialty Hospital, Ranchi, IND
| | - Abdul S Ansari
- Department of Critical Care Services, Nanavati Super Specialty Hospital, Mumbai, IND
| | | |
Collapse
|
31
|
Lazarus HM, Ragsdale CE, Gale RP, Lyman GH. Sargramostim (rhu GM-CSF) as Cancer Therapy (Systematic Review) and An Immunomodulator. A Drug Before Its Time? Front Immunol 2021; 12:706186. [PMID: 34484202 PMCID: PMC8416151 DOI: 10.3389/fimmu.2021.706186] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Sargramostim [recombinant human granulocyte-macrophage colony-stimulating factor (rhu GM-CSF)] was approved by US FDA in 1991 to accelerate bone marrow recovery in diverse settings of bone marrow failure and is designated on the list of FDA Essential Medicines, Medical Countermeasures, and Critical Inputs. Other important biological activities including accelerating tissue repair and modulating host immunity to infection and cancer via the innate and adaptive immune systems are reported in pre-clinical models but incompletely studied in humans. OBJECTIVE Assess safety and efficacy of sargramostim in cancer and other diverse experimental and clinical settings. METHODS AND RESULTS We systematically reviewed PubMed, Cochrane and TRIP databases for clinical data on sargramostim in cancer. In a variety of settings, sargramostim after exposure to bone marrow-suppressing agents accelerated hematologic recovery resulting in fewer infections, less therapy-related toxicity and sometimes improved survival. As an immune modulator, sargramostim also enhanced anti-cancer responses in solid cancers when combined with conventional therapies, for example with immune checkpoint inhibitors and monoclonal antibodies. CONCLUSIONS Sargramostim accelerates hematologic recovery in diverse clinical settings and enhances anti-cancer responses with a favorable safety profile. Uses other than in hematologic recovery are less-well studied; more data are needed on immune-enhancing benefits. We envision significantly expanded use of sargramostim in varied immune settings. Sargramostim has the potential to reverse the immune suppression associated with sepsis, trauma, acute respiratory distress syndrome (ARDS) and COVID-19. Further, sargramostim therapy has been promising in the adjuvant setting with vaccines and for anti-microbial-resistant infections and treating autoimmune pulmonary alveolar proteinosis and gastrointestinal, peripheral arterial and neuro-inflammatory diseases. It also may be useful as an adjuvant in anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Hillard M. Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | | | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Gary H. Lyman
- Public Health Sciences and Clinical Research Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
32
|
Kelly LS, Darden DB, Fenner BP, Efron PA, Mohr AM. The Hematopoietic Stem/Progenitor Cell Response to Hemorrhage, Injury, and Sepsis: A Review of Pathophysiology. Shock 2021; 56:30-41. [PMID: 33234838 PMCID: PMC8141062 DOI: 10.1097/shk.0000000000001699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT Hematopoietic stem/progenitor cells (HSPC) have both unique and common responses following hemorrhage, injury, and sepsis. HSPCs from different lineages have a distinctive response to these "stress" signals. Inflammation, via the production of inflammatory factors, including cytokines, hormones, and interferons, has been demonstrated to impact the differentiation and function of HSPCs. In response to injury, hemorrhagic shock, and sepsis, cellular phenotypic changes and altered function occur, demonstrating the rapid response and potential adaptability of bone marrow hematopoietic cells. In this review, we summarize the pathophysiology of emergency myelopoiesis and the role of myeloid-derived suppressor cells, impaired erythropoiesis, as well as the mobilization of HSPCs from the bone marrow. Finally, we discuss potential therapeutic options to optimize HSPC function after severe trauma or infection.
Collapse
Affiliation(s)
- Lauren S Kelly
- Department of Surgery and Sepsis and Critical Illness Research Center, University of Florida College of Medicine, Gainesville, Florida
| | | | | | | | | |
Collapse
|
33
|
Brook B, Harbeson DJ, Shannon CP, Cai B, He D, Ben-Othman R, Francis F, Huang J, Varankovich N, Liu A, Bao W, Bjerregaard-Andersen M, Schaltz-Buchholzer F, Sanca L, Golding CN, Larsen KL, Levy O, Kampmann B, Tan R, Charles A, Wynn JL, Shann F, Aaby P, Benn CS, Tebbutt SJ, Kollmann TR, Amenyogbe N. BCG vaccination-induced emergency granulopoiesis provides rapid protection from neonatal sepsis. Sci Transl Med 2021; 12:12/542/eaax4517. [PMID: 32376769 DOI: 10.1126/scitranslmed.aax4517] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 03/13/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
Death from sepsis in the neonatal period remains a serious threat for millions. Within 3 days of administration, bacille Calmette-Guérin (BCG) vaccination can reduce mortality from neonatal sepsis in human newborns, but the underlying mechanism for this rapid protection is unknown. We found that BCG was also protective in a mouse model of neonatal polymicrobial sepsis, where it induced granulocyte colony-stimulating factor (G-CSF) within hours of administration. This was necessary and sufficient to drive emergency granulopoiesis (EG), resulting in a marked increase in neutrophils. This increase in neutrophils was directly and quantitatively responsible for protection from sepsis. Rapid induction of EG after BCG administration also occurred in three independent cohorts of human neonates.
Collapse
Affiliation(s)
- Byron Brook
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Danny J Harbeson
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Casey P Shannon
- PROOF Centre of Excellence, British Columbia, 10th floor, 1190 Hornby Street, Vancouver, BC V6Z 2K5, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Bing Cai
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Daniel He
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada.,PROOF Centre of Excellence, British Columbia, 10th floor, 1190 Hornby Street, Vancouver, BC V6Z 2K5, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Rym Ben-Othman
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Freddy Francis
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Joe Huang
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Natallia Varankovich
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Aaron Liu
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada
| | - Winnie Bao
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada
| | - Morten Bjerregaard-Andersen
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark.,Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 5000 Odense C, Denmark
| | - Frederik Schaltz-Buchholzer
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark.,OPEN, Institute of Clinical Research and Danish Institute for Advanced Science, University of Southern Denmark, and Odense University Hospital, J.B. Winsløws Vej, 5000 Odense C, Denmark
| | - Lilica Sanca
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau
| | - Christian N Golding
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Kristina Lindberg Larsen
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beate Kampmann
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, P.O. Box 273, Banjul, The Gambia.,Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | - Rusung Tan
- Department of Pathology, Sidra Medicine and Weill Cornell Medicine, Doha, Qatar
| | - Adrian Charles
- Department of Pathology, Sidra Medicine and Weill Cornell Medicine, Doha, Qatar
| | - James L Wynn
- Department of Paediatrics and Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, P.O. Box 100296, Gainesville, FL 32610-0296, USA
| | - Frank Shann
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Peter Aaby
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau
| | - Christine S Benn
- Bandim Health Project, Indepth Network, Apartado 861, 1004 Bissau, Guinea-Bissau.,Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institut (SSI), Artillerivej 5, 2300 Copenhagen S, Denmark.,OPEN, Institute of Clinical Research and Danish Institute for Advanced Science, University of Southern Denmark, and Odense University Hospital, J.B. Winsløws Vej, 5000 Odense C, Denmark
| | - Scott J Tebbutt
- PROOF Centre of Excellence, British Columbia, 10th floor, 1190 Hornby Street, Vancouver, BC V6Z 2K5, Canada.,UBC Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada.,Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Tobias R Kollmann
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada. .,Department of Pediatrics, University of British Columbia, and BC Children's Hospital, 4480 Oak Street, Vancouver, BC V6H 3V4, Canada.,Telethon Kids Institute, 100 Roberts Road, Subiaco, Western Australia 6008, Australia
| | - Nelly Amenyogbe
- Department of Experimental Medicine, University of British Columbia, 2775 Laurel Street, 10th Floor, Room 10117, Vancouver, BC V5Z 1M9, Canada. .,Telethon Kids Institute, 100 Roberts Road, Subiaco, Western Australia 6008, Australia
| |
Collapse
|
34
|
Tarhini AA, Joshi I, Garner F. Sargramostim and immune checkpoint inhibitors: combinatorial therapeutic studies in metastatic melanoma. Immunotherapy 2021; 13:1011-1029. [PMID: 34157863 DOI: 10.2217/imt-2021-0119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The use of immune checkpoint inhibitors in patients with metastatic melanoma generates clinical benefit, including improved survival. Yet disease resistance and immune-related adverse events persist as unmet needs. Sargramostim, a yeast-derived recombinant human GM-CSF, has shown clinical activity against diverse solid tumors, including metastatic melanoma. Here we review the use of sargramostim for treatment of advanced melanoma. Potential sargramostim applications in melanoma draw on the unique ability of GM-CSF to link innate and adaptive immune responses. We review preclinical and translational data describing the mechanism of action of sargramostim and synergy with immune checkpoint inhibitors to enhance efficacy and reduce treatment-related toxicity.
Collapse
Affiliation(s)
- Ahmad A Tarhini
- Cutaneous Oncology & Immunology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Ila Joshi
- Pre-Clinical & Translational Research & Development, Partner Therapeutics, 19 Muzzey Street, Lexington, MA 02421, USA
| | - Fiona Garner
- Immuno-Oncology Clinical Development & Translational Medicine, Partner Therapeutics, 19 Muzzey Street, Lexington, MA 02421, USA
| |
Collapse
|
35
|
Cutuli SL, Carelli S, Grieco DL, De Pascale G. Immune Modulation in Critically Ill Septic Patients. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:552. [PMID: 34072649 PMCID: PMC8226671 DOI: 10.3390/medicina57060552] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022]
Abstract
Sepsis is triggered by infection-induced immune alteration and may be theoretically improved by pharmacological and extracorporeal immune modulating therapies. Pharmacological immune modulation may have long lasting clinical effects, that may even worsen patient-related outcomes. On the other hand, extracorporeal immune modulation allows short-term removal of inflammatory mediators from the bloodstream. Although such therapies have been widely used in clinical practice, the role of immune modulation in critically ill septic patients remains unclear and little evidence supports the role of immune modulation in this clinical context. Accordingly, further research should be carried out by an evidence-based and personalized approach in order to improve the management of critically ill septic patients.
Collapse
Affiliation(s)
- Salvatore Lucio Cutuli
- Dipartimento di Scienze dell’ Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.C.); (D.L.G.); (G.D.P.)
| | - Simone Carelli
- Dipartimento di Scienze dell’ Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.C.); (D.L.G.); (G.D.P.)
| | - Domenico Luca Grieco
- Dipartimento di Scienze dell’ Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.C.); (D.L.G.); (G.D.P.)
| | - Gennaro De Pascale
- Dipartimento di Scienze dell’ Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (S.C.); (D.L.G.); (G.D.P.)
- Facoltà di Medicina e Chirurgia “A. Gemelli”, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
36
|
From sepsis to acute respiratory distress syndrome (ARDS): emerging preventive strategies based on molecular and genetic researches. Biosci Rep 2021; 40:222737. [PMID: 32319516 PMCID: PMC7199454 DOI: 10.1042/bsr20200830] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
A healthy body activates the immune response to target invading pathogens (i.e. viruses, bacteria, fungi, and parasites) and avoid further systemic infection. The activation of immunological mechanisms includes several components of the immune system, such as innate and acquired immunity. Once any component of the immune response to infections is aberrantly altered or dysregulated, resulting in a failure to clear infection, sepsis will develop through a pro-inflammatory immunological mechanism. Furthermore, the severe inflammatory responses induced by sepsis also increase vascular permeability, leading to acute pulmonary edema and resulting in acute respiratory distress syndrome (ARDS). Apparently, potential for improvement exists in the management of the transition from sepsis to ARDS; thus, this article presents an exhaustive review that highlights the previously unrecognized relationship between sepsis and ARDS and suggests a direction for future therapeutic developments, including plasma and genetic pre-diagnostic strategies and interference with proinflammatory signaling.
Collapse
|
37
|
Samadder S. Immunopathological Changes in SARS-CoV-2 Critical and Non-critical Pneumonia Patients: A Systematic Review to Determine the Cause of Co-infection. Front Public Health 2021; 8:544993. [PMID: 33634060 PMCID: PMC7899999 DOI: 10.3389/fpubh.2020.544993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/30/2020] [Indexed: 01/04/2023] Open
Abstract
The ongoing COVID-19 pandemic originating from Wuhan, China is causing major fatalities across the world. Viral pneumonia is commonly observed in COVID-19 pandemic. The number of deaths caused by viral pneumonia is mainly due to secondary bacterial or fungal infection. The immunopathology of SARS-CoV-2 viral pneumonia is poorly understood with reference to human clinical data collected from patients infected by virus and secondary bacterial or fungal infection occurring simultaneously. The co-infection inside the lungs caused by pneumonia has direct impact on the changing lymphocyte and neutrophil counts. Understanding the attribution of these two immunological cells triggered by cytokines level change is of great importance to identify the progression of pneumonia from non-severe to severe state in hospitalized patients. This review elaborates the cytokines imbalance observed in SARS-CoV-1 (2003 epidemic), SARS-CoV-2 (2019 pandemic) viral pneumonia and community acquired pneumonia (CAP), respectively, in patients to determine the potential reason of co-infection. In this review the epidemiology, virology, clinical symptoms, and immunopathology of SARS-CoV-2 pneumonia are narrated. The immune activation during SARS-CoV-1 pneumonia, bacterial, and fungal pneumonia is discussed. Here it is further analyzed with the available literatures to predict the potential internal medicines, prognosis and monitoring suggesting better treatment strategy for SARS-CoV-2 pneumonia patients.
Collapse
|
38
|
Gaur S, Philipovskiy A, Orazi A. Post-operative hyperleukocytosis and leukostasis as the initial presentation of chronic myelomonocytic leukemia: A case report and review of literature. Leuk Res Rep 2021; 16:100283. [PMID: 34934616 PMCID: PMC8654613 DOI: 10.1016/j.lrr.2021.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/22/2021] [Accepted: 11/27/2021] [Indexed: 11/25/2022] Open
Abstract
Leukemoid reactions following surgery are commonly caused by infections or tissue injury. Management is directed towards underlying condition and cytoreduction is not indicated. Chronic myelo-monocytic leukemia (CMML) is a clonal hematological malignancy characterized by persistent monocytosis and overlapping features of myelodysplastic and myeloproliferative neoplasms.In this case report we describe a 51-year-old Hispanic female without any significant prior medical history, who underwent a cholecystectomy for calculous cholecystitis. Post-operative course was complicated by hyperleukocytosis leading to splenic infarction and intracranial hemorrhage. Further investigations led to a diagnosis of CMML-2. A literature review of patients with CMML who developed post-operative leukocytosis and leukostasis (POLL) is presented.Case high lights two critical points: Post-operative hyperleukocytosis with leukostasis can be the first presentation of CMML Rapid diagnosis and institution of cytoreductive therapy with hydroxyurea is critical to avoid high morbidity and mortality.
Collapse
|
39
|
Eisa M, McClave SA, Suliman S, Wischmeyer P. How Differences in the Disease Process of the COVID-19 Pandemic Pose Challenges to the Delivery of Critical Care Nutrition. Curr Nutr Rep 2021; 10:288-299. [PMID: 34676507 PMCID: PMC8530202 DOI: 10.1007/s13668-021-00379-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW The COVID-19 pandemic is a unique disease process that has caused unprecedented challenges for intensive care specialists. The hyperinflammatory hypermetabolic nature of the disease and the complexity of its management create barriers to the delivery of nutritional therapy. This review identifies the key differences which characterize this pandemic from other disease processes in critical illness and discusses alternative strategies to enhance success of nutritional support. RECENT FINDINGS Prolonged hyperinflammation, unlike any previously described pattern of response to injury, causes metabolic perturbations and deterioration of nutritional status. High ventilatory demands, hypercoagulation with the risk of bowel ischemia, and threat of aspiration in patients with little or no pulmonary reserve, thwart initial efforts to provide early enteral nutrition (EN). The obesity paradox is invalidated, tolerance of EN is limited, intensivists are reluctant to add supplemental parenteral nutrition (PN), and efforts to give sufficient nutritional therapy remain a low priority. The nature of the disease and difficulties providing traditional critical care nutrition lead to dramatic deterioration of nutritional status. Institutions should not rely on insufficient gastric feeding alone but focus instead on redoubling efforts to provide postpyloric deep duodenal/jejunal EN or re-examine the role of supplemental PN in this population of patients with such severe critical illness.
Collapse
Affiliation(s)
- Mohamed Eisa
- grid.266623.50000 0001 2113 1622Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, 550 S. Jackson St, Louisville, KY 40202 USA
| | - Stephen A. McClave
- grid.266623.50000 0001 2113 1622Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville School of Medicine, 550 S. Jackson St, Louisville, KY 40202 USA
| | - Sally Suliman
- Division of Pulmonary, Critical Care & Sleep Disorders Medicine, Louisville, USA
| | - Paul Wischmeyer
- grid.189509.c0000000100241216Division of Anesthesiology and Critical Care Medicine, Duke University Hospital, Durham, North Carolina USA
| |
Collapse
|
40
|
Wang X, Lennard Richard M, Li P, Henry B, Schutt S, Yu XZ, Fan H, Zhang W, Gilkeson G, Zhang XK. Expression of GM-CSF Is Regulated by Fli-1 Transcription Factor, a Potential Drug Target. THE JOURNAL OF IMMUNOLOGY 2020; 206:59-66. [PMID: 33268481 DOI: 10.4049/jimmunol.2000664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022]
Abstract
Friend leukemia virus integration 1 (Fli-1) is an ETS transcription factor and a critical regulator of inflammatory mediators, including MCP-1, CCL5, IL-6, G-CSF, CXCL2, and caspase-1. GM-CSF is a regulator of granulocyte and macrophage lineage differentiation and a key player in the pathogenesis of inflammatory/autoimmune diseases. In this study, we demonstrated that Fli-1 regulates the expression of GM-CSF in both T cells and endothelial cells. The expression of GM-CSF was significantly reduced in T cells and endothelial cells when Fli-1 was reduced. We found that Fli-1 binds directly to the GM-CSF promoter using chromatin immunoprecipitation assay. Transient transfection assays indicated that Fli-1 drives transcription from the GM-CSF promoter in a dose-dependent manner, and mutation of the Fli-1 DNA binding domain resulted in a significant loss of transcriptional activation. Mutation of a known phosphorylation site within the Fli-1 protein led to a significant increase in GM-CSF promoter activation. Thus, direct binding to the promoter and phosphorylation are two important mechanisms behind Fli-1-driven activation of the GM-CSF promoter. In addition, Fli-1 regulates GM-CSF expression in an additive manner with another transcription factor Sp1. Finally, we demonstrated that a low dose of a chemotherapeutic drug, camptothecin, inhibited expression of Fli-1 and reduced GM-CSF production in human T cells. These results demonstrate novel mechanisms for regulating the expression of GM-CSF and suggest that Fli-1 is a critical druggable regulator of inflammation and immunity.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Mara Lennard Richard
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Pengfei Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Brittany Henry
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Steven Schutt
- Department of Microbiology and Immunology, Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Hongkuan Fan
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425; and
| | - Weiru Zhang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Gary Gilkeson
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425
| | - Xian K Zhang
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425;
| |
Collapse
|
41
|
Taha M, Sharma A, Soubani A. Clinical deterioration during neutropenia recovery after G-CSF therapy in patient with COVID-19. Respir Med Case Rep 2020; 31:101231. [PMID: 32999856 PMCID: PMC7515585 DOI: 10.1016/j.rmcr.2020.101231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/19/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Granulocyte colony stimulating factors (G-CSFs) induce neutrophils proliferation and cytokines production. It has often been used to treat neutropenia without solid evidence of efficacy. It has been demonstrated that respiratory distress is associated with neutropenia recovery but not with G-CSFs. In general, G-CSFs are known to be safe and well tolerated in most clinical settings. However, the safety of G-CSFs in an overwhelming inflammatory disease like coronavirus disease 2019 (COVID-19) is largely unknown. CASE SUMMARY We report a case with COVID-19 and neutropenia who rapidly deteriorated after administration of G-CSF. CONCLUSION We observed a faster neutropenia recovery than previously known after administration of G-CSF in our case and in three similar cases previously reported in literature. This rapid neutropenia recovery and the robust inflammatory response in COVID-19 raise concerns about G-CSF safety in patients with COVID-19.
Collapse
Affiliation(s)
- Muhanad Taha
- Internal Medicine Resident PGY3, Department of Internal Medicine Detroit Medical Centre, Wayne State University, 4201 St Antoine UHC 2E Detroit, MI, 48201, USA
| | - Aditi Sharma
- Internal Medicine Resident PGY 2, Department of Internal Medicine, Detroit Medical Centre, Wayne State University, 4201 St Antoine UHC 2E Detroit, MI, 48201, USA
| | - Ayman Soubani
- Department of Pulmonary Critical Care & Sleep Division, Wayne State University, Harper University Hospital 3990 John R - 3 Hudson Detroit, MI, 48201, USA
| |
Collapse
|
42
|
Nowill AE, de Campos-Lima PO. Immune Response Resetting as a Novel Strategy to Overcome SARS-CoV-2-Induced Cytokine Storm. THE JOURNAL OF IMMUNOLOGY 2020; 205:2566-2575. [PMID: 32958687 DOI: 10.4049/jimmunol.2000892] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/30/2020] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which rapidly became a pandemic of global proportions. Sepsis is commonly present with high lethality in the severe forms of the disease. The virus-induced cytokine storm puts the immune system in overdrive at the expense of the pathogen-specific immune response and is likely to underlie the most advanced COVID-19 clinical features, including sepsis-related multiple organ dysfunction as well as the pathophysiological changes found in the lungs. We review the major therapeutic strategies that have been considered for sepsis and might be amenable to repurposing for COVID-19. We also discuss two different immunization strategies that have the potential to confer antiviral heterologous protection: innate-induced trained immunity and adaptive-induced immune response resetting.
Collapse
Affiliation(s)
- Alexandre E Nowill
- Integrated Center for Pediatric OncoHaematological Research, State University of Campinas, Campinas SP 13083-888, Brazil;
| | - Pedro O de Campos-Lima
- Boldrini Children's Center, Campinas SP 13083-210, Brazil; and .,Functional and Molecular Biology Graduate Program, Institute of Biology, State University of Campinas, Campinas SP 13083-865, Brazil
| |
Collapse
|
43
|
Lazarus HM, Gale RP. G-CSF and GM-CSF Are Different. Which One Is Better for COVID-19? Acta Haematol 2020; 144:355-359. [PMID: 32791509 PMCID: PMC7490498 DOI: 10.1159/000510352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Hillard M Lazarus
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University, Cleveland, Ohio, USA,
| | - Robert Peter Gale
- Centre for Haematology Research, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| |
Collapse
|
44
|
Yang KD, He Y, Xiao S, Ai Q, Yu JL. Identification of progranulin as a novel diagnostic biomarker for early-onset sepsis in neonates. Eur J Clin Microbiol Infect Dis 2020; 39:2405-2414. [PMID: 32720089 DOI: 10.1007/s10096-020-03981-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
Neonatal early-onset sepsis (EOS) is associated with high morbidity and mortality. Accurate early diagnosis is crucial for prompt treatment and a better clinical outcome. We aimed to identify new biomarkers for the diagnosis of EOS. A total of 152 neonates with a risk of EOS were divided into an EOS group and a non-EOS group according to the conventional diagnostic criteria. Blood samples were collected within 0-24, 24-48, and 48-72 h after birth. Serum levels of progranulin (PGRN), interleukin (IL)-33, IL-17a, IL-23, IL-6, tumor necrosis factors α (TNF-α), interferon γ (IFN-γ), granulocyte-macrophage colony-stimulating factor (GM-CSF), procalcitonin (PCT), and C-reactive protein (CRP) were determined. PGRN levels were significantly elevated in the EOS neonates compared with the levels in the non-EOS neonates (1.53 vs. 0.77 ng/ml (median), P < 0.001), with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.76 (P < 0.001). Compared with PGRN, IL-33, IL-17a, IL-23, IL-6, PCT, and CRP showed significant (AUC > 0.70) but slightly less predictive power for EOS within the same time range. Stepwise multivariate regression analysis identified PGRN, IL-33, and PCT as independent predictors of EOS. In addition, the combined measurements of PGRN, IL-33, and PCT showed significantly higher predictive power for EOS than any of the three markers alone. PGRN showed greater efficacy for predicting EOS than the traditional markers PCT and CRP as well as other potential markers tested in this study. PGRN may serve as an effective biomarker for the early diagnosis of EOS.
Collapse
Affiliation(s)
- Kai-Di Yang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, 136 Zhongshan Road, Yuzhong District, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Yu He
- Department of Neonatology, Children's Hospital of Chongqing Medical University, 136 Zhongshan Road, Yuzhong District, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Sa Xiao
- Department of Neonatology, Children's Hospital of Chongqing Medical University, 136 Zhongshan Road, Yuzhong District, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Qing Ai
- Department of Neonatology, Children's Hospital of Chongqing Medical University, 136 Zhongshan Road, Yuzhong District, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Jia-Lin Yu
- Department of Neonatology, Children's Hospital of Chongqing Medical University, 136 Zhongshan Road, Yuzhong District, Chongqing, 400014, China. .,Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, Guangdong, China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China. .,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.
| |
Collapse
|
45
|
Neonatal Sepsis. MEDICAL BULLETIN OF SISLI ETFAL HOSPITAL 2020; 54:142-158. [PMID: 32617051 PMCID: PMC7326682 DOI: 10.14744/semb.2020.00236] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/20/2020] [Indexed: 12/20/2022]
Abstract
Neonatal sepsis is associated with severe morbidity and mortality in the neonatal period. Clinical manifestations range from subclinical infection to severe local or systemic infection. Neonatal sepsis is divided into three groups as early-onset neonatal sepsis, late-onset neonatal sepsis and very late-onset neonatal sepsis according to the time of the onset. It was observed that the incidence of early-onset neonatal sepsis decreased with intrapartum antibiotic treatment. However, the incidence of late-onset neonatal sepsis has increased with the increase in the survival rate of preterm and very low weight babies. The source of the causative pathogen may be acquisition from the intrauterine origin but may also acquisition from maternal flora, hospital or community. Prematurity, low birth weight, chorioamnionitis, premature prolonged rupture of membranes, resuscitation, low APGAR score, inability to breastfeed, prolonged hospital stay and invasive procedures are among the risk factors. This article reviews current information on the definition, classification, epidemiology, risk factors, pathogenesis, clinical symptoms, diagnostic methods and treatment of neonatal sepsis.
Collapse
|
46
|
Abstract
Phagocytosis is a complex process by which cells within most organ systems remove pathogens and cell debris. Phagocytosis is usually followed by inflammatory pathway activation, which promotes pathogen elimination and inhibits pathogen growth. Delayed pathogen elimination is the first step in sepsis development and a key factor in sepsis resolution. Phagocytosis thus has an important role during sepsis and likely contributes to all of its clinical stages. However, only a few studies have specifically explored and characterized phagocytic activity during sepsis. Here, we describe the phagocytic processes that occur as part of the immune response preceding sepsis onset and identify the elements of phagocytosis that might constitute a predictive marker of sepsis outcomes. First, we detail the key features of phagocytosis, including the main receptors and signaling hallmarks associated with different phagocytic processes. We then discuss how the initial events of phagosome formation and cytoskeletal remodeling might be associated with known sepsis features, such as a cytokine-driven hyperinflammatory response and immunosuppression. Finally, we highlight the unresolved mechanisms of sepsis development and progression and the need for cross-disciplinary approaches to link the clinical complexity of the disease with basic cellular and molecular mechanisms.
Collapse
|
47
|
Watson K, Russell CD, Baillie JK, Dhaliwal K, Fitzgerald JR, Mitchell TJ, Simpson AJ, Renshaw SA, Dockrell DH. Developing Novel Host-Based Therapies Targeting Microbicidal Responses in Macrophages and Neutrophils to Combat Bacterial Antimicrobial Resistance. Front Immunol 2020; 11:786. [PMID: 32582139 PMCID: PMC7289984 DOI: 10.3389/fimmu.2020.00786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial therapy has provided the main component of chemotherapy against bacterial pathogens. The effectiveness of this strategy has, however, been increasingly challenged by the emergence of antimicrobial resistance which now threatens the sustained utility of this approach. Humans and animals are constantly exposed to bacteria and have developed effective strategies to control pathogens involving innate and adaptive immune responses. Impaired pathogen handling by the innate immune system is a key determinant of susceptibility to bacterial infection. However, the essential components of this response, specifically those which are amenable to re-calibration to improve host defense, remain elusive despite extensive research. We provide a mini-review focusing on therapeutic targeting of microbicidal responses in macrophages and neutrophils to de-stress reliance on antimicrobial therapy. We highlight pre-clinical and clinical data pointing toward potential targets and therapies. We suggest that developing focused host-directed therapeutic strategies to enhance "pauci-inflammatory" microbial killing in myeloid phagocytes that maximizes pathogen clearance while minimizing the harmful consequences of the inflammatory response merits particular attention. We also suggest the importance of One Health approaches in developing host-based approaches through model development and comparative medicine in informing our understanding of how to deliver this strategy.
Collapse
Affiliation(s)
- Katie Watson
- Department of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Clark D Russell
- Department of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Kev Dhaliwal
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - J Ross Fitzgerald
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Timothy J Mitchell
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - A John Simpson
- Institute of Cellular Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Stephen A Renshaw
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - David H Dockrell
- Department of Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
48
|
Beckmann N, Salyer CE, Crisologo PA, Nomellini V, Caldwell CC. Staging and Personalized Intervention for Infection and Sepsis. Surg Infect (Larchmt) 2020; 21:732-744. [PMID: 32240042 DOI: 10.1089/sur.2019.363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Sepsis is defined as a dysregulated host response to infection, resulting in life-threatening organ dysfunction. It is now understood that this dysregulation not only constitutes excessive inflammation, but also sustained immune suppression. Immune-modulatory therapies thus have great potential for novel sepsis therapies. Here, we provide a review of biomarkers and functional assays designed to immunologically stage patients with sepsis as well as therapies designed to alter the innate and adaptive immune systems of patients with sepsis beneficially. Methods: A search of PubMed/MEDLINE and clinicaltrials.gov was performed between October 1, 2019 and December 22, 2019 using search terms such as "sepsis immunotherapy," "sepsis biomarkers," "sepsis clinical trials," and variations thereof. Results: Despite more than 30 years of research, there is still no Food and Drug Administration (FDA)-cleared biomarker that has proven to be effective in either identifying patients with sepsis who are at an increased risk of adverse outcomes or responsive to specific interventions. Similarly, past clinical trials investigating new treatment strategies have rarely stratified patients with sepsis. Overall, the results of these trials have been disappointing. Novel efforts to properly gauge an individual patient's immune response and choose an appropriate immunomodulatory agent based on the results are underway. Conclusion: Our evolving understanding of the different mechanisms perturbing immune homeostasis during sepsis strongly suggests that future successes will depend on finding the right therapy for the right patient and administering it at the right time. For such a personalized medicine approach, novel biomarkers and functional assays to properly stage the patient with sepsis will be crucial. The growing repertoire of immunomodulatory agents at our disposal, as well as re-appraisal of agents that have already been tested in unstratified cohorts of patients with sepsis, may finally translate into successful treatment strategies for sepsis.
Collapse
Affiliation(s)
- Nadine Beckmann
- Division of Research, Critical Care, and Acute Care Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Christen E Salyer
- Division of Research, Critical Care, and Acute Care Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Peter A Crisologo
- Division of Podiatric Medicine and Surgery, Critical Care, and Acute Care Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Vanessa Nomellini
- Division of Trauma, Critical Care, and Acute Care Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Research, Shriner's Hospital for Children Cincinnati, Cincinnati, Ohio, USA
| | - Charles C Caldwell
- Division of Research, Critical Care, and Acute Care Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Research, Shriner's Hospital for Children Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
49
|
Venet F, Demaret J, Gossez M, Monneret G. Myeloid cells in sepsis-acquired immunodeficiency. Ann N Y Acad Sci 2020; 1499:3-17. [PMID: 32202669 DOI: 10.1111/nyas.14333] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/25/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
On May 2017, the World Health Organization recognized sepsis as a global health priority. Sepsis profoundly perturbs immune homeostasis by initiating a complex response that varies over time, with the concomitant occurrence of pro- and anti-inflammatory mechanisms. Sepsis deeply impacts myeloid cell response. Different mechanisms are at play, such as apoptosis, endotoxin tolerance, metabolic failure, epigenetic reprogramming, and central regulation. This induces systemic effects on circulating immune cells and impacts progenitors locally in lymphoid organs. In the bone marrow, a progressive shift toward the release of immature myeloid cells (including myeloid-derived suppressor cells), at the expense of mature neutrophils, takes place. Circulating dendritic cell number remains dramatically low and monocytes/macrophages display an anti-inflammatory phenotype and reduced antigen presentation capacity. Intensity and persistence of these alterations are associated with increased risk of deleterious outcomes in patients. Thus, myeloid cells dysfunctions play a prominent role in the occurrence of sepsis-acquired immunodeficiency. For the most immunosuppressed patients, this paves the way for clinical trials evaluating immunoadjuvant molecules (granulocyte-macrophage colony-stimulating factor and interferon gamma) aimed at restoring homeostatic myeloid cell response. Our review offers a summary of sepsis-induced myeloid cell dysfunctions and current therapeutic strategies proposed to target these defects in patients.
Collapse
Affiliation(s)
- Fabienne Venet
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Julie Demaret
- Institut d'Immunologie, Lille University and University Hospital (CHU), Lille, France
| | - Morgane Gossez
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Guillaume Monneret
- EA 7426 Pathophysiology of Injury-Induced Immunosuppression (PI3), Claude Bernard University Lyon 1, Hospices Civils de Lyon, Lyon, France.,Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| |
Collapse
|
50
|
Philips CA, Augustine P, Rajesh S, Ahamed R, George T, Padsalgi G, Paramaguru R, Valiathan G, John SK. Granulocyte Colony-Stimulating Factor Use in Decompensated Cirrhosis: Lack of Survival Benefit. J Clin Exp Hepatol 2020; 10:124-134. [PMID: 32189927 PMCID: PMC7067994 DOI: 10.1016/j.jceh.2019.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Granulocyte colony-stimulating factor (GCSF) has been utilized in decompensated cirrhosis (DC) for improving transplant-free survival (TFS). Data from multiple centers are conflicting with regard to patient outcomes. In this retrospective study, we present our 'real-world experience' of GCSF use in a large group of DC. METHODS From September 2016 to September 2018, 1231 patients with cirrhosis were screened, of which 754 were found to have decompensation(s). Seventy-three patients with active ascites, jaundice, or both completed GCSF treatment (10 mcg/kg per day for 5 days, followed by 5 mcg/kg/day once every third day for total 12 doses). Per-protocol analysis (n = 56) was performed to study clinical events, liver disease severity, and outcomes at 3, 6, and 12 months after treatment. Modified intention-to-treat (mITT, n = 100) analysis was performed to study overall survival at 180 days. Outcomes were compared with a matched historical control (HC) group (n = 24). RESULTS Nine (16%, n = 56), 24 (43%, n = 56), and 36 (75%, n = 48) patients died at 3, 6, and 12-month follow-up after GCSF. The commonest cause of death was sepsis (53%) followed by progressive liver failure (33%). Nine percent of patients developed hepatocellular carcinoma on follow-up at the end of 1 year. Acute variceal bleeds, overt hepatic encephalopathy, intensive unit admissions, and liver disease severity scores were higher after treatment at the end of 1 year. The Child-Pugh score >11 and model for end-stage liver disease-sodium score >25 and > 20 predicted worse outcomes at all time points and at 6 and 12 months after GCSF, respectively. Compared to a matched HC group, patients receiving GCSF had higher mortality (75% vs 46%, P = 0.04) at one year. mITT analysis revealed poor overall survival at 6 months compared to HCs (48% vs 75%, P = 0.04). CONCLUSION Survival in DC was shorter than what was expected in the natural history of the disease after GCSF use.
Collapse
Key Words
- AKI, acute kidney injury
- AUC, area under the receiver operating curve
- AVB, acute variceal bleeding
- BMSCs, Bone marrow–derived stem cells
- CTP score, Child–Pugh score
- DC, decompensated cirrhosis
- DP, darbepoetin
- GCSF, granulocyte colony-stimulating factor
- HC, historical control
- HCC
- HCC, hepatocellular carcinoma
- HE, hepatic encephalopathy
- ICU, intensive care unit
- INR, international normalized ratio
- LT, liver transplantation
- MELD-Na, model for end-stage liver disease-sodium
- NASH, nonalcoholic steatohepatitis
- RCT, randomized controlled trial
- SBP, spontaneous bacterial peritonitis
- SMT, standard medical treatment
- TFS, transplant free survival
- encephalopathy
- erythropoietin
- growth factor
- hyponatremia
Collapse
Affiliation(s)
- Cyriac A. Philips
- The Liver Unit, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, Kerala
| | - Philip Augustine
- Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, Kerala
| | - Sasidharan Rajesh
- Interventional Radiology, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, Kerala
| | - Rizwan Ahamed
- Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, Kerala
| | - Tom George
- Interventional Radiology, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, Kerala
| | - Guruprasad Padsalgi
- Gastroenterology, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, Kerala
| | | | - Gopakumar Valiathan
- Gastrointestinal and Hepatobiliary Surgery, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, Kerala
| | - Solomon K. John
- Hepatobiliary and Transplant Surgery, Cochin Gastroenterology Group, Ernakulam Medical Center, Kochi, Kerala
| |
Collapse
|