1
|
Propp MA, Paz D, Makhkamov S, Payton ME, Choudhury Q, Nutter M, Ryznar R. A Prospective Cohort Study on the Effects of Repeated Acute Stress on Cortisol Awakening Response and Immune Function in Military Medical Students. Biomedicines 2024; 12:2519. [PMID: 39595087 PMCID: PMC11592205 DOI: 10.3390/biomedicines12112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The cortisol awakening response (CAR) is a pivotal component of the body's stress response, yet its dynamics under repeated acute stress and its interplay with immune biomarkers remain inadequately understood. Methods: This study examined 80 second-year military medical students undergoing a 5-day intensive surgical simulation designed to elicit stress responses. Salivary samples were collected daily upon waking and 30 min thereafter to measure cortisol and a panel of cytokines using bead-based multiplex ELISA. Results: Analysis revealed a significant blunting of the CAR on the third day of training (p = 0.00006), followed by a recovery on the fourth day (p = 0.0005). Concurrently, specific cytokines such as CXCL1 (r = 0.2, p = 0.0005), IL-6 (r = 0.13, p = 0.02), IL-10 (r = 0.14, p = 0.02), and VEGF-A (r = 0.17, p = 0.003) displayed patterns correlating with the CAR, with increased strength of associations observed when assessing cytokine levels against the CAR of the preceding day (CXCL1 r = 0.41, p = 0.0002. IL-6 r = 0.38, p = 0.0006. IL-10 r = 0.3, p = 0.008. VEGF-A r = 0.41, p = 0.0002). Conclusions: These results suggest a temporal relationship between stress-induced cortisol dynamics and immune regulation. The CAR pattern demonstrated in this study may represent induction of and recovery from psychological burnout. Moreover, the observed cytokine associations provide insight into the mechanisms by which stress can influence immune function. The results may have broader implications for managing stress in high-performance environments, such as military and medical professions, and for identifying individuals at risk of stress-related immune suppression.
Collapse
Affiliation(s)
- Madison A. Propp
- College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA
| | - Dean Paz
- College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA
- Department of Emergency Medicine, University of Texas at Austin Dell, 1500 Red River St, Austin, TX 78701, USA
| | - Sukhrob Makhkamov
- College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA
| | - Mark E. Payton
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA; (M.E.P.); (Q.C.); (R.R.)
| | - Qamrul Choudhury
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA; (M.E.P.); (Q.C.); (R.R.)
| | - Melodie Nutter
- Arizona College of Nursing, 8363 West Sunset Road, Las Vegas, NV 89113, USA;
| | - Rebecca Ryznar
- Department of Biomedical Sciences, College of Osteopathic Medicine, Rocky Vista University, 8401 S Chambers Rd, Englewood, CO 80112, USA; (M.E.P.); (Q.C.); (R.R.)
| |
Collapse
|
2
|
Burke MR, Sotiropoulos I, Waites CL. The multiple roles of chronic stress and glucocorticoids in Alzheimer's disease pathogenesis. Trends Neurosci 2024; 47:933-948. [PMID: 39307629 PMCID: PMC11563862 DOI: 10.1016/j.tins.2024.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 11/15/2024]
Abstract
Chronic stress and the accompanying long-term elevation of glucocorticoids (GCs), the stress hormones of the body, increase the risk and accelerate the progression of Alzheimer's disease (AD). Signatures of AD include intracellular tau (MAPT) tangles, extracellular amyloid β (Aβ) plaques, and neuroinflammation. A growing body of work indicates that stress and GCs initiate cellular processes underlying these pathologies through dysregulation of protein homeostasis and trafficking, mitochondrial bioenergetics, and response to damage-associated stimuli. In this review, we integrate findings from mechanistic studies in rodent and cellular models, wherein defined chronic stress protocols or GC administration have been shown to elicit AD-related pathology. We specifically discuss the effects of chronic stress and GCs on tau pathogenesis, including hyperphosphorylation, aggregation, and spreading, amyloid precursor protein (APP) processing and trafficking culminating in Aβ production, immune priming by proinflammatory cytokines and disease-associated molecular patterns, and alterations to glial cell and blood-brain barrier (BBB) function.
Collapse
Affiliation(s)
- Mia R Burke
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; Pathobiology and Mechanisms of Disease Graduate Program, Columbia University Irving Medical Center, New York, NY, USA
| | - Ioannis Sotiropoulos
- Institute of Biosciences and Applications, National Centre for Scientific Research (NCSR) Demokritos, Agia Paraskevi, Greece
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; Department of Neuroscience, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Farcas A, Christi P, Iftene F. Cortisol and cytokines in schizophrenia: A scoping review. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 15:100192. [PMID: 37577296 PMCID: PMC10422096 DOI: 10.1016/j.cpnec.2023.100192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background With a complex etiology and chronic, disabling evolution, schizophrenia continues to represent a challenge for patients, clinicians, and researchers alike. Recent emphasis in research on finding practical blood-based biomarkers for diagnosis improvement, disease development prediction, and therapeutic response monitoring in schizophrenia, led to studies aiming at elucidating a connection between stress and inflammation markers. Methods We set here to explore recent literature aiming to understand the connection between cytokines and cortisol level changes in individuals with schizophrenia and their potential relevance as markers of clinical improvement under treatment. A search was completed in Pubmed, Embase, Web of Science, and APAPsycInfo databases with search terms: (cytokines) AND (cortisol) AND (schizophrenia). This provided 43 results from Pubmed, 82 results from Embase, 52 results from Web of Science, and 9 results from APA PsycInfo. After removing articles not fitting the criteria, 13 articles were selected. Results While all studies included assess cortisol levels in individuals with schizophrenia, most of them included a healthy control group for comparisons there is diversity in the inflammation markers assessed - the most frequent being the IL-2, IL-4, IL-6, IL-8, and TNF-α. Eleven of the 13 studies compare stress and inflammatory markers in individuals with schizophrenia to healthy controls, one study compares two subgroups of patients with schizophrenia, and one study compares pre- and post-measures in the same group of individuals with schizophrenia. Conclusions The focus of the studies within the topic is diverse. Many of the selected studies found correlations between cortisol and inflammation markers, however, the direction of correlation and inflammatory markers included differed. A variety of mechanisms behind cortisol and immunological changes associated with schizophrenia were considered. Evidence was found in these studies to suggest that biological immune and stress markers may be associated with clinical improvement in participants with schizophrenia, however, the exact mechanisms remain to be determined.
Collapse
Affiliation(s)
- Adriana Farcas
- Queen's University, Providence Care Hospital, Kingston, Ontario, Canada
| | - Praise Christi
- Queen's University, Providence Care Hospital, Kingston, Ontario, Canada
| | - Felicia Iftene
- Queen's University, Providence Care Hospital, Kingston, Ontario, Canada
| |
Collapse
|
4
|
Maikoo S, Wilkins A, Qulu L. The effect of oxytocin and an enriched environment on anxiety-like behaviour and corticosterone levels in a prenatally stressed febrile seizure rat model. IBRO Neurosci Rep 2022; 13:47-56. [PMID: 36590100 PMCID: PMC9795298 DOI: 10.1016/j.ibneur.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Background Febrile seizures (FS) are a neurological abnormality which occur following a fever that has resulted from a systemic infection and are characterised by convulsions. These convulsions occur due to abnormally increased signalling of interleukin-1 beta, resulting in increased neuronal hyper-excitability. Furthermore, exposure to prenatal stress has been shown to exacerbate seizure duration, elicit anxiety-like behaviour and corticosterone levels. Oxytocin is a neuropeptide with anxiolytic, social bonding, and stress regulation effects. Therefore, the aim of the study was to assess whether oxytocin can attenuate the anxiety-like behaviour and increased corticosterone in rat offspring exposed to prenatal stress and FS. Method Sprague Dawley rats were mated. On GND14, prenatal stress was induced on pregnant dams for 1 hr/7 days. On PND 14, rat pups were injected with lipopolysaccharide (LPS, 200 μg/kg, i.p.) followed 2.5 h later by an i.p. injection of kainic acid (KA, 1.75 mg/kg). Oxytocin (1 mg/kg) was induced via different routes (intraperitoneal or intranasal) as well an enriched environment between PND 22-26. The enriched environment included larger cages (1560 cm2) with only 4 pups per cage, compared to those groups not receiving enrichment (646 cm2), as well as cardboard rolls and plastic toys. On PND 27-33 the light/dark box and elevated plus maze were used to assess anxiety-like behaviour. On PND 34 all rats were euthanized using a sharp guillotine, trunk blood and hypothalamic tissue were collected for neurochemical analysis (ELISA kit). Results Our findings confirmed that exposure to both prenatal stress and febrile seizures resulted anxiety-like behaviour and significantly higher plasma corticosterone concentrations compared to their counterparts. Environmental enrichment was significantly effective in attenuating the increased basal corticosterone levels and anxiety-like behaviour seen in the prenatally stressed FS rat. Although direct administration of oxytocin showed higher significance in reducing corticosterone plasma levels when compared to the enriched environment. Furthermore, hypothalamic oxytocin levels were not significant in rat exposed to environmental enrichment while oxytocin treatment showed a significant effect when compared to their counterparts. Conclusion Therefore, oxytocin administration during early postnatal development shows great potential in reversing the effects of prenatal stress and its subsequent exacerbation of FS.
Collapse
Affiliation(s)
- Shreyal Maikoo
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Andria Wilkins
- University of KwaZulu-Natal, College of Health Sciences, Department of Human Physiology, Durban, South Africa
| | - Lihle Qulu
- Stellenbosch University - Tygerberg Campus: Stellenbosch University Faculty of Medicine and Health Sciences, Capetown, South Africa,Corresponding author.
| |
Collapse
|
5
|
Yang S, Xu K, Xu X, Zhu J, Jin Y, Liu Q, Xu R, Gu X, Liu Y, Huang Y, Ma Z. S-Ketamine Pretreatment Alleviates Anxiety-Like Behaviors and Mechanical Allodynia and Blocks the Pro-inflammatory Response in Striatum and Periaqueductal Gray From a Post-traumatic Stress Disorder Model. Front Behav Neurosci 2022; 16:848232. [PMID: 35493953 PMCID: PMC9047507 DOI: 10.3389/fnbeh.2022.848232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/11/2022] [Indexed: 01/21/2023] Open
Abstract
This study aims to explore the regulatory effect of S-ketamine on the mechanical allodynia, anxiety-like behaviors and microglia activation in adult male rats exposed to an animal model of post-traumatic stress disorder (PTSD). The rat PTSD model was established by the exposure to single-prolonged stress (SPS), and 1 day later, rats were intraperitoneally injected with 5 mg/kg S-ketamine or normal saline, respectively. Paw withdrawal mechanical threshold was measured 2 days before, and 1, 3, 5, 7, 10, 14, 21 and 28 days after injection to assess mechanical allodynia in the SPS-exposed rats. For anxiety-like behaviors, the open field test and elevated plus maze test were performed at 7 and 14 days after S-ketamine treatment in the SPS-exposed rats, respectively. SPS-induced rats presented pronounced mechanical allodynia and anxiety-like behaviors, which were alleviated by S-ketamine treatment. After behavioral tests, rats were sacrificed for collecting the anterior cingulate cortex (ACC), prefrontal cortex (PFC), dorsal striatum, and periaqueductal gray (PAG). Protein levels of TNF-α, IL-1β, p-NF-κB, and NF-κB in brain regions were examined by Western blot. In addition, microglia activation in each brain region was determined by immunofluorescence staining of the microglia-specific biomarker Iba-1. Interestingly, pro-inflammatory cytokines were significantly upregulated in the dorsal striatum and PAG, rather than ACC and PFC. Activated microglia was observed in the dorsal striatum and PAG as well, and upregulated p-NF-κB was detected in the dorsal striatum. Inflammatory response, phosphorylation of NF-κB and microglia activation in certain brain regions were significantly alleviated by S-ketamine treatment. Collectively, S-ketamine is a promising drug in alleviating mechanical allodynia, anxiety-like behaviors, and pro-inflammatory responses in discrete brain regions in a model of PTSD.
Collapse
|
6
|
van den Heuvel LL, Suliman S, Bröcker E, Kilian S, Stalder T, Kirschbaum C, Seedat S. The association between hair cortisol levels, inflammation and cognitive functioning in females. Psychoneuroendocrinology 2022; 136:105619. [PMID: 34896739 DOI: 10.1016/j.psyneuen.2021.105619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/09/2021] [Accepted: 12/01/2021] [Indexed: 01/31/2023]
Abstract
Glucocorticoids and inflammatory markers can influence cognitive function. Hair cortisol concentrations (HCC) reflect longer-term hypothalamic pituitary adrenal (HPA) axis function and combined with immune markers can provide insights into how HPA-axis and immune pathways interact to influence cognition. We examined the association between HCC and high sensitivity c-reactive protein (hsCRP) levels, as well as the interaction between HCC and hsCRP, and cognitive function in a sample of 153 females, aged between 18 and 79 years, from a cross-sectional case-control study (SHARED ROOTS), conducted in Cape Town, South Africa from May 2014 until June 2017. We examined whether HCC and hsCRP levels were associated with performance on neurocognitive tests in both unadjusted and adjusted linear regression models. HCC demonstrated a significant inverse association with verbal working memory in both unadjusted (p = 0.010) and adjusted (p = 0.016) analyses. There were significant interactions between HCC and hsCRP on verbal intelligence (p = 0.016), language (p = 0.023) and executive function (p = 0.008) scores, such that at low HCC hsCRP levels were positively associated with language (p = 0.020) and executive function (p = 0.006) scores and at high HCC hsCRP levels were inversely associated with verbal intelligence (p = 0.034) scores. Though the results did not survive correction for multiple comparisons, they suggest stress-related neuroendocrine effects on working memory impairment. Furthermore, under physiological conditions and low long-term HCC, there may be positive effects of peripheral inflammatory markers on cognitive performance, whereas there may be detrimental effects when the HPA-axis is dysregulated as reflected by high long-term cortisol output.
Collapse
Affiliation(s)
- Leigh Luella van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Sharain Suliman
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Erine Bröcker
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Sanja Kilian
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa.
| | - Tobias Stalder
- Clinical Psychology and Psychotherapy, University of Siegen, Obergraben 23, Siegen 57072, Germany.
| | - Clemens Kirschbaum
- Biological Psychology, TU Dresden, Zellescher Weg 19, Dresden D-01062, Germany.
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Research Chair in Posttraumatic Stress Disorder, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
7
|
Li Q, Li H, Yao X, Wang C, Liu H, Xu D, Yang C, Zhuang H, Xiao Y, Liu R, Shen S, Zhou S, Fu C, Wang Y, Teng G, Liu L. Stress Response and Hearing Loss Differentially Contribute to Dynamic Alterations in Hippocampal Neurogenesis and Microglial Reactivity in Mice Exposed to Acute Noise Exposure. Front Neurosci 2021; 15:749925. [PMID: 34955715 PMCID: PMC8692372 DOI: 10.3389/fnins.2021.749925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is one of the most prevalent forms of acquired hearing loss, and it is associated with aberrant microglial status and reduced hippocampal neurogenesis; however, the nature of these associations is far from being elucidated. Beyond its direct effects on the auditory system, exposure to intense noise has previously been shown to acutely activate the stress response, which has increasingly been linked to both microglial activity and adult hippocampal neurogenesis in recent years. Given the pervasiveness of noise pollution in modern society and the important implications of either microglial activity or hippocampal neurogenesis for cognitive and emotional function, this study was designed to investigate how microglial status and hippocampal neurogenesis change over time following acoustic exposure and to analyze the possible roles of the noise exposure-induced stress response and hearing loss in these changes. To accomplish this, adult male C57BL/6J mice were randomly assigned to either a control or noise exposure (NE) group. Auditory function was assessed by measuring ABR thresholds at 20 days post noise exposure. The time-course profile of serum corticosterone levels, microglial status, and hippocampal neurogenesis during the 28 days following noise exposure were quantified by ELISA or immunofluorescence staining. Our results illustrated a permanent moderate-to-severe degree of hearing loss, an early but transient increase in serum corticosterone levels, and time-dependent dynamic alterations in microglial activation status and hippocampal neurogenesis, which both present an early but transient change and a late but enduring change. These findings provide evidence that both the stress response and hearing loss contribute to the dynamic alterations of microglia and hippocampal neurogenesis following noise exposure; moreover, noise-induced permanent hearing loss rather than noise-induced transient stress is more likely to be responsible for perpetuating the neurodegenerative process associated with many neurological diseases.
Collapse
Affiliation(s)
- Qian Li
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Hong Li
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xiuting Yao
- Medical College, Southeast University, Nanjing, China
| | - Conghui Wang
- Medical College, Southeast University, Nanjing, China
| | - Haiqing Liu
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Dan Xu
- School of Public Health, Southeast University, Nanjing, China
| | - Chenxi Yang
- Medical College, Southeast University, Nanjing, China
| | - Hong Zhuang
- Medical College, Southeast University, Nanjing, China
| | - Yu Xiao
- Medical College, Southeast University, Nanjing, China
| | - Rui Liu
- Medical College, Southeast University, Nanjing, China
| | - Sinuo Shen
- Medical College, Southeast University, Nanjing, China
| | - Shaoyang Zhou
- Medical College, Southeast University, Nanjing, China
| | - Chenge Fu
- Medical College, Southeast University, Nanjing, China
| | - Yifan Wang
- Medical College, Southeast University, Nanjing, China
| | - Gaojun Teng
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing, China
| | - Lijie Liu
- Medical College, Southeast University, Nanjing, China
| |
Collapse
|
8
|
Wang H, Kan WJ, Feng Y, Feng L, Yang Y, Chen P, Xu JJ, Si TM, Zhang L, Wang G, Du J. Nuclear receptors modulate inflammasomes in the pathophysiology and treatment of major depressive disorder. World J Psychiatry 2021; 11:1191-1205. [PMID: 35070770 PMCID: PMC8717028 DOI: 10.5498/wjp.v11.i12.1191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/29/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) is highly prevalent and is a significant cause of mortality and morbidity worldwide. Currently, conventional pharmacological treatments for MDD produce temporary remission in < 50% of patients; therefore, there is an urgent need for a wider spectrum of novel antidepressants to target newly discovered underlying disease mechanisms. Accumulated evidence has shown that immune inflammation, particularly inflammasome activity, plays an important role in the pathophysiology of MDD. In this review, we summarize the evidence on nuclear receptors (NRs), such as glucocorticoid receptor, mineralocorticoid receptor, estrogen receptor, aryl hydrocarbon receptor, and peroxisome proliferator-activated receptor, in modulating the inflammasome activity and depression-associated behaviors. This review provides evidence from an endocrine perspective to understand the role of activated NRs in the pathophysiology of MDD, and to provide insight for the discovery of antidepressants with novel mechanisms for this devastating disorder.
Collapse
Affiliation(s)
- Han Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Wei-Jing Kan
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Yuan Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Lei Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Yang Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Pei Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Jing-Jie Xu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Tian-Mei Si
- Department of Clinical Psychopharmacology, Peking University Institute of Mental Health, Beijing 100191, Beijing Province, China
| | - Ling Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Jing Du
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, Yunnan Province, China
| |
Collapse
|
9
|
Bolshakov AP, Tret'yakova LV, Kvichansky AA, Gulyaeva NV. Glucocorticoids: Dr. Jekyll and Mr. Hyde of Hippocampal Neuroinflammation. BIOCHEMISTRY (MOSCOW) 2021; 86:156-167. [PMID: 33832414 DOI: 10.1134/s0006297921020048] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Glucocorticoids (GCs) are an important component of adaptive response of an organism to stressogenic stimuli, a typical stress response being accompanied by elevation of GC levels in blood. Anti-inflammatory effects of GCs are widely used in clinical practice, while pro-inflammatory effects of GCs are believed to underlie neurodegeneration. This is particularly critical for the hippocampus, brain region controlling both cognitive function and emotions/affective behavior, and selectively vulnerable to neuroinflammation and neurodegeneration. The hippocampus is believed to be the main target of GCs since it has the highest density of GC receptors potentially underlying high sensitivity of hippocampal cells to severe stress. In this review, we analyzed the results of studies on pro- and anti-inflammatory effects of GCs in the hippocampus in different models of stress and stress-related pathologies. The available data form a sophisticated, though often quite phenomenological, picture of a modulatory role of GCs in hippocampal neuroinflammation. Understanding the dual nature of GC-mediated effects as well as causes and mechanisms of switching can provide us with effective approaches and tools to avert hippocampal neuroinflammatory events and as a result to prevent and treat brain diseases, both neurological and psychiatric. In the framework of a mechanistic view, we propose a new hypothesis describing how the anti-inflammatory effects of GCs may transform into the pro-inflammatory ones. According to it, long-term elevation of GC level or preliminary treatment with GC triggers accumulation of FKBP51 protein that suppresses activity of GC receptors and activates pro-inflammatory cascades, which, finally, leads to enhanced neuroinflammation.
Collapse
Affiliation(s)
- Alexey P Bolshakov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Liya V Tret'yakova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Alexey A Kvichansky
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia. .,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, 115419, Russia
| |
Collapse
|
10
|
Wulsin AC, Kraus KL, Gaitonde KD, Suru V, Arafa SR, Packard BA, Herman JP, Danzer SC. The glucocorticoid receptor specific modulator CORT108297 reduces brain pathology following status epilepticus. Exp Neurol 2021; 341:113703. [PMID: 33745919 PMCID: PMC8169587 DOI: 10.1016/j.expneurol.2021.113703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Glucocorticoid levels rise rapidly following status epilepticus and remain elevated for weeks after the injury. To determine whether glucocorticoid receptor activation contributes to the pathological sequelae of status epilepticus, mice were treated with a novel glucocorticoid receptor modulator, C108297. METHODS Mice were treated with either C108297 or vehicle for 10 days beginning one day after pilocarpine-induced status epilepticus. Baseline and stress-induced glucocorticoid secretion were assessed to determine whether hypothalamic-pituitary-adrenal axis hyperreactivity could be controlled. Status epilepticus-induced pathology was assessed by quantifying ectopic hippocampal granule cell density, microglial density, astrocyte density and mossy cell loss. Neuronal network function was examined indirectly by determining the density of Fos immunoreactive neurons following restraint stress. RESULTS Treatment with C108297 attenuated corticosterone hypersecretion after status epilepticus. Treatment also decreased the density of hilar ectopic granule cells and reduced microglial proliferation. Mossy cell loss, on the other hand, was not prevented in treated mice. C108297 altered the cellular distribution of Fos protein but did not restore the normal pattern of expression. INTERPRETATION Results demonstrate that baseline corticosterone levels can be normalized with C108297, and implicate glucocorticoid signaling in the development of structural changes following status epilepticus. These findings support the further development of glucocorticoid receptor modulators as novel therapeutics for the prevention of brain pathology following status epilepticus.
Collapse
Affiliation(s)
- Aynara C Wulsin
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; Cincinnati Children's Hospital Medical Center, Department of Pediatrics, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA
| | - Kimberly L Kraus
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA
| | - Kevin D Gaitonde
- University of Cincinnati, Medical Scientist Training Program, USA
| | - Venkat Suru
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA
| | - Salwa R Arafa
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA
| | - Benjamin A Packard
- University of Cincinnati, Department of Pharmacology & Systems Physiology
| | - James P Herman
- University of Cincinnati, Department of Pharmacology & Systems Physiology
| | - Steve C Danzer
- Cincinnati Children's Hospital Medical Center, Department of Anesthesia, USA; Cincinnati Children's Hospital Medical Center, Department of Pediatrics, USA; University of Cincinnati, Medical Scientist Training Program, USA; University of Cincinnati, Neuroscience Graduate Program, USA.
| |
Collapse
|
11
|
Mourtzi N, Sertedaki A, Charmandari E. Glucocorticoid Signaling and Epigenetic Alterations in Stress-Related Disorders. Int J Mol Sci 2021; 22:5964. [PMID: 34073101 PMCID: PMC8198182 DOI: 10.3390/ijms22115964] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 12/31/2022] Open
Abstract
Stress is defined as a state of threatened or perceived as threatened homeostasis. The well-tuned coordination of the stress response system is necessary for an organism to respond to external or internal stressors and re-establish homeostasis. Glucocorticoid hormones are the main effectors of stress response and aberrant glucocorticoid signaling has been associated with an increased risk for psychiatric and mood disorders, including schizophrenia, post-traumatic stress disorder and depression. Emerging evidence suggests that life-stress experiences can alter the epigenetic landscape and impact the function of genes involved in the regulation of stress response. More importantly, epigenetic changes induced by stressors persist over time, leading to increased susceptibility for a number of stress-related disorders. In this review, we discuss the role of glucocorticoids in the regulation of stress response, the mechanism through which stressful experiences can become biologically embedded through epigenetic alterations, and we underline potential associations between epigenetic changes and the development of stress-related disorders.
Collapse
Affiliation(s)
- Niki Mourtzi
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (N.M.); (A.S.)
| | - Amalia Sertedaki
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (N.M.); (A.S.)
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (N.M.); (A.S.)
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
12
|
Korkmaz C, Cansu DU, Cansu GB. Familial Mediterranean fever: the molecular pathways from stress exposure to attacks. Rheumatology (Oxford) 2021; 59:3611-3621. [PMID: 33026080 DOI: 10.1093/rheumatology/keaa450] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/21/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
FMF is an autoinflammatory disease characterized by recurrent attacks and increased IL-1 synthesis owing to activation of the pyrin inflammasome. Although knowledge of the mechanisms leading to the activation of pyrin inflammasome is increasing, it is still unknown why the disease is characterized by attack. The emergence of FMF attacks after emotional stress and the induction of attacks with metaraminol in previous decades suggested that stress-induced sympathoadrenal system activation might play a role in inflammasome activation and triggering attacks. In this review, we will review the possible molecular mechanism of stress mediators on the inflammation pathway and inflammasome activation. Studies on stress mediators and their impact on inflammation pathways will provide a better understanding of stress-related exacerbation mechanisms in both autoinflammatory and autoimmune diseases. This review provides a new perspective on this subject and will contribute to new studies.
Collapse
Affiliation(s)
- Cengiz Korkmaz
- Division of Rheumatology, Department of Internal Medicine, Eskisehir Osmangazi University, School of Medicine, Eskisehir
| | - Döndü U Cansu
- Division of Rheumatology, Department of Internal Medicine, Eskisehir Osmangazi University, School of Medicine, Eskisehir
| | - Güven Barış Cansu
- Department of Endocrinology, Kütahya Health Science University, School of Medicine, Kütahya, 43100, Turkey
| |
Collapse
|
13
|
Lacagnina MJ, Li J, Lorca S, Rice KC, Sullivan K, O'Callaghan JP, Grace PM. A role for neuroimmune signaling in a rat model of Gulf War Illness-related pain. Brain Behav Immun 2021; 91:418-428. [PMID: 33127584 PMCID: PMC7749855 DOI: 10.1016/j.bbi.2020.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/07/2020] [Accepted: 10/24/2020] [Indexed: 12/14/2022] Open
Abstract
More than a quarter of veterans of the 1990-1991 Persian Gulf War suffer from Gulf War Illness (GWI), a chronic, multi-symptom illness that commonly includes musculoskeletal pain. Exposure to a range of toxic chemicals, including sarin nerve agent, are a suspected root cause of GWI. Moreover, such chemical exposures induce a neuroinflammatory response in rodents, which has been linked to several GWI symptoms in rodents and veterans with GWI. To date, a neuroinflammatory basis for pain associated with GWI has not been investigated. Here, we evaluated development of nociceptive hypersensitivity in a model of GWI. Male Sprague Dawley rats were treated with corticosterone in the drinking water for 7 days, to mimic high physiological stress, followed by a single injection of the sarin nerve agent surrogate, diisopropyl fluorophosphate. These exposures alone were insufficient to induce allodynia. However, an additional sub-threshold challenge (a single intramuscular injection of pH 4 saline) induced long-lasting, bilateral allodynia. Such allodynia was associated with elevation of markers for activated microglia/macrophages (CD11b) and astrocytes/satellite glia (GFAP) in the lumbar dorsal spinal cord and dorsal root ganglia (DRG). Additionally, Toll-like receptor 4 (TLR4) mRNA was elevated in the lumbar dorsal spinal cord, while IL-1β and IL-6 were elevated in the lumbar dorsal spinal cord, DRG, and gastrocnemius muscle. Demonstrating a casual role for such neuroinflammatory signaling, allodynia was reversed by treatment with either minocycline, the TLR4 inhibitor (+)-naltrexone, or IL-10 plasmid DNA. Together, these results point to a role for neuroinflammation in male rats in the model of musculoskeletal pain related to GWI. Therapies that alleviate persistent immune dysregulation may be a strategy to treat pain and other symptoms of GWI.
Collapse
Affiliation(s)
- Michael J Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiahe Li
- Drug Design and Synthesis Section, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, Bethesda, MD, USA
| | - Sabina Lorca
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenner C Rice
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
14
|
Horowitz MA, Cattaneo A, Cattane N, Lopizzo N, Tojo L, Bakunina N, Musaelyan K, Borsini A, Zunszain PA, Pariante CM. Glucocorticoids prime the inflammatory response of human hippocampal cells through up-regulation of inflammatory pathways. Brain Behav Immun 2020; 87:777-794. [PMID: 32194233 DOI: 10.1016/j.bbi.2020.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/19/2020] [Accepted: 03/14/2020] [Indexed: 12/22/2022] Open
Abstract
Increased pro-inflammatory cytokines and an overactive hypothalamic-pituitary-adrenal (HPA) axis have both been implicated in the pathogenesis of depression. However, these explanations appear contradictory because glucocorticoids are well recognised for their anti-inflammatory effects. Two hypotheses exist to resolve this paradox: the mediating presence of glucocorticoid receptor resistance, or the possibility that glucocorticoids can potentiate inflammatory processes in some circumstances. We sought to investigate these hypotheses in a cell model with significant relevance to depression: human hippocampal progenitor cells. We demonstrated that dexamethasone in vitro given for 24 hours and followed by a 24 hours rest interval before an immune challenge potentiates inflammatory effects in these neural cells, that is, increases the IL-6 protein secretion induced by stimulation with IL-1β (10 ng/mL for 24 hours) by + 49% (P < 0.05) at a concentration of 100 nM and by + 70% (P < 0.01) for 1 μM. These effects are time- and dose-dependent and require activation of the glucocorticoid receptor. Gene expression microarray assays using Human Gene 2.1st Array Strips demonstrated that glucocorticoid treatment up-regulated several innate immune genes, including chemokines and Nod-like receptor, NLRP6; using transcription factor binding motifs we found limited evidence that glucocorticoid resistance was induced in the cells. Our data suggests a mechanism by which stress may prime the immune system for increased inflammation and suggests that stress and inflammation may be synergistic in the pathogenesis of depression.
Collapse
Affiliation(s)
- Mark A Horowitz
- Stress, Psychiatry and Immunology (SPI) Lab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Department of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, Fitzrovia, London, UK; North East London NHS Foundation Trust (NELFT), Barley Lane, Goodmayes, Ilford, UK.
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nicola Lopizzo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luis Tojo
- Stress, Psychiatry and Immunology (SPI) Lab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Natalia Bakunina
- Stress, Psychiatry and Immunology (SPI) Lab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Institute for Leadership and Health Management, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ksenia Musaelyan
- Stress, Psychiatry and Immunology (SPI) Lab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology (SPI) Lab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Particia A Zunszain
- Stress, Psychiatry and Immunology (SPI) Lab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology (SPI) Lab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
15
|
Spiga F, Zhao Z, Lightman SL. Prolonged treatment with the synthetic glucocorticoid methylprednisolone affects adrenal steroidogenic function and response to inflammatory stress in the rat. Brain Behav Immun 2020; 87:703-714. [PMID: 32156515 PMCID: PMC7327516 DOI: 10.1016/j.bbi.2020.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Synthetic glucocorticoids are widely prescribed for the treatment of numerous inflammatory and autoimmune diseases and they can also affect the way the adrenal gland produces endogenous glucocorticoids. Indeed, patients undergoing synthetic glucocorticoid treatment can develop adrenal insufficiency, a condition characterised by reduced responsiveness of the adrenal to ACTH stimulation or stressors (e.g. surgical or inflammatory stress). To better elucidate the long-term effect of synthetic glucocorticoids treatment and withdrawal on adrenal function, we have investigated the long-term effects of prolonged treatment with methylprednisolone on HPA axis dynamics and on the adrenal steroidogenic pathway, both in basal conditions and in response to an inflammatory stress (lipopolysaccharide, LPS). We have found that 5-days treatment with methylprednisolone suppresses basal ACTH and corticosterone secretion, as well as corticosterone secretion in response to a high dose of ACTH, and down-regulates key genes in the adrenal steroidogenic pathway, including StAR, MRAP, CYP11a1 and CYP11b1. These effects were paralleled by changes in the adrenal expression of transcription factors regulating steroidogenic gene expression, as well as changes in the expression of adrenal clock genes. Importantly, 5 days after withdrawal of the treatment, ACTH levels are restored, yet basal levels of corticosterone, as well as most of the key steroidogenic genes and their regulators, remain down regulated. We also show that, although 5-days treatment with methylprednisolone reduces the corticosterone response to LPS, an increase in intra-adrenal pro-inflammatory cytokine gene expression was observed. Our data suggests that the steroidogenic pathway is directly affected by synthetic glucocorticoid treatment in the long-term, presumably via a mechanism involving activation of the glucocorticoid receptor. Furthermore, our data suggests a pro-inflammatory effect of synthetic glucocorticoids treatment in the adrenal gland.
Collapse
Affiliation(s)
- Francesca Spiga
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom.
| | | | | |
Collapse
|
16
|
Hisaoka-Nakashima K, Azuma H, Ishikawa F, Nakamura Y, Wang D, Liu K, Wake H, Nishibori M, Nakata Y, Morioka N. Corticosterone Induces HMGB1 Release in Primary Cultured Rat Cortical Astrocytes: Involvement of Pannexin-1 and P2X7 Receptor-Dependent Mechanisms. Cells 2020; 9:cells9051068. [PMID: 32344830 PMCID: PMC7290518 DOI: 10.3390/cells9051068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
A major risk factor for major depressive disorder (MDD) is stress. Stress leads to the release of high-mobility group box-1 (HMGB1), which in turn leads to neuroinflammation, a potential pathophysiological basis of MDD. The mechanism underlying stress-induced HMGB1 release is not known, but stress-associated glucocorticoids could be involved. To test this, rat primary cultured cortical astrocytes, the most abundant cell type in the central nervous system (CNS), were treated with corticosterone and HMGB1 release was assessed by Western blotting and ELISA. Significant HMGB1 was released with treatment with either corticosterone or dexamethasone, a synthetic glucocorticoid. HMGB1 translocated from the nucleus to the cytoplasm following corticosterone treatment. HMGB1 release was significantly attenuated with glucocorticoid receptor blocking. In addition, inhibition of pannexin-1, and P2X7 receptors led to a significant decrease in corticosterone-induced HMGB1 release. Taken together, corticosterone stimulates astrocytic glucocorticoid receptors and triggers cytoplasmic translocation and extracellular release of nuclear HMGB1 through a mechanism involving pannexin-1 and P2X7 receptors. Thus, under conditions of stress, glucocorticoids induce astrocytic HMGB1 release, leading to a neuroinflammatory state that could mediate neurological disorders such as MDD.
Collapse
Affiliation(s)
- Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
| | - Honami Azuma
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
| | - Fumina Ishikawa
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
| | - Dengli Wang
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama 700-8558, Japan; (D.W.); (K.L.); (H.W.); (M.N.)
| | - Keyue Liu
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama 700-8558, Japan; (D.W.); (K.L.); (H.W.); (M.N.)
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama 700-8558, Japan; (D.W.); (K.L.); (H.W.); (M.N.)
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama 700-8558, Japan; (D.W.); (K.L.); (H.W.); (M.N.)
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan; (K.H.-N.); (H.A.); (F.I.); (Y.N.); (Y.N.)
- Correspondence: ; Tel.: +81-082-257-5310
| |
Collapse
|
17
|
Ramaholimihaso T, Bouazzaoui F, Kaladjian A. Curcumin in Depression: Potential Mechanisms of Action and Current Evidence-A Narrative Review. Front Psychiatry 2020; 11:572533. [PMID: 33329109 PMCID: PMC7728608 DOI: 10.3389/fpsyt.2020.572533] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent and debilitating disorders. Current available treatments are somehow limited, so alternative therapeutic approaches targeting different biological pathways are being investigated to improve treatment outcomes. Curcumin is the main active component in the spice turmeric that has been used for centuries in Ayurvedic medicine to treat a variety of conditions, including anxiety and depressive disorders. In the past decades, curcumin has drawn researchers' attention and displays a broad range of properties that seem relevant to depression pathophysiology. In this review, we break down the potential mechanisms of action of curcumin with emphasis on the diverse systems that can be disrupted in MDD. Curcumin has displayed, in a number of studies, a potency in modulating neurotransmitter concentrations, inflammatory pathways, excitotoxicity, neuroplasticity, hypothalamic-pituitary-adrenal disturbances, insulin resistance, oxidative and nitrosative stress, and endocannabinoid system, all of which can be involved in MDD pathophysiology. To date, a handful of clinical trials have been published and suggest a benefit of curcumin in MDD. With evidence that is progressively growing, curcumin appears as a promising alternative option in the management of MDD.
Collapse
|
18
|
Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci Biobehav Rev 2020; 108:48-77. [DOI: 10.1016/j.neubiorev.2019.10.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
|
19
|
Yeager MP, Guyre CA, Sites BD, Collins JE, Pioli PA, Guyre PM. The Stress Hormone Cortisol Enhances Interferon-υ-Mediated Proinflammatory Responses of Human Immune Cells. Anesth Analg 2019; 127:556-563. [PMID: 30028389 DOI: 10.1213/ane.0000000000003481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cortisol is a prototypical human stress hormone essential for life, yet the precise role of cortisol in the human stress response to injury or infection is still uncertain. Glucocorticoids (GCs) such as cortisol are widely understood to suppress inflammation and immunity. However, recent research shows that GCs also induce delayed immune effects manifesting as immune stimulation. In this study, we show that cortisol enhances the immune-stimulating effects of a prototypical proinflammatory cytokine, interferon-υ (IFN-υ). We tested the hypothesis that cortisol enhances IFN-υ-mediated proinflammatory responses of human mononuclear phagocytes (monocyte/macrophages [MOs]) stimulated by bacterial endotoxin (lipopolysaccharide [LPS]). METHODS Human MOs were cultured for 18 hours with or without IFN-υ and/or cortisol before LPS stimulation. MO differentiation factors granulocyte-macrophage colony stimulating factor (GM-CSF) or M-CSF were added to separate cultures. We also compared the inflammatory response with an acute, 4-hour MO incubation with IFN-υ plus cortisol and LPS to a delayed 18-hour incubation with cortisol before LPS exposure. MO activation was assessed by interleukin-6 (IL-6) release and by multiplex analysis of pro- and anti-inflammatory soluble mediators. RESULTS After the 18-hour incubation, we observed that cortisol significantly increased LPS-stimulated IL-6 release from IFN-υ-treated undifferentiated MOs. In GM-CSF-pretreated MOs, cortisol increased IFN-υ-mediated IL-6 release by >4-fold and release of the immune stimulant IFN-α2 (IFN-α2) by >3-fold, while suppressing release of the anti-inflammatory mediator, IL-1 receptor antagonist to 15% of control. These results were reversed by either the GC receptor antagonist RU486 or by an IFN-υ receptor type 1 antibody antagonist. Cortisol alone increased expression of the IFN-υ receptor type 1 on undifferentiated and GM-CSF-treated MOs. In contrast, an acute 4-hour incubation of MOs with IFN-υ and cortisol showed classic suppression of the IL-6 response to LPS. CONCLUSIONS These results reveal a surprisingly robust proinflammatory interaction between the human stress response hormone cortisol and the immune activating cytokine IFN-υ. The results support an emerging physiological model with an adaptive role for cortisol, wherein acute release of cortisol suppresses early proinflammatory responses but also primes immune cells for an augmented response to a subsequent immune challenge. These findings have broad clinical implications and provide an experimental framework to examine individual differences, mechanisms, and translational implications of cortisol-enhanced immune responses in humans.
Collapse
Affiliation(s)
- Mark P Yeager
- From the Department of Anesthesiology and Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | | - Brian D Sites
- Department of Anesthesiology and Orthopedics, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Jane E Collins
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Patricia A Pioli
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Paul M Guyre
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|
20
|
Rosin JM, Kurrasch DM. Emerging roles for hypothalamic microglia as regulators of physiological homeostasis. Front Neuroendocrinol 2019; 54:100748. [PMID: 31059719 DOI: 10.1016/j.yfrne.2019.100748] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 01/22/2023]
Abstract
The hypothalamus is a crucial brain region that responds to external stressors and functions to maintain physiological homeostatic processes, such as core body temperature and energy balance. The hypothalamus regulates homeostasis by producing hormones that thereby influence the production of other hormones that then control the internal milieu of the body. Microglia are resident macrophages and phagocytic immune cells of the central nervous system (CNS), classically known for surveying the brain's environment, responding to neural insults, and disposing of cellular debris. Recent evidence has shown that microglia are also responsive to external stressors and can influence both the development and function of the hypothalamus in a sex-dependent manner. This emerging microglia-hypothalamic interaction raises the intriguing notion that microglia might play an unappreciated role in hypothalamic control of physiological homeostasis. In this review, we briefly outline how the hypothalamus regulates physiological homeostasis and then describe how this literature overlaps with our understanding of microglia's role in the CNS. We also outline the current literature demonstrating how microglia loss or activation affects the hypothalamus, and ultimately homeostasis. We conclude by proposing how microglia could be key regulators of homeostatic processes by sensing cues external to the CNS and transmitting them through the hypothalamus.
Collapse
Affiliation(s)
- Jessica M Rosin
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
21
|
Frank MG, Fonken LK, Watkins LR, Maier SF. Microglia: Neuroimmune-sensors of stress. Semin Cell Dev Biol 2019; 94:176-185. [PMID: 30638704 DOI: 10.1016/j.semcdb.2019.01.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Exposure to stressors disrupts homeostasis and results in the release of stress hormones including glucocorticoids, epinepherine and norepinepherine. Interestingly, stress also has profound affects on microglia, which are tissue-resident macrophages in the brain parenchyma. Microglia express a diverse array of receptors, which also allows them to respond to stress hormones derived from peripheral as well as central sources. Here, we review studies of how exposure to acute and chronic stressors alters the immunophenotype and function of microglia. Further, we examine a causal for stress hormones in these effects of stress on microglia. We propose that microglia serve as immunosensors of the stress response, which puts them in the unique position to sense and respond rapidly to alterations in homeostasis and integrate the neural response to threats.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
22
|
A new hypothesis for the pathophysiology of complex regional pain syndrome. Med Hypotheses 2018; 119:41-53. [DOI: 10.1016/j.mehy.2018.07.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/18/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022]
|
23
|
Bortolotti P, Faure E, Kipnis E. Inflammasomes in Tissue Damages and Immune Disorders After Trauma. Front Immunol 2018; 9:1900. [PMID: 30166988 PMCID: PMC6105702 DOI: 10.3389/fimmu.2018.01900] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/31/2018] [Indexed: 01/15/2023] Open
Abstract
Trauma remains a leading cause of death worldwide. Hemorrhagic shock and direct injury to vital organs are responsible for early mortality whereas most delayed deaths are secondary to complex pathophysiological processes. These processes result from imbalanced systemic reactions to the multiple aggressions associated with trauma. Trauma results in the uncontrolled local and systemic release of endogenous mediators acting as danger signals [damage-associated molecular patterns (DAMPs)]. Their recognition by the innate immune system triggers a pro-inflammatory immune response paradoxically associated with concomitant immunosuppression. These responses, ranging in intensity from inappropriate to overwhelming, promote the propagation of injuries to remote organs, leading to multiple organ failure and death. Some of the numerous DAMPs released after trauma trigger the assembly of intracellular multiprotein complexes named inflammasomes. Once activated by a ligand, inflammasomes lead to the activation of a caspase. Activated caspases allow the release of mature forms of interleukin-1β and interleukin-18 and trigger a specific pro-inflammatory cell death termed pyroptosis. Accumulating data suggest that inflammasomes, mainly NLRP3, NLRP1, and AIM2, are involved in the generation of tissue damage and immune dysfunction after trauma. Following trauma-induced DAMP(s) recognition, inflammasomes participate in multiple ways in the development of exaggerated systemic and organ-specific inflammatory response, contributing to organ damage. Inflammasomes are involved in the innate responses to traumatic brain injury and contribute to the development of acute respiratory distress syndrome. Inflammasomes may also play a role in post-trauma immunosuppression mediated by dysregulated monocyte functions. Characterizing the involvement of inflammasomes in the pathogenesis of post-trauma syndrome is a key issue as they may be potential therapeutic targets. This review summarizes the current knowledge on the roles of inflammasomes in trauma.
Collapse
Affiliation(s)
- Perrine Bortolotti
- Meakins-Christie Laboratories, Department of Medicine, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Emmanuel Faure
- Meakins-Christie Laboratories, Department of Medicine, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Eric Kipnis
- Surgical Critical Care Unit, Department of Anesthesiology and Critical Care, Centre Hospitalier Regional et Universitaire de Lille, Lille, France.,Host-Pathogen Translational Research, Faculté de Médecine, Université Lille 2 Droit et Santé, Lille, France
| |
Collapse
|
24
|
Lurie DI. An Integrative Approach to Neuroinflammation in Psychiatric disorders and Neuropathic Pain. J Exp Neurosci 2018; 12:1179069518793639. [PMID: 30127639 PMCID: PMC6090491 DOI: 10.1177/1179069518793639] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/17/2018] [Indexed: 01/08/2023] Open
Abstract
Neuroinflammation is a complex process involving both the peripheral circulation
and the Central Nervous System (CNS) and is considered to underlie many CNS
disorders including depression, anxiety, schizophrenia, and pain. Stressors
including early-life adversity, psychosocial stress, and infection appear to
prime microglia toward a pro-inflammatory phenotype. Subsequent inflammatory
challenges then drive an exaggerated neuroinflammatory response involving the
upregulation of pro-inflammatory mediators that is associated with CNS
dysfunction. Several pharmacologic inhibitors of pro-inflammatory cytokines
including TNF-α and IL-1β show good clinical efficacy in terms of ameliorating
neuroinflammatory processes. Mind/body and plant-based interventions such as
yoga, breathing exercises, meditation, and herbs/spices have also been
demonstrated to reduce pro-inflammatory cytokines and have a positive impact on
depression, anxiety, cognition, and pain. As the intricate connections between
the immune system and the nervous system continue to be elucidated, successful
therapies for reducing neuroinflammation will likely involve an integrated
approach combining drug therapy with nonpharmacologic interventions.
Collapse
Affiliation(s)
- Diana I Lurie
- Department of Biomedical & Pharmaceutical Sciences, Skaggs School of Pharmacy, College of Health Professions & Biomedical Sciences, The University of Montana, Missoula, MT, USA
| |
Collapse
|
25
|
de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, Joëls M. Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation. Front Neuroendocrinol 2018; 49:124-145. [PMID: 29428549 DOI: 10.1016/j.yfrne.2018.02.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 01/14/2023]
Abstract
Bruce McEwen's discovery of receptors for corticosterone in the rat hippocampus introduced higher brain circuits in the neuroendocrinology of stress. Subsequently, these receptors were identified as mineralocorticoid receptors (MRs) that are involved in appraisal processes, choice of coping style, encoding and retrieval. The MR-mediated actions on cognition are complemented by slower actions via glucocorticoid receptors (GRs) on contextualization, rationalization and memory storage of the experience. These sequential phases in cognitive performance depend on synaptic metaplasticity that is regulated by coordinate MR- and GR activation. The receptor activation includes recruitment of coregulators and transcription factors as determinants of context-dependent specificity in steroid action; they can be modulated by genetic variation and (early) experience. Interestingly, inflammatory responses to damage seem to be governed by a similarly balanced MR:GR-mediated action as the initiating, terminating and priming mechanisms involved in stress-adaptation. We conclude with five questions challenging the MR:GR balance hypothesis.
Collapse
Affiliation(s)
- E R de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - O C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - A F de Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina.
| | - R H de Rijk
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands & Department of Clinical Psychology, Leiden University, The Netherlands.
| | - M Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands; University of Groningen, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
26
|
Su WJ, Peng W, Gong H, Liu YZ, Zhang Y, Lian YJ, Cao ZY, Wu R, Liu LL, Wang B, Wang YX, Jiang CL. Antidiabetic drug glyburide modulates depressive-like behavior comorbid with insulin resistance. J Neuroinflammation 2017; 14:210. [PMID: 29084550 PMCID: PMC5663104 DOI: 10.1186/s12974-017-0985-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Abundant reports indicated that depression was often comorbid with type 2 diabetes and even metabolic syndrome. Considering they might share common biological origins, it was tentatively attributed to the chronic cytokine-mediated inflammatory response which was induced by dysregulation of HPA axis and overactivation of innate immunity. However, the exact mechanisms remain obscure. Herein, we mainly focused on the function of the NLRP3 inflammasome to investigate this issue. METHODS Male C57BL/6 mice were subjected to 12 weeks of chronic unpredictable mild stress (CUMS), some of which were injected with glyburide or fluoxetine. After CUMS procedure, behavioral and metabolic tests were carried out. In order to evaluate the systemic inflammation associated with inflammasome activation, IL-1β and inflammasome components in hippocampi and pancreases, as well as corticosterone and IL-1β in serum were detected separately. Moreover, immunostaining was performed to assess morphologic characteristics of pancreases. RESULTS In the present study, we found that 12 weeks' chronic stress resulted in depressive-like behavior comorbid with insulin resistance. Furthermore, antidiabetic drug glyburide, an inhibitor of the NLRP3 inflammasome, was discovered to be effective in preventing the experimental comorbidity. In brief, it improved behavioral performance, ameliorated insulin intolerance as well as insulin signaling in the hippocampus possibly through inhibiting NLRP3 inflammasome activation by suppressing the expression of TXNIP. CONCLUSIONS All these evidence supported our hypothesis that chronic stress led to comorbidity of depressive-like behavior and insulin resistance via long-term mild inflammation. More importantly, based on the beneficial effects of blocking the activation of the NLRP3 inflammasome, we provided a potential therapeutic target for clinical comorbidity and a new strategy for management of both diabetes and depression.
Collapse
Affiliation(s)
- Wen-Jun Su
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Wei Peng
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Hong Gong
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Yun-Zi Liu
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Yi Zhang
- Department of Psychiatry, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Yong-Jie Lian
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Zhi-Yong Cao
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
- Department of Psychiatry, The 102nd Hospital of PLA, 55 North Heping Road, Changzhou, China
| | - Ran Wu
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Lin-Lin Liu
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Bo Wang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Yun-Xia Wang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| | - Chun-Lei Jiang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical University, 800 Xiangyin Road, Shanghai, China
| |
Collapse
|
27
|
Bowyer JF, Tranter KM, Sarkar S, George NI, Hanig JP, Kelly KA, Michalovicz LT, Miller DB, O'Callaghan JP. Corticosterone and exogenous glucose alter blood glucose levels, neurotoxicity, and vascular toxicity produced by methamphetamine. J Neurochem 2017; 143:198-213. [PMID: 28792619 DOI: 10.1111/jnc.14143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022]
Abstract
Our previous studies have raised the possibility that altered blood glucose levels may influence and/or be predictive of methamphetamine (METH) neurotoxicity. This study evaluated the effects of exogenous glucose and corticosterone (CORT) pretreatment alone or in combination with METH on blood glucose levels and the neural and vascular toxicity produced. METH exposure consisted of four sequential injections of 5, 7.5, 10, and 10 mg/kg (2 h between injections) D-METH. The three groups given METH in combination with saline, glucose (METH+Glucose), or CORT (METH+CORT) had significantly higher glucose levels compared to the corresponding treatment groups without METH except at 3 h after the last injection. At this last time point, the METH and METH+Glucose groups had lower levels than the non-METH groups, while the METH+CORT group did not. CORT alone or glucose alone did not significantly increase blood glucose. Mortality rates for the METH+CORT (40%) and METH+Glucose (44%) groups were substantially higher than the METH (< 10%) group. Additionally, METH+CORT significantly increased neurodegeneration above the other three METH treatment groups (≈ 2.5-fold in the parietal cortex). Thus, maintaining elevated levels of glucose during METH exposure increases lethality and may exacerbate neurodegeneration. Neuroinflammation, specifically microglial activation, was associated with degenerating neurons in the parietal cortex and thalamus after METH exposure. The activated microglia in the parietal cortex were surrounding vasculature in most cases and the extent of microglial activation was exacerbated by CORT pretreatment. Our findings show that acute CORT exposure and elevated blood glucose levels can exacerbate METH-induced vascular damage, neuroinflammation, neurodegeneration and lethality. Cover Image for this issue: doi. 10.1111/jnc.13819.
Collapse
Affiliation(s)
- John F Bowyer
- Division of Neurotoxicology, National Center for Toxicology/FDA, Jefferson, Arkansas, USA
| | - Karen M Tranter
- Division of Neurotoxicology, National Center for Toxicology/FDA, Jefferson, Arkansas, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicology/FDA, Jefferson, Arkansas, USA
| | - Nysia I George
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research/FDA, Jefferson, Arkansas, USA
| | - Joseph P Hanig
- Center for Drug Evaluation and Research/FDA Silver Spring, Silver Spring, Maryland, USA
| | - Kimberly A Kelly
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health Morgantown, Morgantown, West Virginia, USA
| | - Lindsay T Michalovicz
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health Morgantown, Morgantown, West Virginia, USA
| | - Diane B Miller
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health Morgantown, Morgantown, West Virginia, USA
| | - James P O'Callaghan
- Health Effects Laboratory Division, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health Morgantown, Morgantown, West Virginia, USA
| |
Collapse
|
28
|
Sun R, Zhao Z, Feng J, Bo J, Rong H, Lei Y, Lu C, Zhang X, Hou B, Sun Y, Liu Y, Ma Z, Gu X. Glucocorticoid-Potentiated Spinal Microglia Activation Contributes to Preoperative Anxiety-Induced Postoperative Hyperalgesia. Mol Neurobiol 2017; 54:4316-4328. [PMID: 27339881 DOI: 10.1007/s12035-016-9976-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/14/2016] [Indexed: 12/30/2022]
Abstract
Clinically, preoperative anxiety adversely affected postoperative hyperalgesia. As stress-induced glucocorticoids (GCs) were reported to sensitize the activation of microglia, the present study investigated whether and how GCs and microglia played in the process of preoperative anxiety-induced postoperative hyperalgesia. The study used an animal model that exposed rats to single prolonged stress (SPS) procedure to induce preoperative anxiety-like behaviors 24 h before the plantar incisional surgery. Behavioral testing revealed that preoperative SPS enhanced the mechanical allodynia induced by plantar incision. SPS was also found to induce elevated circulating corticosterone levels, potentiate the activation of spinal microglia, and increase the expression of spinal proinflammatory cytokines. Inhibition of microglia by pretreatment with minocycline attenuated the SPS-enhanced mechanical allodynia, and this was accompanied by decreased activation of spinal microglia and expression of proinflammatory cytokines. Another experiment was conducted by administering RU486, the GC receptor (GR) antagonist, to rats. The results showed that RU486 suppressed SPS-induced and SPS-potentiated proinflammatory activation of spinal microglia and revealed analgesic effects. Together, these data indicated that inhibition of stress-induced GR activation attenuated the preoperative anxiety-induced exacerbation of postoperative pain, and the suppression of spinal microglia activation may underlie this anti-hyperalgesia effect. Pending further studies, these findings suggested that GR and spinal microglia may play important roles in the development of preoperative anxiety-induced postoperative hyperalgesia and may serve as novel targets to prevent this phenomenon.
Collapse
Affiliation(s)
- Rao Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, Jiangsu, China
| | - Zhibin Zhao
- Department of Anesthesiology, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China
| | - Jiying Feng
- Department of Anesthesiology, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China
| | - Jinhua Bo
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, Jiangsu, China
| | - Hui Rong
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, Jiangsu, China
| | - Yishan Lei
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, Jiangsu, China
| | - Cui'e Lu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, Jiangsu, China
| | - Xiaobao Zhang
- Department of Anesthesiology, The First People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China
| | - Bailing Hou
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, Jiangsu, China
| | - Yu'e Sun
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, Jiangsu, China
| | - Yue Liu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, Jiangsu, China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, Jiangsu, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, Jiangsu, China.
| |
Collapse
|
29
|
Howes OD, McCutcheon R. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptualization. Transl Psychiatry 2017; 7:e1024. [PMID: 28170004 PMCID: PMC5438023 DOI: 10.1038/tp.2016.278] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/27/2016] [Indexed: 12/12/2022] Open
Abstract
An interaction between external stressors and intrinsic vulnerability is one of the longest standing pathoaetiological explanations for schizophrenia. However, novel lines of evidence from genetics, preclinical studies, epidemiology and imaging have shed new light on the mechanisms that may underlie this, implicating microglia as a key potential mediator. Microglia are the primary immune cells of the central nervous system. They have a central role in the inflammatory response, and are also involved in synaptic pruning and neuronal remodeling. In addition to immune and traumatic stimuli, microglial activation occurs in response to psychosocial stress. Activation of microglia perinatally may make them vulnerable to subsequent overactivation by stressors experienced in later life. Recent advances in genetics have shown that variations in the complement system are associated with schizophrenia, and this system has been shown to regulate microglial synaptic pruning. This suggests a mechanism via which genetic and environmental influences may act synergistically and lead to pathological microglial activation. Microglial overactivation may lead to excessive synaptic pruning and loss of cortical gray matter. Microglial mediated damage to stress-sensitive regions such as the prefrontal cortex and hippocampus may lead directly to cognitive and negative symptoms, and account for a number of the structural brain changes associated with the disorder. Loss of cortical control may also lead to disinhibition of subcortical dopamine-thereby leading to positive psychotic symptoms. We review the preclinical and in vivo evidence for this model and consider the implications this has for treatment, and future directions.
Collapse
Affiliation(s)
- O D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK,MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK,PET Imaging Group, MRC Clinical Sciences Centre, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK. E-mail:
| | - R McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK,MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
30
|
Dimitroulas T, Sandoo A, Skeoch S, O’Sullivan M, Yessirkepov M, Ayvazyan L, Gasparyan A, Metsios G, Kitas G. Rheumatoid Arthritis. THE HEART IN RHEUMATIC, AUTOIMMUNE AND INFLAMMATORY DISEASES 2017:129-165. [DOI: 10.1016/b978-0-12-803267-1.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Finnell JE, Wood SK. Neuroinflammation at the interface of depression and cardiovascular disease: Evidence from rodent models of social stress. Neurobiol Stress 2016; 4:1-14. [PMID: 27981185 PMCID: PMC5146276 DOI: 10.1016/j.ynstr.2016.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 12/20/2022] Open
Abstract
A large body of evidence has emerged linking stressful experiences, particularly from one's social environment, with psychiatric disorders. However, vast individual differences emerge in susceptibility to developing stress-related pathology which may be due to distinct differences in the inflammatory response to social stress. Furthermore, depression is an independent risk factor for cardiovascular disease, another inflammatory-related disease, and results in increased mortality in depressed patients. This review is focused on discussing evidence for stress exposure resulting in persistent or sensitized inflammation in one individual while this response is lacking in others. Particular focus will be directed towards reviewing the literature underlying the impact that neuroinflammation has on neurotransmitters and neuropeptides that could be involved in the pathogenesis of comorbid depression and cardiovascular disease. Finally, the theme throughout the review will be to explore the notion that stress-induced inflammation is a key player in the high rate of comorbidity between psychosocial disorders and cardiovascular disease.
Collapse
Key Words
- 5-HT, Serotonin
- BDNF, Brain-derived neurotrophic factor
- CRF, Corticotrophin-releasing factor
- CRP, C reactive protein
- CVD, Cardiovascular disease
- DA, Dopamine
- DR, Dorsal raphe
- IL, Interleukin
- IL-1Ra, Interleukin 1 receptor antagonist
- IL-1r2, Interleukin 1 receptor type 2
- INF, Interferon
- KYN, Kynurenine
- LC, Locus coeruleus
- LPS, Lipopolysaccharide
- MCP, Monocyte chemoattractant protein
- NE, Norepinephrine
- NPY, Neuropeptide Y
- PTSD, Post traumatic stress disorder
- SSRI, Selective serotonin re-uptake inhibitor
- TNF, Tumor necrosis factor
- Trk, Tyrosine receptor kinase
Collapse
Affiliation(s)
- Julie E Finnell
- Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Susan K Wood
- Department of Pharmacology Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
32
|
Fonken LK, Weber MD, Daut RA, Kitt MM, Frank MG, Watkins LR, Maier SF. Stress-induced neuroinflammatory priming is time of day dependent. Psychoneuroendocrinology 2016; 66:82-90. [PMID: 26799851 PMCID: PMC4788538 DOI: 10.1016/j.psyneuen.2016.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
Circadian rhythms are endogenous cycles of physiology and behavior that align with the daily rotation of the planet and resulting light-dark cycle. The circadian system ensures homeostatic balance and regulates many aspects of physiology, including the stress response and susceptibility to and/or severity of stress-related sequelae. Both acute and chronic stressors amplify neuroinflammatory responses to a subsequent immune challenge, however it is not known whether circadian timing of the stressor regulates the priming response. Here, we test whether stress-induced neuroinflammatory priming is regulated by the circadian system. As has been previously shown, exposure to 100 inescapable tails shocks (IS) increased hippocampal cytokines following a subsequent inflammatory challenge. However, this effect was limited to animals that experienced the stressor during the light phase. Rats exposed to stress during the dark phase did not alter inflammatory potential following lipopolysaccharide (LPS) challenge. To determine whether microglia might be involved in diurnal differences in neuroinflammatory priming, microglia were isolated 24h after stress that occurred either during the middle of the light or dark phase. Only microglia isolated from animals stressed during the light phase demonstrated an exaggerated inflammatory response when treated ex vivo with LPS. To determine possible circadian dependency of microglia responsiveness to glucocorticoids - the likely proximal mediator for stress associated neuroinflammatory priming - microglia were isolated during the middle of the light or dark phase and treated ex vivo with corticosterone. Glucocorticoids treatment downregulated CX3CR1 and CD200R, two genes involved in microglial inflammatory "off" signaling; however, there was no effect of time of day on expression of either gene. Importantly, while absolute concentrations of corticosterone were comparable following IS during the light and dark phase, the magnitude of change in corticosterone was greater during the light phase. This work highlights the importance of studying circadian rhythms to elucidate biological mechanisms of stress.
Collapse
Affiliation(s)
- Laura K. Fonken
- To whom correspondence should be addressed: Laura K. Fonken, Department of Psychology and Neuroscience, University of Colorado, Muenzinger Psychology D244, 1905, Colorado Ave., Boulder, CO 80309 USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Novel environment influences the effect of paradoxical sleep deprivation upon brain and peripheral cytokine gene expression. Neurosci Lett 2016; 615:55-9. [PMID: 26806035 DOI: 10.1016/j.neulet.2016.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/08/2016] [Accepted: 01/10/2016] [Indexed: 12/23/2022]
Abstract
Sleep loss increases inflammatory mediators in brain and peripheral tissues, but the mechanisms underlying this association are not fully understood. Male C57BL/6j mice were exposed to paradoxical sleep deprivation (PSD) for 24h using the modified multiple platform (MMP) technique (platforms over water) or two different controls: home cage or a dry platform cage, which constituted a novel environment. PSD mice exhibited increased IL-1β and TNF-α pro-inflammatory gene expression in brain (hypothalamus, hippocampus, pre-frontal cortex), as well as in peripheral tissues (liver, spleen), when compared with home-cage controls. In addition, among PSD mice, TGFβ1, an anti-inflammatory cytokine, was increased in pre-frontal cortex, liver, and spleen in conjunction with elevated serum corticosterone concentration relative to home-cage controls. However, these differences were nearly abolished when PSD mice were compared with control mice subjected to a dry MMP cage, suggesting that simply exposing mice to a novel environment can induce an acute inflammatory response.
Collapse
|
34
|
Frank MG, Weber MD, Watkins LR, Maier SF. Stress-induced neuroinflammatory priming: A liability factor in the etiology of psychiatric disorders. Neurobiol Stress 2015; 4:62-70. [PMID: 27981190 PMCID: PMC5146200 DOI: 10.1016/j.ynstr.2015.12.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/23/2015] [Indexed: 12/09/2022] Open
Abstract
Stress and glucocorticoids (GCs) have universally been considered to be anti-inflammatory, however in recent years, stress and GCs have been found to exert permissive effects (immunological priming) on neuroinflammatory processes. This phenomenon of priming is characterized by prior stress or GC exposure potentiating the neuroinflammatory response to a subsequent immune challenge. A considerable body of evidence is discussed here that supports this permissive effect of stress and GCs. In light of this evidence, a mechanism of neuroinflammatory priming is proposed involving a signal cascade in the brain involving danger-associated molecular patterns (HMGB-1) and inflammasomes (NLRP3), which results in an exaggerated or amplified neuroinflammatory response and subsequently, the amplification of the physiological and behavioral sequelae of this response (i.e. sickness). Finally, we explore the notion that stressor-induced sensitization of the neuroimmune microenvironment may predispose individuals to psychiatric disorders, in which exaggerated innate immune/inflammatory responses in the brain are now thought to play a key role.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Michael D Weber
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, USA
| |
Collapse
|
35
|
Maysinger D, Ji J, Hutter E, Cooper E. Nanoparticle-Based and Bioengineered Probes and Sensors to Detect Physiological and Pathological Biomarkers in Neural Cells. Front Neurosci 2015; 9:480. [PMID: 26733793 PMCID: PMC4683200 DOI: 10.3389/fnins.2015.00480] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023] Open
Abstract
Nanotechnology, a rapidly evolving field, provides simple and practical tools to investigate the nervous system in health and disease. Among these tools are nanoparticle-based probes and sensors that detect biochemical and physiological properties of neurons and glia, and generate signals proportionate to physical, chemical, and/or electrical changes in these cells. In this context, quantum dots (QDs), carbon-based structures (C-dots, grapheme, and nanodiamonds) and gold nanoparticles are the most commonly used nanostructures. They can detect and measure enzymatic activities of proteases (metalloproteinases, caspases), ions, metabolites, and other biomolecules under physiological or pathological conditions in neural cells. Here, we provide some examples of nanoparticle-based and genetically engineered probes and sensors that are used to reveal changes in protease activities and calcium ion concentrations. Although significant progress in developing these tools has been made for probing neural cells, several challenges remain. We review many common hurdles in sensor development, while highlighting certain advances. In the end, we propose some future directions and ideas for developing practical tools for neural cell investigations, based on the maxim "Measure what is measurable, and make measurable what is not so" (Galileo Galilei).
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University Montreal, QC, Canada
| | - Jeff Ji
- Department of Pharmacology and Therapeutics, McGill University Montreal, QC, Canada
| | - Eliza Hutter
- Department of Pharmacology and Therapeutics, McGill University Montreal, QC, Canada
| | - Elis Cooper
- Department of Physiology, McGill University Montreal, QC, Canada
| |
Collapse
|