1
|
Caron L, Vdovenko D, Lombard-Vadnais F, Lesage S. NOD alleles at Idd1 and Idd2 loci drive exocrine pancreatic inflammation. Immunogenetics 2024; 76:323-333. [PMID: 39207501 DOI: 10.1007/s00251-024-01352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Non-obese diabetic (NOD) mice spontaneously develop autoimmune diabetes and have enabled the identification of several loci associated with diabetes susceptibility, termed insulin-dependent diabetes (Idd). The generation of congenic mice has allowed the characterization of the impact of several loci on disease susceptibility. For instance, NOD.B6-Idd1 and B6.NOD-Idd1 congenic mice were instrumental in demonstrating that susceptibility alleles at the MHC locus (known as Idd1) are necessary but not sufficient for autoimmune diabetes progression. We previously showed that diabetes resistance alleles at the Idd2 locus provide significant protection from autoimmune diabetes onset, second to Idd1. In search of the minimal genetic factors required for T1D onset, we generated B6.Idd1.Idd2 double-congenic mice. Although the combination of Idd1 and Idd2 is not sufficient to induce diabetes onset, we observed immune infiltration in the exocrine pancreas of B6.Idd2 mice, as well as an increase in neutrophils and pancreatic tissue fibrosis. In addition, we observed phenotypic differences in T-cell subsets from B6.Idd1.Idd2 mice relative to single-congenic mice, suggesting epistatic interaction between Idd1 and Idd2 in modulating T-cell function. Altogether, these data show that Idd1 and Idd2 susceptibility alleles are not sufficient for autoimmune diabetes but contribute to inflammation and immune infiltration in the pancreas.
Collapse
Affiliation(s)
- Laurence Caron
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Daria Vdovenko
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Félix Lombard-Vadnais
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Sylvie Lesage
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada.
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada.
| |
Collapse
|
2
|
Giraud E, Fiette L, Melanitou E. Type 1 diabetes and parasite infection: An exploratory study in NOD mice. PLoS One 2024; 19:e0308868. [PMID: 39436890 PMCID: PMC11495574 DOI: 10.1371/journal.pone.0308868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/29/2024] [Indexed: 10/25/2024] Open
Abstract
Microorganisms have long been suspected to influence the outcome of immune-related syndromes, particularly autoimmune diseases. Type 1 diabetes (T1D) results from the autoimmune destruction of the insulin-producing beta cells of pancreatic islets, causing high glycemia levels. Genetics is part of its aetiology, but environmental factors, particularly infectious microorganisms, also play a role. Bacteria, viruses, and parasites influence the outcome of T1D in mice and humans. We used nonobese diabetic (NOD) mice, which spontaneously develop T1D, to investigate the influence of a parasitic infection, leishmaniasis. Leishmania amazonensis is an intracellular eukaryotic parasite that replicates predominantly in macrophages and is responsible for cutaneous leishmaniasis. The implication of Th1 immune responses in T1D and leishmaniasis led us to study this parasite in the NOD mouse model. We previously constructed osteopontin knockout mice with a NOD genetic background and demonstrated that this protein plays a role in the T1D phenotype. In addition, osteopontin (OPN) has been found to play a role in the immune response to various infectious microorganisms and to be implicated in other autoimmune conditions, such as multiple sclerosis in humans and experimental autoimmune encephalomyelitis (EAE) in mice. We present herein data demonstrating the role of OPN in the response to Leishmania in NOD mice and the influence of this parasitic infection on T1D. This exploratory study aimed to investigate the environmental infectious component of the autoimmune response, including Th1 immunity, which is common to both T1D and leishmaniasis.
Collapse
Affiliation(s)
- Emilie Giraud
- Chemogenomic and Biological Screening Core Facility, C2RT, CNRS UMR 3523, Institut Pasteur, Université Paris Cité, Paris, France
| | - Laurence Fiette
- Human Histopathology, and Animal Models Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Evie Melanitou
- Department of Parasites & Insect-Vectors, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Serreze DV, Dwyer JR, Racine JJ. Advancing Animal Models of Human Type 1 Diabetes. Cold Spring Harb Perspect Med 2024; 14:a041587. [PMID: 38886067 PMCID: PMC11444302 DOI: 10.1101/cshperspect.a041587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Multiple rodent models have been developed to study the basis of type 1 diabetes (T1D). However, nonobese diabetic (NOD) mice and derivative strains still provide the gold standard for dissecting the basis of the autoimmune responses underlying T1D. Here, we review the developmental origins of NOD mice, and how they and derivative strains have been used over the past several decades to dissect the genetic and immunopathogenic basis of T1D. Also discussed are ways in which the immunopathogenic basis of T1D in NOD mice and humans are similar or differ. Additionally reviewed are efforts to "humanize" NOD mice and derivative strains to provide improved models to study autoimmune responses contributing to T1D in human patients.
Collapse
|
4
|
Ar Reshaid AM, Alshawakir YA, Almuayrifi MA, Al-Attas OS, BaHammam AS, Al Khalifah RA. The Impact of Light-Dark Cycle Alteration on the Acceleration of Type 1 Diabetes in NOD Mice Model. Nat Sci Sleep 2024; 16:1291-1302. [PMID: 39247909 PMCID: PMC11378784 DOI: 10.2147/nss.s465917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Objective We aimed to evaluate the effect of light-dark cycle alteration and soft drink consumption on the acceleration of type 1 diabetes mellitus (T1DM) development among non-obese diabetic (NOD) mice model. Methods We exposed female NOD and C57BL/6 mice from the age of 5 weeks to either adlib soft drink consumption and/or T20 light-dark cycle alteration until the development of diabetes, or the mice reached the age of 30 weeks. Each group consisted of 7-15 mice. We monitored weight, length, blood glucose level, and insulin autoantibody (IAA) levels weekly. Results Out of 75 NOD and 22 C57BL/6 mice, 41 NOD mice developed diabetes, and 6 mice died between 7 and 8 weeks of age. The mean time to development of T1DM among NOD control mice was 20 weeks. The time to development of T1DM was accelerated by two weeks in the NOD mice exposed to light-dark cycle alteration, hazard ratio of 2.65,95th CI (0.70, 10.04) p = 0.15). The other groups developed T1DM, similar to the control group. Conclusion There was a trend toward earlier development of T1DM among NOD mice exposed to light-dark cycle alteration, but this difference was not statistically significant. Further studies are needed to confirm our findings using larger sample sizes and different animal species.
Collapse
Affiliation(s)
| | | | - Mohammed A Almuayrifi
- Experimental Surgery and Animal Lab, College of Medicine, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Omar Salem Al-Attas
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed S BaHammam
- The University Sleep Disorders Centre, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- King Saud University Medical City, Riyadh, Saudi Arabia
| | - Reem Abdullah Al Khalifah
- King Saud University Medical City, Riyadh, Saudi Arabia
- Division of Pediatric Endocrinology, Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- University Diabetes Centre, King Saud University Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Mohammadi V, Maleki AJ, Nazari M, Siahmansouri A, Moradi A, Elahi R, Esmaeilzadeh A. Chimeric Antigen Receptor (CAR)-Based Cell Therapy for Type 1 Diabetes Mellitus (T1DM); Current Progress and Future Approaches. Stem Cell Rev Rep 2024; 20:585-600. [PMID: 38153634 DOI: 10.1007/s12015-023-10668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that destroys insulin-producing pancreatic β-cells. Insulin replacement therapy is currently the mainstay of treatment for T1DM; however, treatment with insulin does not ameliorate disease progression, as dysregulated immune response and inflammation continue to cause further pancreatic β-cell degradation. Therefore, shifting therapeutic strategies toward immunomodulating approaches could be effective to prevent and reverse disease progression. Different immune-modulatory therapies could be used, e.g., monoclonal-based immunotherapy, mesenchymal stem cell, and immune cell therapy. Since immune-modulatory approaches could have a systemic effect on the immune system and cause toxicity, more specific treatment options should target the immune response against pancreatic β-cells. In this regard, chimeric antigen receptor (CAR)-based immunotherapy could be a promising candidate for modulation of dysregulated immune function in T1DM. CAR-based therapy has previously been approved for a number of hematologic malignancies. Nevertheless, there is renewed interest in CAR T cells' " off-the-shelf " treatment for T1DM. Several pre-clinical studies demonstrated that redirecting antigen-specific CAR T cells, especially regulatory CAR T cells (CAR Tregs), toward the pancreatic β-cells, could prevent diabetes onset and progression in diabetic mice models. Here, we aim to review the current progress of CAR-based immune-cell therapy for T1DM and the corresponding challenges, with a special focus on designing CAR-based immunomodulatory strategies to improve its efficacy in the treatment of T1DM.
Collapse
Affiliation(s)
- Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Siahmansouri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amirhosein Moradi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
6
|
Costanzo A, Clarke D, Holt M, Sharma S, Nagy K, Tan X, Kain L, Abe B, Luce S, Boitard C, Wyseure T, Mosnier LO, Su AI, Grimes C, Finn MG, Savage PB, Gottschalk M, Pettus J, Teyton L. Repositioning the Early Pathology of Type 1 Diabetes to the Extraislet Vasculature. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1094-1104. [PMID: 38426888 PMCID: PMC10944819 DOI: 10.4049/jimmunol.2300769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Type 1 diabetes (T1D) is a prototypic T cell-mediated autoimmune disease. Because the islets of Langerhans are insulated from blood vessels by a double basement membrane and lack detectable lymphatic drainage, interactions between endocrine and circulating T cells are not permitted. Thus, we hypothesized that initiation and progression of anti-islet immunity required islet neolymphangiogenesis to allow T cell access to the islet. Combining microscopy and single cell approaches, the timing of this phenomenon in mice was situated between 5 and 8 wk of age when activated anti-insulin CD4 T cells became detectable in peripheral blood while peri-islet pathology developed. This "peri-insulitis," dominated by CD4 T cells, respected the islet basement membrane and was limited on the outside by lymphatic endothelial cells that gave it the attributes of a tertiary lymphoid structure. As in most tissues, lymphangiogenesis seemed to be secondary to local segmental endothelial inflammation at the collecting postcapillary venule. In addition to classic markers of inflammation such as CD29, V-CAM, and NOS, MHC class II molecules were expressed by nonhematopoietic cells in the same location both in mouse and human islets. This CD45- MHC class II+ cell population was capable of spontaneously presenting islet Ags to CD4 T cells. Altogether, these observations favor an alternative model for the initiation of T1D, outside of the islet, in which a vascular-associated cell appears to be an important MHC class II-expressing and -presenting cell.
Collapse
Affiliation(s)
- Anne Costanzo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Don Clarke
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Marie Holt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Siddhartha Sharma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Kenna Nagy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Xuqian Tan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Lisa Kain
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Brian Abe
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | | | | | - Tine Wyseure
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Laurent O. Mosnier
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Andrew I. Su
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Catherine Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE
| | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT
| | - Michael Gottschalk
- Rady Children’s Hospital, University of California San Diego, San Diego, CA
| | - Jeremy Pettus
- UC San Diego School of Medicine, University of California San Diego, San Diego, CA
| | - Luc Teyton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
7
|
Trevizol JS, Buzalaf NR, Dionizio A, Delgado AQ, de Lara JPZ, Magalhães AC, Bosqueiro JR, Buzalaf MAR. Adaptive responses of the ileum of NOD mice to low-dose fluoride: A proteomic exploratory study. Cell Biochem Funct 2024; 42:e3976. [PMID: 38489223 DOI: 10.1002/cbf.3976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
Fluoride (F) has been employed worldwide to control dental caries. More recently, it has been suggested that the consumption of low doses of F in the drinking water may reduce blood glucose levels, introducing a new perspective for the use of F for the management of blood glucose. However, the exact mechanism by which F affects blood glucose levels remains largely unexplored. Given that the small gut plays a pivotal role in glucose homeostasis, the aim of this study was to investigate the proteomic changes induced by low doses of F in the ileum of female nonobese-diabetic (NOD) mice. Forty-two female NOD mice were divided into two groups based on the F concentration in their drinking water for 14 weeks: 0 (control) or 10 mgF/L. At the end of the experimental period, the ileum was collected for proteomic and Western blot analyses. Proteomic analysis indicated an increase in isoforms of actin, gastrotropin, several H2B histones, and enzymes involved in antioxidant processes, as well as a decrease in enzymes essential for energy metabolism. In summary, our data indicates an adaptive response of organism to preserve protein synthesis in the ileum, despite significant alterations in energy metabolism typically induced by F, therefore highlighting the safety of controlled fluoridation in water supplies.
Collapse
Affiliation(s)
- Juliana S Trevizol
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Nathalia R Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Aislan Q Delgado
- Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - João P Z de Lara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Ana C Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - José R Bosqueiro
- Department of Physical Education, Faculty of Science, São Paulo State University, Bauru, Brazil
| | - Marília A R Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
8
|
Zou W, Chezhian J, Yu T, Liu W, Vu J, Slone J, Huang T. Dissecting the Roles of the Nuclear and Mitochondrial Genomes in a Mouse Model of Autoimmune Diabetes. Diabetes 2024; 73:108-119. [PMID: 37847928 DOI: 10.2337/db23-0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023]
Abstract
Mitochondria, the organelles responsible for generating ATP in eukaryotic cells, have been previously implicated as a contributor to diabetes. However, mitochondrial proteins are encoded by both nuclear DNA (nDNA) and mtDNA. In order to better understand the relative contribution of each of these genomes to diabetes, a chimeric mitochondrial-nuclear exchange (MNX) mouse was created via pronuclear transfer carrying nDNA from a strain susceptible to type 1 diabetes (NOD/ShiLtJ) and mtDNA from nondiabetic C57BL/6J mice. Inheritance of the resulting heteroplasmic mtDNA mixture was then tracked across multiple generations, showing that offspring heteroplasmy generally followed that of the mother, with occasional large shifts consistent with an mtDNA bottleneck in the germ line. In addition, survival and incidence of diabetes in MNX mice were tracked and compared with those in unaltered NOD/ShiLtJ control mice. The results indicated improved survival and a delay in diabetes onset in the MNX mice, demonstrating that mtDNA has a critical influence on disease phenotype. Finally, enzyme activity assays showed that the NOD/ShiLtJ mice had significant hyperactivity of complex I of the electron transport chain relative to MNX mice, suggesting that a particular mtDNA variant (m.9461T>C) may be responsible for disease causation in the original NOD/ShiLtJ strain. ARTICLE HIGHLIGHTS Mitochondria have been previously implicated in diabetes, but the specific genetic factors remain unclear. To better understand the contributions of mitochondrial genes in nuclear DNA (nDNA) versus mtDNA, we created mitochondrial-nuclear exchange (MNX) mice carrying nDNA from a diabetic strain and mtDNA from nondiabetic mice. Long-term tracking of MNX mice showed occasional large shifts in heteroplasmy consistent with an mtDNA bottleneck in the germ line. In addition, the MNX mice showed improved survival and delayed incidence of diabetes relative to the unaltered diabetic mice, which appeared to be linked to the activity of respiratory complex I.
Collapse
Affiliation(s)
- Weiwei Zou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Janaki Chezhian
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Tenghui Yu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
- Human Aging Research Institute, School of Life Science, Nanchang University, Nanchang, Jiangxi Province, China
| | - Wensheng Liu
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Jimmy Vu
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Jesse Slone
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
9
|
Du Y, Wang J, Fan W, Huang R, Wang H, Liu G. Preclinical study of diabetic foot ulcers: From pathogenesis to vivo/vitro models and clinical therapeutic transformation. Int Wound J 2023; 20:4394-4409. [PMID: 37438679 PMCID: PMC10681512 DOI: 10.1111/iwj.14311] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Diabetic foot ulcer (DFU), a common intractable chronic complication of diabetes mellitus (DM), has a prevalence of up to 25%, with more than 17% of the affected patients at risk of amputation or even death. Vascular risk factors, including vascular stenosis or occlusion, dyslipidemia, impaired neurosensory and motor function, and skin infection caused by trauma, all increase the risk of DFU in patients with diabetes. Therefore, diabetic foot is not a single pathogenesis. Preclinical studies have contributed greatly to the pathogenesis determination and efficacy evaluation of DFU. Many therapeutic tools are currently being investigated using DFU animal models for effective clinical translation. However, preclinical animal models that completely mimic the pathogenesis of DFU remain unexplored. Therefore, in this review, the preparation methods and evaluation criteria of DFU animal models with three major pathological mechanisms: neuropathy, angiopathy and DFU infection were discussed in detail. And the advantages and disadvantages of various DFU animal models for clinical sign simulation. Furthermore, the current status of vitro models of DFU and some preclinical studies have been transformed into clinical treatment programs, such as medical dressings, growth factor therapy, 3D bioprinting and pre-vascularization, Traditional Chinese Medicine treatment. However, because of the complexity of the pathological mechanism of DFU, the clinical transformation of DFU model still faces many challenges. We need to further optimize the existing preclinical studies of DFU to provide an effective animal platform for the future study of pathophysiology and clinical treatment of DFU.
Collapse
Affiliation(s)
- Yuqing Du
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jie Wang
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Endocrinology departmentShanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weijing Fan
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Renyan Huang
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hongfei Wang
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guobin Liu
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
10
|
Bourel C, Mullins-Dansereau V, Al Khaldi M, Chabot-Roy G, Lombard-Vadnais F, Lesage S. Uncoupling of Natural Killer cell functional maturation and cytolytic function in NOD mice. Immunol Cell Biol 2023; 101:867-874. [PMID: 37536708 DOI: 10.1111/imcb.12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
NK cells are innate immune cells that target infected and tumor cells. Mature NK (mNK) cells undergo functional maturation characterized by four distinct stages, during which they acquire their cytotoxic properties. mNK cells from non-obese diabetic (NOD) mice exhibit a defect in functional maturation and have impaired cytotoxic functions. Hence, we tested whether the impaired cytotoxic function observed in mNK cells from NOD mice can be explained by their defect in functional maturation. By comparing the function of mNK cells from B6, B6g7 and NOD mice, we show that the expression of granzyme B is severely impaired in mNK cells from NOD mice, agreeing with their inability to control tumor growth in vivo. The low level of granzyme B expression in mNK cells from NOD mice is found at all stages of functional maturation and is therefore independent of their functional maturation defect. Consequently, this study demonstrates that phenotypic functional maturation of mNK cells can be uncoupled from the acquisition of cytotoxic functions.
Collapse
Affiliation(s)
- Capucine Bourel
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Victor Mullins-Dansereau
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Maher Al Khaldi
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Geneviève Chabot-Roy
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Félix Lombard-Vadnais
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Sylvie Lesage
- Immunologie-oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
11
|
Batdorf HM, Lawes LDL, Richardson JT, Burk DH, Dupuy SD, Karlstad MD, Noland RC, Burke SJ, Collier JJ. NOD mice have distinct metabolic and immunologic profiles when compared with genetically similar MHC-matched ICR mice. Am J Physiol Endocrinol Metab 2023; 325:E336-E345. [PMID: 37610410 PMCID: PMC10642984 DOI: 10.1152/ajpendo.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Nonobese diabetic (NOD) mice are the most commonly used rodent model to study mechanisms relevant to the autoimmunity and immunology of type 1 diabetes. Although many different strains of mice have been used as controls for studies comparing nondiabetic lines to the NOD strain, we hypothesized that the parental strain that gave rise to the NOD line might be one of the best options. Therefore, we compared female ICR and NOD mice, which are matched at key major histocompatibility complex (MHC) loci, to understand their metabolic and immunologic similarities and differences. Several novel observations emerged: 1) NOD mice have greater circulating proinsulin when compared with ICR mice. 2) NOD mice display CD3+ and IBA1+ cell infiltration into and near pancreatic islets before hyperglycemia. 3) NOD mice show increased expression of the Il1b and Cxcl11 genes in islets when compared with islets from age-matched ICR mice. 4) NOD mice have a greater abundance of STAT1 and ICAM-1 protein in islets when compared with ICR mice. These data show that ICR mice, which are genetically similar to NOD mice, do not retain the same immunologic outcomes. Thus, ICR mice are an excellent choice as a genetically similar and MHC-matched control for NOD mice in studies designed to understand mechanisms relevant to autoimmune-mediated diabetes onset as well as novel therapeutic interventions.NEW & NOTEWORTHY Nonobese diabetic (NOD) mice have more proinsulin in circulation and STAT1 protein in islets compared with the major histocompatibility complex (MHC)-matched ICR line. NOD mice also display greater expression of cytokines and chemokines in pancreatic islets consistent with immune cell infiltration before hyperglycemia when compared with age-matched ICR mice. Thus, ICR mice represent an excellent control for autoimmunity and inflammation studies using the NOD line of mice.
Collapse
Affiliation(s)
- Heidi M Batdorf
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Luz de Luna Lawes
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Jeremy T Richardson
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - David H Burk
- Cell Biology and Bioimaging Core Facility, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Samuel D Dupuy
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, United States
| | - Michael D Karlstad
- Department of Surgery, Graduate School of Medicine, University of Tennessee Health Science Center, Knoxville, Tennessee, United States
| | - Robert C Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States
| |
Collapse
|
12
|
Trevizol JS, Dionizio A, Delgado AQ, Ventura TMO, Ribeiro CFDS, Ribeiro L, Buzalaf NR, Cestari TM, Magalhães AC, Suzuki M, Bosqueiro JR, Buzalaf MAR. Metabolic effect of low fluoride levels in the islets of NOD mice: integrative morphological, immunohistochemical, and proteomic analyses. J Appl Oral Sci 2023; 31:e20230036. [PMID: 37283331 PMCID: PMC10247282 DOI: 10.1590/1678-7757-2023-0036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/31/2023] [Accepted: 05/03/2023] [Indexed: 06/08/2023] Open
Abstract
OBJECTIVES Fluoride (F) has been widely used to control dental caries, and studies suggest beneficial effects against diabetes when a low dose of F is added to the drinking water (10 mgF/L). This study evaluated metabolic changes in pancreatic islets of NOD mice exposed to low doses of F and the main pathways altered by the treatment. METHODOLOGY In total, 42 female NOD mice were randomly divided into two groups, considering the concentration of F administered in the drinking water for 14 weeks: 0 or 10 mgF/L. After the experimental period, the pancreas was collected for morphological and immunohistochemical analysis, and the islets for proteomic analysis. RESULTS In the morphological and immunohistochemical analysis, no significant differences were found in the percentage of cells labelled for insulin, glucagon, and acetylated histone H3, although the treated group had higher percentages than the control group. Moreover, no significant differences were found for the mean percentages of pancreatic areas occupied by islets and for the pancreatic inflammatory infiltrate between the control and treated groups. Proteomic analysis showed large increases in histones H3 and, to a lesser extent, in histone acetyltransferases, concomitant with a decrease in enzymes involved in the formation of acetyl-CoA, besides many changes in proteins involved in several metabolic pathways, especially energy metabolism. The conjunction analysis of these data showed an attempt by the organism to maintain protein synthesis in the islets, even with the dramatic changes in energy metabolism. CONCLUSION Our data suggests epigenetic alterations in the islets of NOD mice exposed to F levels comparable to those found in public supply water consumed by humans.
Collapse
Affiliation(s)
- Juliana Sanches Trevizol
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Aline Dionizio
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | | | | | | | - Laura Ribeiro
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Nathalia Rabelo Buzalaf
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Tânia Mary Cestari
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Ana Carolina Magalhães
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Maiko Suzuki
- The Dental College of Georgia, Department of Oral Biology and Diagnostic Sciences, Augusta, Georgia, United States
| | - José Roberto Bosqueiro
- Universidade Estadual Paulista, Faculdade de Ciências, Departamento de Educação Física, Bauru, São Paulo, Brasil
| | - Marília Afonso Rabelo Buzalaf
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| |
Collapse
|
13
|
Cai L, Rodgers E, Schoenmann N, Raju RP. Advances in Rodent Experimental Models of Sepsis. Int J Mol Sci 2023; 24:9578. [PMID: 37298529 PMCID: PMC10253762 DOI: 10.3390/ijms24119578] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
In the development of therapeutic strategies for human diseases, preclinical experimental models have a key role. However, the preclinical immunomodulatory therapies developed using rodent sepsis were not successful in human clinical trials. Sepsis is characterized by a dysregulated inflammation and redox imbalance triggered by infection. Human sepsis is simulated in experimental models using methods that trigger inflammation or infection in the host animals, most often mice or rats. It remains unknown whether the characteristics of the host species, the methods used to induce sepsis, or the molecular processes focused upon need to be revisited in the development of treatment methods that will succeed in human clinical trials. Our goal in this review is to provide a survey of existing experimental models of sepsis, including the use of humanized mice and dirty mice, and to show how these models reflect the clinical course of sepsis. We will discuss the strengths and limitations of these models and present recent advances in this subject area. We maintain that rodent models continue to have an irreplaceable role in studies toward discovering treatment methods for human sepsis.
Collapse
Affiliation(s)
- Lun Cai
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Elizabeth Rodgers
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Nick Schoenmann
- Department of Emergency Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
14
|
Karnik I, Her Z, Neo SH, Liu WN, Chen Q. Emerging Preclinical Applications of Humanized Mouse Models in the Discovery and Validation of Novel Immunotherapeutics and Their Mechanisms of Action for Improved Cancer Treatment. Pharmaceutics 2023; 15:1600. [PMID: 37376049 DOI: 10.3390/pharmaceutics15061600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer therapeutics have undergone immense research over the past decade. While chemotherapies remain the mainstay treatments for many cancers, the advent of new molecular techniques has opened doors for more targeted modalities towards cancer cells. Although immune checkpoint inhibitors (ICIs) have demonstrated therapeutic efficacy in treating cancer, adverse side effects related to excessive inflammation are often reported. There is a lack of clinically relevant animal models to probe the human immune response towards ICI-based interventions. Humanized mouse models have emerged as valuable tools for pre-clinical research to evaluate the efficacy and safety of immunotherapy. This review focuses on the establishment of humanized mouse models, highlighting the challenges and recent advances in these models for targeted drug discovery and the validation of therapeutic strategies in cancer treatment. Furthermore, the potential of these models in the process of uncovering novel disease mechanisms is discussed.
Collapse
Affiliation(s)
- Isha Karnik
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Shu Hui Neo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Wai Nam Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| |
Collapse
|
15
|
Shi R, Tao Y, Tang H, Wu C, Fei J, Ge H, Gu HF, Wu J. Abelmoschus Manihot ameliorates the levels of circulating metabolites in diabetic nephropathy by modulating gut microbiota in non-obese diabetes mice. Microb Biotechnol 2023; 16:813-826. [PMID: 36583468 PMCID: PMC10034626 DOI: 10.1111/1751-7915.14200] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
Huangkui capsule (HKC), a traditional Chinese medicine, has been used for medication of kidney diseases, including diabetic nephropathy (DN). The current study aimed to evaluate the effects of HKC in the modulation of gut microbiota and the amelioration of metabolite levels by using non-obese diabetes (NOD) mice with DN. The microbiota from three parts of intestines (duodenum, ileum and colon) in NOD mice with and without HKC treatment were analysed using 16S rDNA sequencing techniques. Untargeted metabolomics in plasma of NOD mice were analysed with liquid mass spectrometry. Results showed that HKC administration ameliorated DN in NOD mice and the flora in duodenum were more sensitive to HKC intervention, while the flora in colon had more effects on metabolism. The bacterial genera such as Faecalitalea and Muribaculum significantly increased and negatively correlated with most of the altered metabolites after HKC treatment, while Phyllobacterium, Weissella and Akkermansia showed an opposite trend. The plasma metabolites, mainly including amino acids and fatty acids such as methionine sulfoxide, BCAAs and cis-7-Hexadecenoic acid, exhibited a distinct return to normal after HKC treatment. The current study thereby provides experimental evidence suggesting that HKC may modulate gut microbiota and subsequently ameliorate the metabolite levels in DN.
Collapse
Affiliation(s)
- Ruiya Shi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yingjun Tao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haitao Tang
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Chenhua Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingjin Fei
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haitao Ge
- Suzhong Pharmaceutical Research Institute, Nanjing, China
| | - Harvest F Gu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Mohandas S, Gayatri V, Kumaran K, Gopinath V, Paulmurugan R, Ramkumar KM. New Frontiers in Three-Dimensional Culture Platforms to Improve Diabetes Research. Pharmaceutics 2023; 15:pharmaceutics15030725. [PMID: 36986591 PMCID: PMC10056755 DOI: 10.3390/pharmaceutics15030725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetes mellitus is associated with defects in islet β-cell functioning and consequent hyperglycemia resulting in multi-organ damage. Physiologically relevant models that mimic human diabetic progression are urgently needed to identify new drug targets. Three-dimensional (3D) cell-culture systems are gaining a considerable interest in diabetic disease modelling and are being utilized as platforms for diabetic drug discovery and pancreatic tissue engineering. Three-dimensional models offer a marked advantage in obtaining physiologically relevant information and improve drug selectivity over conventional 2D (two-dimensional) cultures and rodent models. Indeed, recent evidence persuasively supports the adoption of appropriate 3D cell technology in β-cell cultivation. This review article provides a considerably updated view of the benefits of employing 3D models in the experimental workflow compared to conventional animal and 2D models. We compile the latest innovations in this field and discuss the various strategies used to generate 3D culture models in diabetic research. We also critically review the advantages and the limitations of each 3D technology, with particular attention to the maintenance of β-cell morphology, functionality, and intercellular crosstalk. Furthermore, we emphasize the scope of improvement needed in the 3D culture systems employed in diabetes research and the promises they hold as excellent research platforms in managing diabetes.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Vijaya Gayatri
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kriya Kumaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Vipin Gopinath
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Molecular Oncology Division, Malabar Cancer Centre, Moozhikkara P.O, Thalassery 670103, Kerala, India
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Correspondence: (R.P.); (K.M.R.)
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
- Department of Radiology, Molecular Imaging Program at Stanford, Canary Centre for Cancer Early Detection, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Correspondence: (R.P.); (K.M.R.)
| |
Collapse
|
17
|
Rodrigues Oliveira SM, Rebocho A, Ahmadpour E, Nissapatorn V, de Lourdes Pereira M. Type 1 Diabetes Mellitus: A Review on Advances and Challenges in Creating Insulin Producing Devices. MICROMACHINES 2023; 14:151. [PMID: 36677212 PMCID: PMC9867263 DOI: 10.3390/mi14010151] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is the most common autoimmune chronic disease in young patients. It is caused by the destruction of pancreatic endocrine β-cells that produce insulin in specific areas of the pancreas, known as islets of Langerhans. As a result, the body becomes insulin deficient and hyperglycemic. Complications associated with diabetes are life-threatening and the current standard of care for T1DM consists still of insulin injections. Lifesaving, exogenous insulin replacement is a chronic and costly burden of care for diabetic patients. Alternative therapeutic options have been the focus in these fields. Advances in molecular biology technologies and in microfabrication have enabled promising new therapeutic options. For example, islet transplantation has emerged as an effective treatment to restore the normal regulation of blood glucose in patients with T1DM. However, this technique has been hampered by obstacles, such as limited islet availability, extensive islet apoptosis, and poor islet vascular engraftment. Many of these unsolved issues need to be addressed before a potential cure for T1DM can be a possibility. New technologies like organ-on-a-chip platforms (OoC), multiplexed assessment tools and emergent stem cell approaches promise to enhance therapeutic outcomes. This review will introduce the disorder of type 1 diabetes mellitus, an overview of advances and challenges in the areas of microfluidic devices, monitoring tools, and prominent use of stem cells, and how they can be linked together to create a viable model for the T1DM treatment. Microfluidic devices like OoC platforms can establish a crucial platform for pathophysiological and pharmacological studies as they recreate the pancreatic environment. Stem cell use opens the possibility to hypothetically generate a limitless number of functional pancreatic cells. Additionally, the integration of stem cells into OoC models may allow personalized or patient-specific therapies.
Collapse
Affiliation(s)
- Sonia M. Rodrigues Oliveira
- HMRI-Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - António Rebocho
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ehsan Ahmadpour
- Drug Applied Research Center, Department of Parasitology and Mycology, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Veeranoot Nissapatorn
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- School of Allied Health Sciences, Southeast Asia Water Team (SEAWater Team), World Union for Herbal Drug Discovery (WUHeDD), Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
18
|
Mistry S, Tonyushkina KN, Benavides VC, Choudhary A, Huerta-Saenz L, Patel NS, Mahmud FH, Libman I, Sperling MA. A centennial review of discoveries and advances in diabetes: Children and youth. Pediatr Diabetes 2022; 23:926-943. [PMID: 35821595 PMCID: PMC10219647 DOI: 10.1111/pedi.13392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022] Open
Abstract
Diabetes is an increasingly common chronic metabolic disorder in children worldwide. The discovery of insulin in 1921 resulted in unprecedented advancements that improved the lives of children and youth with diabetes. The purpose of this article is to review the history of diabetes in children and youth over the last century and its implications for future developments in the field. We identified 68 relevant events between 1921 and 2021 through literature review and survey of pediatric endocrinologists. Basic research milestones led to the discovery of insulin and other regulatory hormones, established the normal physiology of carbohydrate metabolism and pathophysiology of diabetes, and provided insight into strategies for diabetes prevention. While landmark clinical studies were initially focused on adult diabetes populations, later studies assessed etiologic factors in birth cohort studies, evaluated technology use among children with diabetes, and investigated pharmacologic management of youth type 2 diabetes. Technological innovations culminated in the introduction of continuous glucose monitoring that enabled semi-automated insulin delivery systems. Finally, professional organizations collaborated with patient groups to advocate for the needs of children with diabetes and their families. Together, these advances transformed type 1 diabetes from a terminal illness to a manageable disease with near-normal life expectancy and increased our knowledge of type 2 diabetes and other forms of diabetes in the pediatric population. However, disparities in access to insulin, diabetes technology, education, and care support remain and disproportionately impact minority youth and communities with less resources. The overarching goal of diabetes management remains promoting a high quality of life and improving glycemic management without undermining the psychological health of children and youth living with diabetes.
Collapse
Affiliation(s)
- Sejal Mistry
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA
| | - Ksenia N Tonyushkina
- Division of Pediatric Endocrinology, Baystate Children's Hospital - UMASS Chan Medical School - Baystate, Springfield, Massachusetts, USA
| | - Valeria C Benavides
- Department of Pediatrics, Division of Pediatric Endocrinology, University of Illinois, College of Medicine of Peoria/Children's Hospital of Illinois, Peoria, Illinois, USA
| | - Abha Choudhary
- Pediatric Endocrinology, University of Texas Southwestern, Dallas, Texas, USA
| | - Lina Huerta-Saenz
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Penn State Health Children's Hospital, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Neha S Patel
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Penn State Health Children's Hospital, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Farid H Mahmud
- Hospital for Sick Children, University of Toronto, Toronto, California, USA
| | - Ingrid Libman
- Division of Pediatric Endocrinology and Diabetes, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark A Sperling
- Pediatric Endocrinology and Diabetes, Icahn School of Medicine, Mount Sinai, New York, New York, USA
| |
Collapse
|
19
|
Kasmani MY, Ciecko AE, Brown AK, Petrova G, Gorski J, Chen YG, Cui W. Autoreactive CD8 T cells in NOD mice exhibit phenotypic heterogeneity but restricted TCR gene usage. Life Sci Alliance 2022; 5:5/10/e202201503. [PMID: 35667687 PMCID: PMC9170949 DOI: 10.26508/lsa.202201503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022] Open
Abstract
Paired scRNA-seq and scTCR-seq reveals that diabetogenic CD8 T cells in the islets and spleens of NOD mice exhibit phenotypic and clonal heterogeneity despite restricted TCR gene usage. Expression of certain TCR genes correlates with clonal proliferation and effector phenotype. Type 1 diabetes (T1D) is an autoimmune disorder defined by CD8 T cell–mediated destruction of pancreatic β cells. We have previously shown that diabetogenic CD8 T cells in the islets of non-obese diabetic mice are phenotypically heterogeneous, but clonal heterogeneity remains relatively unexplored. Here, we use paired single-cell RNA and T-cell receptor sequencing (scRNA-seq and scTCR-seq) to characterize autoreactive CD8 T cells from the islets and spleens of non-obese diabetic mice. scTCR-seq demonstrates that CD8 T cells targeting the immunodominant β-cell epitope IGRP206-214 exhibit restricted TCR gene usage. scRNA-seq identifies six clusters of autoreactive CD8 T cells in the islets and six in the spleen, including memory and exhausted cells. Clonal overlap between IGRP206-214–reactive CD8 T cells in the islets and spleen suggests these cells may circulate between the islets and periphery. Finally, we identify correlations between TCR genes and T-cell clonal expansion and effector fate. Collectively, our work demonstrates that IGRP206-214–specific CD8 T cells are phenotypically heterogeneous but clonally restricted, raising the possibility of selectively targeting these TCR structures for therapeutic benefit.
Collapse
Affiliation(s)
- Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Ashley E Ciecko
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley K Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Galina Petrova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jack Gorski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| | - Yi-Guang Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA .,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Max McGee National Research Center for Juvenile Diabetes, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA .,Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
20
|
Abstract
Diabetes is a chronic metabolic disease affecting an increasing number of people. Although diabetes has negative health outcomes for diagnosed individuals, a population at particular risk are pregnant women, as diabetes impacts not only a pregnant woman's health but that of her child. In this review, we cover the current knowledge and unanswered questions on diabetes affecting an expectant mother, focusing on maternal and fetal outcomes.
Collapse
Affiliation(s)
- Cecilia González Corona
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, One Baylor Plaza, Houston, TX 77030, USA
| | - Ronald J. Parchem
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, One Baylor Plaza, Houston, TX 77030, USA,Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
21
|
Collins AM, Watson CT, Breden F. Immunoglobulin genes, reproductive isolation and vertebrate speciation. Immunol Cell Biol 2022; 100:497-506. [PMID: 35781330 PMCID: PMC9545137 DOI: 10.1111/imcb.12567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022]
Abstract
Reproductive isolation drives the formation of new species, and many genes contribute to this through Dobzhansky–Muller incompatibilities (DMIs). These incompatibilities occur when gene divergence affects loci encoding interacting products such as receptors and their ligands. We suggest here that the nature of vertebrate immunoglobulin (IG) genes must make them prone to DMIs. The genes of these complex loci form functional genes through the process of recombination, giving rise to a repertoire of heterodimeric receptors of incredible diversity. This repertoire, within individuals and within species, must defend against pathogens but must also avoid pathogenic self‐reactivity. We suggest that this avoidance of autoimmunity is only achieved through a coordination of evolution between heavy‐ and light‐chain genes, and between these genes and the rest of the genome. Without coordinated evolution, the hybrid offspring of two diverging populations will carry a heavy burden of DMIs, resulting in a loss of fitness. Critical incompatibilities could manifest as incompatibilities between a mother and her divergent offspring. During fetal development, biochemical differences between the parents of hybrid offspring could make their offspring a target of the maternal immune system. This hypothesis was conceived in the light of recent insights into the population genetics of IG genes. This has suggested that antibody genes are probably as susceptible to evolutionary forces as other parts of the genome. Further repertoire studies in human and nonhuman species should now help determine whether antibody genes have been part of the evolutionary forces that drive the development of species.
Collapse
Affiliation(s)
- Andrew M Collins
- School of Biotechnology and Biomolecular Sciences University of New South Wales Sydney NSW Australia
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics University of Louisville School of Medicine Louisville KY USA
| | - Felix Breden
- Department of Biological Sciences Simon Fraser University Burnaby BC Canada
| |
Collapse
|
22
|
Kalaitzoglou E, Fowlkes JL, Thrailkill KM. Mouse models of type 1 diabetes and their use in skeletal research. Curr Opin Endocrinol Diabetes Obes 2022; 29:318-325. [PMID: 35749285 PMCID: PMC9271636 DOI: 10.1097/med.0000000000000737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW In this review, we describe the three primary mouse models of insulin-deficiency diabetes that have been used to study the effects of type 1 diabetes (T1D) on skeletal outcomes. These models include streptozotocin (chemically)-induced diabetes, autoimmune-mediated diabetes (the nonobese diabetes mouse), and a mutation in the insulin gene (the Akita mouse). We then describe the skeletal findings and/or skeletal phenotypes that have been delineated using these models. RECENT FINDINGS Humans with T1D have decreased bone mineral density and an increased risk for fragility fracture. Mouse models of insulin-deficiency diabetes (hereafter denoted as T1D) in many ways recapitulate these skeletal deficits. Utilizing techniques of microcomputed tomography, bone histomorphometry, biomechanical testing and fracture modeling, bone biomarker analysis, and Raman spectroscopy, mouse models of T1D have demonstrated abnormalities in bone mineralization, bone microarchitecture, osteoblast function, abnormal bone turnover, and diminished biomechanical properties of bone. SUMMARY Mouse models have provided significant insights into the underlying mechanisms involved in the abnormalities of bone observed in T1D in humans. These translational models have provided targets and pathways that may be modifiable to prevent skeletal complications of T1D.
Collapse
Affiliation(s)
- Evangelia Kalaitzoglou
- University of Kentucky Barnstable-Brown Diabetes Center
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - John L Fowlkes
- University of Kentucky Barnstable-Brown Diabetes Center
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable-Brown Diabetes Center
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
23
|
Rojas M, Heuer LS, Zhang W, Chen YG, Ridgway WM. The long and winding road: From mouse linkage studies to a novel human therapeutic pathway in type 1 diabetes. Front Immunol 2022; 13:918837. [PMID: 35935980 PMCID: PMC9353112 DOI: 10.3389/fimmu.2022.918837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmunity involves a loss of immune tolerance to self-proteins due to a combination of genetic susceptibility and environmental provocation, which generates autoreactive T and B cells. Genetic susceptibility affects lymphocyte autoreactivity at the level of central tolerance (e.g., defective, or incomplete MHC-mediated negative selection of self-reactive T cells) and peripheral tolerance (e.g., failure of mechanisms to control circulating self-reactive T cells). T regulatory cell (Treg) mediated suppression is essential for controlling peripheral autoreactive T cells. Understanding the genetic control of Treg development and function and Treg interaction with T effector and other immune cells is thus a key goal of autoimmunity research. Herein, we will review immunogenetic control of tolerance in one of the classic models of autoimmunity, the non-obese diabetic (NOD) mouse model of autoimmune Type 1 diabetes (T1D). We review the long (and still evolving) elucidation of how one susceptibility gene, Cd137, (identified originally via linkage studies) affects both the immune response and its regulation in a highly complex fashion. The CD137 (present in both membrane and soluble forms) and the CD137 ligand (CD137L) both signal into a variety of immune cells (bi-directional signaling). The overall outcome of these multitudinous effects (either tolerance or autoimmunity) depends upon the balance between the regulatory signals (predominantly mediated by soluble CD137 via the CD137L pathway) and the effector signals (mediated by both membrane-bound CD137 and CD137L). This immune balance/homeostasis can be decisively affected by genetic (susceptibility vs. resistant alleles) and environmental factors (stimulation of soluble CD137 production). The discovery of the homeostatic immune effect of soluble CD137 on the CD137-CD137L system makes it a promising candidate for immunotherapy to restore tolerance in autoimmune diseases.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- School of Medicine and Health Sciences, Doctoral Program in Biological and Biomedical Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S. Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Wisconsin, Milwaukee, WI, United States
- Division of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - William M. Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- *Correspondence: William M. Ridgway,
| |
Collapse
|
24
|
Aubin AM, Lombard-Vadnais F, Collin R, Aliesky HA, McLachlan SM, Lesage S. The NOD Mouse Beyond Autoimmune Diabetes. Front Immunol 2022; 13:874769. [PMID: 35572553 PMCID: PMC9102607 DOI: 10.3389/fimmu.2022.874769] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Autoimmune diabetes arises spontaneously in Non-Obese Diabetic (NOD) mice, and the pathophysiology of this disease shares many similarities with human type 1 diabetes. Since its generation in 1980, the NOD mouse, derived from the Cataract Shinogi strain, has represented the gold standard of spontaneous disease models, allowing to investigate autoimmune diabetes disease progression and susceptibility traits, as well as to test a wide array of potential treatments and therapies. Beyond autoimmune diabetes, NOD mice also exhibit polyautoimmunity, presenting with a low incidence of autoimmune thyroiditis and Sjögren's syndrome. Genetic manipulation of the NOD strain has led to the generation of new mouse models facilitating the study of these and other autoimmune pathologies. For instance, following deletion of specific genes or via insertion of resistance alleles at genetic loci, NOD mice can become fully resistant to autoimmune diabetes; yet the newly generated diabetes-resistant NOD strains often show a high incidence of other autoimmune diseases. This suggests that the NOD genetic background is highly autoimmune-prone and that genetic manipulations can shift the autoimmune response from the pancreas to other organs. Overall, multiple NOD variant strains have become invaluable tools for understanding the pathophysiology of and for dissecting the genetic susceptibility of organ-specific autoimmune diseases. An interesting commonality to all autoimmune diseases developing in variant strains of the NOD mice is the presence of autoantibodies. This review will present the NOD mouse as a model for studying autoimmune diseases beyond autoimmune diabetes.
Collapse
Affiliation(s)
- Anne-Marie Aubin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Félix Lombard-Vadnais
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Roxanne Collin
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- CellCarta, Montreal, QC, Canada
| | - Holly A. Aliesky
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Research Institute, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Sylvie Lesage
- Immunology-Oncology Division, Maisonneuve-Rosemont Hospital Research Center, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
25
|
Tokuda K, Ikemoto T, Yamashita S, Miyazaki K, Okikawa S, Yamada S, Saito Y, Morine Y, Shimada M. Syngeneically transplanted insulin producing cells differentiated from adipose derived stem cells undergo delayed damage by autoimmune responses in NOD mice. Sci Rep 2022; 12:5852. [PMID: 35393479 PMCID: PMC8991208 DOI: 10.1038/s41598-022-09838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
Insulin-producing cells (IPCs) generated by our established protocol have reached the non-clinical ‘proof of concept’ stage. Our strategy for their clinical application is the autotransplantation of IPCs into patients with type 1 diabetes mellitus (T1DM). In this context, the autoimmunity that characterized T1DM is important, rather than allorejection. We aimed to determine how these IPCs respond to T1DM autoimmunity. IPCs were generated from the subcutaneous fat tissue of non-obese diabetic (NOD) mice using our protocol. IPCs derived from NOD mice were transplanted under the kidney capsules of NOD mice at the onset of diabetes and the subsequent changes in blood glucose concentration were characterized. Blood glucose decreased within 30 days of transplantation, but increased again after 40–60 days in three of four recipient NOD mice. In tissue samples, the numbers of CD4+ and CD8+ T cells were significantly higher 60 days after transplantation than 30 days after transplantation. In conclusion, IPCs significantly ameliorate the diabetes of mice in the short term, but are damaged by autoimmunity in the longer term, as evidenced by local T cells accumulation. This study provides new insights into potential stem cell therapies for T1DM.
Collapse
Affiliation(s)
- Kazunori Tokuda
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Tetsuya Ikemoto
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan.
| | - Shoko Yamashita
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Katsuki Miyazaki
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Shohei Okikawa
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Shinichiro Yamada
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Yu Saito
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Yuji Morine
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| | - Mitsuo Shimada
- Department of Digestive and Transplant Surgery, Tokushima University, Tokushima, 770-8503, Japan
| |
Collapse
|
26
|
Kohn EM, Taira C, Dobson H, Dias LDS, Okaa U, Wiesner DL, Wüthrich M, Klein BS. Variation in Host Resistance to Blastomyces dermatitidis: Potential Use of Genetic Reference Panels and Advances in Immunophenotyping of Diverse Mouse Strains. mBio 2022; 13:e0340021. [PMID: 35089087 PMCID: PMC8725596 DOI: 10.1128/mbio.03400-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
Host genetic determinants that underpin variation in susceptibility to systemic fungal infection are poorly understood. Genes responsible for complex traits can be identified by correlating variation in phenotype with allele in founder strains of wild mice with known genetic variation, assembled in genetic reference panels. In this work, we describe wide natural variation in both primary and acquired resistance to experimental pulmonary blastomycosis in eight founder strains, including 129, A/J, BL/6, CAST, NOD, NZO, PWK, and WSB of the Collaborative Cross collection, and the inbred DBA strain. These differences in susceptibility across strains were accompanied by sharp differences in the accumulation and function of immune cells in the lungs. Immune perturbations were mapped by identifying reagents that phenotypically mark immune cell populations in the distinct strains of mice. In particular, we uncovered marked differences between BL/6 and DBA/2 mouse strains in the development of acquired resistance. Our findings highlight the potential value in using genetic reference panels of mice, and particularly the BXD (recombinant inbred strains of mice from a cross of C57BL/6J and DBA/2J mice) collection harboring a cross between resistant BL/6 and susceptible DBA/2 mice, for unveiling genes linked with host resistance to fungal infection. IMPORTANCE Host genetic variation significantly impacts vulnerability to infectious diseases. While host variation in susceptibility to fungal infection with dimorphic fungi has long been recognized, genes that underpin this variation are poorly understood. We used a collection of seven mouse strains that represent nearly 90% of the genetic variation in mice to identify genetic variability among the strains in resistance to pulmonary infection with the dimorphic fungus Blastomyces dermatitidis. We analyzed differences between the strains in innate resistance by infecting naive mice and in acquired resistance by infecting vaccinated mice. We identified extreme variations in both innate and acquired resistance among the strains. In particular, we found sharp differences between C57BL/6 and DBA/2 strains in the ability to acquire vaccine-induced resistance. We also identified commercial reagents that allowed the phenotyping of immune cells from this strain collection of mice. Because there are additional mice harboring a genetic cross of the C57BL/6 and DBA/2 strains (BXD collection), such mice will permit future investigations to identify the genes that underlie differences in the ability to acquire resistance to infection.
Collapse
Affiliation(s)
- Elaine M. Kohn
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Cleison Taira
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Hanah Dobson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Lucas Dos Santos Dias
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Uju Okaa
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Darin L. Wiesner
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Bruce S. Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
27
|
Lombard-Vadnais F, Collin R, Daudelin JF, Chabot-Roy G, Labrecque N, Lesage S. The Idd2 Locus Confers Prominent Resistance to Autoimmune Diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:898-909. [PMID: 35039332 DOI: 10.4049/jimmunol.2100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Type 1 diabetes is an autoimmune disease characterized by pancreatic β cell destruction. It is a complex genetic trait driven by >30 genetic loci with parallels between humans and mice. The NOD mouse spontaneously develops autoimmune diabetes and is widely used to identify insulin-dependent diabetes (Idd) genetic loci linked to diabetes susceptibility. Although many Idd loci have been extensively studied, the impact of the Idd2 locus on autoimmune diabetes susceptibility remains to be defined. To address this, we generated a NOD congenic mouse bearing B10 resistance alleles on chromosome 9 in a locus coinciding with part of the Idd2 locus and found that NOD.B10-Idd2 congenic mice are highly resistant to diabetes. Bone marrow chimera and adoptive transfer experiments showed that the B10 protective alleles provide resistance in an immune cell-intrinsic manner. Although no T cell-intrinsic differences between NOD and NOD.B10-Idd2 mice were observed, we found that the Idd2 resistance alleles limit the formation of spontaneous and induced germinal centers. Comparison of B cell and dendritic cell transcriptome profiles from NOD and NOD.B10-Idd2 mice reveal that resistance alleles at the Idd2 locus affect the expression of specific MHC molecules, a result confirmed by flow cytometry. Altogether, these data demonstrate that resistance alleles at the Idd2 locus impair germinal center formation and influence MHC expression, both of which likely contribute to reduced diabetes incidence.
Collapse
Affiliation(s)
- Félix Lombard-Vadnais
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Roxanne Collin
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| | - Jean-François Daudelin
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Geneviève Chabot-Roy
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvie Lesage
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada;
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| |
Collapse
|
28
|
Diaz Lozano IM, Sork H, Stone VM, Eldh M, Cao X, Pernemalm M, Gabrielsson S, Flodström-Tullberg M. Proteome profiling of whole plasma and plasma-derived extracellular vesicles facilitates the detection of tissue biomarkers in the non-obese diabetic mouse. Front Endocrinol (Lausanne) 2022; 13:971313. [PMID: 36246930 PMCID: PMC9563222 DOI: 10.3389/fendo.2022.971313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
The mechanism by which pancreatic beta cells are destroyed in type 1 diabetes (T1D) remains to be fully understood. Recent observations indicate that the disease may arise because of different pathobiological mechanisms (endotypes). The discovery of one or several protein biomarkers measurable in readily available liquid biopsies (e.g. blood plasma) during the pre-diabetic period may enable personalized disease interventions. Recent studies have shown that extracellular vesicles (EVs) are a source of tissue proteins in liquid biopsies. Using plasma samples collected from pre-diabetic non-obese diabetic (NOD) mice (an experimental model of T1D) we addressed if combined analysis of whole plasma samples and plasma-derived EV fractions increases the number of unique proteins identified by mass spectrometry (MS) compared to the analysis of whole plasma samples alone. LC-MS/MS analysis of plasma samples depleted of abundant proteins and subjected to peptide fractionation identified more than 2300 proteins, while the analysis of EV-enriched plasma samples identified more than 600 proteins. Of the proteins detected in EV-enriched samples, more than a third were not identified in whole plasma samples and many were classified as either tissue-enriched or of tissue-specific origin. In conclusion, parallel profiling of EV-enriched plasma fractions and whole plasma samples increases the overall proteome depth and facilitates the discovery of tissue-enriched proteins in plasma. If applied to plasma samples collected longitudinally from the NOD mouse or from models with other pathobiological mechanisms, the integrated proteome profiling scheme described herein may be useful for the discovery of new and potentially endotype specific biomarkers in T1D.
Collapse
Affiliation(s)
- Isabel M. Diaz Lozano
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Helena Sork
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Virginia M. Stone
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Eldh
- Department of Clinical Immunology and Transfusion Medicine and Division of Immunology and Allergy, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Xiaofang Cao
- Department of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Maria Pernemalm
- Department of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Gabrielsson
- Department of Clinical Immunology and Transfusion Medicine and Division of Immunology and Allergy, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- *Correspondence: Malin Flodström-Tullberg,
| |
Collapse
|
29
|
Patel V, Jayaraman A, Jayaraman S. Epigenetic drug ameliorated type 1 diabetes via decreased generation of Th1 and Th17 subsets and restoration of self-tolerance in CD4 + T cells. Int Immunopharmacol 2021; 103:108490. [PMID: 34954557 DOI: 10.1016/j.intimp.2021.108490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/05/2022]
Abstract
Female NOD mice develop autoimmune diabetes spontaneously without extrinsic manipulation. Previously, we have shown that weekly administration of the prediabetic female NOD mice with the histone modifier Trichostatin A (TSA) prevented diabetes onset. Herein we show that T lymphocytes from diabetic mice transferred diabetes into immunodeficient NOD.scid recipients while those isolated from drug-treated mice displayed reduced disease-causing ability. Drug treatment also repressed T cell receptor-mediated IFN-γ transcription. Splenic CD4+ T-cells purified from prediabetic mice could be polarized into IFN-γ -producing Th1 and IL-17A-expressing Th17 subsets ex vivo. Adoptive transfer of these cells into immunocompromised NOD.scid mice caused diabetes comparably. Polarized Th1 cells were devoid of IL-17A-producing cells and did not transdifferentiate into Th17 cells in the spleen of immunodeficient recipients. However, polarized Th17 cell preparation had a few contaminant Th1 cells. Adoptive transfer of polarized Th17 cells into NOD.scid recipients led to IFN-γ transcription in recipient splenocytes. Notably, TSA treatment of prediabetic mice abolished the ability of CD4+ T-cells to differentiate into diabetogenic Th1 and Th17 cells ex vivo. This was accompanied by the absence of Ifng and Il17a transcription in the spleen of NOD.scid recipients receiving cells, respectively cultured under Th1 and Th17 polarizing conditions. Significantly, the histone modifier restored the ability of CD4+ but not CD8+ T-cells to undergo CD3-mediated apoptosis ex vivo in a caspase-dependent manner. These results indicate that the histone modifier bestowed protection against type 1 diabetes via negative regulation of signature lymphokines and restitution of self-tolerance in CD4+ T cells.
Collapse
Affiliation(s)
- Vasu Patel
- Dept. of Surgery, the University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Arathi Jayaraman
- Dept. of Surgery, the University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sundararajan Jayaraman
- Dept. of Surgery, the University of Illinois at Chicago, Chicago, IL 60612, USA; Current address: Dept. of Surgery, the University of Illinois, College of Medicine at Peoria, Peoria, IL 60613, USA.
| |
Collapse
|
30
|
Stone VM, Butrym M, Hankaniemi MM, Sioofy-Khojine AB, Hytönen VP, Hyöty H, Flodström-Tullberg M. Coxsackievirus B Vaccines Prevent Infection-Accelerated Diabetes in NOD Mice and Have No Disease-Inducing Effect. Diabetes 2021; 70:2871-2878. [PMID: 34497136 PMCID: PMC8660981 DOI: 10.2337/db21-0193] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023]
Abstract
Enteroviruses, including the Coxsackievirus Bs (CVB), have been implicated as causal agents in human type 1 diabetes. Immunization of at-risk individuals with a CVB vaccine provides an attractive strategy for elucidating the role of CVBs in the disease etiology. Previously, we have shown that an inactivated whole-virus vaccine covering all CVB serotypes (CVB1-6) is safe to administer and highly immunogenic in preclinical models, including nonhuman primates. Before initiating clinical trials with this type of vaccine, it was also important to address 1) whether the vaccine itself induces adverse immune reactions, including accelerating diabetes onset in a diabetes-prone host, and 2) whether the vaccine can prevent CVB-induced diabetes in a well-established disease model. Here, we present results from studies in which female NOD mice were left untreated, mock-vaccinated, or vaccinated with CVB1-6 vaccine and monitored for insulitis occurrence or diabetes development. We demonstrate that vaccination induces virus-neutralizing antibodies without altering insulitis scores or the onset of diabetes. We also show that NOD mice vaccinated with a CVB1 vaccine are protected from CVB-induced accelerated disease onset. Taken together, these studies show that CVB vaccines do not alter islet inflammation or accelerate disease progression in an animal model that spontaneously develops autoimmune type 1 diabetes. However, they can prevent CVB-mediated disease progression in the same model.
Collapse
Affiliation(s)
- Virginia M Stone
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marta Butrym
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Minna M Hankaniemi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
31
|
Linsley PS, Barahmand-Pour-Whitman F, Balmas E, DeBerg HA, Flynn KJ, Hu AK, Rosasco MG, Chen J, O'Rourke C, Serti E, Gersuk VH, Motwani K, Seay HR, Brusko TM, Kwok WW, Speake C, Greenbaum CJ, Nepom GT, Cerosaletti K. Autoreactive T cell receptors with shared germline-like α chains in type 1 diabetes. JCI Insight 2021; 6:151349. [PMID: 34806648 PMCID: PMC8663791 DOI: 10.1172/jci.insight.151349] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Human islet antigen reactive CD4+ memory T cells (IAR T cells) play a key role in the pathogenesis of autoimmune type 1 diabetes (T1D). Using single-cell RNA sequencing (scRNA-Seq) to identify T cell receptors (TCRs) in IAR T cells, we have identified a class of TCRs that share TCRα chains between individuals (“public” chains). We isolated IAR T cells from blood of healthy, new-onset T1D and established T1D donors using multiplexed CD154 enrichment and identified paired TCRαβ sequences from 2767 individual cells. More than a quarter of cells shared TCR junctions between 2 or more cells (“expanded”), and 29/47 (~62%) of expanded TCRs tested showed specificity for islet antigen epitopes. Public TCRs sharing TCRα junctions were most prominent in new-onset T1D. Public TCR sequences were more germline like than expanded unique, or “private,” TCRs, and had shorter junction sequences, suggestive of fewer random nucleotide insertions. Public TCRα junctions were often paired with mismatched TCRβ junctions in TCRs; remarkably, a subset of these TCRs exhibited cross-reactivity toward distinct islet antigen peptides. Our findings demonstrate a prevalent population of IAR T cells with diverse specificities determined by TCRs with restricted TCRα junctions and germline-constrained antigen recognition properties. Since these “innate-like” TCRs differ from previously described immunodominant TCRβ chains in autoimmunity, they have implications for fundamental studies of disease mechanisms. Self-reactive restricted TCRα chains and their associated epitopes should be considered in fundamental and translational investigations of TCRs in T1D.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Colin O'Rourke
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | | - Keshav Motwani
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA.,University of Florida Diabetes Institute, University of Florida, Gainesville, Florida, USA
| | - Howard R Seay
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA.,University of Florida Diabetes Institute, University of Florida, Gainesville, Florida, USA.,FlowJo, LLC, Ashland, Oregon, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA.,University of Florida Diabetes Institute, University of Florida, Gainesville, Florida, USA.,Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Carla J Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | | | | |
Collapse
|
32
|
Mukherjee N, Lin L, Contreras CJ, Templin AT. β-Cell Death in Diabetes: Past Discoveries, Present Understanding, and Potential Future Advances. Metabolites 2021; 11:796. [PMID: 34822454 PMCID: PMC8620854 DOI: 10.3390/metabo11110796] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
β-cell death is regarded as a major event driving loss of insulin secretion and hyperglycemia in both type 1 and type 2 diabetes mellitus. In this review, we explore past, present, and potential future advances in our understanding of the mechanisms that promote β-cell death in diabetes, with a focus on the primary literature. We first review discoveries of insulin insufficiency, β-cell loss, and β-cell death in human diabetes. We discuss findings in humans and mouse models of diabetes related to autoimmune-associated β-cell loss and the roles of autoreactive T cells, B cells, and the β cell itself in this process. We review discoveries of the molecular mechanisms that underlie β-cell death-inducing stimuli, including proinflammatory cytokines, islet amyloid formation, ER stress, oxidative stress, glucotoxicity, and lipotoxicity. Finally, we explore recent perspectives on β-cell death in diabetes, including: (1) the role of the β cell in its own demise, (2) methods and terminology for identifying diverse mechanisms of β-cell death, and (3) whether non-canonical forms of β-cell death, such as regulated necrosis, contribute to islet inflammation and β-cell loss in diabetes. We believe new perspectives on the mechanisms of β-cell death in diabetes will provide a better understanding of this pathological process and may lead to new therapeutic strategies to protect β cells in the setting of diabetes.
Collapse
Affiliation(s)
- Noyonika Mukherjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Li Lin
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
| | - Christopher J. Contreras
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew T. Templin
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA; (L.L.); (C.J.C.)
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
33
|
Reed B, Crawford F, Hill RC, Jin N, White J, Krovi SH, Marrack P, Hansen K, Kappler JW. Lysosomal cathepsin creates chimeric epitopes for diabetogenic CD4 T cells via transpeptidation. J Exp Med 2021; 218:211485. [PMID: 33095259 PMCID: PMC7590512 DOI: 10.1084/jem.20192135] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 08/06/2020] [Accepted: 09/10/2020] [Indexed: 01/15/2023] Open
Abstract
The identification of the peptide epitopes presented by major histocompatibility complex class II (MHCII) molecules that drive the CD4 T cell component of autoimmune diseases has presented a formidable challenge over several decades. In type 1 diabetes (T1D), recent insight into this problem has come from the realization that several of the important epitopes are not directly processed from a protein source, but rather pieced together by fusion of different peptide fragments of secretory granule proteins to create new chimeric epitopes. We have proposed that this fusion is performed by a reverse proteolysis reaction called transpeptidation, occurring during the catabolic turnover of pancreatic proteins when secretory granules fuse with lysosomes (crinophagy). Here, we demonstrate several highly antigenic chimeric epitopes for diabetogenic CD4 T cells that are produced by digestion of the appropriate inactive fragments of the granule proteins with the lysosomal protease cathepsin L (Cat-L). This pathway has implications for how self-tolerance can be broken peripherally in T1D and other autoimmune diseases.
Collapse
Affiliation(s)
- Brendan Reed
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Research Division, Barbara Davis Center for Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Frances Crawford
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Ryan C Hill
- Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Niyun Jin
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Research Division, Barbara Davis Center for Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, CO
| | - S Harsha Krovi
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Philippa Marrack
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - Kirk Hansen
- Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| | - John W Kappler
- Department of Biomedical Research, National Jewish Health, Denver, CO.,Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Research Division, Barbara Davis Center for Diabetes, Anschutz Medical Campus, University of Colorado, Aurora, CO.,Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, CO
| |
Collapse
|
34
|
Barakat M, DiPietro LA, Chen L. Limited Treatment Options for Diabetic Wounds: Barriers to Clinical Translation Despite Therapeutic Success in Murine Models. Adv Wound Care (New Rochelle) 2021; 10:436-460. [PMID: 33050829 PMCID: PMC8236303 DOI: 10.1089/wound.2020.1254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Significance: Millions of people worldwide suffer from diabetes mellitus and its complications, including chronic diabetic wounds. To date, there are few widely successful clinical therapies specific to diabetic wounds beyond general wound care, despite the vast number of scientific discoveries in the pathogenesis of defective healing in diabetes. Recent Advances: In recent years, murine animal models of diabetes have enabled the investigation of many possible therapeutics for diabetic wound care. These include specific cell types, growth factors, cytokines, peptides, small molecules, plant extracts, microRNAs, extracellular vesicles, novel wound dressings, mechanical interventions, bioengineered materials, and more. Critical Issues: Despite many research discoveries, few have been translated from their success in murine models to clinical use in humans. This massive gap between bench discovery and bedside application begs the simple and critical question: what is still missing? The complexity and multiplicity of the diabetic wound makes it an immensely challenging therapeutic target, and this lopsided progress highlights the need for new methods to overcome the bench-to-bedside barrier. How can laboratory discoveries in animal models be effectively translated to novel clinical therapies for human patients? Future Directions: As research continues to decipher deficient healing in diabetes, new approaches and considerations are required to ensure that these discoveries can become translational, clinically usable therapies. Clinical progress requires the development of new, more accurate models of the human disease state, multifaceted investigations that address multiple critical components in wound repair, and more innovative research strategies that harness both the existing knowledge and the potential of new advances across disciplines.
Collapse
Affiliation(s)
- May Barakat
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Luisa A. DiPietro
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lin Chen
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
35
|
Mønsted MØ, Falck ND, Pedersen K, Buschard K, Holm LJ, Haupt-Jorgensen M. Intestinal permeability in type 1 diabetes: An updated comprehensive overview. J Autoimmun 2021; 122:102674. [PMID: 34182210 DOI: 10.1016/j.jaut.2021.102674] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of the autoimmune disease type 1 diabetes (T1D) is still largely unknown, however, both genetic and environmental factors contribute to the development of the disease. A major contact surface for environmental factors is the gastrointestinal (GI) tract, where barrier defects in T1D likely cause diabetogenic antigens to enter the body tissues, contributing to beta-cell autoimmunity. Human and animal research imply that increased intestinal permeability is an important disease determinant, although the underlying methodologies, interpretations and conclusions are diverse. In this review, an updated comprehensive overview on intestinal permeability in patients with T1D and animal models of T1D is provided in the categories: in vivo permeability, ex vivo permeability, zonulin, molecular permeability and blood markers. Across categories, there is consistency pointing towards increased intestinal permeability in T1D. In animal models of T1D, the intestinal permeability varies with age and strains implying a need for careful selection of method and experimental setup. Furthermore, dietary interventions that affect diabetes incidence in animal models does also impact the intestinal permeability, suggesting an association between increased intestinal permeability and T1D development.
Collapse
Affiliation(s)
- Mia Øgaard Mønsted
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Denmark.
| | - Nora Dakini Falck
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Denmark
| | - Kristina Pedersen
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Denmark
| | - Karsten Buschard
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Denmark
| | - Laurits Juulskov Holm
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Denmark
| | | |
Collapse
|
36
|
Odularu AT, Ajibade PA. Challenge of diabetes mellitus and researchers’ contributions to its control. OPEN CHEM 2021. [DOI: 10.1515/chem-2020-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The aim of this review study was to assess the past significant events on diabetes mellitus, transformations that took place over the years in the medical records of treatment, countries involved, and the researchers who brought about the revolutions. This study used the content analysis to report the existence of diabetes mellitus and the treatments provided by researchers to control it. The focus was mainly on three main types of diabetes (type 1, type 2, and type 3 diabetes). Ethical consideration has also helped to boost diabetic studies globally. The research has a history path from pharmaceuticals of organic-based drugs to metal-based drugs with their nanoparticles in addition to the impacts of nanomedicine, biosensors, and telemedicine. Ongoing and future studies in alternative medicine such as vanadium nanoparticles (metal nanoparticles) are promising.
Collapse
Affiliation(s)
- Ayodele T. Odularu
- Department of Chemistry, University of Fort Hare , Private Bag X1314 , Alice 5700 , Eastern Cape , South Africa
| | - Peter A. Ajibade
- Department of Chemistry, University of KwaZulu-Natal , Pietermaritzburg Campus , Scottsville 3209 , South Africa
| |
Collapse
|
37
|
Fuhri Snethlage CM, Nieuwdorp M, van Raalte DH, Rampanelli E, Verchere BC, Hanssen NMJ. Auto-immunity and the gut microbiome in type 1 diabetes: Lessons from rodent and human studies. Best Pract Res Clin Endocrinol Metab 2021; 35:101544. [PMID: 33985913 DOI: 10.1016/j.beem.2021.101544] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an auto-immune disease that destructs insulin-producing pancreatic beta-cells within the islets of Langerhans. The incidence of T1D has tripled over the last decades, while the pathophysiology of the disease is still largely unknown. Currently, there is no cure for T1D. The only treatment option consists of blood-glucose regulation with insulin injections and intensive monitoring of blood glucose levels. In recent years, perturbations in the ecosystem of the gut microbiome also referred to as dysbiosis, have gained interest as a possible contributing factor in the development of T1D. Changes in the microbiome seem to occur before the onset of T1D associated auto-antibodies. Furthermore, rodent studies demonstrate that administering antibiotics at a young age may accelerate the onset of T1D. This review provides an overview of the research performed on the epidemiology, pathophysiology, interventions, and possible treatment options in the field of the gut microbiome and T1D.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Max Nieuwdorp
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Daniël H van Raalte
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands; Amsterdam Diabetes Center, Department of Internal Medicine, Amsterdam UMC, Location VUMC, the Netherlands
| | - Elena Rampanelli
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Bruce C Verchere
- BC Children's Hospital Research Institute, Pathology & Laboratory Medicine and Surgery, Vancouver, Canada
| | - Nordin M J Hanssen
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands.
| |
Collapse
|
38
|
Collin R, Dugas V, Pelletier AN, Chabot-Roy G, Lesage S. Evidence of genetic epistasis in autoimmune diabetes susceptibility revealed by mouse congenic sublines. Immunogenetics 2021; 73:307-319. [PMID: 33755757 DOI: 10.1007/s00251-021-01214-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/09/2021] [Indexed: 11/26/2022]
Abstract
Susceptibility to autoimmune diabetes is a complex genetic trait. Linkage analyses exploiting the NOD mouse, which spontaneously develops autoimmune diabetes, have proved to be a useful tool for the characterization of some of these traits. In a linkage analysis using 3A9 TCR transgenic mice on both B10.BR and NOD.H2k backgrounds, we previously determined that both the Idd2 and Idd13 loci were linked to the proportion of immunoregulatory CD4-CD8- double negative (DN) T cells. In addition to Idd2 and Idd13, five other loci showed weak linkage to the proportion of DN T cells. Of interest, in an interim analysis, a locus on chromosome 12 is linked to DN T cell proportion in both the spleen and the lymph nodes. To determine the impact of this locus on DN T cells, we generated two congenic sublines, which we named Chr12P and Chr12D for proximal and distal, respectively. While 3A9 TCR:insHEL NOD.H2k-Chr12D mice were protected from diabetes, 3A9 TCR:insHEL NOD.H2k-Chr12P showed an increase in diabetes incidence. Yet, the proportion of DN T cells was similar to the parental 3A9 TCR NOD.H2k strain for both of these congenic sublines. A genome-wide two dimensional LOD score analysis reveals genetic epistasis between chromosome 12 and the Idd13 locus. Altogether, this study identified further complex genetic interactions in defining the proportion of DN T cells, along with evidence of genetic epistasis within a locus on chromosome 12 influencing autoimmune susceptibility.
Collapse
Affiliation(s)
- Roxanne Collin
- Cellular Immunogenetics laboratory, Division of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, H1T 2M4, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
- CellCarta, 201 President Kennedy Avenue, Suite 3900, Montreal, Quebec, H2X 3Y7, Canada
| | - Véronique Dugas
- Cellular Immunogenetics laboratory, Division of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, H1T 2M4, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
| | | | - Geneviève Chabot-Roy
- Cellular Immunogenetics laboratory, Division of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, H1T 2M4, Canada
| | - Sylvie Lesage
- Cellular Immunogenetics laboratory, Division of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, H1T 2M4, Canada.
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
39
|
Dong M, Audiger C, Adegoke A, Lebel MÈ, Valbon SF, Anderson CC, Melichar HJ, Lesage S. CD5 levels reveal distinct basal T-cell receptor signals in T cells from non-obese diabetic mice. Immunol Cell Biol 2021; 99:656-667. [PMID: 33534942 DOI: 10.1111/imcb.12443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes in non-obese diabetic (NOD) mice occurs when autoreactive T cells eliminate insulin producing pancreatic β cells. While extensively studied in T-cell receptor (TCR) transgenic mice, the contribution of alterations in thymic selection to the polyclonal T-cell pool in NOD mice is not yet resolved. The magnitude of signals downstream of TCR engagement with self-peptide directs the development of a functional T-cell pool, in part by ensuring tolerance to self. TCR interactions with self-peptide are also necessary for T-cell homeostasis in the peripheral lymphoid organs. To identify differences in TCR signal strength that accompany thymic selection and peripheral T-cell maintenance, we compared CD5 levels, a marker of basal TCR signal strength, on immature and mature T cells from autoimmune diabetes-prone NOD and -resistant B6 mice. The data suggest that there is no preferential selection of NOD thymocytes that perceive stronger TCR signals from self-peptide engagement. Instead, NOD mice have an MHC-dependent increase in CD4+ thymocytes and mature T cells that express lower levels of CD5. In contrast, T cell-intrinsic mechanisms lead to higher levels of CD5 on peripheral CD8+ T cells from NOD relative to B6 mice, suggesting that peripheral CD8+ T cells with higher basal TCR signals may have survival advantages in NOD mice. These differences in the T-cell pool in NOD mice may contribute to the development or progression of autoimmune diabetes.
Collapse
Affiliation(s)
- Mengqi Dong
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Cindy Audiger
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Adeolu Adegoke
- Departments of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Marie-Ève Lebel
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Stefanie F Valbon
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Colin C Anderson
- Departments of Surgery and Medical Microbiology & Immunology, Alberta Diabetes Institute, Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Lesage
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada.,Département de microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
40
|
Trevizol JS, Buzalaf NR, Dionizio A, Delgado AQ, Cestari TM, Bosqueiro JR, Magalhães AC, Buzalaf MAR. Effects of low-level fluoride exposure on glucose homeostasis in female NOD mice. CHEMOSPHERE 2020; 254:126602. [PMID: 32334241 DOI: 10.1016/j.chemosphere.2020.126602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/11/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Water fluoridation is an important public health measure for the control of dental caries. Recent animal studies have shown that low doses of fluoride (F) in the drinking water, similar to those found in public water supplies, increase insulin sensitivity and reduce blood glucose. In the present study we evaluated the effects of low-level F exposure through the drinking water on glucose homeostasis in female NOD mice. Seventy-two 6-week mice were randomly divided into 2 groups according to the concentration of F in the drinking water (0-control, or 10 mg/L) they received for 14 weeks. After the experimental period the blood was collected for analyses of plasma F, glucose and insulin. Liver and gastrocnemius muscle were collected for proteomic analysis. Plasma F concentrations were significantly higher in the F-treated than in the control group. Despite treatment with fluoridated water reduced plasma levels glucose by 20% compared to control, no significant differences were found between the groups for plasma glucose and insulin. In the muscle, treatment with fluoridated water increased the expression of proteins related to muscle contraction, while in the liver, there was an increase in expression of antioxidant proteins and in proteins related to carboxylic acid metabolic process. Remarkably, phosphoenolpyruvate carboxykinase (PEPCK) was found exclusively in the liver of control mice. The reduction in PEPCK, a positive regulator of gluconeogenesis, thus increasing glucose uptake, might be a probable mechanism to explain the anti-diabetic effects of low doses of F, which should be evaluated in further studies.
Collapse
Affiliation(s)
- Juliana Sanches Trevizol
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Nathalia Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | | | - Tania Mary Cestari
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - José Roberto Bosqueiro
- Department of Physical Education, Faculty of Science, São Paulo State University, Bauru, São Paulo, Brazil
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Marilia Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil.
| |
Collapse
|
41
|
Kirak O, Ke E, Yang KY, Schwarz A, Plate L, Nham A, Abadejos JR, Valencia A, Wiseman RL, Lui KO, Ku M. Premature Activation of Immune Transcription Programs in Autoimmune-Predisposed Mouse Embryonic Stem Cells and Blastocysts. Int J Mol Sci 2020; 21:ijms21165743. [PMID: 32796510 PMCID: PMC7460978 DOI: 10.3390/ijms21165743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
Autoimmune diabetes is a complex multifactorial disease with genetic and environmental factors playing pivotal roles. While many genes associated with the risk of diabetes have been identified to date, the mechanisms by which external triggers contribute to the genetic predisposition remain unclear. Here, we derived embryonic stem (ES) cell lines from diabetes-prone non-obese diabetic (NOD) and healthy C57BL/6 (B6) mice. While overall pluripotency markers were indistinguishable between newly derived NOD and B6 ES cells, we discovered several differentially expressed genes that normally are not expressed in ES cells. Several genes that reside in previously identified insulin-dependent diabetics (Idd) genomic regions were up-regulated in NOD ES cells. Gene set enrichment analysis showed that different groups of genes associated with immune functions are differentially expressed in NOD. Transcriptomic analysis of NOD blastocysts validated several differentially overexpressed Idd genes compared to B6. Genome-wide mapping of active histone modifications using ChIP-Seq supports active expression as the promoters and enhancers of activated genes are also marked by active histone modifications. We have also found that NOD ES cells secrete more inflammatory cytokines. Our data suggest that the known genetic predisposition of NOD to autoimmune diabetes leads to epigenetic instability of several Idd regions.
Collapse
Affiliation(s)
- Oktay Kirak
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (A.S.); (A.N.); (J.R.A.); (A.V.)
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center—University of Freiburg, Mathildenstraße 1, 79106 Freiburg, Germany
- Correspondence: (O.K.); (M.K.)
| | - Eugene Ke
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA;
| | - Kevin Y. Yang
- Department of Chemical Pathology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; (K.Y.Y.); (K.O.L.)
| | - Anna Schwarz
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (A.S.); (A.N.); (J.R.A.); (A.V.)
| | - Lars Plate
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (L.P.); (R.L.W.)
| | - Amy Nham
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (A.S.); (A.N.); (J.R.A.); (A.V.)
| | - Justin R. Abadejos
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (A.S.); (A.N.); (J.R.A.); (A.V.)
| | - Anna Valencia
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (A.S.); (A.N.); (J.R.A.); (A.V.)
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (L.P.); (R.L.W.)
| | - Kathy O. Lui
- Department of Chemical Pathology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; (K.Y.Y.); (K.O.L.)
| | - Manching Ku
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center—University of Freiburg, Mathildenstraße 1, 79106 Freiburg, Germany
- Correspondence: (O.K.); (M.K.)
| |
Collapse
|
42
|
Deng Z, Matsumoto Y, Kuno A, Ojima M, Xiafukaiti G, Takahashi S. An Inducible Diabetes Mellitus Murine Model Based on MafB Conditional Knockout under MafA-Deficient Condition. Int J Mol Sci 2020; 21:ijms21165606. [PMID: 32764399 PMCID: PMC7460626 DOI: 10.3390/ijms21165606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/02/2023] Open
Abstract
Diabetes mellitus is an increasingly severe chronic metabolic disease that is occurring at an alarming rate worldwide. Various diabetic models, including non-obese diabetic mice and chemically induced diabetic models, are used to characterize and explore the mechanism of the disease’s pathophysiology, in hopes of detecting and identifying novel potential therapeutic targets. However, this is accompanied by disadvantages, such as specific conditions for maintaining the incidence, nonstable hyperglycemia induction, and potential toxicity to other organs. Murine MAFA and MAFB, two closely-linked islet-enriched transcription factors, play fundamental roles in glucose sensing and insulin secretion, and maintenance of pancreatic β-cell, respectively, which are highly homologous to human protein orthologs. Herein, to induce the diabetes mellitus model at a specific time point, we generated Pdx1-dependent Mafb-deletion mice under Mafa knockout condition (A0BΔpanc), via tamoxifen-inducible Cre-loxP system. After 16 weeks, metabolic phenotypes were characterized by intraperitoneal glucose tolerance test (IPGTT), urine glucose test, and metabolic parameters analysis. The results indicated that male A0BΔpanc mice had obvious impaired glucose tolerance, and high urine glucose level. Furthermore, obvious renal lesions, impaired islet structure and decreased proportion of insulin positive cells were observed. Collectively, our results indicate that A0BΔpanc mice can be an efficient inducible model for diabetes research.
Collapse
Affiliation(s)
- Zhaobin Deng
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (Z.D.); (Y.M.); (G.X.)
- School of Comprehensive Human Sciences, Doctoral Program in Biomedical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuka Matsumoto
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (Z.D.); (Y.M.); (G.X.)
- School of Medical Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (Z.D.); (Y.M.); (G.X.)
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (A.K.); (S.T.)
| | - Masami Ojima
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
| | - Gulibaikelamu Xiafukaiti
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (Z.D.); (Y.M.); (G.X.)
- School of Comprehensive Human Sciences, Doctoral Program in Biomedical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; (Z.D.); (Y.M.); (G.X.)
- Laboratory Animal Resource Center (LARC), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Correspondence: (A.K.); (S.T.)
| |
Collapse
|
43
|
Akturk HK, Michels AW. Adverse events associated with immune checkpoint inhibitors: a new era in autoimmune diabetes. Curr Opin Endocrinol Diabetes Obes 2020; 27:187-193. [PMID: 32618630 PMCID: PMC7357891 DOI: 10.1097/med.0000000000000546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To summarize a new form of autoimmune diabetes as an adverse event of specific cancer immunotherapies. Immune checkpoint inhibitors are revolutionary treatments in advanced cancers; however, they can cause type 1 diabetes following treatment with these state-of-the-art therapies. RECENT FINDINGS A review of the literature showed that this new form of autoimmune diabetes has significant similarities with childhood-onset type 1 diabetes but also some distinctions. It frequently presents with severe diabetic ketoacidosis and almost half of the patients have type 1 diabetes-associated antibodies at presentation. Rapid loss of residual beta-cell function with a lack of honeymoon phase is typical. Certain human leukocyte antigen risk genes for prototypical type 1 diabetes that develops in children and young adults are also commonly found in patients with immune checkpoint inhibitor-induced type 1 diabetes. SUMMARY Immune checkpoint inhibitor-induced type 1 diabetes presenting with diabetic ketoacidosis is a life-threatening adverse event of cancer immunotherapy. Healthcare providers should be aware of this adverse event to prevent morbidity and mortality related to diabetic ketoacidosis. Developing guidelines to identify and monitor risk groups are of utmost importance.
Collapse
Affiliation(s)
- Halis Kaan Akturk
- Barbara Davis Center for Diabetes, University of Colorado, School of Medicine, Aurora, CO, USA
- Corresponding author: Halis Kaan Akturk MD, Assistant Professor of Medicine and Pediatrics, Barbara Davis Center for Diabetes, University of Colorado, 1775 Aurora Ct. Room 1318 Aurora, CO, 80045, P: 303-724-0467,
| | - Aaron W. Michels
- Barbara Davis Center for Diabetes, University of Colorado, School of Medicine, Aurora, CO, USA
| |
Collapse
|
44
|
Targeting Dendritic Cells with Antigen-Delivering Antibodies for Amelioration of Autoimmunity in Animal Models of Multiple Sclerosis and Other Autoimmune Diseases. Antibodies (Basel) 2020; 9:antib9020023. [PMID: 32549343 PMCID: PMC7345927 DOI: 10.3390/antib9020023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
The specific targeting of dendritic cells (DCs) using antigen-delivering antibodies has been established to be a highly efficient protocol for the induction of tolerance and protection from autoimmune processes in experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS), as well as in some other animal disease models. As the specific mechanisms of such induced tolerance are being investigated, the newly gained insights may also possibly help to design effective treatments for patients. Here we review approaches applied for the amelioration of autoimmunity in animal models based on antibody-mediated targeting of self-antigens to DCs. Further, we discuss relevant mechanisms of immunological tolerance that underlie such approaches, and we also offer some future perspectives for the application of similar methods in certain related disease settings such as transplantation.
Collapse
|
45
|
Abstract
Virus infections have been linked to the induction of autoimmunity and disease development in human type 1 diabetes. Experimental models have been instrumental in deciphering processes leading to break of immunological tolerance and type 1 diabetes development. Animal models have also been useful for proof-of-concept studies and for preclinical testing of new therapeutic interventions. This chapter describes two robust and clinically relevant mouse models for virus-induced type 1 diabetes; acceleration of disease onset in prediabetic nonobese diabetic (NOD) mice following Coxsackievirus infection and diabetes induction by lymphocytic choriomeningitis virus (LCMV) infection of transgenic mice expressing viral neo-antigens under control of the rat insulin promoter (RIP).
Collapse
Affiliation(s)
| | - Malin Flodström-Tullberg
- The Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
46
|
Watson CT, Kos JT, Gibson WS, Newman L, Deikus G, Busse CE, Smith ML, Jackson KJ, Collins AM. A comparison of immunoglobulin IGHV, IGHD and IGHJ genes in wild-derived and classical inbred mouse strains. Immunol Cell Biol 2019; 97:888-901. [PMID: 31441114 DOI: 10.1111/imcb.12288] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/05/2019] [Accepted: 08/20/2019] [Indexed: 01/20/2023]
Abstract
The genomes of classical inbred mouse strains include genes derived from all three major subspecies of the house mouse, Mus musculus. We recently posited that genetic diversity in the immunoglobulin heavy chain (IGH) gene loci of C57BL/6 and BALB/c mice reflects differences in subspecies origin. To investigate this hypothesis, we conducted high-throughput sequencing of IGH gene rearrangements to document IGH variable (IGHV), joining (IGHJ) and diversity (IGHD) genes in four inbred wild-derived mouse strains (CAST/EiJ, LEWES/EiJ, MSM/MsJ and PWD/PhJ) and a single disease model strain (NOD/ShiLtJ), collectively representing genetic backgrounds of several major mouse subspecies. A total of 341 germline IGHV sequences were inferred in the wild-derived strains, including 247 not curated in the international ImMunoGeneTics information system. By contrast, 83/84 inferred NOD IGHV genes had previously been observed in C57BL/6 mice. Variability among the strains examined was observed for only a single IGHJ gene, involving a description of a novel allele. By contrast, unexpected variation was found in the IGHD gene loci, with four previously unreported IGHD gene sequences being documented. Very few IGHV sequences of C57BL/6 and BALB/c mice were shared with strains representing major subspecies, suggesting that their IGH loci may be complex mosaics of genes of disparate origins. This suggests a similar level of diversity is likely present in the IGH loci of other classical inbred strains. This must now be documented if we are to properly understand interstrain variation in models of antibody-mediated disease.
Collapse
Affiliation(s)
- Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Justin T Kos
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - William S Gibson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Leah Newman
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gintaras Deikus
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Christian E Busse
- Division of B Cell Immunology, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Melissa L Smith
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Katherine Jl Jackson
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Andrew M Collins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
47
|
Siljander H, Honkanen J, Knip M. Microbiome and type 1 diabetes. EBioMedicine 2019; 46:512-521. [PMID: 31257149 PMCID: PMC6710855 DOI: 10.1016/j.ebiom.2019.06.031] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
The steep increase in the incidence of type 1 diabetes (T1D), in the Western world after World War II, cannot be explained solely by genetic factors but implies that this rise must be due to crucial interactions between predisposing genes and environmental changes. Three parallel phenomena in early childhood – the dynamic development of the immune system, maturation of the gut microbiome, and the appearance of the first T1D-associated autoantibodies – raise the question whether these phenomena might reflect causative relationships. Plenty of novel data on the role of the microbiome in the development of T1D has been published over recent years and this review summarizes recent findings regarding the associations between islet autoimmunity, T1D, and the intestinal microbiota.
Collapse
Affiliation(s)
- Heli Siljander
- Children's Hospital, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Jarno Honkanen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Tampere Center for Child Health Research, Tampere University Hospital, 33520 Tampere, Finland; Folkhälsan Research Center, 00290 Helsinki, Finland.
| |
Collapse
|
48
|
Wang Y, Sosinowski T, Novikov A, Crawford F, White J, Jin N, Liu Z, Zou J, Neau D, Davidson HW, Nakayama M, Kwok WW, Gapin L, Marrack P, Kappler JW, Dai S. How C-terminal additions to insulin B-chain fragments create superagonists for T cells in mouse and human type 1 diabetes. Sci Immunol 2019; 4:eaav7517. [PMID: 30952805 PMCID: PMC6929690 DOI: 10.1126/sciimmunol.aav7517] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/04/2019] [Accepted: 02/11/2019] [Indexed: 11/03/2022]
Abstract
In type 1 diabetes (T1D), proinsulin is a major autoantigen and the insulin B:9-23 peptide contains epitopes for CD4+ T cells in both mice and humans. This peptide requires carboxyl-terminal mutations for uniform binding in the proper position within the mouse IAg7 or human DQ8 major histocompatibility complex (MHC) class II (MHCII) peptide grooves and for strong CD4+ T cell stimulation. Here, we present crystal structures showing how these mutations control CD4+ T cell receptor (TCR) binding to these MHCII-peptide complexes. Our data reveal stricking similarities between mouse and human CD4+ TCRs in their interactions with these ligands. We also show how fusions between fragments of B:9-23 and of proinsulin C-peptide create chimeric peptides with activities as strong or stronger than the mutated insulin peptides. We propose transpeptidation in the lysosome as a mechanism that could accomplish these fusions in vivo, similar to the creation of fused peptide epitopes for MHCI presentation shown to occur by transpeptidation in the proteasome. Were this mechanism limited to the pancreas and absent in the thymus, it could provide an explanation for how diabetogenic T cells escape negative selection during development but find their modified target antigens in the pancreas to cause T1D.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Animals
- Autoantigens/genetics
- Autoantigens/immunology
- Autoantigens/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- HLA-DQ Antigens/immunology
- HLA-DQ Antigens/metabolism
- Humans
- Hybridomas
- Immune Tolerance
- Insulin/genetics
- Insulin/immunology
- Insulin/metabolism
- Lysosomes/immunology
- Lysosomes/metabolism
- Mice
- Mice, Inbred NOD
- Molecular Docking Simulation
- Mutation
- Pancreas/cytology
- Pancreas/immunology
- Pancreas/metabolism
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Domains/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Yang Wang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tomasz Sosinowski
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrey Novikov
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Frances Crawford
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Janice White
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Niyun Jin
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zikou Liu
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Jinhao Zou
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - David Neau
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Howard W Davidson
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Maki Nakayama
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Laurent Gapin
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Philippa Marrack
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John W Kappler
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Structural Biology and Biochemistry program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Shaodong Dai
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA.
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Structural Biology and Biochemistry program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
49
|
Pogu J, Tzima S, Kollias G, Anegon I, Blancou P, Simon T. Genetic Restoration of Heme Oxygenase-1 Expression Protects from Type 1 Diabetes in NOD Mice. Int J Mol Sci 2019; 20:ijms20071676. [PMID: 30987262 PMCID: PMC6480274 DOI: 10.3390/ijms20071676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022] Open
Abstract
Antigen-presenting cells (APCs) including dendritic cells (DCs) play a critical role in the development of autoimmune diseases by presenting self-antigen to T-cells. Different signals modulate the ability of APCs to activate or tolerize autoreactive T-cells. Since the expression of heme oxygenase-1 (HO-1) by APCs has been associated with the tolerization of autoreactive T-cells, we hypothesized that HO-1 expression might be altered in APCs from autoimmune-prone non-obese diabetic (NOD) mice. We found that, compared to control mice, NOD mice exhibited a lower percentage of HO-1-expressing cells among the splenic DCs, suggesting an impairment of their tolerogenic functions. To investigate whether restored expression of HO-1 in APCs could alter the development of diabetes in NOD mice, we generated a transgenic mouse strain in which HO-1 expression can be specifically induced in DCs using a tetracycline-controlled transcriptional activation system. Mice in which HO-1 expression was induced in DCs exhibited a lower Type 1 Diabetes (T1D) incidence and a reduced insulitis compared to non-induced mice. Upregulation of HO-1 in DCs also prevented further increase of glycemia in recently diabetic NOD mice. Altogether, our data demonstrated the potential of induction of HO-1 expression in DCs as a preventative treatment, and potential as a curative approach for T1D.
Collapse
Affiliation(s)
- Julien Pogu
- Centre de Recherche en Transplantation et Immunologie, Institut National de la Santé Et de la Recherche Médicale (INSERM), Université de Nantes, 44000 Nantes, France.
| | - Sotiria Tzima
- Institute of Immunology, Biomedical Sciences Research Centre "Alexander Fleming", Vari, 210 Attica, Greece.
| | - Georges Kollias
- Institute of Immunology, Biomedical Sciences Research Centre "Alexander Fleming", Vari, 210 Attica, Greece.
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie, Institut National de la Santé Et de la Recherche Médicale (INSERM), Université de Nantes, 44000 Nantes, France.
| | - Philippe Blancou
- Centre de Recherche en Transplantation et Immunologie, Institut National de la Santé Et de la Recherche Médicale (INSERM), Université de Nantes, 44000 Nantes, France.
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France.
| | - Thomas Simon
- Centre de Recherche en Transplantation et Immunologie, Institut National de la Santé Et de la Recherche Médicale (INSERM), Université de Nantes, 44000 Nantes, France.
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire, 06560 Valbonne, France.
| |
Collapse
|
50
|
Malvezzi MAPN, Pereira HABS, Dionizio A, Araujo TT, Buzalaf NR, Sabino-Arias IT, Fernandes MS, Grizzo LT, Magalhães AC, Buzalaf MAR. Low-level fluoride exposure reduces glycemia in NOD mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:198-204. [PMID: 30388537 DOI: 10.1016/j.ecoenv.2018.10.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED Water fluoridation is the most widespread measure to prevent dental caries but its relationship with the development of type-1 diabetes (T1D), which has been increasing by 2-5% worldwide, is not quite well understood. AIM This study evaluated if fluoride (F) administered in the drinking water can prevent or reduce the development of T1D in non-obese diabetic (NOD) mice, as well as to explore the underlying mechanisms. MATERIALS AND METHODS Twenty-four weaning NOD mice received water containing 0, 10 or 50 ppm F for 21 days. Plasma glucose and insulin were analyzed. Quantitative proteomic analysis was conducted in the liver and gastrocnemius muscle. RESULTS Animals treated with 10 ppm F had significantly lower glucose levels than the control group, but there was no significant difference among the groups in relation to insulin. The % of β-cell function was significantly higher in the 10 ppm F group. Changes in the proteomic profile of muscle and liver were seen among the groups. In the muscle, the 10 ppm F group presented, when compared with control, increased expression of proteins involved in energy metabolism. The 50 ppm F group, compared with control, presented increased expression of proteins related to muscle contraction, differentiation of brown adipose tissue and apoptosis. For the liver, the 10 ppm F group had increase in proteins involved in energy metabolism and protein synthesis, in respect to control. There was also an increase in isoforms of Glutathione S transferase, which was confirmed by Western blotting. In the group treated with 50 ppm F, proteins related to ROS metabolism and energetic metabolism were altered. CONCLUSION Increased expression of antioxidant proteins by treatment with low F concentration may possibly help to explain protection against the development of T1D, which should be better explored in future mechanistic studies.
Collapse
Affiliation(s)
- Maria Aparecida Pereira Nunes Malvezzi
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Heloisa Aparecida Barbosa Silva Pereira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Tamara Teodoro Araujo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Nathalia Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Isabela Tomazini Sabino-Arias
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Mileni Silva Fernandes
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Larissa Tercilia Grizzo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil
| | - Marilia Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901 Bauru, São Paulo, Brazil.
| |
Collapse
|