1
|
Schaefer A, Yang B, Schroeder HA, Harit D, Humphry MS, Zeitlin L, Whaley KJ, Ravel J, Fischer WA, Lai SK. ZMapp reduces diffusion of Ebola viral particles in fresh human cervicovaginal mucus. Emerg Microbes Infect 2024; 13:2352520. [PMID: 38713593 PMCID: PMC11100441 DOI: 10.1080/22221751.2024.2352520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Vaginal transmission from semen of male Ebola virus (EBOV) survivors has been implicated as a potential origin of Ebola virus disease (EVD) outbreaks. While EBOV in semen must traverse cervicovaginal mucus (CVM) to reach target cells, the behaviour of EBOV in CVM is poorly understood. CVM contains substantial quantities of IgG, and arrays of IgG bound to a virion can develop multiple Fc-mucin bonds, immobilizing the IgG/virion complex in mucus. Here, we measured the real-time mobility of fluorescent Ebola virus-like-particles (VLP) in 50 CVM specimens from 17 women, with and without ZMapp, a cocktail of 3 monoclonal IgGs against EBOV. ZMapp-mediated effective trapping of Ebola VLPs in CVM from a subset of women across the menstrual cycle, primarily those with Lactobacillus crispatus dominant microbiota. Our work underscores the influence of the vaginal microbiome on IgG-mucin crosslinking against EBOV and identifies bottlenecks in the sexual transmission of EBOV.
Collapse
Affiliation(s)
- Alison Schaefer
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC, USA
| | - Bing Yang
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Holly A. Schroeder
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dimple Harit
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mike S. Humphry
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William A. Fischer
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Chapel Hill, NC, USA
| | - Samuel K. Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology & Immunology; University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Rao PG, Lambert GS, Upadhyay C. Broadly neutralizing antibody epitopes on HIV-1 particles are exposed after virus interaction with host cells. J Virol 2023; 97:e0071023. [PMID: 37681958 PMCID: PMC10537810 DOI: 10.1128/jvi.00710-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/07/2023] [Indexed: 09/09/2023] Open
Abstract
The envelope (Env) glycoproteins on HIV-1 virions are the sole target of broadly neutralizing antibodies (bNAbs) and the focus of vaccines. However, many cross-reactive conserved epitopes are often occluded on virus particles, contributing to the evasion of humoral immunity. This study aimed to identify the Env epitopes that are exposed/occluded on HIV-1 particles and to investigate the mechanisms contributing to their masking. Using a flow cytometry-based assay, three HIV-1 isolates, and a panel of antibodies, we show that only select epitopes, including V2i, the gp120-g41 interface, and gp41-MPER, are accessible on HIV-1 particles, while V3, V2q, and select CD4bs epitopes are masked. These epitopes become accessible after allosteric conformational changes are induced by the pre-binding of select Abs, prompting us to test if similar conformational changes are required for these Abs to exhibit their neutralization capability. We tested HIV-1 neutralization where the virus-mAb mix was pre-incubated/not pre-incubated for 1 hour prior to adding the target cells. Similar levels of neutralization were observed under both assay conditions, suggesting that the interaction between virus and target cells sensitizes the virions for neutralization via bNAbs. We further show that lectin-glycan interactions can also expose these epitopes. However, this effect is dependent on the lectin specificity. Given that, bNAbs are ideal for providing sterilizing immunity and are the goal of current HIV-1 vaccine efforts, these data offer insight on how HIV-1 may occlude these vulnerable epitopes from the host immune response. In addition, the findings can guide the formulation of effective antibody combinations for therapeutic use. IMPORTANCE The human immunodeficiency virus (HIV-1) envelope (Env) glycoprotein mediates viral entry and is the sole target of neutralizing antibodies. Our data suggest that antibody epitopes including V2q (e.g., PG9, PGT145), CD4bs (e.g., VRC01, 3BNC117), and V3 (2219, 2557) are masked on HIV-1 particles. The PG9 and 2219 epitopes became accessible for binding after conformational unmasking was induced by the pre-binding of select mAbs. Attempts to understand the masking mechanism led to the revelation that interaction between virus and host cells is needed to sensitize the virions for neutralization by broadly neutralizing antibodies (bNAbs). These data provide insight on how bNAbs may gain access to these occluded epitopes to exert their neutralization effects and block HIV-1 infection. These findings have important implications for the way we evaluate the neutralizing efficacy of antibodies and can potentially guide vaccine design.
Collapse
Affiliation(s)
- Priyanka Gadam Rao
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gregory S. Lambert
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chitra Upadhyay
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Taveira N, Figueiredo I, Calado R, Martin F, Bártolo I, Marcelino JM, Borrego P, Cardoso F, Barroso H. An HIV-1/HIV-2 Chimeric Envelope Glycoprotein Generates Binding and Neutralising Antibodies against HIV-1 and HIV-2 Isolates. Int J Mol Sci 2023; 24:ijms24109077. [PMID: 37240423 DOI: 10.3390/ijms24109077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The development of immunogens that elicit broadly reactive neutralising antibodies (bNAbs) is the highest priority for an HIV vaccine. We have shown that a prime-boost vaccination strategy with vaccinia virus expressing the envelope glycoprotein gp120 of HIV-2 and a polypeptide comprising the envelope regions C2, V3 and C3 elicits bNAbs against HIV-2. We hypothesised that a chimeric envelope gp120 containing the C2, V3 and C3 regions of HIV-2 and the remaining parts of HIV-1 would elicit a neutralising response against HIV-1 and HIV-2. This chimeric envelope was synthesised and expressed in vaccinia virus. Balb/c mice primed with the recombinant vaccinia virus and boosted with an HIV-2 C2V3C3 polypeptide or monomeric gp120 from a CRF01_AG HIV-1 isolate produced antibodies that neutralised >60% (serum dilution 1:40) of a primary HIV-2 isolate. Four out of nine mice also produced antibodies that neutralised at least one HIV-1 isolate. Neutralising epitope specificity was assessed using a panel of HIV-1 TRO.11 pseudoviruses with key neutralising epitopes disrupted by alanine substitution (N160A in V2; N278A in the CD4 binding site region; N332A in the high mannose patch). The neutralisation of the mutant pseudoviruses was reduced or abolished in one mouse, suggesting that neutralising antibodies target the three major neutralising epitopes in the HIV-1 envelope gp120. These results provide proof of concept for chimeric HIV-1/HIV-2 envelope glycoproteins as vaccine immunogens that can direct the antibody response against neutralising epitopes in the HIV-1 and HIV-2 surface glycoproteins.
Collapse
Affiliation(s)
- Nuno Taveira
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Inês Figueiredo
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
| | - Rita Calado
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Francisco Martin
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Inês Bártolo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - José M Marcelino
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisboa, Portugal
| | - Pedro Borrego
- Centre for Public Administration and Public Policies, Institute of Social and Political Sciences, Universidade de Lisboa, 1300-663 Lisbon, Portugal
| | - Fernando Cardoso
- Unidade de Microbiologia Médica, Saúde Global e Medicina Tropical, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1099-085 Lisbon, Portugal
| | - Helena Barroso
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
| |
Collapse
|
4
|
Heterologous prime-boost vaccination based on Polymorphic protein D protects against intravaginal Chlamydia trachomatis infection in mice. Sci Rep 2022; 12:6664. [PMID: 35459778 PMCID: PMC9030682 DOI: 10.1038/s41598-022-10633-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/04/2022] [Indexed: 11/08/2022] Open
Abstract
The control of the worldwide spread of sexually transmitted Chlamydia trachomatis (Ct) infection urgently demands the development of a preventive vaccine. In this work, we designed a vaccine based on a fragment of polymorphic protein D (FPmpD) that proved to be immunogenic enough to generate a robust systemic and mucosal IgG humoral immune response in two strains of mice. We used a heterologous prime-boost strategy, including simultaneous systemic and mucosal administration routes. The high titers of anti-PmpD antibodies elicited by this immunization scheme did not affect murine fertility. We tested the vaccine in a mouse model of Ct intravaginal infection. Anti-PmpD antibodies displayed potent neutralizing activity in vitro and protective effects in uterine tissues in vivo. Notably, the humoral immune response of PmpD-vaccinated mice was faster and stronger than the primary immune response of non-vaccinated mice when exposed to Ct. FPmpD-based vaccine effectively reduced Ct shedding into cervicovaginal fluids, bacterial burden at the genitourinary tract, and overall infectivity. Hence, the FPmpD-based vaccine might constitute an efficient tool to protect against Ct intravaginal infection and decrease the infection spreading.
Collapse
|
5
|
Zaongo SD, Sun F, Chen Y. Are HIV-1-Specific Antibody Levels Potentially Useful Laboratory Markers to Estimate HIV Reservoir Size? A Review. Front Immunol 2021; 12:786341. [PMID: 34858439 PMCID: PMC8632222 DOI: 10.3389/fimmu.2021.786341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022] Open
Abstract
Despite the benefits achieved by the widespread availability of modern antiretroviral therapy (ART), HIV RNA integration into the host cell genome is responsible for the creation of latent HIV reservoirs, and represents a significant impediment to completely eliminating HIV infection in a patient via modern ART alone. Several methods to measure HIV reservoir size exist; however, simpler, cheaper, and faster tools are required in the quest for total HIV cure. Over the past few years, measurement of HIV-specific antibodies has evolved into a promising option for measuring HIV reservoir size, as they can be measured via simple, well-known techniques such as the western blot and enzyme-linked immunosorbent assay (ELISA). In this article, we re-visit the dynamic evolution of HIV-1-specific antibodies and the factors that may influence their levels in the circulation of HIV-positive individuals. Then, we describe the currently-known relationship between HIV-1-specific antibodies and HIV reservoir size based on study of data from contemporary literature published during the past 5 years. We conclude by highlighting current trends, and discussing the individual HIV-specific antibody that is likely to be the most reliable antibody for potential future utilization for quantification of HIV reservoir size.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Feng Sun
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaokai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
6
|
Jewanraj J, Ngcapu S, Liebenberg LJP. Semen: A modulator of female genital tract inflammation and a vector for HIV-1 transmission. Am J Reprod Immunol 2021; 86:e13478. [PMID: 34077596 PMCID: PMC9286343 DOI: 10.1111/aji.13478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
In order to establish productive infection in women, HIV must transverse the vaginal epithelium and gain access to local target cells. Genital inflammation contributes to the availability of HIV susceptible cells at the female genital mucosa and is associated with higher HIV transmission rates in women. Factors that contribute to genital inflammation may subsequently increase the risk of HIV infection in women. Semen is a highly immunomodulatory fluid containing several bioactive molecules with the potential to influence inflammation and immune activation at the female genital tract. In addition to its role as a vector for HIV transmission, semen induces profound mucosal changes to prime the female reproductive tract for conception. Still, most studies of mucosal immunity are conducted in the absence of semen or without considering its immune impact on the female genital tract. This review discusses the various mechanisms by which semen exposure may influence female genital inflammation and highlights the importance of routine screening for semen biomarkers in vaginal specimens to account for its impact on genital inflammation.
Collapse
Affiliation(s)
- Janine Jewanraj
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
7
|
Waheed DEN, Schiller J, Stanley M, Franco EL, Poljak M, Kjaer SK, Del Pino M, van der Klis F, Schim van der Loeff MF, Baay M, Van Damme P, Vorsters A. Human papillomavirus vaccination in adults: impact, opportunities and challenges - a meeting report. BMC Proc 2021; 15:16. [PMID: 34384438 PMCID: PMC8359761 DOI: 10.1186/s12919-021-00217-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
For more than a decade human papillomavirus (HPV) vaccine have been implemented in most high-income countries, and more recently also in several low- and middle-income countries. The vaccines are safe and their impact and effectiveness in preventing HPV vaccine type infection and associated diseases has been thoroughly established. Currently, the primary recommended cohorts for immunisation are adolescents, 9-15 years of age but HPV is an ubiquitous infection that is mainly (but not exclusively) sexually transmitted. Sexually active adults remain susceptible to infection and continued transmission of the virus, representing a reservoir of infection in the population. A recent meeting, conducted by the HPV Prevention and Control Board (HPV-PCB), reviewed the current status of HPV vaccination of adults, discussed limitations, challenges and benefits of HPV vaccination of adults, evaluated the effectiveness of HPV vaccination after treatment of post cervical cancer and precancerous lesions, and discussed the potential impact of adult vaccination on cervical cancer elimination strategies in light of the current and future HPV vaccine shortage. HPV-PCB is an independent multidisciplinary board of international experts that disseminates relevant information on HPV to a broad array of stakeholders and provides guidance on strategic, technical and policy issues in the implementation of HPV prevention and control programs. The HPV-PCB concluded that, given the current data available on adult HPV vaccination and the ongoing vaccine supply constraints, it is too early to implement routine vaccination of adults. Many research gaps need to be filled before we have a better understanding of the efficacy and broader public health impact of HPV vaccination in adult women.
Collapse
Affiliation(s)
- Dur-E-Nayab Waheed
- Centre for Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - John Schiller
- Center for Cancer Research National Cancer Institute, Bethesda, MD, 20814, USA
| | - Margaret Stanley
- Division of Cellular and Molecular Pathology, University of Cambridge, Cambridge, UK
| | - Eduardo L Franco
- Division of Cancer Epidemiology, McGill University, Montreal, Quebec, Canada
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Susanne K Kjaer
- Danish Cancer Society Research Center, Unit of Virus, Lifestyle and Genes, and Department of Gynecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marta Del Pino
- Gynecology Oncology Unit. Institute Clinic of Gynecology, Obstetrics, and Neonatology (ICGON), Hospital Clínic of Barcelona. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Fiona van der Klis
- National Institute for Public Health and the Environment (RIVM)
- RIVM and Centre for Infectious Disease Control (CIb), Utrecht, Netherlands
| | - Maarten F Schim van der Loeff
- Department of Infectious Diseases, Public Health Service (GGD) Amsterdam, and Amsterdam UMC, and University of Amsterdam, and Internal Medicine, Amsterdam institute for Infection and Immunity (AII), and Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Marc Baay
- P95, Epidemiology and Pharmacovigilance Consulting and Services, Leuven, Belgium
| | - Pierre Van Damme
- Centre for Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Alex Vorsters
- Centre for Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
8
|
Seaton KE, Deal A, Han X, Li SS, Clayton A, Heptinstall J, Duerr A, Allen MA, Shen X, Sawant S, Yates NL, Spearman P, Churchyard G, Goepfert PA, Maenza J, Gray G, Pantaleo G, Polakowski L, Robinson HL, Grant S, Randhawa AK, Huang Y, Morgan C, Grunenberg N, Karuna S, Gilbert PB, McElrath MJ, Huang Y, Tomaras GD. Meta-analysis of HIV-1 vaccine elicited mucosal antibodies in humans. NPJ Vaccines 2021; 6:56. [PMID: 33859204 PMCID: PMC8050318 DOI: 10.1038/s41541-021-00305-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
We studied mucosal immune responses in six HIV-1 vaccine trials investigating different envelope (Env)-containing immunogens. Regimens were classified into four categories: DNA/vector, DNA/vector plus protein, protein alone, and vector alone. We measured HIV-1-specific IgG and IgA in secretions from cervical (n = 111) and rectal swabs (n = 154), saliva (n = 141), and seminal plasma (n = 124) and compared to corresponding blood levels. Protein-containing regimens had up to 100% response rates and the highest Env-specific IgG response rates. DNA/vector groups elicited mucosal Env-specific IgG response rates of up to 67% that varied across specimen types. Little to no mucosal IgA responses were observed. Overall, gp41- and gp140-specific antibodies dominated gp120 mucosal responses. In one trial, prior vaccination with a protein-containing immunogen maintained durability of cervical and rectal IgG for up to 17 years. Mucosal IgG responses were boosted after revaccination. These findings highlight a role for protein immunization in eliciting HIV-1-specific mucosal antibodies and the ability of HIV-1 vaccines to elicit durable HIV-1-specific mucosal IgG.
Collapse
Affiliation(s)
- Kelly E Seaton
- Duke Human Vaccine Institute, Durham, NC, USA.
- Department of Surgery, Duke University, Durham, NC, USA.
- Department of Immunology, Duke University, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
| | - Aaron Deal
- Duke Human Vaccine Institute, Durham, NC, USA
| | - Xue Han
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shuying S Li
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ashley Clayton
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jack Heptinstall
- Duke Human Vaccine Institute, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
| | - Ann Duerr
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | - Sheetal Sawant
- Duke Human Vaccine Institute, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
| | - Nicole L Yates
- Duke Human Vaccine Institute, Durham, NC, USA
- Department of Surgery, Duke University, Durham, NC, USA
| | - Paul Spearman
- Division of Infectious Diseases, Cincinnati Children's Hospital, Cincinnatti, OH, USA
| | - Gavin Churchyard
- Aurum Institute, Johannesburg, South Africa
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
| | - Paul A Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Janine Maenza
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Glenda Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- South African Medical Research Council, Cape Town, South Africa
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, and Swiss Vaccine Research Institute, Lausanne University Hospital, Lausanne, Switzerland
| | | | | | - Shannon Grant
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - April K Randhawa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Cecilia Morgan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nicole Grunenberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shelly Karuna
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Durham, NC, USA.
- Department of Surgery, Duke University, Durham, NC, USA.
- Department of Immunology, Duke University, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
| |
Collapse
|
9
|
Richardson SI, Lambson BE, Crowley AR, Bashirova A, Scheepers C, Garrett N, Abdool Karim S, Mkhize NN, Carrington M, Ackerman ME, Moore PL, Morris L. IgG3 enhances neutralization potency and Fc effector function of an HIV V2-specific broadly neutralizing antibody. PLoS Pathog 2019; 15:e1008064. [PMID: 31841557 PMCID: PMC6936867 DOI: 10.1371/journal.ppat.1008064] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/30/2019] [Accepted: 09/02/2019] [Indexed: 11/19/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) protect against HIV infection in non-human primates and their efficacy may be enhanced through interaction with Fc receptors on immune cells. Antibody isotype is a modulator of this binding with the IgG3 subclass mediating potent Fc effector function and is associated with HIV vaccine efficacy and HIV control. BNAb functions are typically assessed independently of the constant region with which they are naturally expressed. To examine the role of natural isotype in the context of a bNAb lineage we studied CAP256, an HIV-infected individual that mounted a potent V2-specific bNAb response. CAP256 expressed persistently high levels of plasma IgG3 which we found mediated both broad neutralizing activity and potent Fc function. Sequencing of germline DNA and the constant regions of V2-directed bNAbs from this donor revealed the expression of a novel IGHG3 allele as well as IGHG3*17, an allele that produces IgG3 antibodies with increased plasma half-life. Both allelic variants were used to generate CAP256-VRC26.25 and CAP256-VRC26.29 IgG3 bNAbs and these were compared to IgG1 versions. IgG3 variants were shown to have significantly higher phagocytosis and trogocytosis compared to IgG1 versions, which corresponded to increased affinity for FcγRIIa. Neutralization potency was also significantly higher for IgG3 bNAbs, particularly against viruses lacking the N160 glycan. By exchanging hinge regions between subclass variants, we showed that hinge length modulated both neutralization potency and Fc function. This study showed that co-operation between the variable and natural IgG3 constant regions enhanced the polyfunctionality of antibodies, indicating the value of leveraging genetic variation which could be exploited for passive immunity.
Collapse
Affiliation(s)
- Simone I. Richardson
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Bronwen E. Lambson
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Andrew R. Crowley
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Arman Bashirova
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard University, Boston, Massachusetts, United States of America
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Cathrine Scheepers
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, KwaZulu-Natal, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, KwaZulu-Natal, South Africa
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Columbia University, New York, NY, United States of America
| | - Nonhlanhla N. Mkhize
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Mary Carrington
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard University, Boston, Massachusetts, United States of America
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Penny L. Moore
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, KwaZulu-Natal, South Africa
| | - Lynn Morris
- Centre for HIV and STI’s, National Institute for Communicable Diseases, Johannesburg, Gauteng, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, KwaZulu-Natal, South Africa
| |
Collapse
|
10
|
Pattyn J, Van Keer S, Tjalma W, Matheeussen V, Van Damme P, Vorsters A. Infection and vaccine-induced HPV-specific antibodies in cervicovaginal secretions. A review of the literature. PAPILLOMAVIRUS RESEARCH 2019; 8:100185. [PMID: 31494291 PMCID: PMC6804463 DOI: 10.1016/j.pvr.2019.100185] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/19/2019] [Accepted: 09/04/2019] [Indexed: 02/02/2023]
Abstract
Background Human papillomavirus (HPV) infects and propagates in the cervical mucosal epithelium. Hence, in addition to assessing systemic immunity, the accurate measurement of cervical immunity is important to evaluate local immune responses to HPV infection and vaccination. This review discusses studies that investigated the presence of infection and vaccine-induced HPV-specific antibodies in cervicovaginal secretions (CVS). Methods We searched the two main health sciences databases, PubMed and the ISI Web of Science, from the earliest dates available to March 2019. From the eligible publications, information was extracted regarding: (i) study design, (ii) the reported HPV-specific antibody concentrations in CVS (and the associated serum levels, when provided), (iii) the CVS collection method, and (iv) the immunoassays used. Results The systematic search and selection process yielded 44 articles. The evidence of HPV-specific antibodies in CVS after natural infection (26/44) and HPV vaccination (18/44) is discussed. Many studies indicate that HPV-specific antibody detection in CVS is variable but feasible with a variety of collection methods and immunoassays. Most CVS samples were collected by cervicovaginal washing or wicks, and antibody presence was mostly determined by VLP-based ELISAs. The moderate to strong correlation between vaccine-induced antibody levels in serum and in CVS indicates that HPV vaccines generate antibodies that transudate through the cervical mucosal epithelium. Conclusion Although HPV-specific antibodies have lower titres in CVS than in serum samples, studies have shown that their detection in CVS is feasible. Nevertheless, the high variability of published observations and the lack of a strictly uniform, well-validated method for the collection, isolation and quantification of antibodies indicates a need for specific methods to improve and standardize the detection of HPV-specific antibodies in CVS.
Collapse
Affiliation(s)
- Jade Pattyn
- Centre for the Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.
| | - Severien Van Keer
- Centre for the Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| | - Wiebren Tjalma
- Multidisciplinary Breast Clinic, Gynaecological Oncology Unit, Department of Obstetrics and Gynaecology, Antwerp University Hospital (UZA) (Belgium), Molecular Imaging, Pathology, Radiotherapy, and Oncology (MIPRO), Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| | - Veerle Matheeussen
- Department of Microbiology, Antwerp University Hospital (UZA) (Belgium); Department of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp (Belgium); Department of Medical Biochemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Belgium
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| | - Alex Vorsters
- Centre for the Evaluation of Vaccination (CEV), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Belgium
| |
Collapse
|
11
|
Fourcade L, Sabourin-Poirier C, Perraud V, Faucher MC, Chagnon-Choquet J, Labbé AC, Alary M, Guédou F, Poudrier J, Roger M. Natural Immunity to HIV is associated with Low BLyS/BAFF levels and low frequencies of innate marginal zone like CD1c+ B-cells in the genital tract. PLoS Pathog 2019; 15:e1007840. [PMID: 31173604 PMCID: PMC6583986 DOI: 10.1371/journal.ppat.1007840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/19/2019] [Accepted: 05/14/2019] [Indexed: 12/29/2022] Open
Abstract
BLyS/BAFF is recognized for its role in B-cell ontogenesis, as well as cell fate decision towards the first-line/innate marginal zone (MZ) B-cell pool. Excess BLyS/BAFF is associated with hyperglobulinemia and increased frequencies of activated precursor-like MZ B-cells. Herein, we show that HIV highly-exposed seronegative (HESN) commercial sex workers (CSWs) had lower soluble BLyS/BAFF levels and relative frequencies of BLyS/BAFF expressing cells in their genital mucosa when compared to those from HIV-infected CSWs and HIV-uninfected non-CSWs. Furthermore, we identified genital innate and/or marginal zone (MZ)-like CD1c+ B-cells that naturally bind to fully glycosylated gp120, which frequencies were lower in HESNs when compared to HIV-infected CSWs and HIV-uninfected non-CSWs. Although genital levels of total IgA were similar between groups, HESNs had lower levels of total IgG1 and IgG3. Interestingly, HIV-gp41 reactive IgG1 were found in some HESNs. Low genital levels of BLyS/BAFF observed in HESNs may allow for controlled first-line responses, contributing to natural immunity to HIV. Worldwide, most human immunodeficiency virus (HIV) infections affect women through heterosexual intercourse. We and others have identified African female commercial sex workers (CSWs), who remain seronegative despite high exposition to HIV (HESNs). Innate marginal zone (MZ) B-cells recirculate in humans and have been found in front-line areas such as the sub-epithelial lamina propria of mucosal associated lymphoid tissues. MZ B-cells can bind to fully glycosylated gp120 and produce specific IgG and IgA, and have a propensity for B regulatory potential, which could help both the fight against HIV and maintenance of low inflammatory conditions reported for HESNs. Here we identify genital MZ-like B-cells, which frequencies are lower in the genital tract of HESNs when compared to HIV-infected CSWs and HIV-uninfected non-CSW women. Furthermore, this coincides with significantly lower genital levels of B lymphocyte stimulator (BLyS/BAFF), known to shape the MZ pool and which overexpression leads to MZ deregulation in HIV-infected progressors. HESN individuals provide an exceptional opportunity to determine important clues for the development of protective devices. Here we show that contained BLyS/BAFF levels are concomitant with natural immunity against HIV, and may prevent dysregulated first-line responses. MZ-like B-cells could be harnessed in preventive strategies viewed at soliciting quick first-line to be adjunct to matured long term protection.
Collapse
Affiliation(s)
- Lyvia Fourcade
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
| | - Catherine Sabourin-Poirier
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
| | - Victoire Perraud
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
| | - Marie-Claude Faucher
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
| | - Josiane Chagnon-Choquet
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
| | - Annie-Claude Labbé
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
- Département de Microbiologie Médicale et Infectiologie, Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Michel Alary
- Centre de recherche du CHU de Québec–Université Laval, Québec, Canada
- Département de Médecine Sociale et Préventive, Université Laval, Québec, Canada
- Institut National de Santé Publique du Québec, Québec, Canada
| | | | - Johanne Poudrier
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
- * E-mail: (JP); (MR)
| | - Michel Roger
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
- * E-mail: (JP); (MR)
| |
Collapse
|
12
|
Wyatt L, Permar SR, Ortiz E, Berky A, Woods CW, Amouou GF, Itell H, Hsu-Kim H, Pan W. Mercury Exposure and Poor Nutritional Status Reduce Response to Six Expanded Program on Immunization Vaccines in Children: An Observational Cohort Study of Communities Affected by Gold Mining in the Peruvian Amazon. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16040638. [PMID: 30795575 PMCID: PMC6406457 DOI: 10.3390/ijerph16040638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/09/2019] [Accepted: 02/15/2019] [Indexed: 01/02/2023]
Abstract
Background: Poor nutritional status combined with mercury exposure can generate adverse child health outcomes. Diet is a mediator of mercury exposure and evidence suggests that nutritional status modifies aspects of mercury toxicity. However, health impacts beyond the nervous system are poorly understood. This study evaluates antibody responses to six vaccines from the expanded program on immunization (EPI), including hepatitis B, Haemophilus influenzae type B, measles, pertussis, tetanus, and diphtheria in children with variable hair mercury and malnutrition indicators. Methods: An observational cohort study (n = 98) was conducted in native and non-native communities in Madre de Dios, Peru, a region with elevated mercury exposure from artisanal and small-scale gold mining. Adaptive immune responses in young (3–48 months) and older children (4–8 year olds) were evaluated by vaccine type (live attenuated, protein subunits, toxoids) to account for differences in response by antigen, and measured by total IgG concentration and antibody (IgG) concentrations of each EPI vaccine. Mercury was measured from hair samples and malnutrition determined using anthropometry and hemoglobin levels in blood. Generalized linear mixed models were used to evaluate associations with each antibody type. Results: Changes in child antibodies and protection levels were associated with malnutrition indicators, mercury exposure, and their interaction. Malnutrition was associated with decreased measles and diphtheria-specific IgG. A one-unit decrease in hemoglobin was associated with a 0.17 IU/mL (95% CI: 0.04–0.30) decline in measles-specific IgG in younger children and 2.56 (95% CI: 1.01–6.25) higher odds of being unprotected against diphtheria in older children. Associations between mercury exposure and immune responses were also dependent on child age. In younger children, one-unit increase in log10 child hair mercury content was associated with 0.68 IU/mL (95% CI: 0.18–1.17) higher pertussis and 0.79 IU/mL (95% CI: 0.18–1.70) higher diphtheria-specific IgG levels. In older children, child hair mercury content exceeding 1.2 µg/g was associated with 73.7 higher odds (95% CI: 2.7–1984.3) of being a non-responder against measles and hair mercury content exceeding 2.0 µg/g with 0.32 IU/mL (95% CI: 0.10–0.69) lower measles-specific antibodies. Log10 hair mercury significantly interacted with weight-for-height z-score, indicating a multiplicative effect of higher mercury and lower nutrition on measles response. Specifically, among older children with poor nutrition (WHZ = −1), log10 measles antibody is reduced from 1.40 to 0.43 for low (<1.2 µg/g) vs. high mercury exposure, whereas for children with good nutritional status (WHZ = 1), log10 measles antibody is minimally changed for low vs. high mercury exposure (0.72 vs. 0.81, respectively). Conclusions: Child immune response to EPI vaccines may be attenuated in regions with elevated mercury exposure risk and exacerbated by concurrent malnutrition.
Collapse
Affiliation(s)
- Lauren Wyatt
- Nicholas School of the Environment, Duke University, Durham, NC 27710, USA.
| | - Sallie Robey Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | - Ernesto Ortiz
- Global Health Institute, Duke University, Durham, NC 27710, USA.
| | - Axel Berky
- Nicholas School of the Environment, Duke University, Durham, NC 27710, USA.
| | - Christopher W Woods
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| | | | - Hannah Itell
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | - Heileen Hsu-Kim
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27710, USA.
| | - William Pan
- Nicholas School of the Environment, Duke University, Durham, NC 27710, USA.
- Global Health Institute, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
13
|
French MA, Tjiam MC, Abudulai LN, Fernandez S. Antiviral Functions of Human Immunodeficiency Virus Type 1 (HIV-1)-Specific IgG Antibodies: Effects of Antiretroviral Therapy and Implications for Therapeutic HIV-1 Vaccine Design. Front Immunol 2017; 8:780. [PMID: 28725225 PMCID: PMC5495868 DOI: 10.3389/fimmu.2017.00780] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/19/2017] [Indexed: 12/24/2022] Open
Abstract
Contemporary antiretroviral therapy (ART) is effective and tolerable for long periods of time but cannot eradicate human immunodeficiency virus type 1 (HIV-1) infection by either elimination of viral reservoirs or enhancement of HIV-1-specific immune responses. Boosting "protective" HIV-1-specific immune responses by active or passive immunization will therefore be necessary to control or eradicate HIV-1 infection and is currently the topic of intense investigation. Recently reported studies conducted in HIV patients and non-human primate (NHP) models of HIV-1 infection suggest that HIV-1-specific IgG antibody responses may contribute to the control of HIV-1 infection. However, production of IgG antibodies with virus neutralizing activity by vaccination remains problematic and while vaccine-induced natural killer cell-activating IgG antibodies have been shown to prevent the acquisition of HIV-1 infection, they may not be sufficient to control or eradicate established HIV-1 infection. It is, therefore, important to consider other functional characteristics of IgG antibody responses. IgG antibodies to viruses also mediate opsonophagocytic antibody responses against virions and capsids that enhance the function of phagocytic cells playing critical roles in antiviral immune responses, particularly conventional dendritic cells and plasmacytoid dendritic cells. Emerging evidence suggests that these antibody functions might contribute to the control of HIV-1 infection. In addition, IgG antibodies contribute to the intracellular degradation of viruses via binding to the cytosolic fragment crystallizable (Fc) receptor tripartite motif containing-21 (TRIM21). The functional activity of an IgG antibody response is influenced by the IgG subclass content, which affects binding to antigens and to Fcγ receptors on phagocytic cells and to TRIM21. The IgG subclass content and avidity of IgG antibodies is determined by germinal center (GC) reactions in follicles of lymphoid tissue. As HIV-1 infects cells in GCs and induces GC dysfunction, which may persist during ART, strategies for boosting HIV-1-specific IgG antibody responses should include early commencement of ART and possibly the use of particular antiretroviral drugs to optimize drug levels in lymphoid follicles. Finally, enhancing particular functions of HIV-1-specific IgG antibody responses by using adjuvants or cytokines to modulate the IgG subclass content of the antibody response might be investigated in NHP models of HIV-1 infection and during trials of therapeutic vaccines in HIV patients.
Collapse
Affiliation(s)
- Martyn A. French
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Clinical Immunology, Royal Perth Hospital and PathWest Laboratory Medicine, Perth, WA, Australia
| | - M. Christian Tjiam
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Laila N. Abudulai
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Sonia Fernandez
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
14
|
Brandenberg OF, Magnus C, Rusert P, Günthard HF, Regoes RR, Trkola A. Predicting HIV-1 transmission and antibody neutralization efficacy in vivo from stoichiometric parameters. PLoS Pathog 2017; 13:e1006313. [PMID: 28472201 PMCID: PMC5417720 DOI: 10.1371/journal.ppat.1006313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/24/2017] [Indexed: 01/08/2023] Open
Abstract
The potential of broadly neutralizing antibodies targeting the HIV-1 envelope trimer to prevent HIV-1 transmission has opened new avenues for therapies and vaccines. However, their implementation remains challenging and would profit from a deepened mechanistic understanding of HIV-antibody interactions and the mucosal transmission process. In this study we experimentally determined stoichiometric parameters of the HIV-1 trimer-antibody interaction, confirming that binding of one antibody is sufficient for trimer neutralization. This defines numerical requirements for HIV-1 virion neutralization and thereby enables mathematical modelling of in vitro and in vivo antibody neutralization efficacy. The model we developed accurately predicts antibody efficacy in animal passive immunization studies and provides estimates for protective mucosal antibody concentrations. Furthermore, we derive estimates of the probability for a single virion to start host infection and the risks of male-to-female HIV-1 transmission per sexual intercourse. Our work thereby delivers comprehensive quantitative insights into both the molecular principles governing HIV-antibody interactions and the initial steps of mucosal HIV-1 transmission. These insights, alongside the underlying, adaptable modelling framework presented here, will be valuable for supporting in silico pre-trial planning and post-hoc evaluation of HIV-1 vaccination or antibody treatment trials.
Collapse
Affiliation(s)
| | - Carsten Magnus
- Institute of Medical Virology, University of Zürich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zürich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Institute of Medical Virology, University of Zürich, Zurich, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
| | - Roland R. Regoes
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zürich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Gonzalez OA, Sagar M. Antibodies and Acidic Environment Do Not Enhance HIV-1 Transcytosis. J Infect Dis 2016; 214:1221-4. [PMID: 27493237 DOI: 10.1093/infdis/jiw354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/30/2016] [Indexed: 11/13/2022] Open
Abstract
A limited number of human immunodeficiency virus type 1 (HIV-1) variants initially infect HIV-1-naive individuals. Recent studies imply that this may occur because generally inefficient transcytosis across intact mucosal surfaces could be enhanced for specific viruses with bound antibodies and in the presence of acidic pH. We found that transcytosis of both cell-free and cell-associated viruses with diverse envelopes was significantly decreased in the presence of either antibodies or plasma from chronically infected transmitting partners regardless of pH. Transmitted variants also did not have greater transmigration as compared to chronic-infection strains. Enhanced translocation capacity is unlikely to influence which HIV-1 variant establishes infection.
Collapse
Affiliation(s)
- Oscar A Gonzalez
- Department of Medicine, Boston University School of Medicine, Massachusetts
| | - Manish Sagar
- Department of Medicine, Boston University School of Medicine, Massachusetts
| |
Collapse
|