1
|
Bathini P, Brai E, Balin BJ, Bimler L, Corry DB, Devanand DP, Doty RL, Ehrlich GD, Eimer WA, Fulop T, Hahn DL, Hammond CJ, Infanti J, Itzhaki R, Lathe R, Little CS, McLeod R, Moein ST, Nelson AR, Perry G, Shemesh OA, Tanzi RE, Webley WC, Schultek NM, Alberi Auber L. Sensory Dysfunction, Microbial Infections, and Host Responses in Alzheimer's Disease. J Infect Dis 2024; 230:S150-S164. [PMID: 39255393 DOI: 10.1093/infdis/jiae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Sensory functions of organs of the head and neck allow humans to interact with the environment and establish social bonds. With aging, smell, taste, vision, and hearing decline. Evidence suggests that accelerated impairment in sensory abilities can reflect a shift from healthy to pathological aging, including the development of Alzheimer's disease (AD) and other neurological disorders. While the drivers of early sensory alteration in AD are not elucidated, insults such as trauma and infections can affect sensory function. Herein, we review the involvement of the major head and neck sensory systems in AD, with emphasis on microbes exploiting sensory pathways to enter the brain (the "gateway" hypothesis) and the potential feedback loop by which sensory function may be impacted by central nervous system infection. We emphasize detection of sensory changes as first-line surveillance in senior adults to identify and remove potential insults, like microbial infections, that could precipitate brain pathology.
Collapse
Affiliation(s)
- Praveen Bathini
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
| | | | - Brian J Balin
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Lynn Bimler
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - David B Corry
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Dan L. Duncan Comprehensive Cancer Center, Biology of Inflammation Center, and the Michael E. DeBakey VA Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology and Immunology, Dan L. Duncan Comprehensive Cancer Center, Biology of Inflammation Center, and the Michael E. DeBakey VA Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Houston, Texas, USA
| | - Davangere P Devanand
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Psychiatry and Neurology, Irving Medical Center, Columbia University, New York, USA
| | - Richard L Doty
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Smell and Taste Center, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Garth D Ehrlich
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - William A Eimer
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
| | - Tamas Fulop
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Research Center on Aging, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - David L Hahn
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Christine J Hammond
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Joseph Infanti
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Research, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Ruth Itzhaki
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Institute of Population Ageing, University of Oxford, Oxford, United Kingdom
| | - Richard Lathe
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Christopher Scott Little
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
| | - Rima McLeod
- Departments of Ophthalmology and Visual Sciences, University of Chicago, Chicago, Illinois, USA
- Department of Pediatrics Infectious Diseases, University of Chicago, Chicago, Illinois, USA
| | - Shima T Moein
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Smell and Taste Center, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, USA
| | - George Perry
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Or A Shemesh
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rudolph E Tanzi
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
- Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
| | - Wilmore C Webley
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nikki M Schultek
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
| | - Lavinia Alberi Auber
- The Alzheimer's Pathobiome Initiative (AlzPI), Wake Forest, North Carolina, USA
- BrainFit4Life, Fribourg, Switzerland
- Intracell Research Group, LLC, Wake Forest, North Carolina, USA
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
- VitalizeDx, Epalinges, Switzerland
- VitalizeDx Eu, Trieste, Italy
| |
Collapse
|
2
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
3
|
Gale SD, Farrer TJ, Erbstoesser R, MacLean S, Hedges DW. Human Cytomegalovirus Infection and Neurocognitive and Neuropsychiatric Health. Pathogens 2024; 13:417. [PMID: 38787269 PMCID: PMC11123947 DOI: 10.3390/pathogens13050417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
A common infection, human cytomegalovirus (HCMV) has been associated with a variety of human diseases, including cardiovascular disease and possibly certain cancers. HCMV has also been associated with cognitive, psychiatric, and neurological conditions. Children with congenital or early-life HCMV are at risk for microcephaly, cerebral palsy, and sensorineural hearing loss, although in many cases sensorineural loss may resolve. In addition, HCMV can be associated with neurodevelopmental impairment, which may improve with time. In young, middle-aged, and older adults, HCMV has been adversely associated with cognitive function in some but not in all studies. Research has linked HCMV to Alzheimer's and vascular dementia, but again not all findings consistently support these associations. In addition, HCMV has been associated with depressive disorder, bipolar disorder, anxiety, and autism-spectrum disorder, although the available findings are likewise inconsistent. Given associations between HCMV and a variety of neurocognitive and neuropsychiatric disorders, additional research investigating reasons for the considerable inconsistencies in the currently available findings is needed. Additional meta-analyses and more longitudinal studies are needed as well. Research into the effects of antiviral medication on cognitive and neurological outcomes and continued efforts in vaccine development have potential to lower the neurocognitive, neuropsychiatric, and neurological burden of HCMV infection.
Collapse
Affiliation(s)
- Shawn D. Gale
- The Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (S.M.); (D.W.H.)
- The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| | - Thomas J. Farrer
- Idaho WWAMI Medical Education Program, University of Idaho, Moscow, ID 83844, USA;
| | - Reagan Erbstoesser
- The Department of Biology, Brigham Young University, Provo, UT 84602, USA;
| | - Scott MacLean
- The Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (S.M.); (D.W.H.)
| | - Dawson W. Hedges
- The Department of Psychology, Brigham Young University, Provo, UT 84602, USA; (S.M.); (D.W.H.)
- The Neuroscience Center, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
4
|
Gupta P, Hiller A, Chowdhury J, Lim D, Lim DY, Saeij JPJ, Babaian A, Rodriguez F, Pereira L, Morales-Tapia A. A parasite odyssey: An RNA virus concealed in Toxoplasma gondii. Virus Evol 2024; 10:veae040. [PMID: 38817668 PMCID: PMC11137675 DOI: 10.1093/ve/veae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/05/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
We are entering a 'Platinum Age of Virus Discovery', an era marked by exponential growth in the discovery of virus biodiversity, and driven by advances in metagenomics and computational analysis. In the ecosystem of a human (or any animal) there are more species of viruses than simply those directly infecting the animal cells. Viruses can infect all organisms constituting the microbiome, including bacteria, fungi, and unicellular parasites. Thus the complexity of possible interactions between host, microbe, and viruses is unfathomable. To understand this interaction network we must employ computationally assisted virology as a means of analyzing and interpreting the millions of available samples to make inferences about the ways in which viruses may intersect human health. From a computational viral screen of human neuronal datasets, we identified a novel narnavirus Apocryptovirus odysseus (Ao) which likely infects the neurotropic parasite Toxoplasma gondii. Previously, several parasitic protozoan viruses (PPVs) have been mechanistically established as triggers of host innate responses, and here we present in silico evidence that Ao is a plausible pro-inflammatory factor in human and mouse cells infected by T. gondii. T. gondii infects billions of people worldwide, yet the prognosis of toxoplasmosis disease is highly variable, and PPVs like Ao could function as a hitherto undescribed hypervirulence factor. In a broader screen of over 7.6 million samples, we explored phylogenetically proximal viruses to Ao and discovered nineteen Apocryptovirus species, all found in libraries annotated as vertebrate transcriptome or metatranscriptomes. While samples containing this genus of narnaviruses are derived from sheep, goat, bat, rabbit, chicken, and pigeon samples, the presence of virus is strongly predictive of parasitic Apicomplexa nucleic acid co-occurrence, supporting the fact that Apocryptovirus is a genus of parasite-infecting viruses. This is a computational proof-of-concept study in which we rapidly analyze millions of datasets from which we distilled a mechanistically, ecologically, and phylogenetically refined hypothesis. We predict that this highly diverged Ao RNA virus is biologically a T. gondii infection, and that Ao, and other viruses like it, will modulate this disease which afflicts billions worldwide.
Collapse
Affiliation(s)
- Purav Gupta
- The Woodlands Secondary School, 3225 Erindale Station Rd,Mississauga, ON L5C 1Y5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Aiden Hiller
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Jawad Chowdhury
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Declan Lim
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Dillon Yee Lim
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Road, Oxford, Oxfordshire, OX1 3PT, UK
| | - Jeroen P J Saeij
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Artem Babaian
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Felipe Rodriguez
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Luke Pereira
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Alejandro Morales-Tapia
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| |
Collapse
|
5
|
Flegr J, Chvátalová V, Příplatová L, Tureček P, Kodym P, Šebánková B, Kaňková Š. Cognitive Effects of Toxoplasma and CMV Infections: A Cross-Sectional Study of 557 Young Adults Considering Modulation by Sex and Rh Factor. Pathogens 2024; 13:363. [PMID: 38787216 PMCID: PMC11124290 DOI: 10.3390/pathogens13050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
One-third of humanity harbors a lifelong infection with Toxoplasma gondii, and probably about 80% are infected with human cytomegalovirus (CMV). This study aims to delineate the associations between toxoplasmosis and cognitive abilities and compare these to the associations with CMV. We evaluated the cognitive performance of 557 students, who had been examined for Toxoplasma and CMV infections, using intelligence, memory, and psychomotor tests. The results indicated cognitive impairments in seropositive individuals for both pathogens, with variations in cognitive impact related to sex and the Rh factor. Specifically, Toxoplasma infection was associated with lower IQ in men, whereas CMV was predominantly associated with worse performance by women when testing memory and reaction speeds. Analysis of the antibody concentrations indicated that certain Toxoplasma-associated cognitive detrimental effects may wane (impaired intelligence) or worsen (impaired reaction times) over time following infection. The findings imply that the cognitive impairments caused by both neurotropic pathogens are likely due to pathological changes in the brain rather than from direct manipulative action by the parasites.
Collapse
Affiliation(s)
- Jaroslav Flegr
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University, Viničná 7, 128 00 Prague, Czech Republic (P.T.); (B.Š.); (Š.K.)
| | - Veronika Chvátalová
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University, Viničná 7, 128 00 Prague, Czech Republic (P.T.); (B.Š.); (Š.K.)
| | - Lenka Příplatová
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University, Viničná 7, 128 00 Prague, Czech Republic (P.T.); (B.Š.); (Š.K.)
| | - Petr Tureček
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University, Viničná 7, 128 00 Prague, Czech Republic (P.T.); (B.Š.); (Š.K.)
| | - Petr Kodym
- National Reference Laboratory for Toxoplasmosis, Šrobárova 48, 100 42 Prague, Czech Republic
| | - Blanka Šebánková
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University, Viničná 7, 128 00 Prague, Czech Republic (P.T.); (B.Š.); (Š.K.)
| | - Šárka Kaňková
- Laboratory of Evolutionary Biology, Department of Philosophy and History of Sciences, Faculty of Science, Charles University, Viničná 7, 128 00 Prague, Czech Republic (P.T.); (B.Š.); (Š.K.)
| |
Collapse
|
6
|
Song G, Zhao Q, Chen H, Li M, Zhang Z, Qu Z, Yang C, Lin X, Ma W, Standlee CR. Toxoplasma gondii seropositivity and cognitive functioning in older adults: an analysis of cross-sectional data of the National Health and Nutrition Examination Survey 2011-2014. BMJ Open 2024; 14:e071513. [PMID: 38448067 PMCID: PMC10916126 DOI: 10.1136/bmjopen-2022-071513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
OBJECTIVES This study sought to examine the relationship between Toxoplasma gondii seropositivity and cognitive function in older adults. DESIGN An observational cross-sectional study. SETTING The National Health and Nutrition Examination Survey (NHANES) study took place at participants' homes and mobile examination centres. PARTICIPANTS A total of 2956 older adults aged 60 and above from the NHANES from 2011 to 2014 were included in the study. Exposure of interest: participants had serum Toxoplasma gondii antibody analysed in the laboratory. A value>33 IU/mL was categorised as seropositive for Toxoplasma gondii infection; <27 IU/mL was categorised as seronegative for Toxoplasma gondii infection. PRIMARY AND SECONDARY OUTCOME MEASURES Cognitive tests included the Consortium to Establish a Registry for Alzheimer's Disease Word Learning subtest (CERAD-WL) for immediate and delayed memory, the Animal Fluency Test (AFT), and the Digit Symbol Substitution Test (DSST). RESULTS About half of the 2956 participants (mean age 70.0) were female (51.0%), non-Hispanic White (48.3%), and completed some college or above (48.3%). A total of 703 participants were positive for Toxoplasma gondii infection (23.8%). Adjusted linear regression showed that compared with participants with negative Toxoplasma gondii infection, those with positive Toxoplasma gondii infection had lower CERAD-WL immediate memory (beta (β) -0.16, 95% CI -0.25 to -0.07), CERAD-WL delayed memory (β -0.15, 95% CI -0.24 to -0.06), AFT (β -0.15, 95% CI -0.24 to -0.06), DSST (β -0.34, 95% CI -0.43 to -0.26), and global cognition (β -0.24, 95% CI -0.32 to -0.16) z-scores after controlling for the covariates. CONCLUSIONS Toxoplasma gondii seropositivity is associated with worse immediate and delayed verbal learning, language proficiency, executive functioning, processing speed, sustained attention, working memory, as well as global cognition in older adults. Public health measures aiming at preventing Toxoplasma gondii infection may help preserve cognitive functioning in older adults.
Collapse
Affiliation(s)
- Ge Song
- College of Sciences and Technology, University of Houston Downtown, Houston, Texas, USA
| | - Qingxia Zhao
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyu Chen
- School of Nursing, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Li
- Kentucky Department for Public Health, Infectious Disease Branch, Frankfort, Kentucky, USA
| | - Zeyu Zhang
- Institute for Hospital Management, Tsinghua University, Beijing, China
| | - Zhe Qu
- Department of Pediatric Respiratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chao Yang
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xuechun Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Weixia Ma
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | | |
Collapse
|
7
|
Getzmann S, Golka K, Bröde P, Reinders J, Kadhum T, Hengstler JG, Wascher E, Gajewski PD. Chronic Toxoplasma gondii Infection Modulates Hearing Ability across the Adult Life Span. Life (Basel) 2024; 14:194. [PMID: 38398703 PMCID: PMC10890099 DOI: 10.3390/life14020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
While several studies have shown associations between hearing disorders and congenital toxoplasmosis, the present study investigated the impact of chronic, latent Toxoplasma gondii (T. gondii) infection on hearing loss. We used a regression analysis to explore whether latent T. gondii infection modulates changes in hearing thresholds over an age range from 20 to 70 years. We analyzed audiometric data of 162 T. gondii IgG-positive and 430 T. gondii-negative participants, collected in the Dortmund Vital Study (DVS, ClinicalTrials.gov Identifier: NCT05155397), a prospective study on healthy cognitive aging. The regression analysis indicated that latent toxoplasmosis was associated with an accelerated development in hearing loss over the observed age range. Hearing loss was less frequent in IgG-positive than in IgG-negative participants up to the age of about 40 for a low (0.125-1 kHz)-frequency range. For high (2-8 kHz) frequencies, this pattern reversed for ages above 65 years. We discuss these findings on hearing function in the context of a recently proposed model, suggesting that latent toxoplasmosis can differentially affect brain functions across a lifespan.
Collapse
Affiliation(s)
- Stephan Getzmann
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), D-44139 Dortmund, Germany; (K.G.); (P.B.); (J.R.); (J.G.H.); (E.W.); (P.D.G.)
| | - Klaus Golka
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), D-44139 Dortmund, Germany; (K.G.); (P.B.); (J.R.); (J.G.H.); (E.W.); (P.D.G.)
| | - Peter Bröde
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), D-44139 Dortmund, Germany; (K.G.); (P.B.); (J.R.); (J.G.H.); (E.W.); (P.D.G.)
| | - Jörg Reinders
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), D-44139 Dortmund, Germany; (K.G.); (P.B.); (J.R.); (J.G.H.); (E.W.); (P.D.G.)
| | - Thura Kadhum
- Clinic for Psychosomatic Rehabilitation, Mittelrhein-Klinik, D-56154 Boppard-Bad Salzig, Germany;
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), D-44139 Dortmund, Germany; (K.G.); (P.B.); (J.R.); (J.G.H.); (E.W.); (P.D.G.)
| | - Edmund Wascher
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), D-44139 Dortmund, Germany; (K.G.); (P.B.); (J.R.); (J.G.H.); (E.W.); (P.D.G.)
- German Center for Mental Health (DZPG), Partner Site Bochum/Marburg, 44787 Bochum, Germany
| | - Patrick D. Gajewski
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), D-44139 Dortmund, Germany; (K.G.); (P.B.); (J.R.); (J.G.H.); (E.W.); (P.D.G.)
| |
Collapse
|
8
|
Taheri M, Bahrami A, Asadi KK, Mohammadi M, Molaei P, Hashemi M, Nouri F. A review on nonviral, nonbacterial infectious agents toxicity involved in neurodegenerative diseases. Neurodegener Dis Manag 2023; 13:351-369. [PMID: 38357803 DOI: 10.2217/nmt-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Neuronal death, decreased activity or dysfunction of neurotransmitters are some of the pathophysiological reasons for neurodegenerative diseases like Alzheimer's, Parkinson's and multiple sclerosis. Also, there is evidence for the role of infections and infectious agents in neurodegenerative diseases and the effect of some metabolites in microorganisms in the pathophysiology of these diseases. In this study, we intend to evaluate the existing studies on the role of infectious agents and their metabolites on the pathophysiology of neurodegenerative diseases. PubMed, Scopus, Google Scholar and Web of Science search engines were searched. Some infectious agents have been observed in neurodegenerative diseases. Also, isolations of some fungi and microalgae have an improving effect on Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Bahrami
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kiana Kimiaei Asadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pejman Molaei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
9
|
Giri R, Bhardwaj T, Kapuganti SK, Saumya KU, Sharma N, Bhardwaj A, Joshi R, Verma D, Gadhave K. Widespread amyloid aggregates formation by Zika virus proteins and peptides. Protein Sci 2023; 32:e4833. [PMID: 37937856 PMCID: PMC10682691 DOI: 10.1002/pro.4833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/09/2023]
Abstract
Viral pathogenesis typically involves numerous molecular mechanisms. Protein aggregation is a relatively unknown characteristic of viruses, despite the fact that viral proteins have been shown to form terminally misfolded forms. Zika virus (ZIKV) is a neurotropic one with the potential to cause neurodegeneration. Its protein amyloid aggregation may link the neurodegenerative component to the pathogenicity associated with the viral infection. Therefore, we investigated protein aggregation in the ZIKV proteome as a putative pathogenic route and one of the alternate pathways. We discovered that it contains numerous anticipated aggregation-prone regions in this investigation. To validate our prediction, we used a combination of supporting experimental techniques routinely used for morphological characterization and study of amyloid aggregates. Several ZIKV proteins and peptides, including the full-length envelope protein, its domain III (EDIII) and fusion peptide, Pr N-terminal peptide, NS1 β-roll peptide, membrane-embedded signal peptide 2K, and cytosolic region of NS4B protein, were shown to be highly aggregating in our study. Because our findings show that viral proteins can form amyloids in vitro, we need to do a thorough functional study of these anticipated APRs to understand better the role of amyloids in the pathophysiology of ZIKV infection.
Collapse
Affiliation(s)
- Rajanish Giri
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Taniya Bhardwaj
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Shivani K. Kapuganti
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Kumar Udit Saumya
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Nitin Sharma
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Aparna Bhardwaj
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Richa Joshi
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Deepanshu Verma
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Kundlik Gadhave
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
10
|
Vogel RI, Stenzel AE, Lee H, Hunter-Schlichting D, Wesley E, Uppendahl LD, Geller MA, Nelson HH. Prevalence of active cytomegalovirus infection at diagnosis of ovarian cancer and during chemotherapy and subsequent changes in cognitive functioning. BMC Cancer 2023; 23:1057. [PMID: 37923995 PMCID: PMC10623703 DOI: 10.1186/s12885-023-11566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
PURPOSE One of the most frequently reported effects of cancer and its treatments is cancer-related cognitive impairment (CRCI). Viral infections may affect inflammation and immune function and therefore may influence patient symptoms, including CRCI. The goal of this study was to describe the prevalence of cytomegalovirus (CMV) infections at diagnosis, during, and after chemotherapy in individuals with ovarian cancer and explore CMV infection at diagnosis with cancer-related cognitive impairment (CRCI) following chemotherapy. METHODS We recruited adults newly diagnosed with ovarian, primary peritoneal or fallopian tube cancer at a single academic cancer center into two prospective studies. In Study 1 (N = 71), participants provided blood samples at diagnosis. In Study 2 (N = 18), participants provided blood samples and completed symptom surveys before, during and after front-line adjuvant chemotherapy. Serum CMV DNA levels were assessed using digital PCR; >100 copies/mL of serum was considered positive for active CMV infection (CMV+). CRCI was measured using the Functional Assessment of Cancer Therapy - Cognitive Function (FACT-Cog) questionnaire. Changes in FACT-Cog scores were compared by CMV status at diagnosis using t-tests at each time point. RESULTS At diagnosis, 29.2% were CMV+ (28.2% in Study 1, 33.3% in Study 2). Following three cycles of chemotherapy (Study 2), CMV positivity rose to 60.0% and then back down to 31.3% after chemotherapy. We observed significant differences in CRCI following chemotherapy by CMV status at diagnosis. CONCLUSION Our data suggest that active CMV infection is common among patients undergoing treatment for ovarian cancer and may contribute to symptoms of CRCI.
Collapse
Affiliation(s)
- Rachel I Vogel
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, 420 Delaware Street SE, MMC 395, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| | - Ashley E Stenzel
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, 420 Delaware Street SE, MMC 395, Minneapolis, MN, 55455, USA
- Department of Family Medicine & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Heewon Lee
- Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - DeVon Hunter-Schlichting
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Erin Wesley
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, 420 Delaware Street SE, MMC 395, Minneapolis, MN, 55455, USA
| | - Locke D Uppendahl
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, 420 Delaware Street SE, MMC 395, Minneapolis, MN, 55455, USA
| | - Melissa A Geller
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, 420 Delaware Street SE, MMC 395, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Heather H Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
11
|
Wennberg AM, Maher BS, Rabinowitz JA, Holingue C, Felder WR, Wells JL, Munro CA, Lyketsos CG, Eaton WW, Walker KA, Weng NP, Ferrucci L, Yolken R, Spira AP. Association of common infections with cognitive performance in the Baltimore Epidemiologic Catchment Area study follow-up. Alzheimers Dement 2023; 19:4841-4851. [PMID: 37027458 PMCID: PMC10558626 DOI: 10.1002/alz.13070] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 04/08/2023]
Abstract
INTRODUCTION Growing evidence suggests that some common infections are causally associated with cognitive impairment; however, less is known about the burden of multiple infections. METHODS We investigated the cross-sectional association of positive antibody tests for herpes simplex virus, cytomegalovirus (CMV), Epstein-Barr virus (EBV), varicella zoster virus (VZV), and Toxoplasma gondii (TOX) with Mini-Mental State Examination (MMSE) and delayed verbal recall performance in 575 adults aged 41-97 from the Baltimore Epidemiologic Catchment Area Study. RESULTS In multivariable-adjusted zero-inflated Poisson (ZIP) regression models, positive antibody tests for CMV (p = .011) and herpes simplex virus (p = .018) were individually associated with poorer MMSE performance (p = .011). A greater number of positive antibody tests among the five tested was associated with worse MMSE performance (p = .001). DISCUSSION CMV, herpes simplex virus, and the global burden of multiple common infections were independently associated with poorer cognitive performance. Additional research that investigates whether the global burden of infection predicts cognitive decline and Alzheimer's disease biomarker changes is needed to confirm these findings.
Collapse
Affiliation(s)
- Alexandra M Wennberg
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Brion S Maher
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jill A Rabinowitz
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Calliope Holingue
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Johns Hopkins Children's Center, Baltimore, Maryland, USA
| | - W Ross Felder
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jonathan L Wells
- Department of Family Medicine and Population Health, Division of Epidemiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Cynthia A Munro
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Constantine G Lyketsos
- Johns Hopkins Bayview Department of Psychiatry and Behavioral Science, Baltimore, Maryland, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Baltimore, Maryland, USA
- Johns Hopkins Alzheimer's Disease Research Center, Baltimore, Maryland, USA
- Johns Hopkins University, Baltimore, Maryland, USA
| | - William W Eaton
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, USA
| | - Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Longitudinal Study Section, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Robert Yolken
- Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Adam P Spira
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Johns Hopkins Center on Aging and Health, Johns Hopkins Schools of Medicine and Public Health, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Gholizadeh N, Dalimi A, Ghaffarifar F, Nader-Mohammadi M, Molavi P, Dadkhah M, Molaei S. Berberine improves inhibitory avoidance memory impairment of Toxoplasma gondii-infected rat model of ketamine-induced schizophrenia. BMC Complement Med Ther 2023; 23:303. [PMID: 37649038 PMCID: PMC10469906 DOI: 10.1186/s12906-023-04107-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Memory impairment caused by Toxoplasma gondii infection has been documented. Berberine (BRB) is well known for its enhancing effects on memory and has shown promising results. However, the impact of BRB on T. gondii infection and schizophrenia-induced consolidation and reconsolidation memory impairment is still unclear. Here; we examined the effect of BRB on the inhibitory avoidance (IA) memory consolidation and reconsolidation impairment induced by T. gondii infection, and ketamine (Ket) as a pharmacological model of schizophrenia. Also; the brain-derived neurotrophic factor (BDNF) levels in the medial prefrontal cortex (mPFC) and hippocampus were analyzed. METHODS Rats were infected with T. gondii RH strain or received Ket (30 mg/kg/day) intraperitoneally (i.p) for at least five consecutive days (as the model of schizophrenia). Then followed by oral administration with BRB (25 mg/kg/day) for five days. Finally, the IA memory retention test was examined 48 post-conditioning, and BDNF was measured. RESULTS Results indicated IA memory impairment in T. gondii-infected animals since lower step-through latency (STL) was observed than in control animals. We found significant (P = 0.01, P = 0.001) elevations in STL and a significant decrease (P = 0.001) in total time spent in the dark area following BRB administration in infected and Ket-treated rats, indicating improvement (increased STL) in consolidation and reconsolidation memory. Moreover, BDNF levels were reduced (P = 0.01) in the hippocampus and mPFC regions of both T. gondii- infected and Ket-induced groups, which remarkably enhanced after BRB treatment. Furthermore; we found that BRB administration notably increased the mPFC BDNF levels in mPFC (P < 0.01) and hippocampus (P = 0.001) in the Ket-treated and rats infected with T. gondii. CONCLUSION Taken together; BRB may be a valuable preclinical treatment for improving memory impairment through BDNF expression in PFC and hippocampus, therefore; BRB is suggested for memory disturbances induced by T. gondii infection.
Collapse
Affiliation(s)
- Neghin Gholizadeh
- Students Research Committee, Public Health School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehryar Nader-Mohammadi
- Department of Psychiatry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Parviz Molavi
- Department of Psychiatry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Soheila Molaei
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
13
|
Weidung B, Josefsson M, Lyttkens P, Olsson J, Elgh F, Lind L, Kilander L, Lövheim H. Longitudinal Effects of Herpesviruses on Multiple Cognitive Outcomes in Healthy Elderly Adults. J Alzheimers Dis 2023:JAD221116. [PMID: 37334589 PMCID: PMC10357165 DOI: 10.3233/jad-221116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND Herpesviruses have been proposed to be involved in Alzheimer's disease development as potentially modifiable pathology triggers. OBJECTIVE To investigate associations of serum antibodies for herpes simplex virus (HSV)-1 and cytomegalovirus (CMV) and anti-herpesvirus treatment with cognitive outcomes in relation to interactions with APOE ɛ4. METHODS The study included 849 participants in the population-based Prospective Investigation of the Vasculature in Uppsala Seniors study. Cognitive performance at the ages of 75 and 80 years was assessed using the Mini-Mental State Examination (MMSE), trail-making test (TMT) A and B, and 7-minute screening test (7MS). RESULTS Anti- HSV-1 IgG positivity was associated cross-sectionally with worse performance on the MMSE, TMT-A, TMT-B, 7MS, enhanced free recall, and verbal fluency tests (p = 0.016, p = 0.016, p < 0.001, p = 0.001, p = 0.033, and p < 0.001, respectively), but not orientation or clock drawing. Cognitive scores did not decline over time and longitudinal changes did not differ according to HSV-1 positivity. Anti- CMV IgG positivity was not associated cross-sectionally with cognition, but TMT-B scores declined more in anti- CMV IgG carriers. Anti- HSV-1 IgG interacted with APOE ɛ4 in association with worse TMT-A and better enhanced cued recall. Anti- HSV IgM interacted with APOE ɛ4 and anti-herpesvirus treatment in association with worse TMT-A and clock drawing, respectively. CONCLUSION These findings indicate that HSV-1 is linked to poorer cognition in cognitively healthy elderly adults, including impairments in executive function, memory, and expressive language. Cognitive performance did not decline over time, nor was longitudinal decline associated with HSV-1.
Collapse
Affiliation(s)
- Bodil Weidung
- Department of Public Health and Caring Sciences, Section of Clinical Geriatrics, Uppsala University, Uppsala, Sweden
| | - Maria Josefsson
- Department of Statistics, Umeå School of Business, Economics and Statistics, Umeå University, Umeå, Sweden
| | - Peter Lyttkens
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Jan Olsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Fredrik Elgh
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Lars Lind
- Department of Medical Sciences, Acute and Internal Medicine, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences, Section of Clinical Geriatrics, Uppsala University, Uppsala, Sweden
| | - Hugo Lövheim
- Department of Community Medicine and Rehabilitation, Division of Geriatic Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå university, Umeå, Sweden
| |
Collapse
|
14
|
Ecarnot F, Boccardi V, Calcagno A, Franceschi C, Fülop T, Itzhaki RF, Michel JP, Panza F, Rainero I, Solfrizzi V, Ticinesi A, Veronese N, Maggi S. Dementia, infections and vaccines: 30 years of controversy. Aging Clin Exp Res 2023; 35:1145-1160. [PMID: 37160649 PMCID: PMC10169152 DOI: 10.1007/s40520-023-02409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/21/2023] [Indexed: 05/11/2023]
Abstract
This paper reports the proceedings of a virtual meeting convened by the European Interdisciplinary Council on Ageing (EICA), to discuss the involvement of infectious disorders in the pathogenesis of dementia and neurological disorders leading to dementia. We recap how our view of the infectious etiology of dementia has changed over the last 30 years in light of emerging evidence, and we present evidence in support of the implication of infection in dementia, notably Alzheimer's disease (AD). The bacteria and viruses thought to be responsible for neuroinflammation and neurological damage are reviewed. We then review the genetic basis for neuroinflammation and dementia, highlighting the genes that are currently the focus of investigation as potential targets for therapy. Next, we describe the antimicrobial hypothesis of dementia, notably the intriguing possibility that amyloid beta may itself possess antimicrobial properties. We further describe the clinical relevance of the gut-brain axis in dementia, the mechanisms by which infection can move from the intestine to the brain, and recent findings regarding dysbiosis patterns in patients with AD. We review the involvement of specific pathogens in neurological disorders, i.e. SARS-CoV-2, human immunodeficiency virus (HIV), herpes simplex virus type 1 (HSV1), and influenza. Finally, we look at the role of vaccination to prevent dementia. In conclusion, there is a large body of evidence supporting the involvement of various infectious pathogens in the pathogenesis of dementia, but large-scale studies with long-term follow-up are needed to elucidate the role that infection may play, especially before subclinical or clinical disease is present.
Collapse
Affiliation(s)
- Fiona Ecarnot
- EA3920, University of Franche-Comté, 25000, Besancon, France
- Department of Cardiology, University Hospital Besancon, 3-8 Boulevard Fleming, 25000, Besancon, France
| | - Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Santa Maria Della Misericordia Hospital, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging, Institute of Biology and Biomedicine and Institute of Information Technology, Mathematics and Mechanics, Department of Applied Mathematics, N. I. Lobachevsky State University, Nizhny Novgorod, Russia
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Tamas Fülop
- Department of Medicine, Geriatrics Division, Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, J1H 5N4, Canada
| | - Ruth F Itzhaki
- Institute of Population Ageing, University of Oxford and Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Innocenzo Rainero
- Dementia Center, Department of Neuroscience "Rita Levi Montalcini", University of Torino, Turin, Italy
| | - Vincenzo Solfrizzi
- Dipartimento Interdisciplinare di Medicina, Clinica Medica e Geriatria "Cesare Frugoni", University of Bari Aldo Moro, Bari, Italy
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Nicola Veronese
- Geriatrics Section, Department of Internal Medicine, University of Palermo, Palermo, Italy.
| | - Stefania Maggi
- National Research Council, Neuroscience Institute, Aging Branch, Padua, Italy
| |
Collapse
|
15
|
Diaz-Decaro J, Myers E, Mucha J, Neumann M, Lewandowski W, Kaczanowska M, Schmidt E, Natenshon A, Talarico C, Buck PO. A systematic literature review on the humanistic burden of cytomegalovirus. Curr Med Res Opin 2023; 39:739-750. [PMID: 36938652 DOI: 10.1080/03007995.2023.2191477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
OBJECTIVE Cytomegalovirus (CMV) infection is typically asymptomatic in healthy individuals; however, certain populations are vulnerable to infection and may develop serious sequelae. CMV infection may also have a broad impact on humanistic outcomes, including patient health status and quality of life (QoL). We conducted a systematic literature review (SLR) to describe the global humanistic burden of CMV and congenital CMV (cCMV) infections across all age groups. METHODS Medline, Embase, and LILACS were searched to identify studies on humanistic outcomes following CMV infection, including health status/QoL and any outcomes in domains such as auditory, cognitive ability, developmental status, intelligence, language, memory, mental health, motor performance, social communication, speech, and vocabulary. The SLR included articles published from 2000-2020 and focused geographically on Australia, Europe, Israel, Japan, Latin America, and North America. RESULTS Sixty-three studies met the inclusion criteria. In general, individuals with symptomatic cCMV infection experience a greater burden of disease and more substantial impact on QoL versus those with asymptomatic cCMV infection. Children with hearing loss due to cCMV infection, both symptomatic and asymptomatic, showed improved auditory outcomes following cochlear implantation. Newborns, infants, and children with cCMV infections had worse cognitive outcomes in psychological development, sequential and simultaneous processing, phonological working memory, and attention control versus age-matched controls without cCMV infection. CMV infection was also associated with cognitive decline in elderly populations. CONCLUSIONS CMV infection can have substantial, lifelong, heterogenous impacts on humanistic outcomes, including health status and QoL, which should be considered when developing and implementing treatment and prevention strategies.
Collapse
Affiliation(s)
| | - Evan Myers
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | | | | | - Witold Lewandowski
- Certara, Inc., Krakow, Poland
- Certara, Inc., employee at the time of the study
| | | | | | | | - Carla Talarico
- Moderna, Inc., Cambridge, MA, USA
- Moderna, Inc., employee at the time of the study
| | | |
Collapse
|
16
|
Yeo IJ, Yun J, Son DJ, Han SB, Webster MJ, Hong JT, Kim S. Overexpression of transmembrane TNFα in brain endothelial cells induces schizophrenia-relevant behaviors. Mol Psychiatry 2023; 28:843-855. [PMID: 36333582 DOI: 10.1038/s41380-022-01846-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Upregulation of genes and coexpression networks related to immune function and inflammation have been repeatedly reported in the brain of individuals with schizophrenia. However, a causal relationship between the abnormal immune/inflammation-related gene expression and schizophrenia has not been determined. We conducted co-expression networks using publicly available RNA-seq data from prefrontal cortex (PFC) and hippocampus (HP) of 64 individuals with schizophrenia and 64 unaffected controls from the SMRI tissue collections. We identified proinflammatory cytokine, transmembrane tumor necrosis factor-α (tmTNFα), as a potential regulator in the module of co-expressed genes that we find related to the immune/inflammation response in endothelial cells (ECs) and/or microglia of the brain of individuals with schizophrenia. The immune/inflammation-related modules associated with schizophrenia and the TNF signaling pathway that regulate the network were replicated in an independent cohort of brain samples from 68 individuals with schizophrenia and 135 unaffected controls. To investigate the association between the overexpression of tmTNFα in brain ECs and schizophrenia-like behaviors, we induced short-term overexpression of the uncleavable form of (uc)-tmTNFα in ECs of mouse brain for 7 weeks. We found schizophrenia-relevant behavioral deficits in these mice, including cognitive impairment, abnormal sensorimotor gating, and sensitization to methamphetamine (METH) induced locomotor activity and METH-induced neurotransmitter levels. These uc-tmTNFα effects were mediated by TNF receptor2 (TNFR2) and induced activation of TNFR2 signaling in astrocytes and neurons. A neuronal module including neurotransmitter signaling pathways was down-regulated in the brain of mice by the short-term overexpression of the gene, while an immune/inflammation-related module was up-regulated in the brain of mice after long-term expression of 22 weeks. Our results indicate that tmTNFα may play a direct role in regulating neurotransmitter signaling pathways that contribute to the clinical features of schizophrenia.
Collapse
Affiliation(s)
- In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Maree J Webster
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| | - Sanghyeon Kim
- Stanley Brain Research Laboratory, Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
17
|
Abstract
There is increasingly compelling evidence that microorganisms may play an etiological role in the emergence of mental illness in a subset of the population. Historically, most work has focused on the neurotrophic herpesviruses, herpes simplex virus type 1 (HSV-1), cytomegalovirus (CMV), and Epstein-Barr virus (EBV) as well as the protozoan, Toxoplasma gondii. In this chapter, we provide an umbrella review of this literature and additionally highlight prospective studies that allow more mechanistic conclusions to be drawn. Next, we focus on clinical trials of anti-microbial medications for the treatment of psychiatric disorders. We critically evaluate six trials that tested the impact of anti-herpes medications on inflammatory outcomes in the context of a medical disorder, nine clinical trials utilizing anti-herpetic medications for the treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or schizophrenia, and four clinical trials utilizing anti-parasitic medications for the treatment of schizophrenia. We then turn our attention to evidence for a gut dysbiosis and altered microbiome in psychiatric disorders, and the potential therapeutic effects of probiotics, including an analysis of more than 10 randomized controlled trials of probiotics in the context of schizophrenia, bipolar disorder (BD), and major depressive disorder (MDD).
Collapse
|
18
|
Farina MP, Kim JK, Hayward MD, Crimmins EM. Links between inflammation and immune functioning with cognitive status among older Americans in the Health and Retirement Study. Brain Behav Immun Health 2022; 26:100559. [PMID: 36439057 PMCID: PMC9694056 DOI: 10.1016/j.bbih.2022.100559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
Abstract
Elevated inflammation and poor immune functioning are tied to worse cognitive health. Both processes are fundamental to aging and are strongly implicated in the development of age-related health outcomes, including cognitive status. However, results from prior studies evaluating links between indicators of inflammation and immune function and cognitive impairment have been inconsistent due to biomarker selection, sample selection, and cognitive outcome. Using the Health and Retirement Study (HRS), a nationally representative study of older adults in the United States, we assessed how indicators of inflammation (neutrophil-lymphocyte ratio (NLR), albumin, CRP, IL6, IL10, IL-1Ra, sTNFR1, and TGFβ1) and immune functioning (CMV, CD4+ TN/TM, and CD8+ TN/TM) are associated with cognitive status. First, to examine the association between each biomarker and cognitive status, we tested whether markers of inflammation and immune functioning varied across cognitive status categories. We found that dementia and cognitive impairment without dementia (CIND) were associated with elevated inflammation and poorer immune functioning across biomarkers except for CD4+ TN/TM. Next, we estimated multinomial logistic regression models to assess which biomarkers would continue to be associated with dementia and CIND, net of each other. In these models, albumin, cytokines, CMV, CD4+ TN/TM, and CD8+ TN/TM are associated with cognitive status. Because poor immune functioning and increased inflammation are associated with cognitive impairment, improving immune functioning and reducing inflammation may provide a mechanism for reducing ADRD risk in the population.
Collapse
Affiliation(s)
- Mateo P. Farina
- Leonard Davis School of Gerontology, University of Southern California, USA
| | - Jung Ki Kim
- Leonard Davis School of Gerontology, University of Southern California, USA
| | - Mark D. Hayward
- Population Research Center and Department of Sociology, University of Texas at Austin, USA
| | - Eileen M. Crimmins
- Leonard Davis School of Gerontology, University of Southern California, USA
| |
Collapse
|
19
|
Veleva I, Stoychev K, Stoimenova-Popova M, Stoyanov L, Mineva-Dimitrova E, Angelov I. Toxoplasma gondii seropositivity and cognitive function in adults with schizophrenia. Schizophr Res Cogn 2022; 30:100269. [PMID: 36065435 PMCID: PMC9440062 DOI: 10.1016/j.scog.2022.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022]
Abstract
Introduction and methods Based on the limited research focusing on the severity of cognitive deterioration in schizophrenia with preceding toxoplasmosis, we sampled 89 demographically matched paranoid schizophrenia patients (mean age 38.97 years) with (n = 42) and without (n = 47) seroprevalence of IgG type anti T. gondii antibodies as marker of past infection. They underwent examination of verbal memory (10 words Luria test), logical memory and visual memory (BVRT), processing speed (TMT-A/DSST) and executive functions (TMT-B/verbal fluency). We compared the results of both groups, taking into account the normative values for the Bulgarian population where available. We also compared the two groups in terms of clinical severity as evidenced by positive, negative and disorganization sub-scores of the PANSS. Results While both groups were expectedly under the population norms for verbal and logical memory, seropositive patients showed significantly bigger impairment in verbal memory (Luria Smax = 72.85 vs 78.51; p = 0.029), psychomotor speed (TMT-A 50.98 s vs 44.64 s; p = 0.017), semantic verbal fluency (27.12 vs 30.02; p = 0.011) and literal verbal fluency (17.17 vs 18.78; p = 0.014) compared to the seronegative ones. In addition to that, they gave less correct answers on the BVRT (2.98 vs 4.09; p = 0.006) while making markedly more errors (13.95 vs 10.21; p = 0.002). Despite not reaching statistical significance, past toxoplasmosis was associated with higher score on the PANSS disorganization sub-scale (16.50 points vs 14.72 points) and with lower educational attainment. Conclusion Our results suggest a more profound neuropathological insult(s) resulting in greater cognitive impairment in schizophrenia cases that are exposed to T. gondii infection.
Collapse
Affiliation(s)
- Ivanka Veleva
- Department of Psychiatry and Medical Psychology, Medical University Pleven, Bulgaria
| | - Kaloyan Stoychev
- Department of Psychiatry and Medical Psychology, Medical University Pleven, Bulgaria
| | | | - Lyudmil Stoyanov
- Department of Infectious Diseases, Epidemiology, Parasitology and Tropical Medicine, Medical University Pleven, Bulgaria
| | | | - Ivelin Angelov
- Department of Infectious Diseases, Epidemiology, Parasitology and Tropical Medicine, Medical University Pleven, Bulgaria
| |
Collapse
|
20
|
Bahreini MS, Sami Jahromi S, Radfar AH, Salemi AM, Dastan N, Asgari Q. The Relationship of Latent Toxoplasmosis and Cigarette Smoking: Seroprevalence, Risk Factor, and Case-Control Study in Fars Province, Southern Iran. Pathogens 2022; 11:1274. [PMID: 36365025 PMCID: PMC9696781 DOI: 10.3390/pathogens11111274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 12/20/2023] Open
Abstract
Toxoplasmosis is a parasitic disease with worldwide prevalence. Despite the relatively similar effects of toxoplasmosis and smoking on alteration in neurotransmitters, especially dopamine, little is known about the relation of Toxoplasma gondii infection and addiction to cigarette smoking. Therefore, the main objective of this study was to assess the relationship between latent toxoplasmosis and smoking. Through a case-control study, 216 regular cigarette smokers and 324 nonsmoker age- and gender-matched subjects were evaluated for anti-T.gondii IgG antibodies with enzyme-linked immunosorbent assay (ELISA). During the sampling, a structured questionnaire was used to obtain the demographic information of participants and the risk factors of acquired Toxoplasma. The median ages of case and control groups were 51.04 ± 18.1 (22-97 years) and 51.03 ± 16.5 (21-89 years), respectively (p = 0.99). Anti-T.gondii IgG antibodies were detected in 44 (20.37%) cases and in 135 (41.67%) controls. There was a statistically significant difference for the positivity rate between the smokers and the control group (OR = 0.35; 95%CI: 0.19-0.65; and p = 0.001). The overall prevalence was 33.14%. This study indicated the inverse association between seropositivity to Toxoplasma infection and cigarette smoking. This relationship could be due to the changes that latent toxoplasmosis has on the neurotransmitters, especially dopamine, which needs more research.
Collapse
Affiliation(s)
- Mohammad Saleh Bahreini
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Sareh Sami Jahromi
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Amir Hossein Radfar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Amir Masoud Salemi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Naghmeh Dastan
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Qasem Asgari
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| |
Collapse
|
21
|
Herpesvirus Infections in the Human Brain: A Neural Cell Model of the Complement System Derived from Induced Pluripotent Stem Cells. Curr Top Behav Neurosci 2022; 61:243-264. [PMID: 36059003 DOI: 10.1007/7854_2022_383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND Herpesviruses alter cognitive functions in humans following acute infections; progressive cognitive decline and dementia have also been suggested. It is important to understand the pathogenic mechanisms of such infections. The complement system - comprising functionally related proteins integral for systemic innate and adaptive immunity - is an important component of host responses. The complement system has specialized functions in the brain. Still, the dynamics of the brain complement system are still poorly understood. Many complement proteins have limited access to the brain from plasma, necessitating synthesis and specific regulation of expression in the brain; thus, complement protein synthesis, activation, regulation, and signaling should be investigated in human brain-relevant cellular models. Cells derived from human-induced pluripotent stem cells (hiPSCs) could enable tractable models. METHODS Human-induced pluripotent stem cells were differentiated into neuronal (hi-N) and microglial (hi-M) cells that were cultured with primary culture human astrocyte-like cells (ha-D). Gene expression analyses and complement protein levels were analyzed in mono- and co-cultures. RESULTS Transcript levels of complement proteins differ by cell type and co-culture conditions, with evidence for cellular crosstalk in co-cultures. Hi-N and hi-M cells have distinct patterns of expression of complement receptors, soluble factors, and regulatory proteins. hi-N cells produce complement factor 4 (C4) and factor B (FB), whereas hi-M cells produce complement factor 2 (C2) and complement factor 3 (C3). Thus, neither hi-N nor hi-M cells can form either of the C3-convertases - C4bC2a and C3bBb. However, when hi-N and hi-M cells are combined in co-cultures, both types of functional C3 convertase are produced, indicated by elevated levels of the cleaved C3 protein, C3a. CONCLUSIONS hiPSC-derived co-culture models can be used to study viral infection in the brain, particularly complement receptor and function in relation to cellular "crosstalk." The models could be refined to further investigate pathogenic mechanisms.
Collapse
|
22
|
Naranjo-Galvis CA, Cardona-Londoño KY, Orrego-Cardozo M, Elcoroaristizabal-Martín X. Toxoplasma gondii infection and peripheral-blood gene expression profiling of older people reveals dysregulation of cytokines and identifies hub genes as potential therapeutic targets. Heliyon 2022; 8:e10576. [PMID: 36119857 PMCID: PMC9478394 DOI: 10.1016/j.heliyon.2022.e10576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/12/2021] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Infections of humans with the protozoan parasite Toxoplasma gondii (T. gondii) can lead to the disease's development, even in an asymptomatic status. However, the mechanisms that result in these clinical outcomes after infection are poorly understood. This study aimed to explore the molecular pathogenesis of toxoplasmosis-related inflammation through next-generation sequencing, to assess RNA expression profiles in peripheral blood from 5 female patients with chronic toxoplasmosis and 5 healthy female controls. All plasma samples were analyzed for anti-Toxoplasma IgG and IgM antibody titers by using electrochemiluminescence. Detection of acute and chronic toxoplasmosis was carried out using the ELISA IgG avidity. We evaluated the levels of INF-γ, IL-2, IL-12, TNF-α, IL-10, and IL-1β in culture supernatants of Peripheral Blood Mononuclear Cells infected with Toxoplasma lysate antigen (TLA) prepared with tachyzoites of strain T. gondii RH. Differential expression analysis was performed using DESeq2, pathway and enrichment analysis of DEGs was done on WEB-based Gene SeT AnaLysis Toolkit (WebGestalt) and Protein-protein interaction was carried out using NetworkAnalyst with STRING. In older people with chronic asymptomatic infection, a significant difference in the levels of inflammatory cytokines INF-γ and IL-2 was observed compared to seronegative individuals. Our results revealed differences in the regulation of critical biological processes involved in host responses to chronic T. gondii infection. Gene ontology analysis revealed several biologically relevant inflammatory and immune-related pathways.
Collapse
Affiliation(s)
- Carlos A Naranjo-Galvis
- Facultad de Salud, Universidad Autónoma de Manizales, Antigua Estación Del Ferrocarril, Manizales, Caldas, Colombia
| | - Kelly Y Cardona-Londoño
- Facultad de Salud, Universidad Autónoma de Manizales, Antigua Estación Del Ferrocarril, Manizales, Caldas, Colombia
| | - Mary Orrego-Cardozo
- Facultad de Salud, Universidad Autónoma de Manizales, Antigua Estación Del Ferrocarril, Manizales, Caldas, Colombia
| | | |
Collapse
|
23
|
Pessoa RC, Oliveira-Pessoa GF, Souza BKA, Sampaio VS, Pinto ALCB, Barboza LL, Mouta GS, Silva EL, Melo GC, Monteiro WM, Silva-Filho JH, Lacerda MVG, Baía-da-Silva DC. Impact of Plasmodium vivax malaria on executive and cognitive functions in elderlies in the Brazilian Amazon. Sci Rep 2022; 12:10361. [PMID: 35725784 PMCID: PMC9208538 DOI: 10.1038/s41598-022-14175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
The exact path leading to cognitive impairment that goes beyond malaria is unclear, but it appears to be the result of interactive factors. Time of exposure to disease and recurrences are potentially major determinant variables. Cognitive impairment is described mainly in children, rarely in adults. The disease in high endemic areas usually does not affect elderlies, because of acquired immunity over time. However, this population is relatively more frequently sick in lower endemic areas, such as in the Amazon. This study assessed the effect of Plasmodium vivax malaria on the executive and cognitive functions of elderlies, in the Brazilian Amazon. A cohort study was conducted to evaluate executive and cognitive functions one week (T0), two months (T2) and eight months (T8) after the malaria episode. Mini-Mental State Examination (MMSE), Beck Depression Inventory II (BDI-II), Clock Drawing Test (CDT), Wechsler adult intelligence scale (WAIS-III), and Wisconsin Card Sorting Test (WCST) were used to assess executive and cognitive functions. One hundred-forty elderlies were enrolled (70 with P. vivax malaria and 70 without malaria). P. vivax malaria was associated with impairment of the executive and cognitive functions in elderlies for up to 8 months after acute P. vivax malaria. Prior history of malaria, recurrences and higher parasitemia were independently associated with various surrogates of executive and cognitive impairment. With the increase in life expectancy, elderlies living in malaria endemic areas will deserve more attention from health authorities, to guarantee improvement of their quality of life in the tropics.
Collapse
Affiliation(s)
- Rockson C Pessoa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | | | - Brenda K A Souza
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Vanderson S Sampaio
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av Pedro Teixeira, 25, Manaus, Amazonas, 69040-000, Brazil
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
- Fundação de Vigilância em Saúde do Amazonas, Manaus, Brazil
| | - André Luiz C B Pinto
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av Pedro Teixeira, 25, Manaus, Amazonas, 69040-000, Brazil
| | - Larissa L Barboza
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Gabriel S Mouta
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Emanuelle Lira Silva
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av Pedro Teixeira, 25, Manaus, Amazonas, 69040-000, Brazil
| | - Gisely C Melo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av Pedro Teixeira, 25, Manaus, Amazonas, 69040-000, Brazil
| | - Wuelton M Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av Pedro Teixeira, 25, Manaus, Amazonas, 69040-000, Brazil
| | | | - Marcus V G Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av Pedro Teixeira, 25, Manaus, Amazonas, 69040-000, Brazil.
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil.
| | - Djane Clarys Baía-da-Silva
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Av Pedro Teixeira, 25, Manaus, Amazonas, 69040-000, Brazil
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| |
Collapse
|
24
|
Xiao J. Behavioral Changes Induced by Latent Toxoplasmosis Could Arise from CNS Inflammation and Neuropathogenesis. Curr Top Behav Neurosci 2022; 61:303-313. [PMID: 35676595 DOI: 10.1007/7854_2022_370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic infection with Toxoplasma gondii, a neurotropic parasite, has been linked to multiple behavioral changes in rodents and humans. The pathogenic mechanisms underlying these correlations are not known. I discuss here from animal studies the distribution of tissue cysts, the constant immune surveillance, the critical role of cyst burden, and the time-dependent consequences, which I believe are crucial to explaining the behavioral changes. In line with the brain-wide distribution of tissue cysts and chronic neuroinflammation, infected mice displayed a broad range of behavioral phenotypes. Many studies suggest that behavioral changes in mice are directly associated with tissue cyst presence or cyst burden and the host immune response. Cyst burden may not exert direct effects; however, the mechanisms causing behavioral and neuropathological changes are potentially the consequence of cyst burden over time, such as the neuroinflammation required to control the reactivation of tissue cysts. The reduction of neuroinflammation has proven that neuropathogenesis and behavioral abnormalities can be reversed, at least partially, in infected mice. Overall, Toxoplasma-induced behavioral changes are likely to be an indirect consequence of the host immune response in a parasite burden-dependent manner.
Collapse
Affiliation(s)
- Jianchun Xiao
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
25
|
Segerstrom SC, Reed RG, Karr JE. Cytomegalovirus and Toxoplasma Gondii Serostatus Prospectively Correlated With Problems in Self-Regulation but not Executive Function Among Older Adults. Psychosom Med 2022; 84:603-611. [PMID: 35420585 PMCID: PMC9167754 DOI: 10.1097/psy.0000000000001086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Cytomegalovirus (CMV) and Toxoplasma gondii are organisms that may infect the brain and have cognitive and behavioral consequences. We hypothesized that these latent infections would be prospectively associated with poorer cognition and more problems in self-regulation among older adults. METHODS Older adults (n = 138, mean age = 75.5 years, 59% women) had CMV and T. gondii serostatus tested, crystallized intelligence estimated (North American Adult Reading Test), and executive function (EF; e.g., Trail Making Test) and self-regulation (Behavior Regulation Inventory of Executive Function-Adult) assessed in visits occurring every 6 months (mean visits = 16). RESULTS CMV+ people (79%) had significantly poorer self-regulation versus CMV- people (21%; behavioral regulation: γ = 0.108, 95% confidence interval [CI] = 0.009-0.206; metacognition: γ = 0.117, 95% CI = 0.005-0.229), but not intelligence or EF. T. gondii+ people (24%) were not significantly different from T. gondii- people (76%) on any outcome. However, T. gondii+ men had better self-regulation versus T. gondii- men, and the opposite was true of women (behavioral regulation interaction: γ = 0.267, 95% CI = 0.093-0.441). CONCLUSIONS CMV latent infection was associated with more problems in self-regulation, and the magnitude of this difference was clinically significant. T. gondii latent infection was associated with more problems, but only for women. Latent infection might associate with self-regulation but not EF because of factors influencing self-regulation but not neuropsychological test performance, such as values and emotion. Efforts to link latent infection with EFs might, in the future, include the application of those functions to self-regulation in daily life.
Collapse
|
26
|
Xiao J, Savonenko A, Yolken RH. Strain-specific pre-existing immunity: A key to understanding the role of chronic Toxoplasma infection in cognition and Alzheimer's diseases? Neurosci Biobehav Rev 2022; 137:104660. [PMID: 35405182 DOI: 10.1016/j.neubiorev.2022.104660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022]
Abstract
Toxoplasma exposure can elicit cellular and humoral immune responses. In the case of chronic Toxoplasma infection, these immune responses are long-lasting. Some studies suggest that pre-existing immunity from Toxoplasma infection can shape immune responses and resistance to other pathogens and brain insults later in life. Much evidence has been generated suggesting Toxoplasma infection may contribute to cognitive impairment in the elderly. However, there have also been studies that disagree with the conclusion. Toxoplasma has many strain types, with virulence being the most notable difference. There is also considerable variation in the outcomes following Toxoplasma exposure ranging from resolved to persistent infection. Therefore, the brain microenvironment, particularly cellular constituents, differs based on the infecting strain (virulent versus hypovirulent) and infection stage (resolved versus persistent). Such difference might play a critical role in determining the outcome of the host on subsequent challengings to the brain. The ability of Toxoplasma strains to set up distinct stages for neurodegenerative pathology through varying degrees of virulence provides unique experimental tools for characterizing these pathways.
Collapse
Affiliation(s)
- Jianchun Xiao
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
27
|
Erickson LD, Hedges D, Stone A, Brown BL, Embley B, Gale SD. Association between toxocariasis seropositivity and serointensity and cognitive function in older U.S. adults. Folia Parasitol (Praha) 2022; 69. [DOI: 10.14411/fp.2022.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 03/12/2022] [Indexed: 11/19/2022]
|
28
|
Zheng H, Savitz J. Effect of Cytomegalovirus Infection on the Central Nervous System: Implications for Psychiatric Disorders. Curr Top Behav Neurosci 2022; 61:215-241. [PMID: 35505056 DOI: 10.1007/7854_2022_361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytomegalovirus (CMV) is a common herpesvirus that establishes lifelong latent infections and interacts extensively with the host immune system, potentially contributing to immune activation and inflammation. Given its proclivity for infecting the brain and its reactivation by inflammatory stimuli, CMV is well known for causing central nervous system complications in the immune-naïve (e.g., in utero) and in the immunocompromised (e.g., in neonates, individuals receiving transplants or cancer chemotherapy, or people living with HIV). However, its potentially pathogenic role in diseases that are characterized by more subtle immune dysregulation and inflammation such as psychiatric disorders is still a matter of debate. In this chapter, we briefly summarize the pathogenic role of CMV in immune-naïve and immunocompromised populations and then review the evidence (i.e., epidemiological studies, serological studies, postmortem studies, and recent neuroimaging studies) for a link between CMV infection and psychiatric disorders with a focus on mood disorders and schizophrenia. Finally, we discuss the potential mechanisms through which CMV may cause CNS dysfunction in the context of mental disorders and conclude with a summary of the current state of play as well as potential future research directions in this area.
Collapse
Affiliation(s)
- Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA.,Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
29
|
Ibrahim IMA, Tobar S, Salah H, El-Sayed H, Mansour H, Eissa A, Wood J, Fathi W, Dickerson F, Yolken RH, El-Bahaey W, Nimgaonkar V. Failure to replicate associations between Toxoplasma gondii or hepatitis C virus infection and personality traits. MIDDLE EAST CURRENT PSYCHIATRY 2022. [DOI: 10.1186/s43045-021-00169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Infections with Toxoplasma gondii (Toxo), a protozoan that can infect the brain, have been reported to alter behavior in rodents and humans; several investigators have related Toxo infection to personality traits such as novelty seeking in humans. We investigated human personality traits in relation to Toxo in Egypt, where such infection is common.
Results
In a community-based sample of Egyptian adults (N = 255), Toxo infection were indexed by levels of IgG antibodies. Viruses like hepatitis C virus (HCV) have also been associated with cognitive dysfunction and mood disorders; therefore, HCV antibody titers were also assayed for comparison. The antibody levels were analyzed in relation to the Arabic version of the NEO personality inventory (NEO-FFI-3), accounting for demographic variables. No significant correlations were noted with Toxo or HCV antibody levels, after co-varying for demographic and socio-economic factors and following corrections for multiple comparisons.
Conclusions
Infection with Toxo or HCV infection was not associated with variations in personality traits in a sample of Egyptian adults. The possible reasons for the discordance with prior reported associations are discussed.
Collapse
|
30
|
Damiano RF, Guedes BF, de Rocca CC, de Pádua Serafim A, Castro LHM, Munhoz CD, Nitrini R, Filho GB, Miguel EC, Lucchetti G, Forlenza O. Cognitive decline following acute viral infections: literature review and projections for post-COVID-19. Eur Arch Psychiatry Clin Neurosci 2022; 272:139-154. [PMID: 34173049 PMCID: PMC8231753 DOI: 10.1007/s00406-021-01286-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Recently, much attention has been drawn to the importance of the impact of infectious disease on human cognition. Several theories have been proposed, to explain the cognitive decline following an infection as well as to understand better the pathogenesis of human dementia, especially Alzheimer's disease. This article aims to review the state of the art regarding the knowledge about the impact of acute viral infections on human cognition, laying a foundation to explore the possible cognitive decline followed coronavirus disease 2019 (COVID-19). To reach this goal, we conducted a narrative review systematizing six acute viral infections as well as the current knowledge about COVID-19 and its impact on human cognition. Recent findings suggest probable short- and long-term COVID-19 impacts in cognition, even in asymptomatic individuals, which could be accounted for by direct and indirect pathways to brain dysfunction. Understanding this scenario might help clinicians and health leaders to deal better with a wave of neuropsychiatric issues that may arise following COVID-19 pandemic as well as with other acute viral infections, to alleviate the cognitive sequelae of these infections around the world.
Collapse
Affiliation(s)
- Rodolfo Furlan Damiano
- Departamento E Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, Cerqueira César, São Paulo, SP, 05403-903, Brazil.
| | - Bruno F. Guedes
- Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Cristiana Castanho de Rocca
- Departamento E Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, Cerqueira César, São Paulo, SP 05403-903 Brazil
| | - Antonio de Pádua Serafim
- Departamento E Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, Cerqueira César, São Paulo, SP 05403-903 Brazil
| | | | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ricardo Nitrini
- Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Geraldo Busatto Filho
- Departamento E Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, Cerqueira César, São Paulo, SP 05403-903 Brazil
| | - Eurípedes Constantino Miguel
- Departamento E Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, Cerqueira César, São Paulo, SP 05403-903 Brazil
| | - Giancarlo Lucchetti
- Department of Medicine, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Orestes Forlenza
- Departamento E Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr. Ovídio Pires de Campos, 785, Cerqueira César, São Paulo, SP 05403-903 Brazil
| |
Collapse
|
31
|
Complement as a powerful "influencer" in the brain during development, adulthood and neurological disorders. Adv Immunol 2021; 152:157-222. [PMID: 34844709 DOI: 10.1016/bs.ai.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complement system was long considered as only a powerful effector arm of the immune system that, while critically protective, could lead to inflammation and cell death if overactivated, even in the central nervous system (CNS). However, in the past decade it has been recognized as playing critical roles in key physiological processes in the CNS, including neurogenesis and synaptic remodeling in the developing and adult brain. Inherent in these processes are the interactions with cells in the brain, and the cascade of interactions and functional consequences that ensue. As a result, investigations of therapeutic approaches for both suppressing excessive complement driven neurotoxicity and aberrant sculpting of neuronal circuits, require broad (and deep) knowledge of the functional activities of multiple components of this highly evolved and regulated system to avoid unintended negative consequences in the clinic. Advances in basic science are beginning to provide a roadmap for translation to therapeutics, with both small molecule and biologics. Here, we present examples of the critical roles of proper complement function in the development and sculpting of the nervous system, and in enabling rapid protection from infection and clearance of dying cells. Microglia are highlighted as important command centers that integrate signals from the complement system and other innate sensors that are programed to provide support and protection, but that direct detrimental responses to aberrant activation and/or regulation of the system. Finally, we present promising research areas that may lead to effective and precision strategies for complement targeted interventions to promote neurological health.
Collapse
|
32
|
Virus MA, Ehrhorn EG, Lui LM, Davis PH. Neurological and Neurobehavioral Disorders Associated with Toxoplasma gondii Infection in Humans. J Parasitol Res 2021; 2021:6634807. [PMID: 34712493 PMCID: PMC8548174 DOI: 10.1155/2021/6634807] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 09/15/2021] [Indexed: 01/17/2023] Open
Abstract
The intracellular parasite Toxoplasma gondii is estimated to infect up to 30% of the world population, leading to lifelong chronic infection of the brain and muscle tissue. Although most latent T. gondii infections in humans have traditionally been considered asymptomatic, studies in rodents suggest phenotypic neurological changes are possible. Consequently, several studies have examined the link between T. gondii infection and diseases such as schizophrenia, epilepsy, depression, bipolar disorder, dysphoria, Alzheimer's disease, Parkinson's disease, and obsessive-compulsive disorder (OCD). To date, there is varying evidence of the relationship of T. gondii to these human neurological or neurobehavioral disorders. A thorough review of T. gondii literature was conducted to highlight and summarize current findings. We found that schizophrenia was most frequently linked to T. gondii infection, while sleep disruption showed no linkage to T. gondii infection, and other conditions having mixed support for a link to T. gondii. However, infection as a cause of human neurobehavioral disease has yet to be firmly established.
Collapse
Affiliation(s)
- Maxwell A. Virus
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Evie G. Ehrhorn
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - LeeAnna M. Lui
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Paul H. Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| |
Collapse
|
33
|
de Haan L, Sutterland AL, Schotborgh JV, Schirmbeck F, de Haan L. Association of Toxoplasma gondii Seropositivity With Cognitive Function in Healthy People: A Systematic Review and Meta-analysis. JAMA Psychiatry 2021; 78:1103-1112. [PMID: 34259822 PMCID: PMC8281022 DOI: 10.1001/jamapsychiatry.2021.1590] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE The parasite Toxoplasma gondii has been associated with behavioral alterations and psychiatric disorders. Studies investigating neurocognition in people with T gondii infection have reported varying results. To systematically analyze these findings, a meta-analysis evaluating cognitive function in healthy people with and without T gondii seropositivity is needed. OBJECTIVE To assess whether and to what extent T gondii seropositivity is associated with cognitive function in otherwise healthy people. DATA SOURCES A systematic search was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. A systematic search of PubMed, MEDLINE, Web of Science, PsycInfo, and Embase was performed to identify studies from database inception to June 7, 2019, that analyzed cognitive function among healthy participants with available data on T gondii seropositivity. Search terms included toxoplasmosis, neurotoxoplasmosis, Toxoplasma gondii, cognition disorder, neuropsychological, and psychomotor performance. STUDY SELECTION Studies that performed cognitive assessment and analyzed T gondii seroprevalence among otherwise healthy participants were included. DATA EXTRACTION AND SYNTHESIS Two researchers independently extracted data from published articles; if needed, authors were contacted to provide additional data. Quantitative syntheses were performed in predefined cognitive domains when 4 independent data sets per domain were available. Study quality, heterogeneity, and publication bias were assessed. MAIN OUTCOMES AND MEASURES Performance on neuropsychological tests measuring cognitive function. RESULTS The systematic search yielded 1954 records. After removal of 533 duplicates, an additional 1363 records were excluded based on a review of titles and abstracts. A total of 58 full-text articles were assessed for eligibility (including reference list screening); 45 articles were excluded because they lacked important data or did not meet study inclusion or reference list criteria. The remaining 13 studies comprising 13 289 healthy participants (mean [SD] age, 46.7 [16.0] years; 6586 men [49.6%]) with and without T gondii seropositivity were included in the meta-analysis. Participants without T gondii seropositivity had favorable functioning in 4 cognitive domains: processing speed (standardized mean difference [SMD], 0.12; 95% CI, 0.05-0.19; P = .001), working memory (SMD, 0.16; 95% CI, 0.06-0.26; P = .002), short-term verbal memory (SMD, 0.18; 95% CI, 0.09-0.27; P < .001), and executive functioning (SMD, 0.15; 95% CI, 0.01-0.28; P = .03). A meta-regression analysis found a significant association between older age and executive functioning (Q = 6.17; P = .01). Little suggestion of publication bias was detected. CONCLUSIONS AND RELEVANCE The study's findings suggested that T gondii seropositivity was associated with mild cognitive impairment in several cognitive domains. Although effect sizes were small, given the ubiquitous prevalence of this infection globally, the association with cognitive impairment could imply a considerable adverse effect at the population level. Further research is warranted to investigate the underlying mechanisms of this association.
Collapse
Affiliation(s)
- Lies de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Arjen L. Sutterland
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jasper V. Schotborgh
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Frederike Schirmbeck
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
34
|
Yong SJ, Yong MH, Teoh SL, Soga T, Parhar I, Chew J, Lim WL. The Hippocampal Vulnerability to Herpes Simplex Virus Type I Infection: Relevance to Alzheimer's Disease and Memory Impairment. Front Cell Neurosci 2021; 15:695738. [PMID: 34483839 PMCID: PMC8414573 DOI: 10.3389/fncel.2021.695738] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/20/2021] [Indexed: 12/24/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) as a possible infectious etiology in Alzheimer’s disease (AD) has been proposed since the 1980s. The accumulating research thus far continues to support the association and a possible causal role of HSV-1 in the development of AD. HSV-1 has been shown to induce neuropathological and behavioral changes of AD, such as amyloid-beta accumulation, tau hyperphosphorylation, as well as memory and learning impairments in experimental settings. However, a neuroanatomical standpoint of HSV-1 tropism in the brain has not been emphasized in detail. In this review, we propose that the hippocampal vulnerability to HSV-1 infection plays a part in the development of AD and amnestic mild cognitive impairment (aMCI). Henceforth, this review draws on human studies to bridge HSV-1 to hippocampal-related brain disorders, namely AD and aMCI/MCI. Next, experimental models and clinical observations supporting the neurotropism or predilection of HSV-1 to infect the hippocampus are examined. Following this, factors and mechanisms predisposing the hippocampus to HSV-1 infection are discussed. In brief, the hippocampus has high levels of viral cellular receptors, neural stem or progenitor cells (NSCs/NPCs), glucocorticoid receptors (GRs) and amyloid precursor protein (APP) that support HSV-1 infectivity, as well as inadequate antiviral immunity against HSV-1. Currently, the established diseases HSV-1 causes are mucocutaneous lesions and encephalitis; however, this review revises that HSV-1 may also induce and/or contribute to hippocampal-related brain disorders, especially AD and aMCI/MCI.
Collapse
Affiliation(s)
- Shin Jie Yong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Min Hooi Yong
- Department of Psychology, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia.,Aging Health and Well-being Research Centre, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ishwar Parhar
- Jeffrey Cheah School of Medicine and Health Sciences, Brain Research Institute Monash Sunway, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jactty Chew
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Wei Ling Lim
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia.,Aging Health and Well-being Research Centre, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|
35
|
Yang HY, Chien WC, Chung CH, Su RY, Lai CY, Yang CC, Tzeng NS. Risk of dementia in patients with toxoplasmosis: a nationwide, population-based cohort study in Taiwan. Parasit Vectors 2021; 14:435. [PMID: 34454590 PMCID: PMC8401101 DOI: 10.1186/s13071-021-04928-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/05/2021] [Indexed: 01/01/2023] Open
Abstract
Background Approximately 25–30% of individuals worldwide are infected with Toxoplasma gondii (T. gondii), which is difficult to detect in its latent state. We aimed to evaluate the association between toxoplasmosis, the risk of dementia, and the effects of antibiotics in Taiwan. Methods This nationwide, population-based, retrospective cohort study was conducted using the Longitudinal Health Insurance Database containing the records of 2 million individuals retrieved from Taiwan’s National Health Insurance Research Database. Fine–Gray competing risk analysis was used to determine the risk for the development of dementia in the toxoplasmosis cohort relative to the non-toxoplasmosis cohort. A sensitivity analysis was also conducted. The effects of antibiotics (sulfadiazine or clindamycin) on the risk of dementia were also analyzed. Results We enrolled a total of 800 subjects, and identified 200 patients with toxoplasmosis and 600 sex- and age-matched controls without toxoplasmosis infection in a ratio of 1:3, selected between 2000 and 2015. The crude hazard ratio (HR) of the risk of developing dementia was 2.570 [95% confidence interval (CI) = 1.511–4.347, P < 0.001]. After adjusting for sex, age, monthly insurance premiums, urbanization level, geographical region, and comorbidities, the adjusted HR was 2.878 (95% CI = 1.709–4.968, P < 0.001). Sensitivity analysis revealed that toxoplasmosis was associated with the risk of dementia even after excluding diagnosis in the first year and the first 5 years. The usage of sulfadiazine or clindamycin in the treatment of toxoplasmosis was associated with a decreased risk of dementia. Conclusions This finding supports the evidence that toxoplasmosis is associated with dementia and that antibiotic treatment against toxoplasmosis is associated with a reduced risk of dementia. Further studies are necessary to explore the underlying mechanisms of these associations. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04928-7.
Collapse
Affiliation(s)
- Hung-Yi Yang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Ruei-Yu Su
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Yu Lai
- Graduate Institute of Aerospace and Undersea Medicine, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chuan-Chi Yang
- Department of Psychiatry, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan.,Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan. .,Student Counseling Center, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
36
|
Nayeri T, Sarvi S, Sharif M, Daryani A. Toxoplasma gondii: A possible etiologic agent for Alzheimer's disease. Heliyon 2021; 7:e07151. [PMID: 34141920 PMCID: PMC8187970 DOI: 10.1016/j.heliyon.2021.e07151] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/03/2021] [Accepted: 05/24/2021] [Indexed: 01/03/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is one of the most pervasive neurotropic pathogens causing different lesions in a wide variety of mammals as intermediate hosts, including humans. It is estimated that one-third of the world population is infected with T. gondii; however, for a long time, there has been much interest in the examination of the possible role of this parasite in the development of mental disorders, such as Alzheimer's disease (AD). T. gondii may play a role in the progression of AD using mechanisms, such as the induction of the host's immune responses, inflammation of the central nervous system (CNS), alteration in the levels of neurotransmitters, and activation of indoleamine-2,3-dyoxigenase. This paper presents an appraisal of the literature, reports, and studies that seek to the possible role of T. gondii in the development of AD. For achieving the purpose of the current study, a search of six English databases (PubMed, ScienceDirect, Web of Science, Scopus, ProQuest, and Google Scholar) was performed. The results support the involvement of T. gondii in the induction and development of AD. Indeed, T. gondii can be considered a risk factor for the development of AD and requires the special attention of specialists and patients. Furthermore, the results of this study may contribute to prevent or delay the progress of AD worldwide. Therefore, it is required to carry out further studies in order to better perceive the parasitic mechanisms in the progression of AD.
Collapse
Affiliation(s)
- Tooran Nayeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
37
|
Stebbins RC, Noppert GA, Yang YC, Dowd JB, Simanek A, Aiello AE. Association Between Immune Response to Cytomegalovirus and Cognition in the Health and Retirement Study. Am J Epidemiol 2021; 190:786-797. [PMID: 33094810 DOI: 10.1093/aje/kwaa238] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022] Open
Abstract
Chronic infections and the subsequent immune response have recently been shown to be risk factors for cognitive decline and Alzheimer disease and related dementias (ADRD). While some studies have shown an association between cytomegalovirus (CMV), a chronic and highly prevalent infection, and cognition and/or ADRD, these studies have been limited by nonrepresentative and small samples. Using 2016 data on 5,617 adults aged 65 years or more from the Health and Retirement Study, we investigated the cross-sectional associations of both CMV serostatus and immunoglobulin G (IgG) antibody response with cognitive function using linear regression models adjusting for age, sex, race/ethnicity, and educational attainment. We further investigated potential effect-measure modification by educational attainment. Overall, both CMV seropositivity and higher IgG antibody response were associated with lower cognitive function, though the relationship was not statistically significant in adjusted models. Among participants with less than a high school diploma, CMV seropositivity and being in the first tertile of IgG response, relative to seronegative persons, were associated with lower scores on the Telephone Interview for Cognitive Status (-0.56 points (95% confidence interval: -1.63, 0.52) and -0.89 points (95% confidence interval: -2.07, 0.29), respectively), and the relationship was attenuated among those with higher education. Our results suggest that CMV may be a risk factor for cognitive impairment, particularly among persons with fewer educational resources.
Collapse
|
38
|
Herpes simplex virus 1 and the risk of dementia: a population-based study. Sci Rep 2021; 11:8691. [PMID: 33888766 PMCID: PMC8062537 DOI: 10.1038/s41598-021-87963-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/05/2021] [Indexed: 01/15/2023] Open
Abstract
Herpes simplex virus 1 (HSV1) is a neuroinvasive virus capable of entering the brain which makes it a candidate pathogen for increasing risk of dementia. Previous studies are inconsistent in their findings regarding the link between HSV1 and dementia, therefore, we investigated how HSV1 relates to cognitive decline and dementia risk using data from a population-based study. We measured HSV1 immunoglobulin (IgG) antibodies in serum collected between 2002 and 2005 from participants of the Rotterdam Study. We used linear regression to determine HSV1 in relation to change in cognitive performance during 2 consecutive examination rounds on average 6.5 years apart. Next, we determined the association of HSV1 with risk of dementia (until 2016) using a Cox regression model. We repeated analyses for Alzheimer’s disease. All models were adjusted for age, sex, cardiovascular risk factors, and apolipoprotein E genotype. Of 1915 non-demented participants (mean age 71.3 years, 56.7% women), with an average follow-up time of 9.1 years, 244 participants developed dementia (of whom 203 Alzheimer’s disease). HSV1 seropositivity was associated with decline in global cognition (mean difference of HSV1 seropositive vs seronegative per standard deviation decrease in global cognition − 0.16; 95% confidence interval (95%CI), − 0.26; − 0.07), as well as separate cognitive domains, namely memory, information processing, and executive function, but not motor function. Finally, HSV1 seropositivity was not associated with risk of dementia (adjusted hazard ratio 1.18, 95% CI 0.83; 1.68), similar for Alzheimer’s disease. HSV1 is associated with cognitive decline but not with incident dementia in the general population. These data suggest HSV1 to be associated only with subtle cognitive disturbances but not with greater cognitive disorders that result in dementia.
Collapse
|
39
|
Association between Toxoplasma gondii seropositivity and serointensity and brain volume in adults: A cross-sectional study. PLoS One 2021; 16:e0245994. [PMID: 33544748 PMCID: PMC7864421 DOI: 10.1371/journal.pone.0245994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 11/25/2022] Open
Abstract
The intracellular protozoal parasite Toxoplasma gondii has been associated with worsened cognitive function in animal models and in humans. Despite these associations, the mechanisms by which Toxoplasma gondii might affect cognitive function remain unknown, although Toxoplasma gondii does produce physiologically active intraneuronal cysts and appears to affect dopamine synthesis. Using data from the UK Biobank, we sought to determine whether Toxoplasma gondii is associated with decreased prefrontal, hippocampal, and thalamic gray-matter volumes and with decreased total gray-matter and total white-matter volumes in an adult community-based sample. The results from adjusted multivariable regression modelling showed no associations between Toxoplasma gondii and prefrontal, hippocampal, and thalamic brain gray-matter volumes. In contrast, natural-log transformed antibody levels against the Toxoplasma gondii p22 (b = -3960, 95-percent confidence interval, -6536 to -1383, p < .01) and sag1 (b = -4863, 95-percent confidence interval, –8301 to -1425, p < .01) antigens were associated with smaller total gray-matter volume, as was the mean of natural-log transformed p22 and sag1 titers (b = -6141, 95-percent confidence interval, -9886 to -2397, p < .01). There were no associations between any of the measures of Toxoplasma gondii and total white-matter volume. These findings suggest that Toxoplasma gondii might be associated with decreased total gray-matter in middle-aged and older middle-aged adults in a community-based sample from the United Kingdom.
Collapse
|
40
|
Vigasova D, Nemergut M, Liskova B, Damborsky J. Multi-pathogen infections and Alzheimer's disease. Microb Cell Fact 2021; 20:25. [PMID: 33509204 PMCID: PMC7844946 DOI: 10.1186/s12934-021-01520-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease associated with the overproduction and accumulation of amyloid-β peptide and hyperphosphorylation of tau proteins in the brain. Despite extensive research on the amyloid-based mechanism of AD pathogenesis, the underlying cause of AD is not fully understood. No disease-modifying therapies currently exist, and numerous clinical trials have failed to demonstrate any benefits. The recent discovery that the amyloid-β peptide has antimicrobial activities supports the possibility of an infectious aetiology of AD and suggests that amyloid-β plaque formation might be induced by infection. AD patients have a weakened blood-brain barrier and immune system and are thus at elevated risk of microbial infections. Such infections can cause chronic neuroinflammation, production of the antimicrobial amyloid-β peptide, and neurodegeneration. Various pathogens, including viruses, bacteria, fungi, and parasites have been associated with AD. Most research in this area has focused on individual pathogens, with herpesviruses and periodontal bacteria being most frequently implicated. The purpose of this review is to highlight the potential role of multi-pathogen infections in AD. Recognition of the potential coexistence of multiple pathogens and biofilms in AD's aetiology may stimulate the development of novel approaches to its diagnosis and treatment. Multiple diagnostic tests could be applied simultaneously to detect major pathogens, followed by anti-microbial treatment using antiviral, antibacterial, antifungal, and anti-biofilm agents.
Collapse
Affiliation(s)
- Dana Vigasova
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michal Nemergut
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Barbora Liskova
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
41
|
Postolache TT, Wadhawan A, Rujescu D, Hoisington AJ, Dagdag A, Baca-Garcia E, Lowry CA, Okusaga OO, Brenner LA. Toxoplasma gondii, Suicidal Behavior, and Intermediate Phenotypes for Suicidal Behavior. Front Psychiatry 2021; 12:665682. [PMID: 34177652 PMCID: PMC8226025 DOI: 10.3389/fpsyt.2021.665682] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022] Open
Abstract
Within the general literature on infections and suicidal behavior, studies on Toxoplasma gondii (T. gondii) occupy a central position. This is related to the parasite's neurotropism, high prevalence of chronic infection, as well as specific and non-specific behavioral alterations in rodents that lead to increased risk taking, which are recapitulated in humans by T. gondii's associations with suicidal behavior, as well as trait impulsivity and aggression, mental illness and traffic accidents. This paper is a detailed review of the associations between T. gondii serology and suicidal behavior, a field of study that started 15 years ago with our publication of associations between T. gondii IgG serology and suicidal behavior in persons with mood disorders. This "legacy" article presents, chronologically, our primary studies in individuals with mood disorders and schizophrenia in Germany, recent attempters in Sweden, and in a large cohort of mothers in Denmark. Then, it reviews findings from all three meta-analyses published to date, confirming our reported associations and overall consistent in effect size [ranging between 39 and 57% elevation of odds of suicide attempt in T. gondii immunoglobulin (IgG) positives]. Finally, the article introduces certain links between T. gondii and biomarkers previously associated with suicidal behavior (kynurenines, phenylalanine/tyrosine), intermediate phenotypes of suicidal behavior (impulsivity, aggression) and state-dependent suicide risk factors (hopelessness/dysphoria, sleep impairment). In sum, an abundance of evidence supports a positive link between suicide attempts (but not suicidal ideation) and T. gondii IgG (but not IgM) seropositivity and serointensity. Trait impulsivity and aggression, endophenotypes of suicidal behavior have also been positively associated with T. gondii seropositivity in both the psychiatrically healthy as well as in patients with Intermittent Explosive Disorder. Yet, causality has not been demonstrated. Thus, randomized interventional studies are necessary to advance causal inferences and, if causality is confirmed, to provide hope that an etiological treatment for a distinct subgroup of individuals at an increased risk for suicide could emerge.
Collapse
Affiliation(s)
- Teodor T Postolache
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, United States
| | - Abhishek Wadhawan
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Psychiatry, Saint Elizabeth's Hospital, Washington, DC, United States
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Halle, Halle, Germany
| | - Andrew J Hoisington
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Department of Systems Engineering and Management, Air Force Institute of Technology, Dayton, OH, United States.,Department of Physical Medicine & Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Aline Dagdag
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Enrique Baca-Garcia
- Department of Psychiatry, Jimenez Diaz Foundation Hospital, Madrid, Spain.,Department of Psychiatry, Madrid Autonomous University, Madrid, Spain.,Department of Psychiatry, Rey Juan Carlos University Hospital, Móstoles, Spain.,Department of Psychiatry, General Hospital of Villalba, Madrid, Spain.,Department of Psychiatry, Infanta Elena University Hospital, Valdemoro, Spain.,Universidad Catolica del Maule, Talca, Chile.,Department of Psychiatry, Centre Hospitalier Universitaire de Nîmes, Nîmes, France
| | - Christopher A Lowry
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Department of Physical Medicine & Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States.,Department of Integrative Physiology, Center for Neuroscience, Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States
| | - Olaoluwa O Okusaga
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, United States.,Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States.,Michael E DeBakey VA Medical Center, Houston, TX, United States
| | - Lisa A Brenner
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, United States.,Department of Physical Medicine & Rehabilitation, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States.,Department of Psychiatry & Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
42
|
Gale SD, Erickson LD, Thacker EL, Mitchell EL, Brown BL, Hedges DW. Toxoplasma gondii seropositivity and serointensity and cognitive function in adults. PLoS Negl Trop Dis 2020; 14:e0008733. [PMID: 33057346 PMCID: PMC7561134 DOI: 10.1371/journal.pntd.0008733] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Infecting approximately one-third of the world's human population, Toxoplasma gondii has been associated with cognitive function. Here, we sought to further characterize the association between Toxoplasma gondii and cognitive function in a community sample of adults aged approximately 40 to70 years. Using adjusted linear regression models, we found associations of Toxoplasma gondii seropositivity with worse reasoning (b = -.192, p < .05) and matrix pattern completion (b = -.681, p < .01), of higher anti-Toxoplasma gondii p22 antibody levels with worse reasoning (b = -.078, p < .01) and slower Trails (numeric) performance (b = 5.962, p < .05), of higher anti-Toxoplasma gondii sag1 levels with worse reasoning (b = -.081, p < .05) and worse matrix pattern completion (b = -.217, p < .05), and of higher mean of the anti-Toxoplasma gondii p22 and sag1 levels with worse reasoning (b = -.112, p < .05), slower Trails (numeric) performance (b = 9.195, p < .05), and worse matrix pattern completion (b = -.245, p < .05). Neither age nor educational attainment moderated associations between the measures of Toxoplasma gondii seropositivity or serointensity. Sex, however, moderated the association between the sag1 titer and digit-symbol substitution and the association between the mean of the p22 and sag1 levels and digit-symbol substitution, and income moderated the association between Toxoplasma gondii seropositivity and numeric memory and the association between the p22 level and symbol-digit substitution. Based on the available neuropsychological tasks in this study, Toxoplasma gondii seropositivity and serointensity were associated with some aspects of poorer executive function in adults.
Collapse
Affiliation(s)
- Shawn D. Gale
- Department of Psychology, Brigham Young University, Provo, Utah
- The Neuroscience Center, Brigham Young University, Provo, Utah
- * E-mail:
| | | | - Evan L. Thacker
- Department of Public Health, Brigham Young University, Provo, Utah
| | | | - Bruce L. Brown
- Department of Psychology, Brigham Young University, Provo, Utah
| | - Dawson W. Hedges
- Department of Psychology, Brigham Young University, Provo, Utah
- The Neuroscience Center, Brigham Young University, Provo, Utah
| |
Collapse
|
43
|
The Viral Hypothesis in Alzheimer's Disease: Novel Insights and Pathogen-Based Biomarkers. J Pers Med 2020; 10:jpm10030074. [PMID: 32751069 PMCID: PMC7563893 DOI: 10.3390/jpm10030074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Early diagnosis of Alzheimer’s disease (AD) and the identification of significant risk factors are necessary to better understand disease progression, and to develop intervention-based therapies prior to significant neurodegeneration. There is thus a critical need to establish biomarkers which can predict the risk of developing AD before the onset of cognitive decline. A number of studies have indicated that exposure to various microbial pathogens can accelerate AD pathology. Additionally, several studies have indicated that amyloid-β possess antimicrobial properties and may act in response to infection as a part of the innate immune system. These findings have led some to speculate that certain types of infections may play a significant role in AD pathogenesis. In this review, we will provide an overview of studies which suggest pathogen involvement in AD. Additionally, we will discuss a number of pathogen-associated biomarkers which may be effective in establishing AD risk. Infections that increase the risk of AD represent a modifiable risk factor which can be treated with therapeutic intervention. Pathogen-based biomarkers may thus be a valuable tool for evaluating and decreasing AD risk across the population.
Collapse
|
44
|
Kamer AR, Craig RG, Niederman R, Fortea J, de Leon MJ. Periodontal disease as a possible cause for Alzheimer's disease. Periodontol 2000 2020; 83:242-271. [PMID: 32385876 DOI: 10.1111/prd.12327] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022]
Abstract
Approximately 47 million people worldwide have been diagnosed with dementia, 60%-80% of whom have dementia of the Alzheimer's disease type. Unfortunately, there is no cure in sight. Defining modifiable risk factors for Alzheimer's disease may have a significant impact on its prevalence. An increasing body of evidence suggests that chronic inflammation and microbial dysbiosis are risk factors for Alzheimer's disease. Periodontal disease is a chronic inflammatory disease that develops in response to response to microbial dysbiosis. Many studies have shown an association between periodontal disease and Alzheimer's disease. The intent of this paper was to review the existing literature and determine, using the Bradford Hill criteria, whether periodontal disease is causally related to Alzheimer's disease.
Collapse
Affiliation(s)
- Angela R Kamer
- Department of Periodontology and Implant Dentistry, New York University, College of Dentistry, New York, New York, USA
| | - Ronald G Craig
- Department of Periodontology and Implant Dentistry, New York University, College of Dentistry, New York, New York, USA.,Department of Basic Sciences and Craniofacial Biology, New York University, College of Dentistry, New York, New York, USA
| | - Richard Niederman
- Department of Epidemiology and Health Promotion, New York University, College of Dentistry, New York, New York, USA
| | - Juan Fortea
- Alzheimer Down Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau- Biomedical Research Institute Sant Pau- Universitat Autònoma de Barcelona and Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain
| | - Mony J de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
45
|
Kwon S, Iba M, Kim C, Masliah E. Immunotherapies for Aging-Related Neurodegenerative Diseases-Emerging Perspectives and New Targets. Neurotherapeutics 2020; 17:935-954. [PMID: 32347461 PMCID: PMC7222955 DOI: 10.1007/s13311-020-00853-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurological disorders such as Alzheimer's disease (AD), Lewy body dementia (LBD), frontotemporal dementia (FTD), and vascular dementia (VCID) have no disease-modifying treatments to date and now constitute a dementia crisis that affects 5 million in the USA and over 50 million worldwide. The most common pathological hallmark of these age-related neurodegenerative diseases is the accumulation of specific proteins, including amyloid beta (Aβ), tau, α-synuclein (α-syn), TAR DNA-binding protein 43 (TDP43), and repeat-associated non-ATG (RAN) peptides, in the intra- and extracellular spaces of selected brain regions. Whereas it remains controversial whether these accumulations are pathogenic or merely a byproduct of disease, the majority of therapeutic research has focused on clearing protein aggregates. Immunotherapies have garnered particular attention for their ability to target specific protein strains and conformations as well as promote clearance. Immunotherapies can also be neuroprotective: by neutralizing extracellular protein aggregates, they reduce spread, synaptic damage, and neuroinflammation. This review will briefly examine the current state of research in immunotherapies against the 3 most commonly targeted proteins for age-related neurodegenerative disease: Aβ, tau, and α-syn. The discussion will then turn to combinatorial strategies that enhance the effects of immunotherapy against aggregating protein, followed by new potential targets of immunotherapy such as aging-related processes.
Collapse
Affiliation(s)
- Somin Kwon
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michiyo Iba
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Changyoun Kim
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eliezer Masliah
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
- Division of Neuroscience, National Institute on Aging/National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
46
|
Panza F, Lozupone M, Solfrizzi V, Watling M, Imbimbo BP. Time to test antibacterial therapy in Alzheimer's disease. Brain 2020; 142:2905-2929. [PMID: 31532495 DOI: 10.1093/brain/awz244] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease is associated with cerebral accumulation of amyloid-β peptide and hyperphosphorylated tau. In the past 28 years, huge efforts have been made in attempting to treat the disease by reducing brain accumulation of amyloid-β in patients with Alzheimer's disease, with no success. While anti-amyloid-β therapies continue to be tested in prodromal patients with Alzheimer's disease and in subjects at risk of developing Alzheimer's disease, there is an urgent need to provide therapeutic support to patients with established Alzheimer's disease for whom current symptomatic treatment (acetylcholinesterase inhibitors and N-methyl d-aspartate antagonist) provide limited help. The possibility of an infectious aetiology for Alzheimer's disease has been repeatedly postulated over the past three decades. Infiltration of the brain by pathogens may act as a trigger or co-factor for Alzheimer's disease, with Herpes simplex virus type 1, Chlamydia pneumoniae, and Porphyromonas gingivalis being most frequently implicated. These pathogens may directly cross a weakened blood-brain barrier, reach the CNS and cause neurological damage by eliciting neuroinflammation. Alternatively, pathogens may cross a weakened intestinal barrier, reach vascular circulation and then cross blood-brain barrier or cause low grade chronic inflammation and subsequent neuroinflammation from the periphery. The gut microbiota comprises a complex community of microorganisms. Increased permeability of the gut and blood-brain barrier induced by microbiota dysbiosis may impact Alzheimer's disease pathogenesis. Inflammatory microorganisms in gut microbiota are associated with peripheral inflammation and brain amyloid-β deposition in subjects with cognitive impairment. Oral microbiota may also influence Alzheimer's disease risk through circulatory or neural access to the brain. At least two possibilities can be envisaged to explain the association of suspected pathogens and Alzheimer's disease. One is that patients with Alzheimer's disease are particularly prone to microbial infections. The other is that microbial infection is a contributing cause of Alzheimer's disease. Therapeutic trials with antivirals and/or antibacterials could resolve this dilemma. Indeed, antiviral agents are being tested in patients with Alzheimer's disease in double-blind placebo-controlled studies. Although combined antibiotic therapy was found to be effective in animal models of Alzheimer's disease, antibacterial drugs are not being widely investigated in patients with Alzheimer's disease. This is because it is not clear which bacterial populations in the gut of patients with Alzheimer's disease are overexpressed and if safe, selective antibacterials are available for them. On the other hand, a bacterial protease inhibitor targeting P. gingivalis toxins is now being tested in patients with Alzheimer's disease. Clinical studies are needed to test if countering bacterial infection may be beneficial in patients with established Alzheimer's disease.
Collapse
Affiliation(s)
- Francesco Panza
- Unit of Epidemiological Research on Aging, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte, Bari, Italy
| | - Madia Lozupone
- Unit of Epidemiological Research on Aging, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte, Bari, Italy
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Solfrizzi
- 'C. Frugoni' Internal and Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | - Mark Watling
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| |
Collapse
|
47
|
James C, Harfouche M, Welton NJ, Turner KM, Abu-Raddad LJ, Gottlieb SL, Looker KJ. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull World Health Organ 2020; 98:315-329. [PMID: 32514197 PMCID: PMC7265941 DOI: 10.2471/blt.19.237149] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/25/2022] Open
Abstract
Objective To generate global and regional estimates for the prevalence and incidence of herpes simplex virus (HSV) type 1 and type 2 infection for 2016. Methods To obtain data, we undertook a systematic review to identify studies up to August 2018. Adjustments were made to account for HSV test sensitivity and specificity. For each World Health Organization (WHO) region, we applied a constant incidence model to pooled prevalence by age and sex to estimate the prevalence and incidence of HSV types 1 and 2 infections. For HSV type 1, we apportioned infection by anatomical site using pooled estimates of the proportions that were oral and genital. Findings In 2016, an estimated 491.5 million people (95% uncertainty interval, UI: 430.4 million–610.6 million) were living with HSV type 2 infection, equivalent to 13.2% of the world’s population aged 15–49 years. An estimated 3752.0 million people (95% UI: 3555.5 million–3854.6 million) had HSV type 1 infection at any site, equivalent to a global prevalence of 66.6% in 0–49-year-olds. Differing patterns were observed by age, sex and geographical region, with HSV type 2 prevalence being highest among women and in the WHO African Region. Conclusion An estimated half a billion people had genital infection with HSV type 2 or type 1, and several billion had oral HSV type 1 infection. Millions of people may also be at higher risk of acquiring human immunodeficiency virus (HIV), particularly women in the WHO African Region who have the highest HSV type 2 prevalence and exposure to HIV.
Collapse
Affiliation(s)
- Charlotte James
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, England
| | | | - Nicky J Welton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, England
| | | | | | - Sami L Gottlieb
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Katharine J Looker
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, England
| |
Collapse
|
48
|
Martinez VO, Lima FWDM, Rocha RBA, Bah HAF, Carvalho CF, Menezes-Filho JA. Interaction of Toxoplasma gondii infection and elevated blood lead levels on children's neurobehavior. Neurotoxicology 2020; 78:177-185. [PMID: 32201333 DOI: 10.1016/j.neuro.2020.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/27/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
A chronic infection caused by Toxoplasma gondii was considered asymptomatic in immunologically healthy humans, but results from animal and epidemiological studies led to a reconsideration of this assumption. The objective of this study was to evaluate the seroprevalence of T. gondii infection and its possible effects on the behavior of school-aged children in Bahia, Brazil. Serum anti-body determinations were performed by Enzyme-linked Immunosorbent Assay (ELISA). Blood lead levels (BLL) were measured by graphite furnace atomic absorption spectrometry (GFAAS). The evaluation of a child's behavior was assessed using the Child Behavior Check List (CBCL). Multivariate models applying logistic regression were used to test the association of chronic T. gondii infection and BLL with behavioral outcomes in children. Seroprevalence for anti-T. gondii IgG antibody was 43.7 % (95 %-CI: 35.8-51.9). Significant associations between chronic T. gondii infection and total behavioral problems (OR = 2.50; 95 %-CI: 1.06-5.88), internalizing spectrum problems (OR = 4.35; 95 %-CI: 1.11-17.14) and rule breaking (OR = 2.61; 95 %-CI: 1.12-6.05) were observed. A possible interaction between toxoplasmosis prevalence and lead exposure was detected. Children with above the median BLL and positive for IgG anti-T. gondii showed a 5.51-fold increase (95 %-CI: 1.75-17.38) in the chance of displaying disobedient behavior. The results suggest that T. gondii infection may be contributing to the high indices of behavioral changes. Moreover, these findings are the first evidence for a possible interaction between chronic T. gondii infection and elevated blood lead levels on children's neurobehavior.
Collapse
Affiliation(s)
- Victor O Martinez
- Immunology Service of Infectious Diseases, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil; Graduate Program in Pharmacy, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Fernanda W de Mendonça Lima
- Immunology Service of Infectious Diseases, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Rômula B Alecrim Rocha
- Graduate Program in Pharmacy, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Homegnon A Ferréol Bah
- Graduate Program in Pharmacy, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Chrissie F Carvalho
- Department of Psychology, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - José Antônio Menezes-Filho
- Laboratory of Toxicology, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil; Graduate Program in Pharmacy, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil.
| |
Collapse
|
49
|
Nimgaonkar VL, Bhatia T, Mansour A, Wesesky MA, Deshpande S. Herpes Simplex Virus Type-1 Infection: Associations with Inflammation and Cognitive Aging in Relation to Schizophrenia. Curr Top Behav Neurosci 2020; 44:125-139. [PMID: 31049838 DOI: 10.1007/7854_2018_86] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Most persons experience cognitive decline as they grow older. The term "cognitive aging," coined to describe milder varieties of cognitive decline, is likely to be due to multiple causes. Persistent or repeated infections of the central nervous system (whether subclinical or diagnosable) can cause damage to neurons directly or indirectly through inflammation resulting in incremental neuronal damage, thus eroding cognitive reserve. This possibility has not been considered widely. We evaluated the data linking persistent infection with herpes simplex virus type 1 (HSV-1) and cognitive aging by applying the Bradford Hill criteria. Despite inherent problems in establishing causal relations for chronic disorders, our analyses suggest plausible links. These studies are pertinent for patients with schizophrenia, who are particularly vulnerable due to disorder-related cognitive impairment. Further investigations are warranted to test a causal hypothesis, particularly prospective studies and intervention studies.
Collapse
Affiliation(s)
- Vishwajit L Nimgaonkar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Triptish Bhatia
- Training Program for Psychiatric Genetics in India, Post-graduate Institute for Medical Education and Research, Dr Ram Manohar Lohia Hospital, Delhi, India
| | - Abdelaziz Mansour
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Maribeth A Wesesky
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Smita Deshpande
- Post-graduate Institute for Medical Education and Research, Dr Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
50
|
Meshreky KM, Wood J, Chowdari KV, Hall MH, Wilckens KA, Yolken R, Buysse DJ, Nimgaonkar VL. Infection with Herpes Simplex virus type 1 (HSV-1) and sleep: The dog that did not bark. Psychiatry Res 2019; 280:112502. [PMID: 31382180 PMCID: PMC7265549 DOI: 10.1016/j.psychres.2019.112502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
Persistent infection with Herpes Simplex viruses (HSV) and other brain infections is consistently associated with cognitive impairment. These infections can also affect sleep. Thus, sleep abnormalities could explain the cognitive dysfunction. We investigated the association between sleep variables and persistent HSV-1, HSV-2, cytomegalovirus (CMV) and Toxoplasma gondii (Tox) infections. Sleep data were collected from older adults with or without insomnia (N = 311, total); a subset completed polysomnographic and actigraphy studies (N = 145). No significant associations were found between the infections and insomnia or the remaining sleep variables following corrections for multiple comparisons. Sleep dysfunction is unlikely to explain the infection-related cognitive dysfunction.
Collapse
Affiliation(s)
| | - Joel Wood
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kodavali V Chowdari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Martica H Hall
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kristine A. Wilckens
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert Yolken
- Stanley Laboratory of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel J. Buysse
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| |
Collapse
|