1
|
Simpson KJ, Mian S, Forrestel EJ, Hackel J, Morton JA, Leitch AR, Leitch IJ. Bigger genomes provide environment-dependent growth benefits in grasses. THE NEW PHYTOLOGIST 2024; 244:2049-2061. [PMID: 39351620 DOI: 10.1111/nph.20150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024]
Abstract
Increasing genome size (GS) has been associated with slower rates of DNA replication and greater cellular nitrogen (N) and phosphorus demands. Despite most plant species having small genomes, the existence of larger GS species suggests that such costs may be negligible or represent benefits under certain conditions. Focussing on the widespread and diverse grass family (Poaceae), we used data on species' climatic niches and growth rates under different environmental conditions to test for growth costs or benefits associated with GS. The influence of photosynthetic pathway, life history and evolutionary history on grass GS was also explored. We found that evolutionary history, photosynthetic pathway and life history all influence the distribution of grass species' GS. Genomes were smaller in annual and C4 species, the latter allowing for small cells necessary for C4 leaf anatomy. We found larger GS were associated with high N availability and, for perennial species, low growth-season temperature. Our findings reveal that GS is a globally important predictor of grass performance dependent on environmental conditions. The benefits for species with larger GS are likely due to associated larger cell sizes, allowing rapid biomass production where soil fertility meets N demands and/or when growth occurs via temperature-independent cell expansion.
Collapse
Affiliation(s)
- Kimberley J Simpson
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Sheffield, South Yorkshire, S10 2TN, UK
- Botany Department, Rhodes University, Makhanda, Eastern Cape, 6140, South Africa
| | - Sahr Mian
- Department of Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Elisabeth J Forrestel
- Department of Viticultural and Enology, University of California, Davis, CA, 95616-5270, USA
| | - Jan Hackel
- Department of Biology, University of Marburg, Marburg, 35043, Germany
| | - Joseph A Morton
- Department of Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4DQ, UK
| | - Andrew R Leitch
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4DQ, UK
| | - Ilia J Leitch
- Department of Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| |
Collapse
|
2
|
Moreira X, Hervella P, Lago-Núñez B, Galmán A, de la Fuente M, Covelo F, Marquis RJ, Vázquez-González C, Abdala-Roberts L. Biotic and abiotic factors associated with genome size evolution in oaks. Ecology 2024; 105:e4417. [PMID: 39319753 DOI: 10.1002/ecy.4417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/25/2024] [Accepted: 07/16/2024] [Indexed: 09/26/2024]
Abstract
The evolutionary processes that underlie variation in plant genome size have been much debated. Abiotic factors are thought to have played an important role, with negative and positive correlations between genome size and seasonal or stressful climatic conditions being reported in several systems. In turn, variation in genome size may influence plant traits which affect interactions with other organisms, such as herbivores. The mechanisms underlying evolutionary linkages between plant genome size and biotic and abiotic factors nonetheless remain poorly understod. To address this gap, we conducted phylogenetically controlled analyses testing for associations between genome size, climatic variables, plant traits (defenses and nutrients), and herbivory across 29 oak (Quercus) species. Genome size is significantly associated with both temperature and precipitation seasonality, whereby oak species growing in climates with lower and less variable temperatures but more variable rainfall had larger genomes. In addition, we found a negative association between genome size and leaf nutrient concentration (found to be the main predictor of herbivory), which in turn led to an indirect effect on herbivory. A follow-up test suggested that the association between genome size and leaf nutrients influencing herbivory was mediated by variation in plant growth, whereby species with larger genomes have slower growth rates, which in turn are correlated with lower nutrients. Collectively, these findings reveal novel associations between plant genome size and biotic and abiotic factors that may influence life history evolution and ecological dynamics in this widespread tree genus.
Collapse
Affiliation(s)
- Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Pontevedra, Galicia, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Andrea Galmán
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | | | - Felisa Covelo
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Seville, Spain
| | - Robert J Marquis
- Department of Biology and the Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | | | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
3
|
Castro N, Vilela B, Mata-Sucre Y, Marques A, Gagnon E, Lewis GP, Costa L, Souza G. Repeatome evolution across space and time: Unravelling repeats dynamics in the plant genus Erythrostemon Klotzsch (Leguminosae Juss). Mol Ecol 2024:e17510. [PMID: 39248108 DOI: 10.1111/mec.17510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024]
Abstract
Fluctuations in genomic repetitive fractions (repeatome) are known to impact several facets of evolution, such as ecological adaptation and speciation processes. Therefore, investigating the divergence of repetitive elements can provide insights into an important evolutionary force. However, it is not clear how the different repetitive element clades are impacted by the different factors such as ecological changes and/or phylogeny. To discuss this, we used the Neotropical legume genus Erythrostemon (Caesalpinioideae) as a model, given its ancient origin (~33 Mya), lineage-specific niche conservatism, macroecological heterogeneity, and disjunct distribution in Meso- and South American (MA and SA respectively) lineages. We performed a comparative repeatomic analysis of 18 Erythrostemon species to test the impact of environmental variables over repeats diversification. Overall, repeatome composition was diverse, with high abundances of satDNAs and Ty3/gypsy-Tekay transposable elements, predominantly in the MA and SA lineages respectively. However, unexpected repeatome profiles unrelated to the phylogeny/biogeography were found in a few MA (E. coccineus, E. pannosus and E. placidus) and SA (E. calycinus) species, related to reticulate evolution and incongruence between nuclear and plastid topology, suggesting ancient hybridizations. The plesiomorphic Tekay and satDNA pattern was altered in the MA-sensu stricto subclade with a striking genomic differentiation (expansion of satDNA and retraction of Tekay) associated with the colonization of a new environment in Central America around 20 Mya. Our data reveal that the current species-specific Tekay pool was the result of two bursts of amplification probably in the Miocene, with distinct patterns for the MA and SA repeatomes. This suggests a strong role of the Tekay elements as modulators of the genome-environment interaction in Erythrostemon, providing macroevolutionary insights about mechanisms of repeatome differentiation and plant diversification across space and time.
Collapse
Affiliation(s)
- Natália Castro
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Bruno Vilela
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Yennifer Mata-Sucre
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Edeline Gagnon
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Gwilym P Lewis
- Accelerated Taxonomy Department, Royal Botanic Gardens, Kew, Richmond, UK
| | - Lucas Costa
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
4
|
Soto Gomez M, Brown MJM, Pironon S, Bureš P, Verde Arregoitia LD, Veselý P, Elliott TL, Zedek F, Pellicer J, Forest F, Nic Lughadha E, Leitch IJ. Genome size is positively correlated with extinction risk in herbaceous angiosperms. THE NEW PHYTOLOGIST 2024; 243:2470-2485. [PMID: 39080986 DOI: 10.1111/nph.19947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/02/2024] [Indexed: 08/23/2024]
Abstract
Angiosperms with large genomes experience nuclear-, cellular-, and organism-level constraints that may limit their phenotypic plasticity and ecological niche, which could increase their risk of extinction. Therefore, we test the hypotheses that large-genomed species are more likely to be threatened with extinction than those with small genomes, and that the effect of genome size varies across three selected covariates: life form, endemism, and climatic zone. We collated genome size and extinction risk information for a representative sample of angiosperms comprising 3250 species, which we analyzed alongside life form, endemism, and climatic zone variables using a phylogenetic framework. Genome size is positively correlated with extinction risk, a pattern driven by a signal in herbaceous but not woody species, regardless of climate and endemism. The influence of genome size is stronger in endemic herbaceous species, but is relatively homogenous across different climates. Beyond its indirect link via endemism and climate, genome size is associated with extinction risk directly and significantly. Genome size may serve as a proxy for difficult-to-measure parameters associated with resilience and vulnerability in herbaceous angiosperms. Therefore, it merits further exploration as a useful biological attribute for understanding intrinsic extinction risk and augmenting plant conservation efforts.
Collapse
Affiliation(s)
| | | | - Samuel Pironon
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, CB3 0DL, UK
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Petr Bureš
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
| | | | - Pavel Veselý
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
| | - Tammy L Elliott
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
- Department of Biological Sciences, University of Cape Town, Cape Town, 7700, South Africa
| | - František Zedek
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Institut Botanic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Spain
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | | | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| |
Collapse
|
5
|
Milosavljevic S, Kauai F, Mortier F, Van de Peer Y, Bonte D. A metabolic perspective on polyploid invasion and the emergence of life histories: Insights from a mechanistic model. AMERICAN JOURNAL OF BOTANY 2024; 111:e16387. [PMID: 39113228 PMCID: PMC7616395 DOI: 10.1002/ajb2.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
PREMISE Whole-genome duplication (WGD, polyploidization) has been identified as a driver of genetic and phenotypic novelty, having pervasive consequences for the evolution of lineages. While polyploids are widespread, especially among plants, the long-term establishment of polyploids is exceedingly rare. Genome doubling commonly results in increased cell sizes and metabolic expenses, which may be sufficient to modulate polyploid establishment in environments where their diploid ancestors thrive. METHODS We developed a mechanistic simulation model of photosynthetic individuals to test whether changes in size and metabolic efficiency allow autopolyploids to coexist with, or even invade, ancestral diploid populations. Central to the model is metabolic efficiency, which determines how energy obtained from size-dependent photosynthetic production is allocated to basal metabolism as opposed to somatic and reproductive growth. We expected neopolyploids to establish successfully if they have equal or higher metabolic efficiency as diploids or to adapt their life history to offset metabolic inefficiency. RESULTS Polyploid invasion was observed across a wide range of metabolic efficiency differences between polyploids and diploids. Polyploids became established in diploid populations even when they had a lower metabolic efficiency, which was facilitated by recurrent formation. Competition for nutrients is a major driver of population dynamics in this model. Perenniality did not qualitatively affect the relative metabolic efficiency from which tetraploids tended to establish. CONCLUSIONS Feedback between size-dependent metabolism and energy allocation generated size and age differences between plants with different ploidies. We demonstrated that even small changes in metabolic efficiency are sufficient for the establishment of polyploids.
Collapse
Affiliation(s)
- Silvija Milosavljevic
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB - UGent Center for Plant Systems Biology, B-9052Ghent, Belgium
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Karel Lodewijk Ledeganckstraat 35, BE-9000Ghent, Belgium
| | - Felipe Kauai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB - UGent Center for Plant Systems Biology, B-9052Ghent, Belgium
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Karel Lodewijk Ledeganckstraat 35, BE-9000Ghent, Belgium
| | - Frederik Mortier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB - UGent Center for Plant Systems Biology, B-9052Ghent, Belgium
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Karel Lodewijk Ledeganckstraat 35, BE-9000Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB - UGent Center for Plant Systems Biology, B-9052Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Dries Bonte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB - UGent Center for Plant Systems Biology, B-9052Ghent, Belgium
| |
Collapse
|
6
|
Wu T, Bafort Q, Mortier F, Almeida-Silva F, Natran A, de Peer YV. The immediate metabolomic effects of whole-genome duplication in the greater duckweed, Spirodela polyrhiza. AMERICAN JOURNAL OF BOTANY 2024; 111:e16383. [PMID: 39087852 PMCID: PMC7616399 DOI: 10.1002/ajb2.16383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 08/02/2024]
Abstract
PREMISE In plants, whole-genome duplication (WGD) is a common mutation with profound evolutionary potential. Given the costs associated with a superfluous genome copy, polyploid establishment is enigmatic. However, in the right environment, immediate phenotypic changes following WGD can facilitate establishment. Metabolite abundances are the direct output of the cell's regulatory network and determine much of the impact of environmental and genetic change on the phenotype. While it is well known that an increase in the bulk amount of genetic material can increase cell size, the impact of gene dosage multiplication on the metabolome remains largely unknown. METHODS We used untargeted metabolomics on four genetically distinct diploid-neoautotetraploid pairs of the greater duckweed, Spirodela polyrhiza, to investigate how WGD affects metabolite abundances per cell and per biomass. RESULTS Autopolyploidy increased metabolite levels per cell, but the response of individual metabolites varied considerably. However, the impact on metabolite level per biomass was restricted because the increased cell size reduced the metabolite concentration per cell. Nevertheless, we detected both quantitative and qualitative effects of WGD on the metabolome. Many effects were strain-specific, but some were shared by all four strains. CONCLUSIONS The nature and impact of metabolic changes after WGD depended strongly on the genotype. Dosage effects have the potential to alter the plant metabolome qualitatively and quantitatively, but were largely balanced out by the reduction in metabolite concentration due to an increase in cell size in this species.
Collapse
Affiliation(s)
- Tian Wu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9000, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Quinten Bafort
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9000, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, 9000Ghent, Belgium
| | - Frederik Mortier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9000, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Biology, Ghent University, 9000Ghent, Belgium
| | - Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9000, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Annelore Natran
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent9000, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University Biochemistry, Nanjing210095, China
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria0028, South Africa
| |
Collapse
|
7
|
van Mazijk R, West AG, Verboom GA, Elliott TL, Bureš P, Muasya AM. Genome size variation in Cape schoenoid sedges (Schoeneae) and its ecophysiological consequences. AMERICAN JOURNAL OF BOTANY 2024; 111:e16315. [PMID: 38695147 DOI: 10.1002/ajb2.16315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 08/24/2024]
Abstract
PREMISE Increases in genome size in plants-often associated with larger, low-density stomata and greater water-use efficiency (WUE)-could affect plant ecophysiological and hydraulic function. Variation in plant genome size is often due to polyploidy, having occurred repeatedly in the austral sedge genus Schoenus in the Cape Floristic Region (CFR), while species in the other major schoenoid genus in the region, Tetraria, have smaller genomes. Comparing these genera is useful as they co-occur at the landscape level, under broadly similar bioclimatic conditions. We hypothesized that CFR Schoenus have greater WUE, with lower maximum stomatal conductance (gwmax) imposed by larger, less-dense stomata. METHODS We investigated relationships between genome size and stomatal parameters in a phylogenetic context, reconstructing a phylogeny of CFR-occurring Schoeneae (Cyperaceae). Species' stomatal and functional traits were measured from field-collected and herbarium specimens. Carbon stable isotopes were used as an index of WUE. Genome size was derived from flow-cytometric measurements of leafy shoots. RESULTS Evolutionary regressions demonstrated that stomatal size and density covary with genome size, positively and negatively, respectively, with genome size explaining 72-75% of the variation in stomatal size. Larger-genomed species had lower gwmax and C:N ratios, particularly in culms. CONCLUSIONS We interpret differences in vegetative physiology between the genera as evidence of more-conservative strategies in CFR Schoenus compared to the more-acquisitive Tetraria. Because Schoenus have smaller, reduced leaves, they likely rely more on culm photosynthesis than Tetraria. Across the CFR Schoeneae, ecophysiology correlates with genome size, but confounding sources of trait variation limit inferences about causal relationships between traits.
Collapse
Affiliation(s)
- Ruan van Mazijk
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Bolus Herbarium, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- C4 EcoSolutions, Tokai, Cape Town, 7945, South Africa
| | - Adam G West
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
| | - G Anthony Verboom
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Bolus Herbarium, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
| | - Tammy L Elliott
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Bolus Herbarium, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic
| | - A Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
- Bolus Herbarium, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
| |
Collapse
|
8
|
Takvorian N, Zangui H, Naino Jika AK, Alouane A, Siljak-Yakovlev S. Genome Size Variation in Sesamum indicum L. Germplasm from Niger. Genes (Basel) 2024; 15:711. [PMID: 38927647 PMCID: PMC11203198 DOI: 10.3390/genes15060711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Sesamum indicum L. (Pedaliaceae) is one of the most economically important oil crops in the world, thanks to the high oil content of its seeds and its nutritional value. It is cultivated all over the world, mainly in Asia and Africa. Well adapted to arid environments, sesame offers a good opportunity as an alternative subsistence crop for farmers in Africa, particularly Niger, to cope with climate change. For the first time, the variation in genome size among 75 accessions of the Nigerien germplasm was studied. The sample was collected throughout Niger, revealing various morphological, biochemical and phenological traits. For comparison, an additional accession from Thailand was evaluated as an available Asian representative. In the Niger sample, the 2C DNA value ranged from 0.77 to 1 pg (753 to 978 Mbp), with an average of 0.85 ± 0.037 pg (831 Mbp). Statistical analysis showed a significant difference in 2C DNA values among 58 pairs of Niger accessions (p-value < 0.05). This significant variation indicates the likely genetic diversity of sesame germplasm, offering valuable insights into its possible potential for climate-resilient agriculture. Our results therefore raise a fundamental question: is intraspecific variability in the genome size of Nigerien sesame correlated with specific morphological and physiological traits?
Collapse
Affiliation(s)
- Najat Takvorian
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190 Gif-sur-Yvette, France;
- Sorbonne Université, UFR Sciences de la Vie, UFR927, 4 Place Jussieu, F-75005 Paris Cedex 05, France
| | - Hamissou Zangui
- Department of Plant Production, Abdou Moumouni University, BP-10960 Niamey, Niger; (H.Z.); (A.K.N.J.)
| | - Abdel Kader Naino Jika
- Department of Plant Production, Abdou Moumouni University, BP-10960 Niamey, Niger; (H.Z.); (A.K.N.J.)
| | - Aïda Alouane
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190 Gif-sur-Yvette, France;
- Sorbonne Université, UFR Sciences de la Vie, UFR927, 4 Place Jussieu, F-75005 Paris Cedex 05, France
| | - Sonja Siljak-Yakovlev
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190 Gif-sur-Yvette, France;
| |
Collapse
|
9
|
Hrabovský M, Kubalová S, Mičieta K, Ščevková J. Environmental impacts on intraspecific variation in Ambrosia artemisiifolia genome size in Slovakia, Central Europe. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33960-33974. [PMID: 38693457 PMCID: PMC11136817 DOI: 10.1007/s11356-024-33410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
The quantity of DNA in angiosperms exhibits variation attributed to many external influences, such as environmental factors, geographical features, or stress factors, which exert constant selection pressure on organisms. Since invasive species possess adaptive capabilities to acclimate to novel environmental conditions, ragweed (Ambrosia artemisiifolia L.) was chosen as a subject for investigating their influence on genome size variation. Slovakia has diverse climatic conditions, suitable for testing the hypothesis that air temperature and precipitation, the main limiting factors of ragweed occurrence, would also have an impact on its genome size. Our results using flow cytometry confirmed this hypothesis and also found a significant association with geographical features such as latitude, altitude, and longitude. We can conclude that plants growing in colder environments farther from oceanic influences exhibit smaller DNA amounts, while optimal growth conditions result in a greater variability in genome size, reflecting the diminished effect of selection pressure.
Collapse
Affiliation(s)
- Michal Hrabovský
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia.
| | - Silvia Kubalová
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Karol Mičieta
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - Jana Ščevková
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| |
Collapse
|
10
|
Guo K, Pyšek P, van Kleunen M, Kinlock NL, Lučanová M, Leitch IJ, Pierce S, Dawson W, Essl F, Kreft H, Lenzner B, Pergl J, Weigelt P, Guo WY. Plant invasion and naturalization are influenced by genome size, ecology and economic use globally. Nat Commun 2024; 15:1330. [PMID: 38351066 PMCID: PMC10864296 DOI: 10.1038/s41467-024-45667-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Human factors and plant characteristics are important drivers of plant invasions, which threaten ecosystem integrity, biodiversity and human well-being. However, while previous studies often examined a limited number of factors or focused on a specific invasion stage (e.g., naturalization) for specific regions, a multi-factor and multi-stage analysis at the global scale is lacking. Here, we employ a multi-level framework to investigate the interplay between plant characteristics (genome size, Grime's adaptive CSR-strategies and native range size) and economic use and how these factors collectively affect plant naturalization and invasion success worldwide. While our findings derived from structural equation models highlight the substantial contribution of human assistance in both the naturalization and spread of invasive plants, we also uncovered the pivotal role of species' adaptive strategies among the factors studied, and the significantly varying influence of these factors across invasion stages. We further revealed that the effects of genome size on plant invasions were partially mediated by species adaptive strategies and native range size. Our study provides insights into the complex and dynamic process of plant invasions and identifies its key drivers worldwide.
Collapse
Affiliation(s)
- Kun Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China
| | - Petr Pyšek
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-25243, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, CZ-12844, Czech Republic
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78457, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, P. R. China
| | - Nicole L Kinlock
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78457, Konstanz, Germany
| | - Magdalena Lučanová
- Czech Academy of Sciences, Institute of Botany, Department of Evolutionary Plant Biology, Průhonice, CZ-25243, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-370 05, Czech Republic
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Simon Pierce
- Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via G. Celoria 2, I-20133, Milan, Italy
| | - Wayne Dawson
- Department of Biosciences, Durham University, Durham, UK
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Franz Essl
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Göttingen, Germany
- Campus-Institute Data Science, Göttingen, Germany
| | - Bernd Lenzner
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Jan Pergl
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice, CZ-25243, Czech Republic
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Göttingen, Germany
- Campus-Institute Data Science, Göttingen, Germany
| | - Wen-Yong Guo
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China.
- Research Center for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China.
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China.
| |
Collapse
|
11
|
Ptáček J, Ekrt L, Hornych O, Urfus T. Interploidy gene flow via a 'pentaploid bridge' and ploidy reduction in Cystopteris fragilis fern complex (Cystopteridaceae: Polypodiales). PLANT REPRODUCTION 2023; 36:321-331. [PMID: 37532893 DOI: 10.1007/s00497-023-00476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023]
Abstract
KEY MESSAGE Our results indicate the existence of interploidy gene flow in Cystopteris fragilis, resulting in sexual triploid and diploid gametophytes from pentaploid parents. Similar evolutionary dynamics might operate in other fern complexes and need further investigation. Polyploidization and hybridization are a key evolutionary processes in ferns. Here, we outline an interploidy gene flow pathway operating in the polyploid Cystopteris fragilis complex. The conditions necessary for the existence of this pathway were tested. A total of 365 C. fragilis individuals were collected covering representatives of all three predominant ploidy levels (tetraploid, pentaploid, and hexaploid), cultivated, had their ploidy level estimated by flow cytometry, and their spores collected. The spores, as well as gametophytes and sporophytes established from them, were analysed by flow cytometry. Spore abortion rate was also estimated. In tetraploids, we observed the formation of unreduced (tetraploid) spores (ca 2%). Collected pentaploid individuals indicate ongoing hybridization between ploidy levels. Pentaploids formed up to 52% viable spores, ca 79% of them reduced, i.e. diploid and triploid. Reduced spores formed viable gametophytes, and, in the case of triploids, filial hexaploid sporophytes, showing evidence of sexual reproduction. Some tetraploid sporophytes reproduce apomictically (based on uniform ploidy of their metagenesis up to filial sporophytes). Triploid and diploid gametophytes from pentaploid parents are able to mate among themselves, or with "normal" reduced gametophytes from the sexual tetraploid sporophytes (the dominant ploidy level in the sporophytes in this populations), to produce tetraploid, pentaploid, and hexaploid sporophytes, allowing for geneflow from the pentaploids to both the tetraploid and hexaploid populations. Similar evolutionary dynamics might operate in other fern complexes and need further investigation.
Collapse
Affiliation(s)
- Jan Ptáček
- Department of Botany, Faculty of Science, Charles University, Benátská 2, , 128 00, Praha, Czech Republic
| | - Libor Ekrt
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Ondřej Hornych
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Tomáš Urfus
- Department of Botany, Faculty of Science, Charles University, Benátská 2, , 128 00, Praha, Czech Republic.
| |
Collapse
|
12
|
Lakhotia SC. C-value paradox: Genesis in misconception that natural selection follows anthropocentric parameters of 'economy' and 'optimum'. BBA ADVANCES 2023; 4:100107. [PMID: 37868661 PMCID: PMC10587719 DOI: 10.1016/j.bbadva.2023.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023] Open
Abstract
C-value paradox refers to the lack of correlation between biological complexity and the intuitively expected protein-coding genomic information or DNA content. Here I discuss five questions about this paradox: i) Do biologically complex organisms carry more protein-coding genes? ii) Does variable accumulation of selfish/ junk/ parasitic DNA underlie the c-value paradox? iii) Can nucleoskeletal or nucleotypic function of DNA explain the enigma of orders of magnitude high levels of DNA in some 'lower' taxa or in taxonomically related species? iv) Can the newly understood noncoding but functional DNA explain the c-value paradox? and, v) Does natural selection uniformly apply the anthropocentric parameters for 'optimum' and 'economy'? Answers to Q.1-5 are largely negative. Biology presents numerous 'anomalous' examples where the same end function/ phenotype is attained in different organisms through astoundingly diverse ways that appear 'illogical' in our perceptions. Such evolutionary oddities exist because natural selection, unlike a designer, exploits random and stochastic events to modulate the existing system. Consequently, persistence of the new-found 'solution/s' often appear bizarre, uneconomic, and therefore, paradoxical to human logic. The unexpectedly high c-values in diverse organisms are irreversible evolutionary accidents that persisted, and the additional DNA often got repurposed over the evolutionary time scale. Therefore, the c-value paradox is a redundant issue. Future integrative biological studies should address evolutionary mechanisms and processes underlying sporadic DNA expansions/ contractions, and how the newly acquired DNA content has been repurposed in diverse groups.
Collapse
Affiliation(s)
- Subhash C. Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
13
|
Pyšek P, Lučanová M, Dawson W, Essl F, Kreft H, Leitch IJ, Lenzner B, Meyerson LA, Pergl J, van Kleunen M, Weigelt P, Winter M, Guo WY. Small genome size and variation in ploidy levels support the naturalization of vascular plants but constrain their invasive spread. THE NEW PHYTOLOGIST 2023; 239:2389-2403. [PMID: 37438886 DOI: 10.1111/nph.19135] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/17/2023] [Indexed: 07/14/2023]
Abstract
Karyological characteristics are among the traits underpinning the invasion success of vascular plants. Using 11 049 species, we tested the effects of genome size and ploidy levels on plant naturalization (species forming self-sustaining populations where they are not native) and invasion (naturalized species spreading rapidly and having environmental impact). The probability that a species naturalized anywhere in the world decreased with increasing monoploid genome size (DNA content of a single chromosome set). Naturalized or invasive species with intermediate monoploid genomes were reported from many regions, but those with either small or large genomes occurred in fewer regions. By contrast, large holoploid genome sizes (DNA content of the unreplicated gametic nucleus) constrained naturalization but favoured invasion. We suggest that a small genome is an advantage during naturalization, being linked to traits favouring adaptation to local conditions, but for invasive spread, traits associated with a large holoploid genome, where the impact of polyploidy may act, facilitate long-distance dispersal and competition with other species.
Collapse
Affiliation(s)
- Petr Pyšek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, CZ-128 44, Czech Republic
| | - Magdalena Lučanová
- Department of Evolutionary Biology of Plants, Institute of Botany, Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, CZ-370 05, Czech Republic
| | - Wayne Dawson
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Franz Essl
- Division of Bioinvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Wien, 1030, Austria
| | - Holger Kreft
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Büsgenweg 1, Göttingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Büsgenweg 1, Göttingen, D-37077, Germany
- Campus-Institute Data Science, Goldschmidtstraße 1, Göttingen, 37077, Germany
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Bernd Lenzner
- Division of Bioinvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Wien, 1030, Austria
| | - Laura A Meyerson
- University of Rhode Island, Natural Resources Science, 9 East Alumni Avenue, Kingston, 02881, RI, USA
| | - Jan Pergl
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, D-78464, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Patrick Weigelt
- Biodiversity, Macroecology & Biogeography, University of Göttingen, Büsgenweg 1, Göttingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Büsgenweg 1, Göttingen, D-37077, Germany
- Campus-Institute Data Science, Goldschmidtstraße 1, Göttingen, 37077, Germany
| | - Marten Winter
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig, 04103, Germany
| | - Wen-Yong Guo
- Research Centre for Global Change and Complex Ecosystems, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
14
|
Li D, Luo G, Guo S, Huang R, Yang J, Cao T, Yu J. Nuclear DNA Amounts in Chinese Bryophytes Estimated by Flow Cytometry: Variation Patterns and Biological Significances. PLANTS (BASEL, SWITZERLAND) 2023; 12:1564. [PMID: 37050190 PMCID: PMC10096954 DOI: 10.3390/plants12071564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
There exists an obvious gap in our knowledge of the nuclear DNA amount of bryophytes, not only in terms of the low number of species represented, but also in systematic and geographic representation. In order to increase our knowledge of nuclear DNA amounts and variation patterns in bryophytes, and their potential phylogenetic significances and influences on phenotypes, we used flow cytometry to determine the DNA 1C values of 209 bryophyte accessions, which belong to 145 mosses and 18 liverworts collected from China, by using Physcomitrella patens as a standard. We quantified the differences in DNA 1C values among different orders and families and constructed a phylogenetic tree of 112 mosses with four gene sequences (nad5, rbcL, trnL-F, and 18S-ITS1-5.8S-ITS2-26S). DNA 1C values were mapped onto the phylogenetic tree to test a potential phylogenetic signal. We also evaluated the correlations of the DNA 1C value with the sizes of individuals, leaves, cells, and spores by using a phylogenetically controlled analysis. New estimates of nuclear DNA amounts were reported for 145 species. The DNA 1C values of 209 bryophyte accessions ranged from 0.422 pg to 0.860 pg, with an average value of 0.561 pg, and a 2.04-fold variation covered the extremes of all the accessions. Although the values are not significantly different (p = 0.355) between mosses (0.528 pg) and liverworts (0.542 pg), there are variations to varying extents between some families and orders. The DNA 1C value size exerts a positive effect on the sizes of plants, leaves, and cells, but a negative effect on spore size. A weak phylogenetic signal is detected across most moss species. Phylogenetic signals are comparatively strong for some lineages. Our findings show that bryophytes have very small and highly constrained nuclear DNA amounts. There are nucleotype effects of nuclear DNA amounts for bryophytes at the individual, organ, and cell levels. We speculate that smaller nuclear DNA amounts are advantageous for bryophytes in dry environments. Significant differences in the DNA 1C values among some moss families and orders, as well as phylogenetic signals for some lineages, imply that nuclear DNA amount evolution in mosses seems to be unidirectional.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Yu
- Correspondence: (S.G.); (J.Y.)
| |
Collapse
|
15
|
Roxo G, Brilhante M, Moura M, de Sequeira MM, Silva L, Costa JC, Vasconcelos R, Talhinhas P, Romeiras MM. Genome size variation within Crithmum maritimum: Clues on the colonization of insular environments. Ecol Evol 2023; 13:e10009. [PMID: 37091572 PMCID: PMC10116024 DOI: 10.1002/ece3.10009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Angiosperms present an astonishing diversity of genome sizes that can vary intra- or interspecifically. The remarkable new cytogenomic data shed some light on our understanding of evolution, but few studies were performed with insular and mainland populations to test possible correlations with dispersal, speciation, and adaptations to insular environments. Here, patterns of cytogenomic diversity were assessed among geographic samples (ca. 114) of Crithmum maritimum (Apiaceae), collected across the Azores and Madeira archipelagos, as well as in adjacent continental areas of Portugal. Using flow cytometry, the results indicated a significant intraspecific genome size variation, spanning from reduced sizes in the insular populations to larger ones in the mainland populations. Moreover, there was a tendency for an increase in genome size along the mainland populations, associated with lower temperatures, higher precipitation, and lower precipitation seasonality. However, this gradient might be the result of historic phylogeographical events associated with previous dispersal and extinction of local populations. Overall, our findings provided evidence that smaller genome sizes might play a critical role in the colonization of islands, corroborating other studies that argue that organisms with smaller genomes use fewer resources, having a selective advantage under insular environments. Although further studies are needed to improve our understanding of the mechanisms underlying genome size evolution on islands, conservation strategies must be promoted to protect the rich cytogenomic diversity found among C. maritimum populations, which occur in coastal areas that are particularly threatened by human activity, pollution, invasive species, and climate changes.
Collapse
Affiliation(s)
- Guilherme Roxo
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA)Universidade de Lisboa, Tapada da AjudaLisbonPortugal
- CIBIO‐Azores, Departamento de BiologiaUniversidade dos AçoresPonta DelgadaPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus de VairãoVairãoPortugal
| | - Miguel Brilhante
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA)Universidade de Lisboa, Tapada da AjudaLisbonPortugal
| | - Mónica Moura
- CIBIO‐Azores, Departamento de BiologiaUniversidade dos AçoresPonta DelgadaPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus de VairãoVairãoPortugal
| | | | - Luís Silva
- CIBIO‐Azores, Departamento de BiologiaUniversidade dos AçoresPonta DelgadaPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus de VairãoVairãoPortugal
| | - José Carlos Costa
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA)Universidade de Lisboa, Tapada da AjudaLisbonPortugal
| | - Raquel Vasconcelos
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus de VairãoVairãoPortugal
| | - Pedro Talhinhas
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA)Universidade de Lisboa, Tapada da AjudaLisbonPortugal
| | - Maria M. Romeiras
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA)Universidade de Lisboa, Tapada da AjudaLisbonPortugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
| |
Collapse
|
16
|
Meiotic transmission patterns of additional genomic elements in Brachionus asplanchnoidis, a rotifer with intraspecific genome size variation. Sci Rep 2022; 12:20900. [PMID: 36463261 PMCID: PMC9719556 DOI: 10.1038/s41598-022-25566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022] Open
Abstract
Intraspecific genome size (GS) variation in Eukaryotes is often mediated by additional, nonessential genomic elements. Physically, such additional elements may be represented by supernumerary (B-)chromosomes or by large heterozygous insertions into the regular chromosome set. Here we analyze meiotic transmission patterns of Megabase-sized, independently segregating genomic elements (ISEs) in Brachionus asplanchnoidis, a planktonic rotifer that displays an up to two-fold intraspecific GS variation due to variation in size and number of these elements. To gain insights into the meiotic transmission patterns of ISEs, we measured GS distributions of haploid males produced by individual mother clones using flow cytometry and compared these distributions to theoretical distributions expected under a range of scenarios. These scenarios considered transmission biases resembling (meiotic) drive, or cosegregation biases, e.g., if pairs of ISEs preferentially migrated towards the same pole during meiosis. We found that the inferred transmission patterns were diverse and ranged from positive biases (suggesting drive) to negative biases (suggesting drag), depending on rotifer clone and its ISE composition. Additionally, we obtained evidence for a negative cosegregation bias in some of the rotifer clones, i.e., pairs of ISEs exhibited an increased probability of migrating towards opposite poles during meiosis. Strikingly, these transmission and segregation patterns were more similar among members of a genetically homogeneous inbred line than among outbred members of the population. Comparisons between early and late stages of haploid male embryonic development (e.g., young synchronized male eggs vs. hatched males) showed very similar GS distributions, suggesting that transmission biases occur very early in male development, or even during meiosis. Very large genome size was associated with reduced male embryonic survival, suggesting that excessive amounts of ISEs might be detrimental to male fitness. Altogether, our results indicate considerable functional diversity of ISEs in B. asplanchnoidis, with consequences on meiotic transmission and embryonic survival.
Collapse
|
17
|
Zhukovskaya NV, Ivanov VB. Dependence of the Duration of Periods of the Mitotic Cycle on the Holoploid DNA Content in Root Apical Meristems. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422050071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Van Drunen WE, Friedman J. Autopolyploid establishment depends on life-history strategy and the mating outcomes of clonal architecture. Evolution 2022; 76:1953-1970. [PMID: 35861365 DOI: 10.1111/evo.14582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 01/22/2023]
Abstract
Polyploidy is a significant component in the evolution of many taxa, particularly plant groups. However, new polyploids face substantial fitness disadvantages due to a lack of same-cytotype mates, and the factors promoting or preventing polyploid establishment in natural populations are often unclear. We develop spatially explicit agent-based simulation models to test the hypothesis that a perennial life history and clonal propagation facilitate the early stages of polyploid establishment and persistence. Our models show that polyploids are more likely to establish when they have longer life spans than diploids, especially when self-fertilization rates are high. Polyploids that combine sexual and clonal reproduction can establish across a wide range of life histories, but their success is moderated by clonal strategy. By tracking individuals and mating events, we reveal that clonal architecture has a substantial impact on the spatial structure of the mixed diploid-polyploid population during polyploid establishment: altering patterns of mating within or between cytotypes via geitonogamous self-fertilization, the mechanisms through which polyploid establishment proceeds, and the final composition of the polyploid population. Overall, our findings provide novel insight into the role of clonal structure in modulating the complex relationship between polyploidy, perenniality, and clonality and offer testable predictions for future empirical work.
Collapse
Affiliation(s)
- Wendy E Van Drunen
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.,Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Jannice Friedman
- Biology Department, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
19
|
Luque JMR, Moreno EMS, Kovalsky IE, Seijo JG, SolÍs Neffa VG. Polyploidy, genome size variation and diversification in an autopolyploid complex: the case of Turnera sidoides (Passifloraceae, Turneroideae). SYST BIODIVERS 2022. [DOI: 10.1080/14772000.2022.2036854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Juan M. Roggero Luque
- Laboratorio de Citogenética y Evolución Vegetal, Instituto de Botánica del Nordeste (UNNE-CONICET), Sargento Cabral 2131, Corrientes, 3400, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, Corrientes, 3400, Argentina
| | - E. M. Sara Moreno
- Laboratorio de Citogenética y Evolución Vegetal, Instituto de Botánica del Nordeste (UNNE-CONICET), Sargento Cabral 2131, Corrientes, 3400, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, Corrientes, 3400, Argentina
| | - Ivana E. Kovalsky
- Laboratorio de Citogenética y Evolución Vegetal, Instituto de Botánica del Nordeste (UNNE-CONICET), Sargento Cabral 2131, Corrientes, 3400, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, Corrientes, 3400, Argentina
| | - J. Guillermo Seijo
- Laboratorio de Citogenética y Evolución Vegetal, Instituto de Botánica del Nordeste (UNNE-CONICET), Sargento Cabral 2131, Corrientes, 3400, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, Corrientes, 3400, Argentina
| | - Viviana G. SolÍs Neffa
- Laboratorio de Citogenética y Evolución Vegetal, Instituto de Botánica del Nordeste (UNNE-CONICET), Sargento Cabral 2131, Corrientes, 3400, Argentina
- Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, Corrientes, 3400, Argentina
| |
Collapse
|
20
|
Kocjan D, Dolenc Koce J, Etl F, Dermastia M. Genome Size of Life Forms of Araceae-A New Piece in the C-Value Puzzle. PLANTS (BASEL, SWITZERLAND) 2022; 11:334. [PMID: 35161315 PMCID: PMC8840116 DOI: 10.3390/plants11030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The genome size of an organism is an important trait that has predictive values applicable to various scientific fields, including ecology. The main source of plant C-values is the Plant DNA C-values database of the Royal Botanic Gardens Kew, which currently contains 12,273 estimates. However, it covers only 2.9% of known angiosperm species and has gaps in the life form and geographic distribution of plants. Only 4.5% of C-value estimates come from researchers in Central and South America. This study provides 41 new C-values for the aroid family (Araceae), collected in the Piedras Blancas National Park area in southern Costa Rica, including terrestrial, epiphytic and aquatic life forms. Data from our study are combined with C-value entries in the RBGK database for Araceae. The analysis reveals a wider range of C-values for terrestrial aroids, consistent with other terrestrial plants, a trend toward slightly lower C-values for epiphytic forms, which is more consistent for obligate epiphytes, and comparatively low C-values for aquatic aroids.
Collapse
Affiliation(s)
- Domen Kocjan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Jasna Dolenc Koce
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Florian Etl
- Department of Botany and Biodiversity Research, University of Vienna, A-1030 Wien, Austria;
| | - Marina Dermastia
- Department of Biotechnology and Systems Biology, National Institute of Biology, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
21
|
Zhang FP, Zhang SB. Genome Size and Labellum Epidermal Cell Size Are Evolutionarily Correlated With Floral Longevity in Paphiopedilum Species. FRONTIERS IN PLANT SCIENCE 2021; 12:793516. [PMID: 34975981 PMCID: PMC8716874 DOI: 10.3389/fpls.2021.793516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/19/2021] [Indexed: 06/02/2023]
Abstract
Genome size is known to influence phenotypic traits in leaves and seeds. Although genome size is closely related to cellular and developmental traits across biological kingdoms, floral longevity is a floral trait with important fitness consequence, but less is known about the link between floral longevity and sizes of genomes and cells. In this study, we examined evolutionary coordination between genome size, floral longevity, and epidermal cell size in flowers and leaves in 13 Paphiopedilum species. We found that, across all the study species, the genome size was positively correlated with floral longevity but negatively associated with labellum epidermal cell size, and a negative relationship was found between floral longevity and labellum epidermal cell size. This suggested that genome size is potentially correlated with floral longevity, and genome size has an important impact on life-history trait. In addition, genome size was positively correlated with leaf epidermal cell size, which was different from the relationship in flower due to different selective pressures they experienced or different functions they performed. Therefore, genome size constraints floral longevity, and it is a strong predictor of cell size. The impact of genome size on reproduction might have more implications for the evolution of flowering plants and pollination ecology.
Collapse
Affiliation(s)
- Feng-Ping Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
22
|
Williams JH. Consequences of whole genome duplication for 2n pollen performance. PLANT REPRODUCTION 2021; 34:321-334. [PMID: 34302535 DOI: 10.1007/s00497-021-00426-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
The vegetative cell of the angiosperm male gametophyte (pollen) functions as a free-living, single-celled organism that both produces and transports sperm to egg. Whole-genome duplication (WGD) should have strong effects on pollen because of the haploid to diploid transition and because of both genetic and epigenetic effects on cell-level phenotypes. To disentangle historical effects of WGD on pollen performance, studies can compare 1n pollen from diploids to neo-2n pollen from diploids and synthetic autotetraploids to older 2n pollen from established neo-autotetraploids. WGD doubles both gene number and bulk nuclear DNA mass, and a substantial proportion of diploid and autotetraploid heterozygosity can be transmitted to 2n pollen. Relative to 1n pollen, 2n pollen can exhibit heterosis due to higher gene dosage, higher heterozygosity and new allelic interactions. Doubled genome size also has consequences for gene regulation and expression as well as epigenetic effects on cell architecture. Pollen volume doubling is a universal effect of WGD, whereas an increase in aperture number is common among taxa with simultaneous microsporogenesis and pored apertures, mostly eudicots. WGD instantly affects numerous evolved compromises among mature pollen functional traits and these are rapidly shaped by highly diverse tissue interactions and pollen competitive environments in the early post-WGD generations. 2n pollen phenotypes generally incur higher performance costs, and the degree to which these are met or evolve by scaling up provisioning and metabolic vigor needs further study.
Collapse
Affiliation(s)
- Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
23
|
Barceló-Anguiano M, Holbrook NM, Hormaza JI, Losada JM. Changes in ploidy affect vascular allometry and hydraulic function in Mangifera indica trees. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:541-554. [PMID: 34403543 DOI: 10.1111/tpj.15460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The enucleated vascular elements of the xylem and the phloem offer an excellent system to test the effect of ploidy on plant function because variation in vascular geometry has a direct influence on transport efficiency. However, evaluations of conduit sizes in polyploid plants have remained elusive, most remarkably in woody species. We used a combination of molecular, physiological and microscopy techniques to model the hydraulic resistance between source and sinks in tetraploid and diploid mango trees. Tetraploids exhibited larger chloroplasts, mesophyll cells and stomatal guard cells, resulting in higher leaf elastic modulus and lower dehydration rates, despite the high water potentials of both ploidies in the field. Both the xylem and the phloem displayed a scaling of conduits with ploidy, revealing attenuated hydraulic resistance in tetraploids. Conspicuous wall hygroscopic moieties in the cells involved in transpiration and transport indicate a role in volumetric adjustments as a result of turgor change in both ploidies. In autotetraploids, the enlargement of organelles, cells and tissues, which are critical for water and photoassimilate transport at long distances, point to major physiological novelties associated with whole-genome duplication.
Collapse
Affiliation(s)
- Miguel Barceló-Anguiano
- Institute for Mediterranean and Subtropical Horticulture 'La Mayora' - CSIC - UMA, Avda. Dr. Wienberg s/n, Málaga, 29750, Spain
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
| | - José I Hormaza
- Institute for Mediterranean and Subtropical Horticulture 'La Mayora' - CSIC - UMA, Avda. Dr. Wienberg s/n, Málaga, 29750, Spain
| | - Juan M Losada
- Institute for Mediterranean and Subtropical Horticulture 'La Mayora' - CSIC - UMA, Avda. Dr. Wienberg s/n, Málaga, 29750, Spain
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts, 02138, USA
| |
Collapse
|
24
|
Senderowicz M, Nowak T, Rojek-Jelonek M, Bisaga M, Papp L, Weiss-Schneeweiss H, Kolano B. Descending Dysploidy and Bidirectional Changes in Genome Size Accompanied Crepis (Asteraceae) Evolution. Genes (Basel) 2021; 12:1436. [PMID: 34573417 PMCID: PMC8472258 DOI: 10.3390/genes12091436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
The evolution of the karyotype and genome size was examined in species of Crepis sensu lato. The phylogenetic relationships, inferred from the plastid and nrITS DNA sequences, were used as a framework to infer the patterns of karyotype evolution. Five different base chromosome numbers (x = 3, 4, 5, 6, and 11) were observed. A phylogenetic analysis of the evolution of the chromosome numbers allowed the inference of x = 6 as the ancestral state and the descending dysploidy as the major direction of the chromosome base number evolution. The derived base chromosome numbers (x = 5, 4, and 3) were found to have originated independently and recurrently in the different lineages of the genus. A few independent events of increases in karyotype asymmetry were inferred to have accompanied the karyotype evolution in Crepis. The genome sizes of 33 Crepis species differed seven-fold and the ancestral genome size was reconstructed to be 1C = 3.44 pg. Both decreases and increases in the genome size were inferred to have occurred within and between the lineages. The data suggest that, in addition to dysploidy, the amplification/elimination of various repetitive DNAs was likely involved in the genome and taxa differentiation in the genus.
Collapse
Affiliation(s)
- Magdalena Senderowicz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (M.S.); (T.N.); (M.R.-J.); (M.B.)
| | - Teresa Nowak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (M.S.); (T.N.); (M.R.-J.); (M.B.)
| | - Magdalena Rojek-Jelonek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (M.S.); (T.N.); (M.R.-J.); (M.B.)
| | - Maciej Bisaga
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (M.S.); (T.N.); (M.R.-J.); (M.B.)
| | - Laszlo Papp
- Eötvös Loránd University Botanical Garden, Illés u. 25, 1083 Budapest, Hungary;
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria;
| | - Bozena Kolano
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (M.S.); (T.N.); (M.R.-J.); (M.B.)
| |
Collapse
|
25
|
Chumová Z, Mandáková T, Trávníček P. On the Origin of Tetraploid Vernal Grasses ( Anthoxanthum) in Europe. Genes (Basel) 2021; 12:966. [PMID: 34202779 PMCID: PMC8308110 DOI: 10.3390/genes12070966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Polyploidy has played a crucial role in the evolution of many plant taxa, namely in higher latitudinal zones. Surprisingly, after several decades of an intensive research on polyploids, there are still common polyploid species whose evolutionary history is virtually unknown. Here, we addressed the origin of sweet vernal grass (Anthoxanthum odoratum) using flow cytometry, DNA sequencing, and in situ hybridization-based cytogenetic techniques. An allotetraploid and polytopic origin of the species has been verified. The chromosome study reveals an extensive variation between the European populations. In contrast, an autopolyploid origin of the rarer tetraploid vernal grass species, A. alpinum, has been corroborated. Diploid A. alpinum played an essential role in the polyploidization of both European tetraploids studied.
Collapse
Affiliation(s)
- Zuzana Chumová
- Czech Academy of Sciences, Institute of Botany, CZ-242 53 Průhonice, Czech Republic;
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 00 Prague, Czech Republic
| | - Terezie Mandáková
- CEITEC, Masaryk University, CZ-625 00 Brno, Czech Republic;
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Pavel Trávníček
- Czech Academy of Sciences, Institute of Botany, CZ-242 53 Průhonice, Czech Republic;
| |
Collapse
|
26
|
Stelzer CP, Pichler M, Hatheuer A. Linking genome size variation to population phenotypic variation within the rotifer, Brachionus asplanchnoidis. Commun Biol 2021; 4:596. [PMID: 34011946 PMCID: PMC8134563 DOI: 10.1038/s42003-021-02131-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic organisms usually contain much more genomic DNA than expected from their biological complexity. In explaining this pattern, selection-based hypotheses suggest that genome size evolves through selection acting on correlated life history traits, implicitly assuming the existence of phenotypic effects of (extra) genomic DNA that are independent of its information content. Here, we present conclusive evidence of such phenotypic effects within a well-mixed natural population that shows heritable variation in genome size. We found that genome size is positively correlated with body size, egg size, and embryonic development time in a population of the monogonont rotifer Brachionus asplanchnoidis. The effect on embryonic development time was mediated partly by an indirect effect (via egg size), and a direct effect, the latter indicating an increased replication cost of the larger amounts of DNA during mitosis. Our results suggest that selection-based change of genome size can operate in this population, provided it is strong enough to overcome drift or mutational change of genome size.
Collapse
Affiliation(s)
| | - Maria Pichler
- University of Innsbruck, Mondseestr. 9, 5310, Mondsee, Austria
| | - Anita Hatheuer
- University of Innsbruck, Mondseestr. 9, 5310, Mondsee, Austria
| |
Collapse
|
27
|
Genome size variation in Cactaceae and its relationship with invasiveness and seed traits. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02557-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Rees TAV, Raven JA. The maximum growth rate hypothesis is correct for eukaryotic photosynthetic organisms, but not cyanobacteria. THE NEW PHYTOLOGIST 2021; 230:601-611. [PMID: 33449358 PMCID: PMC8048539 DOI: 10.1111/nph.17190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/23/2020] [Indexed: 05/12/2023]
Abstract
The (maximum) growth rate (µmax ) hypothesis predicts that cellular and tissue phosphorus (P) concentrations should increase with increasing growth rate, and RNA should also increase as most of the P is required to make ribosomes. Using published data, we show that though there is a strong positive relationship between the µmax of all photosynthetic organisms and their P content (% dry weight), leading to a relatively constant P productivity, the relationship with RNA content is more complex. In eukaryotes there is a strong positive relationship between µmax and RNA content expressed as % dry weight, and RNA constitutes a relatively constant 25% of total P. In prokaryotes the rRNA operon copy number is the important determinant of the amount of RNA present in the cell. The amount of phospholipid expressed as % dry weight increases with increasing µmax in microalgae. The relative proportions of each of the five major P-containing constituents is remarkably constant, except that the proportion of RNA is greater and phospholipids smaller in prokaryotic than eukaryotic photosynthetic organisms. The effect of temperature differences between studies was minor. The evidence for and against P-containing constituents other than RNA being involved with ribosome synthesis and functioning is discussed.
Collapse
Affiliation(s)
- T. A. V. Rees
- Leigh Marine LaboratoryInstitute of Marine ScienceUniversity of AucklandAuckland1142New Zealand
| | - John A. Raven
- Division of Plant ScienceUniversity of Dundee at the James Hutton InstituteInvergowrie, Dundee,DD2 5DAUK
- Climate Change ClusterFaculty of ScienceUniversity of TechnologySydney, UltimoNSW2007Australia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWA6009Australia
| |
Collapse
|
29
|
Glazier DS. Genome Size Covaries More Positively with Propagule Size than Adult Size: New Insights into an Old Problem. BIOLOGY 2021; 10:270. [PMID: 33810583 PMCID: PMC8067107 DOI: 10.3390/biology10040270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The body size and (or) complexity of organisms is not uniformly related to the amount of genetic material (DNA) contained in each of their cell nuclei ('genome size'). This surprising mismatch between the physical structure of organisms and their underlying genetic information appears to relate to variable accumulation of repetitive DNA sequences, but why this variation has evolved is little understood. Here, I show that genome size correlates more positively with egg size than adult size in crustaceans. I explain this and comparable patterns observed in other kinds of animals and plants as resulting from genome size relating strongly to cell size in most organisms, which should also apply to single-celled eggs and other reproductive propagules with relatively few cells that are pivotal first steps in their lives. However, since body size results from growth in cell size or number or both, it relates to genome size in diverse ways. Relationships between genome size and body size should be especially weak in large organisms whose size relates more to cell multiplication than to cell enlargement, as is generally observed. The ubiquitous single-cell 'bottleneck' of life cycles may affect both genome size and composition, and via both informational (genotypic) and non-informational (nucleotypic) effects, many other properties of multicellular organisms (e.g., rates of growth and metabolism) that have both theoretical and practical significance.
Collapse
|
30
|
Brilhante M, Roxo G, Catarino S, dos Santos P, Reyes-Betancort JA, Caujapé-Castells J, Sequeira MM, Talhinhas P, Romeiras MM. Diversification of Aeonium Species Across Macaronesian Archipelagos: Correlations Between Genome-Size Variation and Their Conservation Status. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.607338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rich endemic flora of the Macaronesian Islands places these oceanic archipelagos among the top biodiversity hotspots worldwide. The radiations that have determined the evolution of many of these insular lineages resulted in a wealth of endemic species, many of which occur in a wide range of ecological niches, but show small distribution areas in each of them. Aeonium (Crassulaceae) is the most speciose lineage in the Canary Islands (ca. 40 taxa), and as such can be considered a good model system to understand the diversification dynamics of oceanic endemic floras. The present study aims to assess the genome size variation within Aeonium distribution, i.e., the Macaronesian archipelagos of Madeira, Canaries and Cabo Verde, and analyse it together with information on distribution (i.e., geography and conservation status), taxonomy (i.e., sections), morphological traits (i.e., growth-form), geological data (i.e., island's geological age), and environmental variables (i.e., altitude, annual mean temperature, and precipitation). Based on extensive fieldwork, a cytogeographic screening of 24 Aeonium species was performed. The conservation status of these species was assessed based on IUCN criteria. 61% of the taxa were found to be threatened (4% Endangered and 57% Vulnerable). For the first time, the genome size of a comprehensive sample of Aeonium across the Macaronesian archipelagos was estimated, and considerable differences in Cx-values were found, ranging from 0.984 pg (A. dodrantale) to 2.768 pg (A. gorgoneum). An overall positive correlation between genome size and conservation status was found, with the more endangered species having the larger genomes on average. However, only slight relationships were found between genome size, morphological traits, and environmental variables. These results underscore the importance of characterizing the cytogenomic diversity and conservation status of endemic plants found in Macaronesian Islands, providing, therefore, new data to establish conservation priorities.
Collapse
|
31
|
Lunkova NF, Zhukovskaya NV, Ivanov VB. Relationship of the Holoploid DNA Content with the Life Form and Duration of Plants’ Life Cycle. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420060041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Siljak-Yakovlev S, Lamy F, Takvorian N, Valentin N, Gouesbet V, Hennion F, Robert T. Genome size and chromosome number of ten plant species from Kerguelen Islands. Polar Biol 2020. [DOI: 10.1007/s00300-020-02755-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Liu L, Qin L, Zhou Z, Hendriks WGHM, Liu S, Wei Y. Refining the Life Cycle of Plasmodiophora brassicae. PHYTOPATHOLOGY 2020; 110:1704-1712. [PMID: 32407251 DOI: 10.1094/phyto-02-20-0029-r] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As a soilborne protist pathogen, Plasmodiophora brassicae causes the devastating clubroot disease on Brassicaeae crops worldwide. Due to its intracellular obligate biotrophic nature, the life cycle of P. brassicae is still not fully understood. Here, we used fluorescent probe-based confocal microscopy and transmission electron microscopy (TEM) to investigate the infection process of P. brassicae on the susceptible host Arabidopsis under controlled conditions. We found that P. brassicae can initiate the primary infection in both root hairs and epidermal cells, producing the uninucleate primary plasmodium at 1 day postinoculation (dpi). After that, the developed multinucleate primary plasmodium underwent condensing and cytoplasm cleavage into uninucleate zoosporangia from 1 to 4 dpi. This was subsequently followed by the formation of multinucleate zoosporangia and the production of secondary zoospores within zoosporangium. Importantly, the secondary zoospores performed a conjugation in the root epidermal cells after their release. TEM revealed extensive uninucleate secondary plasmodium in cortical cells at 8 dpi, indicating the establishment of the secondary infection. The P. brassicae subsequently developed into binucleate, quadrinucleate, and multinucleate secondary plasmodia from 10 to 15 dpi, during which the clubroot symptoms appeared. The uninucleate resting spores were first observed in the cortical cells at 24 dpi, marking the completion of a life cycle. We also provided evidence that the secondary infection of P. brassicae may represent the diploid sexual life stage. From these findings, we propose a refined life cycle of P. brassicae which will contribute to understanding of the complicated infection biology of P. brassicae.
Collapse
Affiliation(s)
- Lijiang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Li Qin
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Zhuqing Zhou
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | | | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
34
|
Evaluation of genome size and quantitative features of the dolipore septum as taxonomic predictors for the Serendipita 'williamsii' species complex. Fungal Biol 2020; 124:781-800. [PMID: 32883429 DOI: 10.1016/j.funbio.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 05/23/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022]
Abstract
Despite multiple taxonomic revisions, several uncertainties at the genus and species level remain to be resolved within the Serendipitaceae family (Sebacinales). This volatile classification is attributed to the limited number of available axenic cultures and the scarcity of useful morphological traits. In the current study, we attempted to discover alternative taxonomic markers not relying on DNA sequences to differentiate among the closely related members of our Congolese Serendipita isolate collection and the reference strains S. indica (syn. Piriformospora indica) and S. williamsii (syn. P. williamsii). We demonstrated that nuclear distribution across hyphal cells and genome size (determined by flow cytometry) did not have enough resolving power, but quantitative and qualitative variations in the ultrastructure of the dolipore septa investigated by transmission electron microscopy did provide useful markers. Multivariate analysis revealed that subtle differences in ultrastructural characteristics of the parenthesome and the attached endoplasmic reticulum are most relevant when studying this fungal group. Moreover, the observed clustering pattern showed that there might be more diversity amongst the Congolese isolates within the S. 'williamsii' species complex than previously anticipated based on molecular data. Altogether, our results provide novel perspectives on the use of integrative approaches to support sebacinoid and Serendipitaceae taxonomy.
Collapse
|
35
|
Choi IY, Kwon EC, Kim NS. The C- and G-value paradox with polyploidy, repeatomes, introns, phenomes and cell economy. Genes Genomics 2020; 42:699-714. [DOI: 10.1007/s13258-020-00941-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
|
36
|
Canapa A, Biscotti MA, Barucca M, Carducci F, Carotti E, Olmo E. Shedding light upon the complex net of genome size, genome composition and environment in chordates. EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1747558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- A. Canapa
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - M. A. Biscotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - M. Barucca
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - F. Carducci
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - E. Carotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - E. Olmo
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
37
|
Tapia-Pastrana F, Delgado-Salinas A, Caballero J. Patterns of chromosomal variation in Mexican species of Aeschynomene (Fabaceae, Papilionoideae) and their evolutionary and taxonomic implications. COMPARATIVE CYTOGENETICS 2020; 14:157-182. [PMID: 32206208 PMCID: PMC7080853 DOI: 10.3897/compcytogen.v14i1.47264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
A cytogenetic analysis of sixteen taxa of the genus Aeschynomene Linnaeus, 1753, which includes species belonging to both subgenera Aeschynomene (Léonard, 1954) and Ochopodium (Vogel, 1838) J. Léonard, 1954, was performed. All studied species had the same chromosome number (2n = 20) but exhibited karyotype diversity originating in different combinations of metacentric, submetacentric and subtelocentric chromosomes, chromosome size and number of SAT chromosomes. The plasticity of the genomes included the observation in a taxon belonging to the subgenus Aeschynomene of an isolated spherical structure similar in appearance to the extra chromosomal circular DNA observed in other plant genera. By superimposing the karyotypes in a recent phylogenetic tree, a correspondence between morphology, phylogeny and cytogenetic characteristics of the taxa included in the subgenus Aeschynomene is observed. Unlike subgenus Aeschynomene, the species of Ochopodium exhibit notable karyotype heterogeneity. However the limited cytogenetic information recorded prevents us from supporting the proposal of their taxonomic separation and raise it to the genus category. It is shown that karyotype information is useful in the taxonomic delimitation of Aeschynomene and that the diversity in the diploid level preceded the hybridization/polyploidization demonstrated in the genus. The systematic implications of our results and their value can be extended to other Dalbergieae genera as knowledge about the chromosomal structure and its evolution increases.
Collapse
Affiliation(s)
- Fernando Tapia-Pastrana
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Laboratorio de Genecología, Batalla 5 de Mayo s/n esquina Fuerte de Loreto, Col. Ejército de Oriente, Iztapalapa, C.P. 09230, Ciudad de México, MexicoUniversidad Nacional Autónoma de MéxicoMéxicoMexico
| | - Alfonso Delgado-Salinas
- Instituto de Biología, Departamento de Botánica, Universidad Nacional Autónoma de México, Apartado Postal 70-233, 04510, Cd. de México, MexicoUniversidad Nacional Autónoma de MéxicoMéxicoMexico
| | - Javier Caballero
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Campos Deportivos, Ciudad Universitaria, Coyoacán 04510, Cd. de México, MexicoUniversidad Nacional Autónoma de MéxicoMéxicoMexico
| |
Collapse
|
38
|
Hjelmen CE, Parrott JJ, Srivastav SP, McGuane AS, Ellis LL, Stewart AD, Johnston JS, Tarone AM. Effect of Phenotype Selection on Genome Size Variation in Two Species of Diptera. Genes (Basel) 2020; 11:genes11020218. [PMID: 32093067 PMCID: PMC7074110 DOI: 10.3390/genes11020218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 11/16/2022] Open
Abstract
Genome size varies widely across organisms yet has not been found to be related to organismal complexity in eukaryotes. While there is no evidence for a relationship with complexity, there is evidence to suggest that other phenotypic characteristics, such as nucleus size and cell-cycle time, are associated with genome size, body size, and development rate. However, what is unknown is how the selection for divergent phenotypic traits may indirectly affect genome size. Drosophila melanogaster were selected for small and large body size for up to 220 generations, while Cochliomyia macellaria were selected for 32 generations for fast and slow development. Size in D. melanogaster significantly changed in terms of both cell-count and genome size in isolines, but only the cell-count changed in lines which were maintained at larger effective population sizes. Larger genome sizes only occurred in a subset of D. melanogaster isolines originated from flies selected for their large body size. Selection for development time did not change average genome size yet decreased the within-population variation in genome size with increasing generations of selection. This decrease in variation and convergence on a similar mean genome size was not in correspondence with phenotypic variation and suggests stabilizing selection on genome size in laboratory conditions.
Collapse
Affiliation(s)
- Carl E. Hjelmen
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.J.P.); (S.P.S.); (A.S.M.); (L.L.E.); (J.S.J.); (A.M.T.)
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
- Correspondence: or
| | - Jonathan J. Parrott
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.J.P.); (S.P.S.); (A.S.M.); (L.L.E.); (J.S.J.); (A.M.T.)
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Satyam P. Srivastav
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.J.P.); (S.P.S.); (A.S.M.); (L.L.E.); (J.S.J.); (A.M.T.)
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Alexander S. McGuane
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.J.P.); (S.P.S.); (A.S.M.); (L.L.E.); (J.S.J.); (A.M.T.)
- Harris County Institute of Forensic Sciences, 1861 Old Spanish Trail, Houston, TX 77054, USA
| | - Lisa L. Ellis
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.J.P.); (S.P.S.); (A.S.M.); (L.L.E.); (J.S.J.); (A.M.T.)
- Department of Biology, Houston Baptist University, Houston, TX 77074, USA
| | | | - J. Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.J.P.); (S.P.S.); (A.S.M.); (L.L.E.); (J.S.J.); (A.M.T.)
| | - Aaron M. Tarone
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.J.P.); (S.P.S.); (A.S.M.); (L.L.E.); (J.S.J.); (A.M.T.)
| |
Collapse
|
39
|
Pacey EK, Maherali H, Husband BC. The influence of experimentally induced polyploidy on the relationships between endopolyploidy and plant function in Arabidopsis thaliana. Ecol Evol 2020; 10:198-216. [PMID: 31988723 PMCID: PMC6972801 DOI: 10.1002/ece3.5886] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/27/2019] [Accepted: 11/10/2019] [Indexed: 01/01/2023] Open
Abstract
Whole genome duplication, leading to polyploidy and endopolyploidy, occurs in all domains and kingdoms and is especially prevalent in vascular plants. Both polyploidy and endopolyploidy increase cell size, but it is unclear whether both processes have similar effects on plant morphology and function, or whether polyploidy influences the magnitude of endopolyploidy. To address these gaps in knowledge, fifty-five geographically separated diploid accessions of Arabidopsis thaliana that span a gradient of endopolyploidy were experimentally manipulated to induce polyploidy. Both the diploids and artificially induced tetraploids were grown in a common greenhouse environment and evaluated with respect to nine reproductive and vegetative characteristics. Induced polyploidy decreased leaf endopolyploidy and stem endopolyploidy along with specific leaf area and stem height, but increased days to bolting, leaf size, leaf dry mass, and leaf water content. Phenotypic responses to induced polyploidy varied significantly among accessions but this did not affect the relationship between phenotypic traits and endopolyploidy. Our results provide experimental support for a trade-off between induced polyploidy and endopolyploidy, which caused induced polyploids to have lower endopolyploidy than diploids. Though polyploidy did not influence the relationship between endopolyploidy and plant traits, phenotypic responses to experimental genome duplication could not be easily predicted because of strong cytotype by accession interactions.
Collapse
Affiliation(s)
- Evan K. Pacey
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | - Hafiz Maherali
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | - Brian C. Husband
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| |
Collapse
|
40
|
Stelzer CP, Pichler M, Stadler P, Hatheuer A, Riss S. Within-Population Genome Size Variation is Mediated by Multiple Genomic Elements That Segregate Independently during Meiosis. Genome Biol Evol 2019; 11:3424-3435. [PMID: 31742335 PMCID: PMC7145553 DOI: 10.1093/gbe/evz253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 01/14/2023] Open
Abstract
Within-species variation in genome size has been documented in many animals and plants. Despite its importance for understanding eukaryotic genome diversity, there is only sparse knowledge about how individual-level processes mediate genome size variation in populations. Here, we study a natural population of the rotifer Brachionus asplanchnoidis whose members differ up to 1.9-fold in diploid genome size, but were still able to interbreed and produce viable offspring. We show that genome size is highly heritable and can be artificially selected up or down, but not below a certain basal diploid genome size for this species. Analyses of segregation patterns in haploid males reveal that large genomic elements (several megabases in size) provide the substrate of genome size variation. These elements, and their segregation patterns, explain the generation of new genome size variants, the short-term evolutionary potential of genome size change in populations, and some seemingly paradoxical patterns, like an increase in genome size variation among highly inbred lines. Our study suggests that a conceptual model involving only two variables, 1) a basal genome size of the population, and 2) a vector containing information on additional elements that may increase genome size in this population (size, number, and meiotic segregation behavior), can effectively address most scenarios of short-term evolutionary change of genome size in a population.
Collapse
Affiliation(s)
- Claus-Peter Stelzer
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Maria Pichler
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Peter Stadler
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Anita Hatheuer
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Simone Riss
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| |
Collapse
|
41
|
Baniaga AE, Marx HE, Arrigo N, Barker MS. Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecol Lett 2019; 23:68-78. [PMID: 31637845 DOI: 10.1111/ele.13402] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/01/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023]
Abstract
Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids. We found that polyploids are often more climatically differentiated from their diploid parents than the diploids are from each other. Consistent with this pattern, we estimated that polyploid species generally have higher rates of multivariate niche differentiation than their diploid relatives. In contrast to recent analyses, our results confirm that ecological niche differentiation is an important component of polyploid speciation and that niche differentiation is often significantly faster in polyploids.
Collapse
Affiliation(s)
- Anthony E Baniaga
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Hannah E Marx
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nils Arrigo
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
42
|
Pyšek P, Skálová H, Čuda J, Guo WY, Suda J, Doležal J, Kauzál O, Lambertini C, Lučanová M, Mandáková T, Moravcová L, Pyšková K, Brix H, Meyerson LA. Small genome separates native and invasive populations in an ecologically important cosmopolitan grass. Ecology 2019; 99:79-90. [PMID: 29313970 DOI: 10.1002/ecy.2068] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/08/2017] [Accepted: 10/16/2017] [Indexed: 01/24/2023]
Abstract
The literature suggests that small genomes promote invasion in plants, but little is known about the interaction of genome size with other traits or about the role of genome size during different phases of the invasion process. By intercontinental comparison of native and invasive populations of the common reed Phragmites australis, we revealed a distinct relationship between genome size and invasiveness at the intraspecific level. Monoploid genome size was the only significant variable that clearly separated the North American native plants from those of European origin. The mean Cx value (the amount of DNA in one chromosome set) for source European native populations was 0.490 ± 0.007 (mean ± SD), for North American invasive 0.506 ± 0.020, and for North American native 0.543 ± 0.021. Relative to native populations, the European populations that successfully invaded North America had a smaller genome that was associated with plant traits favoring invasiveness (long rhizomes, early emerging abundant shoots, resistance to aphid attack, and low C:N ratio). The knowledge that invasive populations within species can be identified based on genome size can be applied to screen potentially invasive populations of Phragmites in other parts of the world where they could grow in mixed stands with native plants, as well as to other plant species with intraspecific variation in invasion potential. Moreover, as small genomes are better equipped to respond to extreme environmental conditions such as drought, the mechanism reported here may represent an emerging driver for future invasions and range expansions.
Collapse
Affiliation(s)
- Petr Pyšek
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Hana Skálová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Jan Čuda
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Wen-Yong Guo
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | | | - Jan Doležal
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Museum and Gallery of the Orlické hory Mts, Jiráskova 2, CZ-516 01, Rychnov nad Kněžnou, Czech Republic
| | - Ondřej Kauzál
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Carla Lambertini
- Department of Bioscience, Faculty of Science, Aarhus University, Ole Worms Alle 1, DK-8000, Aarhus C, Denmark
| | - Magdalena Lučanová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 00, Prague, Czech Republic
| | - Terezie Mandáková
- Plant Cytogenomics Research Group, CEITEC - Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Lenka Moravcová
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Klára Pyšková
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, CZ-252 43, Průhonice, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Viničná 7, CZ-128 44, Prague, Czech Republic
| | - Hans Brix
- Department of Bioscience, Faculty of Science, Aarhus University, Ole Worms Alle 1, DK-8000, Aarhus C, Denmark
| | - Laura A Meyerson
- Department of Natural Resources Science, The University of Rhode Island, Kingston, Rhode Island, 02881, USA
| |
Collapse
|
43
|
Reese JB, Williams JH. How does genome size affect the evolution of pollen tube growth rate, a haploid performance trait? AMERICAN JOURNAL OF BOTANY 2019; 106:1011-1020. [PMID: 31294836 DOI: 10.1002/ajb2.1326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Male gametophytes of most seed plants deliver sperm to eggs via a pollen tube. Pollen tube growth rates (PTGRs) of angiosperms are exceptionally rapid, a pattern attributed to more effective haploid selection under stronger pollen competition. Paradoxically, whole genome duplication (WGD) has been common in angiosperms but rare in gymnosperms. Pollen tube polyploidy should initially accelerate PTGR because increased heterozygosity and gene dosage should increase metabolic rates. However, polyploidy should also independently increase tube cell size, causing more work which should decelerate growth. We asked how genome size changes have affected the evolution of seed plant PTGRs. METHODS We assembled a phylogenetic tree of 451 species with known PTGRs. We then used comparative phylogenetic methods to detect effects of neo-polyploidy (within-genus origins), DNA content, and WGD history on PTGR, and correlated evolution of PTGR and DNA content. RESULTS Gymnosperms had significantly higher DNA content and slower PTGR optima than angiosperms, and their PTGR and DNA content were negatively correlated. For angiosperms, 89% of model weight favored Ornstein-Uhlenbeck models with a faster PTGR optimum for neo-polyploids, whereas PTGR and DNA content were not correlated. For within-genus and intraspecific-cytotype pairs, PTGRs of neo-polyploids < paleo-polyploids. CONCLUSIONS Genome size increases should negatively affect PTGR when genetic consequences of WGDs are minimized, as found in intra-specific autopolyploids (low heterosis) and gymnosperms (few WGDs). But in angiosperms, the higher PTGR optimum of neo-polyploids and non-negative PTGR-DNA content correlation suggest that recurrent WGDs have caused substantial PTGR evolution in a non-haploid state.
Collapse
Affiliation(s)
- John B Reese
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996, U.S.A
| | - Joseph H Williams
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996, U.S.A
| |
Collapse
|
44
|
Guignard MS, Crawley MJ, Kovalenko D, Nichols RA, Trimmer M, Leitch AR, Leitch IJ. Interactions between plant genome size, nutrients and herbivory by rabbits, molluscs and insects on a temperate grassland. Proc Biol Sci 2019; 286:20182619. [PMID: 30890100 PMCID: PMC6452068 DOI: 10.1098/rspb.2018.2619] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/22/2019] [Indexed: 12/19/2022] Open
Abstract
Angiosperm genome sizes (GS) vary ca 2400-fold. Recent research has shown that GS influences plant abundance, and plant competition. There are also tantalizing reports that herbivores may select plants as food dependent on their GS. To test the hypothesis that GS plays a role in shaping plant communities under herbivore pressure, we exploit a grassland experiment that has experimentally excluded herbivores and applied nutrient over 8 years. Using phylogenetically informed statistical models and path analyses, we show that under rabbit grazing, plant species with small GS generated the most biomass. By contrast, on mollusc and insect-grazed plots, it was the plant species with larger GS that increased in biomass. GS was also shown to influence plant community properties (e.g. competitive strategy, total biomass) although the impact varied between different herbivore guilds (i.e. rabbits versus invertebrates) and nutrient inputs. Overall, we demonstrate that GS plays a role in influencing plant-herbivore interactions, and suggest potential reasons for this response, which include the impact of GS on a plant's response to different herbivore guilds, and on a plant's nutrient quality. The inclusion of GS in ecological models has the potential to expand our understanding of plant productivity and community ecology under nutrient and herbivore stress.
Collapse
Affiliation(s)
- Maïté S. Guignard
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - Michael J. Crawley
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berks SL5 7PY, UK
| | - Dasha Kovalenko
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Richard A. Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Mark Trimmer
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Andrew R. Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Ilia J. Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| |
Collapse
|
45
|
Müller LLB, Zotz G, Albach DC. Bromeliaceae subfamilies show divergent trends of genome size evolution. Sci Rep 2019; 9:5136. [PMID: 30914753 PMCID: PMC6435678 DOI: 10.1038/s41598-019-41474-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/28/2019] [Indexed: 11/25/2022] Open
Abstract
Genome size is known to vary widely across plants. Yet, the evolutionary drivers and consequences of genome size variation across organisms are far from understood. We investigated genome size variation and evolution in two major subfamilies of the Neotropical family Bromeliaceae by determining new genome size values for 83 species, testing phylogenetic signal in genome size variation, and assessing the fit to different evolutionary models. For a subset of epiphytic bromeliad species, we also evaluated the relationship of genome size with thermal traits and relative growth rate (RGR), respectively. Genome size variation in Bromelioideae appears to be evolutionary conserved, while genome size among Tillandsioideae varies considerably, not just due to polyploidy but arguably also due to environmental factors. The subfamilies show fundamental differences in genome size and RGR: Bromelioideae have, on average, lower genome sizes than Tillandsioideae and at the same time exhibit higher RGR. We attribute this to different resource use strategies in the subfamilies. Analyses among subfamilies, however, revealed unexpected positive relationships between RGR and genome size, which might be explained by the nutrient regime during cultivation. Future research should test whether there is indeed a trade-off between genome size and growth efficiency as a function of nutrient supply.
Collapse
Affiliation(s)
- Lilian-Lee B Müller
- Carl-von-Ossietzky University Oldenburg, Institute of Biology and Environmental Sciences, P.O. Box 2503, 26111, Oldenburg, Germany.
| | - Gerhard Zotz
- Carl-von-Ossietzky University Oldenburg, Institute of Biology and Environmental Sciences, P.O. Box 2503, 26111, Oldenburg, Germany
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancón, Panamá, Republic of Panama
| | - Dirk C Albach
- Carl-von-Ossietzky University Oldenburg, Institute of Biology and Environmental Sciences, P.O. Box 2503, 26111, Oldenburg, Germany
| |
Collapse
|
46
|
Qiu F, Baack EJ, Whitney KD, Bock DG, Tetreault HM, Rieseberg LH, Ungerer MC. Phylogenetic trends and environmental correlates of nuclear genome size variation in Helianthus sunflowers. THE NEW PHYTOLOGIST 2019; 221:1609-1618. [PMID: 30368824 DOI: 10.1111/nph.15465] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Flowering plants serve as a powerful model for studying the evolution of nuclear genome size (GS) given the tremendous GS variation that exists both within and across angiosperm lineages. Helianthus sunflowers consist of c. 50 species native to North America that occupy diverse habitats and vary in ploidy level. In the current study, we generated a comprehensive GS database for 49 Helianthus species using flow cytometric approaches. We examined variability across the genus and present a comparative phylogenetic analysis of GS evolution in diploid Helianthus species. Results demonstrated that different clades of diploid Helianthus species showed evolutionary patterns of GS contraction, expansion and relative stasis, with annual diploid species evolving smaller GS with the highest rate of evolution. Phylogenetic comparative analyses of diploids revealed significant negative associations of GS with temperature seasonality and cell production rate, indicating that the evolution of larger GS in Helianthus diploids may be more permissible in habitats with longer growing seasons where selection for more rapid growth may be relaxed. The Helianthus GS database presented here and corresponding analyses of environmental and phenotypic correlates will facilitate ongoing and future research on the ultimate drivers of GS evolution in this well-studied North American plant genus.
Collapse
Affiliation(s)
- Fan Qiu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Eric J Baack
- Department of Biology, Luther College, Decorah, IA, 52101, USA
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Dan G Bock
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark C Ungerer
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
47
|
Vitales D, Fernández P, Garnatje T, Garcia S. Progress in the study of genome size evolution in Asteraceae: analysis of the last update. Database (Oxford) 2019; 2019:baz098. [PMID: 31608375 PMCID: PMC6790504 DOI: 10.1093/database/baz098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 11/14/2022]
Abstract
The Genome Size in Asteraceae Database (GSAD, http://www.asteraceaegenomesize.com) has been recently updated, with data from papers published or in press until July 2018. This constitutes the third release of GSAD, currently containing 4350 data entries for 1496 species, which represent a growth of 22.52% in the number of species with available genome size data compared with the previous release, and a growth of 57.72% in terms of entries. Approximately 6% of Asteraceae species are covered in terms of known genome sizes. The number of source papers included in this release (198) means a 48.87% increase with respect to release 2.0. The significant data increase was exploited to study the genome size evolution in the family from a phylogenetic perspective. Our results suggest that the role of chromosome number in genome size diversity within Asteraceae is basically associated to polyploidy, while dysploidy would only cause minor variation in the DNA amount along the family. Among diploid taxa, we found that the evolution of genome size shows a strong phylogenetic signal. However, this trait does not seem to evolve evenly across the phylogeny, but there could be significant scale and clade-dependent patterns. Our analyses indicate that the phylogenetic signal is stronger at low taxonomic levels, with certain tribes standing out as hotspots of autocorrelation between genome size and phylogeny. Finally, we also observe meaningful associations among nuclear DNA content on Asteraceae species and other phenotypical and ecological traits (i.e. plant habit and invasion ability). Overall, this study emphasizes the need to continue generating and analysing genome size data in order to puzzle out the evolution of this parameter and its many biological correlates.
Collapse
Affiliation(s)
- Daniel Vitales
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del migdia s/n, 08038 Barcelona, Catalonia, Spain
| | - Pol Fernández
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del migdia s/n, 08038 Barcelona, Catalonia, Spain
- Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal 643, 08038 Barcelona, Catalonia, Spain
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del migdia s/n, 08038 Barcelona, Catalonia, Spain
| | - Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-ICUB), Passeig del migdia s/n, 08038 Barcelona, Catalonia, Spain
| |
Collapse
|
48
|
Slijepcevic P. Genome dynamics over evolutionary time: “C-value enigma” in light of chromosome structure. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:22-27. [DOI: 10.1016/j.mrgentox.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/28/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022]
|
49
|
A genome size and phylogenetic survey of Mediterranean Tripleurospermum and Matricaria (Anthemideae, Asteraceae). PLoS One 2018; 13:e0203762. [PMID: 30300347 PMCID: PMC6177153 DOI: 10.1371/journal.pone.0203762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 08/27/2018] [Indexed: 11/19/2022] Open
Abstract
The study of genome size variation can contribute valuable information on species relationships as well as correlate to several morphological or ecological features, among others. Here we provide an extensive report on genome sizes on genus Tripleurospermum and its closely related genus Matricaria, which are two typically Mediterranean genera particularly widespread and diverse in Turkey, the origin of most of the populations here studied. We analyse and discuss genome size variation in the first relatively complete molecular phylogenetic framework of Tripleurospermum (based on ITS and ETS ribosomal DNA-rDNA-regions). We find cases of intraspecific genome size variation, which could be taxonomically significant. Genome downsizing is also detected as the typical response to polyploidisation in Tripleurospermum taxa, being most conspicuous at the tetraploid level. Several positive correlations with genome size, including those with pollen and stomatal size or cypsela length, among others, are also found. Remarkably, taxa presenting rhizomes tend to present higher genome sizes, confirming a trend to accumulate nuclear DNA in such species, which could be explained by the nutrient reserves availability in their storage organs, allowing genome expansion, or by the lower rates of sexual reproduction in rhizomatous taxa.
Collapse
|
50
|
Bilinski P, Albert PS, Berg JJ, Birchler JA, Grote MN, Lorant A, Quezada J, Swarts K, Yang J, Ross-Ibarra J. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays. PLoS Genet 2018; 14:e1007162. [PMID: 29746459 PMCID: PMC5944917 DOI: 10.1371/journal.pgen.1007162] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/20/2017] [Indexed: 12/03/2022] Open
Abstract
While the vast majority of genome size variation in plants is due to differences in repetitive sequence, we know little about how selection acts on repeat content in natural populations. Here we investigate parallel changes in intraspecific genome size and repeat content of domesticated maize (Zea mays) landraces and their wild relative teosinte across altitudinal gradients in Mesoamerica and South America. We combine genotyping, low coverage whole-genome sequence data, and flow cytometry to test for evidence of selection on genome size and individual repeat abundance. We find that population structure alone cannot explain the observed variation, implying that clinal patterns of genome size are maintained by natural selection. Our modeling additionally provides evidence of selection on individual heterochromatic knob repeats, likely due to their large individual contribution to genome size. To better understand the phenotypes driving selection on genome size, we conducted a growth chamber experiment using a population of highland teosinte exhibiting extensive variation in genome size. We find weak support for a positive correlation between genome size and cell size, but stronger support for a negative correlation between genome size and the rate of cell production. Reanalyzing published data of cell counts in maize shoot apical meristems, we then identify a negative correlation between cell production rate and flowering time. Together, our data suggest a model in which variation in genome size is driven by natural selection on flowering time across altitudinal clines, connecting intraspecific variation in repetitive sequence to important differences in adaptive phenotypes. Genome size in plants can vary by orders of magnitude, but this variation has long been considered to be of little functional consequence. Studying three independent adaptations to high altitude in Zea mays, we find that genome size experiences parallel pressures from natural selection, causing a reduction in genome size with increasing altitude. Though reductions in overall repetitive content are responsible for the genome size change, we find that only those individual loci contributing most to the variation in genome size are individually targeted by selection. To identify the phenotype influenced by genome size, we study how variation in genome size within a single wild population impacts leaf growth and cell division. We find that genome size variation correlates negatively with the rate of cell division, suggesting that individuals with larger genomes require longer to complete a mitotic cycle. Finally, we reanalyze data from maize inbreds to show that faster cell division is correlated with earlier flowering, connecting observed variation in genome size to an important adaptive phenotype.
Collapse
Affiliation(s)
- Paul Bilinski
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
- * E-mail: (PB); (JRI)
| | - Patrice S. Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Jeremy J. Berg
- Center for Population Biology, University of California, Davis, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
| | - James A. Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Mark N. Grote
- Department of Anthropology, University of California, Davis, Davis, California, United States of America
| | - Anne Lorant
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
| | - Juvenal Quezada
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
| | - Kelly Swarts
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Jinliang Yang
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
- Center for Population Biology, University of California, Davis, Davis, California, United States of America
- Genome Center, University of California, Davis, Davis, California, United States of America
- * E-mail: (PB); (JRI)
| |
Collapse
|