1
|
Xu Y, Du J, Zhang K, Li J, Zou F, Li X, Meng Y, Chen Y, Tao L, Zhao F, Ma L, Shen B, Zhou D, Sun Y, Yan G, Zhu C. The Dual Resistance Mechanism of CYP325G4 and CYP6AA9 in Culex pipiens pallens Legs According to Transcriptome and Proteome Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27150-27162. [PMID: 39604078 DOI: 10.1021/acs.jafc.4c05708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mosquitoes within the Culex pipiens complex play a crucial role in human disease transmission. Insecticides, especially pyrethroids, are used to control these vectors. Mosquito legs are the main entry point and barrier for insecticides to gain their neuronal targets. However, the resistance mechanism in mosquito legs is unclear. Herein, we employed transcriptomic analyses and isobaric tags for relative and absolute quantitation techniques to investigate the resistance mechanism, focusing on Cx. pipiens legs. We discovered 2346 differentially expressed genes (DEGs) between deltamethrin-resistant (DR) and deltamethrin-sensitive (DS) mosquito legs, including 41 cytochrome P450 genes. In the same comparison, we identified 228 differentially expressed proteins (DEPs), including six cytochrome P450 proteins. Combined transcriptome and proteome analysis revealed only two upregulated P450 genes, CYP325G4 and CYP6AA9. The main clusters of DEGs and DEPs were associated with metabolic processes, such as cytochrome P450-mediated metabolism of drugs and xenobiotics. Transcription analysis revealed high CYP325G4 and CYP6AA9 expression in the DR strain at 72 h posteclosion compared with that in the DS strain, particularly in the legs. Mosquitoes knocked down for CYP325G4 were more sensitive to deltamethrin than the controls. CYP325G4 knockdown reduced the expression of several chlorinated hydrocarbon (CHC)-related genes, which altered the cuticle thickness and structure. Conversely, CYP6AA9 knockdown increased CHC gene expression without altering cuticle thickness and structure. P450 activity analysis demonstrated that CYP325G4 and CYP6AA9 contributed to metabolic resistance in the midgut and legs. This study identified CYP325G4 as a novel mosquito deltamethrin resistance factor, being involved in both metabolic and cuticular resistance mechanisms. The previously identified CYP6AA9 was investigated for its involvement in metabolic resistance and potential cuticular resistance in mosquito legs. These findings enhance our comprehension of resistance mechanisms, identifying P450s as promising targets for the future management of mosquito vector resistance, and laying a theoretical groundwork for mosquito resistance management.
Collapse
Affiliation(s)
- Yang Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiajia Du
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Kewei Zhang
- Department of Population Health & Disease Prevention, Joe C. Wen School of Population & Public Health, University of California, Irvine, California 92697, United States
| | - Jinze Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Feifei Zou
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xixi Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yufen Meng
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Tao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fengming Zhao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| | - Guiyun Yan
- Department of Population Health & Disease Prevention, Joe C. Wen School of Population & Public Health, University of California, Irvine, California 92697, United States
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
2
|
Camacho E, Dong Y, Chrissian C, Cordero RJ, Saravia RG, Anglero-Rodriguez Y, Smith DF, Jacobs E, Hartshorn I, Patiño-Medina JA, DePasquale M, Dziedzic A, Jedlicka A, Smith B, Mlambo G, Tripathi A, Broderick NA, Stark RE, Dimopoulos G, Casadevall A. Dietary L-3,4-dihydroxyphenylalanine (L-DOPA) augments cuticular melanization in Anopheles mosquitos while reducing their lifespan and malaria parasite burden. RESEARCH SQUARE 2024:rs.3.rs-5167892. [PMID: 39483913 PMCID: PMC11527263 DOI: 10.21203/rs.3.rs-5167892/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA), a naturally occurring tyrosine derivative, is prevalent in environments that include mosquito habitats, potentially serving as part of their diet. Given its role as a precursor for melanin synthesis we investigated the effect of dietary L-DOPA on mosquito physiology and immunity to Plasmodium falciparum and Cryptococcus neoformans infection. Dietary L-DOPA was incorporated into mosquito melanin via a non-canonical pathway and had profound transcriptional effects that were associated with enhanced immunity, increased pigmentation, and reduced lifespan. Increased melanization resulted in an enhanced capacity to absorb electromagnetic radiation that affected mosquito temperatures. Bacteria in the mosquito microbiome were sources of dopamine, which is a substrate for melanization. Our results illustrate how an environmentally abundant amino acid analogue can affect mosquito physiology and suggest its potential usefulness as an environmentally friendly vector control agent to reduce malaria transmission, warranting further research and field studies.
Collapse
|
3
|
Adams K, Roux O. No sexual pheromones in Anopheles mosquitoes? CURRENT OPINION IN INSECT SCIENCE 2024; 64:101227. [PMID: 38936474 DOI: 10.1016/j.cois.2024.101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/16/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Swarming behavior is the cornerstone of the anopheline mating system. At dusk, males congregate in monospecific swarms in which females come to find a mate once in their lives. Although many Anopheles species coexist in sympatry, hybrids are infrequent, suggesting the existence of strong premating reproductive barriers. Chemical cues, particularly pheromones, often play a crucial role in bringing sexes together in a species-specific manner among insects. While the existence of sexual pheromones in Anopheles species has been postulated, only a few studies developed experimental designs to investigate their presence. Here, we discuss the contrasting and debatable findings regarding both long-range and contact sex pheromones in the context of swarm ecology in Anopheles species.
Collapse
Affiliation(s)
- Kelsey Adams
- Immunology & Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA; Howard Hughes Medical Institute, Chevy Chase, USA
| | - Olivier Roux
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France.
| |
Collapse
|
4
|
Hancock PA, Ochomo E, Messenger LA. Genetic surveillance of insecticide resistance in African Anopheles populations to inform malaria vector control. Trends Parasitol 2024; 40:604-618. [PMID: 38760258 DOI: 10.1016/j.pt.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Insecticide resistance in malaria vector populations poses a major threat to malaria control, which relies largely on insecticidal interventions. Contemporary vector-control strategies focus on combatting resistance using multiple insecticides with differing modes of action within the mosquito. However, diverse genetic resistance mechanisms are present in vector populations, and continue to evolve. Knowledge of the spatial distribution of these genetic mechanisms, and how they impact the efficacy of different insecticidal products, is critical to inform intervention deployment decisions. We developed a catalogue of genetic-resistance mechanisms in African malaria vectors that could guide molecular surveillance. We highlight situations where intervention deployment has led to resistance evolution and spread, and identify challenges in understanding and mitigating the epidemiological impacts of resistance.
Collapse
Affiliation(s)
- Penelope A Hancock
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Eric Ochomo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya; Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, USA; Parasitology and Vector Biology (PARAVEC) Laboratory, School of Public Health, University of Nevada, Las Vegas, USA
| |
Collapse
|
5
|
Girotti JR, Calderón-Fernández GM. Lipid Metabolism in Insect Vectors of Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38954247 DOI: 10.1007/5584_2024_811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
According to the World Health Organization vector-borne diseases account for more than 17% of all infectious diseases, causing more than 700,000 deaths annually. Vectors are organisms that are able to transmit infectious pathogens between humans, or from animals to humans. Many of these vectors are hematophagous insects, which ingest the pathogen from an infected host during a blood meal, and later transmit it into a new host. Malaria, dengue, African trypanosomiasis, yellow fever, leishmaniasis, Chagas disease, and many others are examples of diseases transmitted by insects.Both the diet and the infection with pathogens trigger changes in many metabolic pathways, including lipid metabolism, compared to other insects. Blood contains mostly proteins and is very poor in lipids and carbohydrates. Thus, hematophagous insects attempt to efficiently digest and absorb diet lipids and also rely on a large de novo lipid biosynthesis based on utilization of proteins and carbohydrates as carbon source. Blood meal triggers essential physiological processes as molting, excretion, and oogenesis; therefore, lipid metabolism and utilization of lipid storage should be finely synchronized and regulated regarding that, in order to provide the necessary energy source for these events. Also, pathogens have evolved mechanisms to hijack essential lipids from the insect host by interfering in the biosynthesis, catabolism, and transport of lipids, which pose challenges to reproduction, survival, fitness, and other insect traits.In this chapter, we have tried to collect and highlight the current knowledge and recent discoveries on the metabolism of lipids in insect vectors of diseases related to the hematophagous diet and pathogen infection.
Collapse
Affiliation(s)
- Juan R Girotti
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Gustavo M Calderón-Fernández
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
6
|
Amezian D, Nauen R, Van Leeuwen T. The role of ATP-binding cassette transporters in arthropod pesticide toxicity and resistance. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101200. [PMID: 38641174 DOI: 10.1016/j.cois.2024.101200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/10/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024]
Abstract
Pesticide resistance in arthropods threatens agricultural productivity and the control of vector-borne diseases. The ATP-binding cassette (ABC) transporters have emerged as important factors in the toxicity of synthetic pesticides, as well as for Bacillus thuringiensis insecticidal Cry protein binding. Depending on the localization of expression, both higher and lower expression of ABCs have been linked with pesticide resistance. The recent development of genetic-based approaches such as RNAi and CRISPR/Cas9 gene editing in nonmodel species, has greatly contributed to unveil their functional importance in pesticide toxicity and resistance. Using these tools, we are now poised to further unravel the molecular genetic mechanisms of gene regulation uncovering more elusive regulatory resistance genes.
Collapse
Affiliation(s)
- Dries Amezian
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium.
| |
Collapse
|
7
|
Yang J, Wang Y, El Wakil A, Moussian B. Extra-corporeal detoxification in insects. Heliyon 2024; 10:e28392. [PMID: 38560219 PMCID: PMC10981100 DOI: 10.1016/j.heliyon.2024.e28392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Upon uptake of toxins, insects launch a detoxification program. This program is deployed in multiple organs and cells to raise their tolerance against the toxin. The molecular mechanisms of this program inside the insect body have been studied and understood in detail. Here, we report on a yet unexplored extra-corporeal detoxification of insecticides in Drosophila melanogaster. Wild-type D. melanogaster incubated with DDT, a contact insecticide, in a closed environment died as expected. However, incubation of a second cohort in the same environment after removal of the dead flies was not lethal. The effect was significantly lower if the flies of the two cohorts were unrelated. Incubation assays with Chlorpyrifos, another contact insecticide, yielded identical results, while incubation assays with Chlorantraniliprole, again a contact insecticide, was toxic for the second cohort of flies. A cohort of flies incubated in a DDT environment after an initial incubation of a honeybee survived treatment. Together, our data suggest that insects including Apis mellifera and D. melanogaster have the capacity to modify their proximate environment. Consequently, in their ecological niche, following individuals might be saved from intoxication thereby facilitating colonisation of an attractive site.
Collapse
Affiliation(s)
- Jing Yang
- Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, University of Tianjin, Tianjin, China
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| |
Collapse
|
8
|
Pazmiño-Betancourth M, Ochoa-Gutiérrez V, Ferguson HM, González-Jiménez M, Wynne K, Baldini F, Childs D. Evaluation of diffuse reflectance spectroscopy for predicting age, species, and cuticular resistance of Anopheles gambiae s.l under laboratory conditions. Sci Rep 2023; 13:18499. [PMID: 37898634 PMCID: PMC10613238 DOI: 10.1038/s41598-023-45696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023] Open
Abstract
Mid-infrared spectroscopy (MIRS) combined with machine learning analysis has shown potential for quick and efficient identification of mosquito species and age groups. However, current technology to collect spectra is destructive to the sample and does not allow targeting specific tissues of the mosquito, limiting the identification of other important biological traits such as insecticide resistance. Here, we assessed the use of a non-destructive approach of MIRS for vector surveillance, micro diffuse reflectance spectroscopy (µDRIFT) using mosquito legs to identify species, age and cuticular insecticide resistance within the Anopheles gambiae s.l. complex. These mosquitoes are the major vectors of malaria in Africa and the focus on surveillance in malaria control programs. Legs required significantly less scanning time and showed more spectral consistence compared to other mosquito tissues. Machine learning models were able to identify An. gambiae and An. coluzzii with an accuracy of 0.73, two ages groups (3 and 10 days old) with 0.77 accuracy and we obtained accuracy of 0.75 when identifying cuticular insecticide resistance. Our results highlight the potential of different mosquito tissues and µDRIFT as tools for biological trait identification on mosquitoes that transmit malaria. These results can guide new ways of identifying mosquito traits which can help the creation of innovative surveillance programs by adapting new technology into mosquito surveillance and control tools.
Collapse
Affiliation(s)
- Mauro Pazmiño-Betancourth
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Victor Ochoa-Gutiérrez
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Heather M Ferguson
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Klaas Wynne
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Francesco Baldini
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - David Childs
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
9
|
Abendroth JA, Moural TW, Wei H, Zhu F. Roles of insect odorant binding proteins in communication and xenobiotic adaptation. FRONTIERS IN INSECT SCIENCE 2023; 3:1274197. [PMID: 38469469 PMCID: PMC10926425 DOI: 10.3389/finsc.2023.1274197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/15/2023] [Indexed: 03/13/2024]
Abstract
Odorant binding proteins (OBPs) are small water-soluble proteins mainly associated with olfaction, facilitating the transport of odorant molecules to their relevant receptors in the sensillum lymph. While traditionally considered essential for olfaction, recent research has revealed that OBPs are engaged in a diverse range of physiological functions in modulating chemical communication and defense. Over the past 10 years, emerging evidence suggests that OBPs play vital roles in purifying the perireceptor space from unwanted xenobiotics including plant volatiles and pesticides, potentially facilitating xenobiotic adaptation, such as host location, adaptation, and pesticide resistance. This multifunctionality can be attributed, in part, to their structural variability and effectiveness in transporting, sequestering, and concealing numerous hydrophobic molecules. Here, we firstly overviewed the classification and structural properties of OBPs in diverse insect orders. Subsequently, we discussed the myriad of functional roles of insect OBPs in communication and their adaptation to xenobiotics. By synthesizing the current knowledge in this field, our review paper contributes to a comprehensive understanding of the significance of insect OBPs in chemical ecology, xenobiotic adaptation, paving the way for future research in this fascinating area of study.
Collapse
Affiliation(s)
- James A. Abendroth
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Timothy W. Moural
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Hongshuang Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
10
|
Xu J, Zheng J, Zhang R, Wang H, Du J, Li J, Zhou D, Sun Y, Shen B. Identification and functional analysis of ABC transporter genes related to deltamethrin resistance in Culex pipiens pallens. PEST MANAGEMENT SCIENCE 2023; 79:3642-3655. [PMID: 37183172 DOI: 10.1002/ps.7539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Pathogens that reproduce or develop in mosquitoes can transmit several diseases, endanger human health, and overwhelm health systems. Synthetic pyrethroids are the most widely used insecticides against adult mosquitoes, but their widespread use has led to resistance. The adenosine triphosphate (ATP)-binding cassette (ABC) transporters are involved in the resistance monitoring of insects, but their role and underlying mechanisms in insecticide resistance have not been fully elucidated. In the present study, we identified ABC transporter genes in Culex pipiens and investigated their role in the development of insecticide resistance. RESULTS We identified 63 ABC transporter genes in Cx. pipiens and classified them as per the ABC transporter subfamilies. We also performed phylogenetic analysis. The knockdown rate of the mosquitoes orally fed with the ABC transporter inhibitor verapamil increased after deltamethrin treatment compared with that of the control group. Several genes from the ABCB, ABCC, and ABCG subfamilies were highly expressed in resistant mosquitoes. Immunofluorescence analysis revealed that ABCG6032427 was expressed in the head, chest, abdomen, wings, and legs, and the expression was the highest in the legs. Subsequently, knockdown of ABCG6032427 using RNA interference (RNAi) increased the sensitivity of the mosquitoes to deltamethrin, and scanning and transmission electron microscopy revealed that ABCG6032427 knockdown reduced cuticle thickness and the cuticle became loose and irregular. CONCLUSIONS ABCG6032427 may modulate cuticle thickness and structure, thus play an important role in the development of deltamethrin resistance in mosquitoes. Thus, it could be a potential target for deltamethrin resistance management in Cx. pipiens. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingwei Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Junnan Zheng
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Ruimin Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Huan Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - JiaJia Du
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jinze Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Tang PA, Hu HY, Du WW, Jian FJ, Chen EH. Identification of cuticular protein genes and analysis of their roles in phosphine resistance of the rusty grain beetle Cryptolestes ferrugineus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105491. [PMID: 37532352 DOI: 10.1016/j.pestbp.2023.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 08/04/2023]
Abstract
The rusty grain beetle, Cryptolestes ferrugineus (Stephens) is one of the most economically important stored grain pests, and it has evolved the high resistance to phosphine. Cuticular proteins (CPs) are the major structural components of insect cuticle, and previous studies have confirmed that CPs were involved in insecticide resistance. However, the CPs of C. ferrugineus are still poorly characterized, and thus we conducted transcriptome-wide identification of CP genes and analyze their possible relationships with phosphine resistance in this pest. In this study, a total of 122 putative CPs were annotated in the C. ferrugineus transcriptome data by blasting with the known CPs of Tribolium castaneum. The analysis of conserved motifs revealed these CPs of C. ferrugineus belonging to 9 different families, including 87 CPR, 13 CPAP1, 7 CPAP3, 3 Tweedle, 1 CPLCA, 1 CPLCG, 5 CPLCP, 2 CPCFC, and 3 CPFL proteins. The further phylogenetic analysis showed the different evolutionary patterns of CPs. Namely, we found some CPs (CPR family) formed species-specific protein clusters, indicating these CPs might occur independently among insect taxa, and while some other CPs (CPAP1 and CPAP3 family) shared a closer correlation based on the architecture of protein domains. Subsequently, the previous RNA-seq data were applied to establish the expression profiles of CPs in a phosphine susceptible and resistant populations of C. ferrugineus, and a large amount of CP genes were found to be over-expressed in resistant insects. Lastly, an up-regulated CP gene (CPR family) was selected for the further functional analysis, and after this gene was silenced via RNA interference (RNAi), the sensitivity to phosphine was significantly enhanced in C. ferrugineus. In conclusion, the present results provided us an overview of C. ferrugineus CPs, and which suggested that the CPs might play the critical roles in phosphine resistance.
Collapse
Affiliation(s)
- Pei-An Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| | - Huai-Yue Hu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Wen-Wei Du
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Fu-Ji Jian
- Department of Biosystems Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada
| | - Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
12
|
He C, Liang J, Yang J, Xue H, Huang M, Fu B, Wei X, Liu S, Du T, Ji Y, Yin C, Gong P, Hu J, Du H, Zhang R, Xie W, Wang S, Wu Q, Zhou X, Yang X, Zhang Y. Over-expression of CP9 and CP83 increases whitefly cell cuticle thickness leading to imidacloprid resistance. Int J Biol Macromol 2023; 233:123647. [PMID: 36780959 DOI: 10.1016/j.ijbiomac.2023.123647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/13/2023]
Abstract
Cuticular proteins (CPs) play an important role in protecting insects from adverse environmental conditions, like neonicotinoid insecticides, which are heavily used for numerous pests and caused environmental problems and public health concerns worldwide. However, the relationship between CPs and insecticides resistance in Bemisia tabaci, a serious and developed high insecticide resistance, is lacking. In this study, 125 CPs genes were identified in B. tabaci. Further phylogenetic tree showed the RR-2-type genes formed large gene groups in B. tabaci. Transcriptional expression levels of CPs genes at different developmental stages revealed that some CPs genes may play a specific role in insect development. The TEM results indicated that the cuticle thickness of susceptible strain was thinner than imidacloprid-resistance strain. Furthermore, 16 CPs genes (5 in RR-1 subfamily, 7 in RR-2 subfamily, 3 in CPAP3 subfamily and 1 in CPCFC subfamily) were activated in response to imidacloprid. And RNAi results indicated that CP9 and CP83 involved in imidacloprid resistance. In conclusion, this study was the first time to establish a basic information framework and evolutionary relationship between CPs and imidacloprid resistance in B. tabaci, which provides a basis for proposing integrated pest management strategies.
Collapse
Affiliation(s)
- Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - JinYu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY 40546-0091, USA.
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
13
|
Molina G, Laino A, Arrighetti F, Lacava M, Romero S, Mijailovsky S, Garcia CF. Effect of the Insecticide Chlorpyrifos on Behavioral and Metabolic Aspects of the Spider Polybetes pythagoricus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1293-1308. [PMID: 36919993 DOI: 10.1002/etc.5607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 03/13/2023] [Indexed: 05/09/2023]
Abstract
The toxicity of pesticides to organisms depends on the total amount of chemical exposure. Toxicity can be minimized if the organism recognizes the pesticide and alters its behavior. Furthermore, the physical barrier of cuticular hydrocarbons can prevent the entrance of the pesticide into the organism. Finally, if the pesticide enters the body, the organism experiences physiological changes favoring detoxification and the maintenance of homeostasis. We analyzed the behavioral and metabolic response of the spider Polybetes pythagoricus at different times of exposure to the organophosphate pesticide chlorpyrifos. First we observed that the individuals are capable of recognizing and avoiding surfaces treated with pesticides based on a behavioral analysis. Subsequently, we characterized cuticular hydrocarbons as a possible barrier against pesticides. Then we observed that the pesticide provoked histological damage, mainly at the level of the midgut diverticula. Finally, we analyzed the activity of several of the spider's enzymes linked to oxidative stress after exposure to chlorpyrifos for different lengths of time (6, 24, and 48 h). We observed that catalase activity was high at the start, whereas the activity of superoxide dismutase and glutathione S-transferase changed significantly at 48 h. Lipid peroxidation became high at 6 h, but decreased at 48 h. In conclusion, although P. pythagoricus can avoid contact with chlorpyrifos, this pesticide causes activation of the antioxidant system when it enters the body. Our results make a significant contribution to the ecotoxicology of spiders. Environ Toxicol Chem 2023;00:1-16. © 2023 SETAC.
Collapse
Affiliation(s)
- Gabriel Molina
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| | - Aldana Laino
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| | - Florencia Arrighetti
- Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Consejo National de Investigaciones Cientificas y Téchnicas, Buenos Aires, Argentina
| | - Mariangeles Lacava
- Centro Universitario de Rivera, Universidad de La República, Rivera, Uruguay
| | - Sofia Romero
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| | - Sergio Mijailovsky
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| | - Carlos Fernando Garcia
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| |
Collapse
|
14
|
Peng H, Wang H, Guo X, Lv W, Liu L, Wang H, Cheng P, Liu H, Gong M. In Vitro and In Vivo Validation of CYP6A14 and CYP6N6 Participation in Deltamethrin Metabolic Resistance in Aedes albopictus. Am J Trop Med Hyg 2023; 108:609-618. [PMID: 36746656 PMCID: PMC9978559 DOI: 10.4269/ajtmh.22-0524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/21/2022] [Indexed: 02/08/2023] Open
Abstract
The extensive use of chemical insecticides for public health and agricultural purposes has increased the occurrence and development of insecticide resistance. This study used transcriptome sequencing to screen 10 upregulated metabolic detoxification enzyme genes from Aedes albopictus resistant strains. Of these, CYP6A14 and CYP6N6 were found to be substantially overexpressed in the deltamethrin-induced expression test, indicating their role in deltamethrin resistance in Ae. albopictus. Furthermore, the corresponding 60-kDa recombinant proteins, CYP6A14 and CYP6N6, were successfully expressed using the Escherichia coli expression system. Enzyme activity studies revealed that CYP6A14 (5.84 U/L) and CYP6N6 (6.3 U/L) have cytochrome P450 (CYP450) enzyme activity. In vitro, the metabolic analysis revealed that the recombinant proteins degraded deltamethrin into 1-oleoyl-sn-glycero-3-phosphoethanolamine and 2',2'-dibromo-2'-deoxyguanosine. Subsequently, the CYP450 genes in larvae of Ae. albopictus were silenced by RNA interference technology to study deltamethrin resistance in vivo. The silencing of CYP6A14 and CYP6N6 increased the mortality rate of mosquitoes without affecting their survival time, spawning quantity, hatching rate, and other normal life activities. Altogether, CYP6A14 and CYP6N6 belong to the CYP6 family and mutually increase deltamethrin resistance in Ae. albopictus.
Collapse
Affiliation(s)
- Hui Peng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Haiyang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuxia Guo
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Wenxiang Lv
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Lijuan Liu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Haifang Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
- Address correspondence to Peng Cheng or Hongmei Liu or Maoqing Gong, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong 272033, China. E-mails: or or
| | - Hongmei Liu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
- Address correspondence to Peng Cheng or Hongmei Liu or Maoqing Gong, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong 272033, China. E-mails: or or
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, China
- Address correspondence to Peng Cheng or Hongmei Liu or Maoqing Gong, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong 272033, China. E-mails: or or
| |
Collapse
|
15
|
Jacobs E, Chrissian C, Rankin-Turner S, Wear M, Camacho E, Scott JG, Broderick NA, McMeniman CJ, Stark RE, Casadevall A. Cuticular profiling of insecticide resistant Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523989. [PMID: 36712033 PMCID: PMC9882251 DOI: 10.1101/2023.01.13.523989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insecticides have made great strides in reducing the global burden of vector-borne disease. Nonetheless, serious public health concerns remain because insecticide-resistant vector populations continue to spread globally. To circumvent insecticide resistance, it is essential to understand all contributing mechanisms. Contact-based insecticides are absorbed through the insect cuticle, which is comprised mainly of chitin polysaccharides, cuticular proteins, hydrocarbons, and phenolic biopolymers sclerotin and melanin. Cuticle interface alterations can slow or prevent insecticide penetration in a phenomenon referred to as cuticular resistance. Cuticular resistance characterization of the yellow fever mosquito, Aedes aegypti , is lacking. In the current study, we utilized solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy, gas chromatography/mass spectrometry (GC-MS), and transmission electron microscopy (TEM) to gain insights into the cuticle composition of congenic cytochrome P450 monooxygenase insecticide resistant and susceptible Ae. aegypti . No differences in cuticular hydrocarbon content or phenolic biopolymer deposition were found. In contrast, we observed cuticle thickness of insecticide resistant Ae. aegypti increased over time and exhibited higher polysaccharide abundance. Moreover, we found these local cuticular changes correlated with global metabolic differences in the whole mosquito, suggesting the existence of novel cuticular resistance mechanisms in this major disease vector.
Collapse
Affiliation(s)
| | - Christine Chrissian
- The City College of New York and CUNY Institute for Macromolecular Assemblies
| | | | - Maggie Wear
- Johns Hopkins University Bloomberg School of Public Health
| | - Emma Camacho
- Johns Hopkins University Bloomberg School of Public Health
| | | | | | | | - Ruth E. Stark
- The City College of New York and CUNY Institute for Macromolecular Assemblies
| | | |
Collapse
|
16
|
Hou Q, Zhang H, Zhu J, Liu F. Transcriptome Analysis to Identify Responsive Genes under Sublethal Concentration of Bifenazate in the Diamondback Moth, Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae). Int J Mol Sci 2022; 23:ijms232113173. [PMID: 36361960 PMCID: PMC9656211 DOI: 10.3390/ijms232113173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
Bifenazate is a novel acaricide that has been widely used to control spider mites. Interestingly, we found bifenazate had a biological activity against the diamondback moth (Plutella xylostella), one of the most economically important pests on crucifer crops around the world. However, the molecular mechanisms underlying the response of P. xylostella to bifenazate treatment are not clear. In this study, we first estimated the LC30 dose of bifenazate for third-instar P. xylostella larvae. Then, in order to identify genes that respond to the treatment of this insecticide, the comparative transcriptome profiles were used to analyze the gene expression changes in P. xylostella larvae after exposure to LC30 of bifenazate. In total, 757 differentially expressed genes (DEGs) between bifenazate-treated and control P. xylostella larvae were identified, in which 526 and 231 genes were up-regulated and down-regulated, respectively. The further Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the xenobiotics metabolisms pathway was significantly enriched, with ten detoxifying enzyme genes (four P450s, five glutathione S-transferases (GSTs), and one UDP-Glucuronosyltransferase (UGT)) were up-regulated, and their expression patterns were validated by qRT-PCR as well. Interestingly, the present results showed that 17 cuticular protein (CP) genes were also remarkably up-regulated, including 15 CPR family genes. Additionally, the oxidative phosphorylation pathway was found to be activated with eight mitochondrial genes up-regulated in bifenazate-treated larvae. In contrast, we found some genes that were involved in tyrosine metabolism and purine pathways were down-regulated, indicating these two pathways of bifenazate-exposed larvae were significantly inhibited. In conclusion, the present study would help us to better understand the molecular mechanisms of sublethal doses of bifenazate detoxification and action in P. xylostella.
Collapse
|
17
|
Tan S, Li G, Guo H, Li H, Tian M, Liu Q, Wang Y, Xu B, Guo X. Identification of the cuticle protein AccCPR2 gene in Apis cerana cerana and its response to environmental stress. INSECT MOLECULAR BIOLOGY 2022; 31:634-646. [PMID: 35619242 DOI: 10.1111/imb.12792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Cuticular proteins (CPs) are known to play important roles in insect development and defence responses. The loss of CP genes can lead to changes in insect morphology and sensitivity to the external environment. In this study, we identified the AccCPR2 gene, which belongs to the CPR family (including the R&R consensus motif) of CPs, and explored its function in the response of Apis cerana cerana to adverse external stresses. Our results demonstrated that AccCPR2 was highly expressed in the late pupal stage and epidermis, and the expression of AccCPR2 may be induced or inhibited under different stressors. RNA interference experiments showed that knockdown of AccCPR2 reduced the activity of antioxidant enzymes, led to the accumulation of oxidative damage and suppressed the expression of several antioxidant genes. In addition, knockdown of AccCPR2 also reduced the pesticide resistance of A. cerana cerana. The overexpression of AccCPR2 in a prokaryotic system further confirmed its role in resistance to various stresses. In summary, AccCPR2 may play pivotal roles in the normal development and environmental stress response of A. cerana cerana. This study also enriched the theoretical knowledge of the resistance biology of bees.
Collapse
Affiliation(s)
- Shuai Tan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu, P. R. China
| | - Hengjun Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Ming Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| |
Collapse
|
18
|
Gabellone C, Molina G, Arrighetti F, Laino A, Garcia CF. Behavioral, Histological, and Physiological Evaluation of the Effect of Imidacloprid on the Spider Misumenops maculissparsus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2152-2161. [PMID: 35723420 DOI: 10.1002/etc.5411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/25/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The aim of the present study was to evaluate the effects of the neonicotinoid insecticide imidacloprid (commercial formulation) on juveniles of the spider Misumenops maculissparsus (Keyserling, 1891). We first analyzed whether spiders recognized the presence of the insecticide on surfaces and in drinking water (in the form of droplets). Next, we investigated if the insecticide generated histologic, physiologic, and/or biochemical alterations. We observed that spiders do not detect the insecticide on a surface (e.g., paper) or in the form of droplets. After the imidacloprid ingestion by droplet intake, most spiders exhibited a paralysis that reverted after 48 h. Consequently, we observed histopathologic damage (i.e., pigment accumulation, necrosis, and cuticle detachment), and an increased catalase (CAT) activity and total-protein concentration in the individuals treated. The activities of glutathione-S-transferase, glutathione peroxidase, glutathione reductase, and superoxide dismutase, however, did not undergo significant variations. The results obtained emphasize the need to consider different classes of biomarkers, such as CAT and other proteins, to identify and evaluate the histologic, biologic, and biochemical effects of imidacloprid, one of the most widely used insecticides. Environ Toxicol Chem 2022;41:2152-2161. © 2022 SETAC.
Collapse
Affiliation(s)
- Cecilia Gabellone
- Centro de Estudios Parasitológicos y Vectores (CEPAVE), La Plata, Argentina
| | - Gabriel Molina
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", La Plata, Argentina
| | - Florencia Arrighetti
- CONICET-Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Ciudad Autónoma de Buenos Aires, Argentina
| | - Aldana Laino
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", La Plata, Argentina
| | - Carlos Fernando Garcia
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", La Plata, Argentina
| |
Collapse
|
19
|
Lees RS, Armistead JS, Azizi S, Constant E, Fornadel C, Gimnig JE, Hemingway J, Impoinvil D, Irish SR, Kisinza W, Lissenden N, Mawejje HD, Messenger LA, Moore S, Ngufor C, Oxborough R, Protopopoff N, Ranson H, Small G, Wagman J, Weetman D, Zohdy S, Spiers A. Strain Characterisation for Measuring Bioefficacy of ITNs Treated with Two Active Ingredients (Dual-AI ITNs): Developing a Robust Protocol by Building Consensus. INSECTS 2022; 13:434. [PMID: 35621770 PMCID: PMC9144861 DOI: 10.3390/insects13050434] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023]
Abstract
Durability monitoring of insecticide-treated nets (ITNs) containing a pyrethroid in combination with a second active ingredient (AI) must be adapted so that the insecticidal bioefficacy of each AI can be monitored independently. An effective way to do this is to measure rapid knock down of a pyrethroid-susceptible strain of mosquitoes to assess the bioefficacy of the pyrethroid component and to use a pyrethroid-resistant strain to measure the bioefficacy of the second ingredient. To allow robust comparison of results across tests within and between test facilities, and over time, protocols for bioefficacy testing must include either characterisation of the resistant strain, standardisation of the mosquitoes used for bioassays, or a combination of the two. Through a series of virtual meetings, key stakeholders and practitioners explored different approaches to achieving these goals. Via an iterative process we decided on the preferred approach and produced a protocol consisting of characterising mosquitoes used for bioefficacy testing before and after a round of bioassays, for example at each time point in a durability monitoring study. We present the final protocol and justify our approach to establishing a standard methodology for durability monitoring of ITNs containing pyrethroid and a second AI.
Collapse
Affiliation(s)
- Rosemary S. Lees
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (N.L.); (H.R.); (D.W.)
- Innovation to Impact, Pembroke Place, Liverpool L3 5QA, UK;
| | - Jennifer S. Armistead
- U.S. President’s Malaria Initiative (PMI), U.S. Agency for International Development (USAID), Washington, DC 20547, USA;
| | - Salum Azizi
- KCMUCo-PAMVERC Test Facility, Department of Medical Parasitology and Entomology, Kilimanjaro Christian Medical University College, Moshi P.O. Box 2240, Tanzania;
| | - Edi Constant
- Centre Suisse de Recherches Scientifiques (CSRS), Abidjan 1303, Côte d’Ivoire;
| | - Christen Fornadel
- Innovative Vector Control Consortium (IVCC), Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (C.F.); (G.S.)
| | - John E. Gimnig
- Division of Parasitic Diseases and Malaria, Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA; (J.E.G.); (D.I.); (S.Z.)
| | - Janet Hemingway
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (N.L.); (H.R.); (D.W.)
| | - Daniel Impoinvil
- Division of Parasitic Diseases and Malaria, Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA; (J.E.G.); (D.I.); (S.Z.)
- U.S. President’s Malaria Initiative (PMI), Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA;
| | - Seth R. Irish
- U.S. President’s Malaria Initiative (PMI), Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA;
| | - William Kisinza
- Amani Research Centre, National Institute for Medical Research, Muheza P.O. Box 81, Tanzania;
| | - Natalie Lissenden
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (N.L.); (H.R.); (D.W.)
- Innovation to Impact, Pembroke Place, Liverpool L3 5QA, UK;
| | - Henry D. Mawejje
- Infectious Diseases Research Collaboration (IDRC), Plot 2C Nakasero Hill Road, Kampala P.O. Box 7475, Uganda;
| | - Louisa A. Messenger
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (L.A.M.); (C.N.); (N.P.)
| | - Sarah Moore
- Vector Control Product Testing Unit (VCPTU), Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania;
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical & Public Health Institute, Kreuzstrasse 2, Allschwil, 4123 Basel, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Nelson Mandela African Institute of Science and Technology (NM-AIST), Tengeru P.O. Box 447, Tanzania
| | - Corine Ngufor
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (L.A.M.); (C.N.); (N.P.)
- Centre de Recherche Entomologique de Cotonou, Cotonou BP 2604, Benin
| | - Richard Oxborough
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd., Rockville, MD 20852, USA;
| | - Natacha Protopopoff
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (L.A.M.); (C.N.); (N.P.)
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (N.L.); (H.R.); (D.W.)
| | - Graham Small
- Innovative Vector Control Consortium (IVCC), Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (C.F.); (G.S.)
| | - Joseph Wagman
- Malaria and Neglected Tropical Diseases Program, PATH, Washington, DC 20001, USA;
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (N.L.); (H.R.); (D.W.)
| | - Sarah Zohdy
- Division of Parasitic Diseases and Malaria, Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA; (J.E.G.); (D.I.); (S.Z.)
- U.S. President’s Malaria Initiative (PMI), Centers for Disease Control (CDC) and Prevention, Atlanta, GA 30329, USA;
| | - Angus Spiers
- Innovation to Impact, Pembroke Place, Liverpool L3 5QA, UK;
| |
Collapse
|
20
|
Chanyalew T, Natea G, Amenu D, Yewhalaw D, Simma EA. Composition of mosquito fauna and insecticide resistance status of Anopheles gambiae sensu lato in Itang special district, Gambella, Southwestern Ethiopia. Malar J 2022; 21:125. [PMID: 35436961 PMCID: PMC9014582 DOI: 10.1186/s12936-022-04150-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Anopheles arabiensis, member species of the Anopheles gambiae complex, is the primary vector of malaria and is widely distributed in Ethiopia. Anopheles funestus, Anopheles pharoensis and Anopheles nili are secondary vectors occurring with limited distribution in the country. Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are pillars for the interventions against malaria control and elimination efforts in Ethiopia. However, the emergence and widespread of insecticide resistance in An. gambiae sensu lato (s.l.), might compromise the control efforts of the country. The aim of this study was to investigate composition of mosquito fauna and insecticide resistance status of An. gambiae s.l. in Itang special district ( woreda), Gambella, southwestern Ethiopia. Methods Adult mosquitoes were sampled from September 2020 to February 2021 using the CDC light trap and pyrethrum spray catch (PSC). CDC light traps were placed in three selected houses for two consecutive days per month to collect mosquitoes indoor and outdoor from 6:00 P.M. to 06:00 A.M. and PSC was used to collect indoor resting mosquitoes from ten selected houses once in a month from October 2020 to February 2021. Moreover, mosquito larvae were also collected from different breeding sites and reared to adults to assess susceptibility status of populations of An. gambiae s.l. in the study area. Susceptibility tests were conducted on two to three days old non blood fed female An. gambiae s.l. using insecticide impregnated papers with deltamethrin (0.05%), alpha-cypermethrin (0.05%), propoxur (0.1%), pirimiphos-methyl (0.25%) and bendiocarb (0.1%) following World Health Organization (WHO) standard susceptibility test procedure. Molecular diagnostics were done for the identification of member species of An. gambiae s.l. and detection of knockdown resistance (kdr) allele using species specific polymerase chain reaction (PCR) and allele specific PCR. Results In total, 468 adult mosquitoes were collected from different houses. Culex mosquitoes were the most dominant (80.4%) followed by Anopheles mosquitoes. Three species of Anopheles (Anopheles coustani, An. pharoensis, and An. gambiae s.l.) were identified, of which An. coustani was the dominant (8.1%) species. Higher number of mosquitoes (231) were collected outdoor by CDC light traps. Out of 468 adult mosquitoes, 294 were blood fed, 46 were half-gravid and gravid whereas the remaining 128 were unfed. WHO bioassay tests revealed that the populations of An. gambiae s.l. in the study area are resistant against alpha-cypermethrin and deltamethrin, but susceptible to bendiocarb, pirimiphos-methyl and propoxur. Of the total 86 An. gambiae s.l. specimens assayed, 79 (92%) successfully amplified and identified as An. arabiensis. West African kdr (L1014F) mutation was detected with high kdr allele frequency ranging from 67 to 88%. Conclusion The detection of target site mutation, kdr L1014F allele, coupled with the phenotypic resistance against alpha-cypermethrin and deltamethrin call for continuous resistance monitoring.
Collapse
|
21
|
Sympatric Populations of the Anopheles gambiae Complex in Southwest Burkina Faso Evolve Multiple Diverse Resistance Mechanisms in Response to Intense Selection Pressure with Pyrethroids. INSECTS 2022; 13:insects13030247. [PMID: 35323544 PMCID: PMC8955173 DOI: 10.3390/insects13030247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Targeting mosquitoes with insecticides is one of the most effective methods to prevent malaria transmission. Although numbers of malaria cases have declined substantially this century, this pattern is not universal and Burkina Faso has one of the highest burdens of malaria; it is also a hotspot for the evolution of insecticide resistance in malaria vectors. We have established laboratory colonies from multiple species within the An. gambiae complex, the most efficient group of malaria vectors in the world, from larval collections in southwest Burkina Faso. Using bioassays with different insecticides widely used to control public health pests, we provide a profile of insecticide resistance in each of these colonies and, using molecular tools, reveal the genetic changes underpinning this resistance. We show that, whilst many resistance mechanisms are shared between species, there are some important differences which may affect resistance to current and future insecticide classes. The complexity, and diversity of resistance mechanisms highlights the importance of screening any potential new insecticide intended for use in malaria control against a wide range of populations. These stable laboratory colonies provide a valuable resource for insecticide discovery, and for further studies on the evolution and dispersal of insecticide resistance within and between species. Abstract Pyrethroid resistance in the Anopheles vectors of malaria is driving an urgent search for new insecticides that can be used in proven vector control tools such as insecticide treated nets (ITNs). Screening for potential new insecticides requires access to stable colonies of the predominant vector species that contain the major pyrethroid resistance mechanisms circulating in wild populations. Southwest Burkina Faso is an apparent hotspot for the emergence of pyrethroid resistance in species of the Anopheles gambiae complex. We established stable colonies from larval collections across this region and characterised the resistance phenotype and underpinning genetic mechanisms. Three additional colonies were successfully established (1 An. coluzzii, 1 An. gambiae and 1 An. arabiensis) to add to the 2 An. coluzzii colonies already established from this region; all 5 strains are highly resistant to pyrethroids. Synergism assays found that piperonyl butoxide (PBO) exposure was unable to fully restore susceptibility although exposure to a commercial ITN containing PBO resulted in 100% mortality. All colonies contained resistant alleles of the voltage gated sodium channel but with differing proportions of alternative resistant haplotypes. RNAseq data confirmed the role of P450s, with CYP6P3 and CYP6Z2 elevated in all 5 strains, and identified many other resistance mechanisms, some found across strains, others unique to a particular species. These strains represent an important resource for insecticide discovery and provide further insights into the complex genetic changes driving pyrethroid resistance.
Collapse
|
22
|
Standardised bioassays reveal that mosquitoes learn to avoid compounds used in chemical vector control after a single sub-lethal exposure. Sci Rep 2022; 12:2206. [PMID: 35177630 PMCID: PMC8854624 DOI: 10.1038/s41598-022-05754-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022] Open
Abstract
Vector-borne diseases are worldwide public health issues. Despite research focused on vectorial capacity determinants in pathogen transmitting mosquitoes, their behavioural plasticity remains poorly understood. Memory and associative learning have been linked to behavioural changes in several insect species, but their relevance in behavioural responses to pesticide vector control has been largely overlooked. In this study, female Aedes aegypti and Culex quinquefasciastus were exposed to sub-lethal doses of 5 pesticide compounds using modified World Health Organization (WHO) tube bioassays. Conditioned females, subsequently exposed to the same pesticides in WHO tunnel assays, exhibited behavioural avoidance by forgoing blood-feeding to ensure survival. Standardized resting site choice tests showed that pre-exposed females avoided the pesticides smell and choose to rest in a pesticide-free compartment. These results showed that, following a single exposure, mosquitoes can associate the olfactory stimulus of pesticides with their detrimental effects and subsequently avoid pesticide contact. Findings highlight the importance of mosquito cognition as determinants of pesticide resistance in mosquito populations targeted by chemical control.
Collapse
|
23
|
Ioannidis P, Buer B, Ilias A, Kaforou S, Aivaliotis M, Orfanoudaki G, Douris V, Geibel S, Vontas J, Denecke S. A spatiotemporal atlas of the lepidopteran pest Helicoverpa armigera midgut provides insights into nutrient processing and pH regulation. BMC Genomics 2022; 23:75. [PMID: 35073840 PMCID: PMC8785469 DOI: 10.1186/s12864-021-08274-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Caterpillars from the insect order Lepidoptera are some of the most widespread and destructive agricultural pests. Most of their impact is at the larval stage, where the midgut epithelium mediates the digestion and absorption of an astonishing amount of food. Although this tissue has been the subject of frequent investigation in Lepidoptera, a comprehensive expression atlas has yet to be generated. Results Here, we perform RNA-sequencing and proteomics on the gut of the polyphagous pest Helicoverpa armigera across, life stages, diet types, and compartments of the anterior-posterior axis. A striking relationship between the structural homology and expression pattern of a group of sugar transporters was observed in the early larval stages. Further comparisons were made among the spatial compartments of the midgut, which suggested a putative role for vATPases and SLC9 transporters in the generation of alkaline conditions in the H. armigera midgut. Conclusions This comprehensive resource will aid the scientific community in understanding lepidopteran gut physiology in unprecedented resolution. It is hoped that this study advances the understanding of the lepidopteran midgut and also facilitates functional work in this field. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08274-x.
Collapse
|
24
|
Vargas-Chavez C, Longo Pendy NM, Nsango SE, Aguilera L, Ayala D, González J. Transposable element variants and their potential adaptive impact in urban populations of the malaria vector Anopheles coluzzii. Genome Res 2021; 32:189-202. [PMID: 34965939 PMCID: PMC8744685 DOI: 10.1101/gr.275761.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
Anopheles coluzzii is one of the primary vectors of human malaria in sub-Saharan Africa. Recently, it has spread into the main cities of Central Africa threatening vector control programs. The adaptation of An. coluzzii to urban environments partly results from an increased tolerance to organic pollution and insecticides. Some of the molecular mechanisms for ecological adaptation are known, but the role of transposable elements (TEs) in the adaptive processes of this species has not been studied yet. As a first step toward assessing the role of TEs in rapid urban adaptation, we sequenced using long reads six An. coluzzii genomes from natural breeding sites in two major Central Africa cities. We de novo annotated TEs in these genomes and in an additional high-quality An. coluzzii genome, and we identified 64 new TE families. TEs were nonrandomly distributed throughout the genome with significant differences in the number of insertions of several superfamilies across the studied genomes. We identified seven putatively active families with insertions near genes with functions related to vectorial capacity, and several TEs that may provide promoter and transcription factor binding sites to insecticide resistance and immune-related genes. Overall, the analysis of multiple high-quality genomes allowed us to generate the most comprehensive TE annotation in this species to date and identify several TE insertions that could potentially impact both genome architecture and the regulation of functionally relevant genes. These results provide a basis for future studies of the impact of TEs on the biology of An. coluzzii.
Collapse
Affiliation(s)
- Carlos Vargas-Chavez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain
| | - Neil Michel Longo Pendy
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon.,École Doctorale Régional (EDR) en Infectiologie Tropicale d'Afrique Centrale, BP 876, Franceville, Gabon
| | - Sandrine E Nsango
- Faculté de Médecine et des Sciences Pharmaceutiques, Université de Douala, BP 2701, Douala, Cameroun
| | - Laura Aguilera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain
| | - Diego Ayala
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon.,Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université Montpellier, CNRS, IRD, 64501 Montpellier, France
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain
| |
Collapse
|
25
|
Kefi M, Charamis J, Balabanidou V, Ioannidis P, Ranson H, Ingham VA, Vontas J. Transcriptomic analysis of resistance and short-term induction response to pyrethroids, in Anopheles coluzzii legs. BMC Genomics 2021; 22:891. [PMID: 34903168 PMCID: PMC8667434 DOI: 10.1186/s12864-021-08205-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Insecticide-treated bed nets and indoor residual spraying comprise the major control measures against Anopheles gambiae sl, the dominant vector in sub-Saharan Africa. The primary site of contact with insecticide is through the mosquitoes' legs, which represents the first barrier insecticides have to bypass to reach their neuronal targets. Proteomic changes and leg cuticle modifications have been associated with insecticide resistance that may reduce the rate of penetration of insecticides. Here, we performed a multiple transcriptomic analyses focusing on An. coluzzii legs. RESULTS Firstly, leg-specific enrichment analysis identified 359 genes including the pyrethroid-binder SAP2 and 2 other chemosensory proteins, along with 4 ABCG transporters previously shown to be leg enriched. Enrichment of gene families included those involved in detecting chemical stimuli, including gustatory and ionotropic receptors and genes implicated in hydrocarbon-synthesis. Subsequently, we compared transcript expression in the legs of a highly resistant strain (VK7-HR) to both a strain with very similar genetic background which has reverted to susceptibility after several generations without insecticide pressure (VK7-LR) and a lab susceptible population (NG). Two hundred thirty-two differentially expressed genes (73 up-regulated and 159 down-regulated) were identified in the resistant strain when compared to the two susceptible counterparts, indicating an over-expression of phase I detoxification enzymes and cuticular proteins, with decrease in hormone-related metabolic processes in legs from the insecticide resistant population. Finally, we analysed the short-term effect of pyrethroid exposure on An. coluzzii legs, comparing legs of 1 h-deltamethrin-exposed An. coluzzii (VK7-IN) to those of unexposed mosquitoes (VK7-HR) and identified 348 up-regulated genes including those encoding for GPCRs, ABC transporters, odorant-binding proteins and members of the divergent salivary gland protein family. CONCLUSIONS The data on An. coluzzii leg-specific transcriptome provides valuable insights into the first line of defense in pyrethroid resistant and short-term deltamethrin-exposed mosquitoes. Our results suggest that xenobiotic detoxification is likely occurring in legs, while the enrichment of sensory proteins, ABCG transporters and cuticular genes is also evident. Constitutive resistance is primarily associated with elevated levels of detoxification and cuticular genes, while short-term insecticide-induced tolerance is linked with overexpression of transporters, GPCRs and GPCR-related genes, sensory/binding and salivary gland proteins.
Collapse
Affiliation(s)
- M Kefi
- Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - J Charamis
- Department of Biology, University of Crete, Vassilika Vouton, 71409, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - V Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - P Ioannidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - H Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - V A Ingham
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Parasitology Unit, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - J Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece.
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
26
|
Messenger LA, Impoinvil LM, Derilus D, Yewhalaw D, Irish S, Lenhart A. A whole transcriptomic approach provides novel insights into the molecular basis of organophosphate and pyrethroid resistance in Anopheles arabiensis from Ethiopia. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103655. [PMID: 34562591 DOI: 10.1016/j.ibmb.2021.103655] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
The development of insecticide resistance in malaria vectors is of increasing concern in Ethiopia because of its potential implications for vector control failure. To better elucidate the specificity of resistance mechanisms and to facilitate the design of control strategies that minimize the likelihood of selecting for cross-resistance, a whole transcriptomic approach was used to explore gene expression patterns in a multi-insecticide resistant population of Anopheles arabiensis from Oromia Region, Ethiopia. This field population was resistant to the diagnostic doses of malathion (average mortality of 71.9%) and permethrin (77.4%), with pools of survivors and unexposed individuals analyzed using Illumina RNA-sequencing, alongside insecticide susceptible reference strains. This population also demonstrated deltamethrin resistance but complete susceptibility to alpha-cypermethrin, bendiocarb and propoxur, providing a phenotypic basis for detecting insecticide-specific resistance mechanisms. Transcriptomic data revealed overexpression of genes including cytochrome P450s, glutathione-s-transferases and carboxylesterases (including CYP4C36, CYP6AA1, CYP6M2, CYP6M3, CYP6P4, CYP9K1, CYP9L1, GSTD3, GSTE2, GSTE3, GSTE4, GSTE5, GSTE7 and two carboxylesterases) that were shared between malathion and permethrin survivors. We also identified nineteen highly overexpressed cuticular-associated proteins (including CYP4G16, CYP4G17 and chitinase) and eighteen salivary gland proteins (including D7r4 short form salivary protein), which may be contributing to a non-specific resistance phenotype by either enhancing the cuticular barrier or promoting binding and sequestration of insecticides, respectively. These findings provide novel insights into the molecular basis of insecticide resistance in this lesser well-characterized major malaria vector species.
Collapse
Affiliation(s)
- Louisa A Messenger
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd. Atlanta, GA, 30329, USA; American Society for Microbiology, 1752 N Street, NW Washington, DC, 20036, USA; Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Lucy Mackenzie Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd. Atlanta, GA, 30329, USA
| | - Dieunel Derilus
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd. Atlanta, GA, 30329, USA
| | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia; Department of Medical Laboratory Sciences and Pathology, College of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Seth Irish
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd. Atlanta, GA, 30329, USA; President's Malaria Initiative, Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd. Atlanta, GA, 30329, USA
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, U.S. Centers for Disease Control and Prevention, 1600 Clifton Rd. Atlanta, GA, 30329, USA.
| |
Collapse
|
27
|
Parisot N, Vargas-Chávez C, Goubert C, Baa-Puyoulet P, Balmand S, Beranger L, Blanc C, Bonnamour A, Boulesteix M, Burlet N, Calevro F, Callaerts P, Chancy T, Charles H, Colella S, Da Silva Barbosa A, Dell'Aglio E, Di Genova A, Febvay G, Gabaldón T, Galvão Ferrarini M, Gerber A, Gillet B, Hubley R, Hughes S, Jacquin-Joly E, Maire J, Marcet-Houben M, Masson F, Meslin C, Montagné N, Moya A, Ribeiro de Vasconcelos AT, Richard G, Rosen J, Sagot MF, Smit AFA, Storer JM, Vincent-Monegat C, Vallier A, Vigneron A, Zaidman-Rémy A, Zamoum W, Vieira C, Rebollo R, Latorre A, Heddi A. The transposable element-rich genome of the cereal pest Sitophilus oryzae. BMC Biol 2021; 19:241. [PMID: 34749730 PMCID: PMC8576890 DOI: 10.1186/s12915-021-01158-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. RESULTS We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. CONCLUSIONS Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.
Collapse
Affiliation(s)
- Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Carlos Vargas-Chávez
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Present Address: Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Clément Goubert
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, New York, 14853, USA
- Present Address: Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Séverine Balmand
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Louis Beranger
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Caroline Blanc
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aymeric Bonnamour
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Matthieu Boulesteix
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Nelly Burlet
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Federica Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Patrick Callaerts
- Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, KU Leuven, University of Leuven, B-3000, Leuven, Belgium
| | - Théo Chancy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Hubert Charles
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | - Stefano Colella
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, INRAE, SupAgro, Univ Montpellier, Montpellier, France
| | - André Da Silva Barbosa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Alex Di Genova
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - Gérard Febvay
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Toni Gabaldón
- Life Sciences, Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Mechanisms of Disease, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Institut Catalan de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Alexandra Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | | | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Justin Maire
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Florent Masson
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain
| | | | - Gautier Richard
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653, Le Rheu, France
| | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | - Marie-France Sagot
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | | | | | | | - Agnès Vallier
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aurélien Vigneron
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Waël Zamoum
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France.
- ERABLE European Team, INRIA, Rhône-Alpes, France.
| | - Rita Rebollo
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain.
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain.
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| |
Collapse
|
28
|
Sessa L, Calderón-Fernández GM, Abreo E, Altier N, Mijailovsky SJ, Girotti JR, Pedrini N. Epicuticular hydrocarbons of the redbanded stink bug Piezodorus guildinii (Heteroptera: Pentatomidae): sexual dimorphism and alterations in insects collected in insecticide-treated soybean crops. PEST MANAGEMENT SCIENCE 2021; 77:4892-4902. [PMID: 34164908 DOI: 10.1002/ps.6528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND The redbanded stink bug Piezodorus guildinii (Heteroptera: Pentatomidae) is one of the most important species affecting soybean crops in southern South America. Capillary gas chromatography coupled to mass spectrometry was used to characterize the epicuticular hydrocarbon profiles of field-collected insects, and to identify differences in their composition between fifth-instar nymphs and adults, males and females, and between bugs collected in insecticide-treated and insecticide-free soybean crops. RESULTS Straight chain saturated n-C27 and n-C29, and monomethyl and dimethyl chains of C31 and C33 were the most abundant compounds. A group of volatile hydrocarbons with n-C13 and n-C15 as the predominant compounds were also detected. The hydrocarbon pattern was different between nymphs and adults, either males or females. Heneicosene was almost exclusively detected in adult males and was the most important component to differentiate between both sexes, followed by tricosadiene. The total hydrocarbon amount was significantly higher in nymphs, males and females collected in insecticide-treated fields compared with insects obtained from untreated fields. CONCLUSION Differences were found in the epicuticular hydrocarbon pattern among nymphs and adults, as well as sexual dimorphism in adult stink bugs. Interestingly, an alteration was also found in the hydrocarbon profile of insects collected in insecticide-treated soybean crops and its relevance is discussed within a pest management context.
Collapse
Affiliation(s)
- Lucía Sessa
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, Instituto Nacional de Investigación Agropecuaria (INIA), Las Brujas, Uruguay
| | - Gustavo M Calderón-Fernández
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Eduardo Abreo
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, Instituto Nacional de Investigación Agropecuaria (INIA), Las Brujas, Uruguay
| | - Nora Altier
- Laboratorio de Bioproducción, Plataforma de Bioinsumos, Instituto Nacional de Investigación Agropecuaria (INIA), Las Brujas, Uruguay
| | - Sergio J Mijailovsky
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Juan R Girotti
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT La Plata Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
29
|
Overabundance of Asaia and Serratia Bacteria Is Associated with Deltamethrin Insecticide Susceptibility in Anopheles coluzzii from Agboville, Côte d'Ivoire. Microbiol Spectr 2021; 9:e0015721. [PMID: 34668745 PMCID: PMC8528120 DOI: 10.1128/spectrum.00157-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Insecticide resistance among mosquito species is now a pervasive phenomenon that threatens to jeopardize global malaria vector control efforts. Evidence of links between the mosquito microbiota and insecticide resistance is emerging, with significant enrichment of insecticide degrading bacteria and enzymes in resistant populations. Using 16S rRNA amplicon sequencing, we characterized and compared the microbiota of Anopheles coluzzii in relation to their deltamethrin resistance and exposure profiles. Comparisons between 2- and 3-day-old deltamethrin-resistant and -susceptible mosquitoes demonstrated significant differences in microbiota diversity. Ochrobactrum, Lysinibacillus, and Stenotrophomonas genera, each of which comprised insecticide-degrading species, were significantly enriched in resistant mosquitoes. Susceptible mosquitoes had a significant reduction in alpha diversity compared to resistant individuals, with Asaia and Serratia dominating microbial profiles. There was no significant difference in deltamethrin-exposed and -unexposed 5- to 6-day-old individuals, suggesting that insecticide exposure had minimal impact on microbial composition. Serratia and Asaia were also dominant in 5- to 6-day-old mosquitoes, which had reduced microbial diversity compared to 2- to 3-day-old mosquitoes. Our findings revealed significant alterations of Anopheles coluzzii microbiota associated with deltamethrin resistance, highlighting the potential for identification of novel microbial markers for insecticide resistance surveillance. qPCR detection of Serratia and Asaia was consistent with 16S rRNA sequencing, suggesting that population-level field screening of bacterial microbiota may be feasibly integrated into wider resistance monitoring, if reliable and reproducible markers associated with phenotype can be identified. IMPORTANCE Control of insecticide-resistant vector populations remains a significant challenge to global malaria control and while substantial progress has been made elucidating key target site mutations, overexpressed detoxification enzymes and alternate gene families, the contribution of the mosquito microbiota to phenotypic insecticide resistance has been largely overlooked. We focused on determining the effects of deltamethrin resistance intensity on Anopheles coluzzii microbiota and identifying any microbial taxa associated with phenotype. We demonstrated a significant reduction in microbial diversity between deltamethrin-resistant and -susceptible mosquitoes. Insecticide degrading bacterial species belonging to Ochrobactrum, Lysinibacillus, and Stenotrophomonas genera were significantly enriched in resistant mosquitoes, while Asaia and Serratia dominated microbial profiles of susceptible individuals. Our results revealed significant alterations of Anopheles coluzzii microbiota associated with deltamethrin resistance, highlighting the potential for identification of novel microbial markers for surveillance and opportunities for designing innovative control techniques to prevent the further evolution and spread of insecticide resistance.
Collapse
|
30
|
Balaska S, Fotakis EA, Chaskopoulou A, Vontas J. Chemical control and insecticide resistance status of sand fly vectors worldwide. PLoS Negl Trop Dis 2021; 15:e0009586. [PMID: 34383751 PMCID: PMC8360369 DOI: 10.1371/journal.pntd.0009586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Phlebotomine sand flies are prominent vectors of Leishmania parasites that cause leishmaniasis, which comes second to malaria in terms of parasitic causative fatalities globally. In the absence of human vaccines, sand fly chemical-based vector control is a key component of leishmaniasis control efforts. METHODS AND FINDINGS We performed a literature review on the current interventions, primarily, insecticide-based used for sand fly control, as well as the global insecticide resistance (IR) status of the main sand fly vector species. Indoor insecticidal interventions, such as residual spraying and treated bed nets are the most widely deployed, while several alternative control strategies are also used in certain settings and/or are under evaluation. IR has been sporadically detected in sand flies in India and other regions, using non-standardized diagnostic bioassays. Molecular studies are limited to monitoring of known pyrethroid resistance mutations (kdr), which are present at high frequencies in certain regions. CONCLUSIONS As the leishmaniasis burden remains a major problem at a global scale, evidence-based rational use of insecticidal interventions is required to meet public health demands. Standardized bioassays and molecular markers are a prerequisite for this task, albeit are lagging behind. Experiences from other disease vectors underscore the need for the implementation of appropriate IR management (IRM) programs, in the framework of integrated vector management (IVM). The implementation of alternative strategies seems context- and case-specific, with key eco-epidemiological parameters yet to be investigated. New biotechnology-based control approaches might also come into play in the near future to further reinforce sand fly/leishmaniasis control efforts.
Collapse
Affiliation(s)
- Sofia Balaska
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Emmanouil Alexandros Fotakis
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | | | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Heraklion, Greece
- Department of Crop Science, Agricultural University of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
31
|
Cuticular hydrocarbons are associated with mating success and insecticide resistance in malaria vectors. Commun Biol 2021; 4:911. [PMID: 34312484 PMCID: PMC8313523 DOI: 10.1038/s42003-021-02434-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/08/2021] [Indexed: 12/02/2022] Open
Abstract
Anopheles coluzzii females, important malaria vectors in Africa, mate only once in their lifetime. Mating occurs in aerial swarms with a high male-to-female ratio, where traits underlying male mating success are largely unknown. Here, we investigated whether cuticular hydrocarbons (CHCs) influence mating success in natural mating swarms in Burkina Faso. As insecticides are widely used in this area for malaria control, we also determined whether CHCs affect insecticide resistance levels. We find that mated males have higher CHC abundance than unmated controls, suggesting CHCs could be determinants of mating success. Additionally, mated males have higher insecticide resistance under pyrethroid challenge, and we show a link between resistance intensity and CHC abundance. Taken together, our results suggest that CHC abundance may be subject to sexual selection in addition to selection by insecticide pressure. This has implications for insecticide resistance management, as these traits may be sustained in the population due to their benefits in mating even in the absence of insecticides. In this study, Adams et al. investigate the effect of cuticular hydrocarbons on mating success in natural mosquito mating swarms. These hydrocarbons confer both higher mating success and increased resistance to pyrethroid, suggesting sexual selection for insecticide resistance in this population secondary to mating success.
Collapse
|
32
|
Sierra I, Latorre-Estivalis JM, Traverso L, Gonzalez PV, Aptekmann A, Nadra AD, Masuh H, Ons S. Transcriptomic analysis and molecular docking reveal genes involved in the response of Aedes aegypti larvae to an essential oil extracted from Eucalyptus. PLoS Negl Trop Dis 2021; 15:e0009587. [PMID: 34270558 PMCID: PMC8318226 DOI: 10.1371/journal.pntd.0009587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 07/28/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Aedes aegypti (L.) is an urban mosquito, vector of several arboviruses that cause severe diseases in hundreds of million people each year. The resistance to synthetic insecticides developed by Ae. aegypti populations worldwide has contributed to failures in vector control campaigns, increasing the impact of arbovirus diseases. In this context, plant-derived essential oils with larvicidal activity could be an attractive alternative for vector control. However, the mode of action and the detoxificant response of mosquitoes to plant derived compounds have not been established, impairing the optimization of their use. METHODS AND FINDINGS Here we compare gene expression in Ae. aegypti larvae after 14 hrs of exposure to Eucalyptus camaldulensis essential oil with a control group exposed to vehicle (acetone) for the same lapse, by using RNA-Seq. We found differentially expressed genes encoding for cuticle proteins, fatty-acid synthesis, membrane transporters and detoxificant related gene families (i.e. heat shock proteins, cytochromes P450, glutathione transferases, UDP-glycosyltransferases and ABC transporters). Finally, our RNA-Seq and molecular docking results provide evidence pointing to a central involvement of chemosensory proteins in the detoxificant response in mosquitoes. CONCLUSIONS AND SIGNIFICANCE Our work contributes to the understanding of the physiological response of Ae. aegypti larvae to an intoxication with a natural toxic distilled from Eucalyptus leafs. The results suggest an involvement of most of the gene families associated to detoxification of xenobiotics in insects. Noteworthy, this work provides important information regarding the implication of chemosensory proteins in the detoxification of a natural larvicide. Understanding the mode of detoxification of Eucalyptus distilled compounds could contribute to their implementation as a tool in mosquito control.
Collapse
Affiliation(s)
- Ivana Sierra
- Laboratorio de Neurobiología de Insectos. Centro Regional de Estudios Genómicos. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Jose Manuel Latorre-Estivalis
- Laboratorio de Neurobiología de Insectos. Centro Regional de Estudios Genómicos. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Lucila Traverso
- Laboratorio de Neurobiología de Insectos. Centro Regional de Estudios Genómicos. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Paula V. Gonzalez
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF/CITEDEF/CONICET), Buenos Aires, Argentina
| | - Ariel Aptekmann
- Department of Marine and Coastal Sciences, Rutgers University, School of Environmental and Biological Sciences, New Brunswick, New Jersey, United States of America
| | - Alejandro Daniel Nadra
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología y Biología Molecular y Celular. Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3). Buenos Aires, Argentina
| | - Héctor Masuh
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF/CITEDEF/CONICET), Buenos Aires, Argentina
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos. Centro Regional de Estudios Genómicos. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- * E-mail:
| |
Collapse
|
33
|
Moreno-Gómez M, Bueno-Marí R, Miranda MA. A Three-Pronged Approach to Studying Sublethal Insecticide Doses: Characterising Mosquito Fitness, Mosquito Biting Behaviour, and Human/Environmental Health Risks. INSECTS 2021; 12:546. [PMID: 34208127 PMCID: PMC8230870 DOI: 10.3390/insects12060546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 10/30/2022]
Abstract
Worldwide, pyrethroids are one of the most widely used insecticide classes. In addition to serving as personal protection products, they are also a key line of defence in integrated vector management programmes. Many studies have assessed the effects of sublethal pyrethroid doses on mosquito fitness and behaviour. However, much remains unknown about the biological, physiological, demographic, and behavioural effects on individual mosquitoes or mosquito populations when exposure occurs via spatial treatments. Here, females and males of two laboratory-reared mosquito species, Culex pipiens and Aedes albopictus, were exposed to five different treatments: three doses of the pyrethroid prallethrin, as well as an untreated and a negative control. The effects of each treatment on mosquito species, sex, adult mortality, fertility, F1 population size, and biting behaviour were also evaluated. To compare knockdown and mortality among treatments, Mantel-Cox log-rank tests were used. The results showed that sublethal doses reduced mosquito survival, influencing population size in the next generation. They also provided 100% protection to human hosts and presented relatively low risks to human and environmental health. These findings emphasise the need for additional studies that assess the benefits of using sublethal doses as part of mosquito management strategies.
Collapse
Affiliation(s)
- Mara Moreno-Gómez
- Henkel Ibérica S.A, Research and Development (R&D) Insect Control Department, Carrer Llacuna 22, 1-1, 08005 Barcelona, Spain
| | - Rubén Bueno-Marí
- Laboratorios Lokímica, Departamento de Investigación y Desarrollo (I+D), Ronda Auguste y Louis Lumière 23, Nave 10, Parque Tecnológico, Paterna, 46980 Valencia, Spain;
- Área de Parasitología, Departamento de Farmacia y Tecnologia Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain
| | - Miguel. A. Miranda
- Applied Zoology and Animal Conservation Research Group, University of the Balearic Islands, Cra. Valldemossa km 7,5, 07122 Palma de Mallorca, Spain;
| |
Collapse
|
34
|
Meng LW, Yuan GR, Chen ML, Dou W, Jing TX, Zheng LS, Peng ML, Bai WJ, Wang JJ. Genome-wide identification of long non-coding RNAs (lncRNAs) associated with malathion resistance in Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2021; 77:2292-2301. [PMID: 33423365 DOI: 10.1002/ps.6256] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/09/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in the regulation of biological processes and have been identified in many species including insects. However, the association between lncRNAs and pesticide resistance in insect species such as Bactrocera dorsalis is unknown. RESULTS RNA-seq was performed on malathion resistant (MR1) and susceptible (MS) strains of B. dorsalis and a total of 6171 lncRNAs transcripts were identified. These included 3728 lincRNAs, 653 antisense lncRNAs, 1402 intronic lncRNAs, and 388 sense lncRNAs. A total of 40 and 52 upregulated lncRNAs were found in females and males of the MR1 strain compared to 54 and 49 in the same sexes of the MS strain, respectively. Twenty-seven of these lncRNAs showed the same trend of expression in both females and males in the MR1 strain, in which 15 lncRNAs were upregulated and 12 were downregulated. RT-qPCR results indicated that the differentially expressed lncRNAs were associated with malathion resistance. The lnc15010.10 and lnc3774.2 were highly expressed in the cuticle of the MR1 strain, indicating that these two lncRNAs may be related to malathion resistance. RNAi of lnc3774.2 and a bioassay showed that malathion resistance was possibly influenced by changes in the B. dorsalis cuticle. CONCLUSION LncRNAs of B. dorsalis potentially related to the malathion resistance were identified. Two lncRNAs appear to influence malathion resistance via modulating the structure, or components, of the cuticle. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li-Wei Meng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Meng-Ling Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Tian-Xing Jing
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Li-Sha Zheng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Meng-Lan Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wen-Jie Bai
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
35
|
Medjigbodo AA, Djogbenou LS, Koumba AA, Djossou L, Badolo A, Adoha CJ, Ketoh GK, Mavoungou JF. Phenotypic Insecticide Resistance in Anopheles gambiae (Diptera: Culicidae): Specific Characterization of Underlying Resistance Mechanisms Still Matters. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:730-738. [PMID: 33043968 PMCID: PMC7954100 DOI: 10.1093/jme/tjaa195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 06/11/2023]
Abstract
An effective control of malaria vectors requires an extensive knowledge of mechanisms underlying the resistance-phenotypes developed by these vectors against insecticides. We investigated Anopheles gambiae mosquitoes from Benin and Togo for their intensity of insecticide resistance and we discussed the involvement of genotyped mechanisms in the resistance-phenotypes observed. Three- to five-day-old adult mosquitoes emerged from field and laboratory An. gambiae larvae were assayed using WHO tube intensity tests against various doses of deltamethrin: 1× (0.05%); 2× (0.1%); 5× (0.25%); 7.5× (0.375%) and those of pirimiphos-methyl: 0.5× (0.125%); 1× (0.25%). Members of An. gambiae complex were screened in field populations using polymerase chain reaction (PCR) assays. The presence of kdrR(1014F/1014S) and ace-1R(119S) mutations was also investigated using TaqMan and PCR-RFLP techniques, respectively. Anopheles gambiae from field were very resistant to deltamethrin, whereas KisKdr and AcerKdrKis strains displayed 100% mortality rates at 2× the diagnostic dose. In contrast, the field mosquitoes displayed a low resistance-intensity against 1× the diagnostic dose of pirimiphos-methyl, whereas AcerKis and AcerKdrKis strains showed susceptibility at 0.5× the diagnostic dose. Anopheles gambiae s.s., Anopheles coluzzii, and Anopheles arabiensis were identified. Allelic frequencies of kdrR (1014F) and ace-1R (119S) mutations in the field populations varied from 0.65 to 1 and 0 to 0.84, respectively. The field An. gambiae displayed high-resistance levels against deltamethrin and pirimiphos-methyl when compared with those of the laboratory An. gambiae-resistant strains. These results exhibit the complexity of underlying insecticide resistance mechanisms in these field malaria vectors.
Collapse
Affiliation(s)
- Adandé A Medjigbodo
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, Cotonou, Benin
- Laboratory of Fundamental and Applied Entomology, University Joseph KI-ZERBO, BP, Burkina Faso, West Africa
| | - Luc S Djogbenou
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, Cotonou, Benin
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Aubin A Koumba
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, Cotonou, Benin
- University of Science and Technology of Masuku (USTM), BP, Franceville, Gabon
| | - Laurette Djossou
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, Cotonou, Benin
| | - Athanase Badolo
- Laboratory of Fundamental and Applied Entomology, University Joseph KI-ZERBO, BP, Burkina Faso, West Africa
| | - Constantin J Adoha
- Laboratory of Infectious Vector-Borne Diseases, Regional Institute of Public Health/University of Abomey-Calavi, Cotonou, Benin
| | | | - Jacques F Mavoungou
- University of Science and Technology of Masuku (USTM), BP, Franceville, Gabon
| |
Collapse
|
36
|
Assessing cross-resistance within the pyrethroids in terms of their interactions with key cytochrome P450 enzymes and resistance in vector populations. Parasit Vectors 2021; 14:115. [PMID: 33602297 PMCID: PMC7893915 DOI: 10.1186/s13071-021-04609-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/23/2021] [Indexed: 01/21/2023] Open
Abstract
Background It is important to understand whether the potential impact of pyrethroid resistance on malaria control can be mitigated by switching between different pyrethroids or whether cross-resistance within this insecticide class precludes this approach. Methods Here we assess the relationships among pyrethroids in terms of their binding affinity to, and depletion by, key cytochrome P450 enzymes (hereafter P450s) that are known to confer metabolic pyrethroid resistance in Anopheles gambiae (s.l.) and An. funestus, in order to identify which pyrethroids may diverge from the others in their vulnerability to resistance. We then investigate whether these same pyrethroids also diverge from the others in terms of resistance in vector populations. Results We found that the type I and II pyrethroids permethrin and deltamethrin, respectively, are closely related in terms of binding affinity to key P450s, depletion by P450s and resistance within vector populations. Bifenthrin, which lacks the common structural moiety of most pyrethroids, diverged from the other pyrethroids tested in terms of both binding affinity to key P450s and depletion by P450s, but resistance to bifenthrin has rarely been tested in vector populations and was not analysed here. Etofenprox, which also lacks the common structural moiety of most pyrethroids, diverged from the more commonly deployed pyrethroids in terms of binding affinity to key P450s and resistance in vector populations, but did not diverge from these pyrethroids in terms of depletion by the P450s. The analysis of depletion by the P450s indicated that etofenprox may be more vulnerable to metabolic resistance mechanisms in vector populations. In addition, greater resistance to etofenprox was found across Aedes aegypti populations, but greater resistance to this compound was not found in any of the malaria vector species analysed. The results for pyrethroid depletion by anopheline P450s in the laboratory were largely not repeated in the findings for resistance in malaria vector populations. Conclusion Importantly, the prevalence of resistance to the pyrethroids α-cypermethrin, cyfluthrin, deltamethrin, λ-cyhalothrin and permethrin was correlated across malaria vector populations, and switching between these compounds as a tool to mitigate against pyrethroid resistance is not advised without strong evidence supporting a true difference in resistance.![]()
Collapse
|
37
|
Blomquist GJ, Ginzel MD. Chemical Ecology, Biochemistry, and Molecular Biology of Insect Hydrocarbons. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:45-60. [PMID: 33417824 DOI: 10.1146/annurev-ento-031620-071754] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Insect cuticular hydrocarbons (CHCs) consist of complex mixtures of straight-chain alkanes and alkenes, and methyl-branched hydrocarbons. In addition to restricting water loss through the cuticle and preventing desiccation, they have secondarily evolved to serve a variety of functions in chemical communication and play critical roles as signals mediating the life histories of insects. In this review, we describe the physical properties of CHCs that allow for both waterproofing and signaling functions, summarize their roles as inter- and intraspecific chemical signals, and discuss the influences of diet and environment on CHC profiles. We also present advances in our understanding of hydrocarbon biosynthesis. Hydrocarbons are biosynthesized in oenocytes and transported to the cuticle by lipophorin proteins. Recent work on the synthesis of fatty acids and their ultimate reductive decarbonylation to hydrocarbons has taken advantage of powerful new tools of molecular biology, including genomics and RNA interference knockdown of specific genes, to provide new insights into the biosynthesis of hydrocarbons.
Collapse
Affiliation(s)
- Gary J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA;
| | - Matthew D Ginzel
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA;
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
38
|
Ingham VA, Elg S, Nagi SC, Dondelinger F. Capturing the transcription factor interactome in response to sub-lethal insecticide exposure. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:None. [PMID: 34977825 PMCID: PMC8702396 DOI: 10.1016/j.cris.2021.100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/15/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022]
Abstract
The increasing levels of pesticide resistance in agricultural pests and disease vectors represents a threat to both food security and global health. As insecticide resistance intensity strengthens and spreads, the likelihood of a pest encountering a sub-lethal dose of pesticide dramatically increases. Here, we apply dynamic Bayesian networks to a transcriptome time-course generated using sub-lethal pyrethroid exposure on a highly resistant Anopheles coluzzii population. The model accounts for circadian rhythm and ageing effects allowing high confidence identification of transcription factors with key roles in pesticide response. The associations generated by this model show high concordance with lab-based validation and identifies 44 transcription factors putatively regulating insecticide-responsive transcripts. We identify six key regulators, with each displaying differing enrichment terms, demonstrating the complexity of pesticide response. The considerable overlap of resistance mechanisms in agricultural pests and disease vectors strongly suggests that these findings are relevant in a wide variety of pest species.
Collapse
|
39
|
Ciancio JJ, Turnbull KF, Gariepy TD, Sinclair BJ. Cold tolerance, water balance, energetics, gas exchange, and diapause in overwintering brown marmorated stink bugs. JOURNAL OF INSECT PHYSIOLOGY 2021; 128:104171. [PMID: 33227277 DOI: 10.1016/j.jinsphys.2020.104171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Halyomorpha halys (Hemiptera: Pentatomidae) is an emerging pest which established in Ontario, Canada, in 2012. Halyomporpha halys overwinters in anthropogenic structures as an adult. We investigated seasonal variation in the cold tolerance, water balance, and energetics of H. halys in southwestern Ontario. We also induced diapause in laboratory-reared animals with short daylength at permissive temperatures and compared cold tolerance, water balance, energetics, and metabolism and gas exchange between diapausing and non-diapausing individuals. Halyomorpha halys that overwintered outside in Ontario all died, but most of those that overwintered in sheltered habitats survived. We confirm that overwintering H. halys are chill-susceptible. Over winter, Ontario H. halys depressed their supercooling point to c. -15.4 °C, and 50% survived a 1 h exposure to -17.5 °C. They reduce water loss rates over winter, and do not appear to significantly consume lipid or carbohydrate reserves to a level that might cause starvation. Overall, it appears that H. halys is dependent on built structures and other buffered microhabitats to successfully overwinter in Ontario. Laboratory-reared diapausing H. halys have lower supercooling points than their non-diapausing counterparts, but LT50 is not enhanced by diapause induction. Diapausing H. halys survive desiccating conditions for 3-4 times longer than those not in diapause, through decreases in both respiratory and cuticular water loss. Diapausing H. halys do not appear to accumulate any more lipid or carbohydrate than those not in diapause, but do have lower metabolic rates, and are slightly more likely to exhibit discontinuous gas exchange.
Collapse
Affiliation(s)
- John J Ciancio
- Department of Biology, University of Western Ontario, London, ON, Canada; Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
| | - Kurtis F Turnbull
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Tara D Gariepy
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON, Canada
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
40
|
Lees RS, Ambrose P, Williams J, Morgan J, Praulins G, Ingham VA, Williams CT, Logan RAE, Ismail HM, Malone D. Tenebenal: a meta-diamide with potential for use as a novel mode of action insecticide for public health. Malar J 2020; 19:398. [PMID: 33168015 PMCID: PMC7654575 DOI: 10.1186/s12936-020-03466-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/27/2020] [Indexed: 01/21/2023] Open
Abstract
Background There is an urgent need for insecticides with novel modes of action against mosquito vectors. Broflanilide is a meta-diamide, discovered and named Tenebenal™ by Mitsui Chemicals Agro, Inc., which has been identified as a candidate insecticide for use in public health products. Methods To evaluate its potential for use in public health, Tenebenal™ was screened using an array of methodologies against Anopheles and Aedes strains. Initially it was assessed for intrinsic efficacy by topical application. Tarsal contact bioassays were then conducted to further investigate its efficacy, as well as its potency and speed of action. The potential of the compound for use in indoor residual spray (IRS) applications was investigated by testing the residual efficacy of a prototype IRS formulation on a range of typical house building substrates, and its potential for use in long-lasting insecticidal nets (LLIN) was tested using dipped net samples. Finally, bioassays using well-characterized insecticide-resistant mosquito strains and an in silico screen for mutations in the insecticide’s target site were performed to assess the risk of cross-resistance to Tenebenal™. Results Tenebenal™ was effective as a tarsal contact insecticide against both Aedes and Anopheles mosquitoes, with no apparent cross-resistance caused by mechanisms that have evolved to insecticides currently used in vector control. Topical application showed potent intrinsic activity against a Kisumu reference strain and an insecticide-resistant strain of Anopheles gambiae. Applied to filter paper in a WHO tube bioassay, Tenebenal™ was effective in killing 100% of susceptible and resistant strains of An. gambiae and Aedes aegypti at a concentration of 0.01%. The discriminating concentration of 11.91 µg/bottle shows it to be very potent relative to chemistries previously identified as having potential for vector control. Mortality occurs within 24 h of exposure, 80% of this mortality occurring within the first 10 h, a speed of kill somewhat slower than seen with pyrethroids due to the mode of action. The potential of Tenebenal™ for development in LLIN and IRS products was demonstrated. At least 12 months residual efficacy of a prototype IRS formulation applied at concentrations up to 200 mg of AI/sq m was demonstrated on a range of representative wall substrates, and up to 18 months on more inert substrates. A dipped net with an application rate of around 2 g/sq m Tenebenal™ killed 100% of exposed mosquitoes within a 3-min exposure in a WHO cone test. Conclusions Tenebenal™ is a potent insecticide against adult Aedes and Anopheles mosquitoes, including strains resistant to classes of insecticide currently used in vector control. The compound has shown great potential in laboratory assessment and warrants further investigation into development for the control of pyrethroid-resistant mosquitoes.
Collapse
Affiliation(s)
| | | | | | - John Morgan
- Liverpool School of Tropical Medicine (LSTM), Liverpool, UK
| | | | | | | | | | | | - David Malone
- Bill & Melinda Gates Foundation, Seattle, USA.,Innovative Vector Control Consortium (IVCC), LSTM, Liverpool, UK
| |
Collapse
|
41
|
Vontas J, Katsavou E, Mavridis K. Cytochrome P450-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors: Muddying the waters. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104666. [PMID: 32980073 DOI: 10.1016/j.pestbp.2020.104666] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Despite the substantial progress achieved in the characterization of cytochrome P450 (CYP) -based resistance mechanisms in mosquitoes, a number of questions remain unanswered. These include: (i) the regulation and physiology of resistance conferring CYPs; (ii) the actual contribution of CYPs in resistance alone or in combination with other detoxification partners or other resistance mechanisms; (iii) the association between overexpression levels and allelic variation, with the catalytic activity and the intensity of resistance and (iv) the true value of molecular diagnostics targeting CYP markers, for driving decision making in the frame of Insecticide Resistance Management applications. Furthermore, the translation of CYP - based insecticide resistance research in mosquitoes into practical applications, is being developed, but it is not fully exploited, as yet. Examples include the production of high throughput platforms for screening the liability (stability) or inhibition potential of novel insecticidal leads and synergists (add-ons), as well as the exploration of the negative cross resistance concept (i.e. detoxification of certain insecticides, but activation of others pro-insecticides). The goal of this review is to critically summarise the current knowledge and the gaps of the CYP-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors. The progress and limitations of the protein and the reverse/forward genetic approaches, the understanding and importance of molecular and physiological aspects, as well as the current and future exploitation routes of CYP research are discussed.
Collapse
Affiliation(s)
- John Vontas
- Foundation for Research and Technology (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece; Department of Crop Science, Agricultural University of Athens, Iera Odos 875, 11855, Athens, Greece.
| | - Eva Katsavou
- Department of Crop Science, Agricultural University of Athens, Iera Odos 875, 11855, Athens, Greece
| | - Konstantinos Mavridis
- Foundation for Research and Technology (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece
| |
Collapse
|
42
|
Xu Y, Yang X, Sun X, Li X, Liu Z, Yin Q, Ma L, Zhou D, Sun Y, Shen B, Zhu C. Transcription factor FTZ-F1 regulates mosquito cuticular protein CPLCG5 conferring resistance to pyrethroids in Culex pipiens pallens. Parasit Vectors 2020; 13:514. [PMID: 33054862 PMCID: PMC7559895 DOI: 10.1186/s13071-020-04383-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022] Open
Abstract
Background Culex pipiens pallens poses a serious threat to human health because of its widespread distribution, high carrier capacity for several arboviruses, frequent human-biting, and growth in urban environments. Pyrethroid insecticides have been mainly used to control adult Cx. pipiens pallens during outbreaks of mosquito-borne diseases. Unfortunately, mosquitoes have developed resistance, rendering the insecticides ineffective. Cuticular resistance is the primary mechanism of pyrethroid resistance. Previously, we revealed that cuticular protein of low complexity CPLCG5 is a major cuticular protein associated with deltamethrin resistance in Cx. pipiens pallens, which is enriched in the cuticle of mosquitoes’ legs and participates in pyrethroid resistance by forming a rigid matrix. However, the regulatory mechanisms of its transcription remain unknown. Results First, qRT-PCR analysis revealed that the expression of FTZ-F1 (encoding Fushi tarazu-Factor 1) was ~ 1.8-fold higher in the deltamethrin-resistant (DR) than deltamethrin-susceptible (DS) strains at 24 h post-eclosion (PE) and ~ 2.2-fold higher in the DR strain than in the DS strain at 48 h PE. CPLCG5 and FTZ-F1 were co-expressed in the legs, indicating that they might play an essential role in the legs. Dual luciferase reporter assays and EMSA (electrophoretic mobility shift experiments) revealed that FTZ-F1 regulates the transcription of CPLCG5 by binding to the FTZ-F1 response element (− 870/− 864). Lastly, knockdown of FTZ-F1 not only affected CPLCG5 expression but also altered the cuticle thickness and structure of the legs, increasing the susceptibility of the mosquitoes to deltamethrin in vivo. Conclusions The results revealed that FTZ-F1 regulates the expression of CPLCG5 by binding to the CPLCG5 promoter region, altering cuticle thickness and structure, and increasing the susceptibility of mosquitoes to deltamethrin in vivo. This study revealed part of the mechanism of cuticular resistance, providing a deeper understanding of insecticide resistance.![]()
Collapse
Affiliation(s)
- Yang Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Xiaoshan Yang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Xiaohong Sun
- Department of Blood Transfusion, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xixi Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Zhihan Liu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Qi Yin
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China.
| | | |
Collapse
|
43
|
Zhao Y, Liu W, Zhao X, Yu Z, Guo H, Yang Y, Zhang J, Moussian B, Zhang J. Apolipophorin-II/I Contributes to Cuticular Hydrocarbon Transport and Cuticle Barrier Construction in Locusta migratoria. Front Physiol 2020; 11:790. [PMID: 32733279 PMCID: PMC7360829 DOI: 10.3389/fphys.2020.00790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Apolipophorins are carrier proteins that bind lipids and mediate their transport from tissue to tissue in animals. Apolipophorin I and II (apoLp-II/I) are the major apolipophorins in insects. The implication of apoLp-II/I in cuticle lipid-barrier formation in insects has not been addressed to date. In the present study, we investigated the function of apoLp-II/I in the migratory locust Locusta migratoria (LmapoLp-II/I). During the development of fifth instar nymphs, LmapoLp-II/I transcript levels increased until mid-instar, and then decreased gradually until molting to the adult stage. We found that LmapoLp-II/I was predominately expressed in the fat body and the integument including oenocytes and epidermal cells. Immunodetection experiments revealed that LmapoLp-I mainly localized in the cytoplasm of oenocytes and epidermal cells. Silencing of LmapoLp-II/I caused molting defects in nymphs. Importantly, RNA interference against LmapoLp-II/I resulted in a significant decrease in the content of cuticle surface lipids including alkanes and methyl alkanes. Cuticular permeability was significantly enhanced in these nymphs in Eosin Y penetration assays. By consequence, desiccation resistance and insecticide tolerance of dsLmapoLp-II/I-treated locusts were reduced. Taken together, our results indicate that LmapoLp-II/I is involved in the transport and deposition of surface-cuticular lipids that are crucial for maintaining normal cuticle barrier function in L. migratoria.
Collapse
Affiliation(s)
- Yiyan Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China.,College of Life Science, Shanxi University, Taiyuan, China
| | - Weimin Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Xiaoming Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Zhitao Yu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Hongfang Guo
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China.,College of Life Science, Shanxi University, Taiyuan, China
| | - Yang Yang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China.,College of Life Science, Shanxi University, Taiyuan, China
| | - Jianqin Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | - Jianzhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
44
|
Sougoufara S, Ottih EC, Tripet F. The need for new vector control approaches targeting outdoor biting Anopheline malaria vector communities. Parasit Vectors 2020; 13:295. [PMID: 32522290 PMCID: PMC7285743 DOI: 10.1186/s13071-020-04170-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Since the implementation of Roll Back Malaria, the widespread use of insecticide-treated nets (ITNs) and indoor residual spraying (IRS) is thought to have played a major part in the decrease in mortality and morbidity achieved in malaria-endemic regions. In the past decade, resistance to major classes of insecticides recommended for public health has spread across many malaria vector populations. Increasingly, malaria vectors are also showing changes in vector behaviour in response to current indoor chemical vector control interventions. Changes in the time of biting and proportion of indoor biting of major vectors, as well as changes in the species composition of mosquito communities threaten the progress made to control malaria transmission. Outdoor biting mosquito populations contribute to malaria transmission in many parts of sub-Saharan Africa and pose new challenges as they cannot be reliably monitored or controlled using conventional tools. Here, we review existing and novel approaches that may be used to target outdoor communities of malaria vectors. We conclude that scalable tools designed specifically for the control and monitoring of outdoor biting and resting malaria vectors with increasingly complex and dynamic responses to intensifying malaria control interventions are urgently needed. These are crucial for integrated vector management programmes designed to challenge current and future vector populations.
Collapse
Affiliation(s)
- Seynabou Sougoufara
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Emmanuel Chinweuba Ottih
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| | - Frederic Tripet
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire, UK
| |
Collapse
|
45
|
Barry N, Toé P, Pare Toe L, Lezaun J, Drabo M, Dabiré RK, Diabate A. Motivations and expectations driving community participation in entomological research projects: Target Malaria as a case study in Bana, Western Burkina Faso. Malar J 2020; 19:199. [PMID: 32503546 PMCID: PMC7275576 DOI: 10.1186/s12936-020-03277-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/29/2020] [Indexed: 01/07/2023] Open
Abstract
Background Most field entomology research projects require active participation by local community members. Since 2012, Target Malaria, a not-for-profit research consortium, has been working with residents in the village of Bana, in Western Burkina Faso, in various studies involving mosquito collections, releases and recaptures. The long-term goal of this work is to develop innovative solutions to combat malaria in Africa with the help of mosquito modification technologies. Since the start of the project, Bana residents have played an important role in research activities, yet the motivations and expectations that drive their participation remain under-investigated. This study examines the factors that motivate some members of the local community to contribute to the implementation of Target Malaria’s activities, and, more broadly, explores the reasons that animate citizen participation in entomological research work in malaria-endemic regions. Methods A qualitative approach was used to survey the factors motivating members of the local community to assist in the implementation of Target Malaria’s entomological research activities in Bana. Eighty-five individual in-depth and semi-structured interviews were conducted, followed by three focus groups, one with youths who had participated in mosquito collections, and two with adult men and women from the village. All data collected were fully transcribed, processed, and subjected to thematic content analysis. Results Data showed that the willingness of local community members to participate in entomological research activities was informed by a wide range of motivational factors. Although interviewees expressed their motivations under different semantic registers, the data showed a degree of consistency around five categories of motivation: (a) enhance domestic protection from mosquitoes and malaria, (b) contribute to a future world free of the disease, (c) acquire knowledge and skills, (d) earn financial compensation, and (e) gain social prestige for the village. Conclusion These varying motivations reflect a set of differing personal and collective perceptions about the participation process, combining short and long-term, individual and collective motivations. Beyond the specific circumstances of this case, the study highlights the complex reasons that drive collective participation in entomological research and vector control activities. Detailed knowledge of community expectations should underpin any effort to mobilize local participation in field research activities.
Collapse
Affiliation(s)
- Nourou Barry
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso. .,Université Nazi BONI, Bobo-Dioulasso, Burkina Faso.
| | - Patrice Toé
- Université Nazi BONI, Bobo-Dioulasso, Burkina Faso
| | - Lea Pare Toe
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Javier Lezaun
- Institute for Science, Innovation and Society, School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK
| | - Mouhamed Drabo
- Department of Life Sciences, Imperial College of London, London, UK
| | - Roch K Dabiré
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
46
|
Hancock PA, Hendriks CJM, Tangena JA, Gibson H, Hemingway J, Coleman M, Gething PW, Cameron E, Bhatt S, Moyes CL. Mapping trends in insecticide resistance phenotypes in African malaria vectors. PLoS Biol 2020; 18:e3000633. [PMID: 32584814 PMCID: PMC7316233 DOI: 10.1371/journal.pbio.3000633] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/11/2020] [Indexed: 11/25/2022] Open
Abstract
Mitigating the threat of insecticide resistance in African malaria vector populations requires comprehensive information about where resistance occurs, to what degree, and how this has changed over time. Estimating these trends is complicated by the sparse, heterogeneous distribution of observations of resistance phenotypes in field populations. We use 6,423 observations of the prevalence of resistance to the most important vector control insecticides to inform a Bayesian geostatistical ensemble modelling approach, generating fine-scale predictive maps of resistance phenotypes in mosquitoes from the Anopheles gambiae complex across Africa. Our models are informed by a suite of 111 predictor variables describing potential drivers of selection for resistance. Our maps show alarming increases in the prevalence of resistance to pyrethroids and DDT across sub-Saharan Africa from 2005 to 2017, with mean mortality following insecticide exposure declining from almost 100% to less than 30% in some areas, as well as substantial spatial variation in resistance trends.
Collapse
Affiliation(s)
| | | | - Julie-Anne Tangena
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Harry Gibson
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Janet Hemingway
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michael Coleman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Peter W. Gething
- Telethon Kids Institute, Perth Children's Hospital, Perth, Australia
- Curtin University, Bentley, Perth, Australia
| | - Ewan Cameron
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Samir Bhatt
- Department of Infectious Disease Epidemiology, Imperial College, St Mary’s Hospital, London, United Kingdom
| | | |
Collapse
|
47
|
Qiao L, Yan ZW, Xiong G, Hao YJ, Wang RX, Hu H, Song JB, Tong XL, Che LR, He SZ, Chen B, Mallet J, Lu C, Dai FY. Excess melanin precursors rescue defective cuticular traits in stony mutant silkworms probably by upregulating four genes encoding RR1-type larval cuticular proteins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 119:103315. [PMID: 31945452 DOI: 10.1016/j.ibmb.2020.103315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Melanin and cuticular proteins are vital cuticle components in insects. Cuticular defects caused by mutations in cuticular protein-encoding genes can obstruct melanin deposition. The effects of changes in melanin on the expression of cuticular protein-encoding genes, the cuticular and morphological traits, and the origins of these effects are unknown. We found that the cuticular physical characteristics and the expression patterns of larval cuticular protein-encoding genes markedly differed between the melanic and non-melanic integument regions. By using four p multiple-allele color pattern mutants with increasing degrees of melanism (+p, pM, pS, and pB), we found that the degree of melanism and the expression of four RR1-type larval cuticular protein-encoding genes (BmCPR2, BmLcp18, BmLcp22, and BmLcp30) were positively correlated. By modulating the content of melanin precursors and the expression of cuticular protein-encoding genes in cells in tissues and in vivo, we showed that this positive correlation was due to the induction of melanin precursors. More importantly, the melanism trait introduced into the BmCPR2 deletion strain Dazao-stony induced up-regulation of three other similar chitin-binding characteristic larval cuticular protein-encoding genes, thus rescuing the cuticular, morphological and adaptability defects of the Dazao-stony strain. This rescue ability increased with increasing melanism levels. This is the first study reporting the induction of cuticular protein-encoding genes by melanin and the biological importance of this induction in affecting the physiological characteristics of the cuticle.
Collapse
Affiliation(s)
- Liang Qiao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| | - Zheng-Wen Yan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Gao Xiong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - You-Jin Hao
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Ri-Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Jiang-Bo Song
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiao-Ling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Lin-Rong Che
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Song-Zhen He
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Fang-Yin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
48
|
Brückner A, Parker J. Molecular evolution of gland cell types and chemical interactions in animals. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb211938. [PMID: 32034048 DOI: 10.1242/jeb.211938] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Across the Metazoa, the emergence of new ecological interactions has been enabled by the repeated evolution of exocrine glands. Specialized glands have arisen recurrently and with great frequency, even in single genera or species, transforming how animals interact with their environment through trophic resource exploitation, pheromonal communication, chemical defense and parental care. The widespread convergent evolution of animal glands implies that exocrine secretory cells are a hotspot of metazoan cell type innovation. Each evolutionary origin of a novel gland involves a process of 'gland cell type assembly': the stitching together of unique biosynthesis pathways; coordinated changes in secretory systems to enable efficient chemical release; and transcriptional deployment of these machineries into cells constituting the gland. This molecular evolutionary process influences what types of compound a given species is capable of secreting, and, consequently, the kinds of ecological interactions that species can display. Here, we discuss what is known about the evolutionary assembly of gland cell types and propose a framework for how it may happen. We posit the existence of 'terminal selector' transcription factors that program gland function via regulatory recruitment of biosynthetic enzymes and secretory proteins. We suggest ancestral enzymes are initially co-opted into the novel gland, fostering pleiotropic conflict that drives enzyme duplication. This process has yielded the observed pattern of modular, gland-specific biosynthesis pathways optimized for manufacturing specific secretions. We anticipate that single-cell technologies and gene editing methods applicable in diverse species will transform the study of animal chemical interactions, revealing how gland cell types are assembled and functionally configured at a molecular level.
Collapse
Affiliation(s)
- Adrian Brückner
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
49
|
Feyereisen R. Origin and evolution of the CYP4G subfamily in insects, cytochrome P450 enzymes involved in cuticular hydrocarbon synthesis. Mol Phylogenet Evol 2020; 143:106695. [DOI: 10.1016/j.ympev.2019.106695] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 11/27/2022]
|
50
|
Ngumbi EN, Hanks LM, Suarez AV, Millar JG, Berenbaum MR. Factors Associated with Variation in Cuticular Hydrocarbon Profiles in the Navel Orangeworm, Amyelois transitella (Lepidoptera: Pyralidae). J Chem Ecol 2019; 46:40-47. [PMID: 31808076 DOI: 10.1007/s10886-019-01129-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 02/03/2023]
Abstract
Cuticular hydrocarbons (CHCs) are the main components of the epicuticular wax layer that in many insects functions as a barrier against desiccation. CHCs also play many other roles, including serving as sex pheromones, kairomones, primer pheromones, and colony-, caste-, species- and sex-recognition signals. In insects, CHC profiles can vary depending upon age, species, sex, and strain. Understanding factors associated with variation in hydrocarbon profiles is important for identifying potential vulnerabilities relating to pest ecology and life histories and for developing tools for pest monitoring and management strategies. In this study, we assessed potential sources of variation in CHC profiles in the navel orangeworm Amyelois transitella (Walker) (Lepidoptera: Pyralidae), an economically important pest of nut crops in California. Using coupled gas chromatography-mass spectrometry, we characterized and compared CHC profiles between adults of pyrethroid-resistant (R347) and susceptible (ALMOND) strains. We further compared CHC profiles from adults differing in age (1, 3, 5, and 7 d post-eclosion) and sex. Hydrocarbon profiles comprised 47 different CHCs in detectable quantities that ranged from C17 to C43 in chain length and included straight-chain alkanes and a variety of mono-, di-, and tri-methylalkanes. Adults from resistant populations had greater quantities of CHCs in total than those from susceptible strains, but relative quantities of individual components were similar. The six most abundant compounds were n-pentacosane, n-heptacosane, n-nonacosane, n-hentriacontane, 11,25 + 13,23 + 15,21-dimethylpentatriacontane, and 13,23 + 11,25 + 9,17-dimethylheptatriacontane. Post-eclosion, total CHCs increased with adult age, with males producing greater quantities than females at all ages. Our results show that CHC profiles vary depending on age, sex, and strain and suggest that CHC profiles may be useful as biomarkers to differentiate between insecticide- resistant and susceptible populations.
Collapse
Affiliation(s)
- Esther N Ngumbi
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Lawrence M Hanks
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew V Suarez
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jocelyn G Millar
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - May R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|