1
|
Cisse EHM, Pascual LS, Gajanayake KB, Yang F. Tree species and drought: Two mysterious long-standing counterparts. PHYSIOLOGIA PLANTARUM 2024; 176:e14586. [PMID: 39468381 DOI: 10.1111/ppl.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024]
Abstract
Around 252 million years ago (Late Permian), Earth experienced one of its most significant drought periods, coinciding with a global climate crisis, resulting in a devastating loss of forest trees with no hope of recovery. In the current epoch (Anthropocene), the worsening of drought stress is expected to significantly affect forest communities. Despite extensive efforts, there is significantly less research at the molecular level on forest trees than on annual crop species. Would it not be wise to allocate equal efforts to woody species, regardless of their importance in providing essential furniture and sustaining most terrestrial ecosystems? For instance, the poplar genome is roughly quadruple the size of the Arabidopsis genome and has 1.6 times the number of genes. Thus, a massive effort in genomic studies focusing on forest trees has become inevitable to understand their adaptation to harsh conditions. Nevertheless, with the emerging role and development of high-throughput DNA sequencing systems, there is a growing body of literature about the responses of trees under drought at the molecular and eco-physiological levels. Therefore, synthesizing these findings through contextualizing drought history and concepts is essential to understanding how woody species adapt to water-limited conditions. Comprehensive genomic research on trees is critical for preserving biodiversity and ecosystem function. Integrating molecular insights with eco-physiological analysis will enhance forest management under climate change.
Collapse
Affiliation(s)
- El Hadji Malick Cisse
- United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Castellón, Spain
| | - K Bandara Gajanayake
- United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Fan Yang
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou, China
| |
Collapse
|
2
|
Paris JR, Nitta Fernandes FA, Pirri F, Greco S, Gerdol M, Pallavicini A, Benoiste M, Cornec C, Zane L, Haas B, Le Bohec C, Trucchi E. Gene Expression Shifts in Emperor Penguin Adaptation to the Extreme Antarctic Environment. Mol Ecol 2024:e17552. [PMID: 39415606 DOI: 10.1111/mec.17552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Gene expression can accelerate ecological divergence by rapidly tweaking the response of an organism to novel environments, with more divergent environments exerting stronger selection and supposedly, requiring faster adaptive responses. Organisms adapted to extreme environments provide ideal systems to test this hypothesis, particularly when compared to related species with milder ecological niches. The Emperor penguin (Aptenodytes forsteri) is the only endothermic vertebrate breeding in the harsh Antarctic winter, in stark contrast with the less cold-adapted sister species, the King penguin (A. patagonicus). Assembling the first de novo transcriptomes and analysing multi-tissue (brain, kidney, liver, muscle, skin) RNA-Seq data from natural populations of both species, we quantified the shifts in tissue-enhanced genes, co-expression gene networks, and differentially expressed genes characterising Emperor penguin adaptation to the extreme Antarctic. Our analyses revealed the crucial role played by muscle and liver in temperature homeostasis, fasting, and whole-body energy metabolism (glucose/insulin regulation, lipid metabolism, fatty acid beta-oxidation, and blood coagulation). Repatterning at the regulatory level appears as more important in the brain of the Emperor penguin, showing the lowest signature of differential gene expression, but the largest co-expression gene network shift. Nevertheless, over-expressed genes related to mTOR signalling in the brain and the liver support their central role in cold and fasting responses. Besides contributing to understanding the genetics underlying complex traits, like body energy reservoir management, our results provide a first insight into the role of gene expression in adaptation to one of the most extreme environmental conditions endured by an endotherm.
Collapse
Affiliation(s)
- Josephine R Paris
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Flávia A Nitta Fernandes
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Federica Pirri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Marine Benoiste
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Clément Cornec
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- ENES Bioacoustics Research Laboratory, CRNL, CNRS, Inserm, University of Lyon, Saint-Etienne, France
| | - Lorenzo Zane
- Department of Biology, University of Padova, Padova, Italy
| | - Brian Haas
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Céline Le Bohec
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Département de Biologie Polaire, Centre Scientifique de Monaco, Monaco, Monaco
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
3
|
Yamada H. Spatial sorting caused by downstream dispersal: implication for morphological evolution in isolated populations of fat minnow inhabiting small streams flowing through terraced rice paddies. J Evol Biol 2024; 37:1194-1204. [PMID: 39233607 DOI: 10.1093/jeb/voae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
The evolutionary forces arising from differential dispersal are known as "spatial sorting," distinguishing them from natural selection arising from differential survival or differential reproductive success. Spatial sorting is often considered to be transient because it is offset by the return of dispersers in many cases. However, in riverine systems, spatial sorting by downstream dispersal can be cumulative in habitats upstream of migration barriers such as weirs or falls, which can block the return of the dispersers. Terraced rice paddies are often found on steep mountain slopes in Japan and often incorporate small streams with numerous migration barriers. This study investigated the morphological features of fat minnow, Rhynchocypris oxycephalus jouyi (Cyprinidae), inhabiting above-barrier habitats of the small streams flowing through flood-prone terraced rice paddies and examined their function via a mark-recapture experiment. Although this study did not reveal a consistent pattern across all local populations, some above-barrier populations were characterized by individuals with a thinner caudal peduncle, thinner body, and longer ventral caudal fin lobes than those in neighbouring mainstream populations. A mark-recapture experiment during minor flooding showed that a thinner caudal peduncle and deeper body helped fat minnow avoid downstream dispersal and ascend a small step, and suggested that a longer ventral caudal fin lobe was important for ascending. These results suggest that the caudal morphologies of some above-barrier populations avoid or reduce the risk of downstream dispersal, supporting the idea that spatial sorting shapes functional traits, enhancing the spatial persistence of individuals in upstream habitats.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
4
|
Benjelloun B, Leempoel K, Boyer F, Stucki S, Streeter I, Orozco-terWengel P, Alberto FJ, Servin B, Biscarini F, Alberti A, Engelen S, Stella A, Colli L, Coissac E, Bruford MW, Ajmone-Marsan P, Negrini R, Clarke L, Flicek P, Chikhi A, Joost S, Taberlet P, Pompanon F. Multiple genomic solutions for local adaptation in two closely related species (sheep and goats) facing the same climatic constraints. Mol Ecol 2024; 33:e17257. [PMID: 38149334 DOI: 10.1111/mec.17257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/18/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
The question of how local adaptation takes place remains a fundamental question in evolutionary biology. The variation of allele frequencies in genes under selection over environmental gradients remains mainly theoretical and its empirical assessment would help understanding how adaptation happens over environmental clines. To bring new insights to this issue we set up a broad framework which aimed to compare the adaptive trajectories over environmental clines in two domesticated mammal species co-distributed in diversified landscapes. We sequenced the genomes of 160 sheep and 161 goats extensively managed along environmental gradients, including temperature, rainfall, seasonality and altitude, to identify genes and biological processes shaping local adaptation. Allele frequencies at putatively adaptive loci were rarely found to vary gradually along environmental gradients, but rather displayed a discontinuous shift at the extremities of environmental clines. Of the 430 candidate adaptive genes identified, only 6 were orthologous between sheep and goats and those responded differently to environmental pressures, suggesting different putative mechanisms involved in local adaptation in these two closely related species. Interestingly, the genomes of the 2 species were impacted differently by the environment, genes related to signatures of selection were most related to altitude, slope and rainfall seasonality for sheep, and summer temperature and spring rainfall for goats. The diversity of candidate adaptive pathways may result from a high number of biological functions involved in the adaptations to multiple eco-climatic gradients, and a differential role of climatic drivers on the two species, despite their co-distribution along the same environmental gradients. This study describes empirical examples of clinal variation in putatively adaptive alleles with different patterns in allele frequency distributions over continuous environmental gradients, thus showing the diversity of genetic responses in adaptive landscapes and opening new horizons for understanding genomics of adaptation in mammalian species and beyond.
Collapse
Affiliation(s)
- Badr Benjelloun
- Livestock Genomics Laboratory, Regional Center of Agricultural Research Tadla, National Institute of Agricultural Research INRA, Rabat, Morocco
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Kevin Leempoel
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Frédéric Boyer
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Sylvie Stucki
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Pablo Orozco-terWengel
- School of Biosciences, Cardiff University, Wales, UK
- Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | - Florian J Alberto
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Bertrand Servin
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, Castanet-Tolosan, France
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, Evry, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stefan Engelen
- Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique CEA, Université Paris-Saclay, Evry, France
| | - Alessandra Stella
- Institute of Agricultural Biology and Biotechnology, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
- BioDNA - Centro di Ricerca sulla Biodiversità e sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Eric Coissac
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Michael W Bruford
- School of Biosciences, Cardiff University, Wales, UK
- Sustainable Places Research Institute, Cardiff University, Cardiff, UK
| | - Paolo Ajmone-Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
- BioDNA - Centro di Ricerca sulla Biodiversità e sul DNA Antico, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
| | - Riccardo Negrini
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del S. Cuore, Piacenza, Italy
- AIA Associazione Italiana Allevatori, Roma, Italy
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Abdelkader Chikhi
- Livestock Genomics Laboratory, Regional Center of Agricultural Research Tadla, National Institute of Agricultural Research INRA, Rabat, Morocco
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Taberlet
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - François Pompanon
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
5
|
Clark-Wolf TJ, Boersma PD, Plard F, Rebstock GA, Abrahms B. Increasing environmental variability inhibits evolutionary rescue in a long-lived vertebrate. Proc Natl Acad Sci U S A 2024; 121:e2406314121. [PMID: 39133852 PMCID: PMC11348156 DOI: 10.1073/pnas.2406314121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/06/2024] [Indexed: 08/29/2024] Open
Abstract
Evolutionary rescue, whereby adaptive evolutionary change rescues populations from extinction, is theorized to enable imperiled animal populations to persist under increasing anthropogenic change. Despite a large body of evidence in theoretical and laboratory settings, the potential for evolutionary rescue to be a viable adaptation process for free-ranging animals remains unknown. Here, we leverage a 38-year dataset following the fates of 53,959 Magellanic penguins (Spheniscus magellanicus) to investigate whether a free-ranging vertebrate species can morphologically adapt to long-term environmental change sufficiently to promote population persistence. Despite strong selective pressures, we found that penguins did not adapt morphologically to long-term environmental changes, leading to projected population extirpation. Fluctuating selection benefited larger penguins in some environmental contexts, and smaller penguins in others, ultimately mitigating their ability to adapt under increasing environmental variability. Under future climate projections, we found that the species cannot be rescued by adaptation, suggesting similar constraints for other long-lived species. Such results reveal how fluctuating selection driven by environmental variability can inhibit adaptation under long-term environmental change. Our eco-evolutionary approach helps explain the lack of adaptation and evolutionary rescue in response to environmental change observed in many animal species.
Collapse
Affiliation(s)
- T. J. Clark-Wolf
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA98195
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT84322
| | - P. Dee Boersma
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA98195
| | - Floriane Plard
- Independent Researcher, Barraque de la Pinatelle, Tremoulet, Molompize15500, France
| | - Ginger A. Rebstock
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA98195
| | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA98195
| |
Collapse
|
6
|
Schaduw JNW, Tallei TE, Sumilat DA. Mangrove Health Index, Community Structure and Canopy Cover in Small Islands of Bunaken National Park, Indonesia: Insights into Dominant Mangrove Species and Overall Mangrove Condition. Trop Life Sci Res 2024; 35:187-210. [PMID: 39234475 PMCID: PMC11371410 DOI: 10.21315/tlsr2024.35.2.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/04/2024] [Indexed: 09/06/2024] Open
Abstract
Mangrove ecosystems are crucial for protecting littoral regions, preserving biodiversity and sequestering carbon. The implementation of effective conservation and management strategies requires a comprehensive understanding of mangrove community structure, canopy coverage and overall health. This investigation focused on four small islands located within the Bunaken National Park in Indonesia: Bunaken, Manado Tua, Mantehage and Nain. Utilising the line transect quadrant method and hemispherical photography, the investigation comprised a total of 12 observation stations. Nain had the greatest average canopy coverage at 76.09%, followed by Mantehage, Manado Tua and Bunaken at 75.82%, 71.83% and 70.01%, respectively. Mantehage had the maximum species density, with 770.83 ind/ha, followed by Bunaken, Nain and Manado Tua with 675 ind/ha, 616.67 ind/ha and 483.34 ind/ha, respectively. The predominant sediment type observed was sandy mud and the mangrove species identified were Avicennia officinalis (AO), Bruguiera gymnorrhiza (BG), Rhizophora apiculata (RA), R. mucronata (RM), and Sonneratia alba (SA). On the small islands, S. alba emerged as the dominant mangrove species based on the importance value index (IVI). In addition, the Mangrove Health Index revealed that only 6.79% of the region exhibited poor health values, while 50% of the region was categorised as being in outstanding condition. These findings indicate that the overall condition of mangroves on these islands was relatively favourable.
Collapse
Affiliation(s)
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Science, Sam Ratulangi University, Manado 95111, Indonesia
| | - Deiske A Sumilat
- Department of Marine Science, Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado 95111, Indonesia
| |
Collapse
|
7
|
Wang Y, Hu Q, Wang Y, Liu J, Du Z, Xu J, Li J. Selective effect of winter weather on a songbird's morphology depends on individual sex and winter condition. Oecologia 2024; 205:339-350. [PMID: 38829403 DOI: 10.1007/s00442-024-05577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Knowledge of the effect of harsh weather on the phenotypic traits of organisms is essential for understanding the environmental influence on phenotype evolution and holds implications for predicting how species respond to current climate change. For many birds, harsh weather in winter often imposes a strong selective effect on their survival, and only the individuals with certain phenotypes may survive. However, whether the selective effect on phenotype varies with winter weather conditions has been poorly investigated. Here, we explored the selective effect of winter weather on black-throated tit's (Aegithalos concinnus) morphological traits under winters with and without severe snowstorms. We found that for males, the sizes of their bills, heads and wings significantly affected their overwinter survival, but the effects varied with winter conditions. In relatively benign winters, males with smaller bill depths, smaller bill surface areas, and greater head lengths survived better; whereas, in winters with severe snowstorms, a reverse pattern was found. This phenomenon was likely driven by selection pressures from heat retention and foraging requirements, with their relative importance depending on winter conditions. Additionally, wing length was positively correlated with male survival and the relationship was stronger in harsher winters, which was probably due to longer wings' higher flight efficiency in adverse weather. By contrast, we found no correlation between morphological traits and survival in females. These results suggest a sex-specific and condition-dependent selective effect of environment on bird phenotypes, implying complicated interactions between different selection pressures and phenotype evolution.
Collapse
Affiliation(s)
- Yue Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Qian Hu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yu Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jinfa Liu
- Administration Bureau of Dongzhai National Nature Reserve, Luoshan, Henan, China
| | - Zhiyong Du
- Administration Bureau of Dongzhai National Nature Reserve, Luoshan, Henan, China
| | - Jiliang Xu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jianqiang Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China.
| |
Collapse
|
8
|
Stringer EJ, Gruber B, Sarre SD, Wardle GM, Edwards SV, Dickman CR, Greenville AC, Duncan RP. Boom-bust population dynamics drive rapid genetic change. Proc Natl Acad Sci U S A 2024; 121:e2320590121. [PMID: 38621118 PMCID: PMC11067018 DOI: 10.1073/pnas.2320590121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/06/2024] [Indexed: 04/17/2024] Open
Abstract
Increasing environmental threats and more extreme environmental perturbations place species at risk of population declines, with associated loss of genetic diversity and evolutionary potential. While theory shows that rapid population declines can cause loss of genetic diversity, populations in some environments, like Australia's arid zone, are repeatedly subject to major population fluctuations yet persist and appear able to maintain genetic diversity. Here, we use repeated population sampling over 13 y and genotype-by-sequencing of 1903 individuals to investigate the genetic consequences of repeated population fluctuations in two small mammals in the Australian arid zone. The sandy inland mouse (Pseudomys hermannsburgensis) experiences marked boom-bust population dynamics in response to the highly variable desert environment. We show that heterozygosity levels declined, and population differentiation (FST) increased, during bust periods when populations became small and isolated, but that heterozygosity was rapidly restored during episodic population booms. In contrast, the lesser hairy-footed dunnart (Sminthopsis youngsoni), a desert marsupial that maintains relatively stable population sizes, showed no linear declines in heterozygosity. These results reveal two contrasting ways in which genetic diversity is maintained in highly variable environments. In one species, diversity is conserved through the maintenance of stable population sizes across time. In the other species, diversity is conserved through rapid genetic mixing during population booms that restores heterozygosity lost during population busts.
Collapse
Affiliation(s)
- Emily J. Stringer
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, CanberraACT2617, Australia
| | - Bernd Gruber
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, CanberraACT2617, Australia
| | - Stephen D. Sarre
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, CanberraACT2617, Australia
| | - Glenda M. Wardle
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, SydneyNSW2006, Australia
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA02138
| | - Christopher R. Dickman
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, SydneyNSW2006, Australia
| | - Aaron C. Greenville
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, SydneyNSW2006, Australia
| | - Richard P. Duncan
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, University of Canberra, CanberraACT2617, Australia
| |
Collapse
|
9
|
Beaudreau N, Page TM, Drolet D, McKindsey CW, Howland KL, Calosi P. Using a metabolomics approach to investigate the sensitivity of a potential Arctic-invader and its Arctic sister-species to marine heatwaves and traditional harvesting disturbances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170167. [PMID: 38242480 DOI: 10.1016/j.scitotenv.2024.170167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Coastal species are threatened by fishing practices and changing environmental conditions, such as marine heatwaves (MHW). The mechanisms that confer tolerance to such stressors in marine invertebrates are poorly understood. However, differences in tolerance among different species may be attributed to their geographical distribution. To test the tolerance of species occupying different thermal ranges, we used two closely related bivalves the softshell clam Mya arenaria (Linnaeus, 1758), a cold-temperate invader with demonstrated potential for establishment in the Arctic, and the blunt gaper Mya truncata (Linnaeus, 1758), a native polar species. Clams were subjected to a thermal stress, mimicking a MHW, and harvesting stress in a controlled environment. Seven acute temperature changes (2, 7, 12, 17, 22, 27, and 32 °C) were tested at two harvesting disturbance intensities (with, without). Survival was measured after 12 days and three tissues (gills, mantle, and posterior adductor muscle) collected from surviving individuals for targeted metabolomic profiling. MHW tolerance differed significantly between species: 26.9 °C for M. arenaria and 17.8 °C for M. truncata, with a negligeable effect of harvesting. At the upper thermal limit, M. arenaria displayed a more profound metabolomic remodelling when compared to M. truncata, and this varied greatly between tissue types. Network analysis revealed differences in pathway utilization at the upper MHW limit, with M. arenaria displaying a greater reliance on multiple DNA repair and expression and cell signalling pathways, while M. truncata was limited to fewer pathways. This suggests that M. truncata is ill equipped to cope with warming environments. MHW patterning in the Northwest Atlantic may be a strong predictor of population survival and future range shifts in these two clam species. As polar environments undergo faster rates of warming compared to the global average, M. truncata may be outcompeted by M. arenaria expanding into its native range.
Collapse
Affiliation(s)
- Nicholas Beaudreau
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Tessa M Page
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - David Drolet
- Fisheries and Oceans Canada, Demersal and Benthic Science Branch, Institut Maurice-Lamontagne, Mont-Joli, Québec, Canada
| | - Christopher W McKindsey
- Fisheries and Oceans Canada, Demersal and Benthic Science Branch, Institut Maurice-Lamontagne, Mont-Joli, Québec, Canada
| | - Kimberly L Howland
- Fisheries and Oceans Canada, Arctic and Aquatic Research Division, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Piero Calosi
- Laboratoire de Physiologie Écologique et Évolutive Marine, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada.
| |
Collapse
|
10
|
Youngflesh C, Saracco JF, Siegel RB, Tingley MW. Reply to: Shrinking body size may not provide meaningful thermoregulatory benefits in a warmer world. Nat Ecol Evol 2024; 8:390-391. [PMID: 38225429 DOI: 10.1038/s41559-023-02308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Affiliation(s)
- Casey Youngflesh
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA.
| | | | | | - Morgan W Tingley
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Thadi A, Heinen-Kay J, Rotenberry JT, Zuk M. Reproductive biology of Hawaiian lava crickets. CURRENT RESEARCH IN INSECT SCIENCE 2024; 5:100074. [PMID: 39027357 PMCID: PMC11256555 DOI: 10.1016/j.cris.2024.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 07/20/2024]
Abstract
Insects have spread across diverse ecological niches, including extreme environments requiring specialized traits for survival. However, little is understood about the reproductive traits required to facilitate persistence in such environments. Here, we report on the reproductive biology of two species of endemic Hawaiian lava crickets (Caconemobius fori and Caconemobius anahulu) that inhabit barren lava flows on the Big Island. We examine traits that reflect investment into reproduction for both male and female lava crickets and compare them to the non-extremophile Allard's ground cricket (Allonemobius allardi) in the same sub-family. Lava cricket females possessed fewer, but much larger eggs than ground crickets, while males do not provide the costly nuptial gifts that are characteristic of the Nemobiinae subfamily. Lava crickets also have longer ovipositors relative to their body length than related Caconemobius species that occupy cave habitats on the Hawaiian islands. The differences in reproduction we report reveal how these little-known cricket species may increase survival of their offspring in the resource-deprived conditions of their hot, dry environments.
Collapse
Affiliation(s)
- Aarcha Thadi
- Department of Ecology, Evolution & Behavior, University of Minnesota, MN, United States
| | - Justa Heinen-Kay
- Department of Ecology, Evolution & Behavior, University of Minnesota, MN, United States
| | - John T. Rotenberry
- Department of Ecology, Evolution & Behavior, University of Minnesota, MN, United States
| | - Marlene Zuk
- Department of Ecology, Evolution & Behavior, University of Minnesota, MN, United States
| |
Collapse
|
12
|
Dennington NL, Grossman MK, Ware-Gilmore F, Teeple JL, Johnson LR, Shocket MS, McGraw EA, Thomas MB. Phenotypic adaptation to temperature in the mosquito vector, Aedes aegypti. GLOBAL CHANGE BIOLOGY 2024; 30:e17041. [PMID: 38273521 DOI: 10.1111/gcb.17041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 01/27/2024]
Abstract
Most models exploring the effects of climate change on mosquito-borne disease ignore thermal adaptation. However, if local adaptation leads to changes in mosquito thermal responses, "one size fits all" models could fail to capture current variation between populations and future adaptive responses to changes in temperature. Here, we assess phenotypic adaptation to temperature in Aedes aegypti, the primary vector of dengue, Zika, and chikungunya viruses. First, to explore whether there is any difference in existing thermal response of mosquitoes between populations, we used a thermal knockdown assay to examine five populations of Ae. aegypti collected from climatically diverse locations in Mexico, together with a long-standing laboratory strain. We identified significant phenotypic variation in thermal tolerance between populations. Next, to explore whether such variation can be generated by differences in temperature, we conducted an experimental passage study by establishing six replicate lines from a single field-derived population of Ae. aegypti from Mexico, maintaining half at 27°C and the other half at 31°C. After 10 generations, we found a significant difference in mosquito performance, with the lines maintained under elevated temperatures showing greater thermal tolerance. Moreover, these differences in thermal tolerance translated to shifts in the thermal performance curves for multiple life-history traits, leading to differences in overall fitness. Together, these novel findings provide compelling evidence that Ae. aegypti populations can and do differ in thermal response, suggesting that simplified thermal performance models might be insufficient for predicting the effects of climate on vector-borne disease transmission.
Collapse
Affiliation(s)
- Nina L Dennington
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Huck Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Marissa K Grossman
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Fhallon Ware-Gilmore
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Center for Infectious Disease Dynamics, The Huck Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Janet L Teeple
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Tech, Blacksburg, Virginia, USA
| | - Marta S Shocket
- Department of Geography, University of Florida, Gainesville, Florida, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Elizabeth A McGraw
- The Center for Infectious Disease Dynamics, The Huck Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Matthew B Thomas
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
- Invasion Science Research Institute, University of Florida, Gainesville, Florida, USA
- Department of Biology, University of York, York, UK
| |
Collapse
|
13
|
Layton-Matthews K, Vriend SJG, Grøtan V, Loonen MJJE, Sæther BE, Fuglei E, Hansen BB. Extreme events, trophic chain reactions, and shifts in phenotypic selection. Sci Rep 2023; 13:15181. [PMID: 37704641 PMCID: PMC10499831 DOI: 10.1038/s41598-023-41940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Demographic consequences of rapid environmental change and extreme climatic events (ECEs) can cascade across trophic levels with evolutionary implications that have rarely been explored. Here, we show how an ECE in high Arctic Svalbard triggered a trophic chain reaction, directly or indirectly affecting the demography of both overwintering and migratory vertebrates, ultimately inducing a shift in density-dependent phenotypic selection in migratory geese. A record-breaking rain-on-snow event and ice-locked pastures led to reindeer mass starvation and a population crash, followed by a period of low mortality and population recovery. This caused lagged, long-lasting reductions in reindeer carrion numbers and resultant low abundances of Arctic foxes, a scavenger on reindeer and predator of migratory birds. The associated decrease in Arctic fox predation of goose offspring allowed for a rapid increase in barnacle goose densities. As expected according to r- and K-selection theory, the goose body condition (affecting reproduction and post-fledging survival) maximising Malthusian fitness increased with this shift in population density. Thus, the winter ECE acting on reindeer and their scavenger, the Arctic fox, indirectly selected for higher body condition in migratory geese. This high Arctic study provides rare empirical evidence of links between ECEs, community dynamics and evolution, with implications for our understanding of indirect eco-evolutionary impacts of global change.
Collapse
Affiliation(s)
- Kate Layton-Matthews
- Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, Norway.
- Norwegian Institute for Nature Research, NINA, Tromsø, Norway.
| | - Stefan J G Vriend
- Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, Norway
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Vidar Grøtan
- Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, Norway
| | | | - Bernt-Erik Sæther
- Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, Norway
| | - Eva Fuglei
- Norwegian Polar Institute, Tromsø, Norway
| | - Brage Bremset Hansen
- Department of Biology, Centre for Biodiversity Dynamics, NTNU, Trondheim, Norway
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research, NINA, Trondheim, Norway
| |
Collapse
|
14
|
Thorogood R, Mustonen V, Aleixo A, Aphalo PJ, Asiegbu FO, Cabeza M, Cairns J, Candolin U, Cardoso P, Eronen JT, Hällfors M, Hovatta I, Juslén A, Kovalchuk A, Kulmuni J, Kuula L, Mäkipää R, Ovaskainen O, Pesonen AK, Primmer CR, Saastamoinen M, Schulman AH, Schulman L, Strona G, Vanhatalo J. Understanding and applying biological resilience, from genes to ecosystems. NPJ BIODIVERSITY 2023; 2:16. [PMID: 39242840 PMCID: PMC11332022 DOI: 10.1038/s44185-023-00022-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/07/2023] [Indexed: 09/09/2024]
Abstract
The natural world is under unprecedented and accelerating pressure. Much work on understanding resilience to local and global environmental change has, so far, focussed on ecosystems. However, understanding a system's behaviour requires knowledge of its component parts and their interactions. Here we call for increased efforts to understand 'biological resilience', or the processes that enable components across biological levels, from genes to communities, to resist or recover from perturbations. Although ecologists and evolutionary biologists have the tool-boxes to examine form and function, efforts to integrate this knowledge across biological levels and take advantage of big data (e.g. ecological and genomic) are only just beginning. We argue that combining eco-evolutionary knowledge with ecosystem-level concepts of resilience will provide the mechanistic basis necessary to improve management of human, natural and agricultural ecosystems, and outline some of the challenges in achieving an understanding of biological resilience.
Collapse
Affiliation(s)
- Rose Thorogood
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| | - Ville Mustonen
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Computer Science, Faculty of Science, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Alexandre Aleixo
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Pedro J Aphalo
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Fred O Asiegbu
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mar Cabeza
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- HELSUS Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| | - Johannes Cairns
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Ulrika Candolin
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pedro Cardoso
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- CE3C - Centre for Ecology, Evolution and Environmental Changes, CHANGE-Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Jussi T Eronen
- HELSUS Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
- Research Programme in Ecosystems and Environment, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- BIOS Research Unit, Helsinki, Finland
| | - Maria Hällfors
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Aino Juslén
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- VTT Technical Research Centre of Finland Ltd, Espoo, Finland
- Onego Bio Ltd, Helsinki, Finland
| | - Jonna Kulmuni
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Liisa Kuula
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Raisa Mäkipää
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Otso Ovaskainen
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anu-Katriina Pesonen
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Craig R Primmer
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
| | - Marjo Saastamoinen
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Alan H Schulman
- Institute of Biotechnology, HiLIFE Helsinki Institute for Life Science, University of Helsinki, Helsinki, Finland
- Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Leif Schulman
- LUOMUS Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Syke Finnish Environment Institute, Helsinki, Finland
| | - Giovanni Strona
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources, Ispra, Italy
| | - Jarno Vanhatalo
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Starko S, Fifer JE, Claar DC, Davies SW, Cunning R, Baker AC, Baum JK. Marine heatwaves threaten cryptic coral diversity and erode associations among coevolving partners. SCIENCE ADVANCES 2023; 9:eadf0954. [PMID: 37566650 PMCID: PMC10421036 DOI: 10.1126/sciadv.adf0954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/12/2023] [Indexed: 08/13/2023]
Abstract
Climate change-amplified marine heatwaves can drive extensive mortality in foundation species. However, a paucity of longitudinal genomic datasets has impeded understanding of how these rapid selection events alter cryptic genetic structure. Heatwave impacts may be exacerbated in species that engage in obligate symbioses, where the genetics of multiple coevolving taxa may be affected. Here, we tracked the symbiotic associations of reef-building corals for 6 years through a prolonged heatwave, including known survivorship for 79 of 315 colonies. Coral genetics strongly predicted survival of the ubiquitous coral, Porites (massive growth form), with variable survival (15 to 61%) across three morphologically indistinguishable-but genetically distinct-lineages. The heatwave also disrupted strong associations between these coral lineages and their algal symbionts (family Symbiodiniaceae), with symbiotic turnover in some colonies, resulting in reduced specificity across lineages. These results highlight how heatwaves can threaten cryptic genotypes and decouple otherwise tightly coevolved relationships between hosts and symbionts.
Collapse
Affiliation(s)
- Samuel Starko
- Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, British Columbia V8W 2Y2, Canada
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - James E. Fifer
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Danielle C. Claar
- Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, British Columbia V8W 2Y2, Canada
- Washington Department of Natural Resources, Olympia, WA 98504, USA
| | - Sarah W. Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, 1200 South Lake Shore Drive, Chicago, IL 60605, USA
| | - Andrew C. Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Julia K. Baum
- Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, British Columbia V8W 2Y2, Canada
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| |
Collapse
|
16
|
McDonald LM, Scharnagl A, Turcu AK, Patterson CM, Kooyers NJ. Demographic consequences of an extreme heat wave are mitigated by spatial heterogeneity in an annual monkeyflower. Ecol Evol 2023; 13:e10397. [PMID: 37575594 PMCID: PMC10412438 DOI: 10.1002/ece3.10397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
Heat waves are becoming more frequent and intense with climate change, but the demographic and evolutionary consequences of heat waves are rarely investigated in herbaceous plant species. We examine the consequences of a short but extreme heat wave in Oregon populations of the common yellow monkeyflower (Mimulus guttatus) by leveraging a common garden experiment planted with range-wide populations and observational studies of 11 local populations. In the common garden, 89% of seedlings died during the heat wave including >96% of seedlings from geographically local populations. Some populations from hotter and drier environments had higher fitness, however, others from comparable environments performed poorly. Observational studies of local natural populations drastically differed in the consequences of the heat wave-one population was completely extirpated and nearly half had a >50% decrease in fitness. However, a few populations had greater fitness during the heat wave year. Differences in mortality corresponded to the impact of the heat wave on soil moisture-retention of soil moisture throughout the heat wave led to greater survivorship. Our results suggest that not all populations experience the same intensity or degree of mortality during extreme events and such heterogeneity could be important for genetic rescue or to facilitate the distribution of adaptive variants throughout the region.
Collapse
Affiliation(s)
| | - Anna Scharnagl
- Department of BiologyUniversity of LouisianaLafayetteLouisianaUSA
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Andrea K. Turcu
- Department of BiologyUniversity of LouisianaLafayetteLouisianaUSA
| | | | | |
Collapse
|
17
|
Diaz AA, Steiner UK, Tuljapurkar S, Zuo W, Hernández-Pacheco R. Hurricanes affect diversification among individual life courses of a primate population. J Anim Ecol 2023; 92:1404-1415. [PMID: 37190852 PMCID: PMC10550793 DOI: 10.1111/1365-2656.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Extreme climatic events may influence individual-level variability in phenotypes, survival and reproduction, and thereby drive the pace of evolution. Climate models predict increases in the frequency of intense hurricanes, but no study has measured their impact on individual life courses within animal populations. We used 45 years of demographic data of rhesus macaques to quantify the influence of major hurricanes on reproductive life courses using multiple metrics of dynamic heterogeneity accounting for life course variability and life-history trait variances. To reduce intraspecific competition, individuals may explore new reproductive stages during years of major hurricanes, resulting in higher temporal variation in reproductive trajectories. Alternatively, individuals may opt for a single optimal life-history strategy due to trade-offs between survival and reproduction. Our results show that heterogeneity in reproductive life courses increased by 4% during years of major hurricanes, despite a 2% reduction in the asymptotic growth rate due to an average decrease in mean fertility and survival by that is, shortened life courses and reduced reproductive output. In agreement with this, the population is expected to achieve stable population dynamics faster after being perturbed by a hurricane (ρ = 1.512 ; 95% CI: 1.488, 1.538), relative to ordinary yearsρ = 1.482 ; 1.475 , 1.490 . Our work suggests that natural disasters force individuals into new demographic roles to potentially reduce competition during unfavourable environments where mean reproduction and survival are compromised. Variance in lifetime reproductive success and longevity are differently affected by hurricanes, and such variability is mostly driven by survival.
Collapse
Affiliation(s)
- Alexis A. Diaz
- California State University-Long Beach, Long Beach, California, USA
| | | | | | - Wenyun Zuo
- Stanford University, Stanford, California, USA
| | | |
Collapse
|
18
|
Benning JW, Faulkner A, Moeller DA. Rapid evolution during climate change: demographic and genetic constraints on adaptation to severe drought. Proc Biol Sci 2023; 290:20230336. [PMID: 37161337 PMCID: PMC10170215 DOI: 10.1098/rspb.2023.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/13/2023] [Indexed: 05/11/2023] Open
Abstract
Populations often vary in their evolutionary responses to a shared environmental perturbation. A key hurdle in building more predictive models of rapid evolution is understanding this variation-why do some populations and traits evolve while others do not? We combined long-term demographic and environmental data, estimates of quantitative genetic variance components, a resurrection experiment and individual-based evolutionary simulations to gain mechanistic insights into contrasting evolutionary responses to a severe multi-year drought. We examined five traits in two populations of a native California plant, Clarkia xantiana, at three time points over 7 years. Earlier flowering phenology evolved in only one of the two populations, though both populations experienced similar drought severity and demographic declines and were estimated to have considerable additive genetic variance for flowering phenology. Pairing demographic and experimental data with evolutionary simulations suggested that while seed banks in both populations probably constrained evolutionary responses, a stronger seed bank in the non-evolving population resulted in evolutionary stasis. Gene flow through time via germ banks may be an important, underappreciated control on rapid evolution in response to extreme environmental perturbations.
Collapse
Affiliation(s)
- John W. Benning
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55455, USA
| | - Alexai Faulkner
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55455, USA
| | - David A. Moeller
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55455, USA
| |
Collapse
|
19
|
Lin PA, Kansman J, Chuang WP, Robert C, Erb M, Felton GW. Water availability and plant-herbivore interactions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2811-2828. [PMID: 36477789 DOI: 10.1093/jxb/erac481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/04/2022] [Indexed: 06/06/2023]
Abstract
Water is essential to plant growth and drives plant evolution and interactions with other organisms such as herbivores. However, water availability fluctuates, and these fluctuations are intensified by climate change. How plant water availability influences plant-herbivore interactions in the future is an important question in basic and applied ecology. Here we summarize and synthesize the recent discoveries on the impact of water availability on plant antiherbivore defense ecology and the underlying physiological processes. Water deficit tends to enhance plant resistance and escape traits (i.e. early phenology) against herbivory but negatively affects other defense strategies, including indirect defense and tolerance. However, exceptions are sometimes observed in specific plant-herbivore species pairs. We discuss the effect of water availability on species interactions associated with plants and herbivores from individual to community levels and how these interactions drive plant evolution. Although water stress and many other abiotic stresses are predicted to increase in intensity and frequency due to climate change, we identify a significant lack of study on the interactive impact of additional abiotic stressors on water-plant-herbivore interactions. This review summarizes critical knowledge gaps and informs possible future research directions in water-plant-herbivore interactions.
Collapse
Affiliation(s)
- Po-An Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jessica Kansman
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | | | - Matthias Erb
- Institute of Plant Science, University of Bern, Bern, Switzerland
| | - Gary W Felton
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
20
|
Deem SL, Rivera S, Nieto‐Claudin A, Emmel E, Cabrera F, Blake S. Temperature along an elevation gradient determines Galapagos tortoise sex ratios. Ecol Evol 2023; 13:e10008. [PMID: 37091568 PMCID: PMC10116026 DOI: 10.1002/ece3.10008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Climate change threatens endemic island ectothermic reptiles that display small population sizes and temperature-dependent sex determination (TSD). Studies of captive Galapagos tortoises demonstrate type A TSD with warmer incubation temperatures producing females. However, there are few published data from free-living Galapagos tortoises on incubation temperature regimes, and none on hatchling sex ratios in the wild or the potential impacts of climate change on future sex ratios. We sought to address these deficits by quantifying incubation temperatures of nests and sex ratios of juvenile tortoises along an elevation gradient on Santa Cruz Island. We focused on three geographically separated nesting zones with mean elevations of 14 m (lower), 57 m (middle), and 107 m (upper) above sea level. Nest temperatures in 54 nests distributed across the three nesting zones were measured every 4 h throughout the incubation period using iButton thermochrons. We used coelioscopy to conduct visual exams of gonads to determine the sex of 40 juvenile tortoises from the three nesting zones. During the middle trimester of incubation, the period during which sex is determined in turtles, mean nest temperatures were 25.75°C (SD = 1.08) in the upper zone, and 27.02°C (SD = 1.09), and 27.09°C (SD = 0.85) in the middle and lower zones, respectively. The proportion of juveniles that was male increased from 11.1% in the lower zone and 9.5% in the middle zone, to 80% in the upper zone. A ca. 50 m increase in elevation induced a decrease of >1.25°C in mean nest temperature during the second trimester of incubation. Over the same elevation change, the proportion of males in the juvenile tortoise population increased by ca. 70%. Temperatures on Galapagos are predicted to increase by 1-4°C over the next 50 years, which is likely to increase the frequency of female tortoises across the archipelago.
Collapse
Affiliation(s)
- Sharon L. Deem
- One Government DriveSaint Louis Zoo Institute for Conservation MedicineSt. LouisMissouriUSA
- Charles Darwin FoundationSanta CruzGalapagos IslandsEcuador
| | - Sam Rivera
- Department of Animal HealthZoo AtlantaAtlantaGeorgiaUSA
| | - Ainoa Nieto‐Claudin
- One Government DriveSaint Louis Zoo Institute for Conservation MedicineSt. LouisMissouriUSA
- Charles Darwin FoundationSanta CruzGalapagos IslandsEcuador
| | - Evan Emmel
- The Maritime Aquarium at NorwalkNorwalkConnecticutUSA
| | - Freddy Cabrera
- Charles Darwin FoundationSanta CruzGalapagos IslandsEcuador
| | - Stephen Blake
- Charles Darwin FoundationSanta CruzGalapagos IslandsEcuador
- Department of BiologySaint Louis UniversitySt. LouisMissouriUSA
- Max Planck Institute of Animal BehaviorRadolfzellGermany
| |
Collapse
|
21
|
Hector TE, Gehman ALM, King KC. Infection burdens and virulence under heat stress: ecological and evolutionary considerations. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220018. [PMID: 36744570 PMCID: PMC9900716 DOI: 10.1098/rstb.2022.0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/17/2022] [Indexed: 02/07/2023] Open
Abstract
As a result of global change, hosts and parasites (including pathogens) are experiencing shifts in their thermal environment. Despite the importance of heat stress tolerance for host population persistence, infection by parasites can impair a host's ability to cope with heat. Host-parasite eco-evolutionary dynamics will be affected if infection reduces host performance during heating. Theory predicts that within-host parasite burden (replication rate or number of infecting parasites per host), a key component of parasite fitness, should correlate positively with virulence-the harm caused to hosts during infection. Surprisingly, however, the relationship between within-host parasite burden and virulence during heating is often weak. Here, we describe the current evidence for the link between within-host parasite burden and host heat stress tolerance. We consider the biology of host-parasite systems that may explain the weak or absent link between these two important host and parasite traits during hot conditions. The processes that mediate the relationship between parasite burden and host fitness will be fundamental in ecological and evolutionary responses of host and parasites in a warming world. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- T. E. Hector
- Department of Biology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| | - A.-L. M. Gehman
- Hakai Institute, End of Kwakshua Channel, Calvert Island, BC Canada, V0N 1M0
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC Canada, V6T 1Z4
| | - K. C. King
- Department of Biology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| |
Collapse
|
22
|
Ventura F, Stanworth A, Crofts S, Kuepfer A, Catry P. Local-scale impacts of extreme events drive demographic asynchrony in neighbouring top predator populations. Biol Lett 2023; 19:20220408. [PMID: 36722144 PMCID: PMC9890319 DOI: 10.1098/rsbl.2022.0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023] Open
Abstract
Extreme weather events are among the most critical aspects of climate change, but our understanding of their impacts on biological populations remains limited. Here, we exploit the rare opportunity provided by the availability of concurrent longitudinal demographic data on two neighbouring marine top predator populations (the black-browed albatross, Thalassarche melanophris, breeding in two nearby colonies) hit by an exceptionally violent storm during one study year. The aim of this study is to quantify the demographic impacts of extreme events on albatrosses and test the hypothesis that extreme events would synchronously decrease survival rates of neighbouring populations. Using demographic modelling we found that, contrary to our expectation, the storm affected the survival of albatrosses from only one of the two colonies, more than doubling the annual mortality rate compared to the study average. Furthermore, the effects of storms on adult survival would lead to substantial population declines (up to 2% per year) under simulated scenarios of increased storm frequencies. We, therefore, conclude that extreme events can result in very different local-scale impacts on sympatric populations. Crucially, by driving demographic asynchrony, extreme events can hamper our understanding of the demographic responses of wild populations to mean, long-term shifts in climate.
Collapse
Affiliation(s)
- Francesco Ventura
- CESAM, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | | | - Sarah Crofts
- Falklands Conservation, Stanley, FIQQ 1ZZ Falkland Islands, UK
| | - Amanda Kuepfer
- SAERI—South Atlantic Environmental Research Institute, Stanley, FIQQ 1ZZ Falkland Islands, UK
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Paulo Catry
- MARE – Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, ISPA – Instituto Universitário, Rua Jardim do Tabaco 34, Lisboa 1149-041, Portugal
| |
Collapse
|
23
|
Tonelli BA, Youngflesh C, Tingley MW. Geomagnetic disturbance associated with increased vagrancy in migratory landbirds. Sci Rep 2023; 13:414. [PMID: 36624156 PMCID: PMC9829733 DOI: 10.1038/s41598-022-26586-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Rare birds known as "accidentals" or "vagrants" have long captivated birdwatchers and puzzled biologists, but the drivers of these rare occurrences remain elusive. Errors in orientation or navigation are considered one potential driver: migratory birds use the Earth's magnetic field-sensed using specialized magnetoreceptor structures-to traverse long distances over often unfamiliar terrain. Disruption to these magnetoreceptors or to the magnetic field itself could potentially cause errors leading to vagrancy. Using data from 2 million captures of 152 landbird species in North America over 60 years, we demonstrate a strong association between disruption to the Earth's magnetic field and avian vagrancy during fall migration. Furthermore, we find that increased solar activity-a disruptor of the avian magnetoreceptor-generally counteracts this effect, potentially mitigating misorientation by disabling the ability for birds to use the magnetic field to orient. Our results link a hypothesized cause of misorientation to the phenomenon of avian vagrancy, further demonstrating the importance of magnetoreception among the orientation mechanisms of migratory birds. Geomagnetic disturbance may have important downstream ecological consequences, as vagrants may experience increased mortality rates or facilitate range expansions of avian populations and the organisms they disperse.
Collapse
Affiliation(s)
- Benjamin A Tonelli
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA.
| | - Casey Youngflesh
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Morgan W Tingley
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
24
|
Zhou HM, Bau T, Si J. Morphological and phylogenetic evidence reveal three new Pseudohydnum ( Auriculariales, Basidiomycota) species from North China. Front Cell Infect Microbiol 2023; 13:1139449. [PMID: 36875530 PMCID: PMC9975552 DOI: 10.3389/fcimb.2023.1139449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Pseudohydnum is characterized by gelatinous basidiomata with hydnoid hymenophores and longitudinally septate basidia. In this study, samples of the genus from North China were examined morphologically and phylogenetically using a dataset of the internal transcribed spacer of the ribosomal RNA gene and the nuclear large subunit rDNA. This study describes three new species, namely Pseudohydnum abietinum, Pseudohydnum candidissimum, and Pseudohydnum sinobisporum. Pseudohydnum abietinum is characterized by pileate and pale clay pink basidiomata when fresh, with a rudimentary stipe base, four-celled basidia, and broadly ellipsoid to ovoid or subglobose basidiospores (6-7.5 × 5-6.3 μm). P. candidissimum is characterized by very white basidiomata when fresh, frequently four-celled basidia, and broadly ellipsoid to subglobose basidiospores (7.2-8.5 × 6-7 μm). P. sinobisporum is characterized by ivory basidiomata when fresh, two-celled basidia, ovoid to broadly ellipsoid, or subglobose basidiospores (7.5-9.5 × 5.8-7.2 μm). The main characteristics, type localities, and hosts of Pseudohydnum species are listed.
Collapse
Affiliation(s)
- Hong-Min Zhou
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Tolgor Bau
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Jing Si
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- *Correspondence: Jing Si,
| |
Collapse
|
25
|
Simon MN, Rothier PS, Donihue CM, Herrel A, Kolbe JJ. Can extreme climatic events induce shifts in adaptive potential? A conceptual framework and empirical test with Anolis lizards. J Evol Biol 2023; 36:195-208. [PMID: 36357963 DOI: 10.1111/jeb.14115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/04/2022] [Accepted: 09/10/2022] [Indexed: 11/12/2022]
Abstract
Multivariate adaptation to climatic shifts may be limited by trait integration that causes genetic variation to be low in the direction of selection. However, strong episodes of selection induced by extreme climatic pressures may facilitate future population-wide responses if selection reduces trait integration and increases adaptive potential (i.e., evolvability). We explain this counter-intuitive framework for extreme climatic events in which directional selection leads to increased evolvability and exemplify its use in a case study. We tested this hypothesis in two populations of the lizard Anolis scriptus that experienced hurricane-induced selection on limb traits. We surveyed populations immediately before and after the hurricane as well as the offspring of post-hurricane survivors, allowing us to estimate both selection and response to selection on key functional traits: forelimb length, hindlimb length, and toepad area. The direct selection was parallel in both islands and strong in several limb traits. Even though overall limb integration did not change after the hurricane, both populations showed a non-significant tendency toward increased evolvability after the hurricane despite the direction of selection not being aligned with the axis of most variance (i.e., body size). The population with comparably lower between-limb integration showed a less constrained response to selection. Hurricane-induced selection, not aligned with the pattern of high trait correlations, likely conflicts with selection occurring during normal ecological conditions that favours functional coordination between limb traits, and would likely need to be very strong and more persistent to elicit a greater change in trait integration and evolvability. Future tests of this hypothesis should use G-matrices in a variety of wild organisms experiencing selection due to extreme climatic events.
Collapse
Affiliation(s)
- Monique N Simon
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | - Colin M Donihue
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
| | - Anthony Herrel
- UMR 7179, Centre National de la Recherche Scientifique/Muséum National d'Histoire Naturelle, Paris, France.,Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium.,Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
26
|
De Campos LD, De Souza Dias PGB, Audino JA, Desutter-Grandcolas L, Nihei SS. The fifth family of the true crickets (Insecta: Orthoptera: Ensifera: Grylloidea), Oecanthidae defin. nov.: phylogenetic relationships and divergence times. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Abstract
Crickets are frequently used as a model in several areas of science, including acoustic communication, behaviour and neurobiology. However, only a few of these studies are placed in an evolutionary framework due to the limited number of phylogenetic hypotheses for true crickets. We present a phylogenetic hypothesis for a newly defined family of crickets, Oecanthidae defin. nov., sister-group of Gryllidae defin. nov. The phylogenetic analyses are based on molecular and morphological data under likelihood and parsimony criteria and molecular data for divergence-times estimation (Bayesian inference). We used 107 terminals from all biogeographic regions and six fossils for the time calibration of the tree. All analyses resulted in Oecanthidae with four subfamilies: Euscyrtinae, Oecanthinae defin. nov., Podoscirtinae defin. nov. and Tafaliscinae defin. nov. Based on our results, we revise the definition and internal classifications of the subfamilies, supertribes and tribes. A new tribe, Phyllogryllini trib. nov. is described. We also update their diagnoses, list the genera of the tribes and list their apomorphies. We provide an identification key for all suprageneric taxa of Oecanthidae, plus all genera of Tafaliscinae. Finally, we discuss the phylogenetic relationships of Oecanthidae, their divergence times, habitat diversity and the importance of ovipositor variation in this clade.
Collapse
Affiliation(s)
- Lucas Denadai De Campos
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo , São Paulo , Brazil
- Institut de Systématique, Évolution et Biodiversité, Muséum national d’Histoire naturelle, Sorbonne Université, CNRS, UPMC, EPHE , UA, Paris , France
| | | | - Jorge Alves Audino
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo , São Paulo , Brazil
| | - Laure Desutter-Grandcolas
- Institut de Systématique, Évolution et Biodiversité, Muséum national d’Histoire naturelle, Sorbonne Université, CNRS, UPMC, EPHE , UA, Paris , France
| | - Silvio Shigueo Nihei
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo , São Paulo , Brazil
| |
Collapse
|
27
|
Zacharias M, Pampuch T, Dauphin B, Opgenoorth L, Roland C, Schnittler M, Wilmking M, Bog M, Heer K. Genetic basis of growth reaction to drought stress differs in contrasting high-latitude treeline ecotones of a widespread conifer. Mol Ecol 2022; 31:5165-5181. [PMID: 35951000 DOI: 10.1111/mec.16648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 12/15/2022]
Abstract
Climate change is increasing the frequency and intensity of drought events in many boreal forests. Trees are sessile organisms with a long generation time, which makes them vulnerable to fast climate change and hinders fast adaptations. Therefore, it is important to know how forests cope with drought stress and to explore the genetic basis of these reactions. We investigated three natural populations of white spruce (Picea glauca) in Alaska, located at one drought-limited and two cold-limited treelines with a paired plot design of one forest and one treeline plot. We obtained individual increment cores from 458 trees and climate data to assess dendrophenotypes, in particular the growth reaction to drought stress. To explore the genetic basis of these dendrophenotypes, we genotyped the individual trees at 3000 single nucleotide polymorphisms in candidate genes and performed genotype-phenotype association analysis using linear mixed models and Bayesian sparse linear mixed models. Growth reaction to drought stress differed in contrasting treeline populations. Therefore, the populations are likely to be unevenly affected by climate change. We identified 40 genes associated with dendrophenotypic traits that differed among the treeline populations. Most genes were identified in the drought-limited site, indicating comparatively strong selection pressure of drought-tolerant phenotypes. Contrasting patterns of drought-associated genes among sampled sites and in comparison to Canadian populations in a previous study suggest that drought adaptation acts on a local scale. Our results highlight genes that are associated with wood traits which in turn are critical for the establishment and persistence of future forests under climate change.
Collapse
Affiliation(s)
- Melanie Zacharias
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Timo Pampuch
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | | | - Lars Opgenoorth
- Plant Ecology and Geobotany, Philipps Universität Marburg, Marburg, Germany
| | - Carl Roland
- Denali National Park and Preserve, Fairbanks, Alaska, USA
| | - Martin Schnittler
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Martin Wilmking
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Manuela Bog
- Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Katrin Heer
- Forest Genetics, Faculty of Environment and Natural Resources, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Jensen EL, Leigh DM. Using temporal genomics to understand contemporary climate change responses in wildlife. Ecol Evol 2022; 12:e9340. [PMID: 36177124 PMCID: PMC9481866 DOI: 10.1002/ece3.9340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/02/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Monitoring the evolutionary responses of species to ongoing global climate change is critical for informing conservation. Population genomic studies that use samples from multiple time points ("temporal genomics") are uniquely able to make direct observations of change over time. Consequently, only temporal studies can show genetic erosion or spatiotemporal changes in population structure. Temporal genomic studies directly examining climate change effects are currently rare but will likely increase in the coming years due to their high conservation value. Here, we highlight four key genetic indicators that can be monitored using temporal genomics to understand how species are responding to climate change. All indicators crucially rely on having a suitable baseline that accurately represents the past condition of the population, and we discuss aspects of study design that must be considered to achieve this.
Collapse
Affiliation(s)
- Evelyn L. Jensen
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle Upon TyneUK
| | | |
Collapse
|
29
|
Heimburger B, Maurer SS, Schardt L, Scheu S, Hartke TR. Historical and future climate change fosters expansion of Australian harvester termites, Drepanotermes. Evolution 2022; 76:2145-2161. [PMID: 35842838 DOI: 10.1111/evo.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/22/2023]
Abstract
Past evolutionary adaptations to Australia's aridification can help us to understand the potential responses of species in the face of global climate change. Here, we focus on the Australian-endemic genus Drepanotermes, also known as Australian harvester termites, which are mainly found in semiarid and arid regions of Australia. We used species delineation, phylogenetic inference, and ancestral state reconstruction to investigate the evolution of mound-building in Drepanotermes and in relation to reconstructed past climatic conditions. Our findings suggest that mound-building evolved several times independently in Drepanotermes, apparently facilitating expansions into tropical and mesic regions of Australia. The phylogenetic signal of bioclimatic variables, especially limiting environmental factors (e.g., precipitation of the warmest quarter), suggests that the climate exerts a strong selective pressure. Finally, we used environmental niche modeling to predict the present and future habitat suitability for eight Drepanotermes species. Abiotic factors such as annual temperature contributed disproportionately to calibrations, while the inclusion of biotic factors such as predators and vegetation cover improved ecological niche models in some species. A comparison between present and future habitat suitability under two different emission scenarios revealed continued suitability of current ranges as well as substantial habitat gains for most studied species. Human-mediated climate change occurs more quickly than these termites can disperse into newly suitable habitat; however, their role in stabilizing arid ecosystems may allow them to mitigate effects on some other organisms at a local level.
Collapse
Affiliation(s)
- Bastian Heimburger
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Santiago Soto Maurer
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Leonie Schardt
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| | - Stefan Scheu
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany.,Centre of Biodiversity and Sustainable Land Use, Büsgenweg 1, 37077, Göttingen, Germany
| | - Tamara R Hartke
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
| |
Collapse
|
30
|
Rosenberg E. Rapid acquisition of microorganisms and microbial genes can help explain punctuated evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.957708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The punctuated mode of evolution posits that evolution occurs in rare bursts of rapid evolutionary change followed by long periods of genetic stability (stasis). The accepted cause for the rapid changes in punctuated evolution is special ecological circumstances – selection forces brought about by changes in the environment. This article presents a complementary explanation for punctuated evolution by the rapid formation of genetic variants in animals and plants by the acquisition of microorganisms from the environment into microbiomes and microbial genes into host genomes by horizontal gene transfer. Several examples of major evolutionary events driven by microorganisms are discussed, including the formation of the first eukaryotic cell, the ability of some animals to digest cellulose and other plant cell-wall complex polysaccharides, dynamics of root system architecture, and the formation of placental mammals. These changes by cooperation were quantum leaps in the evolutionary development of complex bilolgical systems and can contribute to an understanding of the mechanisms underlying punctuated evolution.
Collapse
|
31
|
Intrinsically disordered BMP4 morphogen and the beak of the finch: Co-option of an ancient axial patterning system. Int J Biol Macromol 2022; 219:366-373. [PMID: 35931296 DOI: 10.1016/j.ijbiomac.2022.07.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022]
Abstract
Darwin's finches, with the primary diversity in the shape and size of their beaks, represent an excellent model system to study speciation and adaptive evolution. It is generally held that evolution depends on the natural selection of heritable phenotypic variations originating from the genetic mutations. However, it is now increasingly evident that epigenetic transgenerational inheritance of phenotypic variation can also guide evolutionary change. Several studies have shown that the bone morphogenetic protein BMP4 is a major driver of beak morphology. A recent study explored variability of the morphological, genetic, and epigenetic differences in the adjacent "urban" and "rural" populations of two species of ground Darwin's finches on the Galápagos Islands and revealed significant changes in methylation patterns in several genes including those involved in the BMP/TGFß pathway in the sperm DNA compared to erythrocyte DNA. These observations indicated that epigenetic changes caused by environmental fluctuations can be passed on to the offspring. Nonetheless, the mechanism by which dysregulated expression of BMP4 impacts beak morphology remains poorly understood. Here, we show that BMP4 is an intrinsically disordered protein and present a causal a link between epigenetic changes, BMP4 dysregulation and the evolution of the beak of the finch by natural selection.
Collapse
|
32
|
Toll-Riera M, Olombrada M, Castro-Giner F, Wagner A. A limit on the evolutionary rescue of an Antarctic bacterium from rising temperatures. SCIENCE ADVANCES 2022; 8:eabk3511. [PMID: 35857489 PMCID: PMC9286510 DOI: 10.1126/sciadv.abk3511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Climate change is gradual, but it can also cause brief extreme heat waves that can exceed the upper thermal limit of any one organism. To study the evolutionary potential of upper thermal tolerance, we evolved the cold-adapted Antarctic bacterium Pseudoalteromonas haloplanktis to survive at 30°C, beyond its ancestral thermal limit. This high-temperature adaptation occurred rapidly and in multiple populations. It involved genomic changes that occurred in a highly parallel fashion and mitigated the effects of protein misfolding. However, it also confronted a physiological limit, because populations failed to grow beyond 30°C. Our experiments aimed to facilitate evolutionary rescue by using a small organism with large populations living at temperatures several degrees below their upper thermal limit. Larger organisms with smaller populations and living at temperatures closer to their upper thermal tolerances are even more likely to go extinct during extreme heat waves.
Collapse
Affiliation(s)
- Macarena Toll-Riera
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Miriam Olombrada
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | | | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, NM, USA
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
33
|
Zheng J, Zuidema E, Zhang Z, Guo M, Székely T, Komdeur J. A novel function of egg burial: burying material prevents eggs rolling out of wind-swayed nests. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Innes SG, Santangelo JS, Kooyers NJ, Olsen KM, Johnson MTJ. Evolution in response to climate in the native and introduced ranges of a globally distributed plant. Evolution 2022; 76:1495-1511. [PMID: 35589013 DOI: 10.1111/evo.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 01/22/2023]
Abstract
The extent to which species can adapt to spatiotemporal climatic variation in their native and introduced ranges remains unresolved. To address this, we examined how clines in cyanogenesis (hydrogen cyanide [HCN] production-an antiherbivore defense associated with decreased tolerance to freezing) have shifted in response to climatic variation in space and time over a 60-year period in both the native and introduced ranges of Trifolium repens. HCN production is a polymorphic trait controlled by variation at two Mendelian loci (Ac and Li). Using phenotypic assays, we estimated within-population frequencies of HCN production and dominant alleles at both loci (i.e., Ac and Li) from 10,575 plants sampled from 131 populations on five continents, and then compared these frequencies to those from historical data collected in the 1950s. There were no clear relationships between changes in the frequency of HCN production, Ac, or Li and changes in temperature between contemporary and historical samples. We did detect evidence of continued evolution to temperature gradients in the introduced range, whereby the slope of contemporary clines for HCN and Ac in relation to winter temperature became steeper than historical clines and more similar to native clines. These results suggest that cyanogenesis clines show no clear changes through time in response to global warming, but introduced populations continue to adapt to their contemporary environments.
Collapse
Affiliation(s)
- Simon G Innes
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.,Department of Biology, University of Louisiana, Lafayette, Louisiana, 70504
| | - James S Santangelo
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Nicholas J Kooyers
- Department of Biology, University of Louisiana, Lafayette, Louisiana, 70504
| | - Kenneth M Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130
| | - Marc T J Johnson
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
35
|
Thakur MP, Risch AC, van der Putten WH. Biotic responses to climate extremes in terrestrial ecosystems. iScience 2022; 25:104559. [PMID: 35784794 PMCID: PMC9240802 DOI: 10.1016/j.isci.2022.104559] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Anthropogenic climate change is increasing the incidence of climate extremes. Consequences of climate extremes on biodiversity can be highly detrimental, yet few studies also suggest beneficial effects of climate extremes on certain organisms. To obtain a general understanding of ecological responses to climate extremes, we present a review of how 16 major taxonomic/functional groups (including microorganisms, plants, invertebrates, and vertebrates) respond during extreme drought, precipitation, and temperature. Most taxonomic/functional groups respond negatively to extreme events, whereas groups such as mosses, legumes, trees, and vertebrate predators respond most negatively to climate extremes. We further highlight that ecological recovery after climate extremes is challenging to predict purely based on ecological responses during or immediately after climate extremes. By accounting for the characteristics of the recovering species, resource availability, and species interactions with neighboring competitors or facilitators, mutualists, and enemies, we outline a conceptual framework to better predict ecological recovery in terrestrial ecosystems.
Collapse
Affiliation(s)
- Madhav P. Thakur
- Institute of Ecology and Evolution and Oeschger Centre for Climate Change Research, University of Bern, 3012 Bern, Switzerland
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, the Netherlands
- Corresponding author
| | - Anita C. Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Switzerland
| | - Wim H. van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, the Netherlands
- Laboratory of Nematology, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
36
|
Wang Y, Qiao X, Li Y, Yang Q, Wang L, Liu X, Wang H, Shen H. Role of the receptor for activated C kinase 1 during viral infection. Arch Virol 2022; 167:1915-1924. [PMID: 35763066 DOI: 10.1007/s00705-022-05484-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
Viruses can survive only in living cells, where they depend on the host's enzymatic system for survival and reproduction. Virus-host interactions are complex. On the one hand, hosts express host-restricted factors to protect the host cells from viral infections. On the other hand, viruses recruit certain host factors to facilitate their survival and transmission. The identification of host factors critical to viral infection is essential for comprehending the pathogenesis of contagion and developing novel antiviral therapies that specifically target the host. Receptor for activated C kinase 1 (RACK1), an evolutionarily conserved host factor that exists in various eukaryotic organisms, is a promising target for antiviral therapy. This review primarily summarizes the roles of RACK1 in regulating different viral life stages, particularly entry, replication, translation, and release.
Collapse
Affiliation(s)
- Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaorong Qiao
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuhan Li
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qingru Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Lulu Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaolan Liu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hua Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hongxing Shen
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
37
|
Drought-exposure history increases complementarity between plant species in response to a subsequent drought. Nat Commun 2022; 13:3217. [PMID: 35680926 PMCID: PMC9184649 DOI: 10.1038/s41467-022-30954-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 05/18/2022] [Indexed: 01/10/2023] Open
Abstract
Growing threats from extreme climatic events and biodiversity loss have raised concerns about their interactive consequences for ecosystem functioning. Evidence suggests biodiversity can buffer ecosystem functioning during such climatic events. However, whether exposure to extreme climatic events will strengthen the biodiversity-dependent buffering effects for future generations remains elusive. We assess such transgenerational effects by exposing experimental grassland communities to eight recurrent summer droughts versus ambient conditions in the field. Seed offspring of 12 species are then subjected to a subsequent drought event in the glasshouse, grown individually, in monocultures or in 2-species mixtures. Comparing productivity between mixtures and monocultures, drought-selected plants show greater between-species complementarity than ambient-selected plants when recovering from the subsequent drought, causing stronger biodiversity effects on productivity and better recovery of drought-selected mixtures after the drought. These findings suggest exposure to recurrent climatic events can improve ecosystem responses to future events through transgenerational reinforcement of species complementarity. Using experimental communities of grassland species, this study shows that drought-exposure history can accelerate recovery from subsequent drought through increased niche complementarity between species. This transgenerational effect may enhance the sustainability of biodiversity and ecosystem functioning in a future with more frequent droughts.
Collapse
|
38
|
Husson B, Lind S, Fossheim M, Kato‐Solvang H, Skern‐Mauritzen M, Pécuchet L, Ingvaldsen RB, Dolgov AV, Primicerio R. Successive extreme climatic events lead to immediate, large-scale, and diverse responses from fish in the Arctic. GLOBAL CHANGE BIOLOGY 2022; 28:3728-3744. [PMID: 35253321 PMCID: PMC9321067 DOI: 10.1111/gcb.16153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The warming trend of the Arctic is punctuated by several record-breaking warm years with very low sea ice concentrations. The nature and reversibility of marine ecosystem responses to these multiple extreme climatic events (ECEs) are poorly understood. Here, we investigate the ecological signatures of three successive bottom temperature maxima concomitant with surface ECEs between 2004 and 2017 in the Barents Sea across spatial and organizational scales. We observed community-level redistributions of fish concurrent with ECEs at the scale of the whole Barents Sea. Three groups, characterized by different sets of traits describing their capacity to cope with short-term perturbations, reacted with different timing and intensity to each ECE. Arctic species co-occurred more frequently with large predators and incoming boreal taxa during ECEs, potentially affecting food web structures and functional diversity, accelerating the impacts of long-term climate change. On the species level, responses were highly diversified, with different ECEs impacting different species, and species responses (expansion, geographical shift) varying from one ECE to another, despite the environmental perturbations being similar. Past ECEs impacts, with potential legacy effects, lagged responses, thresholds, and interactions with the underlying warming pressure, could constantly set up new initial conditions that drive the unique ecological signature of each ECE. These results highlight the complexity of ecological reactions to multiple ECEs and give prominence to several sources of process uncertainty in the predictions of climate change impact and risk for ecosystem management. Long-term monitoring and studies to characterize the vertical extent of each ECE are necessary to statistically link demersal species and environmental spatial-temporal patterns. In the future, regular monitoring will be crucial to detect early signals of change and understand the determinism of ECEs, but we need to adapt our models and management to better integrate risk and stochasticity from the complex impacts of global change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrey V. Dolgov
- Polar Branch of the Federal State Budget Scientific InstitutionRussian Federal Research Institute of Fisheries and Oceanography (“PINRO” named after N.M.Knipovich)MurmanskRussia
- Murmansk State Technical UniversityMurmanskRussia
- Tomsk State UniversityTomskRussia
| | - Raul Primicerio
- Institute of Marine ResearchTromsøNorway
- UiT – The Arctic University of TromsøTromsøNorway
| |
Collapse
|
39
|
de Lima E Silva JR, de Lima ARB, da Silva DL, Rosa Filho JS, Adam ML. Contrasting tourism regimes due to the COVID-19 lockdown reveal varied genomic toxicity in a tropical beach in the Southern Atlantic. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:464. [PMID: 35639171 PMCID: PMC9152653 DOI: 10.1007/s10661-022-10112-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/15/2022] [Indexed: 05/26/2023]
Abstract
Tourist occupancy in coastal environments threatens the stability of various coastal ecosystems and is thus a cause for concern for the environmental sector. As such, it is important to perform environmental monitoring in a way that analyses and quantifies the environmental impact of coastal ecosystems. Porto de Galinhas beach (Pernambuco - Brazil) has one of the highest visitation rates in Brazil and suffered from restrictions to human mobility due to the COVID-19 pandemic. These restrictions allowed for the evaluation of the impact of tourism on Porto de Galinhas beach and the effects that the lack of tourist occupancy had during the lockdown period of 2020. Blood samples from the species Abudefduf saxatilis were collected monthly over a period of 1 year and during the lockdown quarter, in order to perform micronucleus (MN) and nuclear morphological alteration (NMA) tests, and data were analyzed at a seasonal level (dry/rainy period) using a comet assay. For the control group, A. saxatilis samples were collected in an environmentally protected area on Tamandaré beach (68 km from Porto de Galinhas). The MN and NMA tests showed a greater frequency of genomic damage when there was greater tourist flow. In relation to rain seasonality, the comet assay showed a greater incidence of genomic damage during the dry period, where there was a higher rate of tourist migration, compared to the rainy period. The lockdown period presented a lower incidence of genotoxic damage compared to the period without restrictions on human mobility and the control. The results show that tourism has been causing a significant environmental impact on Porto de Galinhas beach. The data collected during the lockdown period demonstrated how the absence of human movement results in changes that are favorable to environmental recuperation, as illustrated by the lower frequency of genomic damage.
Collapse
Affiliation(s)
| | | | - Demétrios Lucas da Silva
- Programa de Pós - Graduação em Biologia Animal, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - José Souto Rosa Filho
- Programa de Pós - Graduação em Oceanografia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Mônica Lúcia Adam
- Programa de Pós - Graduação em Biologia Animal, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
40
|
Skaien CL, Arcese P. On the capacity for rapid adaptation and plastic responses to herbivory and intraspecific competition in insular populations of
Plectritis congesta. Evol Appl 2022; 15:804-816. [PMID: 35603029 PMCID: PMC9108306 DOI: 10.1111/eva.13371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
A capacity for rapid adaptation should enhance the persistence of populations subject to temporal and spatial heterogeneity in natural selection, but examples from nature remain scarce. Plectritis congesta (Caprifoliaceae) is a winter annual that exhibits local adaptation to browsing by ungulates and hypothesized to show context‐dependent trade‐offs in traits affecting success in competition versus resistance or tolerance to browsing. We grew P. congesta from 44 insular populations historically exposed or naïve to ungulates in common gardens to (1) quantify genetic, plastic and competitive effects on phenotype; (2) estimate a capacity for rapid adaptation (evolvability); and (3) test whether traits favoured by selection with ungulates present were selected against in their absence. Plants from browsed populations bolted and flowered later, had smaller inflorescences, were less fecund and half as tall as plants from naïve populations on average, replicating patterns in nature. Estimated evolvabilities (3–36%) and narrow‐sense heritabilities (h2; 0.13–0.32) imply that differences in trait values as large as reported here can arise in 2–18 generations in an average population. Phenotypic plasticity was substantial, varied by browsing history and fruit phenotype and increased with competition. Fecundity increased with plasticity in flowering height given competition (0.47 ± 0.02 florets/cm, β ± se), but 23–77% faster in naïve plants bearing winged fruits (0.53 ± 0.04) than exposed‐wingless plants (0.43 ± 0.03) or exposed‐winged and naïve‐wingless plants (0.30 ± 0.03, each case). Our results support the hypothesis that context‐dependent variation in natural selection in P. congesta populations has conferred a substantial capacity for adaptation in response to selection in traits affecting success in competition versus resistance or tolerance to browsing in the absence versus presence of ungulates, respectively. Theory suggests that conserving adaptive capacity in P. congesta will require land managers to maintain spatial heterogeneity in natural selection, prevent local extinctions and maintain gene flow.
Collapse
Affiliation(s)
- Cora L. Skaien
- University of British Columbia Department of Forest and Conservation Sciences Faculty of Forestry 2424 Main Mall Vancouver BC V6T 1Z4 Canada
| | - Peter Arcese
- University of British Columbia Department of Forest and Conservation Sciences Faculty of Forestry 2424 Main Mall Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
41
|
Patrick CJ, Kominoski JS, McDowell WH, Branoff B, Lagomasino D, Leon M, Hensel E, Hensel MJS, Strickland BA, Aide TM, Armitage A, Campos-Cerqueira M, Congdon VM, Crowl TA, Devlin DJ, Douglas S, Erisman BE, Feagin RA, Geist SJ, Hall NS, Hardison AK, Heithaus MR, Hogan JA, Hogan JD, Kinard S, Kiszka JJ, Lin TC, Lu K, Madden CJ, Montagna PA, O’Connell CS, Proffitt CE, Kiel Reese B, Reustle JW, Robinson KL, Rush SA, Santos RO, Schnetzer A, Smee DL, Smith RS, Starr G, Stauffer BA, Walker LM, Weaver CA, Wetz MS, Whitman ER, Wilson SS, Xue J, Zou X. A general pattern of trade-offs between ecosystem resistance and resilience to tropical cyclones. SCIENCE ADVANCES 2022; 8:eabl9155. [PMID: 35235355 PMCID: PMC8890713 DOI: 10.1126/sciadv.abl9155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Tropical cyclones drive coastal ecosystem dynamics, and their frequency, intensity, and spatial distribution are predicted to shift with climate change. Patterns of resistance and resilience were synthesized for 4138 ecosystem time series from n = 26 storms occurring between 1985 and 2018 in the Northern Hemisphere to predict how coastal ecosystems will respond to future disturbance regimes. Data were grouped by ecosystems (fresh water, salt water, terrestrial, and wetland) and response categories (biogeochemistry, hydrography, mobile biota, sedentary fauna, and vascular plants). We observed a repeated pattern of trade-offs between resistance and resilience across analyses. These patterns are likely the outcomes of evolutionary adaptation, they conform to disturbance theories, and they indicate that consistent rules may govern ecosystem susceptibility to tropical cyclones.
Collapse
Affiliation(s)
- Christopher J. Patrick
- Department of Biological Sciences, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - John S. Kominoski
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - William H. McDowell
- Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA
- Institute of Environment, Florida International University, Miami, FL 33199, USA
| | - Benjamin Branoff
- Department of Biology, University of Puerto Rico-Río Piedras, San Juan, 00925, Puerto Rico
| | - David Lagomasino
- Department of Coastal Studies, East Carolina University, Wanchese, NC 27981, USA
| | - Miguel Leon
- Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA
| | - Enie Hensel
- Department of Biological Sciences, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - Marc J. S. Hensel
- Department of Biological Sciences, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - Bradley A. Strickland
- Department of Biological Sciences, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - T. Mitchell Aide
- Department of Biology, University of Puerto Rico-Río Piedras, San Juan, 00925, Puerto Rico
| | - Anna Armitage
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | | | - Victoria M. Congdon
- University of Texas at Austin Marine Science Institute, Port Aransas, TX 78373, USA
- Florida Fish Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, 100 Eighth Avenue, Southeast, St. Petersburg, FL 33701, USA
| | - Todd A. Crowl
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Donna J. Devlin
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| | - Sarah Douglas
- University of Texas at Austin Marine Science Institute, Port Aransas, TX 78373, USA
| | - Brad E. Erisman
- University of Texas at Austin Marine Science Institute, Port Aransas, TX 78373, USA
| | - Rusty A. Feagin
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA
| | - Simon J. Geist
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| | - Nathan S. Hall
- Department of Physical Sciences, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - Amber K. Hardison
- Department of Physical Sciences, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - Michael R. Heithaus
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - J. Aaron Hogan
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - J. Derek Hogan
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| | - Sean Kinard
- Department of Biological Sciences, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - Jeremy J. Kiszka
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Teng-Chiu Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Kaijun Lu
- University of Texas at Austin Marine Science Institute, Port Aransas, TX 78373, USA
| | - Christopher J. Madden
- Everglades-Florida Bay Ecosystem Lab, South Florida Water Management District, West Palm Beach, FL 33416, USA
| | - Paul A. Montagna
- Harte Research Institute, Texas A&M University, Corpus Christi, TX 78412, USA
| | | | - C. Edward Proffitt
- Department of Life Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| | - Brandi Kiel Reese
- Marine Sciences, Dauphin Island Sea Lab, Dauphin Island, AL 36528, USA
| | - Joseph W. Reustle
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC 28557, USA
| | - Kelly L. Robinson
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| | - Scott A. Rush
- Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, Starkville, MS 39762, USA
| | - Rolando O. Santos
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Astrid Schnetzer
- Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Delbert L. Smee
- Marine Sciences, Dauphin Island Sea Lab, Dauphin Island, AL 36528, USA
| | - Rachel S. Smith
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Gregory Starr
- Department of Biology, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Beth A. Stauffer
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| | - Lily M. Walker
- Harte Research Institute, Texas A&M University, Corpus Christi, TX 78412, USA
| | - Carolyn A. Weaver
- Department of Biology, Millersville University, Millersville, PA 17551, USA
| | - Michael S. Wetz
- Harte Research Institute, Texas A&M University, Corpus Christi, TX 78412, USA
| | - Elizabeth R. Whitman
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Sara S. Wilson
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Jianhong Xue
- University of Texas at Austin Marine Science Institute, Port Aransas, TX 78373, USA
| | - Xiaoming Zou
- Department of Environmental Sciences, University of Puerto Rico, San Juan, PR 00936-8377, USA
| |
Collapse
|
42
|
Moore ME, Hill CA, Kingsolver JG. Developmental timing of extreme temperature events (heat waves) disrupts host-parasitoid interactions. Ecol Evol 2022; 12:e8618. [PMID: 35342573 PMCID: PMC8932226 DOI: 10.1002/ece3.8618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/04/2021] [Accepted: 11/26/2021] [Indexed: 12/24/2022] Open
Abstract
When thermal tolerances differ between interacting species, extreme temperature events (heat waves) will alter the ecological outcomes. The parasitoid wasp Cotesia congregata suffers high mortality when reared throughout development at temperatures that are nonstressful for its host, Manduca sexta. However, the effects of short-term heat stress during parasitoid development are unknown in this host-parasitoid system.Here, we investigate how duration of exposure, daily maximum temperature, and the developmental timing of heat waves impact the performance of C. congregata and its host¸ M. sexta. We find that the developmental timing of short-term heat waves strongly determines parasitoid and host outcomes.Heat waves during parasitoid embryonic development resulted in complete wasp mortality and the production of giant, long-lived hosts. Heat waves during the 1st-instar had little effect on wasp success, whereas heat waves during the parasitoid's nutritionally and hormonally critical 2nd instar greatly reduced wasp emergence and eclosion. The temperature and duration of heat waves experienced early in development determined what proportion of hosts had complete parasitoid mortality and abnormal phenotypes.Our results suggest that the timing of extreme temperature events will be crucial to determining the ecological impacts on this host-parasitoid system. Discrepancies in thermal tolerance between interacting species and across development will have important ramifications on ecosystem responses to climate change.
Collapse
|
43
|
Qin C, Wang J, Du Y, Xu T. Immunosuppressive environment in response to androgen deprivation treatment in prostate cancer. Front Endocrinol (Lausanne) 2022; 13:1055826. [PMID: 36506053 PMCID: PMC9729332 DOI: 10.3389/fendo.2022.1055826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
RATIONALE To invest the role of androgen deprivation therapy (ADT) on the tumor immune microenvironment of prostate cancer. METHODS Here we have profiled the transcriptomes of 19,227 single cells from 4 prostate tumors, including two cases who received ADT. To validated the single-cell analysis we use another group of patients receiving neoadjuvant ADT. RESULTS After receiving ADT treatment, the killing effect of prostate cancer immune cells on tumors is weakened, the interaction between immune cells and tumor cells is weakened, and the proportion of immunosuppressive cells Myeloid-derived suppressor cell (MDSC) and Regulatory T cells (Treg) cells increases. CONCLUSIONS Our results highlight that ADT induces immunosuppressive in the prostate tumor microenvironment. These data have important implications for combining ADT with immunotherapy.
Collapse
Affiliation(s)
- Caipeng Qin
- Department of Urology, Peking University People’s Hospital, Beijing, China
| | - Jing Wang
- Department of Urologic Oncology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yiqing Du
- Department of Urology, Peking University People’s Hospital, Beijing, China
- *Correspondence: Yiqing Du, ; Tao Xu,
| | - Tao Xu
- Department of Urology, Peking University People’s Hospital, Beijing, China
- *Correspondence: Yiqing Du, ; Tao Xu,
| |
Collapse
|
44
|
Love A, Wagner GP. Co-option of stress mechanisms in the origin of evolutionary novelties. Evolution 2021; 76:394-413. [PMID: 34962651 PMCID: PMC9303342 DOI: 10.1111/evo.14421] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/30/2022]
Abstract
It is widely accepted that stressful conditions can facilitate evolutionary change. The mechanisms elucidated thus far accomplish this with a generic increase in heritable variation that facilitates more rapid adaptive evolution, often via plastic modifications of existing characters. Through scrutiny of different meanings of stress in biological research, and an explicit recognition that stressors must be characterized relative to their effect on capacities for maintaining functional integrity, we distinguish between: (1) previously identified stress‐responsive mechanisms that facilitate evolution by maintaining an adaptive fit with the environment, and (2) the co‐option of stress‐responsive mechanisms that are specific to stressors leading to the origin of novelties via compensation. Unlike standard accounts of gene co‐option that identify component sources of evolutionary change, our model documents the cost‐benefit trade‐offs and thereby explains how one mechanism—an immediate response to acute stress—is transformed evolutionarily into another—routine protection from recurring stressors. We illustrate our argument with examples from cell type origination as well as processes and structures at higher levels of organization. These examples suggest a general principle of evolutionary origination based on the capacity to switch between regulatory states related to reproduction and proliferation versus survival and differentiation.
Collapse
Affiliation(s)
- Alan Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT-06520.,Yale Systems Biology Institute, West Haven, CT-06516.,Department of Evolutionary Biology, University of Vienna, Austria
| |
Collapse
|
45
|
Gruber N, Boyd PW, Frölicher TL, Vogt M. Biogeochemical extremes and compound events in the ocean. Nature 2021; 600:395-407. [PMID: 34912083 DOI: 10.1038/s41586-021-03981-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/01/2021] [Indexed: 12/30/2022]
Abstract
The ocean is warming, losing oxygen and being acidified, primarily as a result of anthropogenic carbon emissions. With ocean warming, acidification and deoxygenation projected to increase for decades, extreme events, such as marine heatwaves, will intensify, occur more often, persist for longer periods of time and extend over larger regions. Nevertheless, our understanding of oceanic extreme events that are associated with warming, low oxygen concentrations or high acidity, as well as their impacts on marine ecosystems, remains limited. Compound events-that is, multiple extreme events that occur simultaneously or in close sequence-are of particular concern, as their individual effects may interact synergistically. Here we assess patterns and trends in open ocean extremes based on the existing literature as well as global and regional model simulations. Furthermore, we discuss the potential impacts of individual and compound extremes on marine organisms and ecosystems. We propose a pathway to improve the understanding of extreme events and the capacity of marine life to respond to them. The conditions exhibited by present extreme events may be a harbinger of what may become normal in the future. As a consequence, pursuing this research effort may also help us to better understand the responses of marine organisms and ecosystems to future climate change.
Collapse
Affiliation(s)
- Nicolas Gruber
- Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland.
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Thomas L Frölicher
- Climate and Environmental Physics, University of Bern, Bern, Switzerland.,Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Meike Vogt
- Environmental Physics, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
46
|
Abstract
AbstractThe frequency, intensity, and duration of periods of extreme environmental warming are expected to rise over the next hundred years and play an increasing role in species loss resulting from climate change, and yet we know little about their potential future effects on variability in the composition of communities. This study analyzed patterns of species loss in a community of four rotifers and six ciliates exposed to different rates of extreme warming. Temperature of loss was positively correlated with warming rates for all species, consistent with theoretical frameworks suggesting that lower rates of warming increase exposure time and cumulative thermal stress at each temperature. The sequence of species loss during extreme warming depended on the environmental warming rate (i.e., warming rates had the capacity to drive reversals in the relative thermal tolerances of species), and changes in the sequence of species loss driven by the warming rate resulted in substantial variability in community composition. The results suggest that differences in warming rates across space and time may increase variability in community composition in ecosystems increasingly disturbed by extreme temperature, potentially altering interspecific interactions, the abiotic environment, and ecosystem function. Several ecological mechanisms may be responsible, singly or together, for changes in the sequence of species loss at different rates of warming, including (a) differences among species in their sensitivity to the intensity and duration of heat exposure, (b) the effects of warming rates on temperature-dependent interspecific interactions, and (c) differences in opportunities for evolution among species and across warming rates.
Collapse
|
47
|
Neel LK, Logan ML, Nicholson DJ, Miller C, Chung AK, Maayan I, Degon Z, DuBois M, Curlis JD, Taylor Q, Keegan KM, McMillan WO, Losos JB, Cox CL. Habitat structure mediates vulnerability to climate change through its effects on thermoregulatory behavior. Biotropica 2021. [DOI: 10.1111/btp.12951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Michael L. Logan
- University of Nevada Reno NV USA
- Smithsonian Tropical Research Institute Panama City Panama
| | - Daniel J. Nicholson
- Smithsonian Tropical Research Institute Panama City Panama
- Queen Mary University London London UK
| | | | - Albert K. Chung
- Georgia Southern University Statesboro GA USA
- University of California, Los Angeles Los Angeles CA USA
| | | | - Zach Degon
- Georgia Southern University Statesboro GA USA
| | | | | | | | | | - W. O. McMillan
- Smithsonian Tropical Research Institute Panama City Panama
| | | | - Christian L. Cox
- Georgia Southern University Statesboro GA USA
- Florida International University Miami FL USA
| |
Collapse
|
48
|
Kingsolver JG, Malinski KH, Parker AL. Connecting extreme climatic events to changes in ecological interactions. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | | | - Anna L. Parker
- Department of Biology University of North Carolina Chapel Hill NC USA
| |
Collapse
|
49
|
Lyberger KP, Osmond MM, Schreiber SJ. Is Evolution in Response to Extreme Events Good for Population Persistence? Am Nat 2021; 198:44-52. [PMID: 34143724 DOI: 10.1086/714419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractClimate change is predicted to increase the severity of environmental perturbations, including storms and droughts, which act as strong selective agents. These extreme events are often of finite duration (pulse disturbances). Hence, while evolution during an extreme event may be adaptive, the resulting phenotypic changes may become maladaptive when the event ends. Using individual-based models and analytic approximations that fuse quantitative genetics and demography, we explore how heritability and phenotypic variance affect population size and extinction risk in finite populations under an extreme event of fixed duration. Since more evolution leads to greater maladaptation and slower population recovery following an extreme event, greater heritability can increase extinction risk when the extreme event is short. Alternatively, when an extreme event is sufficiently long, heritability often helps a population persist. We also find that when events are severe, the buffering effect of phenotypic variance can outweigh the increased load it causes.
Collapse
|
50
|
Yamada H, Wada S. Morphological evolution reduces downstream displacement in juvenile landlocked salmon. Evolution 2021; 75:1850-1861. [PMID: 34080690 DOI: 10.1111/evo.14281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022]
Abstract
Severe flooding often leads to downstream displacement of aquatic animals. Despite this, many salmonid populations persist in habitats located upstream of tall barriers, such as artificial check dams and/or natural waterfalls, that completely block fishes from returning to the upstream areas after flooding. The evolution of such populations may be affected by spatial sorting due to differential rates of downstream displacement. This study examined whether a morphological trait (increased body depth) that allows individuals to better maintain their position during flooding has evolved in juvenile amago salmon Oncorhynchus masou ishikawae inhabiting above-barrier habitats in two rivers. In both rivers, juveniles collected at the stations with multiple downstream barriers had deeper bodies than those collected at other stations. Similar differences were found in juveniles reared in a common-garden experiment. Field experiments with natural flooding also indicated that deep bodies help juveniles resist downstream displacement. These results consistently suggest that juveniles in some above-barrier habitats have evolved deep bodies to resist downstream displacement due to flooding. Our study is the first to show the evolutionary outcomes of passive spatial sorting during severe climate events.
Collapse
Affiliation(s)
- Hiroyuki Yamada
- Laboratory of Marine Biology, Graduate School of Fisheries Science, Hokkaido University, Hakodate, 041-8611, Japan
| | - Satoshi Wada
- Laboratory of Marine Biology, Graduate School of Fisheries Science, Hokkaido University, Hakodate, 041-8611, Japan
| |
Collapse
|