1
|
Debaere SF, Opinion AGR, Allan BJM, Rummer JL, De Boeck G. Bridging the divide in organismal physiology: a case for the integration of behaviour as a physiological process. J Exp Biol 2024; 227:jeb247685. [PMID: 39535050 DOI: 10.1242/jeb.247685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The role of behaviour in animal physiology is much debated, with researchers divided between the traditional view that separates physiology and behaviour, and a progressive perspective that sees behaviour as a physiological effector. We advocate for the latter, and in this Commentary, we argue that behaviour is inherently a physiological process. To do so, we outline the physiological basis for behaviour and draw parallels with recognised physiological processes. We also emphasise the importance of precise language that is shared across biological disciplines, as clear communication is foundational in integrating behaviour into physiology. Our goal with this Commentary is to set the stage for a debate and persuade readers of the merits of including behaviour within the domain of animal physiology. We argue that recognising behaviour as a physiological process is crucial for advancing a unified understanding of physiology, especially in the context of anthropogenic impacts.
Collapse
Affiliation(s)
- Shamil F Debaere
- ECOSPHERE, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
- Marine Biology, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | | | - Bridie J M Allan
- Department of Marine Science, University of Otāgo, Dunedin 9016, New Zealand
| | - Jodie L Rummer
- Marine Biology, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Gudrun De Boeck
- ECOSPHERE, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
2
|
Albery GF, Webber QMR, Farine D, Picardi S, Vander Wal E, Manlove KR. Expanding theory, methodology and empirical systems at the spatial-social interface. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220534. [PMID: 39230454 PMCID: PMC11449169 DOI: 10.1098/rstb.2022.0534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
All animals exhibit some combination of spatial and social behaviours. A diversity of interactions occurs between such behaviours, producing emergent phenomena at the spatial-social interface. Untangling and interrogating these complex, intertwined processes can be vital for identifying the mechanisms, causes and consequences of behavioural variation in animal ecology. Nevertheless, the integrated study of the interactions between spatial and social phenotypes and environments (at the spatial-social interface) is in its relative infancy. In this theme issue, we present a collection of papers chosen to expand the spatial-social interface along several theoretical, methodological and empirical dimensions. They detail new perspectives, methods, study systems and more, as well as offering roadmaps for applied outputs and detailing exciting new directions for the field to move in the future. In this Introduction, we outline the contents of these papers, placing them in the context of what comes before, and we synthesize a number of takeaways and future directions for the spatial-social interface. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Gregory F Albery
- School of Natural Sciences, Trinity College Dublin , Dublin, Ireland
- Department of Biology, Georgetown University , Washington, DC, USA
| | - Quinn M R Webber
- Department of Integrative Biology, University of Guelph , Guelph, Ontario, Canada
| | - Damien Farine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich , Zurich, Switzerland
- Division of Ecology and Evolution, Research School of Biology, The Australian National University , Canberra, Australian Capital Territory, Australia
- Department of Collective Behavior, Max Planck Institute of Animal Behavior , Radolfzell, Germany
| | - Simona Picardi
- Department of Fish and Wildlife Sciences, University of Idaho , Moscow, ID, USA
| | - Eric Vander Wal
- Department of Biology, Memorial University of Newfoundland , St. John's, Newfoundland, Canada
| | - Kezia R Manlove
- Department of Wildland Resources, Utah State University , Logan, UT, USA
| |
Collapse
|
3
|
Rogers JF, Vandendoren M, Prather JF, Landen JG, Bedford NL, Nelson AC. Neural cell-types and circuits linking thermoregulation and social behavior. Neurosci Biobehav Rev 2024; 161:105667. [PMID: 38599356 PMCID: PMC11163828 DOI: 10.1016/j.neubiorev.2024.105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Understanding how social and affective behavioral states are controlled by neural circuits is a fundamental challenge in neurobiology. Despite increasing understanding of central circuits governing prosocial and agonistic interactions, how bodily autonomic processes regulate these behaviors is less resolved. Thermoregulation is vital for maintaining homeostasis, but also associated with cognitive, physical, affective, and behavioral states. Here, we posit that adjusting body temperature may be integral to the appropriate expression of social behavior and argue that understanding neural links between behavior and thermoregulation is timely. First, changes in behavioral states-including social interaction-often accompany changes in body temperature. Second, recent work has uncovered neural populations controlling both thermoregulatory and social behavioral pathways. We identify additional neural populations that, in separate studies, control social behavior and thermoregulation, and highlight their relevance to human and animal studies. Third, dysregulation of body temperature is linked to human neuropsychiatric disorders. Although body temperature is a "hidden state" in many neurobiological studies, it likely plays an underappreciated role in regulating social and affective states.
Collapse
Affiliation(s)
- Joseph F Rogers
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Morgane Vandendoren
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Jonathan F Prather
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Jason G Landen
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Nicole L Bedford
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Adam C Nelson
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA.
| |
Collapse
|
4
|
Liu Q, Ilčíková T, Radchenko M, Junková M, Špinka M. Effects of reduced kinematic and social play experience on affective appraisal of human-rat play in rats. Front Zool 2023; 20:34. [PMID: 37821980 PMCID: PMC10568924 DOI: 10.1186/s12983-023-00512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Play is a common and developmentally important behaviour in young mammals. Specifically in Norway rats (Rattus norvegicus), reduced opportunity to engage in rough-and-tumble (RT) play has been associated with impaired development in social competence. However, RT play is a complex behaviour having both a kinematic aspect (i.e., performing complex 3D manoeuvres during play fights) and a social aspect (interacting with a playful partner). There has been little research so far on disentangling the two aspects in RT play, especially on how these two aspects affect the affective appraisal of the intense physical contact during play. RESULTS To examine the developmental effects of kinematic and social play reduction on affective appraisal in rats, we subjected male Long-Evans rats from 21 days old to RT play experience that was reduced either kinematically (through playing in a low ceiling environment) or socially (through playing with a less playful Fischer-344 rat). Starting at 35 days, we measured their production of positively (50-kHz) and negatively (22-kHz) valenced ultrasonic vocalisations (USVs) in a 2-min standardised human-rat play procedure that mimicked the playful sequences of nape contact, pinning, and belly stimulation ('tickling') for ten days. We hypothesised that the rats with kinematically or socially reduced play would perceive the 'tickling' less positively and thus emit positive ultrasonic vocalisations at lower rates compared to control rats with non-reduced play experience. Our results confirmed that each of the treatments reduced play differently: while the kinematic reduction abolished playful pinnings entirely, the social reduction decreased the pinnings and made play highly asymmetric. During the tickling procedure, rats mostly produced 50 kHz USV, indicating that they appraised the procedure as positive. There was a wide inter individual variance and high individual consistency in rats' USV responses to 'tickling'. Crucially, neither the kinematically nor the socially reduced play experience affected either type of USV production when rats were 'tickled'. CONCLUSIONS This finding indicates that the ability to appraise play-like interactions as positive remains unaffected even when the kinematic or the social aspect of play experience was substantially curtailed.
Collapse
Affiliation(s)
- Quanxiao Liu
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia.
| | - Tereza Ilčíková
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Mariia Radchenko
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Markéta Junková
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Marek Špinka
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| |
Collapse
|
5
|
Loader A, Rose P. Age-Related Change in the Association Choices of Two Species of Juvenile Flamingos. Animals (Basel) 2023; 13:2623. [PMID: 37627414 PMCID: PMC10451657 DOI: 10.3390/ani13162623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Flamingos are colonial species commonly kept in zoos, well known for their bright plumage and elaborate courtship displays. This project aimed to determine the differences in flock position and association preferences of juvenile Greater Flamingos (Phoenicopterus roseus) and Caribbean Flamingos (P. ruber) housed in the same zoological collection. Little research has been conducted on the association preferences of juvenile flamingos, especially in captive flocks, and therefore this study collected data using photographs taken throughout 2014 and 2015 to further understand association patterns. Data were collected on the age category of each juvenile flamingo observed, the age of their nearest neighbour and their position within the flock, and the location within an enclosure zone at different times of the day. The results showed that Greater Flamingo juveniles mainly associated with individuals of their own age and were most likely positioned at the periphery of their flock significantly more of the time until approximately 24 months of age. Sub-adult Greater Flamingos spent significantly more time associating with adult flamingos at the centre of the flock. In contrast, data collected on Caribbean Flamingos indicated that juveniles did not segregate themselves from the adults as distinctively. Birds aged 13-24 months were observed significantly more at the centre of the flock and had more associations with adult flamingos, in a similar manner to that observed in Greater Flamingos. Due to population management needs, juvenile Caribbean Flamingos were removed from the flock at the start of 2015 and this may have influenced the association and location preferences of the remaining young flamingos. In conclusion, these results indicated that captive juvenile flamingos were often seen away from adult birds and that sub-adult flamingos returned to the heart of their natal flock to associate significantly more with other adult individuals, potentially preparing for mate selection and breeding. Captive enclosure should therefore be spacious enough to enable young flamingos to remove themselves from adult birds so that behavioural development can be unaffected by artificially high rates of aggression.
Collapse
Affiliation(s)
- Abbie Loader
- University Centre Sparsholt, Sparsholt College Hampshire, Sparsholt, Winchester SO21 2NF, UK;
- Cotswold Wildlife Park, Bradwell Grove, Burford OX18 4JP, UK
| | - Paul Rose
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Perry Road, Exeter EX4 4QG, UK
- WWT Slimbridge Wetland Centre, Slimbridge, Gloucestershire GL2 7BT, UK
| |
Collapse
|
6
|
Ogino M, Maldonado-Chaparro AA, Aplin LM, Farine DR. Group-level differences in social network structure remain repeatable after accounting for environmental drivers. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230340. [PMID: 37476518 PMCID: PMC10354494 DOI: 10.1098/rsos.230340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023]
Abstract
Individuals show consistent between-individual behavioural variation when they interact with conspecifics or heterospecifics. Such patterns might underlie emergent group-specific behavioural patterns and between-group behavioural differences. However, little is known about (i) how social and non-social drivers (external drivers) shape group-level social structures and (ii) whether animal groups show consistent between-group differences in social structure after accounting for external drivers. We used automated tracking to quantify daily social interactions and association networks in 12 colonies of zebra finches (Taeniopygia guttata). We quantified the effects of five external drivers (group size, group composition, ecological factors, physical environments and methodological differences) on daily interaction and association networks and tested whether colonies expressed consistent differences in day-to-day network structure after controlling for these drivers. Overall, we found that external drivers contribute significantly to network structure. However, even after accounting for the contribution of external drivers, there remained significant support for consistent between-group differences in both interaction (repeatability R: up to 0.493) and association (repeatability R: up to 0.736) network structures. Our study demonstrates how group-level differences in social behaviour can be partitioned into different drivers of variation, with consistent contributions from both social and non-social factors.
Collapse
Affiliation(s)
- Mina Ogino
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78464, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz 78467, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8006, Switzerland
| | - Adriana A. Maldonado-Chaparro
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78464, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz 78467, Germany
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogota, Cra 26 # 63B – 48, Colombia
| | - Lucy M. Aplin
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78464, Germany
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Radolfzell 78315, Germany
| | - Damien R. Farine
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz 78464, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz 78467, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8006, Switzerland
| |
Collapse
|
7
|
Lin LY, Horng JL, Cheng CA, Chang CY, Cherng BW, Liu ST, Chou MY. Sublethal ammonia induces alterations of emotions, cognition, and social behaviors in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114058. [PMID: 36108432 DOI: 10.1016/j.ecoenv.2022.114058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/27/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Ammonia pollutants were usually found in aquatic environments is due to urban sewage, industrial wastewater discharge, and agricultural runoff and concentrations as high as 180 mg/L (NH4+) have been reported in rivers. High ammonia levels are known to impair multiple tissue and cell functions and cause fish death. Although ammonia is a potent neurotoxin, how sublethal concentrations of ammonia influence the central nervous system (CNS) and the complex behaviors of fish is still unclear. In the present study, we demonstrated that acute sublethal ammonia exposure can change social behavior of adult zebrafish. The exposure to 90 mg /L of (NH4+) for 4 h induced a strong fear response and lower shoaling cohesion; exposure to 180 mg /L of (NH4+) for 4 h reduced the aggressiveness, and social recognition, while the anxiety, social preference, learning, and short-term memory were not affected. Messenger RNA expressions of glutaminase and glutamate dehydrogenase in the brain were induced, suggesting that ammonia exposure altered glutamate neurotransmitters in the CNS. Our findings in zebrafish provided delicate information of ammonia neurotoxicity in complex higher-order social behaviors, which has not been revealed previously. In conclusion, sublethal and acute ammonia exposure can change specific behaviors of fish, which might lead to reductions in individual and population fitness levels.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Chieh-An Cheng
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chun-Yung Chang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Bor-Wei Cherng
- Department of Life Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Sian-Tai Liu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
8
|
Jahn M, Seebacher F. Variations in cost of transport and their ecological consequences: a review. J Exp Biol 2022; 225:276242. [PMID: 35942859 DOI: 10.1242/jeb.243646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Movement is essential in the ecology of most animals, and it typically consumes a large proportion of individual energy budgets. Environmental conditions modulate the energetic cost of movement (cost of transport, COT), and there are pronounced differences in COT between individuals within species and across species. Differences in morphology affect COT, but the physiological mechanisms underlying variation in COT remain unresolved. Candidates include mitochondrial efficiency and the efficiency of muscle contraction-relaxation dynamics. Animals can offset increased COT behaviourally by adjusting movement rate and habitat selection. Here, we review the theory underlying COT and the impact of environmental changes on COT. Increasing temperatures, in particular, increase COT and its variability between individuals. Thermal acclimation and exercise can affect COT, but this is not consistent across taxa. Anthropogenic pollutants can increase COT, although few chemical pollutants have been investigated. Ecologically, COT may modify the allocation of energy to different fitness-related functions, and thereby influence fitness of individuals, and the dynamics of animal groups and communities. Future research should consider the effects of multiple stressors on COT, including a broader range of pollutants, the underlying mechanisms of COT and experimental quantifications of potential COT-induced allocation trade-offs.
Collapse
Affiliation(s)
- Miki Jahn
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
9
|
Nazar FN, Estevez I. The immune-neuroendocrine system, a key aspect of poultry welfare and resilience. Poult Sci 2022; 101:101919. [PMID: 35704954 PMCID: PMC9201016 DOI: 10.1016/j.psj.2022.101919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/20/2022] Open
Abstract
There is increasing societal concern regarding the negative impact of intensive poultry production on animal welfare, human health, and on the environment. This is leading to the inclusion of animal welfare as an imperative aspect for sustainable production. Certain environmental factors may challenge domesticated birds, resulting in poor health and welfare status. Resilience is the capacity to rapidly return to prechallenge status after coping with environmental stressors, thus resilient individuals have better chances to maintain good health and welfare. Immune-neuroendocrine system, thoroughly characterized in the domestic bird species, is the physiological scaffold for stress coping and health maintenance, influencing resilience and linking animal welfare status to these vital responses. Modern domestic bird lines have undergone specific genetic selective pressures for fast-growing, or high egg-production, leading to a diversity of birds that differ in their coping capacities and resilience. Deepening the knowledge on pro/anti-inflammatory milieus, humoral/cell-mediated immune responses, hormonal regulations, intestinal microbial communities and mediators that define particular immune and neuroendocrine configurations will shed light on coping strategies at the individual and population level. The understanding of the profiles leading to differential coping and resilience potential will be highly relevant for improving bird health and welfare in a wider range of challenging scenarios and, therefore, crucial to scientifically tackle long term sustainability.
Collapse
Affiliation(s)
- F Nicolas Nazar
- NEIKER, Arkaute Agrifood Campus, Departamento de Producción Animal, Vitoria-Gasteiz E-01080, Spain; Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC) and Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - Inma Estevez
- NEIKER, Arkaute Agrifood Campus, Departamento de Producción Animal, Vitoria-Gasteiz E-01080, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
10
|
Brandl HB, Pruessner JC, Farine DR. The social transmission of stress in animal collectives. Proc Biol Sci 2022; 289:20212158. [PMID: 35538776 PMCID: PMC9091854 DOI: 10.1098/rspb.2021.2158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/18/2022] [Indexed: 01/04/2023] Open
Abstract
The stress systems are powerful mediators between the organism's systemic dynamic equilibrium and changes in its environment beyond the level of anticipated fluctuations. Over- or under-activation of the stress systems' responses can impact an animal's health, survival and reproductive success. While physiological stress responses and their influence on behaviour and performance are well understood at the individual level, it remains largely unknown whether-and how-stressed individuals can affect the stress systems of other group members, and consequently their collective behaviour. Stressed individuals could directly signal the presence of a stressor (e.g. via an alarm call or pheromones), or an acute or chronic activation of the stress systems could be perceived by others (as an indirect cue) and spread via social contagion. Such social transmission of stress responses could then amplify the effects of stressors by impacting social interactions, social dynamics and the collective performance of groups. As the neuroendocrine pathways of the stress response are highly conserved among vertebrates, transmission of physiological stress states could be more widespread among non-human animals than previously thought. We therefore suggest that identifying the extent to which stress transmission modulates animal collectives represents an important research avenue.
Collapse
Affiliation(s)
- Hanja B. Brandl
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78457 Konstanz, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Jens C. Pruessner
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
- Department of Psychology, University of Konstanz, 78457 Konstanz, Germany
| | - Damien R. Farine
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78457 Konstanz, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
11
|
Kohn GM, Nugent MR, Dail X. Juvenile Gouldian finches (
Erythrura gouldiae
) form sibling subgroups during social integration. Dev Psychobiol 2022; 64:e22262. [DOI: 10.1002/dev.22262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Gregory M. Kohn
- Department of Psychology University of North Florida Jacksonville Florida USA
- Department of Wildlife Wellness Jacksonville Zoo and Gardens Jacksonville Florida USA
| | - M. Ryan Nugent
- Department of Wildlife Wellness Jacksonville Zoo and Gardens Jacksonville Florida USA
| | - Xzavier Dail
- Department of Wildlife Wellness Jacksonville Zoo and Gardens Jacksonville Florida USA
| |
Collapse
|
12
|
Wu NC, Seebacher F. Physiology can predict animal activity, exploration, and dispersal. Commun Biol 2022; 5:109. [PMID: 35115649 PMCID: PMC8814174 DOI: 10.1038/s42003-022-03055-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/12/2022] [Indexed: 12/29/2022] Open
Abstract
Physiology can underlie movement, including short-term activity, exploration of unfamiliar environments, and larger scale dispersal, and thereby influence species distributions in an environmentally sensitive manner. We conducted meta-analyses of the literature to establish, firstly, whether physiological traits underlie activity, exploration, and dispersal by individuals (88 studies), and secondly whether physiological characteristics differed between range core and edges of distributions (43 studies). We show that locomotor performance and metabolism influenced individual movement with varying levels of confidence. Range edges differed from cores in traits that may be associated with dispersal success, including metabolism, locomotor performance, corticosterone levels, and immunity, and differences increased with increasing time since separation. Physiological effects were particularly pronounced in birds and amphibians, but taxon-specific differences may reflect biased sampling in the literature, which also focussed primarily on North America, Europe, and Australia. Hence, physiology can influence movement, but undersampling and bias currently limits general conclusions.
Collapse
Affiliation(s)
- Nicholas C Wu
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
13
|
Çalışkan E, Şahin MN, Güldağ MA. Oxytocin and Oxytocin Receptor Gene Regulation in Williams Syndrome: A Systematic Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:623-635. [PMID: 34970101 PMCID: PMC8686774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Williams Syndrome (WS) is a rare genetic multisystem disorder that occurs because of a deletion of approximately 25 genes in the 7q11.23 chromosome region. This causes dysmorphic facial appearances, multiple congenital cardiovascular defects, delayed motor skills, and abnormalities in connective tissues and the endocrine system. The patients are mostly diagnosed with mild to moderate mental retardation, however, they have a hyper sociable, socially dis-inhibited, and outgoing personality, empathetic behavior, and are highly talkative. Oxytocin (OT), a neuropeptide synthesized at the hypothalamus, plays an important role in cognition and behavior, and is thought to be affecting WS patients' attitudes at its different amounts. Oxytocin receptor gene (OXTR), on chromosome 3p25.3, is considered regulating oxytocin receptors, via which OT exerts its effect. WS is a crucial disorder to understand gene, hormone, brain, and behavior associations in terms of sociality and neuropsychiatric conditions. Alterations to the WS gene region offer an opportunity to deepen our understandings of autism spectrum disorder, schizophrenia, anxiety, or depression. We aim to systematically present the data available of OT/OXTR regulation and expression, and the evidence for whether these mechanisms are dysregulated in WS. These results are important, as they predict strong epigenetic control over social behavior by methylation, single nucleotide polymorphisms, and other alterations. The comparison and collaboration of these studies may help to establish a better treatment or management approach for patients with WS if backed up with future research.
Collapse
Affiliation(s)
- Elif Çalışkan
- Trakya University School of Medicine, Edirne,
Turkey,To whom all correspondence should be addressed:
Elif Çalışkan, Trakya University School of Medicine, Edirne, Turkey;
| | | | | |
Collapse
|
14
|
Killen SS, Cortese D, Cotgrove L, Jolles JW, Munson A, Ioannou CC. The Potential for Physiological Performance Curves to Shape Environmental Effects on Social Behavior. Front Physiol 2021; 12:754719. [PMID: 34858209 PMCID: PMC8632012 DOI: 10.3389/fphys.2021.754719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023] Open
Abstract
As individual animals are exposed to varying environmental conditions, phenotypic plasticity will occur in a vast array of physiological traits. For example, shifts in factors such as temperature and oxygen availability can affect the energy demand, cardiovascular system, and neuromuscular function of animals that in turn impact individual behavior. Here, we argue that nonlinear changes in the physiological traits and performance of animals across environmental gradients—known as physiological performance curves—may have wide-ranging effects on the behavior of individual social group members and the functioning of animal social groups as a whole. Previous work has demonstrated how variation between individuals can have profound implications for socially living animals, as well as how environmental conditions affect social behavior. However, the importance of variation between individuals in how they respond to changing environmental conditions has so far been largely overlooked in the context of animal social behavior. First, we consider the broad effects that individual variation in performance curves may have on the behavior of socially living animals, including: (1) changes in the rank order of performance capacity among group mates across environments; (2) environment-dependent changes in the amount of among- and within-individual variation, and (3) differences among group members in terms of the environmental optima, the critical environmental limits, and the peak capacity and breadth of performance. We then consider the ecological implications of these effects for a range of socially mediated phenomena, including within-group conflict, within- and among group assortment, collective movement, social foraging, predator-prey interactions and disease and parasite transfer. We end by outlining the type of empirical work required to test the implications for physiological performance curves in social behavior.
Collapse
Affiliation(s)
- Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Daphne Cortese
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Lucy Cotgrove
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Jolle W Jolles
- Center for Ecological Research and Forestry Applications (CREAF), Campus de Bellaterra (UAB), Barcelona, Spain
| | - Amelia Munson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Christos C Ioannou
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
15
|
Shultz S, Britnell JA, Harvey N. Untapped potential of physiology, behaviour and immune markers to predict range dynamics and marginality. Ecol Evol 2021; 11:16446-16461. [PMID: 34938448 PMCID: PMC8668750 DOI: 10.1002/ece3.8331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/09/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Linking environmental conditions to the modulators of individual fitness is necessary to predict long-term population dynamics, viability, and resilience. Functional physiological, behavioral, and reproductive markers can provide this mechanistic insight into how individuals perceive physiological, psychological, chemical, and physical environmental challenges through physiological and behavioral responses that are fitness proxies. We propose a Functional Marginality framework where relative changes in allostatic load, reproductive health, and behavior can be scaled up to evidence and establish causation of macroecological processes such as local extirpation, colonization, population dynamics, and range dynamics. To fully exploit functional traits, we need to move beyond single biomarker studies to develop an integrative approach that models the interactions between extrinsic challenges, physiological, and behavioral pathways and their modulators. In addition to providing mechanistic markers of range dynamics, this approach can also serve as a valuable conservation tool for evaluating individual- and population-level health, predicting responses to future environmental change and measuring the impact of interventions. We highlight specific studies that have used complementary biomarkers to link extrinsic challenges to population performance. These frameworks of integrated biomarkers have untapped potential to identify causes of decline, predict future changes, and mitigate against future biodiversity loss.
Collapse
Affiliation(s)
- Susanne Shultz
- School of Earth and Environmental SciencesUniversity of ManchesterManchesterUK
| | - Jake A. Britnell
- School of Earth and Environmental SciencesUniversity of ManchesterManchesterUK
- Chester ZooUpton‐By‐ChesterUK
| | - Nicholas Harvey
- School of Earth and Environmental SciencesUniversity of ManchesterManchesterUK
- Chester ZooUpton‐By‐ChesterUK
| |
Collapse
|
16
|
Moss JB, While GM. The thermal environment as a moderator of social evolution. Biol Rev Camb Philos Soc 2021; 96:2890-2910. [PMID: 34309173 DOI: 10.1111/brv.12784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022]
Abstract
Animal sociality plays a crucial organisational role in evolution. As a result, understanding the factors that promote the emergence, maintenance, and diversification of animal societies is of great interest to biologists. Climate is among the foremost ecological factors implicated in evolutionary transitions in social organisation, but we are only beginning to unravel the possible mechanisms and specific climatic variables that underlie these associations. Ambient temperature is a key abiotic factor shaping the spatio-temporal distribution of individuals and has a particularly strong influence on behaviour. Whether such effects play a broader role in social evolution remains to be seen. In this review, we develop a conceptual framework for understanding how thermal effects integrate into pathways that mediate the opportunities, nature, and context of social interactions. We then implement this framework to discuss the capacity for temperature to initiate organisational changes across three broad categories of social evolution: group formation, group maintenance, and group elaboration. For each category, we focus on pivotal traits likely to have underpinned key social transitions and explore the potential for temperature to affect changes in these traits by leveraging empirical examples from the literature on thermal and behavioural ecology. Finally, we discuss research directions that should be prioritised to understand the potentially constructive and/or destructive effects of future warming on the origins, maintenance, and diversification of animal societies.
Collapse
Affiliation(s)
- Jeanette B Moss
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS, 7005, Australia
| | - Geoffrey M While
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS, 7005, Australia
| |
Collapse
|
17
|
Miln C, Ward AJW, Seebacher F. Social rank and not physiological capacity determines competitive success in zebrafish ( Danio rerio). ROYAL SOCIETY OPEN SCIENCE 2021; 8:210146. [PMID: 33868699 PMCID: PMC8025299 DOI: 10.1098/rsos.210146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Competition for resources shapes ecological and evolutionary relationships. Physiological capacities such as in locomotor performance can influence the fitness of individuals by increasing competitive success. Social hierarchy too can affect outcomes of competition by altering locomotor behaviour or because higher ranking individuals monopolize resources. Here, we tested the hypotheses that competitive success is determined by sprint performance or by social status. We show that sprint performance of individuals measured during escape responses (fast start) or in an accelerated sprint test did not correlate with realized sprint speed while competing for food within a social group of five fish; fast start and accelerated sprint speed were higher than realized speed. Social status within the group was the best predictor of competitive success, followed by realized speed. Social hierarchies in zebrafish are established within 7 days of their first encounter, and interestingly, there was a positive correlation between social status and realized speed 1 and 4 days after fish were placed in a group, but not after 7 days. These data indicate that physiological performance decreases in importance as social relationships are established. Also, maximal physiological capacities were not important for competitive success, but swimming speed changed with social context.
Collapse
Affiliation(s)
- Clare Miln
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia
| | - Ashley J. W. Ward
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Hansen M, Burns A, Monk C, Schutz C, Lizier J, Ramnarine I, Ward A, Krause J. The effect of predation risk on group behaviour and information flow during repeated collective decisions. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Guzmán DA, Kembro JM, Marin RH. Japanese quail classified by their permanence in proximity to a high or low density of conspecifics: a search for underpinning variables. Poult Sci 2021; 100:100950. [PMID: 33518317 PMCID: PMC7936189 DOI: 10.1016/j.psj.2020.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/25/2020] [Accepted: 12/16/2020] [Indexed: 12/01/2022] Open
Abstract
Test of sociality in poultry is mainly based on the bird's individual ability to make quick social discriminations. In recent years, a density-related permanence (DRP) test has been developed that enables us to classify young birds (while in groups) according to their individual permanence in proximity to either a high or low density of conspecifics (HD or LD, respectively). Thus, the result of the classification depends not only on the bird's individual response but also on the outcome of the social interactions within the whole group. The birds' performance in DRP was associated with underlying differences in social responses of their individuals. Quails in homogeneous groups of LD residents responded with less compact groups and higher levels of agonistic interactions to the presence of an intruder and showed higher levels of agonistic interactions among cage-mates than the homogeneous groups of HD birds. An acute stressor also induced a higher corticosterone response in the LD birds than in their HD counterparts. The present study addressed the question of whether contrasting DRP performance by Japanese quail can also reflect underlying differences in fearfulness and social reinstatement responses. Thus, LD and HD categorized juvenile birds underwent one of the following tests: tonic immobility (TI), open-field (OF), or a one-way runway. Results showed that HD birds required more inductions and developed shorter responses (P ≤ 0.05) in the TI test and walked more, faster, and greater distances in the OF (P ≤ 0.05) than their LD counterparts. No differences between groups were found in short social reinstatement responses. The present findings suggest that underlying fearfulness is lower in the HD than in the LD birds. A reduced fearfulness could be regarded as an additional favorable trait of the HD-classified quail to cope with environmental challenging situations.
Collapse
Affiliation(s)
- D A Guzmán
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC), Córdoba, Argentina.
| | - J M Kembro
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC), Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Química Biológica, Córdoba, Argentina
| | - R H Marin
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC), Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Química Biológica, Córdoba, Argentina
| |
Collapse
|
20
|
Vágási CI, Fülöp A, Osváth G, Pap PL, Pénzes J, Benkő Z, Lendvai ÁZ, Barta Z. Social groups with diverse personalities mitigate physiological stress in a songbird. Proc Biol Sci 2021; 288:20203092. [PMID: 33499787 PMCID: PMC7893263 DOI: 10.1098/rspb.2020.3092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022] Open
Abstract
Social groups often consist of diverse phenotypes, including personality types, and this diversity is known to affect the functioning of the group as a whole. Social selection theory proposes that group composition (i.e. social environment) also influences the performance of individual group members. However, the effect of group behavioural composition on group members remains largely unexplored, and it is still contentious whether individuals benefit more in a social environment with homogeneous or diverse behavioural composition. We experimentally formed groups of house sparrows Passer domesticus with high and low diversity of personality (exploratory behaviour), and found that their physiological state (body condition, physiological stress and oxidative damage) improved with increasing group-level diversity of personality. These findings demonstrate that group personality composition affects the condition of group members and individuals benefit from social heterosis (i.e. associating with a diverse set of behavioural types). This aspect of the social life can play a key role in affiliation rules of social animals and might explain the evolutionary coexistence of different personalities in nature.
Collapse
Affiliation(s)
- Csongor I. Vágási
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| | - Attila Fülöp
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
- Juhász-Nagy Pál Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Gergely Osváth
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Cluj-Napoca, Romania
- Museum of Zoology, Babeș-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| | - Péter L. Pap
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Cluj-Napoca, Romania
- Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| | - Janka Pénzes
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Zoltán Benkő
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Cluj-Napoca, Romania
- Romanian Ornithological Society/BirdLife Romania, Cluj-Napoca, Romania
| | - Ádám Z. Lendvai
- Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| | - Zoltán Barta
- MTA-DE Behavioural Ecology Research Group, Department of Evolutionary Zoology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
21
|
Cantor M, Maldonado‐Chaparro AA, Beck KB, Brandl HB, Carter GG, He P, Hillemann F, Klarevas‐Irby JA, Ogino M, Papageorgiou D, Prox L, Farine DR. The importance of individual‐to‐society feedbacks in animal ecology and evolution. J Anim Ecol 2020; 90:27-44. [DOI: 10.1111/1365-2656.13336] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Maurício Cantor
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
- Departamento de Ecologia e Zoologia Universidade Federal de Santa Catarina Florianópolis Brazil
- Centro de Estudos do Mar Universidade Federal do Paraná Pontal do Paraná Brazil
| | - Adriana A. Maldonado‐Chaparro
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Kristina B. Beck
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology Seewiesen Germany
| | - Hanja B. Brandl
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Gerald G. Carter
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Evolution, Ecology and Organismal Biology The Ohio State University Columbus OH USA
| | - Peng He
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Friederike Hillemann
- Edward Grey Institute of Field Ornithology Department of Zoology University of Oxford Oxford UK
| | - James A. Klarevas‐Irby
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
- Department of Migration Max Planck Institute of Animal Behavior Konstanz Germany
| | - Mina Ogino
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Danai Papageorgiou
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Lea Prox
- Department of Biology University of Konstanz Konstanz Germany
- Department of Sociobiology/Anthropology Johann‐Friedrich‐Blumenbach Institute of Zoology & Anthropology University of Göttingen Göttingen Germany
- Behavioral Ecology & Sociobiology Unit German Primate Center Göttingen Germany
| | - Damien R. Farine
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| |
Collapse
|
22
|
Cousillas H, Henry L, George I, Marchesseau S, Hausberger M. Lateralization of social signal brain processing correlates with the degree of social integration in a songbird. Sci Rep 2020; 10:14093. [PMID: 32839465 PMCID: PMC7445294 DOI: 10.1038/s41598-020-70946-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/03/2020] [Indexed: 02/04/2023] Open
Abstract
Group cohesion relies on the ability of its members to process social signals. Songbirds provide a unique model to investigate links between group functioning and brain processing of social acoustic signals. In the present study, we performed both behavioral observations of social relationships within a group of starlings and individual electrophysiological recordings of HVC neuronal activity during the broadcast of either familiar or unfamiliar individual songs. This allowed us to evaluate and compare preferred partnerships and individual electrophysiological profiles. The electrophysiological results revealed asymmetric neuronal activity in the HVC and higher responsiveness to familiar than to unfamiliar songs. However, most importantly, we found a correlation between strength of cerebral asymmetry and social integration in the group: the more preferred partners a bird had, the more its HVC neuronal activity was lateralized. Laterality is likely to give advantages in terms of survival. Our results suggest that these include social skill advantages. Better knowledge of links between social integration and lateralization of social signal processing should help understand why and how lateralization has evolved.
Collapse
Affiliation(s)
- Hugo Cousillas
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, 35000, Rennes, France.
| | - Laurence Henry
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, 35000, Rennes, France
| | - Isabelle George
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, 35000, Rennes, France
| | - Schedir Marchesseau
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, 35000, Rennes, France
| | - Martine Hausberger
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, 35000, Rennes, France
| |
Collapse
|
23
|
Picard M, Sandi C. The social nature of mitochondria: Implications for human health. Neurosci Biobehav Rev 2020; 120:595-610. [PMID: 32651001 DOI: 10.1016/j.neubiorev.2020.04.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022]
Abstract
Sociality has profound evolutionary roots and is observed from unicellular organisms to multicellular animals. In line with the view that social principles apply across levels of biological complexity, a growing body of data highlights the remarkable social nature of mitochondria - life-sustaining endosymbiotic organelles with their own genome that populate the cell cytoplasm. Here, we draw from organizing principles of behavior in social organisms to reveal that similar to individuals among social networks, mitochondria communicate with each other and with the cell nucleus, exhibit group formation and interdependence, synchronize their behaviors, and functionally specialize to accomplish specific functions within the organism. Mitochondria are social organelles. The extension of social principles across levels of biological complexity is a theoretical shift that emphasizes the role of communication and interdependence in cell biology, physiology, and neuroscience. With the help of emerging computational methods capable of capturing complex dynamic behavioral patterns, the implementation of social concepts in mitochondrial biology may facilitate cross-talk across disciplines towards increasingly holistic and accurate models of human health.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland
| |
Collapse
|
24
|
Kasozi H, Montgomery RA. Variability in the estimation of ungulate group sizes complicates ecological inference. Ecol Evol 2020; 10:6881-6889. [PMID: 32760498 PMCID: PMC7391342 DOI: 10.1002/ece3.6463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/14/2023] Open
Abstract
Foundational work has examined adaptive social behavior in animals in relation to the costs and benefits of group living. Within this context, a "group" of animals represents an organizational unit that is integral to the study of animal ecology and evolution.Definitions of animal group sizes are often subjective with considerable variability within and across species. However, investigations of both the extent and implications of such variability in the estimation of animal group sizes are currently lacking.Selecting ungulates as a case study, we conducted a literature review to assess prevailing practices used to determine group sizes among terrestrial Cetartiodactyla and Perissodactyla. Via this process, we examined group size definitions for 61 species across 171 peer-reviewed studies published between 1962 and 2018.These studies quantified group sizes via estimation of ungulate aggregations in space and time. Spatial estimates included a nearest neighbor distance ranging from 1.4 m to 1,000 m, and this variation was partially explained by a weak positive correlation (|r| = .4, p < .003) with the body size of the ungulate research subjects. The temporal extent over which group size was estimated was even broader, ranging from three minutes to 24 hr.The considerable variability in ungulate group size estimation that we observed complicates efforts to not only compare and replicate studies but also to evaluate underlying theories of group living. We recommend that researchers: (a) clearly describe the spatiotemporal extents over which they define ungulate group sizes, (b) highlight foundational empirical and ecological rationale for these extents, and (c) seek to align such extents among individual species so as to facilitate cross-system comparisons of ungulate group size dynamics. We believe an integrative approach to ungulate group size estimation would readily facilitate replication, comparability, and evaluation of competing hypotheses examining the tradeoffs of animal sociality.
Collapse
Affiliation(s)
- Herbert Kasozi
- Research on the Ecology of Carnivores and their Prey (RECaP) LaboratoryDepartment of Fisheries and WildlifeMichigan State UniversityEast LansingMIUSA.
| | - Robert A. Montgomery
- Research on the Ecology of Carnivores and their Prey (RECaP) LaboratoryDepartment of Fisheries and WildlifeMichigan State UniversityEast LansingMIUSA.
| |
Collapse
|
25
|
Jolles JW, King AJ, Killen SS. The Role of Individual Heterogeneity in Collective Animal Behaviour. Trends Ecol Evol 2020; 35:278-291. [DOI: 10.1016/j.tree.2019.11.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023]
|
26
|
Díaz-Hung ML, Martínez G, Hetz C. Emerging roles of the unfolded protein response (UPR) in the nervous system: A link with adaptive behavior to environmental stress? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 350:29-61. [PMID: 32138903 DOI: 10.1016/bs.ircmb.2020.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stressors elicit a neuroendocrine response leading to increased levels of glucocorticoids, allowing the organism to adapt to environmental changes and maintain homeostasis. Glucocorticoids have a broad effect in the body, modifying the activity of the immune system, metabolism, and behavior through the activation of receptors in the limbic system. Chronic exposition to stressors operates as a risk factor for psychiatric diseases such as depression and posttraumatic stress disorder. Among the cellular alterations observed as a consequence of environmental stress, alterations to organelle function at the level of mitochondria and endoplasmic reticulum (ER) are emerging as possible factors contributing to neuronal dysfunction. ER proteostasis alterations elicit the unfolded protein response (UPR), a conserved signaling network that re-establish protein homeostasis. In addition, in the context of brain function, the UPR has been associated to neurodevelopment, synaptic plasticity and neuronal connectivity. Recent studies suggest a role of the UPR in the adaptive behavior to stress, suggesting a mechanistic link between environmental and cellular stress. Here, we revise recent evidence supporting an evolutionary connection between the neuroendocrine system and the UPR to modulate behavioral adaptive responses.
Collapse
Affiliation(s)
- Mei-Li Díaz-Hung
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Gabriela Martínez
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, United States.
| |
Collapse
|
27
|
Risk-taking and locomotion in foraging threespine sticklebacks (Gasterosteus aculeatus): the effect of nutritional stress is dependent on social context. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-019-2795-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Ellis G. Top-down effects in the brain. Phys Life Rev 2019; 31:11-27. [DOI: 10.1016/j.plrev.2018.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/05/2018] [Accepted: 05/14/2018] [Indexed: 11/30/2022]
|
29
|
The role of social network behavior, swimming performance, and fish size in the determination of angling vulnerability in bluegill. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2754-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Seebacher F, Krause J. Epigenetics of Social Behaviour. Trends Ecol Evol 2019; 34:818-830. [DOI: 10.1016/j.tree.2019.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 12/27/2022]
|
31
|
Zachar G, Tóth AS, Gerecsei LI, Zsebők S, Ádám Á, Csillag A. Valproate Exposure in ovo Attenuates the Acquisition of Social Preferences of Young Post-hatch Domestic Chicks. Front Physiol 2019; 10:881. [PMID: 31379596 PMCID: PMC6646517 DOI: 10.3389/fphys.2019.00881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/24/2019] [Indexed: 12/28/2022] Open
Abstract
Embryonic exposure to valproic acid (VPA) is known to produce sociability deficits, resembling human autistic phenotypes, in several vertebrate species. Animals living in groups prefer the proximity of peers and have the ability to perceive and to respond to social signals for modifying behavior. Chicks of Galliform birds, known to display early preference behaviors, have been used extensively for adaptive learning studies. Young precocial birds seem to be useful models also for studying the effect of embryonic VPA treatment. Here, domestic chicken eggs were injected with sodium valproate (200 μl of 35 μmol/L solution) or with vehicle (distilled water) on the 14th day of incubation. After hatching, the chicks were tested for one-trial passive avoidance learning at day 1, vocalization due to isolation as a measure of stress level (day 2), approach preference to large versus small groups of age-matched conspecifics (day 5), and to those with normal versus blurred head features (day 7). In addition, we tested the preference of birds to conspecifics reared in group versus those reared in isolation (day 9), as well as the preference of chicks to familiar versus non-familiar conspecifics (day 21). Our findings confirm previous reports concerning an adverse effect of VPA on embryonic development, including a tendency for aborted or delayed hatching and, occasionally, for locomotor disorders in a small percentage of birds (eliminated from later studies). Otherwise, VPA treatment did not impair motor activity or distress level. Memory formation for the aversive stimulus and discrimination of colors were not impaired by VPA treatment either. Innate social predispositions manifested in approach preferences for the larger target group or for the birds with natural facial features remained unaffected by VPA exposure. The most prominent finding was attenuation of social exploration in VPA-exposed birds (expressed as the frequency of positional switches between two stimulus chicks after the first choice), followed by a deficit in the recognition of familiar conspecifics, unfolding at the end of the third week. Social exploration and recognition of familiar individuals are the key elements impaired at this stage. The results underline the importance of early social exploration in ASD.
Collapse
Affiliation(s)
- Gergely Zachar
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - András S Tóth
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - László I Gerecsei
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Sándor Zsebők
- Department of Systematic Zoology and Ecology, Institute of Biology, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| | - Ágota Ádám
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - András Csillag
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
32
|
Cattano C, Fine M, Quattrocchi F, Holzman R, Milazzo M. Behavioural responses of fish groups exposed to a predatory threat under elevated CO 2. MARINE ENVIRONMENTAL RESEARCH 2019; 147:179-184. [PMID: 31060864 DOI: 10.1016/j.marenvres.2019.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Most of the studies dealing with the effects of ocean acidification (OA) on fish behaviour tested individuals in isolation, even when the examined species live in shoals in the wild. Here we evaluated the effects of elevated CO2 concentrations (i.e. ∼900 μatm) on the shelter use and group cohesion of the gregarious damselfish Chromis viridis using groups of sub-adults exposed to a predatory threat. Results showed that, under predatory threat, fish reared at elevated CO2 concentrations displayed a risky behaviour (i.e. decreased shelter use), whereas their group cohesion was unaffected. Our findings add on increasing evidence to account for social dynamics in OA experiments, as living in groups may compensate for CO2-induced risky behaviour.
Collapse
Affiliation(s)
- C Cattano
- Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università di Palermo, Via Archirafi 20, I-90123, Palermo, Italy; CoNISMa, Piazzale Flaminio 9, 00197, Roma. Italy.
| | - M Fine
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel; The Interuniversity Institute for Marine Sciences, Eilat, 88103, Israel
| | - F Quattrocchi
- Institute for marine biological resources and biotechnologies, Via Vaccara, 61, 91026, Mazara del Vallo, TP, Italy
| | - R Holzman
- The Interuniversity Institute for Marine Sciences, Eilat, 88103, Israel; Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - M Milazzo
- Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università di Palermo, Via Archirafi 20, I-90123, Palermo, Italy; CoNISMa, Piazzale Flaminio 9, 00197, Roma. Italy
| |
Collapse
|
33
|
Jahn M, Seebacher F. Cost of transport is a repeatable trait but is not determined by mitochondrial efficiency in zebrafish ( Danio rerio). ACTA ACUST UNITED AC 2019; 222:jeb.201400. [PMID: 30962281 DOI: 10.1242/jeb.201400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/02/2019] [Indexed: 01/05/2023]
Abstract
The energy used to move a given distance (cost of transport; CoT) varies significantly between individuals of the same species. A lower CoT allows animals to allocate more of their energy budget to growth and reproduction. A higher CoT may cause animals to adjust their movement across different environmental gradients to reduce energy allocated to movement. The aim of this project was to determine whether CoT is a repeatable trait within individuals, and to determine its physiological causes and ecological consequences. We found that CoT is a repeatable trait in zebrafish (Danio rerio). We rejected the hypothesis that mitochondrial efficiency (P/O ratios) predicted CoT. We also rejected the hypothesis that CoT is modulated by temperature acclimation, exercise training or their interaction, although CoT increased with increasing acute test temperature. There was a weak but significant negative correlation between CoT and dispersal, measured as the number of exploration decisions made by fish, and the distance travelled against the current in an artificial stream. However, CoT was not correlated with the voluntary speed of fish moving against the current. The implication of these results is that CoT reflects a fixed physiological phenotype of an individual, which is not plastic in response to persistent environmental changes. Consequently, individuals may have fundamentally different energy budgets as they move across environments, and may adjust movement patterns as a result of allocation trade-offs. It was surprising that mitochondrial efficiency did not explain differences in CoT, and our working hypothesis is that the energetics of muscle contraction and relaxation may determine CoT. The increase in CoT with increasing acute environmental temperature means that warming environments will increase the proportion of the energy budget allocated to locomotion unless individuals adjust their movement patterns.
Collapse
Affiliation(s)
- Miki Jahn
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
34
|
Trillmich F, Müller T, Müller C. Understanding the evolution of personality requires the study of mechanisms behind the development and life history of personality traits. Biol Lett 2018; 14:rsbl.2017.0740. [PMID: 29491028 DOI: 10.1098/rsbl.2017.0740] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/09/2018] [Indexed: 12/26/2022] Open
Abstract
Research on animal personality explains the coexistence of distinct behavioural phenotypes within a species and demonstrates limits to individual plasticity. However, the mechanisms guiding the lifelong development of personality should receive more attention, because many elements of personality are emergent properties of interactions between the environment and an individual's genetic background. In these interactions, mechanisms (e.g. genetic regulatory networks, epigenetic processes and neuroendocrine regulation) influencing personality may be modified. An approach integrating proximate mechanisms with a view of lifelong personality development will crucially improve understanding stability, plasticity and inter-individual variability of personalities and clarify the effects of selection on the phenomenon.
Collapse
Affiliation(s)
- Fritz Trillmich
- Department of Behavioural Biology, Bielefeld University, Bielefeld, Germany
| | - Thorben Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
35
|
Mezebish TD, Blackman A, Novarro AJ. Salamander climbing behavior varies among species and is correlated with community composition. Behav Ecol 2018. [DOI: 10.1093/beheco/ary022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Tori D Mezebish
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - August Blackman
- Department of Biology, Oberlin College, Science Center, Oberlin, OH, USA
| | | |
Collapse
|
36
|
Krause J, Seebacher F. Collective Behaviour: Physiology Determines Position. Curr Biol 2018; 28:R351-R354. [PMID: 29689209 DOI: 10.1016/j.cub.2018.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
An animal's position within a group affects feeding - front positions generally offer richer pickings. However, a new study shows that position can be influenced by feeding because big meals reduce scope for locomotion.
Collapse
Affiliation(s)
- Jens Krause
- Humboldt University, Faculty of Life Sciences, 10115 Berlin, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia
| |
Collapse
|