1
|
Dewulf M, Pascottini OB, Heirbaut S, Meesters M, Martens DS, Nawrot TS, Zhang M, Jing XP, Vandaele L, Fievez V, Van Eetvelde M, Opsomer G. Shortening of the telomere length during the transition period of dairy cows in relation to biological stress. Sci Rep 2024; 14:31756. [PMID: 39738483 DOI: 10.1038/s41598-024-82664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/08/2024] [Indexed: 01/02/2025] Open
Abstract
Telomere length (TL) is a recognized biomarker for ageing in multiple species. In dairy cattle, the transition period is considered a very stressful period. We hypothesized that TL shortens during this period. Holstein cows (n = 61) were followed during the transition period. Blood and milk samples were collected at - 7, 3, 6, 9, 21d relative to calving to determine concentrations of oxidative, energetic metabolic, and inflammatory markers. Average relative leukocyte TL was measured by a modified qPCR protocol 7d before and 21d after parturition. We confirmed TL attrition during the transition period (P = 0.02), as TL was 1.05 ± 0.229 (mean ± SD) before, and 0.97 ± 0.191 (mean ± SD) after parturition. Univariable analyses assessed associations between blood markers and TL shortening. Greater plasma oxidative parameters, including oxidized glutathione and glutathione peroxidase, were positively and negatively (respectively) associated with TL attrition. Higher blood α- and β-globulin were all positively associated, while IGF-1, albumin-globulin ratio and albumin were negatively associated with TL attrition. Greater serum amyloid A and haptoglobin were linked with greater TL shortening. This study reveals significant TL shortening during the transition period in dairy cows and identifies significant associations with oxidative stress, metabolic stress, and inflammation. While these associations are observed, no causality can be established. Our findings suggest the need for further research to explore the effects of transition-related stress on TL dynamics.
Collapse
Affiliation(s)
- Manon Dewulf
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stijn Heirbaut
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioengineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Maya Meesters
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Gebouw D, 3590, Diepenbeek, Belgium
- Research Unit Environment and Health, Department of Public Health & Primary Care, Leuven University, Leuven, Belgium
| | - Mingqi Zhang
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioengineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - X P Jing
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioengineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
- Research Center for the Belt and Road, Lanzhou University, Lanzhou, 730000, China
| | | | - Veerle Fievez
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioengineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
| | - Mieke Van Eetvelde
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
2
|
Tang M, Chang X, Zheng H, Zeng F, Zhang G, He M, Fang Q, Yin S. Association of dietary inflammatory index and systemic inflammatory markers with mortality risk in depressed adults: a mediation analysis of NHANES data. Front Nutr 2024; 11:1472616. [PMID: 39723161 PMCID: PMC11669309 DOI: 10.3389/fnut.2024.1472616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background Previous research has linked systemic inflammatory markers and the Dietary Inflammatory Index (DII) with depression. However, the relationship between DII and these markers, and their impact on mortality risk among depressed adults, remains underexplored. This study aims to explore the association between DII and systemic inflammatory markers and their mediating effect on mortality risk in adults with depression. Methods This study analyzed data from 4,981 adults with depression in the National Health and Nutrition Examination Survey (NHANES). This study quantified dietary inflammatory potential with the DII and systemic inflammation with the Systemic Immune-Inflammation Index (SII) and Systemic Inflammation Response Index (SIRI). Cox proportional hazards regression and inverse probability weighting evaluated the impact of DII, SII, and SIRI on mortality risk in depressed adults, as well as their mediating effects. Multiple linear regression analyzed the associations between DII and SII/SIRI. Restricted cubic spline analysis explored the non-linear relationship between DII and mortality risk. Results In adjusted regression models, DII, SII, and SIRI were significantly associated with all-cause mortality risk in depressed adults, with hazard ratios (HRs) (95% CIs) from 1.333 to 1.497 (1.051-1.233, 1.689-1.832). DII was linearly related to SII, with βs (95% CIs) from 0.001 to 0.121 (0.001-0.017, 0.001-0.224). SII significantly mediated the DII-mortality risk link, especially in males (8.07%). The DII-mortality relationship was linear (P non-linear = 0.174), with a beneficial threshold at 1.62. Conclusion DII and SII are associated with increased all-cause mortality risk in depressed adults. The DII-related mortality risk in depression can be partially mediated by SII, with a more pronounced effect in males.
Collapse
Affiliation(s)
- Ming Tang
- Department of Interventional Vascular Medicine, Hefei Hospital Affiliated to Anhui Medical University, The Second People’s Hospital of Hefei, Hefei, Anhui, China
- The Fifth Clinical College of Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xindong Chang
- Department of Interventional Vascular Medicine, Hefei Hospital Affiliated to Anhui Medical University, The Second People’s Hospital of Hefei, Hefei, Anhui, China
| | - Haiyan Zheng
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fanyi Zeng
- Department of Interventional Vascular Medicine, Hefei Hospital Affiliated to Anhui Medical University, The Second People’s Hospital of Hefei, Hefei, Anhui, China
| | - Guangdong Zhang
- Department of Interventional Vascular Medicine, Hefei Hospital Affiliated to Anhui Medical University, The Second People’s Hospital of Hefei, Hefei, Anhui, China
| | - Mingfei He
- Department of Interventional Vascular Medicine, Hefei Hospital Affiliated to Anhui Medical University, The Second People’s Hospital of Hefei, Hefei, Anhui, China
| | - Qingqing Fang
- Department of Interventional Vascular Medicine, Hefei Hospital Affiliated to Anhui Medical University, The Second People’s Hospital of Hefei, Hefei, Anhui, China
| | - Shiwu Yin
- Department of Interventional Vascular Medicine, Hefei Hospital Affiliated to Anhui Medical University, The Second People’s Hospital of Hefei, Hefei, Anhui, China
- The Fifth Clinical College of Medicine, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Denham J, Bliss ES, Bryan TM, O'Brien BJ, Mills D. Exercise to combat cancer: focusing on the ends. Physiol Genomics 2024; 56:869-875. [PMID: 39374082 DOI: 10.1152/physiolgenomics.00075.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Cancer remains a leading cause of death worldwide and although prognosis and survivorship after therapy have improved significantly, current cancer treatments have long-term health consequences. For decades telomerase-mediated telomere maintenance has been an attractive anti-cancer therapeutic target due to its abundance and role in telomere maintenance, pathogenesis, and growth in neoplasms. Telomere maintenance-specific cancer therapies, however, are marred by off-target side effects that must be addressed before they reach clinical practice. Regular exercise training is associated with telomerase-mediated telomere maintenance in normal cells, which is associated with healthy aging. A single bout of endurance exercise training dynamically, but temporarily, increases TERT mRNA and telomerase activity, as well as several molecules that control genomic stability and telomere length (i.e., shelterin and TERRA). Considering the epidemiological findings and accumulating research highlighting that exercise significantly reduces the risk of many types of cancers and the anti-carcinogenic effects of exercise on tumor growth in vitro, investigating the governing molecular mechanisms of telomerase control in context with exercise and cancer may provide important new insights to explain these findings. Specifically, the molecular mechanisms controlling telomerase in both healthy cells and tumors after exercise could reveal novel therapeutic targets for tumor-specific telomere maintenance and offer important evidence that may refine current physical activity and exercise guidelines for all stages of cancer care.
Collapse
Affiliation(s)
- Joshua Denham
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, Toowoomba, Queensland, Australia
| | - Edward S Bliss
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, Toowoomba, Queensland, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Brendan J O'Brien
- Institute of Health and Wellbeing, Federation University Australia, Ballarat, Victoria, Australia
| | - Dean Mills
- School of Health and Medical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
- Centre for Health Research, Toowoomba, Queensland, Australia
| |
Collapse
|
4
|
Lyu Y, Zhao H, Zeng G, Yang J, Shao Q, Wu H. Mapping the evolving trend of research on leukocyte telomere length: a text-mining study. Hum Genomics 2024; 18:117. [PMID: 39468654 PMCID: PMC11520877 DOI: 10.1186/s40246-024-00687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Substantial evidence indicates that measuring leukocyte telomere length (LTL) is a useful tool that may be considered as a valuable biomarker of individual biological age, correlating with numerous chronic disorders. However, to date, there has been a lack of in-depth understanding regarding the current landscape and forthcoming developments in the LTL field. Therefore, this study aimed to utilize bibliometric methods to summarize the knowledge structure, current focus, and emerging directions in this field. METHOD Scientific publications on LTL spanning the period from 2000 to 2022 were acquired from the Web of Science Core Collection database. Several bibliometric tools including CiteSpace, VOSviewer, and an online website were utilized for bibliometric analysis. The primary evaluations encompassed investigating the major contributors and their collaborative relationships among countries/regions, institutions, and authors, conducting co-citation analyses of authors, journals, as well as reference, examining reference bursts, as well as performing co-occurrence analyses of keywords. RESULTS There are 1818 papers with 66,668 citations identified. Both the annual publication and citation counts on LTL exhibited significant upward trends. The United States emerged as the most prominent contributor, as evidenced by the greatest volume of papers and the highest H-index value. University of California San Francisco and Aviv A were identified as the most productive institution and author in this domain, respectively. Reference analysis revealed that longitudinal study and mendelian randomization study are the most concerned research method in this field recently. Keywords analysis showed that the most concerned diseases in LTL fields were aging, inflammation, cardiovascular diseases, endocrine diseases, neurological and psychiatric diseases, and cancers. In addition, the following research directions such as "COPD", "mendelian randomization", "adiposity", "colorectal cancer", "National Health and Nutrition Examination Survey (NHNES)", "telomerase reverse transcriptase", "pregnancy" have garnered increasing attention in recent times and hold the potential to evolve into research foci in the foreseeable future. CONCLUSION This is the first bibliometric study that provides comprehensive overview of LTL research. The findings of this study could become valuable references for investigators to explore and address the current and emerging challenges in LTL research.
Collapse
Affiliation(s)
- Yuanjun Lyu
- Department of Geriatric Respiratory and Sleep, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Hongjie Zhao
- Department of Oncology, Tianjin Medical University Baodi Hospital, Tianjin, China
| | - Guiping Zeng
- Department of Orthopaedic Surgery, Yangxin People's Hospital, Yangxin, 435200, Hubei, China
| | - Jia Yang
- Department of Orthopaedics, Jincheng General Hospital, Jincheng, 048006, Shanxi Province, China
| | - Qipeng Shao
- Department of Orthopaedics, Ganzhou People's Hospital, Ganzhou, China.
| | - Haiyang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Choudhary P, Ronkainen J, Carson J, Karhunen V, Lin A, Melton PE, Jarvelin MR, Miettunen J, Huang RC, Sebert S. Developmental origins of psycho-cardiometabolic multimorbidity in adolescence and their underlying pathways through methylation markers: a two-cohort study. Eur Child Adolesc Psychiatry 2024; 33:3157-3167. [PMID: 38366065 PMCID: PMC11424745 DOI: 10.1007/s00787-024-02390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Understanding the biological mechanisms behind multimorbidity patterns in adolescence is important as they may act as intermediary risk factor for long-term health. We aimed to explore relationship between prenatal exposures and adolescent's psycho-cardiometabolic intermediary traits mediated through epigenetic biomarkers, using structural equation modeling (SEM). We used data from mother-child dyads from pregnancy and adolescents at 16-17 years from two prospective cohorts: Northern Finland Birth Cohort 1986 (NFBC1986) and Raine Study from Australia. Factor analysis was applied to generate two different latent factor structures: (a) prenatal exposures and (b) adolescence psycho-cardiometabolic intermediary traits. Furthermore, three types of epigenetic biomarkers were included: (1) DNA methylation score for maternal smoking during pregnancy (DNAmMSS), (2) DNAm age estimate PhenoAge and (3) DNAm estimate for telomere length (DNAmTL). Similar factor structure was observed between both cohorts yielding three prenatal factors, namely BMI (Body Mass Index), SOP (Socio-Obstetric-Profile), and Lifestyle, and four adolescent factors: Anthropometric, Insulin-Triglycerides, Blood Pressure, and Mental health. In the SEM pathways, stronger direct effects of F1prenatal-BMI (NFBC1986 = β: 0.27; Raine = β: 0.39) and F2prenatal-SOP (β: -0.11) factors were observed on adolescent psycho-cardiometabolic multimorbidity. We observed an indirect effect of prenatal latent factors through epigenetic markers on a psycho-cardiometabolic multimorbidity factor in Raine study (P < 0.05). The present study exemplifies an evidence-based approach in two different birth cohorts to demonstrate similar composite structure of prenatal exposures and psycho-cardiometabolic traits (despite cultural, social, and genetic differences) and a common plausible pathway between them through underlying epigenetic markers.
Collapse
Affiliation(s)
- Priyanka Choudhary
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland.
| | - Justiina Ronkainen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Jennie Carson
- Telethon Kids Institute, Perth, Australia
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Ville Karhunen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Research Unit of Mathematical Sciences, Faculty of Science, University of Oulu, Oulu, Finland
| | - Ashleigh Lin
- Telethon Kids Institute, Perth, Australia
- UWA Centre for Child Health Research, University of Western Australia, Perth, Australia
| | - Phillip E Melton
- School of Population and Global Health, University of Western Australia, Perth, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, Middlesex, UK
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jouko Miettunen
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Rae-Chi Huang
- Telethon Kids Institute, Perth, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
- Nutrition and Health Innovation Research Institute (NHIRI), School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Sylvain Sebert
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
6
|
Meeks GL, Scelza B, Asnake HM, Prall S, Patin E, Froment A, Fagny M, Quintana-Murci L, Henn BM, Gopalan S. Common DNA sequence variation influences epigenetic aging in African populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.608843. [PMID: 39253488 PMCID: PMC11383046 DOI: 10.1101/2024.08.26.608843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Aging is associated with genome-wide changes in DNA methylation in humans, facilitating the development of epigenetic age prediction models. However, most of these models have been trained primarily on European-ancestry individuals, and none account for the impact of methylation quantitative trait loci (meQTL). To address these gaps, we analyzed the relationships between age, genotype, and CpG methylation in 3 understudied populations: central African Baka (n = 35), southern African ‡Khomani San (n = 52), and southern African Himba (n = 51). We find that published prediction methods yield higher mean errors in these cohorts compared to European-ancestry individuals, and find that unaccounted-for DNA sequence variation may be a significant factor underlying this loss of accuracy. We leverage information about the associations between DNA genotype and CpG methylation to develop an age predictor that is minimally influenced by meQTL, and show that this model remains accurate across a broad range of genetic backgrounds. Intriguingly, we also find that the older individuals and those exhibiting relatively lower epigenetic age acceleration in our cohorts tend to carry more epigenetic age-reducing genetic variants, suggesting a novel mechanism by which heritable factors can influence longevity.
Collapse
Affiliation(s)
- Gillian L. Meeks
- Integrative Genetics and Genomics Graduate Program, University of California, Davis, CA 95694, USA
| | - Brooke Scelza
- Department of Anthropology, University of California, Los Angeles, CA, 90095, USA
| | - Hana M. Asnake
- Forensic Science Graduate Program, University of California, Davis, CA, 95694, USA
| | - Sean Prall
- Department of Anthropology, University of California, Los Angeles, CA, 90095, USA
| | - Etienne Patin
- Human Evolutionary Genetics Unit, CNRS UMR2000, Paris, 75015, France
| | - Alain Froment
- Institut de Recherche pour le Développement, UMR 208, Muséum National d’Histoire Naturelle, Paris, 75005, France
| | - Maud Fagny
- Human Evolutionary Genetics Unit, CNRS UMR2000, Paris, 75015, France
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Genetique Quantitative et Evolution - Le Moulon, Gif-sur-Yvette, 91190, France
| | | | - Brenna M. Henn
- Department of Anthropology, University of California Davis, Davis, CA, 95616, USA
- UC Davis Genome Center and Center for Population Biology, University of California, Davis, CA 95694, USA
| | - Shyamalika Gopalan
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11790, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| |
Collapse
|
7
|
Souza MRD, Garcia ALH, Dalberto D, Picinini J, Touguinha LBA, Salvador M, da Silva J. Multiple factors influence telomere length and DNA damage in individuals environmentally exposed to a coal-burning power plant. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 898:503793. [PMID: 39147445 DOI: 10.1016/j.mrgentox.2024.503793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
Coal is a mixture of several chemicals, many of which have mutagenic and carcinogenic effects and are a key contributor to the global burden of mortality and disease. Previous studies suggest that coal is related to telomeric shortening in individuals occupationally exposed, however little is known about the effects of mining and burning coal on the telomeres of individuals living nearby. Therefore, the primary objective of this investigation was to assess the impact of proximity to coal power plants and coal mines on the genomic instability of individuals environmentally exposed, while also exploring potential associations with individual characteristics, oxidative stress, inflammatory responses, and the presence of inorganic elements. This study involved 80 men participants from three cities around a thermoelectric power plant and one city unexposed to coal and byproducts. DNA was extracted from peripheral blood samples obtained from each participant, and the telomeres length (TL) was assessed using quantitative real-time polymerase chain reaction (qPCR) methodology. No significant difference was observed between exposed individuals (6227 ± 2884 bp) when compared to the unexposed group (5638 ± 2452 bp). Nevertheless, TL decrease was associated with age and risk for cardiovascular disease; and longer TL was found to be linked with increased concentrations of silicon and phosphorus in blood samples. No correlations were observed between TL with comet assay (visual score), micronucleus test, oxidative stress, and inflammatory results. Additional research is required to ascertain the potential correlation between these changes and the onset of diseases and premature mortality.
Collapse
Affiliation(s)
- Melissa Rosa de Souza
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA) and LaSalle University (UniLaSalle), Avenida Farroupilha, 8001 Bairro São José, Canoas, RS CEP 92425-900, Brazil.
| | - Ana Letícia Hilário Garcia
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA) and LaSalle University (UniLaSalle), Avenida Farroupilha, 8001 Bairro São José, Canoas, RS CEP 92425-900, Brazil
| | - Daiana Dalberto
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA) and LaSalle University (UniLaSalle), Avenida Farroupilha, 8001 Bairro São José, Canoas, RS CEP 92425-900, Brazil
| | - Juliana Picinini
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA) and LaSalle University (UniLaSalle), Avenida Farroupilha, 8001 Bairro São José, Canoas, RS CEP 92425-900, Brazil
| | | | - Mirian Salvador
- Laboratory of Oxidative Stress and Antioxidants, Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA) and LaSalle University (UniLaSalle), Avenida Farroupilha, 8001 Bairro São José, Canoas, RS CEP 92425-900, Brazil.
| |
Collapse
|
8
|
Ng GYQ, Hande MP. Use of peptide nucleic acid probe to determine telomere dynamics in improving chromosome analysis in genetic toxicology studies. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503773. [PMID: 39054004 DOI: 10.1016/j.mrgentox.2024.503773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Genetic toxicology, strategically located at the intersection of genetics and toxicology, aims to demystify the complex interplay between exogenous agents and our genetic blueprint. Telomeres, the protective termini of chromosomes, play instrumental roles in cellular longevity and genetic stability. Traditionally karyotyping and fluorescence in situ hybridisation (FISH), have been indispensable tools for chromosomal analysis following exposure to genotoxic agents. However, their scope in discerning nuanced molecular dynamics is limited. Peptide Nucleic Acids (PNAs) are synthetic entities that embody characteristics of both proteins and nucleic acids and have emerged as potential game-changers. This perspective report comprehensively examines the vast potential of PNAs in genetic toxicology, with a specific emphasis on telomere research. PNAs' superior resolution and precision make them a favourable choice for genetic toxicological assessments. The integration of PNAs in contemporary analytical workflows heralds a promising evolution in genetic toxicology, potentially revolutionizing diagnostics, prognostics, and therapeutic avenues. In this timely review, we attempted to assess the limitations of current PNA-FISH methodology and recommend refinements.
Collapse
Affiliation(s)
- Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
9
|
McQuillan MA, Verhulst S, Hansen MEB, Beggs W, Meskel DW, Belay G, Nyambo T, Mpoloka SW, Mokone GG, Fokunang C, Njamnshi AK, Chanock SJ, Aviv A, Tishkoff SA. Association between telomere length and Plasmodium falciparum malaria endemicity in sub-Saharan Africans. Am J Hum Genet 2024; 111:927-938. [PMID: 38701745 PMCID: PMC11080607 DOI: 10.1016/j.ajhg.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
Leukocyte telomere length (LTL) varies significantly across human populations, with individuals of African ancestry having longer LTL than non-Africans. However, the genetic and environmental drivers of LTL variation in Africans remain largely unknown. We report here on the relationship between LTL, genetics, and a variety of environmental and climatic factors in ethnically diverse African adults (n = 1,818) originating from Botswana, Tanzania, Ethiopia, and Cameroon. We observe significant variation in LTL among populations, finding that the San hunter-gatherers from Botswana have the longest leukocyte telomeres and that the Fulani pastoralists from Cameroon have the shortest telomeres. Genetic factors explain ∼50% of LTL variation among individuals. Moreover, we observe a significant negative association between Plasmodium falciparum malaria endemicity and LTL while adjusting for age, sex, and genetics. Within Africa, adults from populations indigenous to areas with high malaria exposure have shorter LTL than those in populations indigenous to areas with low malaria exposure. Finally, we explore to what degree the genetic architecture underlying LTL in Africa covaries with malaria exposure.
Collapse
Affiliation(s)
- Michael A McQuillan
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Matthew E B Hansen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Beggs
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dawit Wolde Meskel
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gurja Belay
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Thomas Nyambo
- Department of Biochemistry, Kampala International University in Tanzania (KIUT), Dares Salaam, Tanzania
| | - Sununguko Wata Mpoloka
- Department of Biological Sciences, Faculty of Science, University of Botswana, Gaborone, Botswana
| | - Gaonyadiwe George Mokone
- Department of Biomedical Sciences, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Charles Fokunang
- Department of Pharmacotoxicology and Pharmacokinetics, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
| | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN), Neuroscience Lab, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Department of Neurology, Central Hospital Yaoundé, Yaoundé, Cameroon
| | - Stephen J Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA; Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Abraham Aviv
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Global Genomics and Health Equity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Savage SA. Telomere length and cancer risk: finding Goldilocks. Biogerontology 2024; 25:265-278. [PMID: 38109000 DOI: 10.1007/s10522-023-10080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Telomeres are the nucleoprotein complex at chromosome ends essential in genomic stability. Baseline telomere length (TL) is determined by rare and common germline genetic variants but shortens with age and is susceptible to certain environmental exposures. Cellular senescence or apoptosis are normally triggered when telomeres reach a critically short length, but cancer cells overcome these protective mechanisms and continue to divide despite chromosomal instability. Rare germline variants in telomere maintenance genes cause exceedingly short telomeres for age (< 1st percentile) and the telomere biology disorders, which are associated with elevated risks of bone marrow failure, myelodysplastic syndrome, acute myeloid leukemia, and squamous cell carcinoma of the head/neck and anogenital regions. Long telomeres due to rare germline variants in the same or different telomere maintenance genes are associated with elevated risks of other cancers, such as chronic lymphocytic leukemia or sarcoma. Early epidemiology studies of TL in the general population lacked reproducibility but new methods, including creation of a TL polygenic score using common variants, have found longer telomeres associated with excess risks of renal cell carcinoma, glioma, lung cancer, and others. It has become clear that when it comes to TL and cancer etiology, not too short, not too long, but "just right" telomeres are important in minimizing cancer risk.
Collapse
Affiliation(s)
- Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, 6E456, Bethesda, MD, 20892-6772, USA.
| |
Collapse
|
11
|
Wang D, Li C, Zhang X, Li Y, He J, Guo X. Leukocyte telomere length and sarcopenia-related traits: A bidirectional Mendelian randomization study. PLoS One 2024; 19:e0296063. [PMID: 38166034 PMCID: PMC10760921 DOI: 10.1371/journal.pone.0296063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024] Open
Abstract
Accumulating evidence indicated that leukocyte telomere length (LTL) was related to sarcopenia. However, it is still not clear whether the association of changes in LTL with sarcopenia is likely to be causal, or could be explained by reverse causality. Thus, we carried on bidirectional Mendelian randomization (MR) and multivariable MR analyses to identify the causal relationship between LTL and sarcopenia-related traits. Summary-level data and independent variants used as instruments came from large genome-wide association studies of LTL (472,174 participants), appendicular lean mass (450,243 participants), low grip strength (256,523 participants), and walking pace (450,967 participants). We identified suggestive association of longer LTL with larger appendicular lean mass [odds ratio (OR) = 1.053; 95% confidence interval (CI), 1.009-1.099; P = 0.018], and causal association of longer LTL with a lower risk of low grip strength (OR = 0.915; 95% CI, 0.860-0.974; P = 0.005). In the reverse MR analysis, we also observed a positive causal association between walking pace and LTL (OR = 1.252; 95% CI, 1.121-1.397; P < 0.001). Similar results can be repeated in sensitivity analyses. While in the multivariable MR analysis, the estimate of the impact of walking pace on LTL underwent a transformation after adjusting for T2DM (OR = 1.141; 95%CI: 0.989-1.317; P = 0.070). The current MR analysis supported a causal relationship between shorter telomere length and both low muscle mass and strength. Additionally, walking pace may affect LTL through T2DM.
Collapse
Affiliation(s)
- Dingkun Wang
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Chenhao Li
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xinwen Zhang
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yihao Li
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Junhua He
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xiaoming Guo
- Department of Neurosurgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Badás EP, Bauch C, Boonekamp JJ, Mulder E, Verhulst S. Ectoparasite presence and brood size manipulation interact to accelerate telomere shortening in nestling jackdaws. Mol Ecol 2023; 32:6913-6923. [PMID: 37864481 DOI: 10.1111/mec.17177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
Early-life conditions impact fitness, but whether the combined effect of extrinsic stressors is additive or synergistic is not well known. This is a major knowledge gap because exposure to multiple stressors is frequent. Telomere dynamics may be instrumental when testing how stressors interact because many factors affect telomere shortening, and telomere shortening predicts survival. We evaluated the effect of manipulated brood size and natural infestation by the carnid fly Carnus hemapterus on nestling growth and telomere shortening of wild jackdaws (Corvus monedula). Telomere length, measured in blood using TRF, shortened on average by 264 bp, and on average, Carnus infection induced more telomere shortening. Further analyses showed that in enlarged broods, nestlings' telomeres shortened more when parasitized, while in reduced broods there was no effect of infection on telomere shortening. We conclude that there is a synergistic effect of number of siblings and Carnus infection on telomere shortening rate: blood-sucking parasites may negatively impact telomeres by increasing cell proliferation and/or physiological stress, and coping with infection may be less successful in enlarged broods with increased sibling competition. Larger nestlings had shorter telomeres independent of age, brood manipulation or infection. Growth was independent of infestation but in enlarged broods, nestlings were lighter at fledging. Our findings indicate that (i) evaluating consequences of early-life environmental conditions in isolation may not yield a full picture due to synergistic effects, and (ii) effects of environmental conditions may be cryptic, for example, on telomeres, with fitness consequences expressed beyond the temporal framework of the study.
Collapse
Affiliation(s)
- Elisa P Badás
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Christina Bauch
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Jelle J Boonekamp
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Ellis Mulder
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
13
|
Aviv A. The "telomereless" erythrocytes and telomere-length dependent erythropoiesis. Aging Cell 2023; 22:e13997. [PMID: 37824094 PMCID: PMC10726845 DOI: 10.1111/acel.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Approximately 25 trillion erythrocytes (red blood cells) circulate in the bloodstream of an adult human, surpassing the number of circulating leukocytes (white blood cells) by a factor of about 1000. Moreover, the erythrocyte turnover rate accounts for approximately 76% of the turnover rate of all circulating blood cells. This simple math shows that the hematopoietic system principally spends its telomere length-dependent replicative capacity on building and maintaining the erythrocyte blood pool. Erythropoiesis (red blood cell production) is thus the principal cause of telomere shortening with age in hematopoietic cells (HCs), a conclusion that holds significant implications for linking telomere length dynamics in HCs to health and lifespan of modern humans.
Collapse
Affiliation(s)
- Abraham Aviv
- Center of Human Development and AgingNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNew JerseyUSA
| |
Collapse
|
14
|
Adav SS, Ng KW. Recent omics advances in hair aging biology and hair biomarkers analysis. Ageing Res Rev 2023; 91:102041. [PMID: 37634889 DOI: 10.1016/j.arr.2023.102041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Aging is a complex natural process that leads to a decline in physiological functions, which is visible in signs such as hair graying, thinning, and loss. Although hair graying is characterized by a loss of pigment in the hair shaft, the underlying mechanism of age-associated hair graying is not fully understood. Hair graying and loss can have a significant impact on an individual's self-esteem and self-confidence, potentially leading to mental health problems such as depression and anxiety. Omics technologies, which have applications beyond clinical medicine, have led to the discovery of candidate hair biomarkers and may provide insight into the complex biology of hair aging and identify targets for effective therapies. This review provides an up-to-date overview of recent omics discoveries, including age-associated alterations of proteins and metabolites in the hair shaft and follicle, and highlights the significance of hair aging and graying biomarker discoveries. The decline in hair follicle stem cell activity with aging decreased the regeneration capacity of hair follicles. Cellular senescence, oxidative damage and altered extracellular matrix of hair follicle constituents characterized hair follicle and hair shaft aging and graying. The review attempts to correlate the impact of endogenous and exogenous factors on hair aging. We close by discussing the main challenges and limitations of the field, defining major open questions and offering an outlook for future research.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| |
Collapse
|
15
|
Crocco P, De Rango F, Dato S, La Grotta R, Maletta R, Bruni AC, Passarino G, Rose G. The Shortening of Leukocyte Telomere Length Contributes to Alzheimer's Disease: Further Evidence from Late-Onset Familial and Sporadic Cases. BIOLOGY 2023; 12:1286. [PMID: 37886996 PMCID: PMC10604697 DOI: 10.3390/biology12101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Telomeres are structures at the ends of eukaryotic chromosomes that help maintain genomic stability. During aging, telomere length gradually shortens, producing short telomeres, which are markers of premature cellular senescence. This may contribute to age-related diseases, including Alzheimer's disease (AD), and based on this, several studies have hypothesized that telomere shortening may characterize AD. Current research, however, has been inconclusive regarding the direction of the association between leukocyte telomere length (LTL) and disease risk. We assessed the association between LTL and AD in a retrospective case-control study of a sample of 255 unrelated patients with late-onset AD (LOAD), including 120 sporadic cases and 135 with positive family history for LOAD, and a group of 279 cognitively healthy unrelated controls, who were all from Calabria, a southern Italian region. Following regression analysis, telomeres were found significantly shorter in LOAD cases than in controls (48% and 41% decrease for sporadic and familial cases, respectively; p < 0.001 for both). Interestingly, LTL was associated with disease risk independently of the presence of conventional risk factors (e.g., age, sex, MMSE scores, and the presence of the APOE-ε4 allele). Altogether, our findings lend support to the notion that LTL shortening may be an indicator of the pathogenesis of LOAD.
Collapse
Affiliation(s)
- Paolina Crocco
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.C.); (F.D.R.); (S.D.); (R.L.G.); (G.P.)
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.C.); (F.D.R.); (S.D.); (R.L.G.); (G.P.)
| | - Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.C.); (F.D.R.); (S.D.); (R.L.G.); (G.P.)
| | - Rossella La Grotta
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.C.); (F.D.R.); (S.D.); (R.L.G.); (G.P.)
| | - Raffaele Maletta
- Regional Neurogenetic Centre, ASP Catanzaro, 88046 Lamezia Terme, Italy; (R.M.); (A.C.B.)
| | - Amalia Cecilia Bruni
- Regional Neurogenetic Centre, ASP Catanzaro, 88046 Lamezia Terme, Italy; (R.M.); (A.C.B.)
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.C.); (F.D.R.); (S.D.); (R.L.G.); (G.P.)
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.C.); (F.D.R.); (S.D.); (R.L.G.); (G.P.)
| |
Collapse
|
16
|
Igoshin AV, Yudin NS, Romashov GA, Larkin DM. A Multibreed Genome-Wide Association Study for Cattle Leukocyte Telomere Length. Genes (Basel) 2023; 14:1596. [PMID: 37628647 PMCID: PMC10454124 DOI: 10.3390/genes14081596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Telomeres are terminal DNA regions of chromosomes that prevent chromosomal fusion and degradation during cell division. In cattle, leukocyte telomere length (LTL) is associated with longevity, productive lifespan, and disease susceptibility. However, the genetic basis of LTL in this species is less studied than in humans. In this study, we utilized the whole-genome resequencing data of 239 animals from 17 cattle breeds for computational leukocyte telomere length estimation and subsequent genome-wide association study of LTL. As a result, we identified 42 significant SNPs, of which eight were found in seven genes (EXOC6B, PTPRD, RPS6KC1, NSL1, AGBL1, ENSBTAG00000052188, and GPC1) when using covariates for two major breed groups (Turano-Mongolian and European). Association analysis with covariates for breed effect detected 63 SNPs, including 13 in five genes (EXOC6B, PTPRD, RPS6KC1, ENSBTAG00000040318, and NELL1). The PTPRD gene, demonstrating the top signal in analysis with breed effect, was previously associated with leukocyte telomere length in cattle and likely is involved in the mechanism of alternative lengthening of telomeres. The single nucleotide variants found could be tested for marker-assisted selection to improve telomere-length-associated traits.
Collapse
Affiliation(s)
- Alexander V. Igoshin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Nikolay S. Yudin
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Grigorii A. Romashov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
| | - Denis M. Larkin
- Royal Veterinary College, University of London, London NW1 0TU, UK
| |
Collapse
|
17
|
Rouan A, Pousse M, Djerbi N, Porro B, Bourdin G, Carradec Q, Hume BC, Poulain J, Lê-Hoang J, Armstrong E, Agostini S, Salazar G, Ruscheweyh HJ, Aury JM, Paz-García DA, McMinds R, Giraud-Panis MJ, Deshuraud R, Ottaviani A, Morini LD, Leone C, Wurzer L, Tran J, Zoccola D, Pey A, Moulin C, Boissin E, Iwankow G, Romac S, de Vargas C, Banaigs B, Boss E, Bowler C, Douville E, Flores M, Reynaud S, Thomas OP, Troublé R, Thurber RV, Planes S, Allemand D, Pesant S, Galand PE, Wincker P, Sunagawa S, Röttinger E, Furla P, Voolstra CR, Forcioli D, Lombard F, Gilson E. Telomere DNA length regulation is influenced by seasonal temperature differences in short-lived but not in long-lived reef-building corals. Nat Commun 2023; 14:3038. [PMID: 37263999 DOI: 10.1038/s41467-023-38499-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Telomeres are environment-sensitive regulators of health and aging. Here,we present telomere DNA length analysis of two reef-building coral genera revealing that the long- and short-term water thermal regime is a key driver of between-colony variation across the Pacific Ocean. Notably, there are differences between the two studied genera. The telomere DNA lengths of the short-lived, more stress-sensitive Pocillopora spp. colonies were largely determined by seasonal temperature variation, whereas those of the long-lived, more stress-resistant Porites spp. colonies were insensitive to seasonal patterns, but rather influenced by past thermal anomalies. These results reveal marked differences in telomere DNA length regulation between two evolutionary distant coral genera exhibiting specific life-history traits. We propose that environmentally regulated mechanisms of telomere maintenance are linked to organismal performances, a matter of paramount importance considering the effects of climate change on health.
Collapse
Affiliation(s)
- Alice Rouan
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France.
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France.
| | - Melanie Pousse
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Nadir Djerbi
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Barbara Porro
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | | | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Benjamin Cc Hume
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Julie Lê-Hoang
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Eric Armstrong
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, 8092, Zurich, Switzerland
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, 8092, Zurich, Switzerland
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - David A Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. IPN 195, La Paz, Baja California Sur, 23096, La Paz, México
| | - Ryan McMinds
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- University of South Florida Center for Global Health and Infectious Diseases Research, Tampa, FL, USA
- Maison de la Modélisation, de la Simulation et des Interactions (MSI),, Université Côte d'Azur, Nice, France
| | - Marie-Josèphe Giraud-Panis
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Romane Deshuraud
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Alexandre Ottaviani
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Lycia Die Morini
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
| | - Camille Leone
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
| | - Lia Wurzer
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
| | - Jessica Tran
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
| | - Didier Zoccola
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Centre Scientifique de Monaco, Principality of Monaco, Monaco, Monaco
| | - Alexis Pey
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Clémentine Moulin
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Tara Ocean Foundation, 8 rue de Prague, 75012, Paris, France
| | - Emilie Boissin
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Guillaume Iwankow
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Bernard Banaigs
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Chris Bowler
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth, and Planetary Sciences, 76100, Rehovot, Israel
| | - Stéphanie Reynaud
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Centre Scientifique de Monaco, Principality of Monaco, Monaco, Monaco
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91TK33, Galway, Ireland
| | - Romain Troublé
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Tara Ocean Foundation, 8 rue de Prague, 75012, Paris, France
| | - Rebecca Vega Thurber
- Oregon State University, Department of Microbiology, 220 Nash Hall, Corvallis, OR, 97331, USA
| | - Serge Planes
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Laboratoire d'Excellence "CORAIL," PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Denis Allemand
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Centre Scientifique de Monaco, Principality of Monaco, Monaco, Monaco
| | - Stephane Pesant
- European Bioinformatics Institute, Wellcome Genome Campus, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge CB10 1SD, UK, UK
| | - Pierre E Galand
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, 8092, Zurich, Switzerland
| | - Eric Röttinger
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Paola Furla
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | | | - Didier Forcioli
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 75016, Paris, France
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
- Institut Universitaire de France, Ministère chargé de l'enseignement supérieur, Paris, France
| | - Eric Gilson
- Université Côte d'Azur-CNRS-Inserm-Institute for Research on Cancer and Ageing, Nice (IRCAN), Medical School, Nice, France.
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Nice, France.
- Institut Fédératif de Recherche-Ressources Marines (IFR MARRES), Université Côte d'Azur, Nice, France.
- Department of Medical Genetics, CHU, Nice, France.
| |
Collapse
|
18
|
Ignatieva EV, Yudin NS, Larkin DM. Compilation and functional classification of telomere length-associated genes in humans and other animal species. Vavilovskii Zhurnal Genet Selektsii 2023; 27:283-292. [PMID: 37293446 PMCID: PMC10244590 DOI: 10.18699/vjgb-23-34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/10/2023] Open
Abstract
Telomeres are the terminal regions of chromosomes that ensure their stability while cell division. Telomere shortening initiates cellular senescence, which can lead to degeneration and atrophy of tissues, so the process is associated with a reduction in life expectancy and predisposition to a number of diseases. An accelerated rate of telomere attrition can serve as a predictor of life expectancy and health status of an individual. Telomere length is a complex phenotypic trait that is determined by many factors, including the genetic ones. Numerous studies (including genome-wide association studies, GWAS) indicate the polygenic nature of telomere length control. The objective of the present study was to characterize the genetic basis of the telomere length regulation using the GWAS data obtained during the studies of various human and other animal populations. To do so, a compilation of the genes associated with telomere length in GWAS experiments was collected, which included information on 270 human genes, as well as 23, 22, and 9 genes identified in the cattle, sparrow, and nematode, respectively. Among them were two orthologous genes encoding a shelterin protein (POT1 in humans and pot-2 in C. elegans). Functional analysis has shown that telomere length can be influenced by genetic variants in the genes encoding: (1) structural components of telomerase; (2) the protein components of telomeric regions (shelterin and CST complexes); (3) the proteins involved in telomerase biogenesis and regulating its activity; (4) the proteins that regulate the functional activity of the shelterin components; (5) the proteins involved in telomere replication and/or capping; (6) the proteins involved in the alternative telomere lengthening; (7) the proteins that respond to DNA damage and are responsible for DNA repair; (8) RNA-exosome components. The human genes identified by several research groups in populations of different ethnic origins are the genes encoding telomerase components such as TERC and TERT as well as STN1 encoding the CST complex component. Apparently, the polymorphic loci affecting the functions of these genes may be the most reliable susceptibility markers for telomere-related diseases. The systematized data about the genes and their functions can serve as a basis for the development of prognostic criteria for telomere length-associated diseases in humans. Information about the genes and processes that control telomere length can be used for marker-assisted and genomic selection in the farm animals, aimed at increasing the duration of their productive lifetime.
Collapse
Affiliation(s)
- E V Ignatieva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N S Yudin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D M Larkin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
19
|
Haridoss M, Ayyasamy L, Bagepally BS. Is COVID-19 severity associated with telomere length? A systematic review and meta-analysis. Virus Genes 2023:10.1007/s11262-023-02010-1. [PMID: 37261700 DOI: 10.1007/s11262-023-02010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Telomere shortening, a marker of cellular aging, has been linked to hospitalization and the severity of COVID-19. In this systematic review and meta-analysis, the mean difference in telomere length between non-severe and severe COVID-19 individuals was pooled to determine the association between short telomeres and COVID-19 severity. Relevant studies were retrieved through searches conducted in PubMed-Medline, Scopus, EMBASE, Medrxiv, Biorxiv, EuroPMC, and SSRN databases up to November 2022. Selected studies were systematically reviewed and assessed for risk of bias using AXIS tool. The standardized mean difference in telomere length between non-severe and severe COVID-19 was pooled using random-effects model. A total of thirteen studies were included in the review, out of which seven (1332 patients with the severe COVID-19 disease and 6321 patients with non-severe COVID-19) were eligible for meta-analysis. The estimated pooled mean difference in Leukocyte telomere length between severe COVID-19 and non-severe COVID-19 was 0.39 (95% CI - 0.02 to 0.81, I2 = 93.5%) with substantial heterogeneity. Our findings do not provide clear evidence for association of shorter telomere length and severe COVID-19 disease. More extensive studies measuring absolute telomere length with age and gender adjustments are needed to draw definitive conclusions on the potential causal association between telomere shortening and COVID-19 severity.
Collapse
Affiliation(s)
- Madhumitha Haridoss
- Health Technology Assessment Resource Centre, ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, 600077, India
| | - Lavanya Ayyasamy
- Health Technology Assessment Resource Centre, ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, 600077, India
| | - Bhavani Shankara Bagepally
- Health Technology Assessment Resource Centre, ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, 600077, India.
| |
Collapse
|
20
|
D’Angiolo M, Yue JX, De Chiara M, Barré BP, Giraud Panis MJ, Gilson E, Liti G. Telomeres are shorter in wild Saccharomyces cerevisiae isolates than in domesticated ones. Genetics 2023; 223:iyac186. [PMID: 36563016 PMCID: PMC9991508 DOI: 10.1093/genetics/iyac186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/02/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
Telomeres are ribonucleoproteins that cap chromosome-ends and their DNA length is controlled by counteracting elongation and shortening processes. The budding yeast Saccharomyces cerevisiae has been a leading model to study telomere DNA length control and dynamics. Its telomeric DNA is maintained at a length that slightly varies between laboratory strains, but little is known about its variation at the species level. The recent publication of the genomes of over 1,000 S. cerevisiae strains enabled us to explore telomere DNA length variation at an unprecedented scale. Here, we developed a bioinformatic pipeline (YeaISTY) to estimate telomere DNA length from whole-genome sequences and applied it to the sequenced S. cerevisiae collection. Our results revealed broad natural telomere DNA length variation among the isolates. Notably, telomere DNA length is shorter in those derived from wild rather than domesticated environments. Moreover, telomere DNA length variation is associated with mitochondrial metabolism, and this association is driven by wild strains. Overall, these findings reveal broad variation in budding yeast's telomere DNA length regulation, which might be shaped by its different ecological life-styles.
Collapse
Affiliation(s)
- Melania D’Angiolo
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Jia-Xing Yue
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center (SYSUCC), 651 Dongfeng Road East, China
| | - Matteo De Chiara
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Benjamin P Barré
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Marie-Josèphe Giraud Panis
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Eric Gilson
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
- Department of Genetics, CHU, 06107 Nice, France
| | - Gianni Liti
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| |
Collapse
|
21
|
Wu X, Li P, Tao J, Chen X, Zhang A. Subchronic Low-Dose Methylmercury Exposure Accelerated Cerebral Telomere Shortening in Relevant with Declined Urinary aMT6s Level in Rats. TOXICS 2023; 11:191. [PMID: 36851065 PMCID: PMC9961034 DOI: 10.3390/toxics11020191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Methylmercury (MeHg) is a global pollutant with established toxic effects on the central nervous system (CNS). However, early events and early-warning biomarkers of CNS damage following exposure to low-dose MeHg are still lacking. This study aimed to investigate whether subchronic low-dose MeHg exposure had adverse effects on the cerebral telomere length, as well as serum melatonin and its urinary metabolite 6-sulfatoxymelatonin (aMT6s) in rats. Sixteen male Sprague Dawley rats were divided into two groups. Group I was the control group. In group II, rats were exposed to MeHg by gavage at a dose of 0.1 mg/kg/day for 3 months. This study revealed that MeHg exposure resulted in impairment of learning and memory ability, a slightly reduced number of neurons and an irregular arrangement of neurons in the hippocampus. It also significantly accelerated telomere shortening in the cerebral cortex, hippocampus and hypothalamus. Moreover, MeHg exposure decreased the levels of melatonin in serum and aMT6s in urine, partly by suppressing the synthesis of 5-hydroxytryptamine (5-HT) in the brain but promoted the expression of melatonin-catalyzing AANAT and ASMT. Importantly, cerebral telomere length was positively correlated with MT and aMT6s after MeHg exposure. These results suggested that the shortened telomere length in the brain may be an early event in MeHg-induced CNS toxicity, and the level of aMT6s in urine may serve as an early-warning biomarker for MeHg-induced CNS damage.
Collapse
Affiliation(s)
- Xi Wu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Junyan Tao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
22
|
Tang P, He W, Shao Y, Liu B, Huang H, Liang J, Liao Q, Tang Y, Mo M, Zhou Y, Li H, Huang D, Liu S, Zeng X, Qiu X. Associations between prenatal multiple plasma metal exposure and newborn telomere length: Effect modification by maternal age and infant sex. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120451. [PMID: 36270567 DOI: 10.1016/j.envpol.2022.120451] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Exposure to metals during pregnancy may affect maternal and infant health. However, studies on the combined effects of metals on the telomere length (TL) of newborns are limited. A prospective cohort study was conducted among 1313 mother-newborn pairs in the Guangxi Zhuang Birth Cohort. The concentrations of metals in maternal plasma during the first trimester were measured using inductively coupled plasma-mass spectrometry. We explored the associations between nine plasma metals and newborn TL using generalized linear models (GLMs), principal component analysis (PCA), quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR). The GLMs revealed the inverse association between plasma arsenic (percent change, -5.56%; 95% CI: -7.69%, -3.38%) and barium concentrations (-9.84%; 95% CI: -13.81%, -5.68%) and newborn TL. Lead levels were related to significant decreases in newborn TL only in females. The PCA revealed a negative association between the PC3 and newborn TL (-4.52%; 95% CI: -6.34%, -2.68%). In the BKMR, the joint effect of metals was negatively associated with newborn TL. Qgcomp indicated that each one-tertile increase in metal mixture levels was associated with shorter newborn TL (-9.39%; 95% CI: -14.32%, -4.18%). The single and joint effects of multiple metals were more pronounced among pregnant women carrying female fetuses and among pregnant women <28 years of age. The finding suggests that prenatal exposure to arsenic, barium, antimony, and lead and mixed metals may shorten newborn TLs. The relationship between metal exposures and newborn TL may exhibit heterogeneities according to infant sex and maternal age.
Collapse
Affiliation(s)
- Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Wanting He
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yantao Shao
- The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi, China
| | - Bihu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ying Tang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Meile Mo
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Zhou
- School of Public Health, Xiangnan University, Chenzhou, 423000, China
| | - Han Li
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
23
|
Dyskeratosis congenita and telomere biology disorders. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:637-648. [PMID: 36485133 PMCID: PMC9821046 DOI: 10.1182/hematology.2022000394] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Numerous genetic discoveries and the advent of clinical telomere length testing have led to the recognition of a spectrum of telomere biology disorders (TBDs) beyond the classic dyskeratosis congenita (DC) triad of nail dysplasia, abnormal skin pigmentation, and oral leukoplakia occurring with pediatric bone marrow failure. Patients with DC/TBDs have very short telomeres for their age and are at high risk of bone marrow failure, cancer, pulmonary fibrosis (PF), pulmonary arteriovenous malformations, liver disease, stenosis of the urethra, esophagus, and/or lacrimal ducts, avascular necrosis of the hips and/or shoulders, and other medical problems. However, many patients with TBDs do not develop classic DC features; they may present in middle age and/or with just 1 feature, such as PF or aplastic anemia. TBD-associated clinical manifestations are progressive and attributed to aberrant telomere biology caused by the X-linked recessive, autosomal dominant, autosomal recessive, or de novo occurrence of pathogenic germline variants in at least 18 different genes. This review describes the genetics and clinical manifestations of TBDs and highlights areas in need of additional clinical and basic science research.
Collapse
|
24
|
Kärkkäinen T, Briga M, Laaksonen T, Stier A. Within-individual repeatability in telomere length: A meta-analysis in nonmammalian vertebrates. Mol Ecol 2022; 31:6339-6359. [PMID: 34455645 DOI: 10.1111/mec.16155] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
Telomere length is increasingly used as a biomarker of long-term somatic state and future survival prospects. While most studies have overlooked this aspect, biological interpretations based on a given telomere length will benefit from considering the level of within-individual repeatability of telomere length through time. Therefore, we conducted a meta-analysis on 74 longitudinal studies in nonmammalian vertebrates, with the aim to establish the current pattern of within-individual repeatability in telomere length and to identify the methodological (e.g., qPCR/TRF) and biological factors (e.g., age class, phylogeny) that may affect it. While the median within-individual repeatability of telomere length was moderate to high (R = 0.55; 95% CI: 0.05-0.95; N = 82), marked heterogeneity between studies was evident. Measurement method affected the repeatability estimate strongly, with TRF-based studies exhibiting high repeatability (R = 0.80; 95% CI: 0.34-0.96; N = 25), while repeatability of qPCR-based studies was markedly lower and more variable (R = 0.46; 95% CI: 0.04-0.82; N = 57). While phylogeny explained some variance in repeatability, phylogenetic signal was not significant (λ = 0.32; 95% CI: 0.00-0.83). None of the biological factors investigated here significantly explained variation in the repeatability of telomere length, being potentially obscured by methodological differences. Our meta-analysis highlights the high variability in within-individual repeatability estimates between studies and the need to put more effort into separating technical and biological explanations. This is important to better understand to what extent biological factors can affect the repeatability of telomere length and thus the interpretation of telomere length data.
Collapse
Affiliation(s)
| | - Michael Briga
- Department of Biology, University of Turku, Turku, Finland
| | - Toni Laaksonen
- Department of Biology, University of Turku, Turku, Finland
| | - Antoine Stier
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
25
|
Chik HYJ, Sparks AM, Schroeder J, Dugdale HL. A meta-analysis on the heritability of vertebrate telomere length. J Evol Biol 2022; 35:1283-1295. [PMID: 35932478 DOI: 10.1111/jeb.14071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
Telomere dynamics are linked with both cellular and organismal senescence, and life history, individual quality and health. Telomere dynamics, particularly telomere length, have therefore garnered much research interest in evolutionary biology. To examine the evolution of telomere length, it is important to quantify its heritability, the proportion of total variation explained by additive genetic effects. Many studies have quantified telomere length heritability, but estimates are varied, and no general conclusion has been drawn. Additionally, it is unclear whether biological and methodological factors influence telomere length heritability estimates. We present the first meta-analysis of telomere length heritability, using 104 estimates from 43 studies over 18 vertebrate species. We calculated an overall mean heritability and examined how estimates varied by study, phylogeny, species-specific ecology, environmental setting, age at sampling, laboratory methods, statistical methods, sex and repeated measurements. Overall heritability was moderate (44.9%, 95% CI: 25.2-64.7%), and there was considerable heterogeneity in heritability estimates, in particular among studies and estimates. Laboratory method influenced heritability estimates, with in-gel hybridization TRF yielding higher heritabilities than qPCR and Southern blot TRF. There was also an effect from statistical method, with twin-based and SNP-based estimates lower than correlation-based or pedigree-based estimates. Our results highlight an overall heritable basis of telomere length, and we recommend future research on a wider range of taxa, and the use of variance-partitioning methods with relatedness or SNP data over correlation methods to minimize heritability estimation bias.
Collapse
Affiliation(s)
- Heung Ying Janet Chik
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alexandra M Sparks
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Julia Schroeder
- Department of Life Sciences, Imperial College London Silwood Park, Ascot, UK
| | - Hannah L Dugdale
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Aviv A. The bullwhip effect, T-cell telomeres, and SARS-CoV-2. THE LANCET. HEALTHY LONGEVITY 2022; 3:e715-e721. [PMID: 36202131 PMCID: PMC9529217 DOI: 10.1016/s2666-7568(22)00190-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 01/15/2023] Open
Abstract
Both myeloid cells, which contribute to innate immunity, and lymphoid cells, which dominate adaptive immunity, partake in defending against SARS-CoV-2. In response to the virus, the otherwise slow haematopoietic production supply chain quickly unleashes its preconfigured myeloid element, which largely resists a bullwhip-like effect. By contrast, the lymphoid element risks a bullwhip-like effect when it produces T cells and B cells that are specifically designed to clear the virus. As T-cell production is telomere-length dependent and telomeres shorten with age, older adults are at higher risk of a T-cell shortfall when contracting SARS-CoV-2 than are younger adults. A poorly calibrated adaptive immune response, stemming from a bullwhip-like effect, compounded by a T-cell deficit, might thus contribute to the propensity of people with inherently short T-cell telomeres to develop severe COVID-19. The immune systems of these individuals might also generate an inadequate T-cell response to anti-SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Abraham Aviv
- Center of Human Development and Aging, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
27
|
Valera-Gran D, Prieto-Botella D, Hurtado-Pomares M, Baladia E, Petermann-Rocha F, Sánchez-Pérez A, Navarrete-Muñoz EM. The Impact of Foods, Nutrients, or Dietary Patterns on Telomere Length in Childhood and Adolescence: A Systematic Review. Nutrients 2022; 14:nu14193885. [PMID: 36235538 PMCID: PMC9570627 DOI: 10.3390/nu14193885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental factors such as diet can affect telomere length (TL) dynamics. However, the role that children’s and adolescents’ diets play in maintaining TL is not well understood. Thus, we conducted a systematic review to examine the association between the intake of nutrients, foods, food groups, and/or dietary patterns and TL in childhood and adolescence. Following the PRISMA guidelines, we searched MEDLINE via PubMed, Embase, and Cochrane databases and additional registers and methods. The five selected studies were cross-sectional and conducted in children and adolescents aged 2 to 18 years. The main results suggest that a higher consumption of fish, nuts and seeds, fruits and vegetables, green leafy and cruciferous vegetables, olives, legumes, polyunsaturated fatty acids, and an antioxidant-rich diet might positively affect TL. On the contrary, a higher intake of dairy products, simple sugar, sugar-sweetened beverages, cereals, especially white bread, and a diet high in glycaemic load were factors associated with TL shortening. To our knowledge, this is the first systematic review examining the impact of dietary intake factors on TL in childhood and adolescence. Although limited, these results are consistent with previous studies in different adult populations. Further research is needed to ascertain potential nutritional determinants of TL in childhood and adolescence.
Collapse
Affiliation(s)
- Desirée Valera-Gran
- Grupo de Investigación en Terapia Ocupacional (InTeO), Department of Surgery and Pathology, Miguel Hernández University, 03550 Alicante, Spain
- Correspondence: (D.V.-G.); (A.S.-P.); Tel.: +34-965-233-705 (D.V.-G.)
| | - Daniel Prieto-Botella
- Grupo de Investigación en Terapia Ocupacional (InTeO), Department of Surgery and Pathology, Miguel Hernández University, 03550 Alicante, Spain
| | - Miriam Hurtado-Pomares
- Grupo de Investigación en Terapia Ocupacional (InTeO), Department of Surgery and Pathology, Miguel Hernández University, 03550 Alicante, Spain
| | - Eduard Baladia
- Centro de Análisis de la Evidencia Científica, Academia Española de Nutrición y Dietética, 08007 Barcelona, Spain
| | - Fanny Petermann-Rocha
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad Diego Portales, Santiago 8370109, Chile
| | - Alicia Sánchez-Pérez
- Grupo de Investigación en Terapia Ocupacional (InTeO), Department of Surgery and Pathology, Miguel Hernández University, 03550 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), 03010 Alicante, Spain
- Correspondence: (D.V.-G.); (A.S.-P.); Tel.: +34-965-233-705 (D.V.-G.)
| | - Eva-María Navarrete-Muñoz
- Grupo de Investigación en Terapia Ocupacional (InTeO), Department of Surgery and Pathology, Miguel Hernández University, 03550 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL-FISABIO Foundation), 03010 Alicante, Spain
| |
Collapse
|
28
|
Bauch C, Gatt MC, Verhulst S, Granadeiro JP, Catry P. Higher mercury contamination is associated with shorter telomeres in a long-lived seabird - A direct effect or a consequence of among-individual variation in phenotypic quality? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156359. [PMID: 35654175 DOI: 10.1016/j.scitotenv.2022.156359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Mercury is a heavy metal, which is pervasive and persistent in the marine environment. It bioaccumulates within organisms and biomagnifies in the marine food chain. Due to its high toxicity, mercury contamination is a major concern for wildlife and human health. Telomere length is a biomarker of aging and health, because it predicts survival, making it a potential tool to investigate sublethal effects of mercury contamination. However, the relationship between telomeres and mercury contamination is unclear. We measured feather mercury concentration in Cory's Shearwaters Calonectris borealis, long-lived seabirds and top predators, between 9 and 35 years of age and related it to telomere length in erythrocytes. Cory's Shearwaters with higher mercury concentrations had shorter telomeres and the effect was sex-dependent, reaching significance in males only. This may be explained by the fact that males have longer telomeres and higher and more variable mercury concentrations than females in this population. The mercury effect on telomere length was stronger on longer telomeres in the genome within individuals. We discuss the hypotheses that the negative correlation could either be a direct effect of mercury on telomere shortening and/or a consequence of variation in phenotypic quality among individuals that results in a covariation between mercury contamination and telomere length.
Collapse
Affiliation(s)
- Christina Bauch
- MARE-Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisbon, Portugal; Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands.
| | - Marie Claire Gatt
- CESAM-Centre for Environmental and Marine Studies, Faculty of Science, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| | - José Pedro Granadeiro
- CESAM-Centre for Environmental and Marine Studies, Faculty of Science, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Paulo Catry
- MARE-Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisbon, Portugal
| |
Collapse
|
29
|
Hernández Cordero AI, Yang CX, Yang J, Horvath S, Shaipanich T, MacIsaac J, Lin DTS, Kobor MS, Guillemi S, Harris M, Lam W, Lam S, Montaner J, Man SFP, Sin DD, Leung JM. Airway Aging and Methylation Disruptions in HIV-associated Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2022; 206:150-160. [PMID: 35426765 PMCID: PMC9887412 DOI: 10.1164/rccm.202106-1440oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rationale: Age-related diseases like chronic obstructive pulmonary disease (COPD) occur at higher rates in people living with human immunodeficiency virus (PLWH) than in uninfected populations. Objectives: To identify whether accelerated aging can be observed in the airways of PLWH with COPD, manifest by a unique DNA methylation signature. Methods: Bronchial epithelial brushings from PLWH with and without COPD and HIV-uninfected adults with and without COPD (N = 76) were profiled for DNA methylation and gene expression. We evaluated global Alu and LINE-1 methylation and calculated the epigenetic age using the Horvath clock and the methylation telomere length estimator. To identify genome-wide differential DNA methylation and gene expression associated with HIV and COPD, robust linear models were used followed by an expression quantitative trait methylation (eQTM) analysis. Measurements and Main Results: Epigenetic age acceleration and shorter methylation estimates of telomere length were found in PLWH with COPD compared with PLWH without COPD and uninfected patients with and without COPD. Global hypomethylation was identified in PLWH. We identified 7,970 cytosine bases located next to a guanine base (CpG sites), 293 genes, and 9 expression quantitative trait methylation-gene pairs associated with the interaction between HIV and COPD. Actin binding LIM protein family member 3 (ABLIM3) was one of the novel candidate genes for HIV-associated COPD highlighted by our analysis. Conclusions: Methylation age acceleration is observed in the airway epithelium of PLWH with COPD, a process that may be responsible for the heightened risk of COPD in this population. Their distinct methylation profile, differing from that observed in patients with COPD alone, suggests a unique pathogenesis to HIV-associated COPD. The associations warrant further investigation to establish causality.
Collapse
Affiliation(s)
- Ana I. Hernández Cordero
- Centre for Heart Lung Innovation, St. Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Chen Xi Yang
- Centre for Heart Lung Innovation, St. Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia Yang
- Centre for Heart Lung Innovation, St. Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California;,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | | | | | | | | | - Silvia Guillemi
- Faculty of Medicine, and,British Columbia Centre for Excellence in HIV/AIDS, Providence Health Care, Vancouver, British Columbia, Canada
| | - Marianne Harris
- Faculty of Medicine, and,British Columbia Centre for Excellence in HIV/AIDS, Providence Health Care, Vancouver, British Columbia, Canada
| | - Wan Lam
- British Columbia Cancer, University of British Columbia, Vancouver, British Columbia, Canada; and
| | | | - Julio Montaner
- Faculty of Medicine, and,British Columbia Centre for Excellence in HIV/AIDS, Providence Health Care, Vancouver, British Columbia, Canada
| | - S. F. Paul Man
- Centre for Heart Lung Innovation, St. Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada;,Division of Respiratory Medicine, Department of Medicine
| | - Don D. Sin
- Centre for Heart Lung Innovation, St. Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada;,Division of Respiratory Medicine, Department of Medicine
| | - Janice M. Leung
- Centre for Heart Lung Innovation, St. Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada;,Division of Respiratory Medicine, Department of Medicine
| |
Collapse
|
30
|
Armstrong ND, Irvin MR, Haley WE, Blinka MD, Kamin Mukaz D, Patki A, Rutherford Siegel S, Shalev I, Durda P, Mathias RA, Walston JD, Roth DL. Telomere shortening and the transition to family caregiving in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study. PLoS One 2022; 17:e0268689. [PMID: 35657918 PMCID: PMC9165822 DOI: 10.1371/journal.pone.0268689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
Telomere length (TL) is widely studied as a possible biomarker for stress-related cellular aging and decreased longevity. There have been conflicting findings about the relationship between family caregiving stress and TL. Several initial cross-sectional studies have found associations between longer duration of caregiving or perceived stressfulness of caregiving and shortened TL, suggesting that caregiving poses grave risks to health. Previous reviews have suggested the need for longitudinal methods to investigate this topic. This study examined the association between the transition to family caregiving and change in TL across ~9 years. Data was utilized from the Caregiving Transitions Study, an ancillary study to the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study. TL was assayed using qPCR and analyzed as the telomere-to-single copy gene ratio for each participant at baseline and follow-up. General linear models examined the association between caregiving status and the change in TL for 208 incident caregivers and 205 controls, as well as associations between perceived stress and TL among caregivers. No association was found between TL change and caregiving (p = 0.494), and fully adjusted models controlling for health and socioeconomic factors did not change the null relationship (p = 0.305). Among caregivers, no association was found between perceived caregiving stress and change in TL (p = 0.336). In contrast to earlier cross-sectional studies, this longitudinal, population-based study did not detect a significant relationship between the transition into a family caregiving role and changes in TL over time. Given the widespread citation of previous findings suggesting that caregiving shortens telomeres and places caregivers at risk of early mortality, these results demonstrate the potential need of a more balanced narrative about caregiving.
Collapse
Affiliation(s)
- Nicole D. Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - William E. Haley
- School of Aging Studies, University of South Florida, Tampa, FL, United States of America
| | - Marcela D. Blinka
- Center on Aging and Health, Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Debora Kamin Mukaz
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Sue Rutherford Siegel
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States of America
| | - Idan Shalev
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, United States of America
| | - Peter Durda
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Rasika A. Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States of America
| | - Jeremy D. Walston
- Center on Aging and Health, Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD, United States of America
| | - David L. Roth
- Center on Aging and Health, Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
31
|
Bountziouka V, Nelson CP, Codd V, Wang Q, Musicha C, Allara E, Kaptoge S, Di Angelantonio E, Butterworth AS, Thompson JR, Curtis EM, Wood AM, Danesh JN, Harvey NC, Cooper C, Samani NJ. Association of shorter leucocyte telomere length with risk of frailty. J Cachexia Sarcopenia Muscle 2022; 13:1741-1751. [PMID: 35297226 PMCID: PMC9178164 DOI: 10.1002/jcsm.12971] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Frailty is a multidimensional syndrome of decline that affects multiple systems and predisposes to adverse health outcomes. Although chronological age is the major risk factor, inter-individual variation in risk is not fully understood. Leucocyte telomere length (LTL), a proposed marker of biological age, has been associated with risk of many diseases. We sought to determine whether LTL is associated with risk of frailty. METHODS We utilized cross-sectional data from 441 781 UK Biobank participants (aged 40-69 years), with complete data on frailty indicators and LTL. Frailty was defined as the presence of at least three of five indicators: weaker grip strength, slower walking pace, weight loss in the past year, lower physical activity, and exhaustion in the past 2 weeks. LTL was measured using a validated qPCR method and reported as a ratio of the telomere repeat number (T) to a single-copy gene (S) (T/S ratio). Association of LTL with frailty was evaluated using adjusted (chronological age, sex, deprivation, smoking, alcohol intake, body mass index, and multimorbidity) multinomial and ordinal regression models, and results are presented as relative risk (RRR) or odds ratios (OR), respectively, alongside the 95% confidence interval (CI). Mendelian randomization (MR), using 131 genetic variants associated with LTL, was used to assess if the association of LTL with frailty was causal. RESULTS Frail participants (4.6%) were older (median age difference (95% CI): 3 (2.5; 3.5) years, P = 2.73 × 10-33 ), more likely to be female (61%, P = 1.97 × 10-129 ), and had shorter LTL (-0.13SD vs. 0.03SD, P = 5.43 × 10-111 ) than non-frail. In adjusted analyses, both age and LTL were associated with frailty (RRR = 1.03 (95% CI: 1.02; 1.04) per year of older chronological age, P = 3.99 × 10-12 ; 1.10 (1.08; 1.11) per SD shorter LTL, P = 1.46 × 10-30 ). Within each age group (40-49, 50-59, 60-69 years), the prevalence of frailty was about 33% higher in participants with shorter (-2SD) versus longer telomeres (+2SD). MR analysis showed an association of LTL with frailty that was directionally consistent with the observational association, but not statistically significant (MR-Median: OR (95% CI): 1.08 (0.98; 1.19) per SD shorter LTL, P = 0.13). CONCLUSIONS Inter-individual variation in LTL is associated with the risk of frailty independently of chronological age and other risk factors. Our findings provide evidence for an additional biological determinant of frailty.
Collapse
Affiliation(s)
- Vasiliki Bountziouka
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Christopher P. Nelson
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Veryan Codd
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Qingning Wang
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Crispin Musicha
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| | - Elias Allara
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of CambridgeCambridgeUK
| | - Stephen Kaptoge
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of CambridgeCambridgeUK
- British Heart Foundation Centre of Research ExcellenceUniversity of CambridgeCambridgeUK
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of CambridgeCambridgeUK
- British Heart Foundation Centre of Research ExcellenceUniversity of CambridgeCambridgeUK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of CambridgeCambridgeUK
| | - Adam S. Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of CambridgeCambridgeUK
- British Heart Foundation Centre of Research ExcellenceUniversity of CambridgeCambridgeUK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of CambridgeCambridgeUK
| | | | | | - Angela M. Wood
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of CambridgeCambridgeUK
- British Heart Foundation Centre of Research ExcellenceUniversity of CambridgeCambridgeUK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of CambridgeCambridgeUK
| | - John N. Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of CambridgeCambridgeUK
- British Heart Foundation Centre of Research ExcellenceUniversity of CambridgeCambridgeUK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of CambridgeCambridgeUK
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeHinxtonUK
| | - Nicholas C. Harvey
- MRC Lifecourse Epidemiology UnitUniversity of SouthamptonSouthamptonUK
- NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology UnitUniversity of SouthamptonSouthamptonUK
- NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
- NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Nilesh J. Samani
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUK
| |
Collapse
|
32
|
Isaevska E, Fiano V, Asta F, Stafoggia M, Moirano G, Popovic M, Pizzi C, Trevisan M, De Marco L, Polidoro S, Gagliardi L, Rusconi F, Brescianini S, Nisticò L, Stazi MA, Ronfani L, Porta D, Richiardi L. Prenatal exposure to PM 10 and changes in DNA methylation and telomere length in cord blood. ENVIRONMENTAL RESEARCH 2022; 209:112717. [PMID: 35063426 DOI: 10.1016/j.envres.2022.112717] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/06/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Air pollution exposure in pregnancy can cause molecular level alterations that might influence later disease susceptibility. OBJECTIVES We investigated DNA methylation (DNAm) and telomere length (TL) in the cord blood in relation to gestational PM10 exposure and explored potential gestational windows of susceptibility. METHODS Cord blood epigenome-wide DNAm (N = 384) and TL (N = 500) were measured in children of the Italian birth cohort Piccolipiù, using the Infinium Methylation EPIC BeadChip and qPCR, respectively. PM10 daily exposure levels, based on maternal residential address, were estimated for different gestational periods using models based on satellite data. Epigenome-wide analysis to identify differentially methylated probes (DMPs) and regions (DMRs) was conducted, followed by a pathway analysis and replication analysis in an second Piccolipiù dataset. Distributed lag models (DLMs) using weekly exposures were used to study the association of PM10 exposure across pregnancy with telomere length, as well as with the DMPs that showed robust associations. RESULTS Gestational PM10 exposure was associated with the DNA methylation of more than 250 unique DMPs, most of them identified in early gestation, and 1 DMR. Out of 151 DMPs available in the replication dataset, ten DMPs showed robust associations: eight were associated with exposure during early gestation and 2 with exposure during the whole pregnancy. These exposure windows were supported by the DLM analysis. The PM10 exposure between 15th and 20th gestational week seem to be associated with shorter telomeres at birth, while exposure between 24th and 29th was associated with longer telomeres. DISCUSSION The early pregnancy period is a potential critical window during which PM10 exposure can influence cord blood DNA methylation. The results from the TL analysis were consistent with previous findings and merit further exploration in future studies. The study underlines the importance of considering gestational windows outside of the predefined trimesters that may not always overlap with biologically relevant windows of exposure.
Collapse
Affiliation(s)
- Elena Isaevska
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| | - Valentina Fiano
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| | - Federica Asta
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy.
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy.
| | - Giovenale Moirano
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| | - Maja Popovic
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| | - Costanza Pizzi
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| | - Morena Trevisan
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| | - Laura De Marco
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| | - Silvia Polidoro
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy; 5MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College, London, UK.
| | - Luigi Gagliardi
- Division of Neonatology and Pediatrics, Ospedale Versilia, Viareggio, AUSL Toscana Nord Ovest, Pisa, Italy.
| | - Franca Rusconi
- Unit of Epidemiology, Meyer Children's University Hospital, Florence, Italy; Department of Mother and Child Health, Azienda USL Toscana Nord Ovest, Pisa, Italy.
| | - Sonia Brescianini
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Lorenza Nisticò
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Maria Antonietta Stazi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Luca Ronfani
- Clinical Epidemiology and Public Health Research Unit, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy.
| | - Daniela Porta
- Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Rome, Italy.
| | - Lorenzo Richiardi
- Department of Medical Sciences, University of Turin, CPO-Piemonte, Turin, Italy.
| |
Collapse
|
33
|
Polho GB, Cardillo GM, Kerr DS, Chile T, Gattaz WF, Forlenza OV, Brentani HP, De-Paula VJ. Antipsychotics preserve telomere length in peripheral blood mononuclear cells after acute oxidative stress injury. Neural Regen Res 2022; 17:1156-1160. [PMID: 34558545 PMCID: PMC8552857 DOI: 10.4103/1673-5374.324852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 05/12/2021] [Indexed: 11/04/2022] Open
Abstract
Antipsychotics may prolong or retain telomere length, affect mitochondrial function, and then affect the metabolism of nerve cells. To validate the hypothesis that antipsychotics can prolong telomere length after oxidative stress injury, leukocytes from healthy volunteers were extracted using Ficoll-Histopaque density gradient. The mononuclear cells layer was resuspended in cell culture medium. Oxidative stress was induced with hydrogen peroxide in cultured leukocytes. Four days later, leukocytes were treated with aripiprazole, haloperidol or clozapine for 7 days. Real-time PCR revealed that treatments with aripiprazole and haloperidol increased the telomere length by 23% and 20% in peripheral blood mononuclear cells after acute oxidative stress injury. These results suggest that haloperidol and aripiprazole can reduce the damage to telomeres induced by oxidative stress. The experiment procedure was approved by the Ethics Committee of Faculty of Medicine of the University of São Paulo (FMUSP/CAAE approval No. 52622616.8.0000.0065).
Collapse
Affiliation(s)
- Gabriel B. Polho
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Giancarlo M. Cardillo
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Daniel S. Kerr
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Thais Chile
- Laboratório de Psicobiologia (LIM-23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Wagner F. Gattaz
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Orestes V. Forlenza
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Helena P. Brentani
- Laboratório de Psicobiologia (LIM-23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| | - Vanessa J. De-Paula
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
- Laboratório de Psicobiologia (LIM-23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, SP, Brasil
| |
Collapse
|
34
|
Anderson JJ, Susser E, Arbeev KG, Yashin AI, Levy D, Verhulst S, Aviv A. Telomere-length dependent T-cell clonal expansion: A model linking ageing to COVID-19 T-cell lymphopenia and mortality. EBioMedicine 2022; 78:103978. [PMID: 35367774 PMCID: PMC8970968 DOI: 10.1016/j.ebiom.2022.103978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Severe COVID-19 T-cell lymphopenia is more common among older adults and entails poor prognosis. Offsetting the decline in T-cell count during COVID-19 demands fast and massive T-cell clonal expansion, which is telomere length (TL)-dependent. METHODS We developed a model of TL-dependent T-cell clonal expansion capacity with age and virtually examined the relation of T-cell clonal expansion with COVID-19 mortality in the general population. FINDINGS The model shows that an individual with average hematopoietic cell TL (HCTL) at age twenty years maintains maximal T-cell clonal expansion capacity until the 6th decade of life when this capacity rapidly declines by more than 90% over the next ten years. The collapse in the T-cell clonal expansion capacity coincides with the steep increase in COVID-19 mortality with age. INTERPRETATION Short HCTL might increase vulnerability of many older adults, and some younger individuals with inherently short HCTL, to COVID-19 T-cell lymphopenia and severe disease. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- James J. Anderson
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA,Corresponding author.
| | - Ezra Susser
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA,New York State Psychiatric Institute, New York, NY 10032, USA
| | - Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27705, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 27705, USA,The Framingham Heart Study, Framingham, MA 01702, USA
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherland
| | - Abraham Aviv
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
35
|
Shu MJ, Li J, Zhu YC. Genetically predicted telomere length and multiple sclerosis. Mult Scler Relat Disord 2022; 60:103731. [PMID: 35339005 DOI: 10.1016/j.msard.2022.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Previous epidemiological studies have indicated a role for telomere length in multiple sclerosis (MS) severity and phenotype. However, these studies failed to establish the causality between telomere length and MS susceptibility. Hence, we performed two-sample Mendelian randomization (MR) analysis to explore the causal relationship between telomere length and MS susceptibility. METHODS We used data of genetic variants associated with leukocyte telomere length as instrumental variables (IVs), which was identified from the largest and latest genome-wide association study (GWAS) from UK Biobank (UKB) with 472,174 participants. Summary data of MS was obtained from the International Multiple Sclerosis Genetics Consortium. We performed two-sample MR analyses using the inverse-variance weighted method as the primary approach. Other MR approaches, including the MR-Egger, the inverse variance weighted (multiplicative random effects), weighted median, simple median, weighted mode-based methods, and Causal Analysis Using Summary Effect estimates (CAUSE), were also conducted to detect the result robustness. RESULTS The genetic liability to longer telomere length was associated with a higher risk of MS susceptibility (odds ratio [OR] per one-SD telomere length, 1.91; 95% confidence interval [CI], 1.48-2.47; P = 8.04 × 10-7). The results remained consistent across multiple sensitivity analyses. CONCLUSIONS Our study supports the causal relationship between longer telomere length and increased risk of MS susceptibility.
Collapse
Affiliation(s)
- Mei-Jun Shu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, No.1 Shuaifuyuan, Wangfujing, Beijing 10073, China
| | - Jiarui Li
- Department of Medical Oncology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 10073, China
| | - Yi-Cheng Zhu
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, No.1 Shuaifuyuan, Wangfujing, Beijing 10073, China.
| |
Collapse
|
36
|
Pan D, Shao Y, Song Y, Huang D, Liu S, Zeng X, Liang J, Juan Jennifer Tan H, Qiu X. Association between maternal per- and polyfluoroalkyl substance exposure and newborn telomere length: Effect modification by birth seasons. ENVIRONMENT INTERNATIONAL 2022; 161:107125. [PMID: 35183942 DOI: 10.1016/j.envint.2022.107125] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Telomere length (TL) is an important biomarker of biological aging and disease that may be affected by prenatal exposure to environmental pollutants. Birth seasons have been linked to reproductive and immune-related diseases. Prenatal exposure to per- and polyfluoroalkyl substance (PFAS) has been associated with adverse birth outcomes, but the effects of PFAS and birth seasons on newborn TL are poorly understood. OBJECTIVES To explore the individual and combined effects of maternal PFAS exposure on newborn TL, with exploration of the interaction between PFAS and birth seasons on newborn TL. METHODS Between June 2015 and May 2018, a total of 499 mother-newborn pairs were recruited for a birth cohort study in Guangxi, China. Maternal blood samples were collected during pregnancy. Nine PFASs were measured by ultraperformance liquid chromatography-mass spectrometry. Newborn TL was assessed using quantitative real-time polymerase chain reaction. Modeling newborn TL as the outcome, multivariable linear regressions were performed for individual PFAS exposures, and Bayesian Kernel Machine Regressions were performed for PFAS mixtures. Furthermore, interaction analyses were conducted to evaluate the effect modification by birth seasons in these relationships. RESULTS For both single and multipollutant models, PFASs exposure were inversely associated with newborn TL, although none of the relationships were significant. The mixture of PFASs showed a potential positive trend of combined effect on newborn TL but non-statistically significant. Each ln-transformed unit concentration increase in PFOA was related to a 20.41% (95% CI: -30.44%, -8.93%) shorter TL in spring-born infants but not in those born in other birth seasons. Mothers in the middle and highest tertiles of PFOA exposure had 11.69% and 10.71% shorter TLs in spring-born infants, respectively. CONCLUSION Maternal PFAS exposure showed little association with newborn TL. The results suggested potential effect modification by birth season on the association between PFOA exposure and newborn TL.
Collapse
Affiliation(s)
- Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yantao Shao
- The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi, China
| | - Yanye Song
- The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shun Liu
- Department of Child and Adolescent Health & Maternal and Child Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Hui Juan Jennifer Tan
- Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
37
|
Debbarma S, Acharya PC. Targeting G-Quadruplex Dna For Cancer Chemotherapy. Curr Drug Discov Technol 2022; 19:e140222201110. [PMID: 35156574 DOI: 10.2174/1570163819666220214115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/24/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022]
Abstract
The self-association of DNA formed by Hoogsteen hydrogen bonding comprises several layers of four guanine or G-tetrads or G4s. The distinct feature of G4s, such as the G-tetrads and loops, qualify structure-selective recognition by small molecules and various ligands and can act as potential anticancer therapeutic molecules. The G4 selective-ligands, can influence gene expression by targeting a nucleic acid structure rather than sequence. Telomere G4 can be targeted for cancer treatment by small molecules inhibiting the telomerase activity whereas c-MYC is capable of controlling transcription, can be targeted to influence transcription. The k-RAS is one of the most frequently encountered oncogenic driver mutations in pancreatic, colorectal, and lung cancers. The k-RAS oncogene plays important role in acquiring and increasing the drug resistance and can also be directly targeted by small molecules to combat k-RAS mutant tumors. Modular G4 ligands with different functional groups, side chains and rotatable bonds as well as conformation affect the binding affinity/selectivity in cancer chemotherapeutic interventions. These modular G4 ligands act by targeting the diversity of G4 loops and groves and assists to develop more drug-like compounds with selectivity. In this review, we present the recent research on synthetic G4 DNA-interacting ligands as an approach toward the discovery of target specific anticancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Sumanta Debbarma
- Department of Pharmacy, Tripura University, Suryamaninagar-799022, India
| | | |
Collapse
|
38
|
Rai S, Badarinath ARS, George A, Sitaraman S, Bronson SC, Anandt S, Babu KT, Moses A, Saraswathy R, Hande MP. Association of telomere length with diabetes mellitus and idiopathic dilated cardiomyopathy in a South Indian population: A pilot study. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 874-875:503439. [PMID: 35151422 DOI: 10.1016/j.mrgentox.2021.503439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Telomere shortening has been associated with ageing and with many age-related diseases including cancer, coronary artery disease, heart failure and diabetes. We sought to investigate the link between telomere shortening and age-related diseases like type 2 diabetes mellitus (DM) (without any complications: DM; with neuropathic complication: DN) and idiopathic dilated cardiomyopathy (IDCM) in south Indian population. We compared telomere lengths of blood lymphocytes taken from patients with associated age-related diseases, namely DM (n = 47), DN (n = 52) and IDCM (n = 34) and controls (n = 46). In addition, we evaluated the relationship between echocardiographic left ventricular ejection fraction (LVEF), left ventricular end diastolic and systolic diameters (LVEDd and LVESd) and telomere length in IDCM patients. Telomere length negatively correlated with age in the cohorts with diabetes and IDCM, and in controls. Average telomere length in diabetes and IDCM patients was significantly shorter than that of controls either before or after adjustments for age and sex. Duration of diabetes in patients with type 2 diabetes did not correlate with telomere length. No correlation was found between the length of telomeres and echocardiography parameters like LVEF, LVEDd and LVESd in IDCM patients. Though echocardiographic characteristics of IDCM did not correlate with telomere length, telomere shortening was found to be accelerated in diabetes (both DM and DN) and IDCM in a south Indian population. Neuropathic complication in diabetes had no effect on telomere shortening. While telomere shortening is a cause or a consequence of diabetic and cardiac pathology remains further investigation, the current study substantiates the usefulness of telomere length measurements as a marker in conjunction with other biochemical markers of age-related diseases.
Collapse
Affiliation(s)
- Shivam Rai
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - A R S Badarinath
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Alex George
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Sneha Sitaraman
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Stephen Charles Bronson
- Institute of Diabetology, Madras Medical College & Rajiv Gandhi Government General Hospital, Chennai, Tamil Nadu, India
| | | | - K Thirumal Babu
- Heartline Clinic and Research Centre, Vellore, Tamil Nadu, India
| | - Anand Moses
- Institute of Diabetology, Madras Medical College & Rajiv Gandhi Government General Hospital, Chennai, Tamil Nadu, India
| | - Radha Saraswathy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| | - M Prakash Hande
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
39
|
Taub MA, Conomos MP, Keener R, Iyer KR, Weinstock JS, Yanek LR, Lane J, Miller-Fleming TW, Brody JA, Raffield LM, McHugh CP, Jain D, Gogarten SM, Laurie CA, Keramati A, Arvanitis M, Smith AV, Heavner B, Barwick L, Becker LC, Bis JC, Blangero J, Bleecker ER, Burchard EG, Celedón JC, Chang YPC, Custer B, Darbar D, de las Fuentes L, DeMeo DL, Freedman BI, Garrett ME, Gladwin MT, Heckbert SR, Hidalgo BA, Irvin MR, Islam T, Johnson WC, Kaab S, Launer L, Lee J, Liu S, Moscati A, North KE, Peyser PA, Rafaels N, Seidman C, Weeks DE, Wen F, Wheeler MM, Williams LK, Yang IV, Zhao W, Aslibekyan S, Auer PL, Bowden DW, Cade BE, Chen Z, Cho MH, Cupples LA, Curran JE, Daya M, Deka R, Eng C, Fingerlin TE, Guo X, Hou L, Hwang SJ, Johnsen JM, Kenny EE, Levin AM, Liu C, Minster RL, Naseri T, Nouraie M, Reupena MS, Sabino EC, Smith JA, Smith NL, Lasky-Su J, Taylor JG, Telen MJ, Tiwari HK, Tracy RP, White MJ, Zhang Y, Wiggins KL, Weiss ST, Vasan RS, Taylor KD, Sinner MF, Silverman EK, Shoemaker MB, Sheu WHH, Sciurba F, Schwartz DA, Rotter JI, Roden D, Redline S, Raby BA, Psaty BM, Peralta JM, Palmer ND, Nekhai S, Montgomery CG, Mitchell BD, Meyers DA, McGarvey ST, Mak AC, Loos RJ, Kumar R, Kooperberg C, Konkle BA, Kelly S, Kardia SL, Kaplan R, He J, Gui H, Gilliland FD, Gelb BD, Fornage M, Ellinor PT, de Andrade M, Correa A, Chen YDI, Boerwinkle E, Barnes KC, Ashley-Koch AE, Arnett DK, Albert C, Laurie CC, Abecasis G, Nickerson DA, Wilson JG, Rich SS, Levy D, Ruczinski I, Aviv A, Blackwell TW, Thornton T, O’Connell J, Cox NJ, Perry JA, Armanios M, Battle A, Pankratz N, Reiner AP, Mathias RA. Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed. CELL GENOMICS 2022; 2:S2666-979X(21)00105-1. [PMID: 35530816 PMCID: PMC9075703 DOI: 10.1016/j.xgen.2021.100084] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 09/03/2021] [Accepted: 12/10/2021] [Indexed: 01/16/2023]
Abstract
Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value <5×10-9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes.
Collapse
Affiliation(s)
- Margaret A. Taub
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthew P. Conomos
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Rebecca Keener
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Kruthika R. Iyer
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joshua S. Weinstock
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Lisa R. Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John Lane
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Tyne W. Miller-Fleming
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Caitlin P. McHugh
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Deepti Jain
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Stephanie M. Gogarten
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Cecelia A. Laurie
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Ali Keramati
- Department of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Marios Arvanitis
- Department of Medicine, Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Albert V. Smith
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Benjamin Heavner
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Lucas Barwick
- LTRC Data Coordinating Center, The Emmes Company, LLC, Rockville, MD, USA
| | - Lewis C. Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Eugene R. Bleecker
- Department of Medicine, Division of Genetics, Genomics, and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yen Pei C. Chang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Dawood Darbar
- Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Lisa de las Fuentes
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Barry I. Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Melanie E. Garrett
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Mark T. Gladwin
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Bertha A. Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Talat Islam
- Division of Environmental Health, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - W. Craig Johnson
- Department of Biostatistics, Collaborative Health Studies Coordinating Center, University of Washington, Seattle, WA, USA
| | - Stefan Kaab
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilian’s University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Lenore Launer
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jiwon Lee
- Department of Medicine, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| | - Simin Liu
- Department of Epidemiology and Brown Center for Global Cardiometabolic Health, Brown University, Providence, RI, USA
| | - Arden Moscati
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kari E. North
- Department of Epidemiology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Patricia A. Peyser
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Nicholas Rafaels
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | | | - Daniel E. Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fayun Wen
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Marsha M. Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - L. Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Ivana V. Yang
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Paul L. Auer
- Zilber School of Public Health, University of Wisconsin, Milwaukee, Milwaukee, WI, USA
| | - Donald W. Bowden
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Brian E. Cade
- Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Zhanghua Chen
- Division of Environmental Health, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - L. Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- The National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA, USA
| | - Joanne E. Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Michelle Daya
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Ranjan Deka
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Tasha E. Fingerlin
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
- Department of Biostatistics and Informatics, University of Colorado, Denver, Aurora, CO, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA
| | - Shih-Jen Hwang
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jill M. Johnsen
- Bloodworks Northwest Research Institute, Seattle, WA, USA
- University of Washington, Department of Medicine, Seattle, WA, USA
| | - Eimear E. Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Albert M. Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Chunyu Liu
- The National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Ryan L. Minster
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Take Naseri
- Ministry of Health, Government of Samoa, Apia, Samoa
- Department of Epidemiology & International Health Institute, School of Public Health, Brown University, Providence, RI, USA
| | - Mehdi Nouraie
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Ester C. Sabino
- Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jennifer A. Smith
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Nicholas L. Smith
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - James G. Taylor
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Marilyn J. Telen
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, NC, USA
- Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, NC, USA
| | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Russell P. Tracy
- Departments of Pathology & Laboratory Medicine and Biochemistry, Larrner College of Medicine, University of Vermont, Colchester, VT, USA
| | - Marquitta J. White
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerri L. Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Scott T. Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ramachandran S. Vasan
- The National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Moritz F. Sinner
- Department of Medicine I, University Hospital Munich, Ludwig-Maximilian’s University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - M. Benjamin Shoemaker
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wayne H.-H. Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Frank Sciurba
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A. Schwartz
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Departments of Pediatrics and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Daniel Roden
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Susan Redline
- Division of Sleep Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Benjamin A. Raby
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Pulmonary Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA
| | - Juan M. Peralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Courtney G. Montgomery
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Braxton D. Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Deborah A. Meyers
- Department of Medicine, Division of Genetics, Genomics, and Precision Medicine, University of Arizona, Tucson, AZ, USA
- Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
| | - Stephen T. McGarvey
- Department of Epidemiology & International Health Institute, School of Public Health, Brown University, Providence, RI, USA
| | | | - Angel C.Y. Mak
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajesh Kumar
- Division of Allergy and Clinical Immunology, The Ann and Robert H. Lurie Children’s Hospital of Chicago, and Department of Pediatrics, Northwestern University, Chicago, IL, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Barbara A. Konkle
- Bloodworks Northwest Research Institute, Seattle, WA, USA
- University of Washington, Department of Medicine, Seattle, WA, USA
| | - Shannon Kelly
- Vitalant Research Institute, San Francisco, CA, USA
- UCSF Benioff Children’s Hospital, Oakland, CA, USA
| | - Sharon L.R. Kardia
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Robert Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jiang He
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hongsheng Gui
- Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Frank D. Gilliland
- Division of Environmental Health, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute, Departments of Pediatrics and Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patrick T. Ellinor
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Adolfo Correa
- Jackson Heart Study and Departments of Medicine and Population Health Science, Jackson, MS, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kathleen C. Barnes
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Allison E. Ashley-Koch
- Department of Medicine and Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Christine Albert
- Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | | | | | - Cathy C. Laurie
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Goncalo Abecasis
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MI, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Daniel Levy
- The National Heart, Lung, and Blood Institute, Boston University’s Framingham Heart Study, Framingham, MA, USA
- The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Abraham Aviv
- Center of Human Development and Aging, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Thomas W. Blackwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Timothy Thornton
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jeff O’Connell
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nancy J. Cox
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James A. Perry
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Armanios
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
- Departments of Computer Science and Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Alexander P. Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Rasika A. Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Guzonjić A, Sopić M, Ostanek B, Kotur-Stevuljević J. Telomere length as a biomarker of aging and diseases. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-36376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
As research related to healthspan and lifespan has become a hot topic, the necessity for a reliable and practical biomarker of aging (BoA), which can provide information about mortality and morbidity risk, along with remaining life expectancy, has increased. The chromosome terminus non-coding protective structure that prevents genomic instability is called a telomere. The continual shortening of telomeres, which affects their structure as well as function, is a hallmark of agedness. The aforementioned process is a potential cause of age-related diseases (ARDs), leading to a bad prognosis and a low survival rate, which compromise health and longevity. Hence, studies scrutinizing the BoAs often include telomere length (TL) as a prospective candidate. The results of these studies suggest that TL measurement can only provide an approximate appraisal of the aging rate, and its implementation into clinical practice and routine use as a BoA has many limitations and challenges. Nevertheless, measuring TL while determining other biomarkers can be used to assess biological age. This review focuses on the importance of telomeres in health, senescence, and diseases, as well as on summarizing the results and conclusions of previous studies evaluating TL as a potential BoA.
Collapse
|
41
|
Xia K, Zhang L, Zhang G, Wang Y, Huang T, Fan D. Leukocyte telomere length and amyotrophic lateral sclerosis: a Mendelian randomization study. Orphanet J Rare Dis 2021; 16:508. [PMID: 34906191 PMCID: PMC8670150 DOI: 10.1186/s13023-021-02135-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/28/2021] [Indexed: 11/30/2022] Open
Abstract
Background Observational studies have suggested that telomere length is associated with amyotrophic lateral sclerosis (ALS). However, whether this association is causal remains unclear. In this study, we aimed to explore the causal relationship between leukocyte telomere length (LTL) and ALS by a two-sample Mendelian randomization (MR) approach. Single-nucleotide polymorphisms (SNPs) for LTL were identified through high-quality genome-wide association studies (GWASs). The ALS GWAS summary data (20,806 cases; 59,804 controls) with largest sample size to date was obtained. We adopted the inverse variance weighted (IVW) method to examine the effect of LTL on ALS and used the weighted median method, simple median method, MR Egger method and MR-PRESSO method to perform sensitivity analyses. Results We found that genetically determined increased LTL was inversely associated with the risk of ALS (odds ratio (OR) = 0.846, 95% confidence interval (CI): 0.744–0.962, P = 0.011), which was mainly driven by rs940209 in the OBFC1 gene, suggesting a potential effect of OBFC1 on ALS. The results were further confirmed by sensitivity analysis with the MR Egger method (OR = 0.647, 95% CI = 0.447–0.936, P = 0.050). Analyses by the weighted median method (OR = 0.893, P = 0.201) and simple median method (OR = 0.935, P = 0.535) also showed a similar trend. The MR Egger analysis did not suggest directional pleiotropy, with an intercept of 0.025 (P = 0.168). Neither the influence of instrumental outliers nor heterogeneity was found. Conclusions Our results suggest that genetically predicted increased LTL has a causal relationship with a lower risk of ALS. Protecting against telomere loss may be of great importance in the prevention and treatment of ALS. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-02135-2.
Collapse
Affiliation(s)
- Kailin Xia
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Linjing Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Gan Zhang
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Yajun Wang
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China. .,Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China. .,Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China.
| |
Collapse
|
42
|
Gorenjak V, Petrelis AM, Stathopoulou MG, Toupance S, Kumar S, Labat C, Masson C, Murray H, Lamont J, Fitzgerald P, Benetos A, Visvikis-Siest S. A genetic determinant of VEGF-A levels is associated with telomere attrition. Aging (Albany NY) 2021; 13:23517-23526. [PMID: 34661551 PMCID: PMC8580333 DOI: 10.18632/aging.203636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/03/2021] [Indexed: 12/19/2022]
Abstract
Telomere length (TL) is a hallmark of cellular aging and is associated with chronic diseases development. The vascular endothelial growth factor A (VEGF-A), a potent angiogenesis factor, is implicated in the pathophysiology of many chronic diseases. The aim of the present study was to investigate the associations between VEGF-A and TL. TL in leukocytes (LTL) and skeletal muscle (MTL) were measured, 10 VEGF-related polymorphisms genotyped, and VEGF-A plasma concentrations determined in 402 individuals from the TELARTA cohort. LTL/MTL ratio was calculated as an estimate of lifelong TL attrition. Associations between VEGF-A variants and levels, and TL parameters were investigated. We identified one significant association between the minor allele (T) of rs6993770 variant and LTL/MTL ratio (P=0.001143, β=0.0148, SE=0.004516). The rs6993770 is an intronic variant of the ZFPM2 gene, which is involved in haematopoiesis and the identified association with increased telomere attrition could be due to increased haematopoiesis. No significant epistatic interaction was identified, and no association was found between levels of VEGF-A and any of assessed phenotypes. We identified a potential common genetic regulation between VEGF-A and telomere length attrition that could be explained by mechanisms of increased hematopoiesis and production of platelets. VEGF-A and TL could play an important role in personalized medicine of chronic diseases and identification of molecular links between them can promote the understanding of their complex implications.
Collapse
Affiliation(s)
| | | | | | - Simon Toupance
- Université de Lorraine, Inserm, DCAC, Nancy F-54000, France
| | - Satish Kumar
- Université de Lorraine, IGE-PCV, Nancy F-54000, France
| | - Carlos Labat
- Université de Lorraine, Inserm, DCAC, Nancy F-54000, France
| | | | - Helena Murray
- Randox Laboratories Limited, Crumlin, Co. Antrim BT29 4QY, Northern Ireland, United Kingdom
| | - John Lamont
- Randox Laboratories Limited, Crumlin, Co. Antrim BT29 4QY, Northern Ireland, United Kingdom
| | - Peter Fitzgerald
- Randox Laboratories Limited, Crumlin, Co. Antrim BT29 4QY, Northern Ireland, United Kingdom
| | - Athanase Benetos
- Université de Lorraine, Inserm, DCAC, Nancy F-54000, France.,Université de Lorraine, CHRU-Nancy, Pôle "Maladies du Vieillissement, Gérontologie et Soins Palliatifs", Nancy F-54000, France
| | | | | |
Collapse
|
43
|
Parolini M, De Felice B, Mondellini S, Caprioli M, Possenti CD, Rubolini D. Prenatal exposure to triclosan induced brain telomere shortening in a wild bird species. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103718. [PMID: 34329803 DOI: 10.1016/j.etap.2021.103718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Exposure to the antimicrobial agent Triclosan (TCS) induces oxidative stress in diverse organisms, including birds. However, whether TCS-induced oxidative stress effectively translates into detrimental effects is still unclear. The present study examined whether prenatal TCS exposure induces oxidative stress and telomere shortening in the brain and the liver of near-term embryos of the yellow-legged gull (Larus michahellis). Prenatal TCS exposure caused a significant overproduction of reactive oxygen species (ROS) in the brain, but no oxidative damage occurred. Telomeres of TCS-exposed embryos had brain telomeres 30 % shorter compared to controls, probably because the relatively modest antioxidant defenses of this organ during prenatal development cannot counteract the impact of the TCS-induced ROS. No telomere shortening was observed in the liver. Our results demonstrated that prenatal exposure to TCS in wild bird species can modulate the oxidative status and induce telomere shortening in the brain of the yellow-legged gull embryos.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy.
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Simona Mondellini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy; Department of Animal Ecology I and BayCEER, University of Bayreuth, Universitaetsstraße 30, 95447, Bayreuth, Germany
| | - Manuela Caprioli
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Cristina Daniela Possenti
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Diego Rubolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
44
|
Pavanello S, Campisi M, Grassi A, Mastrangelo G, Durante E, Veronesi A, Gallucci M. Longer Leukocytes Telomere Length Predicts a Significant Survival Advantage in the Elderly TRELONG Cohort, with Short Physical Performance Battery Score and Years of Education as Main Determinants for Telomere Elongation. J Clin Med 2021; 10:3700. [PMID: 34441997 PMCID: PMC8397185 DOI: 10.3390/jcm10163700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/06/2023] Open
Abstract
Leukocyte telomere length (LTL) represents a key integrating component of the cumulative effects of environmental, lifestyle, and genetic factors. A question, however, remains on whether LTL can be considered predictive for a longer and healthier life. Within the elderly prospective TRELONG cohort (n = 612), we aimed to investigate LTL as a predictor of longevity and identify the main determinants of LTL among many different factors (physiological and lifestyle characteristics, physical performance and frailty measures, chronic diseases, biochemical measurements and apolipoprotein E genotyping). We found an ever-increasing relationship between LTL quartiles and survival. Hazard ratio analysis showed that for each unit increase in LTL and Short Physical Performance Battery (SPPB) scores, the mortality risk was reduced by 22.41% and 8.78%, respectively. Conversely, male gender, Charlson Comorbidity Index, and age threatened survival, with mortality risk growing by 74.99%, 16.57% and 8.5%, respectively. Determinants of LTL elongation were SPPB scores (OR = 1.1542; p = 0.0066) and years of education (OR = 1.0958; p = 0.0065), while male gender (OR = 0.4388; p = 0.0143) and increased Disease Count Index (OR = 0.6912; p = 0.0066) were determinants of LTL attrition. Longer LTL predicts a significant survival advantage in elderly people. By identifying determinants of LTL elongation, we provided additional knowledge that could offer a potential translation into prevention strategies.
Collapse
Affiliation(s)
- Sofia Pavanello
- Section of Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences & Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (G.M.)
- Unit of Occupational Medicine, University Hospital of Padova, 35128 Padova, Italy
| | - Manuela Campisi
- Section of Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences & Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (G.M.)
| | - Alberto Grassi
- Department of Statistical Sciences, University of Padua, 35121 Padova, Italy;
| | - Giuseppe Mastrangelo
- Section of Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences & Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (G.M.)
| | - Elisabetta Durante
- Immunohematology and Transfusional Medicine Service, Local Health Authority n. 2 Marca Trevigiana, 31100 Treviso, Italy; (E.D.); (A.V.)
| | - Arianna Veronesi
- Immunohematology and Transfusional Medicine Service, Local Health Authority n. 2 Marca Trevigiana, 31100 Treviso, Italy; (E.D.); (A.V.)
| | - Maurizio Gallucci
- Cognitive Impairment Center, Local Health Authority n. 2 Marca Trevigiana, 31100 Treviso, Italy;
- Foundation for Interdisciplinary Geriatric Research (FORGEI), 31100 Treviso, Italy
| |
Collapse
|
45
|
Zhao Y, Bai X, Jia X, Lu Y, Cheng W, Shu M, Zhu Y, Zhu L, Wang L, Shu Y, Song Y, Jin S. Age-related changes of human serum Sirtuin6 in adults. BMC Geriatr 2021; 21:452. [PMID: 34348649 PMCID: PMC8335874 DOI: 10.1186/s12877-021-02399-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/23/2021] [Indexed: 01/02/2023] Open
Abstract
Background Aging is a natural life process and with an aging population, age-related diseases (e.g. type 2 diabetes mellitus (T2DM), atherosclerosis-based cardiovascular diseases) are the primary mortality cause in older adults. Telomerase is often used as an aging biomarker. Detection and characterization of novel biomarkers can help in a more specific and sensitive identification of a person’s aging status. Also, this could help in age-related diseases early prevent, ultimately prolonging the population’s life span. Sirtuin 6 (Sirt6) - a member of the Sirtuins NAD+-dependent histone deacetylases family - is mainly intracellularly expressed, and is reported to be involved in the regulation of aging and aging-related diseases. Whether serum Sirt6 is correlated with aging and could be used as an aging biomarker is unknown. In the present study, we aimed to investigate the age-related Sirt6 changes in the serum of human adults. Methods Participants were divided into three groups according to age: 20–30 years (Young); 45–55 years (Middle-aged); and ≥ 70 years (Old). The Sirt6 and telomerase serum concentrations were determined by ELISA. The Sirt6 and human telomerase reverse transcriptase (hTERT) expression in vessels from amputated human lower limbs were analyzed using real-time quantitative PCR (RT-qPCR) and immunohistochemical staining. The relationships between variables were evaluated by Pearson correlation analysis. Results The Sirt6 and telomerase serum levels reduced with an increase in age. A similar tendency was observed for Sirt6 and hTERT in the vessel. Serum levels of Sirt6 were higher in females compared with males. Pearson’s regression analysis revealed that the Sirt6 serum level positively correlated with telomerase (r = 0.5743) and both were significantly negatively correlated with age (r = − 0.5830 and r = − 0.5993, respectively). Conclusions We reported a negative correlation between serum Sirt6 concentration and aging in human beings. Therefore, the Sirt6 serum level is a potential sex-specific aging marker.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - Xiangli Bai
- Department of Endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - Xiong Jia
- Department of Endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - Yajing Lu
- Department of Endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - Wenzhuo Cheng
- Department of Endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - Meng Shu
- Department of Endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - Yan Zhu
- Department of Endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - Lin Zhu
- Department of Endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - Li Wang
- Department of Endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - Yan Shu
- Department of Endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - Yi Song
- Department of Endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China
| | - Si Jin
- Department of Endocrinology, Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, Hubei Province, China.
| |
Collapse
|
46
|
Aviv A. Short telomeres and severe COVID-19: The connection conundrum. EBioMedicine 2021; 70:103513. [PMID: 34333235 PMCID: PMC8319607 DOI: 10.1016/j.ebiom.2021.103513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Abraham Aviv
- The Center of Human Development and Aging, New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103 USA.
| |
Collapse
|
47
|
Wang Q, Codd V, Raisi-Estabragh Z, Musicha C, Bountziouka V, Kaptoge S, Allara E, Angelantonio ED, Butterworth AS, Wood AM, Thompson JR, Petersen SE, Harvey NC, Danesh JN, Samani NJ, Nelson CP. Shorter leukocyte telomere length is associated with adverse COVID-19 outcomes: A cohort study in UK Biobank. EBioMedicine 2021; 70:103485. [PMID: 34304048 PMCID: PMC8299112 DOI: 10.1016/j.ebiom.2021.103485] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/02/2023] Open
Abstract
Background Older age is the most powerful risk factor for adverse coronavirus disease-19 (COVID-19) outcomes. It is uncertain whether leucocyte telomere length (LTL), previously proposed as a marker of biological age, is also associated with COVID-19 outcomes. Methods We associated LTL values obtained from participants recruited into UK Biobank (UKB) during 2006-2010 with adverse COVID-19 outcomes recorded by 30 November 2020, defined as a composite of any of the following: hospital admission, need for critical care, respiratory support, or mortality. Using information on 130 LTL-associated genetic variants, we conducted exploratory Mendelian randomisation (MR) analyses in UKB to evaluate whether observational associations might reflect cause-and-effect relationships. Findings Of 6775 participants in UKB who tested positive for infection with SARS-CoV-2 in the community, there were 914 (13.5%) with adverse COVID-19 outcomes. The odds ratio (OR) for adverse COVID-19 outcomes was 1·17 (95% CI 1·05-1·30; P = 0·004) per 1-SD shorter usual LTL, after adjustment for age, sex and ethnicity. Similar ORs were observed in analyses that: adjusted for additional risk factors; disaggregated the composite outcome and reduced the scope for selection or collider bias. In MR analyses, the OR for adverse COVID-19 outcomes was directionally concordant but non-significant. Interpretation Shorter LTL is associated with higher risk of adverse COVID-19 outcomes, independent of several major risk factors for COVID-19 including age. Further data are needed to determine whether this association reflects causality. Funding UK Medical Research Council, Biotechnology and Biological Sciences Research Council and British Heart Foundation.
Collapse
Affiliation(s)
- Qingning Wang
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Zahra Raisi-Estabragh
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London EC1A7BE, United Kingdom
| | - Crispin Musicha
- Department of Health Sciences, University of Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Vasiliki Bountziouka
- Department of Health Sciences, University of Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Stephen Kaptoge
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Elias Allara
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
| | - Angela M Wood
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom; Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, United Kingdom; The Alan Turing Institute, London, United Kingdom
| | - John R Thompson
- Department of Health Sciences, University of Leicester, United Kingdom
| | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, United Kingdom; Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London EC1A7BE, United Kingdom
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - John N Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom; National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom; British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom; Department of Human Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom.
| |
Collapse
|
48
|
Marasco V, Boner W, Griffiths K, Heidinger B, Monaghan P. Repeated exposure to challenging environmental conditions influences telomere dynamics across adult life as predicted by changes in mortality risk. FASEB J 2021; 35:e21743. [PMID: 34192361 DOI: 10.1096/fj.202100556r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/15/2022]
Abstract
The effects of stress exposure are likely to vary depending on life-stage and stressor. While it has been postulated that mild stress exposure may have beneficial effects, the duration of such effects and the underlying mechanisms are unclear. While the long-term effects of early-life stress are relatively well studied, we know much less about the effects of exposure in adulthood since the early- and adult-life environments are often similar. We previously reported that repeated experimental exposure to a relatively mild stressor in female zebra finches, first experienced in young adulthood, initially had no effect on mortality risk, reduced mortality in middle age, but the apparently beneficial effects disappeared in old age. We show here that this is underpinned by differences between the control and stress-exposed group in the pattern of telomere change, with stress-exposed birds showing reduced telomere loss in middle adulthood. We thereby provide novel experimental evidence that telomere dynamics play a key role linking stress resilience and aging.
Collapse
Affiliation(s)
- Valeria Marasco
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Kate Griffiths
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Britt Heidinger
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
49
|
Hackenhaar FS, Josefsson M, Adolfsson AN, Landfors M, Kauppi K, Hultdin M, Adolfsson R, Degerman S, Pudas S. Short leukocyte telomeres predict 25-year Alzheimer's disease incidence in non-APOE ε4-carriers. Alzheimers Res Ther 2021; 13:130. [PMID: 34266503 PMCID: PMC8283833 DOI: 10.1186/s13195-021-00871-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Leukocyte telomere length (LTL) has been shown to predict Alzheimer's disease (AD), albeit inconsistently. Failing to account for the competing risks between AD, other dementia types, and mortality, can be an explanation for the inconsistent findings in previous time-to-event analyses. Furthermore, previous studies indicate that the association between LTL and AD is non-linear and may differ depending on apolipoprotein E (APOE) ε4 allele carriage, the strongest genetic AD predictor. METHODS We analyzed whether baseline LTL in interaction with APOE ε4 predicts AD, by following 1306 initially non-demented subjects for 25 years. Gender- and age-residualized LTL (rLTL) was categorized into tertiles of short, medium, and long rLTLs. Two complementary time-to-event models that account for competing risks were used; the Fine-Gray model to estimate the association between the rLTL tertiles and the cumulative incidence of AD, and the cause-specific hazard model to assess whether the cause-specific risk of AD differed between the rLTL groups. Vascular dementia and death were considered competing risk events. Models were adjusted for baseline lifestyle-related risk factors, gender, age, and non-proportional hazards. RESULTS After follow-up, 149 were diagnosed with AD, 96 were diagnosed with vascular dementia, 465 died without dementia, and 596 remained healthy. Baseline rLTL and other covariates were assessed on average 8 years before AD onset (range 1-24). APOE ε4-carriers had significantly increased incidence of AD, as well as increased cause-specific AD risk. A significant rLTL-APOE interaction indicated that short rLTL at baseline was significantly associated with an increased incidence of AD among non-APOE ε4-carriers (subdistribution hazard ratio = 3.24, CI 1.404-7.462, P = 0.005), as well as borderline associated with increased cause-specific risk of AD (cause-specific hazard ratio = 1.67, CI 0.947-2.964, P = 0.07). Among APOE ε4-carriers, short or long rLTLs were not significantly associated with AD incidence, nor with the cause-specific risk of AD. CONCLUSIONS Our findings from two complementary competing risk time-to-event models indicate that short rLTL may be a valuable predictor of the AD incidence in non-APOE ε4-carriers, on average 8 years before AD onset. More generally, the findings highlight the importance of accounting for competing risks, as well as the APOE status of participants in AD biomarker research.
Collapse
Affiliation(s)
- Fernanda Schäfer Hackenhaar
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden.
- Umeå Center for Functional Brain Imaging, Umeå University, SE-90 187, Umeå, Sweden.
| | - Maria Josefsson
- Umeå Center for Functional Brain Imaging, Umeå University, SE-90 187, Umeå, Sweden
- Department of Statistics, USBE, Umeå University, SE-901 87, Umeå, Sweden
- Center for Ageing and Demographic Research, Umeå University, SE-901 87, Umeå, Sweden
| | | | - Mattias Landfors
- Department of Medical Biosciences, Pathology, Umeå University, SE-901 85, Umeå, Sweden
| | - Karolina Kauppi
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-171 77, Stockholm, Sweden
| | - Magnus Hultdin
- Department of Medical Biosciences, Pathology, Umeå University, SE-901 85, Umeå, Sweden
| | - Rolf Adolfsson
- Department of Clinical Sciences, Umeå University, SE-901 85, Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Pathology, Umeå University, SE-901 85, Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| | - Sara Pudas
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, SE-90 187, Umeå, Sweden
| |
Collapse
|
50
|
Benetos A, Lai TP, Toupance S, Labat C, Verhulst S, Gautier S, Ungeheuer MN, Perret-Guillaume C, Levy D, Susser E, Aviv A. The Nexus Between Telomere Length and Lymphocyte Count in Seniors Hospitalized With COVID-19. J Gerontol A Biol Sci Med Sci 2021; 76:e97-e101. [PMID: 33528568 PMCID: PMC7929343 DOI: 10.1093/gerona/glab026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Indexed: 12/29/2022] Open
Abstract
Profound T-cell lymphopenia is the hallmark of severe coronavirus disease 2019 (COVID-19). T-cell proliferation is telomere length (TL) dependent and telomeres shorten with age. Older COVID-19 patients, we hypothesize, are, therefore, at a higher risk of having TL-dependent lymphopenia. We measured TL by the novel Telomere Shortest Length Assay (TeSLA), and by Southern blotting (SB) of the terminal restriction fragments in peripheral blood mononuclear cells of 17 COVID-19 and 21 non-COVID-19 patients, aged 87 ± 8 (mean ± SD) and 87 ± 9 years, respectively. TeSLA tallies and measures single telomeres, including short telomeres undetected by SB. Such telomeres are relevant to TL-mediated biological processes, including cell viability and senescence. TeSLA yields 2 key metrics: the proportions of telomeres with different lengths (expressed in %) and their mean (TeSLA mTL), (expressed in kb). Lymphocyte count (109/L) was 0.91 ± 0.42 in COVID-19 patients and 1.50 ± 0.50 in non-COVID-19 patients (p < .001). In COVID-19 patients, but not in non-COVID-19 patients, lymphocyte count was inversely correlated with the proportion of telomeres shorter than 2 kb (p = .005) and positively correlated with TeSLA mTL (p = .03). Lymphocyte count was not significantly correlated with SB mTL in either COVID-19 or non-COVID-19 patients. We propose that compromised TL-dependent T-cell proliferative response, driven by short telomere in the TL distribution, contributes to COVID-19 lymphopenia among old adults. We infer that infection with SARS-CoV-2 uncovers the limits of the TL reserves of older persons. Clinical Trials Registration Number: NCT04325646.
Collapse
Affiliation(s)
- Athanase Benetos
- Université de Lorraine, Inserm, DCAC, Nancy, France
- Université de Lorraine, CHRU-Nancy, Pôle “Maladies du Vieillissement, Gérontologie et Soins Palliatifs,”France
| | - Tsung-Po Lai
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, USA
| | | | - Carlos Labat
- Université de Lorraine, Inserm, DCAC, Nancy, France
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Sylvie Gautier
- Université de Lorraine, CHRU-Nancy, Pôle “Maladies du Vieillissement, Gérontologie et Soins Palliatifs,”France
| | - Marie-Noelle Ungeheuer
- Institut Pasteur, Clinical Investigation and Access to Bioresources Department, Paris, France
| | - Christine Perret-Guillaume
- Université de Lorraine, CHRU-Nancy, Pôle “Maladies du Vieillissement, Gérontologie et Soins Palliatifs,”France
| | - Daniel Levy
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Massachusetts, USA
- Population Research Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ezra Susser
- Mailman School of Public Health, Columbia University, New York, New York, USA
- New York State Psychiatric Institute, USA
| | - Abraham Aviv
- Center of Human Development and Aging, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, USA
| |
Collapse
|