1
|
Evensen C, White A, Boots M. Multispecies interactions and the community context of the evolution of virulence. Proc Biol Sci 2024; 291:20240991. [PMID: 39317313 PMCID: PMC11421928 DOI: 10.1098/rspb.2024.0991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Pairwise host-parasite relationships are typically embedded in broader networks of ecological interactions, which have the potential to shape parasite evolutionary trajectories. Understanding this 'community context' of pathogen evolution is vital for wildlife, agricultural and human systems alike, as pathogens typically infect more than one host-and these hosts may have independent ecological relationships. Here, we introduce an eco-evolutionary model examining ecological feedback across a range of host-host interactions. Specifically, we analyse a model of the evolution of virulence of a parasite infecting two hosts exhibiting competitive, mutualistic or exploitative relationships. We first find that parasite specialism is necessary for inter-host interactions to impact parasite evolution. Furthermore, we find generally that increasing competition between hosts leads to higher shared parasite virulence while increasing mutualism leads to lower virulence. In exploitative host-host interactions, the particular form of parasite specialization is critical-for instance, specialization in terms of onward transmission, host tolerance or intra-host pathogen growth rate lead to distinct evolutionary outcomes under the same host-host interactions. Our work provides testable hypotheses for multi-host disease systems, predicts how changing interaction networks may impact virulence evolution and broadly demonstrates the importance of looking beyond pairwise relationships to understand evolution in realistic community contexts.
Collapse
Affiliation(s)
- Claire Evensen
- Department of Integrative Biology, University of California Berkeley, CA, USA
| | - Andrew White
- Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, UK
- Department of Mathematics, Heriot-Watt University, Edinburgh, UK
| | - Mike Boots
- Department of Integrative Biology, University of California Berkeley, CA, USA
| |
Collapse
|
2
|
Sauer EL, Venesky MD, McMahon TA, Cohen JM, Bessler S, Brannelly LA, Brem F, Byrne AQ, Halstead N, Hyman O, Johnson PTJ, Richards-Zawacki CL, Rumschlag SL, Sears B, Rohr JR. Are novel or locally adapted pathogens more devastating and why? Resolving opposing hypotheses. Ecol Lett 2024; 27:e14431. [PMID: 38712705 PMCID: PMC11441375 DOI: 10.1111/ele.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/08/2024]
Abstract
There is a rich literature highlighting that pathogens are generally better adapted to infect local than novel hosts, and a separate seemingly contradictory literature indicating that novel pathogens pose the greatest threat to biodiversity and public health. Here, using Batrachochytrium dendrobatidis, the fungus associated with worldwide amphibian declines, we test the hypothesis that there is enough variance in "novel" (quantified by geographic and phylogenetic distance) host-pathogen outcomes to pose substantial risk of pathogen introductions despite local adaptation being common. Our continental-scale common garden experiment and global-scale meta-analysis demonstrate that local amphibian-fungal interactions result in higher pathogen prevalence, pathogen growth, and host mortality, but novel interactions led to variable consequences with especially virulent host-pathogen combinations still occurring. Thus, while most pathogen introductions are benign, enough variance exists in novel host-pathogen outcomes that moving organisms around the planet greatly increases the chance of pathogen introductions causing profound harm.
Collapse
Affiliation(s)
- Erin L Sauer
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Matthew D Venesky
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
- Department of Biology, Allegheny College, Meadville, Pennsylvania, USA
| | - Taegan A McMahon
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
- Biology Department, Connecticut College, New London, Connecticut, USA
| | - Jeremy M Cohen
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Scott Bessler
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Laura A Brannelly
- Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Forrest Brem
- Biology Department, University of Memphis, Memphis, Tennessee, USA
| | - Allison Q Byrne
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Neal Halstead
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
- Wildlands Conservation, Tampa, Florida, USA
| | - Oliver Hyman
- Biology Department, James Madison University, Harrisonburg, Virginia, USA
| | - Pieter T J Johnson
- Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Corinne L Richards-Zawacki
- Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Samantha L Rumschlag
- Department of Biology, Miami University, Oxford, Ohio, USA
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Brittany Sears
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
- Department of Biological Sciences, University of Notre Dame, South Bend, Indiana, USA
| |
Collapse
|
3
|
Chen G, Jiang J, Sun Y. RNAVirHost: a machine learning-based method for predicting hosts of RNA viruses through viral genomes. Gigascience 2024; 13:giae059. [PMID: 39172545 PMCID: PMC11340644 DOI: 10.1093/gigascience/giae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND The high-throughput sequencing technologies have revolutionized the identification of novel RNA viruses. Given that viruses are infectious agents, identifying hosts of these new viruses carries significant implications for public health and provides valuable insights into the dynamics of the microbiome. However, determining the hosts of these newly discovered viruses is not always straightforward, especially in the case of viruses detected in environmental samples. Even for host-associated samples, it is not always correct to assign the sample origin as the host of the identified viruses. The process of assigning hosts to RNA viruses remains challenging due to their high mutation rates and vast diversity. RESULTS In this study, we introduce RNAVirHost, a machine learning-based tool that predicts the hosts of RNA viruses solely based on viral genomes. RNAVirHost is a hierarchical classification framework that predicts hosts at different taxonomic levels. We demonstrate the superior accuracy of RNAVirHost in predicting hosts of RNA viruses through comprehensive comparisons with various state-of-the-art techniques. When applying to viruses from novel genera, RNAVirHost achieved the highest accuracy of 84.3%, outperforming the alignment-based strategy by 12.1%. CONCLUSIONS The application of machine learning models has proven beneficial in predicting hosts of RNA viruses. By integrating genomic traits and sequence homologies, RNAVirHost provides a cost-effective and efficient strategy for host prediction. We believe that RNAVirHost can greatly assist in RNA virus analyses and contribute to pandemic surveillance.
Collapse
Affiliation(s)
- Guowei Chen
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| | - Jingzhe Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China
| |
Collapse
|
4
|
Ruhs EC, Chia WN, Foo R, Peel AJ, Li Y, Larman HB, Irving AT, Wang L, Brook CE. Applications of VirScan to broad serological profiling of bat reservoirs for emerging zoonoses. Front Public Health 2023; 11:1212018. [PMID: 37808979 PMCID: PMC10559906 DOI: 10.3389/fpubh.2023.1212018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Bats are important providers of ecosystem services such as pollination, seed dispersal, and insect control but also act as natural reservoirs for virulent zoonotic viruses. Bats host multiple viruses that cause life-threatening pathology in other animals and humans but, themselves, experience limited pathological disease from infection. Despite bats' importance as reservoirs for several zoonotic viruses, we know little about the broader viral diversity that they host. Bat virus surveillance efforts are challenged by difficulties of field capture and the limited scope of targeted PCR- or ELISA-based molecular and serological detection. Additionally, virus shedding is often transient, thus also limiting insights gained from nucleic acid testing of field specimens. Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a broad serological tool used previously to comprehensively profile viral exposure history in humans, offers an exciting prospect for viral surveillance efforts in wildlife, including bats. Methods Here, for the first time, we apply PhIP-Seq technology to bat serum, using a viral peptide library originally designed to simultaneously assay exposures to the entire human virome. Results Using VirScan, we identified past exposures to 57 viral genera-including betacoronaviruses, henipaviruses, lyssaviruses, and filoviruses-in semi-captive Pteropus alecto and to nine viral genera in captive Eonycteris spelaea. Consistent with results from humans, we find that both total peptide hits (the number of enriched viral peptides in our library) and the corresponding number of inferred past virus exposures in bat hosts were correlated with poor bat body condition scores and increased with age. High and low body condition scores were associated with either seropositive or seronegative status for different viruses, though in general, virus-specific age-seroprevalence curves defied assumptions of lifelong immunizing infection, suggesting that many bat viruses may circulate via complex transmission dynamics. Discussion Overall, our work emphasizes the utility of applying biomedical tools, like PhIP-Seq, first developed for humans to viral surveillance efforts in wildlife, while highlighting opportunities for taxon-specific improvements.
Collapse
Affiliation(s)
- Emily Cornelius Ruhs
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
- Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, IL, United States
| | - Wan Ni Chia
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- CoV Biotechnology Pte Ltd., Singapore, Singapore
| | - Randy Foo
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Alison J. Peel
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Brisband, QLD, Australia
| | - Yimei Li
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
- Quantitative and Computational Biology, Princeton University, Princeton, NJ, United States
| | - H. Benjamin Larman
- HBL – Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Aaron T. Irving
- Second Affiliated Hospital of Zhejiang University, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang University-University of Edinburgh Institute, Haining, Zhejiang, China
- BIMET - Biomedical and Translational Research Centre of Zhejiang Province, Zhejiang Province, China
| | - Linfa Wang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| | - Cara E. Brook
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Alizon S. Predicting the virulence of future emerging zoonotic viruses. PLoS Biol 2023; 21:e3002286. [PMID: 37682826 PMCID: PMC10490851 DOI: 10.1371/journal.pbio.3002286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023] Open
Abstract
Would you rather kiss a platypus, a hedgehog, or a llama? According to a new study in this issue of PLOS Biology, the virulence of a zoonotic virus in humans depends on its reservoir host. Could physiology be the key to anticipating viral threats lethality?
Collapse
Affiliation(s)
- Samuel Alizon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
6
|
Brook CE, Rozins C, Guth S, Boots M. Reservoir host immunology and life history shape virulence evolution in zoonotic viruses. PLoS Biol 2023; 21:e3002268. [PMID: 37676899 PMCID: PMC10484437 DOI: 10.1371/journal.pbio.3002268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/21/2023] [Indexed: 09/09/2023] Open
Abstract
The management of future pandemic risk requires a better understanding of the mechanisms that determine the virulence of emerging zoonotic viruses. Meta-analyses suggest that the virulence of emerging zoonoses is correlated with but not completely predictable from reservoir host phylogeny, indicating that specific characteristics of reservoir host immunology and life history may drive the evolution of viral traits responsible for cross-species virulence. In particular, bats host viruses that cause higher case fatality rates upon spillover to humans than those derived from any other mammal, a phenomenon that cannot be explained by phylogenetic distance alone. In order to disentangle the fundamental drivers of these patterns, we develop a nested modeling framework that highlights mechanisms that underpin the evolution of viral traits in reservoir hosts that cause virulence following cross-species emergence. We apply this framework to generate virulence predictions for viral zoonoses derived from diverse mammalian reservoirs, recapturing trends in virus-induced human mortality rates reported in the literature. Notably, our work offers a mechanistic hypothesis to explain the extreme virulence of bat-borne zoonoses and, more generally, demonstrates how key differences in reservoir host longevity, viral tolerance, and constitutive immunity impact the evolution of viral traits that cause virulence following spillover to humans. Our theoretical framework offers a series of testable questions and predictions designed to stimulate future work comparing cross-species virulence evolution in zoonotic viruses derived from diverse mammalian hosts.
Collapse
Affiliation(s)
- Cara E. Brook
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Carly Rozins
- Department of Science, Technology, and Society, York University, Toronto, Canada
| | - Sarah Guth
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Mike Boots
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
- Biosciences, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
7
|
Walsh SK, Imrie RM, Matuszewska M, Paterson GK, Weinert LA, Hadfield JD, Buckling A, Longdon B. The host phylogeny determines viral infectivity and replication across Staphylococcus host species. PLoS Pathog 2023; 19:e1011433. [PMID: 37289828 PMCID: PMC10284401 DOI: 10.1371/journal.ppat.1011433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/21/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Virus host shifts, where a virus transmits to and infects a novel host species, are a major source of emerging infectious disease. Genetic similarity between eukaryotic host species has been shown to be an important determinant of the outcome of virus host shifts, but it is unclear if this is the case for prokaryotes where anti-virus defences can be transmitted by horizontal gene transfer and evolve rapidly. Here, we measure the susceptibility of 64 strains of Staphylococcaceae bacteria (48 strains of Staphylococcus aureus and 16 non-S. aureus species spanning 2 genera) to the bacteriophage ISP, which is currently under investigation for use in phage therapy. Using three methods-plaque assays, optical density (OD) assays, and quantitative (q)PCR-we find that the host phylogeny explains a large proportion of the variation in susceptibility to ISP across the host panel. These patterns were consistent in models of only S. aureus strains and models with a single representative from each Staphylococcaceae species, suggesting that these phylogenetic effects are conserved both within and among host species. We find positive correlations between susceptibility assessed using OD and qPCR and variable correlations between plaque assays and either OD or qPCR, suggesting that plaque assays alone may be inadequate to assess host range. Furthermore, we demonstrate that the phylogenetic relationships between bacterial hosts can generally be used to predict the susceptibility of bacterial strains to phage infection when the susceptibility of closely related hosts is known, although this approach produced large prediction errors in multiple strains where phylogeny was uninformative. Together, our results demonstrate the ability of bacterial host evolutionary relatedness to explain differences in susceptibility to phage infection, with implications for the development of ISP both as a phage therapy treatment and as an experimental system for the study of virus host shifts.
Collapse
Affiliation(s)
- Sarah K. Walsh
- Centre for Ecology and Conservation; Faculty of Environment, Science, and Economy; Biosciences; University of Exeter; Cornwall; United Kingdom
- Environment and Sustainability Institute; University of Exeter; Cornwall; United Kingdom
| | - Ryan M. Imrie
- Centre for Ecology and Conservation; Faculty of Environment, Science, and Economy; Biosciences; University of Exeter; Cornwall; United Kingdom
| | - Marta Matuszewska
- Department of Medicine; University of Cambridge; Cambridge; United Kingdom
| | - Gavin K. Paterson
- Royal (Dick) School of Veterinary Studies and the Roslin Institute; University of Edinburgh;Edinburgh; United Kingdom
| | - Lucy A. Weinert
- Department of Veterinary Medicine; University of Cambridge; Cambridge; United Kingdom
| | - Jarrod D. Hadfield
- Institute of Evolutionary Biology; The University of Edinburgh; Edinburgh; United Kingdom
| | - Angus Buckling
- Centre for Ecology and Conservation; Faculty of Environment, Science, and Economy; Biosciences; University of Exeter; Cornwall; United Kingdom
- Environment and Sustainability Institute; University of Exeter; Cornwall; United Kingdom
| | - Ben Longdon
- Centre for Ecology and Conservation; Faculty of Environment, Science, and Economy; Biosciences; University of Exeter; Cornwall; United Kingdom
| |
Collapse
|
8
|
Imrie RM, Walsh SK, Roberts KE, Lello J, Longdon B. Investigating the outcomes of virus coinfection within and across host species. PLoS Pathog 2023; 19:e1011044. [PMID: 37216391 DOI: 10.1371/journal.ppat.1011044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Interactions between coinfecting pathogens have the potential to alter the course of infection and can act as a source of phenotypic variation in susceptibility between hosts. This phenotypic variation may influence the evolution of host-pathogen interactions within host species and interfere with patterns in the outcomes of infection across host species. Here, we examine experimental coinfections of two Cripaviruses-Cricket Paralysis Virus (CrPV), and Drosophila C Virus (DCV)-across a panel of 25 Drosophila melanogaster inbred lines and 47 Drosophilidae host species. We find that interactions between these viruses alter viral loads across D. melanogaster genotypes, with a ~3 fold increase in the viral load of DCV and a ~2.5 fold decrease in CrPV in coinfection compared to single infection, but we find little evidence of a host genetic basis for these effects. Across host species, we find no evidence of systematic changes in susceptibility during coinfection, with no interaction between DCV and CrPV detected in the majority of host species. These results suggest that phenotypic variation in coinfection interactions within host species can occur independently of natural host genetic variation in susceptibility, and that patterns of susceptibility across host species to single infections can be robust to the added complexity of coinfection.
Collapse
Affiliation(s)
- Ryan M Imrie
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Sarah K Walsh
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Katherine E Roberts
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Joanne Lello
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Ben Longdon
- Centre for Ecology & Conservation, Faculty of Environment, Science, and Economy, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| |
Collapse
|
9
|
Hagen EH, Blackwell AD, Lightner AD, Sullivan RJ. Homo medicus: The transition to meat eating increased pathogen pressure and the use of pharmacological plants in Homo. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:589-617. [PMID: 36815505 DOI: 10.1002/ajpa.24718] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The human lineage transitioned to a more carnivorous niche 2.6 mya and evolved a large body size and slower life history, which likely increased zoonotic pathogen pressure. Evidence for this increase includes increased zoonotic infections in modern hunter-gatherers and bushmeat hunters, exceptionally low stomach pH compared to other primates, and divergence in immune-related genes. These all point to change, and probably intensification, in the infectious disease environment of Homo compared to earlier hominins and other apes. At the same time, the brain, an organ in which immune responses are constrained, began to triple in size. We propose that the combination of increased zoonotic pathogen pressure and the challenges of defending a large brain and body from pathogens in a long-lived mammal, selected for intensification of the plant-based self-medication strategies already in place in apes and other primates. In support, there is evidence of medicinal plant use by hominins in the middle Paleolithic, and all cultures today have sophisticated, plant-based medical systems, add spices to food, and regularly consume psychoactive plant substances that are harmful to helminths and other pathogens. We propose that the computational challenges of discovering effective plant-based treatments, the consequent ability to consume more energy-rich animal foods, and the reduced reliance on energetically-costly immune responses helped select for increased cognitive abilities and unique exchange relationships in Homo. In the story of human evolution, which has long emphasized hunting skills, medical skills had an equal role to play.
Collapse
Affiliation(s)
- Edward H Hagen
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Blackwell
- Department of Anthropology, Washington State University, Pullman, Washington, USA
| | - Aaron D Lightner
- Department of Anthropology, Washington State University, Pullman, Washington, USA
- Department of the Study of Religion, Aarhus University, Aarhus, Denmark
| | - Roger J Sullivan
- Department of Anthropology, California State University, Sacramento, California, USA
| |
Collapse
|
10
|
Herrera JP, Moody J, Nunn CL. Predicting primate-parasite associations using exponential random graph models. J Anim Ecol 2023; 92:710-722. [PMID: 36633380 DOI: 10.1111/1365-2656.13883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/07/2022] [Indexed: 01/13/2023]
Abstract
Ecological associations between hosts and parasites are influenced by host exposure and susceptibility to parasites, and by parasite traits, such as transmission mode. Advances in network analysis allow us to answer questions about the causes and consequences of traits in ecological networks in ways that could not be addressed in the past. We used a network-based framework (exponential random graph models or ERGMs) to investigate the biogeographic, phylogenetic and ecological characteristics of hosts and parasites that affect the probability of interactions among nonhuman primates and their parasites. Parasites included arthropods, bacteria, fungi, protozoa, viruses and helminths. We investigated existing hypotheses, along with new predictors and an expanded host-parasite database that included 213 primate nodes, 763 parasite nodes and 2319 edges among them. Analyses also investigated phylogenetic relatedness, sampling effort and spatial overlap among hosts. In addition to supporting some previous findings, our ERGM approach demonstrated that more threatened hosts had fewer parasites, and notably, that this effect was independent of hosts also having a smaller geographic range. Despite having fewer parasites, threatened host species shared more parasites with other hosts, consistent with loss of specialist parasites and threat arising from generalist parasites that can be maintained in other, non-threatened hosts. Viruses, protozoa and helminths had broader host ranges than bacteria, or fungi, and parasites that infect non-primates had a higher probability of infecting more primate species. The value of the ERGM approach for investigating the processes structing host-parasite networks provided a more complete view on the biogeographic, phylogenetic and ecological traits that influence parasite species richness and parasite sharing among hosts. The results supported some previous analyses and revealed new associations that warrant future research, thus revealing how hosts and parasites interact to form ecological networks.
Collapse
Affiliation(s)
- James P Herrera
- Duke Lemur Center SAVA Conservation, Duke University, Durham, North Carolina, USA
| | - James Moody
- Department of Sociology, Duke University, Durham, North Carolina, USA
| | - Charles L Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA.,Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
11
|
Escudero-Pérez B, Lalande A, Mathieu C, Lawrence P. Host–Pathogen Interactions Influencing Zoonotic Spillover Potential and Transmission in Humans. Viruses 2023; 15:v15030599. [PMID: 36992308 PMCID: PMC10060007 DOI: 10.3390/v15030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Emerging infectious diseases of zoonotic origin are an ever-increasing public health risk and economic burden. The factors that determine if and when an animal virus is able to spill over into the human population with sufficient success to achieve ongoing transmission in humans are complex and dynamic. We are currently unable to fully predict which pathogens may appear in humans, where and with what impact. In this review, we highlight current knowledge of the key host–pathogen interactions known to influence zoonotic spillover potential and transmission in humans, with a particular focus on two important human viruses of zoonotic origin, the Nipah virus and the Ebola virus. Namely, key factors determining spillover potential include cellular and tissue tropism, as well as the virulence and pathogenic characteristics of the pathogen and the capacity of the pathogen to adapt and evolve within a novel host environment. We also detail our emerging understanding of the importance of steric hindrance of host cell factors by viral proteins using a “flytrap”-type mechanism of protein amyloidogenesis that could be crucial in developing future antiviral therapies against emerging pathogens. Finally, we discuss strategies to prepare for and to reduce the frequency of zoonotic spillover occurrences in order to minimize the risk of new outbreaks.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | - Alexandre Lalande
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Cyrille Mathieu
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), 69002 Lyon, France
- Correspondence:
| |
Collapse
|
12
|
Roberts KE, Longdon B. Heterogeneities in infection outcomes across species: sex and tissue differences in virus susceptibility. PEER COMMUNITY JOURNAL 2023; 3:pcjournal.242. [PMID: 36811030 PMCID: PMC7614206 DOI: 10.24072/pcjournal.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Species vary in their susceptibility to pathogens, and this can alter the ability of a pathogen to infect a novel host. However, many factors can generate heterogeneity in infection outcomes, obscuring our ability to understand pathogen emergence. Such heterogeneities can alter the consistency of responses across individuals and host species. For example, sexual dimorphism in susceptibility means males are often intrinsically more susceptible than females (although this can vary by host and pathogen). Further, we know little about whether the tissues infected by a pathogen in one host are the same in another species, and how this relates to the harm a pathogen does to its host. Here, we first take a comparative approach to examine sex differences in susceptibility across 31 species of Drosophilidae infected with Drosophila C Virus (DCV). We found a strong positive inter-specific correlation in viral load between males and females, with a close to 1:1 relationship, suggesting that susceptibility to DCV across species is not sex specific. Next, we made comparisons of the tissue tropism of DCV across seven species of fly. We found differences in viral load between the tissues of the seven host species, but no evidence of tissues showing different patterns of susceptibility in different host species. We conclude that, in this system, patterns of viral infectivity across host species are robust between males and females, and susceptibility in a given host is general across tissue types.
Collapse
Affiliation(s)
- Katherine E Roberts
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, TR10 9FE, UK
| | - Ben Longdon
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, TR10 9FE, UK
| |
Collapse
|
13
|
Enveloped viruses show increased propensity to cross-species transmission and zoonosis. Proc Natl Acad Sci U S A 2022; 119:e2215600119. [PMID: 36472956 PMCID: PMC9897429 DOI: 10.1073/pnas.2215600119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transmission of viruses between different host species is a major source of emerging diseases and is of particular concern in the case of zoonotic transmission from mammals to humans. Several zoonosis risk factors have been identified, but it is currently unclear which viral traits primarily determine this process as previous work has focused on a few hundred viruses that are not representative of actual viral diversity. Here, we investigate fundamental virological traits that influence cross-species transmissibility and zoonotic propensity by interrogating a database of over 12,000 mammalian virus-host associations. Our analysis reveals that enveloped viruses tend to infect more host species and are more likely to be zoonotic than nonenveloped viruses, while other viral traits such as genome composition, structure, size, or the viral replication compartment play a less obvious role. This contrasts with the previous notion that viral envelopes did not significantly impact or even reduce zoonotic risk and should help better prioritize outbreak prevention efforts. We suggest several mechanisms by which viral envelopes could promote cross-species transmissibility, including structural flexibility of receptor-binding proteins and evasion of viral entry barriers.
Collapse
|
14
|
Andrianiaina A, Andry S, Gentles A, Guth S, Héraud JM, Ranaivoson HC, Ravelomanantsoa NAF, Treuer T, Brook CE. Reproduction, seasonal morphology, and juvenile growth in three Malagasy fruit bats. J Mammal 2022; 103:1397-1408. [PMID: 36686611 PMCID: PMC9841406 DOI: 10.1093/jmammal/gyac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
The island nation of Madagascar is home to three endemic species of Old World fruit bat in the family Pteropodidae: Pteropus rufus, Eidolon dupreanum, and Rousettus madagascariensis, all three of which are IUCN Red Listed under some category of threat. Delineation of seasonal limits in the reproductive calendar for threatened mammals can inform conservation efforts by clarifying parameters used in population viability models, as well as elucidate understanding of the mechanisms underpinning pathogen persistence in host populations. Here, we define the seasonal limits of a staggered annual birth pulse across the three species of endemic Madagascar fruit bat, known reservoirs for viruses of high zoonotic potential. Our field studies indicate that this annual birth pulse takes place in September/October for P. rufus, November for E. dupreanum, and December for R. madagascariensis in central-eastern Madagascar where the bulk of our research was concentrated. Juvenile development periods vary across the three Malagasy pteropodids, resulting in near-synchronous weaning of pups for all species in late January-February at the height of the fruiting season for this region. We here document the size range in morphological traits for the three Malagasy fruit bat species, with P. rufus and E. dupreanum among the larger of pteropodids globally and R. madagascariensis among the smaller. All three species demonstrate subtle sexual dimorphism with males being larger than females. We explore seasonal variation in adult body condition by comparing observed body mass with body mass predicted by forearm length, demonstrating that pregnant females add weight during staggered gestation periods and males lose weight during the nutritionally deficit Malagasy winter. Finally, we quantify forearm, tibia, and ear length growth rates in juvenile bats, demonstrating both faster growth and more protracted development times for P. rufus as compared with E. dupreanum and R. madagascariensis. The longer development period for the already-threatened P. rufus further undermines the conservation status of this species as human hunting is particularly detrimental to population viability during reproductive periods. Our work highlights the importance of longitudinal field studies in collecting critical data for mammalian conservation efforts and human public health alike.
Collapse
Affiliation(s)
- Angelo Andrianiaina
- Mention Zoologie et Biodiversité Animale, Université d’Antananarivo, Antananarivo 101, Madagascar
| | - Santino Andry
- Mention Entomologie, Université d’Antananarivo, Antananarivo 101, Madagascar
| | - Anecia Gentles
- Odum School of Ecology, University of Georgia, Athens 30609, Georgia, USA
| | - Sarah Guth
- Department of Integrative Biology, University of California, Berkeley, Berkeley 94720, California, USA
| | - Jean-Michel Héraud
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo 101, Madagascar
- Virology Department, Institut Pasteur de Dakar, Dakar 10200, Senegal
- Ecole Doctorale Science de la Vie et de l’Environnement, Faculté des Sciences, Université d’Antananarivo, Antananarivo 101, Madagascar
| | - Hafaliana Christian Ranaivoson
- Mention Zoologie et Biodiversité Animale, Université d’Antananarivo, Antananarivo 101, Madagascar
- Virology Unit, Institut Pasteur de Madagascar, Antananarivo 101, Madagascar
| | | | - Timothy Treuer
- Gund Institute for Environment, The University of Vermont, Burlington 05405, Vermont, USA
| | - Cara E Brook
- Department of Integrative Biology, University of California, Berkeley, Berkeley 94720, California, USA
- Department of Ecology and Evolution, University of Chicago, Chicago 60637, Illinois, USA
| |
Collapse
|
15
|
Visher E, Uricchio L, Bartlett L, DeNamur N, Yarcan A, Alhassani D, Boots M. The evolution of host specialization in an insect pathogen. Evolution 2022; 76:2375-2388. [PMID: 35946063 DOI: 10.1111/evo.14594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/21/2022] [Accepted: 06/06/2022] [Indexed: 01/22/2023]
Abstract
Niche breadth coevolution between biotic partners underpins theories of diversity and co-existence and influences patterns of disease emergence and transmission in host-parasite systems. Despite these broad implications, we still do not fully understand how the breadth of parasites' infectivity evolves, the nature of any associated costs, or the genetic basis of specialization. Here, we serially passage a granulosis virus on multiple inbred populations of its Plodia interpunctella host to explore the dynamics and outcomes of specialization. In particular, we collect time series of phenotypic and genetic data to explore the dynamics of host genotype specialization throughout the course of experimental evolution and examine two fitness components. We find that the Plodia interpunctella granulosis virus consistently evolves and increases in overall specialization, but that our two fitness components evolve independently such that lines can specialize in productivity or infectivity. Furthermore, we find that specialization in our experiment is a highly polygenic trait best explained by a combination of evolutionary mechanisms. These results are important for understanding the evolution of specialization in host-parasite interactions and its broader implications for co-existence, diversification, and infectious disease management.
Collapse
Affiliation(s)
- Elisa Visher
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | | | - Lewis Bartlett
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
| | | | - Aren Yarcan
- University of California, Berkeley, CA, 94720, USA
| | | | - Mike Boots
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.,Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter Penryn Campus, Penryn, TR10 9FE, UK
| |
Collapse
|
16
|
Shaw CL, Kennedy DA. Developing an empirical model for spillover and emergence: Orsay virus host range in Caenorhabditis. Proc Biol Sci 2022; 289:20221165. [PMID: 36126684 PMCID: PMC9489279 DOI: 10.1098/rspb.2022.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
A lack of tractable experimental systems in which to test hypotheses about the ecological and evolutionary drivers of disease spillover and emergence has limited our understanding of these processes. Here we introduce a promising system: Caenorhabditis hosts and Orsay virus, a positive-sense single-stranded RNA virus that naturally infects C. elegans. We assayed species across the Caenorhabditis tree and found Orsay virus susceptibility in 21 of 84 wild strains belonging to 14 of 44 species. Confirming patterns documented in other systems, we detected effects of host phylogeny on susceptibility. We then tested whether susceptible strains were capable of transmitting Orsay virus by transplanting exposed hosts and determining whether they transmitted infection to conspecifics during serial passage. We found no evidence of transmission in 10 strains (virus undetectable after passaging in all replicates), evidence of low-level transmission in 5 strains (virus lost between passage 1 and 5 in at least one replicate) and evidence of sustained transmission in 6 strains (including all three experimental C. elegans strains) in at least one replicate. Transmission was strongly associated with viral amplification in exposed populations. Variation in Orsay virus susceptibility and transmission among Caenorhabditis strains suggests that the system could be powerful for studying spillover and emergence.
Collapse
Affiliation(s)
- Clara L. Shaw
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - David A. Kennedy
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
Galen SC, Ray S, Henry M, Weckstein JD. Parasite-associated mortality in birds: the roles of specialist parasites and host evolutionary distance. Biol Lett 2022; 18:20210575. [PMID: 35414225 PMCID: PMC9006019 DOI: 10.1098/rsbl.2021.0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The factors that influence whether a parasite is likely to cause death in a given host species are not well known. Generalist parasites with high local abundances, broad distributions and the ability to infect a wide phylogenetic diversity of hosts are often considered especially dangerous for host populations, though comparatively little research has been done on the potential for specialist parasites to cause host mortality. Here, using a novel database of avian mortality records, we tested whether phylogenetic host specialist or host generalist haemosporidian blood parasites were associated with avian host deaths based on infection records from over 81 000 examined hosts. In support of the hypothesis that host specialist parasites can be highly virulent in novel hosts, we found that the parasites that were associated with avian host mortality predominantly infected more closely related host species than expected under a null model. Hosts that died tended to be distantly related to the host species that a parasite lineage typically infects, illustrating that specialist parasites can cause death outside of their limited host range. Overall, this study highlights the overlooked potential for host specialist parasites to cause host mortality despite their constrained ecological niches.
Collapse
Affiliation(s)
- Spencer C Galen
- Biology Department, University of Scranton, Loyola Science Center, Scranton, PA 18510, USA.,Department of Ornithology, Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103, USA
| | - Suravi Ray
- Department of Ornithology, Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103, USA.,Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA 19103, USA
| | - Marissa Henry
- Department of Ornithology, Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103, USA.,Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA 19103, USA
| | - Jason D Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103, USA.,Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA 19103, USA
| |
Collapse
|
18
|
Guth S, Mollentze N, Renault K, Streicker DG, Visher E, Boots M, Brook CE. Bats host the most virulent-but not the most dangerous-zoonotic viruses. Proc Natl Acad Sci U S A 2022; 119:e2113628119. [PMID: 35349342 DOI: 10.1101/2021.07.25.453574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
SignificanceThe clear need to mitigate zoonotic risk has fueled increased viral discovery in specific reservoir host taxa. We show that a combination of viral and reservoir traits can predict zoonotic virus virulence and transmissibility in humans, supporting the hypothesis that bats harbor exceptionally virulent zoonoses. However, pandemic prevention requires thinking beyond zoonotic capacity, virulence, and transmissibility to consider collective "burden" on human health. For this, viral discovery targeting specific reservoirs may be inefficient as death burden correlates with viral, not reservoir, traits, and depends on context-specific epidemiological dynamics across and beyond the human-animal interface. These findings suggest that longitudinal studies of viral dynamics in reservoir and spillover host populations may offer the most effective strategy for mitigating zoonotic risk.
Collapse
Affiliation(s)
- Sarah Guth
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Nardus Mollentze
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
| | - Katia Renault
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Daniel G Streicker
- Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Elisa Visher
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Mike Boots
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720
- Centre for Ecology and Conservation, University of Exeter, Exeter TR10 9FE, United Kingdom
| | - Cara E Brook
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
| |
Collapse
|
19
|
Guth S, Mollentze N, Renault K, Streicker DG, Visher E, Boots M, Brook CE. Bats host the most virulent-but not the most dangerous-zoonotic viruses. Proc Natl Acad Sci U S A 2022; 119:e2113628119. [PMID: 35349342 PMCID: PMC9168486 DOI: 10.1073/pnas.2113628119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/09/2022] [Indexed: 01/06/2023] Open
Abstract
SignificanceThe clear need to mitigate zoonotic risk has fueled increased viral discovery in specific reservoir host taxa. We show that a combination of viral and reservoir traits can predict zoonotic virus virulence and transmissibility in humans, supporting the hypothesis that bats harbor exceptionally virulent zoonoses. However, pandemic prevention requires thinking beyond zoonotic capacity, virulence, and transmissibility to consider collective "burden" on human health. For this, viral discovery targeting specific reservoirs may be inefficient as death burden correlates with viral, not reservoir, traits, and depends on context-specific epidemiological dynamics across and beyond the human-animal interface. These findings suggest that longitudinal studies of viral dynamics in reservoir and spillover host populations may offer the most effective strategy for mitigating zoonotic risk.
Collapse
Affiliation(s)
- Sarah Guth
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Nardus Mollentze
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
| | - Katia Renault
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Daniel G. Streicker
- Medical Research Council–University of Glasgow Centre for Virus Research, Glasgow G61 1QH, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Elisa Visher
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Mike Boots
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720
- Centre for Ecology and Conservation, University of Exeter, Exeter TR10 9FE, United Kingdom
| | - Cara E. Brook
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637
| |
Collapse
|
20
|
Albery GF, Becker DJ, Brierley L, Brook CE, Christofferson RC, Cohen LE, Dallas TA, Eskew EA, Fagre A, Farrell MJ, Glennon E, Guth S, Joseph MB, Mollentze N, Neely BA, Poisot T, Rasmussen AL, Ryan SJ, Seifert S, Sjodin AR, Sorrell EM, Carlson CJ. The science of the host-virus network. Nat Microbiol 2021; 6:1483-1492. [PMID: 34819645 DOI: 10.1038/s41564-021-00999-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
Better methods to predict and prevent the emergence of zoonotic viruses could support future efforts to reduce the risk of epidemics. We propose a network science framework for understanding and predicting human and animal susceptibility to viral infections. Related approaches have so far helped to identify basic biological rules that govern cross-species transmission and structure the global virome. We highlight ways to make modelling both accurate and actionable, and discuss the barriers that prevent researchers from translating viral ecology into public health policies that could prevent future pandemics.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington DC, USA.
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Liam Brierley
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Cara E Brook
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Lily E Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tad A Dallas
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Evan A Eskew
- Department of Biology, Pacific Lutheran University, Tacoma, WA, USA
| | - Anna Fagre
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Maxwell J Farrell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Emma Glennon
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sarah Guth
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Maxwell B Joseph
- Earth Lab, Cooperative Institute for Research in Environmental Science, University of Colorado Boulder, Boulder, CO, USA
| | - Nardus Mollentze
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.,MRC - University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Benjamin A Neely
- National Institute of Standards and Technology, Charleston, SC, USA
| | - Timothée Poisot
- Québec Centre for Biodiversity Sciences, Montréal, Québec, Canada.,Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Angela L Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sadie J Ryan
- Department of Geography, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Stephanie Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Anna R Sjodin
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Erin M Sorrell
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA.,Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA. .,Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
21
|
Fischhoff IR, Castellanos AA, Rodrigues JPGLM, Varsani A, Han BA. Predicting the zoonotic capacity of mammals to transmit SARS-CoV-2. Proc Biol Sci 2021; 288:20211651. [PMID: 34784766 PMCID: PMC8596006 DOI: 10.1098/rspb.2021.1651] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Back and forth transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between humans and animals will establish wild reservoirs of virus that endanger long-term efforts to control COVID-19 in people and to protect vulnerable animal populations. Better targeting surveillance and laboratory experiments to validate zoonotic potential requires predicting high-risk host species. A major bottleneck to this effort is the few species with available sequences for angiotensin-converting enzyme 2 receptor, a key receptor required for viral cell entry. We overcome this bottleneck by combining species' ecological and biological traits with three-dimensional modelling of host-virus protein-protein interactions using machine learning. This approach enables predictions about the zoonotic capacity of SARS-CoV-2 for greater than 5000 mammals-an order of magnitude more species than previously possible. Our predictions are strongly corroborated by in vivo studies. The predicted zoonotic capacity and proximity to humans suggest enhanced transmission risk from several common mammals, and priority areas of geographic overlap between these species and global COVID-19 hotspots. With molecular data available for only a small fraction of potential animal hosts, linking data across biological scales offers a conceptual advance that may expand our predictive modelling capacity for zoonotic viruses with similarly unknown host ranges.
Collapse
Affiliation(s)
- Ilya R. Fischhoff
- Cary Institute of Ecosystem Studies, Box AB Millbrook, NY 12545, USA
| | | | | | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, 7700 Cape Town, Rondebosch, South Africa
| | - Barbara A. Han
- Cary Institute of Ecosystem Studies, Box AB Millbrook, NY 12545, USA
| |
Collapse
|
22
|
Huang S, Farrell M, Stephens PR. Infectious disease macroecology: parasite diversity and dynamics across the globe. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200350. [PMID: 34538145 PMCID: PMC8450632 DOI: 10.1098/rstb.2020.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shan Huang
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Maxwell Farrell
- Ecology and Evolutionary Biology, University Toronto, Toronto, Ontario, Canada
| | - Patrick R. Stephens
- Odum School of Ecology and Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
23
|
Farrell MJ, Park AW, Cressler CE, Dallas T, Huang S, Mideo N, Morales-Castilla I, Davies TJ, Stephens P. The ghost of hosts past: impacts of host extinction on parasite specificity. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200351. [PMID: 34538147 PMCID: PMC8450631 DOI: 10.1098/rstb.2020.0351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 11/29/2022] Open
Abstract
A growing body of research is focused on the extinction of parasite species in response to host endangerment and declines. Beyond the loss of parasite species richness, host extinction can impact apparent parasite host specificity, as measured by host richness or the phylogenetic distances among hosts. Such impacts on the distribution of parasites across the host phylogeny can have knock-on effects that may reshape the adaptation of both hosts and parasites, ultimately shifting the evolutionary landscape underlying the potential for emergence and the evolution of virulence across hosts. Here, we examine how the reshaping of host phylogenies through extinction may impact the host specificity of parasites, and offer examples from historical extinctions, present-day endangerment, and future projections of biodiversity loss. We suggest that an improved understanding of the impact of host extinction on contemporary host-parasite interactions may shed light on core aspects of disease ecology, including comparative studies of host specificity, virulence evolution in multi-host parasite systems, and future trajectories for host and parasite biodiversity. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Collapse
Affiliation(s)
- Maxwell J. Farrell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | | | - Clayton E. Cressler
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Tad Dallas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70806, USA
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Shan Huang
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Ignacio Morales-Castilla
- Universidad de Alcalá, GloCEE - Global Change Ecology and Evolution Research Group, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain
| | - T. Jonathan Davies
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Department of Botany and Plant Biotechnology, African Centre for DNA Barcoding, University of Johannesburg, Johannesburg 2092, South Africa
| | | |
Collapse
|
24
|
Phumee A, Wacharapluesadee S, Petcharat S, Siriyasatien P. A new cluster of rhabdovirus detected in field-caught sand flies (Diptera: Psychodidae: Phlebotominae) collected from southern Thailand. Parasit Vectors 2021; 14:569. [PMID: 34749797 PMCID: PMC8576998 DOI: 10.1186/s13071-021-05047-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The distribution of phlebotomine sand flies is changing rapidly due to climate change. This issue has implications for the epidemiology of sand fly-borne diseases, especially sand fly-associated viruses. Few studies concerning sand fly-associated viruses have been conducted in Thailand. Therefore, this study aimed to perform a molecular survey of groups of pathogenic RNA viruses belonging to the Orbivirus, Phlebovirus, and Flavivirus genera and family Rhabdoviridae in sand fly samples collected from southern Thailand. METHODS Sand flies were collected at two locations in Trang and Songkhla provinces of southern Thailand, and individual sand fly samples were processed for species identification and virus detection. The Orbivirus, Phlebovirus, and Flavivirus genera and family Rhabdoviridae molecular determination was performed by RT-PCR, and positive samples were identified by cloning and sequencing, cell culture inoculation, and phylogenetic analysis. RESULTS The results presented in this study were based on the analysis of a total of 331 female sand flies. This molecular study revealed evidence of Rhabdoviridae family virus presence in Phlebotomus papatasi (3/331, 0.9%). The findings demonstrated a new cluster of rhabdovirus that was closely related to Bactrocera dorsalis sigmavirus strain BDSV.abc5 and the lineages of insect-specific Rhabdoviridae. In addition, the Bayesian tree suggested that the common ancestor of this group was the dimarhabdovirus clade. It was assumed that the virus may have switched hosts during its evolution. However, the detection of Orbivirus, Phlebovirus, and Flavivirus genera using specific primers for RT-PCR was negative in the collected sand flies. CONCLUSIONS There is limited knowledge on the genetic diversity and ecology of Rhabdoviridae in Thailand. This is the first data regarding the circulation of Rhabdoviridae in Ph. papatasi from Thailand. We found a new cluster of rhabdoviruses that was close to the new B. dorsalis sigmavirus. It is possible that there is a great deal of diversity in this family yet to be discovered, and a more extensive survey for new rhabdoviruses may uncover viruses from a wide diversity of host taxa and broaden our understanding of the relationships among the Rhabdoviridae.
Collapse
Affiliation(s)
- Atchara Phumee
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand.,Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, 80160, Thailand.,Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Supaporn Wacharapluesadee
- Thai Red Cross Emerging Infectious Diseases Clinical Centre, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sininat Petcharat
- Thai Red Cross Emerging Infectious Diseases Clinical Centre, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Padet Siriyasatien
- Vector Biology and Vector Borne Disease Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
25
|
Carlson CJ, Farrell MJ, Grange Z, Han BA, Mollentze N, Phelan AL, Rasmussen AL, Albery GF, Bett B, Brett-Major DM, Cohen LE, Dallas T, Eskew EA, Fagre AC, Forbes KM, Gibb R, Halabi S, Hammer CC, Katz R, Kindrachuk J, Muylaert RL, Nutter FB, Ogola J, Olival KJ, Rourke M, Ryan SJ, Ross N, Seifert SN, Sironen T, Standley CJ, Taylor K, Venter M, Webala PW. The future of zoonotic risk prediction. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200358. [PMID: 34538140 PMCID: PMC8450624 DOI: 10.1098/rstb.2020.0358] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 01/26/2023] Open
Abstract
In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges? This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Collapse
Affiliation(s)
- Colin J. Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC 20007, USA
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Maxwell J. Farrell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Zoe Grange
- Public Health Scotland, Glasgow G2 6QE, UK
| | - Barbara A. Han
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | - Nardus Mollentze
- Medical Research Council, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Alexandra L. Phelan
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC 20007, USA
- O'Neill Institute for National and Global Health Law, Georgetown University Law Center, Washington, DC 20001, USA
| | - Angela L. Rasmussen
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Gregory F. Albery
- Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - Bernard Bett
- Animal and Human Health Program, International Livestock Research Institute, PO Box 30709-00100, Nairobi, Kenya
| | - David M. Brett-Major
- Department of Epidemiology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lily E. Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tad Dallas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70806, USA
| | - Evan A. Eskew
- Department of Biology, Pacific Lutheran University, Tacoma, WA, USA
| | - Anna C. Fagre
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kristian M. Forbes
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Rory Gibb
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Sam Halabi
- O'Neill Institute for National and Global Health Law, Georgetown University Law Center, Washington, DC 20001, USA
| | - Charlotte C. Hammer
- Centre for the Study of Existential Risk, University of Cambridge, Cambridge, UK
| | - Rebecca Katz
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Jason Kindrachuk
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0J9
| | - Renata L. Muylaert
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Felicia B. Nutter
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA
- Department of Public Health and Community Medicine, School of Medicine, Tufts University, Boston, MA 02111, USA
| | | | | | - Michelle Rourke
- Law Futures Centre, Griffith Law School, Griffith University, Nathan, Queensland 4111, Australia
| | - Sadie J. Ryan
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Noam Ross
- EcoHealth Alliance, New York, NY 10018, USA
| | - Stephanie N. Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Tarja Sironen
- Department of Virology, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Claire J. Standley
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC 20007, USA
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Kishana Taylor
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Marietjie Venter
- Zoonotic Arbo and Respiratory Virus Program, Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - Paul W. Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok 20500, Kenya
| |
Collapse
|
26
|
Imrie RM, Roberts KE, Longdon B. Between virus correlations in the outcome of infection across host species: Evidence of virus by host species interactions. Evol Lett 2021; 5:472-483. [PMID: 34621534 PMCID: PMC8484721 DOI: 10.1002/evl3.247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Virus host shifts are a major source of outbreaks and emerging infectious diseases, and predicting the outcome of novel host and virus interactions remains a key challenge for virus research. The evolutionary relationships between host species can explain variation in transmission rates, virulence, and virus community composition between hosts, but it is unclear if correlations exist between related viruses in infection traits across novel hosts. Here, we measure correlations in viral load of four Cripavirus isolates across experimental infections of 45 Drosophilidae host species. We find positive correlations between every pair of viruses tested, suggesting that some host clades show broad susceptibility and could act as reservoirs and donors for certain types of viruses. Additionally, we find evidence of virus by host species interactions, highlighting the importance of both host and virus traits in determining the outcome of virus host shifts. Of the four viruses tested here, those that were more closely related tended to be more strongly correlated, providing tentative evidence that virus evolutionary relatedness may be a useful proxy for determining the likelihood of novel virus emergence, which warrants further research.
Collapse
Affiliation(s)
- Ryan M. Imrie
- Centre for Ecology and Conservation, Biosciences, College of Life and Environmental SciencesUniversity of ExeterPenrynTR10 9FEUnited Kingdom
| | - Katherine E. Roberts
- Centre for Ecology and Conservation, Biosciences, College of Life and Environmental SciencesUniversity of ExeterPenrynTR10 9FEUnited Kingdom
| | - Ben Longdon
- Centre for Ecology and Conservation, Biosciences, College of Life and Environmental SciencesUniversity of ExeterPenrynTR10 9FEUnited Kingdom
| |
Collapse
|
27
|
Gibb R, Albery GF, Becker DJ, Brierley L, Connor R, Dallas TA, Eskew EA, Farrell MJ, Rasmussen AL, Ryan SJ, Sweeny A, Carlson CJ, Poisot T. Data Proliferation, Reconciliation, and Synthesis in Viral Ecology. Bioscience 2021. [DOI: 10.1093/biosci/biab080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
The fields of viral ecology and evolution are rapidly expanding, motivated in part by concerns around emerging zoonoses. One consequence is the proliferation of host–virus association data, which underpin viral macroecology and zoonotic risk prediction but remain fragmented across numerous data portals. In the present article, we propose that synthesis of host–virus data is a central challenge to characterize the global virome and develop foundational theory in viral ecology. To illustrate this, we build an open database of mammal host–virus associations that reconciles four published data sets. We show that this offers a substantially richer view of the known virome than any individual source data set but also that databases such as these risk becoming out of date as viral discovery accelerates. We argue for a shift in practice toward the development, incremental updating, and use of synthetic data sets in viral ecology, to improve replicability and facilitate work to predict the structure and dynamics of the global virome.
Collapse
Affiliation(s)
- Rory Gibb
- Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, England, United Kingdom
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, United States
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman Oklahoma, United States
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Liam Brierley
- Department of Health Data Science, University of Liverpool, Liverpool, England, United Kingdom
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Ryan Connor
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Tad A Dallas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Evan A Eskew
- Department of Biology, Pacific Lutheran University, Tacoma, Washington, United States
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Maxwell J Farrell
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Angela L Rasmussen
- Vaccine Infectious Disease Organization and International Vaccine Centre, University of Saskatchewan, Saskatchewan, Saskatoon, Canada
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation Lab, Department of Geography and with the Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States, and with the College of Life Sciences, University of KwaZulu Natal, Durban, South Africa
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Amy Sweeny
- Institute of Evolutionary Biology, University of Edinburgh, in Edinburgh, Scotland, United Kingdom
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Colin J Carlson
- Global Health Science and Security, Georgetown University Medical Center, Georgetown University, Washington, DC, United States
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| | - Timothée Poisot
- Département de Sciences Biologiques, Université de Montréal, and with the Québec Centre for Biodiversity Sciences, both in Montréal, Québec, Canada
- Viral Emergence Research Initiative consortium, a global scientific collaboration to predict which viruses could infect humans, which animals host them, and where they could emerge
| |
Collapse
|
28
|
Visher E, Evensen C, Guth S, Lai E, Norfolk M, Rozins C, Sokolov NA, Sui M, Boots M. The three Ts of virulence evolution during zoonotic emergence. Proc Biol Sci 2021; 288:20210900. [PMID: 34375554 PMCID: PMC8354747 DOI: 10.1098/rspb.2021.0900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/16/2021] [Indexed: 12/21/2022] Open
Abstract
There is increasing interest in the role that evolution may play in current and future pandemics, but there is often also considerable confusion about the actual evolutionary predictions. This may be, in part, due to a historical separation of evolutionary and medical fields, but there is a large, somewhat nuanced body of evidence-supported theory on the evolution of infectious disease. In this review, we synthesize this evolutionary theory in order to provide a framework for clearer understanding of the key principles. Specifically, we discuss the selection acting on zoonotic pathogens' transmission rates and virulence at spillover and during emergence. We explain how the direction and strength of selection during epidemics of emerging zoonotic disease can be understood by a three Ts framework: trade-offs, transmission, and time scales. Virulence and transmission rate may trade-off, but transmission rate is likely to be favoured by selection early in emergence, particularly if maladapted zoonotic pathogens have 'no-cost' transmission rate improving mutations available to them. Additionally, the optimal virulence and transmission rates can shift with the time scale of the epidemic. Predicting pathogen evolution, therefore, depends on understanding both the trade-offs of transmission-improving mutations and the time scales of selection.
Collapse
Affiliation(s)
- Elisa Visher
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Claire Evensen
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Sarah Guth
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Edith Lai
- College of Natural Resources, University of California, Berkeley, CA 94720, USA
| | - Marina Norfolk
- College of Letters and Sciences, University of California, Berkeley, CA 94720, USA
| | - Carly Rozins
- Department of Science and Technology Studies, Division of Natural Science, York University, Toronto, Ontario, Canada M3J 1P3
| | - Nina A. Sokolov
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Melissa Sui
- College of Letters and Sciences, University of California, Berkeley, CA 94720, USA
| | - Michael Boots
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| |
Collapse
|
29
|
Shapiro JT, Víquez-R L, Leopardi S, Vicente-Santos A, Mendenhall IH, Frick WF, Kading RC, Medellín RA, Racey P, Kingston T. Setting the Terms for Zoonotic Diseases: Effective Communication for Research, Conservation, and Public Policy. Viruses 2021; 13:1356. [PMID: 34372562 PMCID: PMC8310020 DOI: 10.3390/v13071356] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022] Open
Abstract
Many of the world's most pressing issues, such as the emergence of zoonotic diseases, can only be addressed through interdisciplinary research. However, the findings of interdisciplinary research are susceptible to miscommunication among both professional and non-professional audiences due to differences in training, language, experience, and understanding. Such miscommunication contributes to the misunderstanding of key concepts or processes and hinders the development of effective research agendas and public policy. These misunderstandings can also provoke unnecessary fear in the public and have devastating effects for wildlife conservation. For example, inaccurate communication and subsequent misunderstanding of the potential associations between certain bats and zoonoses has led to persecution of diverse bats worldwide and even government calls to cull them. Here, we identify four types of miscommunication driven by the use of terminology regarding bats and the emergence of zoonotic diseases that we have categorized based on their root causes: (1) incorrect or overly broad use of terms; (2) terms that have unstable usage within a discipline, or different usages among disciplines; (3) terms that are used correctly but spark incorrect inferences about biological processes or significance in the audience; (4) incorrect inference drawn from the evidence presented. We illustrate each type of miscommunication with commonly misused or misinterpreted terms, providing a definition, caveats and common misconceptions, and suggest alternatives as appropriate. While we focus on terms specific to bats and disease ecology, we present a more general framework for addressing miscommunication that can be applied to other topics and disciplines to facilitate more effective research, problem-solving, and public policy.
Collapse
Affiliation(s)
- Julie Teresa Shapiro
- Department of Life Sciences, Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel
| | - Luis Víquez-R
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89069 Ulm, Germany;
| | - Stefania Leopardi
- Laboratory of Emerging Viral Zoonoses, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Amanda Vicente-Santos
- Graduate Program in Population Biology, Ecology and Evolution, Emory University, Atlanta, GA 30322, USA;
| | - Ian H. Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Winifred F. Frick
- Bat Conservation International, Austin, TX 78746, USA;
- Department of Ecology and Evolution, University of California, Santa Cruz, CA 95060, USA
| | - Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Rodrigo A. Medellín
- Institute of Ecology, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| | - Paul Racey
- The Centre for Ecology and Conservation, University of Exeter, Exeter TR10 9FE, UK;
| | - Tigga Kingston
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
30
|
Cornelius Ruhs E, Becker DJ, Oakey SJ, Ogunsina O, Fenton MB, Simmons NB, Martin LB, Downs CJ. Body size affects immune cell proportions in birds and non-volant mammals, but not bats. J Exp Biol 2021; 224:269058. [PMID: 34104965 DOI: 10.1242/jeb.241109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/02/2021] [Indexed: 01/02/2023]
Abstract
Powered flight has evolved several times in vertebrates and constrains morphology and physiology in ways that likely have shaped how organisms cope with infections. Some of these constraints probably have impacts on aspects of immunology, such that larger fliers might prioritize risk reduction and safety. Addressing how the evolution of flight may have driven relationships between body size and immunity could be particularly informative for understanding the propensity of some taxa to harbor many virulent and sometimes zoonotic pathogens without showing clinical disease. Here, we used a comparative framework to quantify scaling relationships between body mass and the proportions of two types of white blood cells - lymphocytes and granulocytes (neutrophils/heterophils) - across 63 bat species, 400 bird species and 251 non-volant mammal species. By using phylogenetically informed statistical models on field-collected data from wild Neotropical bats and from captive bats, non-volant mammals and birds, we show that lymphocyte and neutrophil proportions do not vary systematically with body mass among bats. In contrast, larger birds and non-volant mammals have disproportionately higher granulocyte proportions than expected for their body size. Our inability to distinguish bat lymphocyte scaling from birds and bat granulocyte scaling from all other taxa suggests there may be other ecological explanations (i.e. not flight related) for the cell proportion scaling patterns. Future comparative studies of wild bats, birds and non-volant mammals of similar body mass should aim to further differentiate evolutionary effects and other aspects of life history on immune defense and its role in the tolerance of (zoonotic) infections.
Collapse
Affiliation(s)
- Emily Cornelius Ruhs
- Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Samantha J Oakey
- Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA
| | - Ololade Ogunsina
- Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA
| | - M Brock Fenton
- Department of Biology, Western University, London, ON, Canada, N6A 5B7
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024-5102, USA
| | - Lynn B Martin
- Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA
| | - Cynthia J Downs
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| |
Collapse
|
31
|
Fischhoff IR, Castellanos AA, Rodrigues JP, Varsani A, Han BA. Predicting the zoonotic capacity of mammals to transmit SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.18.431844. [PMID: 33619481 PMCID: PMC7899445 DOI: 10.1101/2021.02.18.431844] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Back and forth transmission of SARS-CoV-2 between humans and animals may lead to wild reservoirs of virus that can endanger efforts toward long-term control of COVID-19 in people, and protecting vulnerable animal populations that are particularly susceptible to lethal disease. Predicting high risk host species is key to targeting field surveillance and lab experiments that validate host zoonotic potential. A major bottleneck to predicting animal hosts is the small number of species with available molecular information about the structure of ACE2, a key cellular receptor required for viral cell entry. We overcome this bottleneck by combining species' ecological and biological traits with 3D modeling of virus and host cell protein interactions using machine learning methods. This approach enables predictions about the zoonotic capacity of SARS-CoV-2 for over 5,000 mammals - an order of magnitude more species than previously possible. The high accuracy predictions achieved by this approach are strongly corroborated by in vivo empirical studies. We identify numerous common mammal species whose predicted zoonotic capacity and close proximity to humans may further enhance the risk of spillover and spillback transmission of SARS-CoV-2. Our results reveal high priority areas of geographic overlap between global COVID-19 hotspots and potential new mammal hosts of SARS-CoV-2. With molecular sequence data available for only a small fraction of potential host species, predictive modeling integrating data across multiple biological scales offers a conceptual advance that may expand our predictive capacity for zoonotic viruses with similarly unknown and potentially broad host ranges.
Collapse
Affiliation(s)
- Ilya R. Fischhoff
- Cary Institute of Ecosystem Studies. Box AB Millbrook, NY 12545, USA
| | | | - João P.G.L.M. Rodrigues
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, 7700, Cape Town, South Africa
| | - Barbara A. Han
- Cary Institute of Ecosystem Studies. Box AB Millbrook, NY 12545, USA
| |
Collapse
|
32
|
Wardeh M, Blagrove MSC, Sharkey KJ, Baylis M. Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations. Nat Commun 2021; 12:3954. [PMID: 34172731 PMCID: PMC8233343 DOI: 10.1038/s41467-021-24085-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 05/21/2021] [Indexed: 11/09/2022] Open
Abstract
Our knowledge of viral host ranges remains limited. Completing this picture by identifying unknown hosts of known viruses is an important research aim that can help identify and mitigate zoonotic and animal-disease risks, such as spill-over from animal reservoirs into human populations. To address this knowledge-gap we apply a divide-and-conquer approach which separates viral, mammalian and network features into three unique perspectives, each predicting associations independently to enhance predictive power. Our approach predicts over 20,000 unknown associations between known viruses and susceptible mammalian species, suggesting that current knowledge underestimates the number of associations in wild and semi-domesticated mammals by a factor of 4.3, and the average potential mammalian host-range of viruses by a factor of 3.2. In particular, our results highlight a significant knowledge gap in the wild reservoirs of important zoonotic and domesticated mammals' viruses: specifically, lyssaviruses, bornaviruses and rotaviruses.
Collapse
Affiliation(s)
- Maya Wardeh
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK.
- Department of Mathematical Sciences, University of Liverpool, Liverpool, UK.
| | - Marcus S C Blagrove
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kieran J Sharkey
- Department of Mathematical Sciences, University of Liverpool, Liverpool, UK
| | - Matthew Baylis
- Department of Livestock and One Health, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
- Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| |
Collapse
|
33
|
Ellwanger JH, Chies JAB. Zoonotic spillover: Understanding basic aspects for better prevention. Genet Mol Biol 2021; 44:e20200355. [PMID: 34096963 PMCID: PMC8182890 DOI: 10.1590/1678-4685-gmb-2020-0355] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/05/2021] [Indexed: 01/07/2023] Open
Abstract
The transmission of pathogens from wild animals to humans is called “zoonotic spillover”. Most human infectious diseases (60-75%) are derived from pathogens that originally circulated in non-human animal species. This demonstrates that spillover has a fundamental role in the emergence of new human infectious diseases. Understanding the factors that facilitate the transmission of pathogens from wild animals to humans is essential to establish strategies focused on the reduction of the frequency of spillover events. In this context, this article describes the basic aspects of zoonotic spillover and the main factors involved in spillover events, considering the role of the inter-species interactions, phylogenetic distance between host species, environmental drivers, and specific characteristics of the pathogens, animals, and humans. As an example, the factors involved in the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic are discussed, indicating what can be learned from this public health emergency, and what can be applied to the Brazilian scenario. Finally, this article discusses actions to prevent or reduce the frequency of zoonotic spillover events.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
| | - José Artur Bogo Chies
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
| |
Collapse
|
34
|
Jelinek HF, Mousa M, Alefishat E, Osman W, Spence I, Bu D, Feng SF, Byrd J, Magni PA, Sahibzada S, Tay GK, Alsafar HS. Evolution, Ecology, and Zoonotic Transmission of Betacoronaviruses: A Review. Front Vet Sci 2021; 8:644414. [PMID: 34095271 PMCID: PMC8173069 DOI: 10.3389/fvets.2021.644414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Coronavirus infections have been a part of the animal kingdom for millennia. The difference emerging in the twenty-first century is that a greater number of novel coronaviruses are being discovered primarily due to more advanced technology and that a greater number can be transmitted to humans, either directly or via an intermediate host. This has a range of effects from annual infections that are mild to full-blown pandemics. This review compares the zoonotic potential and relationship between MERS, SARS-CoV, and SARS-CoV-2. The role of bats as possible host species and possible intermediate hosts including pangolins, civets, mink, birds, and other mammals are discussed with reference to mutations of the viral genome affecting zoonosis. Ecological, social, cultural, and environmental factors that may play a role in zoonotic transmission are considered with reference to SARS-CoV, MERS, and SARS-CoV-2 and possible future zoonotic events.
Collapse
Affiliation(s)
- Herbert F. Jelinek
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center of Heath Engineering Innovation, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Nuffield Department of Women's and Reproduction Health, Oxford University, Oxford, United Kingdom
| | - Eman Alefishat
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Wael Osman
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ian Spence
- Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Samuel F. Feng
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jason Byrd
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Paola A. Magni
- Discipline of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
- Murdoch University Singapore, King's Centre, Singapore, Singapore
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Guan K. Tay
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Division of Psychiatry, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba S. Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Genetics and Molecular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
35
|
Schatz AM, Park AW. Host and parasite traits predict cross-species parasite acquisition by introduced mammals. Proc Biol Sci 2021; 288:20210341. [PMID: 33947240 PMCID: PMC8097221 DOI: 10.1098/rspb.2021.0341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/01/2021] [Indexed: 01/02/2023] Open
Abstract
Species invasions and range shifts can lead to novel host-parasite communities, but we lack general rules on which new associations are likely to form. While many studies examine parasite sharing among host species, the directionality of transmission is typically overlooked, impeding our ability to derive principles of parasite acquisition. Consequently, we analysed parasite records from the non-native ranges of 11 carnivore and ungulate species. Using boosted regression trees, we modelled parasite acquisition within each zoogeographic realm of a focal host's non-native range, using a suite of predictors characterizing the parasites themselves and the host community in which they live. We found that higher parasite prevalence among established hosts increases the likelihood of acquisition, particularly for generalist parasites. Non-native host species are also more likely to acquire parasites from established host species to which they are closely related; however, the acquisition of several parasite groups is biased to phylogenetically specialist parasites, indicating potential costs of parasite generalism. Statistical models incorporating these features provide an accurate prediction of parasite acquisition, indicating that measurable host and parasite traits can be used to estimate the likelihood of new host-parasite associations forming. This work provides general rules to help anticipate novel host-parasite associations created by climate change and other anthropogenic influences.
Collapse
Affiliation(s)
- Annakate M. Schatz
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Andrew W. Park
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
36
|
Neely BA, Janech MG, Fenton MB, Simmons NB, Bland AM, Becker DJ. Surveying the Vampire Bat ( Desmodus rotundus) Serum Proteome: A Resource for Identifying Immunological Proteins and Detecting Pathogens. J Proteome Res 2021; 20:2547-2559. [PMID: 33840197 PMCID: PMC9812275 DOI: 10.1021/acs.jproteome.0c00995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bats are increasingly studied as model systems for longevity and as natural hosts for some virulent viruses. Yet the ability to characterize immune mechanisms of viral tolerance and to quantify infection dynamics in wild bats is often limited by small sample volumes and few species-specific reagents. Here, we demonstrate how proteomics can overcome these limitations by using data-independent acquisition-based shotgun proteomics to survey the serum proteome of 17 vampire bats (Desmodus rotundus) from Belize. Using just 2 μL of sample and relatively short separations of undepleted serum digests, we identified 361 proteins across 5 orders of magnitude. Levels of immunological proteins in vampire bat serum were then compared to human plasma via published databases. Of particular interest were antiviral and antibacterial components, circulating 20S proteasome complex and proteins involved in redox activity. Lastly, we used known virus proteomes to putatively identify Rh186 from Macacine herpesvirus 3 and ORF1a from Middle East respiratory syndrome-related coronavirus, indicating that mass spectrometry-based techniques show promise for pathogen detection. Overall, these results can be used to design targeted mass-spectrometry assays to quantify immunological markers and detect pathogens. More broadly, our findings also highlight the application of proteomics in advancing wildlife immunology and pathogen surveillance.
Collapse
Affiliation(s)
- Benjamin A Neely
- Chemical Sciences Division, National Institute of Standards and Technology, NIST Charleston, Charleston, South Carolina 29412, United States
| | - Michael G Janech
- Hollings Marine Laboratory, Charleston, South Carolina 29412, United States
- Department of Biology, College of Charleston, Charleston, South Carolina 29424, United States
| | - M Brock Fenton
- Department of Biology, Western University, London, Ontario N6A 3K7, Canada
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York 10024, United States
| | - Alison M Bland
- Hollings Marine Laboratory, Charleston, South Carolina 29412, United States
- Department of Biology, College of Charleston, Charleston, South Carolina 29424, United States
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
37
|
Keatts LO, Robards M, Olson SH, Hueffer K, Insley SJ, Joly DO, Kutz S, Lee DS, Chetkiewicz CLB, Lair S, Preston ND, Pruvot M, Ray JC, Reid D, Sleeman JM, Stimmelmayr R, Stephen C, Walzer C. Implications of Zoonoses From Hunting and Use of Wildlife in North American Arctic and Boreal Biomes: Pandemic Potential, Monitoring, and Mitigation. Front Public Health 2021; 9:627654. [PMID: 34026707 PMCID: PMC8131663 DOI: 10.3389/fpubh.2021.627654] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic has re-focused attention on mechanisms that lead to zoonotic disease spillover and spread. Commercial wildlife trade, and associated markets, are recognized mechanisms for zoonotic disease emergence, resulting in a growing global conversation around reducing human disease risks from spillover associated with hunting, trade, and consumption of wild animals. These discussions are especially relevant to people who rely on harvesting wildlife to meet nutritional, and cultural needs, including those in Arctic and boreal regions. Global policies around wildlife use and trade can impact food sovereignty and security, especially of Indigenous Peoples. We reviewed known zoonotic pathogens and current risks of transmission from wildlife (including fish) to humans in North American Arctic and boreal biomes, and evaluated the epidemic and pandemic potential of these zoonoses. We discuss future concerns, and consider monitoring and mitigation measures in these changing socio-ecological systems. While multiple zoonotic pathogens circulate in these systems, risks to humans are mostly limited to individual illness or local community outbreaks. These regions are relatively remote, subject to very cold temperatures, have relatively low wildlife, domestic animal, and pathogen diversity, and in many cases low density, including of humans. Hence, favorable conditions for emergence of novel diseases or major amplification of a spillover event are currently not present. The greatest risk to northern communities from pathogens of pandemic potential is via introduction with humans visiting from other areas. However, Arctic and boreal ecosystems are undergoing rapid changes through climate warming, habitat encroachment, and development; all of which can change host and pathogen relationships, thereby affecting the probability of the emergence of new (and re-emergence of old) zoonoses. Indigenous leadership and engagement in disease monitoring, prevention and response, is vital from the outset, and would increase the success of such efforts, as well as ensure the protection of Indigenous rights as outlined in the United Nations Declaration on the Rights of Indigenous Peoples. Partnering with northern communities and including Indigenous Knowledge Systems would improve the timeliness, and likelihood, of detecting emerging zoonotic risks, and contextualize risk assessments to the unique human-wildlife relationships present in northern biomes.
Collapse
Affiliation(s)
- Lucy O. Keatts
- Wildlife Conservation Society Health Program, Bronx, NY, United States
| | - Martin Robards
- Wildlife Conservation Society, Arctic Beringia Program, Fairbanks, AK, United States
| | - Sarah H. Olson
- Wildlife Conservation Society Health Program, Bronx, NY, United States
| | - Karsten Hueffer
- Department of Veterinary Medicine & Arctic and Northern Studies Program, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Stephen J. Insley
- Wildlife Conservation Society Canada, Toronto, ON, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Susan Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - David S. Lee
- Department of Wildlife and Environment, Nunavut Tunngavik Inc., Ottawa, ON, Canada
| | | | - Stéphane Lair
- Canadian Wildlife Health Cooperative, Université de Montréal, Montreal, QC, Canada
| | | | - Mathieu Pruvot
- Wildlife Conservation Society Health Program, Bronx, NY, United States
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Justina C. Ray
- Wildlife Conservation Society Canada, Toronto, ON, Canada
| | - Donald Reid
- Wildlife Conservation Society Canada, Toronto, ON, Canada
| | - Jonathan M. Sleeman
- United States Geological Survey National Wildlife Health Center, Madison, WI, United States
| | - Raphaela Stimmelmayr
- North Slope Department of Wildlife Management, Utqiagvik, AK, United States
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Craig Stephen
- University of British Columbia, Vancouver, BC, Canada
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Chris Walzer
- Wildlife Conservation Society Health Program, Bronx, NY, United States
- Conservation Medicine Unit, Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
38
|
Córdoba-Aguilar A, Ibarra-Cerdeña CN, Castro-Arellano I, Suzan G. Tackling zoonoses in a crowded world: Lessons to be learned from the COVID-19 pandemic. Acta Trop 2021; 214:105780. [PMID: 33253658 PMCID: PMC7695573 DOI: 10.1016/j.actatropica.2020.105780] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022]
Abstract
The COVID-19 zoonosis is bringing about a number of lessons to humanity. One is that of transforming our links with nature and, particularly, wildlife given the likely COVID-19 origin from illegal wildlife trading. Similar to vector borne diseases (VBD, diseases transmitted by vectors), the COVID-19 pandemic follows related patterns (e.g. no effective or available vaccines, difficult to diagnose, highly localized infection geographical foci, non-human reservoirs) for which we urgently need preventive measures. Towards this aim, governments worldwide must strive to prevent further devastation of natural environments that serve as buffer areas to humans against zoonotic agents (among other health risks), protecting biodiversity and its concomitant causes (e.g. global change), and banning use of wildlife of illegal origin. We herein state that some VBD prevention strategies could also be applied to zoonotic disease prevention, including COVID-19 or any type likely to be related to environmental conditions. The occurrence of future pandemic occurrence will depend on whether governments embrace these aims now.
Collapse
|
39
|
The zoonotic potential of bat-borne coronaviruses. Emerg Top Life Sci 2020; 4:353-369. [PMID: 33258903 DOI: 10.1042/etls20200097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Seven zoonoses - human infections of animal origin - have emerged from the Coronaviridae family in the past century, including three viruses responsible for significant human mortality (SARS-CoV, MERS-CoV, and SARS-CoV-2) in the past twenty years alone. These three viruses, in addition to two older CoV zoonoses (HCoV-229E and HCoV-NL63) are believed to be originally derived from wild bat reservoir species. We review the molecular biology of the bat-derived Alpha- and Betacoronavirus genera, highlighting features that contribute to their potential for cross-species emergence, including the use of well-conserved mammalian host cell machinery for cell entry and a unique capacity for adaptation to novel host environments after host switching. The adaptive capacity of coronaviruses largely results from their large genomes, which reduce the risk of deleterious mutational errors and facilitate range-expanding recombination events by offering heightened redundancy in essential genetic material. Large CoV genomes are made possible by the unique proofreading capacity encoded for their RNA-dependent polymerase. We find that bat-borne SARS-related coronaviruses in the subgenus Sarbecovirus, the source clade for SARS-CoV and SARS-CoV-2, present a particularly poignant pandemic threat, due to the extraordinary viral genetic diversity represented among several sympatric species of their horseshoe bat hosts. To date, Sarbecovirus surveillance has been almost entirely restricted to China. More vigorous field research efforts tracking the circulation of Sarbecoviruses specifically and Betacoronaviruses more generally is needed across a broader global range if we are to avoid future repeats of the COVID-19 pandemic.
Collapse
|
40
|
Gentles AD, Guth S, Rozins C, Brook CE. A review of mechanistic models of viral dynamics in bat reservoirs for zoonotic disease. Pathog Glob Health 2020; 114:407-425. [PMID: 33185145 PMCID: PMC7759253 DOI: 10.1080/20477724.2020.1833161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The emergence of SARS-CoV-2, a coronavirus with suspected bat origins, highlights a critical need for heightened understanding of the mechanisms by which bats maintain potentially zoonotic viruses at the population level and transmit these pathogens across species. We review mechanistic models, which test hypotheses of the transmission dynamics that underpin viral maintenance in bat systems. A search of the literature identified only twenty-five mechanistic models of bat-virus systems published to date, derived from twenty-three original studies. Most models focused on rabies and related lyssaviruses (eleven), followed by Ebola-like filoviruses (seven), Hendra and Nipah-like henipaviruses (five), and coronaviruses (two). The vast majority of studies has modelled bat virus transmission dynamics at the population level, though a few nested within-host models of viral pathogenesis in population-level frameworks, and one study focused on purely within-host dynamics. Population-level studies described bat virus systems from every continent but Antarctica, though most were concentrated in North America and Africa; indeed, only one simulation model with no associated data was derived from an Asian bat-virus system. In fact, of the twenty-five models identified, only ten population-level models were fitted to data - emphasizing an overall dearth of empirically derived epidemiological inference in bat virus systems. Within the data fitted subset, the vast majority of models were fitted to serological data only, highlighting extensive uncertainty in our understanding of the transmission status of a wild bat. Here, we discuss similarities and differences in the approach and findings of previously published bat virus models and make recommendations for improvement in future work.
Collapse
Affiliation(s)
| | - Sarah Guth
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Carly Rozins
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Cara E. Brook
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
41
|
Albery GF, Becker DJ. Fast-lived Hosts and Zoonotic Risk. Trends Parasitol 2020; 37:117-129. [PMID: 33214097 DOI: 10.1016/j.pt.2020.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/02/2023]
Abstract
Because most emerging human pathogens originate in mammals, many studies aim to identify host traits that determine the risk of sourcing zoonotic outbreaks. Studies regularly assert that 'fast-lived' mammal species exhibiting greater fecundity and shorter lifespans tend to host more zoonoses; however, the causes of this association remain poorly understood and they cover a range of immune and nonimmune mechanisms. We discuss these drivers in the context of evolutionary ecology and wildlife-human interactions. Ultimately, differentiating these mechanisms will require linking interspecific variation in life history with immunity, pathogen diversity, transmissibility, and zoonotic risk, and critical data gaps currently limit our ability to do so. We highlight sampling and analytical frameworks to address this gap and to better inform zoonotic reservoir prediction.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA.
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
42
|
Affiliation(s)
- Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK. .,Medical Research Council-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Amy T Gilbert
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, National Wildlife Research Center, Fort Collins, CO, USA.
| |
Collapse
|
43
|
Crespi B. Evolutionary medical insights into the SARS-CoV-2 pandemic. Evol Med Public Health 2020; 2020:314-322. [PMID: 33335737 PMCID: PMC7665492 DOI: 10.1093/emph/eoaa036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
The author apply concepts and tools from evolutionary medicine to understanding the SARS-CoV-2 pandemic. The pandemic represents a mismatched conflict, with dynamics and pathology apparently driven by three main factors: (i) bat immune systems that rely on low inflammation but high efficacy of interferon-based defenses; (ii) viral tactics that differentially target the human interferon system, leading to substantial asymptomatic and pre-symptomatic transmission; and (ii) high mortality caused by hyper-inflammatory and hyper-coagulatory phenotypes, that represent dysregulated tradeoffs whereby collateral immune-induced damage becomes systemic and severe. This framework can explain the association of mortality with age (which involves immune life-history shifts towards higher inflammation and coagulation and reduced adaptive immunity), and sex (since males senesce faster than females). Genetic-risk factors for COVID-19 mortality can be shown, from a phenome-wide association analysis of the relevant SNPs, to be associated with inflammation and coagulation; the phenome-wide association study also provides evidence, consistent with several previous studies, that the calcium channel blocking drug amlodipine mediates risk of mortality. Lay Summary: SARS-CoV-2 is a bat virus that jumped into humans. The virus is adapted to bat immune systems, where it evolved to suppress the immune defenses (interferons) that mammals use to tell that they are infected. In humans, the virus can apparently spread effectively in the body with a delay in the production of symptoms and the initiation of immune responses. This delay may then promote overactive immune responses, when the virus is detected, that damage the body as a side effect. Older people are more vulnerable to the virus because they are less adapted to novel infectious agents, and invest less in immune defense, compared to younger people. Genes that increase risk of mortality from SARS-CoV-2 are functionally associated with a drug called amlodipine, which may represent a useful treatment.
Collapse
Affiliation(s)
- Bernard Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
44
|
Guth S, Hanley KA, Althouse BM, Boots M. Ecological processes underlying the emergence of novel enzootic cycles: Arboviruses in the neotropics as a case study. PLoS Negl Trop Dis 2020; 14:e0008338. [PMID: 32790670 PMCID: PMC7425862 DOI: 10.1371/journal.pntd.0008338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pathogens originating from wildlife (zoonoses) pose a significant public health burden, comprising the majority of emerging infectious diseases. Efforts to control and prevent zoonotic disease have traditionally focused on animal-to-human transmission, or "spillover." However, in the modern era, increasing international mobility and commerce facilitate the spread of infected humans, nonhuman animals (hereafter animals), and their products worldwide, thereby increasing the risk that zoonoses will be introduced to new geographic areas. Imported zoonoses can potentially "spill back" to infect local wildlife-a danger magnified by urbanization and other anthropogenic pressures that increase contacts between human and wildlife populations. In this way, humans can function as vectors, dispersing zoonoses from their ancestral enzootic systems to establish reservoirs elsewhere in novel animal host populations. Once established, these enzootic cycles are largely unassailable by standard control measures and have the potential to feed human epidemics. Understanding when and why translocated zoonoses establish novel enzootic cycles requires disentangling ecologically complex and stochastic interactions between the zoonosis, the human population, and the natural ecosystem. In this Review, we address this challenge by delineating potential ecological mechanisms affecting each stage of enzootic establishment-wildlife exposure, enzootic infection, and persistence-applying existing ecological concepts from epidemiology, invasion biology, and population ecology. We ground our discussion in the neotropics, where four arthropod-borne viruses (arboviruses) of zoonotic origin-yellow fever, dengue, chikungunya, and Zika viruses-have separately been introduced into the human population. This paper is a step towards developing a framework for predicting and preventing novel enzootic cycles in the face of zoonotic translocations.
Collapse
Affiliation(s)
- Sarah Guth
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- Epidemiology, Institute for Disease Modeling, Bellevue, Washington, United States of America
- Information School, University of Washington, Seattle, Washington, United States of America
| | - Mike Boots
- Department of Integrative Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
45
|
Nuismer SL, Bull JJ. Self-disseminating vaccines to suppress zoonoses. Nat Ecol Evol 2020; 4:1168-1173. [PMID: 32719452 DOI: 10.1038/s41559-020-1254-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
The SARS-CoV-2 epidemic is merely the most recent demonstration that our current approach to emerging zoonotic infectious disease is ineffective. SARS, MERS, Ebola, Nipah and an array of arenavirus infections sporadically spillover into human populations and are often contained only as a result of their poor transmission in human hosts, coupled with intense public health control efforts in the early stages of an emerging epidemic. It is now more apparent than ever that we need a better and more proactive approach. One possibility is to eliminate the threat of spillover before it occurs using vaccines capable of autonomously spreading through wild animal reservoirs. We are now poised to begin developing self-disseminating vaccines targeting a wide range of human pathogens, but important decisions remain about how they can be most effectively designed and used to target pathogens with a high risk of spillover and/or emergence. In this Perspective, we first review the basic epidemiological theory establishing the feasibility and utility of self-disseminating vaccines. We then outline a road map for overcoming remaining technical challenges: identifying high-risk pathogens before they emerge, optimizing vaccine design with an eye to evolution, behaviour and epidemiology, and minimizing the risk of unintended consequences.
Collapse
Affiliation(s)
- Scott L Nuismer
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA. .,Department of Mathematics, University of Idaho, Moscow, ID, USA.
| | - James J Bull
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
46
|
Shaw LP, Wang AD, Dylus D, Meier M, Pogacnik G, Dessimoz C, Balloux F. The phylogenetic range of bacterial and viral pathogens of vertebrates. Mol Ecol 2020; 29:3361-3379. [PMID: 32390272 DOI: 10.1111/mec.15463] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/20/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
Many major human pathogens are multihost pathogens, able to infect other vertebrate species. Describing the general patterns of host-pathogen associations across pathogen taxa is therefore important to understand risk factors for human disease emergence. However, there is a lack of comprehensive curated databases for this purpose, with most previous efforts focusing on viruses. Here, we report the largest manually compiled host-pathogen association database, covering 2,595 bacteria and viruses infecting 2,656 vertebrate hosts. We also build a tree for host species using nine mitochondrial genes, giving a quantitative measure of the phylogenetic similarity of hosts. We find that the majority of bacteria and viruses are specialists infecting only a single host species, with bacteria having a significantly higher proportion of specialists compared to viruses. Conversely, multihost viruses have a more restricted host range than multihost bacteria. We perform multiple analyses of factors associated with pathogen richness per host species and the pathogen traits associated with greater host range and zoonotic potential. We show that factors previously identified as important for zoonotic potential in viruses-such as phylogenetic range, research effort, and being vector-borne-are also predictive in bacteria. We find that the fraction of pathogens shared between two hosts decreases with the phylogenetic distance between them. Our results suggest that host phylogenetic similarity is the primary factor for host-switching in pathogens.
Collapse
Affiliation(s)
- Liam P Shaw
- UCL Genetics Institute, University College London, London, UK.,Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Alethea D Wang
- UCL Genetics Institute, University College London, London, UK.,Canadian University Dubai, Dubai, United Arab Emirates
| | - David Dylus
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Magda Meier
- UCL Genetics Institute, University College London, London, UK.,Genetics and Genomic Medicine, University College London Institute of Child Health, London, UK
| | - Grega Pogacnik
- UCL Genetics Institute, University College London, London, UK
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Genetics Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK.,Department of Computer Science, University College London, London, UK
| | | |
Collapse
|
47
|
Out of Africa: The origins of the protozoan blood parasites of the Trypanosoma cruzi clade found in bats from Africa. Mol Phylogenet Evol 2019; 145:106705. [PMID: 31821880 DOI: 10.1016/j.ympev.2019.106705] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/26/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
Understanding geographic patterns of interaction between hosts and parasites can provide useful insight into the evolutionary history of the organisms involved. However, poor taxon sampling often hinders meaningful phylogenetic descriptions of groups of parasites. Trypanosome parasites that constitute the Trypanosoma cruzi clade are worldwide distributed infecting several mammalian species, especially bats. Diversity in this clade has been recently expanded by newly discovered species, but the common ancestor and geographical origins of this group of blood parasites are still debated. We present here results based on the molecular characterization of trypanosome isolates obtained from 1493 bats representing 74 species and sampled over 16 countries across four continents. After estimating the appropriate number of hypothetical species in our data set using GMYC models in combination with Poisson Tree Processes (mPTP) and ABGD, the 18S rRNA and gGAPDH genes were used for phylogenetic analyses to infer the major evolutionary relationships in the T. cruzi clade. Then, biogeographical processes influencing the distribution of this cosmopolitan group of parasites was inferred using BioGeoBEARS. Results revealed a large lineages diversity and the presence of trypanosomes in all sampled regions which infected 344 individuals from 31 bat species. We found eight Trypanosoma species, including: five previously known; one subspecies of Trypanosoma livingstonei (Trypanosoma cf. livingstonei); and two undescribed taxa (Trypanosoma sp. 1, Trypanosoma sp. 2), which were found exclusively in bats of the genus Miniopterus from Europe and Africa. The new taxa discovered have both an unexpected position in the global phylogeny of the T. cruzi clade. Trypanosoma sp. 1 is a sister lineage of T. livingstonei which is located at the base of the tree, whereas Trypanosoma sp. 2 is a sister lineage of the Shizotrypanum subclade that contains T. c. cruzi and T. dionisii. Ancestral areas reconstruction provided evidence that trypanosomes of the T. cruzi clade have radiated from Africa through several dispersion events across the world. We discuss the impact of these findings on the biogeography and taxonomy of this important clade of parasites and question the role played by bats, especially those from the genus Miniopterus, on the dispersal of these protozoan parasites between continents.
Collapse
|
48
|
Becker DJ, Washburne AD, Faust CL, Pulliam JRC, Mordecai EA, Lloyd-Smith JO, Plowright RK. Dynamic and integrative approaches to understanding pathogen spillover. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190014. [PMID: 31401959 PMCID: PMC6711302 DOI: 10.1098/rstb.2019.0014] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- Daniel J. Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Alex D. Washburne
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Christina L. Faust
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Juliet R. C. Pulliam
- South African Centre for Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | | | - James O. Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|