1
|
Cheng W, Chen Q, Ren Y, Zhang Y, Lu L, Gui L, Xu D. The identification of viral ribonucleotide reductase encoded by ORF23 and ORF141 genes and effect on CyHV-2 replication. Front Microbiol 2023; 14:1154840. [PMID: 37143536 PMCID: PMC10151572 DOI: 10.3389/fmicb.2023.1154840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Ribonucleotide reductase (RR) is essential for the replication of the double-stranded DNA virus CyHV-2 due to its ability to catalyze the conversion of ribonucleotides to deoxyribonucleotides, and is a potential target for the development of antiviral drugs to control CyHV-2 infection. Methods Bioinformatic analysis was conducted to identify potential homologues of RR in CyHV-2. The transcription and translation levels of ORF23 and ORF141, which showed high homology to RR, were measured during CyHV-2 replication in GICF. Co-localization experiments and immunoprecipitation were performed to investigate the interaction between ORF23 and ORF141. siRNA interference experiments were conducted to evaluate the effect of silencing ORF23 and ORF141 on CyHV-2 replication. The inhibitory effect of hydroxyurea, a nucleotide reductase inhibitor, on CyHV-2 replication in GICF cells and RR enzymatic activity in vitro was also evaluated. Results ORF23 and ORF141 were identified as potential viral ribonucleotide reductase homologues in CyHV-2, and their transcription and translation levels increased with CyHV-2 replication. Co-localization experiments and immunoprecipitation suggested an interaction between the two proteins. Simultaneous silencing of ORF23 and ORF141 effectively inhibited the replication of CyHV-2. Additionally, hydroxyurea inhibited the replication of CyHV-2 in GICF cells and the in vitro enzymatic activity of RR. Conclusion These results suggest that the CyHV-2 proteins ORF23 and ORF141 function as viral ribonucleotide reductase and their function makes an effect to CyHV-2 replication. Targeting ribonucleotide reductase could be a crucial strategy for developing new antiviral drugs against CyHV-2 and other herpesviruses.
Collapse
Affiliation(s)
- Wenjie Cheng
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Qikang Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Yilin Ren
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Ye Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Liqun Lu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Dan Xu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- *Correspondence: Dan Xu,
| |
Collapse
|
2
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
3
|
Carr DJJ, Gmyrek GB, Filiberti A, Berube AN, Browne WP, Gudgel BM, Sjoelund VH. Distinguishing Features of High- and Low-Dose Vaccine against Ocular HSV-1 Infection Correlates with Recognition of Specific HSV-1-Encoded Proteins. Immunohorizons 2020; 4:608-626. [PMID: 33037098 DOI: 10.4049/immunohorizons.2000060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
The protective efficacy of a live-attenuated HSV type 1 (HSV-1) vaccine, HSV-1 0∆ nuclear location signal (NLS), was evaluated in mice prophylactically in response to ocular HSV-1 challenge. Mice vaccinated with the HSV-1 0∆NLS were found to be more resistant to subsequent ocular virus challenge in terms of viral shedding, spread, the inflammatory response, and ocular pathology in a dose-dependent fashion. Specifically, a strong neutralizing Ab profile associated with low virus titers recovered from the cornea and trigeminal ganglia was observed in vaccinated mice in a dose-dependent fashion with doses ranging from 1 × 103 to 1 × 105 PFU HSV-1 0∆NLS. This correlation also existed in terms of viral latency in the trigeminal ganglia, corneal neovascularization, and leukocyte infiltration and expression of inflammatory cytokines and chemokines in infected tissue with the higher doses (1 × 104-1 × 105 PFU) of the HSV-1 0∆NLS-vaccinated mice, displaying reduced viral latency, ocular pathology, or inflammation in comparison with the lowest dose (1 × 103 PFU) or vehicle vaccine employed. Fifteen HSV-1-encoded proteins were uniquely recognized by antisera from high-dose (1 × 105 PFU)-vaccinated mice in comparison with low-dose (1 × 103 PFU)- or vehicle-vaccinated animals. Passive immunization using high-dose-vaccinated, but not low-dose-vaccinated, mouse sera showed significant efficacy against ocular pathology in HSV-1-challenged animals. In summary, we have identified the minimal protective dose of HSV-1 0∆NLS vaccine in mice to prevent HSV-mediated disease and identified candidate proteins that may be useful in the development of a noninfectious prophylactic vaccine against the insidious HSV-1 pathogen.
Collapse
Affiliation(s)
- Daniel J J Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; .,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Grzegorz B Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Adrian Filiberti
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Amanda N Berube
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - William P Browne
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Brett M Gudgel
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Virginie H Sjoelund
- Laboratory for Molecular Biology and Cytometry Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
4
|
Lyu C, Li WD, Peng JM, Cai XH. Identification of interaction domains in the pseudorabies virus ribonucleotide reductase large and small subunits. Vet Microbiol 2020; 246:108740. [PMID: 32605757 DOI: 10.1016/j.vetmic.2020.108740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 11/17/2022]
Abstract
Alphaherpesviral ribonucleotide reductase (RNR) is composed of large (pUL39, RR1) and small (pUL40, RR2) subunits. This enzyme can catalyze conversion of ribonucleotide to deoxynucleotide diphosphates that are further phosphorylated into deoxynucleotide triphosphate (dNTPs). The dNTPs are substrates for de novo viral DNA synthesis in infected host cells. The enzymatic activity of RNR depends on association between RR1 and RR2. However, the molecular basis underlying alphaherpesviral RNR complex formation is still largely unknown. In the current study, we investigated the pseudorabies virus (PRV) RNR interaction domains in pUL39 and pUL40. The interaction of pUL39 and pUL40 was identified by co-immunoprecipitation (co-IP) and colocalization analyses. Furthermore, the interaction amino acid (aa) domains in pUL39 and pUL40 were mapped using a series of truncated proteins. Consequently, the 90-210 aa in pUL39 was identified to be responsible for the interaction with pUL40. In turn, the 66-152, 218-258 and 280-303 aa in pUL40 could interact with pUL39, respectively. Deletion of 90-210 aa in pUL39 completely abrogated the interaction with pUL40. Deletion of 66-152, 218-258 and 280-303 aa in pUL40 remarkably weakened the interaction with pUL39, whereas a weak interaction could still be observed. Amino acid sequence alignments showed that the interaction domains identified in PRV pUL39/pUL40 were relatively non-conserved among the selected RNR subunits in alphaherpesviruses HSV1, HSV2, HHV3(VZV), BHV1, EHV1 and DEV. However, they were relatively conserved among PRV, HSV1 and HSV2. Collectively, our findings provided some molecular targets for inhibition of pUL39-pUL40 interaction to antagonize viral replication in PRV infected hosts.
Collapse
Affiliation(s)
- Chuang Lyu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Haping Road No.678, Harbin 150069, China
| | - Wei-Dong Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Haping Road No.678, Harbin 150069, China
| | - Jin-Mei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Haping Road No.678, Harbin 150069, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Haping Road No.678, Harbin 150069, China.
| |
Collapse
|
5
|
Attenuated Herpes Simplex Virus 1 (HSV-1) Expressing a Mutant Form of ICP6 Stimulates a Strong Immune Response That Protects Mice against HSV-1-Induced Corneal Disease. J Virol 2018; 92:JVI.01036-18. [PMID: 29950407 DOI: 10.1128/jvi.01036-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
We previously isolated a herpes simplex virus 1 (HSV-1) mutant, KOS-NA, that carries two nonsynonymous mutations in UL39, resulting in L393P and R950H amino acid substitutions in infected cell protein 6 (ICP6). Our published data studying KOS-NA pathogenesis strongly suggest that one of these ICP6 substitutions expressed from KOS-NA, R950H, severely impaired acute viral replication in the eyes and trigeminal ganglia of mice after inoculation onto the cornea and consequently impaired establishment and reactivation from latency. Because of its significant neuroattenuation, we tested KOS-NA as a potential prophylactic vaccine against HSV-1 in a mouse model of corneal infection. KOS-NA stimulated stronger antibody and T cell responses than a replication-competent ICP0-null mutant and a replication-incompetent ICP8-null mutant optimized for immunogenicity. Immunizations with the ICP0-, ICP8-, and KOS-NA viruses all reduced replication of wild-type HSV-1 challenge virus in the corneal epithelium to similar extents. Low immunizing doses of KOS-NA and the ICP8- virus, but not the ICP0- virus, protected mice against eyelid disease (blepharitis). Notably, only KOS-NA protected almost completely against corneal disease (keratitis) and greatly reduced latent infection by challenge virus. Thus, vaccination of mice with KOS-NA prior to corneal challenge provides significant protection against HSV-1-mediated disease of the eye, even at a very low immunizing dose. These results suggest that KOS-NA may be the foundation of an effective prophylactic vaccine to prevent or limit HSV-1 ocular diseases.IMPORTANCE HSV-1 is a ubiquitous human pathogen that infects the majority of the world's population. Although most infections are asymptomatic, HSV-1 establishes lifelong latency in infected sensory neurons, from which it can reactivate to cause deadly encephalitis or potentially blinding eye disease. No clinically effective vaccine is available. In this study, we tested the protective potential of a neuroattenuated HSV-1 mutant (KOS-NA) as a vaccine in mice. We compared the effects of immunization with KOS-NA to those of two other attenuated viruses, a replication-competent (ICP0-) virus and a replication-incompetent (ICP8-) virus. Our data show that KOS-NA proved superior to the ICP0- and ICP8-null mutants in protecting mice from corneal disease and latent infection. With its significant neuroattenuation, severe impairment in establishing latency, and excellent protective effect, KOS-NA represents a significant discovery in the field of HSV-1 vaccine development.
Collapse
|
6
|
Herpes Simplex Virus 1 Mutant with Point Mutations in UL39 Is Impaired for Acute Viral Replication in Mice, Establishment of Latency, and Explant-Induced Reactivation. J Virol 2018; 92:JVI.01654-17. [PMID: 29321311 DOI: 10.1128/jvi.01654-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/03/2018] [Indexed: 12/20/2022] Open
Abstract
In the process of generating herpes simplex virus 1 (HSV-1) mutations in the viral regulatory gene encoding infected cell protein 0 (ICP0), we isolated a viral mutant, termed KOS-NA, that was severely impaired for acute replication in the eyes and trigeminal ganglia (TG) of mice, defective in establishing a latent infection, and reactivated poorly from explanted TG. To identify the secondary mutation(s) responsible for the impaired phenotypes of this mutant, we sequenced the KOS-NA genome and noted that it contained two nonsynonymous mutations in UL39, which encodes the large subunit of ribonucleotide reductase, ICP6. These mutations resulted in lysine-to-proline (residue 393) and arginine-to-histidine (residue 950) substitutions in ICP6. To determine whether alteration of these amino acids was responsible for the KOS-NA phenotypes in vivo, we recombined the wild-type UL39 gene into the KOS-NA genome and rescued its acute replication phenotypes in mice. To further establish the role of UL39 in KOS-NA's decreased pathogenicity, the UL39 mutations were recombined into HSV-1 (generating UL39mut), and this mutant virus showed reduced ocular and TG replication in mice comparable to that of KOS-NA. Interestingly, ICP6 protein levels were reduced in KOS-NA-infected cells relative to the wild-type protein. Moreover, we observed that KOS-NA does not counteract caspase 8-induced apoptosis, unlike wild-type strain KOS. Based on alignment studies with other HSV-1 ICP6 homologs, our data suggest that amino acid 950 of ICP6 likely plays an important role in ICP6 accumulation and inhibition of apoptosis, consequently impairing HSV-1 pathogenesis in a mouse model of HSV-1 infection.IMPORTANCE HSV-1 is a major human pathogen that infects ∼80% of the human population and can be life threatening to infected neonates or immunocompromised individuals. Effective therapies for treatment of recurrent HSV-1 infections are limited, which emphasizes a critical need to understand in greater detail the events that modulate HSV-1 replication and pathogenesis. In the current study, we identified a neuroattenuated HSV-1 mutant (i.e., KOS-NA) that contains novel mutations in the UL39 gene, which codes for the large subunit of ribonucleotide reductase (also known as ICP6). This mutant form of ICP6 was responsible for the attenuation of KOS-NA in vivo and resulted in diminished ICP6 protein levels and antiapoptotic effect. Thus, we have determined that subtle alteration of the UL39 gene regulates expression and functions of ICP6 and severely impacts HSV-1 pathogenesis, potentially making KOS-NA a promising vaccine candidate against HSV-1.
Collapse
|
7
|
Phosphorylation of a herpes simplex virus 1 dUTPase by a viral protein kinase, Us3, dictates viral pathogenicity in the central nervous system but not at the periphery. J Virol 2013; 88:2775-85. [PMID: 24352467 DOI: 10.1128/jvi.03300-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) encodes Us3 protein kinase, which is critical for viral pathogenicity in both mouse peripheral sites (e.g., eyes and vaginas) and in the central nervous systems (CNS) of mice after intracranial and peripheral inoculations, respectively. Whereas some Us3 substrates involved in Us3 pathogenicity in peripheral sites have been reported, those involved in Us3 pathogenicity in the CNS remain to be identified. We recently reported that Us3 phosphorylated HSV-1 dUTPase (vdUTPase) at serine 187 (Ser-187) in infected cells, and this phosphorylation promoted viral replication by regulating optimal enzymatic activity of vdUTPase. In the present study, we show that the replacement of vdUTPase Ser-187 by alanine (S187A) significantly reduced viral replication and virulence in the CNS of mice following intracranial inoculation and that the phosphomimetic substitution at vdUTPase Ser-187 in part restored the wild-type viral replication and virulence. Interestingly, the S187A mutation in vdUTPase had no effect on viral replication and pathogenic effects in the eyes and vaginas of mice after ocular and vaginal inoculation, respectively. Similarly, the enzyme-dead mutation in vdUTPase significantly reduced viral replication and virulence in the CNS of mice after intracranial inoculation, whereas the mutation had no effect on viral replication and pathogenic effects in the eyes and vaginas of mice after ocular and vaginal inoculation, respectively. These observations suggested that vdUTPase was one of the Us3 substrates responsible for Us3 pathogenicity in the CNS and that the CNS-specific virulence of HSV-1 involved strict regulation of vdUTPase activity by Us3 phosphorylation. IMPORTANCE Herpes simplex virus 1 (HSV-1) encodes a viral protein kinase Us3 which is critical for pathogenicity both in peripheral sites and in the central nervous systems (CNS) of mice following peripheral and intracranial inoculations, respectively. Whereas some Us3 substrates involved in Us3 pathogenicity in peripheral sites have been reported, those involved in Us3 pathogenicity in the CNS remain to be identified. Here, we report that Us3 phosphorylation of viral dUTPase (vdUTPase) at serine 187 (Ser-187), which has been shown to promote the vdUTPase activity, appears to be critical for viral virulence in the CNS but not for pathogenic effects in peripheral sites. Since HSV proteins critical for viral virulence in the CNS are, in almost all cases, also involved in viral pathogenicity at peripheral sites, this phosphorylation event is a unique report of a specific mechanism involved in HSV-1 virulence in the CNS.
Collapse
|
8
|
Genomic sequence analysis of the United States infectious laryngotracheitis vaccine strains chicken embryo origin (CEO) and tissue culture origin (TCO). Virology 2013; 440:64-74. [DOI: 10.1016/j.virol.2013.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 12/12/2012] [Accepted: 02/12/2013] [Indexed: 12/16/2022]
|
9
|
Ren Z, Li S, Wang QL, Xiang YF, Cui YX, Wang YF, Qi RB, Lu DX, Zhang SM, Zhang PZ. Effect of siRNAs on HSV-1 plaque formation and relative expression levels of RR mRNA. Virol Sin 2011; 26:40-6. [PMID: 21331889 DOI: 10.1007/s12250-011-3162-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022] Open
Abstract
RNA interference (RNAi) is a process by which introduced small interfering RNA (siRNA) can cause the specific degradation of mRNA with identical sequences. The human herpes simplex virus type 1 (HSV-1) RR is composed of two distinct homodimeric subunits encoded by UL39 and UL40, respectively. In this study, we applied siRNAs targeting the UL39 and UL40 genes of HSV-1. We showed that synthetic siRNA silenced effectively and specifically UL39 and UL40 mRNA expression and inhibited HSV-1 replication. Our work offers new possibilities for RNAi as a genetic tool for inhibition of HSV-1 replication.
Collapse
Affiliation(s)
- Zhe Ren
- Biomedicine research and development center of Jinan University, Guangdong, Guangzhou 510632, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sergerie Y, Boivin G. Virological pattern in plasma, peripheral blood mononuclear cells and liver tissue and clinical outcome in chronic hepatitis B and C virus coinfection. Antivir Ther 2008; 77:77-80. [PMID: 17913252 DOI: 10.1016/j.antiviral.2007.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/21/2007] [Accepted: 08/22/2007] [Indexed: 02/07/2023]
Abstract
BACKGROUND We aim to evaluate in chronic hepatitis B virus-hepatitis C virus (HBV-HCV) coinfection the interplay of these viruses in liver tissue, peripheral blood mononuclear cells (PBMC), and plasma and to analyze the effect on disease course and response to treatment. METHODS We enrolled 19 patients with chronic HBV-HCV coinfection, 20 with chronic HCV and 20 with chronic HBV infection at their first liver biopsy, all were naive for antiviral therapy. The patients' plasma, PBMC and liver biopsy samples were tested for HBV DNA and/or HCV RNA by real-time PCR, according to the presence/absence of hepatitis B surface antigen and antibodies against HCV in the serum. RESULTS Contemporary presence of HBV DNA and HCV RNA was rare in plasma (5.3% of cases) and PBMC (10.6%), but frequent in liver tissue (52.6%). Of 10 cases circulating only HCV RNA and treated with pegylated interferon (PEG-IFN) plus ribavirin for 12 months, two showed a sustained response, and eight cleared HCV RNA but became HBV-DNA-positive in plasma; these eight had detectable HBV DNA in liver at baseline. One patient, who was plasma HBV-DNA-positive/HCV-RNA-negative at baseline, showed a sustained response after 18 months of PEG-IFN treatment; another, who was plasma HBV-DNA/HCV-RNA-positive at baseline, cleared only HCV RNA during 12 months of PEG-IFN plus ribavirin treatment. Seven cases remained untreated. CONCLUSION Despite a reciprocal inhibition in plasma, HBV and HCV frequently coexist in liver tissue, a condition to be taken into consideration when deciding therapy.
Collapse
Affiliation(s)
- Yan Sergerie
- Research Center in Infectious Diseases of the CHUQ-CHUL, Québec City, QC, Canada.
| | | |
Collapse
|
11
|
Effect of siRNA on HSV-1 plaque formation and relative expression levels of UL39 mRNA. Arch Virol 2008; 153:1401-6. [DOI: 10.1007/s00705-008-0110-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 03/20/2008] [Indexed: 12/18/2022]
|
12
|
Cai S, Brandt CR. Induction of interleukin-6 in human retinal epithelial cells by an attenuated Herpes simplex virus vector requires viral replication and NFkappaB activation. Exp Eye Res 2007; 86:178-88. [PMID: 18061164 DOI: 10.1016/j.exer.2007.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/22/2007] [Accepted: 10/23/2007] [Indexed: 11/15/2022]
Abstract
Gene delivery has potential for treating ocular disease and a number of delivery systems have been tested in animal models. However, several viral vectors have been shown to trigger undesirable transient inflammatory responses in the eye. Previously, it was shown that an attenuated Herpes simplex virus vector (hrR3) transduced numerous cell types in the anterior and posterior segments of monkey eyes, but this was accompanied by inflammation. In the retina, retinal pigment epithelial cells were the predominant cell type transduced by hrR3. IL-6 is an important pro-inflammatory cytokine and may play a role in the response to the hrR3 vector. Infection of human ARPE-19 cells with hrR3 resulted in increased IL-6 expression and secretion 3-4h post-infection. In the presence of acyclovir (70 microM) or in cells infected with UV-inactivated hrR3, IL-6 was not up-regulated indicating viral replication was required. Expression of the HSV-1 alpha and beta genes may be necessary but was not sufficient for NF-kappaB activation and IL-6 up-regulation. The translocation of NF-kappaB into the nucleus also occurred between 3 and 4h post-infection, coincident with increased IL-6 expression. Inhibition of NF-kappaB translocation by an Adenovirus vector expressing a dominant negative IkappaB (AdIkappaBam) inhibited IL-6 up-regulation, indicating that NF-kappaB plays a role in increasing IL-6 expression in APRE-19 cells. The hrR3 virus lacks viral ribonucleotide reductase (RR) activity, thus RR is not required for NF-kappaB activation or IL-6 up-regulation in ARPE-19 cells.
Collapse
Affiliation(s)
- Suping Cai
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
13
|
Brandt CR. The role of viral and host genes in corneal infection with herpes simplex virus type 1. Exp Eye Res 2005; 80:607-21. [PMID: 15862167 DOI: 10.1016/j.exer.2004.09.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 09/28/2004] [Indexed: 11/26/2022]
Abstract
Herpes simplex virus infection of the eye is the leading cause of blindness due to infection in the US despite the availability of several antiviral drugs. Studies with animal models have shown that three factors, innate host resistance, the host adaptive immune response, and the strain of virus interact to determine whether an infection is asymptomatic or proceeds to the development of blinding keratitis (HSK). Of these, the role of adaptive immunity has received the most attention. This work has clearly shown that stromal keratitis is an immunopathological disease, most likely due to the induction of a delayed type hypersensitivity response. Substantially less is known about the role of specific host genes in resistance to HSK. The fact that different strains of virus display different disease phenotypes indicates that viral 'virulence' genes are critical. Of the 80 plus HSV genes, few have been formally tested for their role in HSV keratitis. Most studies of virulence genes to date have focused on a single gene or protein and large changes in disease phenotypes are usually measured. Large changes in the ability to cause disease are likely to reduce the fitness of the virus, thus such studies, although useful, do not mimic the natural situation. Viral gene products are known to interact with each other, and with host proteins and these interactions are critical in determining the outcome of infection. In reality, the 'constellation' of genes encoded by each particular strain is critical, and how this constellation of genes works together and with host proteins determines the outcome of an infection. The goal of this review is to discuss the current state of knowledge regarding the role of host and viral genes in HSV keratitis. The roles of specific genes that have been shown to influence keratitis are discussed. Recent data showing that different viral genes cooperate to influence disease severity and confirming that the constellation of genes within a particular strain determines the disease phenotype are also discussed, as are the methods used to test the role of viral genes in virulence. It will become apparent that there is a paucity of information regarding the function of many viral genes in keratitis. Improving our knowledge of the role of viral genes is critical for devising more effective treatments for this disease.
Collapse
Affiliation(s)
- Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, 6630 MSC, 1300 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Polcicova K, Biswas PS, Banerjee K, Wisner TW, Rouse BT, Johnson DC. Herpes keratitis in the absence of anterograde transport of virus from sensory ganglia to the cornea. Proc Natl Acad Sci U S A 2005; 102:11462-7. [PMID: 16055558 PMCID: PMC1183562 DOI: 10.1073/pnas.0503230102] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes stromal keratitis is an immunopathologic disease in the corneal stroma leading to scarring, opacity, and blindness, and it is an important problem in common corneal surgeries. Paradoxically, virus antigens are largely focused in the epithelial layer of the cornea and not in the stromal layer, and viral antigens are eliminated before stromal inflammation develops. It is not clear what drives inflammation, whether viral antigens are necessary, or how viral antigens reach the stroma. It has been proposed that herpes simplex virus (HSV) travels from the corneal epithelium to sensory ganglia then returns to the stroma to cause disease. However, there is also evidence of HSV DNA and infectious virus persistent in corneas, and HSV can be transmitted to transplant recipients. To determine whether HSV resident in the cornea could cause herpes stromal keratitis, we constructed an HSV US9- mutant that had diminished capacity to move in neuronal axons. US9- HSV replicated and spread normally in the mouse corneal epithelium and to the trigeminal ganglia. However, US9- HSV was unable to return from ganglia to the cornea and failed to cause periocular skin disease, which requires zosteriform spread from neurons. Nevertheless, US9- HSV caused keratitis. Therefore, herpes keratitis can occur without anterograde transport from ganglia to the cornea, probably mediated by virus persistent in the cornea.
Collapse
Affiliation(s)
- Katarina Polcicova
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | |
Collapse
|
15
|
Rajcáni J. Molecular mechanisms of virus spread and virion components as tools of virulence. A review. Acta Microbiol Immunol Hung 2004; 50:407-31. [PMID: 14750441 DOI: 10.1556/amicr.50.2003.4.8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite of differences in replication strategy among virus families, some basic principles have remained similar. Analogous mechanisms govern virus entry into cells and the use of enzymes which direct the replication of the virus genome. The function of many cell surface receptors (such as glycosoaminoglycans, glycoproteins, proteins) which interact with viral capsid proteins or envelope glycoproteins has recently been elucidated. The list of cellular receptors (Table I) is still far from being final. The capsid components, similarly as the envelope glycoproteins, may form specific pocket like sites, which interact with the cell surface receptors. Neutralizing antibodies usually react with antigenic domains adjacent to the receptor binding site(s) and hamper the close contact inevitable for virion attachment. In the case of more complex viruses, such as herpes simplex virus, different viral glycoproteins interact with several cellular receptors. At progressed phase of adsorption the virions are engulfed into endocytic vesicles and the virion fusion domain(s) become(s) activated. The outer capsid components of reoviruses which participate in adsorption and fusion may get activated already in the lumen of digestive tract, i.e. before their engulfment by resorptive epithelium cells. Activation of the hydrophobic fusion domain(s) is a further important step allowing to pass through the lipid bilayer when penetrating the cell membrane in order to reach the cytosol. Activation of the virion fusion domain is accomplished by a conformation change, which occurs at acid pH (influenza virus hemagglutinin, sigma 1 protein of the reovirus particle) and/or after protease treatment. The herpes simplex virus fusion factors (gD and gH) undergo conformation changes by a pH-independent mechanism triggered due to interaction with the cell surface receptor(s) and mediated by mutual interactions with the viral envelope glycoproteins. The virion capsid or envelope components participating in the entry and membrane fusion are not the only tools of virulence. The correct function of virus coded proteins, which participate in replication of the viral genome, and/or in the supply of necessary nucleotides, may be very essential. In the case of enteroviruses, which RNA interacts with ribosomes directly, the correct configuration of the non-coding viral RNA sequence is crucial for initiation of translation occurring in the absence of the classical "cap" structure.
Collapse
Affiliation(s)
- J Rajcáni
- Institute of Virology, Slovak Academy of Sciences, Bratislava and Institute of Microbiology, Jessenius Medical Faculty of Comenius University, Martin, Slovak Republic
| |
Collapse
|
16
|
Villarreal EC. Current and potential therapies for the treatment of herpes-virus infections. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2003; 60:263-307. [PMID: 12790345 DOI: 10.1007/978-3-0348-8012-1_8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human herpesviruses are found worldwide and are among the most frequent causes of viral infections in immunocompetent as well as in immunocompromised patients. During the past decade and a half a better understanding of the replication and disease-causing state of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), varicella zoster virus (VZV), and human cytomegalovirus (HCMV) has been achieved due in part to the development of potent antiviral compounds that target these viruses. While some of these antiviral therapies are considered safe and efficacious (acyclovir, penciclovir), some have toxicities associated with them (ganciclovir and foscarnet). In addition, the increased and prolonged use of these compounds in the clinical setting, especially for the treatment of immunocompromised patients, has led to the emergence of viral resistance against most of these drugs. While resistance is not a serious issue for immunocompetent individuals, it is a real concern for immunocompromised patients, especially those with AIDS and the ones that have undergone organ transplantation. All the currently approved treatments target the viral DNA polymerase. It is clear that new drugs that are more efficacious than the present ones, are not toxic, and target a different viral function would be of great use especially for immunocompromised patients. Here, an overview is provided of the diseases caused by the herpesviruses as well as the replication strategy of the better studied members of this family for which treatments are available. We also discuss the various drugs that have been approved for the treatment of some herpesviruses in terms of structure, mechanism of action, and development of resistance. Finally, we present a discussion of viral targets other than the DNA polymerase, for which new antiviral compounds are being considered.
Collapse
Affiliation(s)
- Elcira C Villarreal
- Eli Lilly and Company, Lilly Centre for Women's Health, Indianapolis, IN 46285, USA.
| |
Collapse
|
17
|
Duan J, Liuzzi M, Paris W, Liard F, Browne A, Dansereau N, Simoneau B, Faucher AM, Cordingley MG. Oral bioavailability and in vivo efficacy of the helicase-primase inhibitor BILS 45 BS against acyclovir-resistant herpes simplex virus type 1. Antimicrob Agents Chemother 2003; 47:1798-804. [PMID: 12760851 PMCID: PMC155846 DOI: 10.1128/aac.47.6.1798-1804.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study investigated the oral bioavailability and efficacy of BILS 45 BS, a selective herpes simplex virus (HSV) helicase-primase inhibitor, against acyclovir (ACV)-resistant (ACV(r)) infections mediated by the HSV type 1 (HSV-1) dlsptk and PAA(r)5 mutant strains. In vitro, the compound was more potent than ACV against wild-type clinical and laboratory HSV-1 strains and ACV(r) HSV isolates, as determined by a standard plaque reduction assay, with a mean 50% effective concentration of about 0.15 microM. The oral bioavailability of BILS 45 BS in hairless mice was 49%, with a peak concentration in plasma of 31.5 microM after administration of a single dose of 25 mg/kg. Following cutaneous infection of nude mice, both the HSV-1 dlsptk and PAA(r)5 mutant strains induced significant, reproducible, and persistent cutaneous lesions that lasted for more than 2 weeks. Oral treatment with ACV (100 or 125 mg/kg/day, three times a day by gavage) did not affect either mutant-induced infection. In contrast, BILS 45 BS at an oral dose of 100 mg/kg/day almost completely abolished cutaneous lesions mediated by both ACV(r) HSV-1 mutants. The 50% effective doses of BILS 45 BS were 56.7 and 61 mg/kg/day against dlsptk- and PAA(r)5-induced infections, respectively. Taken together, our results demonstrate very effective oral therapy of experimental ACV(r) HSV-1 infections in nude mice and support the potential use of HSV helicase-primase inhibitors for the treatment of nucleoside-resistant HSV disease in humans.
Collapse
Affiliation(s)
- Jianmin Duan
- Research and Development, Boehringer Ingelheim Ltd., Laval, Québec, Canada H7S 2G5.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Langelier Y, Bergeron S, Chabaud S, Lippens J, Guilbault C, Sasseville AMJ, Denis S, Mosser DD, Massie B. The R1 subunit of herpes simplex virus ribonucleotide reductase protects cells against apoptosis at, or upstream of, caspase-8 activation. J Gen Virol 2002; 83:2779-2789. [PMID: 12388814 DOI: 10.1099/0022-1317-83-11-2779] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The R1 subunit of herpes simplex virus (HSV) ribonucleotide reductase, which in addition to its C-terminal reductase domain possesses a unique N-terminal domain of about 400 amino acids, is thought to have an additional, as yet unknown, function. Here, we report that the full-length HSV-2 R1 has an anti-apoptotic function able to protect cells against death triggered by expression of R1(Delta2-357), an HSV-2 R1 subunit with its first 357 amino acids deleted. We further substantiate the R1 anti-apoptotic activity by showing that its accumulation at low level could completely block apoptosis induced by TNF-receptor family triggering. Activation of caspase-8 induced either by TNF or by Fas ligand expression was prevented by the R1 protein. As HSV R1 did not inhibit cell death mediated by several agents acting via the mitochondrial pathway (Bax overexpression, etoposide, staurosporine and menadione), it is proposed that it functions to interrupt specifically death receptor-mediated signalling at, or upstream of, caspase-8 activation. The N-terminal domain on its own did not exhibit anti-apoptotic activity, suggesting that both domains of R1 or part(s) of them are necessary for this new function. Evidence for the importance of HSV R1 in protecting HSV-infected cells against cytokine-induced apoptosis was obtained with the HSV-1 R1 deletion mutants ICP6Delta and hrR3. These results show that, in addition to its ribonucleotide reductase function, which is essential for virus reactivation, HSV R1 could contribute to virus propagation by preventing apoptosis induced by the immune system.
Collapse
Affiliation(s)
- Yves Langelier
- Département de microbiologie et immunologie de l'Université de Montréal, Montréal, Québec, Canada2
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Stéphane Bergeron
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Stéphane Chabaud
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Julie Lippens
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Claire Guilbault
- Institut de recherche en biotechnologie, 6100 ave Royalmount, Montréal, CanadaH4P 2R23
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - A Marie-Josée Sasseville
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Stéphan Denis
- Centre de recherche du Centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, 1560 Sherbrooke Est, Montréal, Québec, CanadaH2L 4M11
| | - Dick D Mosser
- Institut de recherche en biotechnologie, 6100 ave Royalmount, Montréal, CanadaH4P 2R23
| | - Bernard Massie
- INRS-IAF Université du Québec, Laval, Québec, CanadaH7N 4Z34
- Institut de recherche en biotechnologie, 6100 ave Royalmount, Montréal, CanadaH4P 2R23
- Département de microbiologie et immunologie de l'Université de Montréal, Montréal, Québec, Canada2
| |
Collapse
|
19
|
Abstract
We present an overview of the current status of basic science and translational research being applied to gene therapy for eye disease, focusing on diseases of the retina. We discuss the viral and nonviral methods being used to transfer genes to the retina and retinal pigment epithelium, and the advantages and disadvantages of each approach. We review the various genetic and somatic treatment strategies that are being used for genetically determined and acquired diseases of the retina, including gene replacement, gene silencing by ribozymes and antisense oligonucleotides, suicide gene therapy, antiapoptosis, and growth factor therapies. The rationales for the specific therapeutic approaches to each disease are discussed. Schematics of gene transfer methods and therapeutic approaches are presented together with a glossary of gene transfer terminology.
Collapse
Affiliation(s)
- Edward Chaum
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | |
Collapse
|
20
|
Sienaert R, Naesens L, Brancale A, De Clercq E, McGuigan C, Balzarini J. Specific recognition of the bicyclic pyrimidine nucleoside analogs, a new class of highly potent and selective inhibitors of varicella-zoster virus (VZV), by the VZV-encoded thymidine kinase. Mol Pharmacol 2002; 61:249-54. [PMID: 11809847 DOI: 10.1124/mol.61.2.249] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, an entirely new class of bicyclic nucleoside analogs (BCNAs) was found to display exquisite potency and selectivity as inhibitors of varicella-zoster virus (VZV) replication in cell culture. A striking difference in their ability to convert the BCNAs to their phosphorylated derivatives was observed between the VZV-encoded thymidine kinase (TK) and the very closely related herpes simplex virus type 1 (HSV-1) TK. Whereas VZV TK efficiently phosphorylated the BCNAs, HSV-1 TK was unable to do so. In addition, the thymidylate (dTMP) kinase activity of VZV TK further converted BCNA-5'-MP to BCNA-5'-DP. The BCNAs (or their phosphorylated derivatives) were not a substrate for cytosolic TK, mitochondrial TK, or cytosolic dTMP kinase. Human erythrocyte nucleoside diphosphate (NDP) kinase was unable to phosphorylate the BCNA 5'-diphosphates to BCNA 5'-triphosphates. Under the same experimental conditions, the anti-herpetic (E)-5-(2-bromovinyl)-2'-deoxyuridine (BVDU) derivative was efficiently converted to BVDU-MP and BVDU-DP by both VZV TK and HSV-1 TK and further, into BVDU-TP, by NDP kinase. Our observations may account for the unprecedented specificity of BCNAs as anti-VZV agents.
Collapse
Affiliation(s)
- Rebecca Sienaert
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
21
|
Villarreal EC. Current and potential therapies for the treatment of herpesvirus infections. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2001; Spec No:185-228. [PMID: 11548208 DOI: 10.1007/978-3-0348-7784-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Human herpesviruses are found worldwide and are among the most frequent causes of viral infections in immunocompetent as well as in immunocompromised patients. During the past decade and a half a better understanding of the replication and disease causing state of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV), and human cytomegalovirus (HCMV) has been achieved due in part to the development of potent antiviral compounds that target these viruses. While some of these antiviral therapies are considered safe and efficacious (acyclovir, penciclovir), some have toxicities associated with them (ganciclovir and foscarnet). In addition, the increased and prolonged use of these compounds in the clinical setting, especially for the treatment of immunocompromised patients, has led to the emergence of viral resistance against most of these drugs. While resistance is not a serious issue for immunocompetent individuals, it is a real concern for immunocompromised patients, especially those with AIDS and the ones that have undergone organ transplantation. All the currently approved treatments target the viral DNA polymerase. It is clear that new drugs that are more efficacious than the present ones, are not toxic, and target a different viral function would be of great use especially for immunocompromised patients. Here, we provide an overview of the diseases caused by the herpesviruses as well as the replication strategy of the better studiedmembers of this family for which treatments are available. We also discuss the various drugs that have been approved for the treatment of some herpesviruses in terms of structure, mechanism of action, and development of resistance. Finally, we present a discussion of viral targets other than the DNA polymerase, for which new antiviral compounds are being considered.
Collapse
Affiliation(s)
- E C Villarreal
- Eli Lilly and Company, Infectious Diseases Research, Lilly Research Laboratories, Indianapolis, IN 46285, USA.
| |
Collapse
|
22
|
Summers BC, Margolis TP, Leib DA. Herpes simplex virus type 1 corneal infection results in periocular disease by zosteriform spread. J Virol 2001; 75:5069-75. [PMID: 11333887 PMCID: PMC114911 DOI: 10.1128/jvi.75.11.5069-5075.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In humans and animal models of herpes simplex virus infection, zosteriform skin lesions have been described which result from anterograde spread of the virus following invasion of the nervous system. Such routes of viral spread have not been fully examined following corneal infection, and the possible pathologic consequences of such spread are unknown. To investigate this, recombinant viruses expressing reporter genes were generated to quantify and correlate gene expression with replication in eyes, trigeminal ganglia, and periocular tissue. Reporter activity peaked in eyes 24 h postinfection and rapidly fell to background levels by 48 h despite the continued presence of viral titers. Reporter activity rose in the trigeminal ganglia at 60 h and peaked at 72 h, concomitant with the appearance and persistence of infectious virus. Virus was present in the periocular skin from 24 h despite the lack of significant reporter activity until 84 h postinfection. This detection of reporter activity was followed by the onset of periocular disease on day 4. Corneal infection with a thymidine kinase-deleted reporter virus displayed a similar profile of reporter activity and viral titer in the eyes, but little or no detectable activity was observed in trigeminal ganglia or periocular tissue. In addition, no periocular disease symptoms were observed. These findings demonstrate that viral infection of periocular tissue and subsequent disease development occurs by zosteriform spread from the cornea to the periocular tissue via the trigeminal ganglion rather than by direct spread from cornea to the periocular skin. Furthermore, clinical evidence is discussed suggesting that a similar mode of spreading and disease occurs in humans following primary ocular infection.
Collapse
MESH Headings
- Adolescent
- Animals
- Chlorocebus aethiops
- Corneal Diseases/complications
- Corneal Diseases/drug therapy
- Corneal Diseases/virology
- Dermatitis, Perioral/prevention & control
- Dermatitis, Perioral/virology
- Disease Models, Animal
- Eye Infections, Viral/complications
- Eye Infections, Viral/drug therapy
- Eye Infections, Viral/virology
- Female
- Gene Deletion
- Genes, Reporter
- Genome, Viral
- Herpes Simplex/virology
- Herpesvirus 1, Human/enzymology
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/pathogenicity
- Humans
- Luciferases/genetics
- Male
- Mice
- Phosphotransferases/genetics
- Thymidine/metabolism
- Trigeminal Ganglion/virology
- Vero Cells
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- B C Summers
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
23
|
Villarreal EC. Current and potential therapies for the treatment of herpesvirus infections. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2001; 56:77-120. [PMID: 11417115 DOI: 10.1007/978-3-0348-8319-1_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Human herpesviruses are found worldwide and are among the most frequent causes of viral infections in immunocompetent as well as in immunocompromised patients. During the past decade and a half a better understanding of the replication and disease causing state of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV), and human cytomegalovirus (HCMV) has been achieved due in part to the development of potent antiviral compounds that target these viruses. While some of these antiviral therapies are considered safe and efficacious (acyclovir, penciclovir), some have toxicities associated with them (ganciclovir and foscarnet). In addition, the increased and prolonged use of these compounds in the clinical setting, especially for the treatment of immunocompromised patients, has led to the emergence of viral resistance against most of these drugs. While resistance is not a serious issue for immunocompetent individuals, it is a real concern for immunocompromised patients, especially those with AIDS and the ones that have undergone organ transplantation. All the currently approved treatments target the viral DNA polymerase. It is clear that new drugs that are more efficacious than the present ones, are not toxic, and target a different viral function would be of great use especially for immunocompromised patients. Here, we provide an overview of the diseases caused by the herpesviruses as well as the replication strategy of the better studied members of this family for which treatments are available. We also discuss the various drugs that have been approved for the treatment of some herpesviruses in terms of structure, mechanism of action, and development of resistance. Finally, we present a discussion of viral targets other than the DNA polymerase, for which new antiviral compounds are being considered.
Collapse
Affiliation(s)
- E C Villarreal
- Eli Lilly and Company, Infectious Diseases Research, Drop Code 0438, Lilly Research Laboratories, Indianapolis, IN 46285, USA.
| |
Collapse
|
24
|
Liu X, Brandt CR, Gabelt BT, Bryar PJ, Smith ME, Kaufman PL. Herpes simplex virus mediated gene transfer to primate ocular tissues. Exp Eye Res 1999; 69:385-95. [PMID: 10504272 DOI: 10.1006/exer.1999.0711] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We evaluated the feasibility of delivering a gene into monkey eyes using a replication-competent herpes simplex virus (HSV) type 1 ribonucleotide reductase mutant (hrR3) expressing the Escherichia coli lacZ gene. To determine the efficiency of in vitro HSV-mediated gene transfer, cultured human trabecular meshwork (HTM) and human ciliary muscle (HCM) cells were infected with hrR3 and beta-galactosidase activity was measured histochemically. Six cynomolgus monkey eyes received viral injections into the anterior chamber (2 x 10(7) pfu) and/or the vitreous (5 x 10(7) pfu), and the distribution of cells expressing lacZ was evaluated. In vitro, both cultured HTM and HCM cells displayed multiplicity-dependent beta-galactosidase activity. In vivo, intracameral and/or intravitreal injection resulted in transgene expression in TM cells and in non-pigmented ciliary epithelial cells (NPE), but not in CM cells. Transgene expression was also detected in retinal pigmented epithelial (RPE) cells and sporadic retinal ganglion cells (RGC) in eyes receiving virus intracamerally and intravitreally respectively. We observed significant inflammation in the anterior chamber, TM and CM in virus-injected eyes, along with mild vitritis and retinitis. This study demonstrates successful gene transfer using hrR3 as a vector in human ocular cells and in ocular tissues in living monkeys. Further investigation of the etiology of the inflammatory response, possible cytotoxicity, and limited duration of transgene expression is necessary in order to make this technique clinically applicable.
Collapse
Affiliation(s)
- X Liu
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792-3220, USA
| | | | | | | | | | | |
Collapse
|
25
|
Enquist LW, Husak PJ, Banfield BW, Smith GA. Infection and spread of alphaherpesviruses in the nervous system. Adv Virus Res 1999; 51:237-347. [PMID: 9891589 DOI: 10.1016/s0065-3527(08)60787-3] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- L W Enquist
- Department of Molecular Biology, Princeton University, NJ 08544, USA.
| | | | | | | |
Collapse
|
26
|
Duan J, Liuzzi M, Paris W, Lambert M, Lawetz C, Moss N, Jaramillo J, Gauthier J, Déziel R, Cordingley MG. Antiviral activity of a selective ribonucleotide reductase inhibitor against acyclovir-resistant herpes simplex virus type 1 in vivo. Antimicrob Agents Chemother 1998; 42:1629-35. [PMID: 9660995 PMCID: PMC105657 DOI: 10.1128/aac.42.7.1629] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The present study reports the activity of BILD 1633 SE against acyclovir (ACV)-resistant herpes simplex virus (HSV) infections in athymic nude (nu/nu) mice. BILD 1633 SE is a novel peptidomimetic inhibitor of HSV ribonucleotide reductase (RR). In vitro, it is more potent than ACV against several strains of wild-type as well as ACV-resistant HSV mutants. Its in vivo activity was tested against cutaneous viral infections in athymic nude mice infected with the ACV-resistant isolates HSV type 1 (HSV-1) dlsptk and PAAr5, which contain mutations in the viral thymidine kinase gene and the polymerase gene, respectively. Following cutaneous infection of athymic nude mice, both HSV-1 dlsptk and PAAr5 induced significant, reproducible, and persistent cutaneous lesions that lasted for more than 2 weeks. A 10-day treatment regimen with ACV given topically four times a day as a 5% cream or orally at up to 5 mg/ml in drinking water was partially effective against HSV-1 PAAr5 infection with a reduction of the area under the concentration-time curve (AUC) of 34 to 48%. The effects of ACV against HSV-1 dlsptk infection were not significant when it was administered topically and were only marginal when it was given in drinking water. Treatment under identical conditions with 5% topical BILD 1633 SE significantly reduced the cutaneous lesions caused by both HSV-1 dlsptk and PAAr5 infections. The effect of BILD 1633 SE against HSV-1 PAAr5 infections was more prominent and was inoculum and dose dependent, with AUC reductions of 96 and 67% against infections with 10(6) and 10(7) PFU per inoculation site, respectively. BILD 1633 SE also significantly decreased the lesions caused by HSV-1 dlsptk infection (28 to 51% AUC reduction). Combination therapy with topical BILD 1633 SE (5%) and ACV in drinking water (5 mg/ml) produced an antiviral effect against HSV-1 dlsptk and PAAr5 infections that was more than the sum of the effects of both drugs. This is the first report that a selective HSV RR subunit association inhibitor can be effective against ACV-resistant HSV infections in vivo.
Collapse
Affiliation(s)
- J Duan
- Bio-Méga Research Division, Boehringer Ingelheim (Canada) Ltd., Laval, Québec, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
O'Brien WJ, Narasimhan J, Guy J, Tom P, Taylor JL. The effects of interferon-alpha and acyclovir on herpes simplex virus type-1 ribonucleotide reductase. Antiviral Res 1998; 38:107-16. [PMID: 9707373 DOI: 10.1016/s0166-3542(98)00016-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herpes simplex virus-type 1 (HSV-1) encodes both the small (UL40) and large (UL39) subunits of the enzyme, ribonucleotide reductase. Treatment of HSV-1-infected cells with interferon-alpha (IFN-alpha) reduced the levels of both enzyme subunits. Reduced steady state levels of the large subunit were demonstrated by immunoblot using polyclonal antibody specific for the viral enzyme. Reduction in the amount of small subunit was shown by a reduction in the electron spin resonance signal derived from the iron-containing tyrosyl free-radical present in this subunit. Treatment of cells with 100 IU/ml of IFN-alpha decreased levels of both subunits resulting in a reduction in enzyme activity as measured by conversion of CDP to dCDP. The decrease in the amount of the large subunit was not due to a reduction in the level of its mRNA. The combination of IFN-alpha and ACV treatment of human cornea stromal cells did not result in a further reduction in amounts of ribonucleotide reductase relative to that detected with IFN-alpha alone. The IFN-alpha-induced reduction in ribonucleotide reductase activity is the likely cause of decreased levels of dGTP which we have previously demonstrated in IFN-alpha-treated, infected cells.
Collapse
Affiliation(s)
- W J O'Brien
- Department of Microbiology, Medical College of Wisconsin, Milwaukee 53266, USA
| | | | | | | | | |
Collapse
|
28
|
Willoughby K, Bennett M, Williams RA, McCracken C, Gaskell RM. Sequences of the ribonucleotide reductase-encoding genes of felid herpesvirus 1 and molecular phylogenetic analysis. Virus Genes 1998; 15:203-18. [PMID: 9482586 DOI: 10.1023/a:1007924419113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The felid herpesvirus 1 (FHV-1) genes encoding the two ribonucleotide reductase (RR) subunits (RR1, large subunit and RR2, small subunit) were cloned and their nucleotide (nt) sequence determined. The RR1 open reading frame (ORF) is 2358 nts long and is predicted to encode a protein of 786 amino acids (aa). In common with herpesviruses in the Varicellovirus genus of the alphaherpesvirus subfamily, FHV-1 RR1 lacks the N-terminal serine threonine protein kinase region present in herpes simplex virus (HSV)-1 and -2. FHV-1 RR1 has a predicted aa identity of 47-64% with other alphaherpesvirus RR1 peptides, falling to 26-29% for gammaherpesviruses. The RR2 ORF is 996 nts long, predicted to encode a protein of 332 aa and has aa identities of 64-70% with alphaherpesviruses and 38-39% with gammaherpesviruses. Molecular phylogenetic analysis groups FHV-1 with equid herpesviruses 1 and 4 (EHV 1 and 4), pseudorabies virus (PRV) and bovid herpesvirus 1 (BHV 1) within the genus Varicellovirus.
Collapse
Affiliation(s)
- K Willoughby
- Department of Veterinary Pathology, University of Liverpool Veterinary Field Station, Neston, South Wirral, UK
| | | | | | | | | |
Collapse
|
29
|
Visalli RJ, Courtney RJ, Meyers C. Infection and replication of herpes simplex virus type 1 in an organotypic epithelial culture system. Virology 1997; 230:236-43. [PMID: 9143279 DOI: 10.1006/viro.1997.8484] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have used the organotypic culture system as a model to study the initial infectious process and spread of herpes simplex virus type 1 (HSV-1) in fully stratified and differentiated human epithelial tissue. The growth kinetics of HSV-1 were determined in organotypic tissues of human epidermal or ectocervical origin. Concurrently, we followed the spread of HSV-1 by immunostaining thin sections of infected organotypic tissue. After HSV-1 was applied to the top cornified epithelial layer, virus penetrated to the basal layer of replicating epithelium and grew to high titers. The virus was limited in its spread in that not all cells within the tissue had demonstrable infection. A ribonucleotide reductase mutant, ICP6 delta, could infect and replicate in basal layers of the organotypic tissues. However, we found that spread was limited in, and to, the basal cell layer. Peak ICP6 delta titers were 100-fold less than in cultures infected with wild-type HSV-1. Studies of HSV mutants should allow us to further define the role of specific viral genes which are associated with infection and spread in a tissue culture system that mimics the initial portal of entry for certain HSV infections.
Collapse
Affiliation(s)
- R J Visalli
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | |
Collapse
|
30
|
Brandt CR, Imesch PD, Robinson NL, Syed NA, Untawale S, Darjatmoko SR, Chappell RJ, Heinzelman P, Albert DM. Treatment of spontaneously arising retinoblastoma tumors in transgenic mice with an attenuated herpes simplex virus mutant. Virology 1997; 229:283-91. [PMID: 9123872 DOI: 10.1006/viro.1996.8414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The use of viruses to treat tumors has received renewed interest with the availability of genetically defined attenuated mutants. Herpes simplex virus (HSV) type 1 in particular has been shown to be effective for tumors of neuronal origin. However, the model systems used for these studies rely on the use of explanted tumor cells in immunodeficient animals. We have used a recently developed transgenic mouse model, wherein mice spontaneously develop retinoblastomas, to determine if a mutant HSV has a therapeutic effect against an endogenously arising tumor in an immunocompetent host. The injection of 1 x 10(6) PFU of the neuroattenuated HSV-1/HSV-2 recombinant RE6 into the vitreous of transgenic mice resulted in a significant inhibition of tumor growth compared to injection of medium alone (P = 0.0063). Immunohistochemical analysis of viral antigen showed that viral replication was restricted to focal areas of the tumors and the retinal pigment epithelium. Viral growth was not significantly different in the eyes of transgene-positive and transgene-negative mice, suggesting that enhanced replication in tumor cells may not explain the effects. Tumor cells in the treated eyes were significantly less differentiated than those in the untreated eyes (P = 0.04), suggesting that the virus may replicate better in certain cell types in the tumors. Although the injection of RE6 resulted in a difference in tumor size, the treatment did not result in the elimination of tumors in any of the mice improvements in the efficacy of tumor control are needed if this therapy is to be of use.
Collapse
Affiliation(s)
- C R Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, Madison 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Brandt CR, Spencer B, Imesch P, Garneau M, Déziel R. Evaluation of a peptidomimetic ribonucleotide reductase inhibitor with a murine model of herpes simplex virus type 1 ocular disease. Antimicrob Agents Chemother 1996; 40:1078-84. [PMID: 8723444 PMCID: PMC163269 DOI: 10.1128/aac.40.5.1078] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The ribonucleotide reductase (RR) of herpes simplex virus type 1 (HSV-1) is an important virulence factor, being required for neurovirulence, ocular virulence, and reactivation from latency. The RR activity requires the association of two distinct homodimeric subunits, and the association of the subunits is inhibited in the presence of a peptide homologous to the carboxy terminus of the small subunit. A structural analog of the inhibitory peptide (BILD 1263) has been shown to inhibit the replication of HSV-1 at micromolar concentrations in vitro. We used a mouse model of HSV-1 ocular infection to determine the in vivo efficacy of topical BILD 1263. Treatment of HSV-1 KOS-infected mice resulted in significant reductions in the severity and incidence of stromal keratitis and corneal neovascularization. At higher concentrations (5%) BILD 1263 reduced the severity but not the incidence of blepharitis. Treatment with 5% BILD 1263 also reduced viral shedding from the cornea by 10- to 14-fold (P < 0.001). In uninfected mice treated with 5% BILD 1263, we found no evidence of corneal epithelial damage, conjunctivitis, or blepharitis, and histopathological studies revealed no changes in the corneas of these mice. These results show that the peptidomimetic RR inhibitor BILD 1263 is effective in preventing disease, has an antiviral effect in vivo, and has little or no toxicity.
Collapse
Affiliation(s)
- C R Brandt
- Department of Ophthalmology, University of Wisconsin Medical School, Madison 53706, USA.
| | | | | | | | | |
Collapse
|
32
|
Bonneau AM, Kibler P, White P, Bousquet C, Dansereau N, Cordingley MG. Resistance of herpes simplex virus type 1 to peptidomimetic ribonucleotide reductase inhibitors: selection and characterization of mutant isolates. J Virol 1996; 70:787-93. [PMID: 8551616 PMCID: PMC189880 DOI: 10.1128/jvi.70.2.787-793.1996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Herpes simplex virus (HSV) encodes its own ribonucleotide reductase (RR), which provides the high levels of deoxynucleoside triphosphates required for viral DNA replication in infected cells. HSV RR is composed of two distinct subunits, R1 and R2, whose association is required for enzymatic activity. Peptidomimetic inhibitors that mimic the C-terminal amino acids of R2 inhibit HSV RR by preventing the association of R1 and R2. These compounds are candidate antiviral therapeutic agents. Here we describe the in vitro selection of HSV type 1 KOS variants with three- to ninefold-decreased sensitivity to the RR inhibitor BILD 733. The resistant isolates have growth properties in vitro similar to those of wild-type KOS but are more sensitive to acyclovir, possibly as a consequence of functional impairment of their RRs. A single amino acid substitution in R1 (Ala-1091 to Ser) was associated with threefold resistance to BILD 733, whereas an additional substitution (Pro-1090 to Leu) was required for higher levels of resistance. These mutations were reintroduced into HSV type 1 KOS and shown to be sufficient to confer the resistance phenotype. Studies in vitro with RRs isolated from cells infected with these mutant viruses demonstrated that these RRs bind BILD 733 more weakly than the wild-type enzyme and are also functionally impaired, exhibiting an elevated dissociation constant (Kd) for R1-R2 subunit association and/or reduced activity (kcat). This work provides evidence that the C-terminal end of HSV R1 (residues 1090 and 1091) is involved in R2 binding interactions and demonstrates that resistance to subunit association inhibitors may be associated with compromised activity of the target enzyme.
Collapse
Affiliation(s)
- A M Bonneau
- Bio-Méga/Boehringer Ingelheim Research Inc., Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Sequence analysis within the long segment of the pseudorabies virus (PrV) genome identified an open reading frame of 804 bp whose deduced protein product of 268 amino acids exhibited homology to dUTPases of other herpesviruses. The gene was designated UL50 because of its colinearity with the homologous gene of herpes simplex virus type 1. An antiserum raised against a bacterially expressed fragment of PrV UL50 specifically detected a 33-kDa protein in lysates of infected cells, which is in agreement with the predicted molecular mass of the PrV UL50 protein. A UL50-negative PrV mutant (PrV UL50-) was constructed by the insertion of a beta-galactosidase expression cassette into the UL50 coding sequence. A corresponding rescuant (PrV UL50resc) was also isolated. The interruption of the UL50 gene led to the disappearance of the 33-kDa protein, whereas restoration of UL50 gene expression restored detection of the 33-kDa protein. Enzyme activity assays confirmed that UL50 of PrV codes for a dUTPase which copurifies with nuclei of infected cells. PrV UL50- replicated with an only slightly reduced efficiency in epithelial cells in culture compared with that of its parental wild-type virus strain. Our results thus demonstrate that UL50 of PrV encodes a protein of 33 kDa with dUTPase activity which copurifies with nuclei of infected cells and is dispensable for replication in cultured epithelial cells.
Collapse
Affiliation(s)
- A Jöns
- Institute of Molecular and Cellular Virology, Friedrich-Loeffler-Institutes, Insel Riems, Germany
| | | |
Collapse
|
34
|
Abstract
In many ways, cervical cancer behaves as a sexually transmitted disease. The major risk factors are multiple sexual partners and early onset of sexual activity. Although high-risk types of human papillomaviruses (HPV) play an important role in the development of nearly all cases of cervical cancer, other sexually transmitted infectious agents may be cofactors. Herpes simplex virus type 2 (HSV-2) is transmitted primarily by sexual contact and therefore has been implicated as a risk factor. Several independent studies suggest that HSV-2 infections correlate with a higher than normal incidence of cervical cancer. In contrast, other epidemiological studies have concluded that infection with HSV-2 is not a major risk factor. Two separate transforming domains have been identified within the HSV-2 genome, but continued viral gene expression apparently is not necessary for neoplastic transformation. HSV infections lead to unscheduled cellular DNA synthesis, chromosomal amplifications, and mutations. These observations suggest that HSV-2 is not a typical DNA tumor virus. It is hypothesized that persistent or abortive infections induce permanent genetic alterations that interfere with differentiation of cervical epithelium and subsequently induce abnormal proliferation. Thus, HSV-2 may be a cofactor in some but not all cases of cervical cancer.
Collapse
Affiliation(s)
- C Jones
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln 68583, USA
| |
Collapse
|
35
|
Suzutani T, Koyano S, Takada M, Yoshida I, Azuma M. Analysis of the relationship between cellular thymidine kinase activity and virulence of thymidine kinase-negative herpes simplex virus types 1 and 2. Microbiol Immunol 1995; 39:787-94. [PMID: 8577269 DOI: 10.1111/j.1348-0421.1995.tb03271.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The virulence of thymidine kinase-negative herpes simplex virus type 1 (HSV-1; VRTK- strain) and type 2 (HSV-2; UWTK- strain) was studied in comparison with that of their parental strains (VR-3 and UW-268, respectively) in an encephalitis model of adult (4-week-old) and newborn (3-day-old) mice. Viral thymidine kinase (TK) activity was essential for the maximum expression of virulence of HSV-1, because the 50% lethal dose (LD50) of VRTK- was 60 times higher than that of VR-3 in the brains of newborn mice expressing high levels of cellular TK activity. However, the UWTK- strain showed that replication of the UWTK- strain was completely supported by cellular TK activity. This difference in the role of viral and cellular TKs for virus growth between HSV-1 and HSV-2 was¿ confirmed with the one-step growth of virus strains in L-M and L-M(TK-) cells.
Collapse
Affiliation(s)
- T Suzutani
- Department of Microbiology, Asahikawa Medical College, Hokkaido, Japan
| | | | | | | | | |
Collapse
|
36
|
Kintner RL, Brandt CR. The effect of viral inoculum level and host age on disease incidence, disease severity, and mortality in a murine model of ocular HSV-1 infection. Curr Eye Res 1995; 14:145-52. [PMID: 7768106 DOI: 10.3109/02713689508999926] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It has been previously shown that the strain of virus, immune competence of the host, and innate resistance of the host have an effect on the severity of ocular disease induced by topical infection with herpes simplex virus type 1 (HSV-1). This study has expanded on earlier work by examining the effect of virus inoculum and host age on mortality, incidence of ocular disease, and severity of ocular disease. BALB/c mice were infected with inocula ranging from 2 x 10(3) to 1 x 10(6) pfu of HSV-1 strain CJ394. The most significant effect of variation in the inoculum was on the percent of mice developing disease. Increasing the inoculum resulted in significantly increased disease incidence, but at 5 x 10(3) pfu/mouse or higher, there was little difference in disease severity in those animals exhibiting symptoms. Decreasing host age also resulted in a significant increase in the incidence of ocular disease, but the dependence of disease severity on host age varied with the symptom being scored. In animals exhibiting disease, the peak severity of stromal keratitis and vascularization of the cornea were unaffected by host age. However, the severity of blepharitis was significantly reduced in older mice. Increasing host age also resulted in increased resistance to encephalitis. Three to four-week old mice were very susceptible to encephalitis (100% mortality), while only 20% of 4-5 week old mice died by day 15 post-infection. Mice older than 5 weeks were completely resistant to lethal encephalitis after corneal infection.
Collapse
Affiliation(s)
- R L Kintner
- Department of Medical Microbiology, University of Wisconsin-Madison Medical School 53706-1532, USA
| | | |
Collapse
|
37
|
Salvucci LA, Bonneau RH, Tevethia SS. Polymorphism within the herpes simplex virus (HSV) ribonucleotide reductase large subunit (ICP6) confers type specificity for recognition by HSV type 1-specific cytotoxic T lymphocytes. J Virol 1995; 69:1122-31. [PMID: 7529328 PMCID: PMC188685 DOI: 10.1128/jvi.69.2.1122-1131.1995] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A panel of herpes simplex virus type 1 (HSV-1)-specific, CD8+, major histocompatibility complex class I (H-2Kb)-restricted cytotoxic T-lymphocyte (CTL) clones was derived from HSV-1-immunized C57BL/6 (H-2b) mice in order to identify the HSV-1 CTL recognition epitope(s) which confers type specificity. HSV-1 x HSV-2 intertypic recombinants were used to narrow the region encoding potential CTL recognition epitopes to within 0.51 to 0.58 map units of the HSV-1 genome. Using an inhibitor of viral DNA synthesis and an ICP6 deletion mutant, the large subunit of ribonucleotide reductase (ICP6, RR1) was identified as a target protein for these type-specific CTL. Potential CTL recognition epitopes within RR1 were located on the basis of the peptide motif predicted to bind to the MHC class I H-2Kb molecule. A peptide corresponding to residues 822 to 829 of RR1 was shown to confer susceptibility on H-2Kb-expressing target cells to lysis by the type 1-specific CTL. On the basis of a comparison of the HSV-1 RR1 epitope (residues 822 to 829) with the homologous sequence of HSV-2 RR1 (residues 828 to 836) and by the use of amino acid substitutions within synthetic peptides, we identified HSV-1 residue 828 as being largely responsible for the type specificity exhibited by HSV-1-specific CTL. This HSV-1 RR1 epitope, when expressed in recombinant simian virus 40 large T antigen in primary C57BL/6 cells, was recognized by the HSV-1 RR1-specific CTL clones. These results indicate that an early HSV protein with enzymatic activity provides a target for HSV-specific CTL and that type specificity is dictated largely by a single amino acid.
Collapse
Affiliation(s)
- L A Salvucci
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey 17033
| | | | | |
Collapse
|
38
|
Wagner EK, Guzowski JF, Singh J. Transcription of the herpes simplex virus genome during productive and latent infection. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 51:123-65. [PMID: 7659774 DOI: 10.1016/s0079-6603(08)60878-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- E K Wagner
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717, USA
| | | | | |
Collapse
|
39
|
Liuzzi M, Déziel R, Moss N, Beaulieu P, Bonneau AM, Bousquet C, Chafouleas JG, Garneau M, Jaramillo J, Krogsrud RL. A potent peptidomimetic inhibitor of HSV ribonucleotide reductase with antiviral activity in vivo. Nature 1994; 372:695-8. [PMID: 7990963 DOI: 10.1038/372695a0] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Herpes simplex viruses (HSV) types 1 and 2 encode their own ribonucleotide reductases (RNRs) (EC 1.17.4.1) to convert ribonucleoside diphosphates into the corresponding deoxyribonucleotides. Like other iron-dependent RNRs, the viral enzyme is formed by the reversible association of two distinct homodimeric subunits. The carboxy terminus of the RNR small subunit (R2) is critical for subunit association and synthetic peptides containing these amino-acid sequences selectively inhibit the viral enzyme by preventing subunit association. Increasing evidence indicates that the HSV RNR is important for virulence and reactivation from latency. Previously, we reported on the design of HSV RNR inhibitors with enhanced inhibitory potency in vitro. We now report on BILD 1263, which to our knowledge is the first HSV RNR subunit-association inhibitor with antiviral activity in vivo. This compound suppresses the replication of HSV-1, HSV-2 and acyclovir-resistant HSV strains in cell culture, and also strongly potentiates the antiviral activity of acyclovir. Most importantly, its anti-herpetic activity is shown in a murine ocular model of HSV-1-induced keratitis, providing an example of potent nonsubstrate-based antiviral agents that prevent protein-protein interactions. The unique antiviral properties of BILD 1263 may lead to the design of new strategies to treat herpesvirus infections in humans.
Collapse
Affiliation(s)
- M Liuzzi
- Bio-Méga/Boehringer Ingelheim Research Inc., Laval, Québec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hanson N, Henderson G, Jones C. The herpes simplex virus type 2 gene which encodes the large subunit of ribonucleotide reductase has unusual regulatory properties. Virus Res 1994; 34:265-80. [PMID: 7856314 DOI: 10.1016/0168-1702(94)90127-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Expression of herpes simplex virus type 2 (HSV-2) encoded ribonucleotide reductase (RR) is required for growth of the virus in non-dividing cells. The functional enzyme is composed of a large (RRA) and small (RRB) subunit and the enzyme is expressed as a delayed early activity. The promoter of RRA contains a cis-acting motif (TAATGARAT) which resembles those found in immediate early (IE) genes suggesting RRA is an IE gene. When primate cells were infected with HSV-2, low levels of RRA transcripts were expressed in the presence of cycloheximide indicating RRA is not a true IE gene. Conditions which allow for efficient RRA RNA expression in the presence of cycloheximide were identified in human cells. A phorbol ester, 12-O-tetradecanoyl phorbol-13- acetate (TPA), and hydroxyurea increased the level of RRA RNA expression in the presence of cycloheximide. Hydroxyurea and TPA also stimulated RRA promoter activity in transient assays suggesting these agents induced factors which transactivated the RRA promoter. Expression of an intact c-myc gene transactivated the RRA promoter more than 30-fold in transient assays. Although expression of an intact retinoblastoma gene (Rb) had a slight stimulatory effect on the RRA promoter, mutant Rb proteins also stimulated the RRA promoter. These studies demonstrated that inducible factors in permissive cells increase the steady state levels of RRA RNA in the presence of cycloheximide.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cells, Cultured
- Cycloheximide/pharmacology
- DNA, Viral
- Gene Expression Regulation, Viral/drug effects
- Genes, Immediate-Early
- Genes, Retinoblastoma
- Genes, Viral
- Genes, myc
- Haplorhini
- Herpesvirus 2, Human/enzymology
- Herpesvirus 2, Human/genetics
- Humans
- Hydroxyurea/pharmacology
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Viral
- Ribonucleotide Reductases/genetics
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription Factors/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- N Hanson
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln 68583-0905
| | | | | |
Collapse
|
41
|
Glazenburg KL, Moormann RJ, Kimman TG, Gielkens AL, Peeters BP. In vivo recombination of pseudorabies virus strains in mice. Virus Res 1994; 34:115-26. [PMID: 7856306 DOI: 10.1016/0168-1702(94)90094-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We studied in vivo recombination of pseudorabies virus (PRV) by inoculating mice with non-lethal mutants that carry a small deletion or insertion in the thymidine kinase (TK) gene or the ribonucleotide reductase (RR) gene. After co-inoculation of mice with two different mutants, homologous recombination between the viral genomes resulted in the generation of wild-type PRV that was highly lethal for mice. Thus, recombination could easily be assessed by monitoring survival of inoculated animals. Our results demonstrated that recombination was only detectable when high doses of virus were used. Intragenic recombination was more efficient between mutations in the TK gene than between mutations in the RR gene. Efficient intragenic recombination in the TK gene occurred between mutations which were separated by as few as 266 nucleotides. When two mutants were inoculated with an interval of 2 h, recombination still occurred. No recombination could be detected when the viruses were inoculated at the same time but in separate parts of the body. When inoculated separately, none of the mutants tested could be isolated from the brains of mice. Virus could be recovered from the brain, however, after co-inoculation. Surprisingly, of these viruses 36-39% possessed the parental mutant genotype. This observation indicates that complementation enables these mutants to replicate in the brain and suggests that complementation may contribute to pathogenicity of PRV.
Collapse
Affiliation(s)
- K L Glazenburg
- Institute for Animal Science and Health (ID-DLO), Department of Virology, Lelystad, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Marcello A, Loregian A, Cross A, Marsden H, Hirst TR, Palù G. Specific inhibition of herpes virus replication by receptor-mediated entry of an antiviral peptide linked to Escherichia coli enterotoxin B subunit. Proc Natl Acad Sci U S A 1994; 91:8994-8. [PMID: 8090758 PMCID: PMC44733 DOI: 10.1073/pnas.91.19.8994] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mimetic peptides capable of selectively disrupting protein-protein interactions represent potential therapeutic agents for inhibition of viral and cellular enzymes. This approach was first suggested by the observation that the peptide YAGAVVNDL, corresponding to the carboxyl-terminal 9 amino acids of the small subunit of ribonucleotide reductase of herpes simplex virus, specifically inhibited the viral enzyme in vitro. Evaluation and use of this peptide as a potential antiviral agent has, however, been thwarted by its failure to inhibit virus replication in vivo, presumably because the peptide is too large to enter eukaryotic cells unaided. Here, we show that the nontoxic B subunit of Escherichia coli heat-labile enterotoxin can be used as a recombinant carrier for the receptor-mediated delivery of YAGAVVNDL into virally infected cells. The resultant fusion protein specifically inhibited herpes simplex virus type 1 replication and ribonucleotide reductase activity in quiescent Vero cells. Preincubation of the fusion protein with soluble GM1 ganglioside abolished this antiviral effect, indicating that receptor-mediated binding to the target cell is necessary for its activity. This provides direct evidence of the usefulness of carrier-mediated delivery to evaluate the intracellular efficacy of a putative antiviral peptide.
Collapse
Affiliation(s)
- A Marcello
- Institute of Microbiology, University of Padova, Italy
| | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Stroop WG, Banks MC. Herpes simplex virus type 1 strain KOS-63 does not cause acute or recurrent ocular disease and does not reactivate ganglionic latency in vivo. Acta Neuropathol 1994; 87:14-22. [PMID: 8140892 DOI: 10.1007/bf00386250] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The virological, clinical, and histopathological manifestations of acute and experimentally reactivated infections of eyes and trigeminal ganglia have been studied following intranasal infection of rabbits with herpes simplex virus type 1 (strain KOS-63). All animals shed virus in nasal secretions, but only three shed virus in tear film during the first 12 days of infection. No animal developed clinical or histological evidence of corneal or retinal ocular disease at any time after infection. KOS-63 established trigeminal ganglionic latency; viral RNA, restricted to neuronal nuclei, was detected by in situ hybridization, and virus was recovered from co-cultivation cultures of nervous tissue, but not from cell-free homogenates. Reactivation of latent trigeminal ganglionic infection was attempted by intravenous administration of cyclophosphamide, followed by dexamethasone 24 h later. Injection of the drugs failed to reactivate KOS-63 latency; no animal shed virus in nasal or ocular secretions, and no animal developed gross or microscopic corneal lesions. In addition, viral antigens were not detected by immunofluorescence microscopy in ganglia from rabbits subjected to the drug protocol, and virus was only recovered from ganglia by in vitro co-cultivation reactivation techniques. The failure of KOS-63 to reactivate was not due to an inherent failure of populate and infect the ganglion, because the virus did not reactivate from ganglia that contained many latently infected cells. These studies demonstrate that, although KOS-63 is neuroinvasive and capable of establishing latency, it is virtually nonvirulent for the eye, and cannot be reactivated by a systemic immunosuppressive trigger known to reactivate other HSV-1 strains.
Collapse
Affiliation(s)
- W G Stroop
- Ophthalmology Research Laboratory, Department of Veteran Affairs Medical Center, Houston, TX
| | | |
Collapse
|
45
|
Simard C, Bastien N, Trudel M. Sequencing and 5'- and 3'-end transcript mapping of the gene encoding the small subunit of ribonucleotide reductase from bovine herpesvirus type-1. Virology 1992; 190:689-701. [PMID: 1325701 DOI: 10.1016/0042-6822(92)90907-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The complete nucleotide sequence of the gene encoding the small subunit of ribonucleotide reductase (RNR) from bovine herpesvirus type-1 (BHV-1) was determined. The genomic DNA fragment sequenced also represented regions corresponding to the carboxy termini of RNR large subunit and of a virion protein causing host shut-off. The small subunit polypeptide was constituted of 314 amino acid residues totalling 35.25 kDa. The major transcription initiation and termination sites of the small subunit mRNA were located 95 bases upstream and 88 nucleotides downstream from the coding region, respectively. These findings indicate that the mRNA was 1128 bases long which correlated well with the size of the polyadenylated transcript detected in Northern blot analysis (1.3 kb). Within the RNR large subunit coding region, a TATA box and two CAAT box motifs were found 26, 104, and 190 nucleotides, respectively, upstream from the transcription initiation site of the small subunit mRNA. In contrast to previous studies (Slabaugh et al., J. Virol. 1988, 62, 519-527; Boursnell et al., Virology 1991, 184, 411-416), our comparative analysis of five herpesviruses, one iridovirus, and one poxvirus small subunit protein sequences suggested that the seven viruses arose from a common lineage.
Collapse
Affiliation(s)
- C Simard
- Centre de recherche en virologie, Université du Québec, Ville de Laval, Canada
| | | | | |
Collapse
|
46
|
Brandt CR. Mixed ocular infections identify strains of herpes simplex virus for use in genetic studies. J Virol Methods 1991; 35:127-35. [PMID: 1667784 DOI: 10.1016/0166-0934(91)90128-m] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Studies on the genetic mechanisms involved in the ocular virulence of herpes simplex virus (HSV) require the careful selection of parental strains. We used the technique of mixed ocular infection in vivo to identify strains of HSV for use in genetic studies. A pair of viruses (OD4 and 994) were identified that cause significantly more severe ocular disease when mixed together and used to infect the eyes of Balb/c mice compared to each strain when used alone. The mixed infection with OD4 and 994 did not result in increased neurovirulence. The technique of mixed ocular infections provides a sensitive screen to identify strains of virus that can act synergistically to cause more severe disease. Marker transfer can then be used to map the genes involved.
Collapse
Affiliation(s)
- C R Brandt
- Department of Ophthalmology, University of Wisconsin-Madison 53706
| |
Collapse
|