1
|
Abidine Y, Liu L, Wallén O, Trybala E, Olofsson S, Bergström T, Bally M. Cellular Chondroitin Sulfate and the Mucin-like Domain of Viral Glycoprotein C Promote Diffusion of Herpes Simplex Virus 1 While Heparan Sulfate Restricts Mobility. Viruses 2022; 14:v14081836. [PMID: 36016458 PMCID: PMC9412521 DOI: 10.3390/v14081836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023] Open
Abstract
The diffusion of viruses at the cell membrane is essential to reach a suitable entry site and initiate subsequent internalization. Although many viruses take advantage of glycosaminoglycans (GAG) to bind to the cell surface, little is known about the dynamics of the virus–GAG interactions. Here, single-particle tracking of the initial interaction of individual herpes simplex virus 1 (HSV-1) virions reveals a heterogeneous diffusive behavior, regulated by cell-surface GAGs with two main diffusion types: confined and normal free. This study reports that different GAGs can have competing influences in mediating diffusion on the cells used here: chondroitin sulfate (CS) enhances free diffusion but hinders virus attachment to cell surfaces, while heparan sulfate (HS) promotes virus confinement and increases entry efficiency. In addition, the role that the viral mucin-like domains (MLD) of the HSV-1 glycoprotein C plays in facilitating the diffusion of the virus and accelerating virus penetration into cells is demonstrated. Together, our results shed new light on the mechanisms of GAG-regulated virus diffusion at the cell surface for optimal internalization. These findings may be extendable to other GAG-binding viruses.
Collapse
Affiliation(s)
- Yara Abidine
- Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, SE-90185 Umeå, Sweden
| | - Lifeng Liu
- Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, SE-90185 Umeå, Sweden
| | - Oskar Wallén
- Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden
| | - Edward Trybala
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, SE-41346 Göteborg, Sweden
| | - Sigvard Olofsson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, SE-41346 Göteborg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, SE-41346 Göteborg, Sweden
| | - Marta Bally
- Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, SE-90185 Umeå, Sweden
- Correspondence:
| |
Collapse
|
2
|
Ruan P, Feng X, Cheng A, Wang M, Zhang W, Wu Y, Yang Q, Tian B, Ou X, Sun D, Zhang S, Mao S, Zhu D, Jia R, Chen S, Liu M, Zhao XX, Huang J, Gao Q, Yu Y, Zhang L, Pan L. Evaluation of safety and immunogenicity of duck-plague virus gC/gE double gene deletion. Front Immunol 2022; 13:963009. [PMID: 36059553 PMCID: PMC9433869 DOI: 10.3389/fimmu.2022.963009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
Duck plague caused by duck plague virus (DPV) is a highly contagious disease that can cause serious morbidity and death in waterfowl such as ducks and geese, and bring huge economic losses to the duck industry. In this study, on the basis of the duck plague virus gC gene deletion strain CHv-ΔgC, based on the duck plague virus bacterial artificial chromosome (BAC) platform in our laboratory, the gE gene was knocked out using the traceless deletion technology to obtain gC/gE double gene deletion candidate vaccine strain CHv-ΔgC/gE. The double gene deletion strain (CHv-ΔgC/gE) constructed in this study has greatly weakened virulence, no pathogenicity to ducks, and stable genetic characteristics in vitro and in vivo. Ducks immunized with CHv-ΔgC/gE can produce neutralizing antibodies and ELISA antibody levels comparable to those of commercial duck plague attenuated vaccine immunization, and can resist 100 LD50 CHv challenge of ducks, with good immune protection effect. It has the potential to be further developed into duck plague gC/gE double gene deletion, marked attenuated vaccine.
Collapse
Affiliation(s)
- Peilin Ruan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin Feng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Mingshu Wang,
| | - Wei Zhang
- R & D Department, Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Unique Mode of Antiviral Action of a Marine Alkaloid against Ebola Virus and SARS-CoV-2. Viruses 2022; 14:v14040816. [PMID: 35458549 PMCID: PMC9028129 DOI: 10.3390/v14040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Lamellarin α 20-sulfate is a cell-impenetrable marine alkaloid that can suppress infection that is mediated by the envelope glycoprotein of human immunodeficiency virus type 1. We explored the antiviral action and mechanisms of this alkaloid against emerging enveloped RNA viruses that use endocytosis for infection. The alkaloid inhibited the infection of retroviral vectors that had been pseudotyped with the envelope glycoprotein of Ebola virus and SARS-CoV-2. The antiviral effects of lamellarin were independent of the retrovirus Gag-Pol proteins. Interestingly, although heparin and dextran sulfate suppressed the cell attachment of vector particles, lamellarin did not. In silico structural analyses of the trimeric glycoprotein of the Ebola virus disclosed that the principal lamellarin-binding site is confined to a previously unappreciated cavity near the NPC1-binding site and fusion loop, whereas those for heparin and dextran sulfate were dispersed across the attachment and fusion subunits of the glycoproteins. Notably, lamellarin binding to this cavity was augmented under conditions where the pH was 5.0. These results suggest that the final action of the alkaloid against Ebola virus is specific to events following endocytosis, possibly during conformational glycoprotein changes in the acidic environment of endosomes. Our findings highlight the unique biological and physicochemical features of lamellarin α 20-sulfate and should lead to the further use of broadly reactive antivirals to explore the structural mechanisms of virus replication.
Collapse
|
4
|
Wang L, Wang Z, Cao L, Ge K. Constructive strategies for drug delivery systems in antivirus disease therapy by safety materials. BIOSAFETY AND HEALTH 2022; 4:161-170. [PMID: 35291339 PMCID: PMC8912974 DOI: 10.1016/j.bsheal.2022.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Li Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Zhaoshuo Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Lingzhi Cao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Kun Ge
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
5
|
Ratan ZA, Mashrur FR, Chhoan AP, Shahriar SM, Haidere MF, Runa NJ, Kim S, Kweon DH, Hosseinzadeh H, Cho JY. Silver Nanoparticles as Potential Antiviral Agents. Pharmaceutics 2021; 13:2034. [PMID: 34959320 PMCID: PMC8705988 DOI: 10.3390/pharmaceutics13122034] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Since the early 1990s, nanotechnology has led to new horizons in nanomedicine, which encompasses all spheres of science including chemistry, material science, biology, and biotechnology. Emerging viral infections are creating severe hazards to public health worldwide, recently, COVID-19 has caused mass human casualties with significant economic impacts. Interestingly, silver nanoparticles (AgNPs) exhibited the potential to destroy viruses, bacteria, and fungi using various methods. However, developing safe and effective antiviral drugs is challenging, as viruses use host cells for replication. Designing drugs that do not harm host cells while targeting viruses is complicated. In recent years, the impact of AgNPs on viruses has been evaluated. Here, we discuss the potential role of silver nanoparticles as antiviral agents. In this review, we focus on the properties of AgNPs such as their characterization methods, antiviral activity, mechanisms, applications, and toxicity.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
- School of Health and Society, University of Wollongong, Wollongong, NSW 2500, Australia;
| | - Fazla Rabbi Mashrur
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
| | - Anisha Parsub Chhoan
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; (Z.A.R.); (F.R.M.); (A.P.C.)
| | - Sadi Md. Shahriar
- Department of Materials Science and Engineering, University of California-Davis, Davis, California, CA 95616, USA;
- Department of Materials Science and Engineering, Khulna University of Engineering and Technology, Khulna 9203, Bangladesh
| | | | | | - Sunggyu Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Suwon 16419, Korea
| | - Hassan Hosseinzadeh
- School of Health and Society, University of Wollongong, Wollongong, NSW 2500, Australia;
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.K.); (D.-H.K.)
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Suwon 16419, Korea
| |
Collapse
|
6
|
Liu J, Obaidi I, Nagar S, Scalabrino G, Sheridan H. The antiviral potential of algal-derived macromolecules. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
7
|
Peerboom N, Schmidt E, Trybala E, Block S, Bergström T, Pace HP, Bally M. Cell Membrane Derived Platform To Study Virus Binding Kinetics and Diffusion with Single Particle Sensitivity. ACS Infect Dis 2018; 4:944-953. [PMID: 29688001 DOI: 10.1021/acsinfecdis.7b00270] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Discovery and development of new antiviral therapies essentially rely on two key factors: an in-depth understanding of the mechanisms involved in viral infection and the development of fast and versatile drug screening platforms. To meet those demands, we present a biosensing platform to probe virus-cell membrane interactions on a single particle level. Our method is based on the formation of supported lipid bilayers from cell membrane material. Using total internal reflection fluorescence microscopy, we report the contribution of viral and cellular components to the interaction kinetics of herpes simplex virus type 1 with the cell membrane. Deletion of glycoprotein C (gC), the main viral attachment glycoprotein, or deletion of heparan sulfate, an attachment factor on the cell membrane, leads to an overall decrease in association of virions to the membrane and faster dissociation from the membrane. In addition to this, we perform binding inhibition studies using the antiviral compound heparin to estimate its IC50 value. Finally, single particle tracking is used to characterize the diffusive behavior of the virus particles on the supported lipid bilayers. Altogether, our results promote this platform as a complement to existing bioanalytical assays, being at the interface between simplified artificial membrane models and live cell experiments.
Collapse
Affiliation(s)
- Nadia Peerboom
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, 412 96 Göteborg, Sweden
| | - Eneas Schmidt
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, 412 96 Göteborg, Sweden
| | - Edward Trybala
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10B, 413 46 Göteborg, Sweden
| | - Stephan Block
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 141 95 Berlin, Germany
| | - Tomas Bergström
- Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, University of Gothenburg, Guldhedsgatan 10B, 413 46 Göteborg, Sweden
| | - Hudson P. Pace
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, 412 96 Göteborg, Sweden
| | - Marta Bally
- Department of Physics, Chalmers University of Technology, Fysikgränd 3, 412 96 Göteborg, Sweden
- Wallenberg Centre for Molecular Medicine and Department of Clinical Microbiology, Umeå University, NUS Målpunkt R, 901 85 Umeå, Sweden
| |
Collapse
|
8
|
Azab W, Osterrieder K. Initial Contact: The First Steps in Herpesvirus Entry. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2018; 223:1-27. [PMID: 28528437 DOI: 10.1007/978-3-319-53168-7_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The entry process of herpesviruses into host cells is complex and highly variable. It involves a sequence of well-orchestrated events that begin with virus attachment to glycan-containing proteinaceous structures on the cell surface. This initial contact tethers virus particles to the cell surface and results in a cascade of molecular interactions, including the tight interaction of viral envelope glycoproteins to specific cell receptors. These interactions trigger intracellular signaling and finally virus penetration after fusion of the viral envelope with cellular membranes. Based on the engaged cellular receptors and co-receptors, and the subsequent signaling cascades, the entry pathway will be decided on the spot. A number of viral glycoproteins and many cellular receptors and molecules have been identified as players in one or several of these events during virus entry. This chapter will review viral glycoproteins, cellular receptors and signaling cascades associated with the very first interactions of herpesviruses with their target cells.
Collapse
Affiliation(s)
- Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany.
| | - Klaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163, Berlin, Germany
| |
Collapse
|
9
|
Lee E, Nguyen CTH, Strounina E, Davis-Poynter N, Ross BP. Structure-Activity Relationships of GAG Mimetic-Functionalized Mesoporous Silica Nanoparticles and Evaluation of Acyclovir-Loaded Antiviral Nanoparticles with Dual Mechanisms of Action. ACS OMEGA 2018; 3:1689-1699. [PMID: 30023813 PMCID: PMC6045419 DOI: 10.1021/acsomega.7b01662] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/24/2018] [Indexed: 05/20/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) are drug delivery agents that are able to incorporate drugs within their pores. Furthermore, MSNs can be functionalized by attachment of bioactive ligands on their surface to enhance their activity, and nanoparticles modified with glycosaminoglycan (GAG) mimetics inhibit the entry of herpes simplex virus (HSV) into cells. In this study, structure-activity relationships of GAGs attached to MSNs were investigated in relation to HSV-1 and HSV-2, and acyclovir was loaded into the pores of MSNs. The sulfonate group was demonstrated to be essential for antiviral activity, which was enhanced by incorporating a benzene group within the ligand. Loading acyclovir into GAG mimetic-functionalized MSNs reduced the viral infection, resulting in nanoparticles that simultaneously target two distinct viral pathways, namely, inhibition of viral entry and inhibition of DNA replication.
Collapse
Affiliation(s)
- Edward
C. Lee
- School
of Pharmacy and Centre for Advanced Imaging, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Chau T. H. Nguyen
- School
of Pharmacy and Centre for Advanced Imaging, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Ekaterina Strounina
- School
of Pharmacy and Centre for Advanced Imaging, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicholas Davis-Poynter
- Centre
for Children’s Health Research, The
University of Queensland, 46 Graham Street, Brisbane, Queensland 4101, Australia
| | - Benjamin P. Ross
- School
of Pharmacy and Centre for Advanced Imaging, The University
of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
10
|
Peerboom N, Block S, Altgärde N, Wahlsten O, Möller S, Schnabelrauch M, Trybala E, Bergström T, Bally M. Binding Kinetics and Lateral Mobility of HSV-1 on End-Grafted Sulfated Glycosaminoglycans. Biophys J 2017; 113:1223-1234. [PMID: 28697896 DOI: 10.1016/j.bpj.2017.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 01/08/2023] Open
Abstract
Many viruses, including herpes simplex (HSV), are recruited to their host cells via interaction between their envelope glycoproteins and cell-surface glycosaminoglycans (GAGs). This initial attachment is of a multivalent nature, i.e., it requires the establishment of multiple bonds between amino acids of viral glycoproteins and sulfated saccharides on the GAG chain. To gain understanding of how this binding process is modulated, we performed binding kinetics and mobility studies using end-grafted GAG chains that mimic the end attachment of these chains to proteoglycans. Total internal reflection fluorescence microscopy was used to probe binding and release, as well as the diffusion of single HSV-1 particles. To verify the hypothesis that the degree of sulfation, but also the arrangement of sulfate groups along the GAG chain, plays a key role in HSV binding, we tested two native GAGs (chondroitin sulfate and heparan sulfate) and compared our results to chemically sulfated hyaluronan. HSV-1 recognized all sulfated GAGs, but not the nonsulfated hyaluronan, indicating that binding is specific to the presence of sulfate groups. Furthermore we observed that a notable fraction of GAG-bound virions exhibit lateral mobility, although the multivalent binding to the immobilized GAG brushes ensures firm virus attachment to the interface. Diffusion was faster on the two native GAGs, one of which, chondroitin sulfate, was also characterized by the highest association rate per GAG chain. This highlights the complexity of multivalent virus-GAG interactions and suggests that the spatial arrangement of sulfates along native GAG chains may play a role in modulating the characteristics of the HSV-GAG interaction. Altogether, these results, obtained with a minimal and well-controlled model of the cell membrane, provide, to our knowledge, new insights into the dynamics of the HSV-GAG interaction.
Collapse
Affiliation(s)
- Nadia Peerboom
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden
| | - Stephan Block
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden; Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Noomi Altgärde
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden
| | - Olov Wahlsten
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden
| | | | | | - Edward Trybala
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Marta Bally
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
| |
Collapse
|
11
|
Ziem B, Azab W, Gholami MF, Rabe JP, Osterrieder N, Haag R. Size-dependent inhibition of herpesvirus cellular entry by polyvalent nanoarchitectures. NANOSCALE 2017; 9:3774-3783. [PMID: 28266670 DOI: 10.1039/c7nr00611j] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Carbon-based architectures, especially graphene and its derivatives, have recently attracted much attention in the field of biomedicine and biotechnology for their use as pathogen inhibitors or biosensors. One of the major problems in the development of novel virus inhibitor systems is the adaption of the inhibitor to the size of virus particles. We here report the synthesis and biological testing of carbon-based inhibitors differing in size for evaluating the potential size effect on the inhibition of virus entry and replication. In this context, different sized nanomaterials were functionalized with polygylcerol through a "grafting from" polymerization to form new polyvalent nanoarchitectures which can operate as viral inhibitor systems after post-modification. For this purpose a polysulfation was carried out to mimic the heparan sulfates present on cell surfaces that we reasoned would compete with the binding sites of herpes simplex virus type 1 (HSV-1) and equine herpesvirus type 1 (EHV-1), which both cause major global health issues. Our results clearly demonstrate that the inhibitory efficiency is regulated by the size of the polymeric nanomaterials and the degree of sulfation. The best inhibiting graphene sheets were ∼300 nm in size and had a degree of sulfation of ∼10%. Furthermore, it turned out that the derivatives inhibited virus infection at an early stage during entry but did not affect cell-to-cell spread. Overall, tunable polyvalent nanomaterials are promising and efficient virus entry inhibitors, which can likely be used for a broad spectrum of enveloped viruses.
Collapse
Affiliation(s)
- B Ziem
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| | - W Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.
| | - M F Gholami
- Department of Physics & IRIS Adlershof, Humboldt-Universität Berlin, D-12489 Berlin, Germany
| | - J P Rabe
- Department of Physics & IRIS Adlershof, Humboldt-Universität Berlin, D-12489 Berlin, Germany
| | - N Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.
| | - R Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
12
|
Ziem B, Rahn J, Donskyi I, Silberreis K, Cuellar L, Dernedde J, Keil G, Mettenleiter TC, Haag R. Polyvalent 2D Entry Inhibitors for Pseudorabies and African Swine Fever Virus. Macromol Biosci 2017; 17. [PMID: 28296132 DOI: 10.1002/mabi.201600499] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/07/2017] [Indexed: 01/04/2023]
Abstract
African swine fever virus (ASFV) is one of the most dangerous viruses for pigs and is endemic in Africa but recently also spread into the Russian Federation and the Eastern border of the EU. So far there is no vaccine or antiviral drug available to curtail the infection. Thus, control strategies based on novel inhibitors are urgently needed. Another highly relevant virus infection in pigs is Aujeszky's disease caused by the alphaherpesvirus pseudorabies virus (PrV). This article reports the synthesis and biological evaluation of novel extracellular matrix-inspired entry inhibitors based on polyglycerol sulfate-functionalized graphene sheets. The developed 2D architectures bind enveloped viruses during the adhesion process and thereby exhibit strong inhibitory effects, which are equal or better than the common standards enrofloxacin and heparin as demonstrated for ASFV and PrV. Overall, the developed polyvalent 2D entry inhibitors are nontoxic and efficient nanoarchitectures, which interact with various types of enveloped viruses. Therefore they prevent viral adhesion to the host cell and especially target viruses that rely on a heparan sulfate-dependent cell entry mechanism.
Collapse
Affiliation(s)
- Benjamin Ziem
- Institute of Chemistry and Biochemistry, Freie Universität, 14195, Berlin, Germany
| | - Jessica Rahn
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493, Greifswald-Insel Riems, Germany
| | - Ievgen Donskyi
- Institute of Chemistry and Biochemistry, Freie Universität, 14195, Berlin, Germany
| | - Kim Silberreis
- Institute of Laboratory Medicine, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Luis Cuellar
- Institute of Chemistry and Biochemistry, Freie Universität, 14195, Berlin, Germany
| | - Jens Dernedde
- Institute of Laboratory Medicine, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Günther Keil
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493, Greifswald-Insel Riems, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität, 14195, Berlin, Germany
| |
Collapse
|
13
|
Trobaugh DW, Klimstra WB. Alphaviruses suppress host immunity by preventing myeloid cell replication and antagonizing innate immune responses. Curr Opin Virol 2017; 23:30-34. [PMID: 28288385 DOI: 10.1016/j.coviro.2017.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 12/21/2022]
Abstract
Alphaviruses are medically important mosquito-borne viruses that cause a range of diseases in humans from febrile illness to arthritis or encephalitis. The innate immune response functions to suppress virus replication through upregulation of antiviral molecules and contributes to development of the adaptive immune response. Myeloid cells act as master regulators of virus infection by initiating both the innate and adaptive immune responses. Alphaviruses are capable of antagonizing individual components of these responses to increase replicative fitness in vivo. However, recently, studies have demonstrated that some alphaviruses avoid myeloid cell replication altogether to achieve a similar effect. In this review, we summarize how alphaviruses evade myeloid cell infection and individual inductive mechanisms, thereby limiting the activation of the innate immune response.
Collapse
Affiliation(s)
- Derek W Trobaugh
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - William B Klimstra
- Center for Vaccine Research, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
14
|
Deokar AR, Nagvenkar AP, Kalt I, Shani L, Yeshurun Y, Gedanken A, Sarid R. Graphene-Based "Hot Plate" for the Capture and Destruction of the Herpes Simplex Virus Type 1. Bioconjug Chem 2017; 28:1115-1122. [PMID: 28177606 DOI: 10.1021/acs.bioconjchem.7b00030] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The study of graphene-based antivirals is still at a nascent stage and the photothermal antiviral properties of graphene have yet to be studied. Here, we design and synthesize sulfonated magnetic nanoparticles functionalized with reduced graphene oxide (SMRGO) to capture and photothermally destroy herpes simplex virus type 1 (HSV-1). Graphene sheets were uniformly anchored with spherical magnetic nanoparticles (MNPs) of varying size between ∼5 and 25 nm. Fourier-transform infrared spectroscopy (FT-IR) confirmed the sulfonation and anchoring of MNPs on the graphene sheets. Upon irradiation of the composite with near-infrared light (NIR, 808 nm, 7 min), SMRGO (100 ppm) demonstrated superior (∼99.99%) photothermal antiviral activity. This was probably due to the capture efficiency, unique sheet-like structure, high surface area, and excellent photothermal properties of graphene. In addition, electrostatic interactions of MNPs with viral particles appear to play a vital role in the inhibition of viral infection. These results suggest that graphene composites may help to combat viral infections including, but not only, HSV-1.
Collapse
Affiliation(s)
- Archana R Deokar
- Department of Chemistry, Bar-Ilan University , Ramat Gan 5290002, Israel.,Department of Materials Science and Engineering, National Cheng Kung University , Tainan 70101, Taiwan
| | - Anjani P Nagvenkar
- Department of Chemistry, Bar-Ilan University , Ramat Gan 5290002, Israel.,Department of Materials Science and Engineering, National Cheng Kung University , Tainan 70101, Taiwan
| | - Inna Kalt
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Lior Shani
- Department of Physics and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Yosef Yeshurun
- Department of Physics and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University , Ramat Gan 5290002, Israel
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan University , Ramat Gan 5290002, Israel.,Department of Materials Science and Engineering, National Cheng Kung University , Tainan 70101, Taiwan
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University , Ramat Gan 5290002, Israel
| |
Collapse
|
15
|
Lee EC, Davis-Poynter N, Nguyen CTH, Peters AA, Monteith GR, Strounina E, Popat A, Ross BP. GAG mimetic functionalised solid and mesoporous silica nanoparticles as viral entry inhibitors of herpes simplex type 1 and type 2 viruses. NANOSCALE 2016; 8:16192-6. [PMID: 27604476 DOI: 10.1039/c6nr03878f] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A glycosaminoglycan mimetic was attached to the surface of solid and mesoporous silica nanoparticles to create novel antiviral agents against herpes simplex type 1 and type 2 viruses. The nanoparticles act as viral entry inhibitors that appear to block viral attachment and penetration into susceptible cells.
Collapse
Affiliation(s)
- Edward C Lee
- The University of Queensland, School of Pharmacy, Brisbane, QLD 4072, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Barras A, Pagneux Q, Sane F, Wang Q, Boukherroub R, Hober D, Szunerits S. High Efficiency of Functional Carbon Nanodots as Entry Inhibitors of Herpes Simplex Virus Type 1. ACS APPLIED MATERIALS & INTERFACES 2016; 8:9004-13. [PMID: 27015417 DOI: 10.1021/acsami.6b01681] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nanostructures have been lately identified as an efficient therapeutic strategy to modulate viral attachment and entry. The high concentrations of ligands present on nanostructures can considerably enhance affinities toward biological receptors. We demonstrate here the potential of carbon nanodots (C-dots) surface-functionalized with boronic acid or amine functions to interfere with the entry of herpes simplex virus type 1 (HSV-1). C-dots formed from 4-aminophenylboronic acid hydrochloride (4-AB/C-dots) using a modified hydrothermal carbonization are shown to prevent HSV-1 infection in the nanograms per milliliter concentration range (EC50 = 80 and 145 ng mL(-1) on Vero and A549 cells, respectively), whereas the corresponding C-dots formed from phenylboronic acid (B/C-dots) have no effects even at high concentrations. Some of the presented results also suggest that C-dots are specifically acting on the early stage of virus entry through an interaction with the virus and probably the cells at the same time.
Collapse
Affiliation(s)
- Alexandre Barras
- Institute of Electronics, Microelectronics, and Nanotechnology (IEMN, UMR CNRS 8520), Université Lille 1 , Cité Scientifique, Avenue Poincaré, BP60069, 59652 Villeneuve d'Ascq, France
| | - Quentin Pagneux
- Institute of Electronics, Microelectronics, and Nanotechnology (IEMN, UMR CNRS 8520), Université Lille 1 , Cité Scientifique, Avenue Poincaré, BP60069, 59652 Villeneuve d'Ascq, France
| | - Famara Sane
- Laboratoire de Virologie EA3610, Université Lille 2 et CHU Lille, Batiment P Boulanger Hôpital A Calmette CHRU de Lille , Boulevard du Professeur Jules Leclerc, 59037 Lille, France
| | - Qi Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University , Jinan 250061, P. R. China
| | - Rabah Boukherroub
- Institute of Electronics, Microelectronics, and Nanotechnology (IEMN, UMR CNRS 8520), Université Lille 1 , Cité Scientifique, Avenue Poincaré, BP60069, 59652 Villeneuve d'Ascq, France
| | - Didier Hober
- Laboratoire de Virologie EA3610, Université Lille 2 et CHU Lille, Batiment P Boulanger Hôpital A Calmette CHRU de Lille , Boulevard du Professeur Jules Leclerc, 59037 Lille, France
| | - Sabine Szunerits
- Institute of Electronics, Microelectronics, and Nanotechnology (IEMN, UMR CNRS 8520), Université Lille 1 , Cité Scientifique, Avenue Poincaré, BP60069, 59652 Villeneuve d'Ascq, France
| |
Collapse
|
17
|
Altgärde N, Eriksson C, Peerboom N, Phan-Xuan T, Moeller S, Schnabelrauch M, Svedhem S, Trybala E, Bergström T, Bally M. Mucin-like Region of Herpes Simplex Virus Type 1 Attachment Protein Glycoprotein C (gC) Modulates the Virus-Glycosaminoglycan Interaction. J Biol Chem 2015; 290:21473-85. [PMID: 26160171 DOI: 10.1074/jbc.m115.637363] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 01/09/2023] Open
Abstract
Glycoprotein C (gC) mediates the attachment of HSV-1 to susceptible host cells by interacting with glycosaminoglycans (GAGs) on the cell surface. gC contains a mucin-like region located near the GAG-binding site, which may affect the binding activity. Here, we address this issue by studying a HSV-1 mutant lacking the mucin-like domain in gC and the corresponding purified mutant protein (gCΔmuc) in cell culture and GAG-binding assays, respectively. The mutant virus exhibited two functional alterations as compared with native HSV-1 (i.e. decreased sensitivity to GAG-based inhibitors of virus attachment to cells and reduced release of viral particles from the surface of infected cells). Kinetic and equilibrium binding characteristics of purified gC were assessed using surface plasmon resonance-based sensing together with a surface platform consisting of end-on immobilized GAGs. Both native gC and gCΔmuc bound via the expected binding region to chondroitin sulfate and sulfated hyaluronan but not to the non-sulfated hyaluronan, confirming binding specificity. In contrast to native gC, gCΔmuc exhibited a decreased affinity for GAGs and a slower dissociation, indicating that once formed, the gCΔmuc-GAG complex is more stable. It was also found that a larger number of gCΔmuc bound to a single GAG chain, compared with native gC. Taken together, our data suggest that the mucin-like region of HSV-1 gC is involved in the modulation of the GAG-binding activity, a feature of importance both for unrestricted virus entry into the cells and release of newly produced viral particles from infected cells.
Collapse
Affiliation(s)
- Noomi Altgärde
- From the Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Charlotta Eriksson
- the Department of Clinical Virology, University of Gothenburg, 413 46 Göteborg, Sweden
| | - Nadia Peerboom
- From the Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Tuan Phan-Xuan
- From the Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Stephanie Moeller
- the Department of Biomaterials, INNOVENT e.V., Pruessingstrasse 27 B, D-07745 Jena, Germany, and
| | - Matthias Schnabelrauch
- the Department of Biomaterials, INNOVENT e.V., Pruessingstrasse 27 B, D-07745 Jena, Germany, and
| | - Sofia Svedhem
- From the Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Edward Trybala
- the Department of Clinical Virology, University of Gothenburg, 413 46 Göteborg, Sweden
| | - Tomas Bergström
- the Department of Clinical Virology, University of Gothenburg, 413 46 Göteborg, Sweden
| | - Marta Bally
- From the Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden, the Institut Curie, Centre de Recherche, CNRS, UMR 168, Physico-Chimie Curie, F-75248 Paris, France
| |
Collapse
|
18
|
Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses. Antiviral Res 2015; 116:34-44. [PMID: 25637710 DOI: 10.1016/j.antiviral.2015.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/31/2014] [Accepted: 01/11/2015] [Indexed: 02/03/2023]
Abstract
Heparan sulfate (HS) is a ubiquitous glycosaminoglycan that serves as a cellular attachment site for a number of significant human pathogens, including respiratory syncytial virus (RSV), human parainfluenza virus 3 (hPIV3), and herpes simplex virus (HSV). Decoy receptors can target pathogens by binding to the receptor pocket on viral attachment proteins, acting as 'molecular sinks' and preventing the pathogen from binding to susceptible host cells. Decoy receptors functionalized with HS could bind to pathogens and prevent infection, so we generated decoy liposomes displaying HS-octasaccharide (HS-octa). These decoy liposomes significantly inhibited RSV, hPIV3, and HSV infectivity in vitro to a greater degree than the original HS-octa building block. The degree of inhibition correlated with the density of HS-octa displayed on the liposome surface. Decoy liposomes with HS-octa inhibited infection of viruses to a greater extent than either full-length heparin or HS-octa alone. Decoy liposomes were effective when added prior to infection or following the initial infection of cells in vitro. By targeting the well-conserved receptor-binding sites of HS-binding viruses, decoy liposomes functionalized with HS-octa are a promising therapeutic antiviral agent and illustrate the utility of the liposome delivery platform.
Collapse
|
19
|
Baldwin J, Shukla D, Tiwari V. Members of 3-O-Sulfotransferases (3-OST) Family: A Valuable Tool from Zebrafish to Humans for Understanding Herpes Simplex Virus Entry. Open Virol J 2013; 7:5-11. [PMID: 23358893 PMCID: PMC3553493 DOI: 10.2174/1874357901307010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/28/2012] [Accepted: 10/17/2012] [Indexed: 11/30/2022] Open
Abstract
The journey of many viruses to infect cells begins when the virus first binds to cell surface heparan sulfate (HS). The initial step of cell attachment or binding during herpes simplex virus type-1 (HSV-1) entry is mediated by envelope glycoprotein B (gB) and C (gC). The binding is followed by fusion between virus envelope and cell membrane during which HSV-1 glycoprotein D (gD) interacts with a modified form of HS know as 3-O-sulfated heparan sulfate (3-OS HS). The rare modification of 3-O-sulfation on HS chain is governed by enzymes known as 3-O-sulfotransferase (3-OST). Currently, there are seven isoforms of human 3-OSTs that have been identified, and with the exception of 3-OST-1, all other 3-OST isoforms allow HSV-1 entry and spread. Recently, the product of the zebrafish (ZF)-encoded 3-OST-3 was also recognized as a gD receptor, which mediates HSV-1 entry and cell-cell fusion similar to human 3-OST-3. Interestingly, the ZF system expresses multiple isoforms of 3-OST which could be very useful for studying the involvement of HS and 3-OS HS in virus tropism and virus-induced inflammation. In addition, therapeutic targeting of 3-OST generated HS is likely to bring about novel interventions against HSV-1. In this review we have taken a closer look at the potential of both human and ZF encoded 3-OSTs as valuable tools in HSV entry and inflammation studies.
Collapse
Affiliation(s)
- John Baldwin
- Department of Microbiology & Immunology, Midwestern University, Downers Grove, IL 60515, USA
| | | | | |
Collapse
|
20
|
Li P, Sheng J, Liu Y, Li J, Liu J, Wang F. Heparosan-derived heparan sulfate/heparin-like compounds: one kind of potential therapeutic agents. Med Res Rev 2012; 33:665-92. [PMID: 22495734 DOI: 10.1002/med.21263] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heparan sulfate (HS) is a highly sulfated glycosaminoglycan and exists in all animal tissues. HS and heparin are very similar, except that heparin has higher level of sulfation and higher content of iduronic acid. Despite the fact that it is a century-old drug, heparin remains as a top choice for treating thrombotic disorders. Pharmaceutical heparin is derived from porcine intestine or bovine lung via a long supply chain. This supply chain is vulnerable to the contamination of animal pathogens. Therefore, new methods for manufacturing heparin or heparin-like substances devoid of animal tissues have been explored by many researchers, among which, modifications of heparosan, the capsular polysaccharide of Escherichia coli K5 strain, is one of the promising approaches. Heparosan has a structure similar to unmodified backbone of natural HS and heparin. It is feasible to obtain HS or heparin derivatives by modifying heparosan with chemical or enzymatic methods. These derivatives display different biological activities, such as anticoagulant, anti-inflammatory, anticancer, and antiviral activities. This review focuses on the recent studies of synthesis, activity, and structure-activity relationship of HS/heparin-like derivatives prepared from heparosan.
Collapse
Affiliation(s)
- Pingli Li
- Institute of Biochemical and Biotechnological Drug & National Glycoengineering Research Center, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | | | | | | | | | | |
Collapse
|
21
|
Cao H, Zhang GR, Geller AI. Antibody-mediated targeted gene transfer of helper virus-free HSV-1 vectors to rat neocortical neurons that contain either NMDA receptor 2B or 2A subunits. Brain Res 2011; 1415:127-35. [PMID: 21885042 PMCID: PMC3176983 DOI: 10.1016/j.brainres.2011.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/13/2011] [Accepted: 08/05/2011] [Indexed: 02/04/2023]
Abstract
Because of the numerous types of neurons in the brain, and particularly the forebrain, neuron type-specific expression will benefit many potential applications of direct gene transfer. The two most promising approaches for achieving neuron type-specific expression are targeted gene transfer to a specific type of neuron and using a neuron type-specific promoter. We previously developed antibody-mediated targeted gene transfer with Herpes Simplex Virus (HSV-1) vectors by modifying glycoprotein C (gC) to replace the heparin binding domain, which mediates the initial binding of HSV-1 particles to many cell types, with the Staphylococcus A protein ZZ domain, which binds immunoglobulin (Ig) G. We showed that a chimeric gC-ZZ protein is incorporated into vector particles and binds IgG. As a proof-of-principle for antibody-mediated targeted gene transfer, we isolated complexes of these vector particles and an anti-NMDA NR1 subunit antibody, and demonstrated targeted gene transfer to neocortical cells that contain NR1 subunits. However, because most forebrain neurons contain NR1, we obtained only a modest increase in the specificity of gene transfer, and this targeting specificity is of limited utility for physiological experiments. Here, we report efficient antibody-mediated targeted gene transfer to NMDA NR2B- or NR2A-containing cells in rat postrhinal cortex, and a neuron-specific promoter further restricted recombinant expression to neurons. Of note, because NR2A-containing neurons are relatively rare, these results show that antibody-mediated targeted gene transfer with HSV-1 vectors containing neuron type-specific promoters can restrict recombinant expression to specific types of forebrain neurons of physiological significance.
Collapse
Affiliation(s)
- Haiyan Cao
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | | | | |
Collapse
|
22
|
Lian B, Xu C, Cheng A, Wang M, Zhu D, Luo Q, Jia R, Bi F, Chen Z, Zhou Y, Yang Z, Chen X. Identification and characterization of duck plague virus glycoprotein C gene and gene product. Virol J 2010; 7:349. [PMID: 21110887 PMCID: PMC3004831 DOI: 10.1186/1743-422x-7-349] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 11/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viral envelope proteins have been proposed to play significant roles in the process of viral infection. RESULTS In this study, an envelope protein gene, gC (NCBI GenBank accession no. EU076811), was expressed and characterized from duck plague virus (DPV), a member of the family herpesviridae. The gene encodes a protein of 432 amino acids with a predicted molecular mass of 45 kDa. Sequence comparisons, multiple alignments and phylogenetic analysis showed that DPV gC has several features common to other identified herpesvirus gC, and was genetically close to the gallid herpervirus.Antibodies raised in rabbits against the pET32a-gC recombinant protein expressed in Escherichia coli BL21 (DE3) recognized a 45-KDa DPV-specific protein from infected duck embryo fibroblast (DEF) cells. Transcriptional and expression analysis, using real-time fluorescent quantitative PCR (FQ-PCR) and Western blot detection, revealed that the transcripts encoding DPV gC and the protein itself appeared late during infection of DEF cells. Immunofluorescence localization further demonstrated that the gC protein exhibited substantial cytoplasm fluorescence in DPV-infected DEF cells. CONCLUSIONS In this work, the DPV gC protein was successfully expressed in a prokaryotic expression system, and we presented the basic properties of the DPV gC product for the first time. These properties of the gC protein provided a prerequisite for further functional analysis of this gene.
Collapse
Affiliation(s)
- Bei Lian
- Avian Diseases Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Cao H, Zhang GR, Geller AI. Antibody-mediated targeted gene transfer to NMDA NR1-containing neurons in rat neocortex by helper virus-free HSV-1 vector particles containing a chimeric HSV-1 glycoprotein C-staphylococcus A protein. Brain Res 2010; 1351:1-12. [PMID: 20599821 PMCID: PMC2929402 DOI: 10.1016/j.brainres.2010.06.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 11/16/2022]
Abstract
Because of the heterogeneous cellular composition of the brain, and especially the forebrain, cell type-specific expression will benefit many potential applications of direct gene transfer. The two prevalent approaches for achieving cell type-specific expression are using a cell type-specific promoter or targeting gene transfer to a specific cell type. Targeted gene transfer with Herpes Simplex Virus (HSV-1) vectors modifies glycoprotein C (gC) to replace the heparin binding domain, which binds to many cell types, with a binding activity for a specific cell surface protein. We previously reported targeted gene transfer to nigrostriatal neurons using chimeric gC-glial cell line-derived neurotrophic factor or gC-brain-derived neurotrophic factor protein. Unfortunately, this approach is limited to cells that express the cognate receptor for either neurotrophic factor. Thus, a general strategy for targeting gene transfer to many different types of neurons is desirable. Antibody-mediated targeted gene transfer has been developed for targeting specific virus vectors to specific peripheral cell types; a specific vector particle protein is modified to contain the Staphylococcus A protein ZZ domain, which binds immunoglobulin (Ig) G. Here, we report antibody-mediated targeted gene transfer of HSV-1 vectors to a specific type of forebrain neuron. We constructed a chimeric gC-ZZ protein, and showed this protein is incorporated into vector particles and binds Ig G. Complexes of these vector particles and an antibody to the NMDA receptor NR1 subunit supported targeted gene transfer to NR1-containing neocortical neurons in the rat brain, with long-term (2 months) expression.
Collapse
Affiliation(s)
- Haiyan Cao
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | - Guo-Rong Zhang
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | - Alfred I Geller
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA.
| |
Collapse
|
24
|
Baram-Pinto D, Shukla S, Gedanken A, Sarid R. Inhibition of HSV-1 attachment, entry, and cell-to-cell spread by functionalized multivalent gold nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:1044-50. [PMID: 20394070 DOI: 10.1002/smll.200902384] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The use of modified nanoparticles in interactions with biological targets is attracting rapidly increasing attention. In this Full Paper, the application of gold nanoparticles capped with mercaptoethanesulfonate (Au-MES NPs) as effective inhibitors of Herpes simplex virus type 1 infection based on their ability to mimic cell-surface-receptor heparan sulfate is described. Mechanistic studies reveal that Au-MES NPs interfere with viral attachment, entry, and cell-to-cell spread, thereby preventing subsequent viral infection in a multimodal manner. The ligand multiplicity achieved with carrier nanoparticles is crucial in generating polyvalent interactions with the virus at high specificity, strength, and efficiency. Such multivalent-nanoparticle-mediated inhibition is a promising approach for alternative antiviral therapy.
Collapse
Affiliation(s)
- Dana Baram-Pinto
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
25
|
Human antibodies to herpes simplex virus type 1 glycoprotein C are neutralizing and target the heparan sulfate-binding domain. Virology 2010; 400:197-206. [PMID: 20176392 DOI: 10.1016/j.virol.2010.01.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/24/2009] [Accepted: 01/27/2010] [Indexed: 11/22/2022]
Abstract
Human antibodies specific for glycoprotein C (gC1) of herpes simplex virus type 1 (HSV-1) neutralized the virus infectivity and efficiently inhibited attachment of HSV-1 to human HaCaT keratinocytes and to murine mutant L cells expressing either heparan sulfate or chondroitin sulfate at the cell surface. Similar activities were observed with anti-gC1 monoclonal antibody B1C1. In addition to HaCaT and L cells, B1C1 antibody neutralized HSV-1 infectivity in simian GMK AH1 cells mildly pre-treated with heparinase III. Human anti-gC1 antibodies efficiently competed with the binding of gC1 to B1C1 antibody whose epitope overlaps a part of the attachment domain of gC1. Human anti-gC1 and B1C1 antibodies extended survival time of mice experimentally infected with HSV-1. We conclude that in HaCaT cells and in cell systems showing restricted expression of glycosaminoglycans, human and some monoclonal anti-gC1 antibodies can target the cell-binding domain of this protein and neutralize viral infectivity.
Collapse
|
26
|
Sinha S, Astani A, Ghosh T, Schnitzler P, Ray B. Polysaccharides from Sargassum tenerrimum: structural features, chemical modification and anti-viral activity. PHYTOCHEMISTRY 2010; 71:235-42. [PMID: 19931103 DOI: 10.1016/j.phytochem.2009.10.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/16/2009] [Accepted: 10/16/2009] [Indexed: 05/24/2023]
Abstract
Herpes simplex viruses (HSVs) display affinity for cell-surface heparan sulfate proteoglycans with biological relevance in virus entry. Here, we exploit an approach to inhibiting HSV infection by using a sulfated fucoidan, and a guluronic acid-rich alginate derived from Sargassum tenerrimum, mimicking the active domain of the entry receptor. These macromolecules have apparent molecular masses of 30+/-5 and 26+/-5 kDa, respectively. They and their chemically sulfated derivatives showed activity against herpes simplex virus type 1 (HSV-1). Their inhibitory concentration 50% (IC(50)) values were in the range 0.5-15 microg/ml and they lacked cytotoxicity at concentrations up to 1000 microg/ml. The anti-HSV activity increased with increasing sulfate ester content. Our results suggest the feasibility of inhibiting HSV infection by blocking viral entry with polysaccharide having specific structure.
Collapse
Affiliation(s)
- Sharmistha Sinha
- Natural Products Laboratory, Department of Chemistry, The University of Burdwan, West Bengal 713104, India
| | | | | | | | | |
Collapse
|
27
|
Sulfated K5 Escherichia coli polysaccharide derivatives: A novel class of candidate antiviral microbicides. Pharmacol Ther 2009; 123:310-22. [DOI: 10.1016/j.pharmthera.2009.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 05/06/2009] [Indexed: 10/20/2022]
|
28
|
Baram-Pinto D, Shukla S, Perkas N, Gedanken A, Sarid R. Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate. Bioconjug Chem 2009; 20:1497-502. [PMID: 21141805 DOI: 10.1021/bc900215b] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interactions between biomolecules and nanoparticles suggest the use of nanoparticles for various medical interventions. The attachment and entry of herpes simplex virus type 1 (HSV-1) into cells involve interaction between viral envelope glycoproteins and cell surface heparan sulfate (HS). Based on this mechanism, we designed silver nanoparticles that are capped with mercaptoethane sulfonate (Ag-MES). These nanoparticles are predicted to target the virus and to compete for its binding to cellular HS through their sulfonate end groups, leading to the blockage of viral entry into the cell and to the prevention of subsequent infection. Structurally defined Ag-MES nanoparticles that are readily redispersible in water were sonochemically synthesized. No toxic effects of these nanoparticles on host cells were observed. Effective inhibition of HSV-1 infection in cell culture by the capped nanoparticles was demonstrated. However, application of the soluble surfactant MES failed to inhibit viral infection, implying that the antiviral effect of Ag-MES nanoparticles is imparted by their multivalent nature and spatially directed MES on the surface. Our results suggest that capped nanoparticles may serve as useful topical agents for the prevention of infections with pathogens dependent on HS for entry.
Collapse
|
29
|
Abstract
Herpes simplex virus type-1 (HSV-1) is one of many pathogens that use the cell surface glycosaminoglycan heparan sulfate as a receptor. Heparan sulfate is highly expressed on the surface and extracellular matrix of virtually all cell types making it an ideal receptor. Heparan sulfate interacts with HSV-1 envelope glycoproteins gB and gC during the initial attachment step during HSV-1 entry. In addition, a modified form of heparan sulfate, known as 3-O-sulfated heparan sulfate, interacts with HSV-1 gD to induce fusion between the viral envelope and host cell membrane. The 3-O-sulfation of heparan sulfate is a rare modification which occurs during the biosynthesis of heparan sulfate that is carried out by a family of enzymes known as 3-O-sulfotransferases. Due to its involvement in multiple steps of the infection process, heparan sulfate has been a prime target for the development of agents to inhibit HSV entry. Understanding how heparan sulfate functions during HSV-1 infection may not only be critical for inhibiting infection by this virus, but it may also be crucial in the fight against many other pathogens as well.
Collapse
Affiliation(s)
- Christopher D O'Donnell
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
30
|
Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B. Focus on antivirally active sulfated polysaccharides: from structure-activity analysis to clinical evaluation. Glycobiology 2008; 19:2-15. [PMID: 18815291 DOI: 10.1093/glycob/cwn092] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In recent years, many compounds having potent antiviral activity in cell culture have been detected and some of these compounds are currently undergoing either preclinical or clinical evaluation. Among these antiviral substances, naturally occurring sulfated polysaccharides and those from synthetic origin are noteworthy. Recently, several controversies over the molecular structures of sulfated polysaccharides, viral glycoproteins, and cell-surface receptors have been resolved, and many aspects of their antiviral activity have been elucidated. It has become clear that the antiviral properties of sulfated polysaccharides are not only a simple function of their charge density and chain length but also their detailed structural features. The in vivo efficacy of these compounds mostly corresponds to their ability to inhibit the attachment of the virion to the host cell surface although in some cases virucidal activity plays an additional role. This review summarizes experimental evidence indicating that sulfated polysaccharides might become increasingly important in drug development for the prevention of sexually transmitted diseases in the near future.
Collapse
Affiliation(s)
- Tuhin Ghosh
- Department of Chemistry, Natural Products Laboratory, University of Burdwan, WB 713 104, India
| | | | | | | | | | | |
Collapse
|
31
|
Pseudorabies virus glycoprotein C attachment-proficient revertants isolated through a simple, targeted mutagenesis scheme. J Virol Methods 2008; 151:101-6. [DOI: 10.1016/j.jviromet.2008.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 03/09/2008] [Accepted: 03/13/2008] [Indexed: 11/18/2022]
|
32
|
Cao H, Zhang GR, Wang X, Kong L, Geller AI. Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles. BMC Neurosci 2008; 9:37. [PMID: 18402684 PMCID: PMC2330056 DOI: 10.1186/1471-2202-9-37] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 04/10/2008] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Direct gene transfer into neurons has potential for developing gene therapy treatments for specific neurological conditions, and for elucidating neuronal physiology. Due to the complex cellular composition of specific brain areas, neuronal type-specific recombinant gene expression is required for many potential applications of neuronal gene transfer. One approach is to target gene transfer to a specific type of neuron. We developed modified Herpes Simplex Virus (HSV-1) particles that contain chimeric glycoprotein C (gC) - glial cell line-derived neurotrophic factor (GDNF) or brain-derived neurotrophic factor (BDNF) proteins. HSV-1 vector particles containing either gC - GDNF or gC - BDNF target gene transfer to nigrostriatal neurons, which contain specific receptors for GDNF or BDNF. A second approach to achieve neuronal type-specific expression is to use a cell type-specific promoter, and we have used the tyrosine hydroxylase (TH) promoter to restrict expression to catecholaminergic neurons or a modified neurofilament heavy gene promoter to restrict expression to neurons, and both of these promoters support long-term expression from HSV-1 vectors. To both improve nigrostriatal-neuron specific expression, and to establish that targeted gene transfer can be followed by long-term expression, we performed targeted gene transfer with vectors that support long-term, neuronal-specific expression. RESULTS Helper virus-free HSV-1 vector packaging was performed using either gC - GDNF or gC - BDNF and vectors that contain either the TH promoter or the modified neurofilament heavy gene promoter. Vector stocks were injected into the midbrain proximal to the substantia nigra, and the rats were sacrificed at either 4 days or 1 month after gene transfer. Immunofluorescent costaining was performed to detect both recombinant gene products and nigrostriatal neurons. The combination of targeted gene transfer with neuronal-specific promoters improved nigrostriatal neuron-specific expression (83 to 93%) compared to either approach alone, and supported long-term (1 month) expression at levels similar to those observed using untargeted gene transfer. CONCLUSION Targeted gene transfer can be used in combination with neuronal-specific promoters to achieve a high level of nigrostriatal neuron-specific expression. Targeted gene transfer can be followed by long-term expression. Nigrostriatal neuron-specific expression may be useful for specific gene therapy approaches to Parkinson's disease or for genetic analyses of nigrostriatal neuron physiology.
Collapse
Affiliation(s)
- Haiyan Cao
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | - Guo-rong Zhang
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | - Xiaodan Wang
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | - Lingxin Kong
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | - Alfred I Geller
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| |
Collapse
|
33
|
Tarp MA, Clausen H. Mucin-type O-glycosylation and its potential use in drug and vaccine development. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1780:546-63. [PMID: 17988798 DOI: 10.1016/j.bbagen.2007.09.010] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 09/14/2007] [Indexed: 01/03/2023]
Abstract
Mucin-type O-glycans are found on mucins as well as many other glycoproteins. The initiation step in synthesis is catalyzed by a large family of polypeptide GalNAc-transferases attaching the first carbohydrate residue, GalNAc, to selected serine and threonine residues in proteins. During the last decade an increasing number of GalNAc-transferase isoforms have been cloned and their substrate-specificities partly characterized. These differences in substrate specificities have been exploited for in vitro site-directed O-glycosylation. In GlycoPEGylation, polyehylene glycol (PEG) is transferred to recombinant therapeutics to specific acceptor sites directed by GalNAc-transferases. GalNAc-transferases have also been used to control density of glycosylation in the development of glycopeptide-based cancer vaccines. The membrane-associated mucin-1 (MUC1) has long been considered a target for immunotherapeutic and immunodiagnostic measures, since it is highly overexpressed and aberrantly O-glycosylated in most adenocarcinomas, including breast, ovarian, and pancreatic cancers. By using vaccines mimicking the glycosylation pattern of cancer-cells, it is possible to overcome tolerance in transgenic animals expressing the human MUC1 protein as a self-antigen providing important clues for an improved MUC1 vaccine design. The present review will highlight some of the potential applications of site-directed O-glycosylation.
Collapse
Affiliation(s)
- Mads Agervig Tarp
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, The Panum Institute, 6.4, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
34
|
Herpes simplex virus type 2 glycoprotein G is targeted by the sulfated oligo- and polysaccharide inhibitors of virus attachment to cells. J Virol 2007; 81:13424-34. [PMID: 17928351 DOI: 10.1128/jvi.01528-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Variants of herpes simplex virus type 2 (HSV-2) generated by virus passage in GMK-AH1 cells in the presence of the sulfated oligosaccharide PI-88 were analyzed. Many of these variants were substantially resistant to PI-88 in their initial infection of cells and/or their cell-to-cell spread. The major alteration detected in all variants resistant to PI-88 in the initial infection of cells was a frameshift mutation(s) in the glycoprotein G (gG) gene that resulted in the lack of protein expression. Molecular transfer of the altered gG gene into the wild-type background confirmed that the gG-deficient recombinants were resistant to PI-88. In addition to PI-88, all gG-deficient variants of HSV-2 were resistant to the sulfated polysaccharide heparin. The gG-deficient virions were capable of attaching to cells, and this activity was relatively resistant to PI-88. In addition to having a drug-resistant phenotype, the gG-deficient variants were inefficiently released from infected cells. Purified gG bound to heparin and showed the cell-binding activity which was inhibited by PI-88. Many PI-88 variants produced syncytia in cultured cells and contained alterations in gB, including the syncytium-inducing L792P amino acid substitution. Although this phenotype can enhance the lateral spread of HSV in cells, it conferred no virus resistance to PI-88. Some PI-88 variants also contained occasional alterations in gC, gD, gE, gK, and UL24. In conclusion, we found that glycoprotein gG, a mucin-like component of the HSV-2 envelope, was targeted by sulfated oligo- and polysaccharides. This is a novel finding that suggests the involvement of HSV-2 gG in interactions with sulfated polysaccharides, including cell surface glycosaminoglycans.
Collapse
|
35
|
Blom AM, Mark L, Spiller OB. Viral Heparin-Binding Complement Inhibitors – A Recurring Theme. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 598:105-25. [PMID: 17892208 DOI: 10.1007/978-0-387-71767-8_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Anna M Blom
- Lund University, Department of Laboratory Medicine, The Wallenberg Laboratory, 4th floor, Malmö University Hospital, entrance 46, S-205 02 Malmö, Sweden
| | | | | |
Collapse
|
36
|
Ekblad M, Adamiak B, Bergefall K, Nenonen H, Roth A, Bergstrom T, Ferro V, Trybala E. Molecular basis for resistance of herpes simplex virus type 1 mutants to the sulfated oligosaccharide inhibitor PI-88. Virology 2007; 367:244-52. [PMID: 17604805 DOI: 10.1016/j.virol.2007.05.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 05/02/2007] [Accepted: 05/31/2007] [Indexed: 11/30/2022]
Abstract
Herpes simplex virus type 1 variants selected by virus propagation in cultured cells in the presence of the sulfated oligosaccharide PI-88 were analyzed. Many of these variants were substantially resistant to the presence of PI-88 during their initial infection of cells and/or their cell-to-cell spread. Nucleotide sequence analysis revealed that the deletion of amino acids 33-116 of gC but not lack of gC expression provided the virus with selective advantage to infect cells in the presence of PI-88. Purified gC (Delta33-116) was more resistant to PI-88 than unaltered protein in its binding to cells. Alterations that partly contributed to the virus resistance to PI-88 in its cell-to-cell spread activity were amino acid substitutions Q27R in gD and R770W in gB. These results suggest that PI-88 targets several distinct viral glycoproteins during the course of initial virus infection and cell-to-cell spread.
Collapse
Affiliation(s)
- Maria Ekblad
- Department of Clinical Virology, Göteborg University, Guldhedsgatan 10B, S-413 46, Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Storlie J, Jackson W, Hutchinson J, Grose C. Delayed biosynthesis of varicella-zoster virus glycoprotein C: upregulation by hexamethylene bisacetamide and retinoic acid treatment of infected cells. J Virol 2006; 80:9544-56. [PMID: 16973558 PMCID: PMC1617256 DOI: 10.1128/jvi.00668-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the course of examining the trafficking pathways of varicella-zoster virus (VZV) glycoproteins gE, gI, gH, and gB, we discovered that all four are synthesized within 4 to 6 h postinfection (hpi) in cultured cells. Thereafter, they travel via the trans-Golgi network to the outer cell membrane. When we carried out a similar analysis on VZV gC, we observed little gC biosynthesis in the first 72 hpi. Further examination disclosed that gC was present in the inocula of infected cells, but no new gC biosynthesis occurred during the first 24 to 48 h thereafter, during which time new synthesis of gE, gH, and major capsid protein was easily detectable. Similarly, delayed gC biosynthesis was confirmed with three different VZV strains and two different cell lines. Bioinformatics analyses disclosed the presence of PBX/HOX consensus binding domains in the promoter/enhancer regions of the genes for VZV gC and ORF4 protein (whose orthologs transactivate gC in other herpesviruses). Bioinformatics analysis also identified two HOXA9 activation regions on ORF4 protein. Treatment of infected cultures with chemicals known to induce the production of PBX/HOX transcription proteins, namely, hexamethylene bisacetamide (HMBA) and retinoic acid, led to more rapid gC biosynthesis. Immunoblotting demonstrated a fivefold increase in the HOXA9 protein after HMBA treatment. In summary, these results documented that gC was not produced during early VZV replication cycles, presumably related to a deficiency in the PBX/HOX transcription factors. Furthermore, these results explain the apparent spontaneous loss of VZV gC in some passaged viruses, as well as other anomalous gC results.
Collapse
Affiliation(s)
- Johnathan Storlie
- University Hospital/2501 JCP, 200 Hawkins Dr., Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
38
|
Kouvatsis V, Argnani R, Tsitoura E, Arsenakis M, Georgopoulou U, Mavromara P, Manservigi R. Characterization of herpes simplex virus type 1 recombinants that express and incorporate high levels of HCV E2-gC chimeric proteins. Virus Res 2006; 123:40-9. [PMID: 16989918 DOI: 10.1016/j.virusres.2006.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 07/21/2006] [Accepted: 07/27/2006] [Indexed: 12/18/2022]
Abstract
We report the construction of two HSV-1 recombinants encoding chimeric forms of the E2 glycoprotein of HCV-1a composed of the ectodomain of E2 (aa384-611 or 384-711) fused to different parts of the transmembrane and cytoplasmic domain of the HSV-1 gC glycoprotein (gC). The parental HSV-1, known as KgBpK(-)gC(-), is deleted for gC and the main heparan sulphate (HS) binding domain of gB, and it exhibits impaired binding (ca. 80%) to HS compared to the wild type virus KOS [Laquerre, S., Argnani, R., Anderson, D.B., Zucchini, S., Manservigi, R., Glorioso, J.C., 1998. Heparan sulphate proteoglycan binding by herpes simplex virus type 1 glycoproteins B and C, which differ in their contributions to virus attachment, penetration, and cell-to-cell spread. J. Virol. 72, 6119-6130]. We show that gC:E2 proteins are efficiently expressed and transported to the cell surface. We also demonstrate that HSV-1 can incorporate both gC:E2 chimeric proteins into particles and show that incorporation of both chimeric molecules in the viral envelope partially restored binding (ca. 20%) of the HSV-1 recombinants to heparan sulphate. Finally, we showed that the gC:E2ScaI chimeric glycoprotein was able to bind a recombinant form of hCD81 and virion-expressed gC:E2ScaI permitted the binding of the HSV-1 recombinant virus to the hCD81 molecule.
Collapse
Affiliation(s)
- V Kouvatsis
- Molecular Virology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
As obligate intracellular parasites, viruses must bind to, and enter, permissive host cells in order to gain access to the cellular machinery that is required for their replication. The very large number of mammalian viruses identified to date is reflected in the fact that almost every human and animal cell type is a target for infection by one, or commonly more than one, species of virus. As viruses have adapted to target certain cell types for their propagation, there is exquisite specificity in cellular tropism. This specificity is frequently, but not always, mediated by the first step in the viral replication cycle: attachment of viral surface proteins to receptors expressed on susceptible cells. Viral receptors may be protein, carbohydrate, and/or lipid. Many viruses can use more than one attachment receptor, and indeed may sequentially engage multiple receptors to infect a cell. Thus, it is useful to differentiate between attachment receptors, that simply allow viruses a foothold at the limiting membrane of a cell, and entry receptors that mediate delivery the viral genome into the cytoplasm. For some viruses the attachment factors that promote binding to permissive cells are very well defined, but the sequence of events that triggers viral entry is only now beginning to be understood. For other viruses, despite many efforts, the receptors remain elusive. In this chapter we will confine our review to viruses that infect mammals, with particular focus on human pathogens. We do not intend that this will be an exhaustive overview of viral attachment receptors; instead we will take a number of examples of well-characterized virus-receptor interactions, discuss supporting evidence, and highlight any controversies and uncertainties in the field. We will then conclude with a reflection on general principles of viral attachment, consider some exceptions to these principles, and make some suggestion for future research.
Collapse
|
40
|
Wang X, Kong L, Zhang GR, Sun M, Geller AI. Targeted gene transfer to nigrostriatal neurons in the rat brain by helper virus-free HSV-1 vector particles that contain either a chimeric HSV-1 glycoprotein C-GDNF or a gC-BDNF protein. ACTA ACUST UNITED AC 2005; 139:88-102. [PMID: 15993510 PMCID: PMC2581866 DOI: 10.1016/j.molbrainres.2005.05.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 05/10/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
Direct gene transfer into neurons has potential for both studying neuronal physiology and for developing gene therapy treatments for specific neurological conditions. Due to the heterogeneous cellular composition of the brain, cell-type-specific recombinant gene expression is required for many potential applications of neuronal gene transfer. The two prevalent approaches for achieving cell-type-specific expression are to use a cell-type-specific promoter to control recombinant gene expression or to modify a virus vector particle to target gene transfer to a specific cell type. Targeted gene transfer to multiple peripheral cell types has been described, but targeted gene transfer to a specific type of neuron in the brain has yet to be reported. Targeted gene transfer approaches with Herpes Simplex Virus (HSV-1) vectors have focused on modifying glycoprotein C (gC) to remove the heparin binding domain and add a binding activity for a specific protein on the cell surface. This study was designed to develop HSV-1 vectors that target gene transfer to cells that contain receptors for either glial-cell-line-derived neurotrophic factor (GDNF) or brain-derived neurotrophic factor (BDNF), such as nigrostriatal neurons. We isolated chimeric gC-GDNF or chimeric gC-BDNF constructs, and the resulting proteins were incorporated into HSV-1 virus particles. We performed helper virus-free HSV-1 vector packaging in the presence of each chimeric protein. The resulting vector stocks supported 2.2- to 5.0-fold targeted gene transfer to nigrostriatal neurons in the rat brain, compared to vector particles that contained wild-type (wt) gC. Gene transfer to nigrostriatal neurons by vector particles that contained chimeric gC-BDNF was reduced by preincubation with an anti-BDNF antibody. Targeted gene transfer to neurons that contain specific neurotrophic factor receptors may benefit specific physiological and gene therapy studies.
Collapse
Affiliation(s)
| | | | | | | | - Alfred I. Geller
- * Corresponding author. Fax: +1 617 363 5563. E-mail address: alfred (A.I. Geller)
| |
Collapse
|
41
|
Tischer BK, Schumacher D, Chabanne-Vautherot D, Zelnik V, Vautherot JF, Osterrieder N. High-level expression of Marek's disease virus glycoprotein C is detrimental to virus growth in vitro. J Virol 2005; 79:5889-99. [PMID: 15857974 PMCID: PMC1091721 DOI: 10.1128/jvi.79.10.5889-5899.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression levels of Marek's disease virus (MDV) glycoprotein C (gC) are significantly reduced after serial virus passage in cell culture. Reduced gC expression coincides with enhanced MDV growth in vitro and attenuation. To analyze this phenomenon in detail, a full-length infectious MDV clone was modified by Red-based and shuttle mutagenesis in Escherichia coli. Besides a gC-negative deletion mutant harboring a kanamycin resistance gene, a markerless mutant with the U(L)44 gene deleted was constructed. On the basis of this deletion mutant, the original or a modified U(L)44 gene with a mutated start codon (AUG-->ACG) was reinserted into the authentic locus. Similarly, mutants expressing authentic gC or the start codon mutation under the control of a strong constitutive promoter were generated. In vitro studies demonstrated that gC deletion mutants induced twofold-larger plaques than the parental virus did, whereas constitutive overexpression of the glycoprotein resulted in a more than twofold reduction in plaque size. In addition, plaque sizes of the gC deletion mutant were reduced when virus was grown using supernatants from cells infected with parental virus, but supernatants obtained from cells infected with the gC deletion mutant had no measurable effect on plaque size. The results indicated that (i) expression of MDV gC, albeit at low levels in a highly passaged virus, had a significant negative impact on the cell-to-cell spread capabilities of the virus, which was alleviated in its absence and exacerbated by its overexpression, and that (ii) this activity was mediated by the secreted form of MDV gC.
Collapse
Affiliation(s)
- B Karsten Tischer
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The carbohydrate parts of cell surface glycoproteins, glycolipids, and proteoglycans constitute receptors for many enveloped as well as non-enveloped human viruses. The majority of viral receptors of carbohydrate nature are negatively charged, including sulfated glycosaminoglycans (GAGs) or glycans containing sialic acid. Not uncommonly, virus-carbohydrate interactions are responsible for specific tissue tropism, where the affinity of influenza virus for glycans in the respiratory tract containing (a2-6)-linked sialic acid is an important example. Similarly, the number and spacing of sulfates may guide viruses to optimal GAG molecules, although this remains unproven on tissue level. A further understanding of structure and tissue distribution of carbohydrate virus receptors and their viral ligands is essential for elucidating the pathogenesis of such viruses. Also neutral glycans such as histo-blood group substances may function as virus receptors. Here, natural resistance to a given viral disease may occur in a human subpopulation due to lack of such receptors caused by deletion-mutants in critical human genes. As regards antiviral applications, the receptor-destroying enzymes, in contrast to receptor binding proteins, at the surface of, for example, influenza virus have proven to be an excellent target for intervention, which is why sialic acid analogues are now in clinical use both for prophylaxis and treatment.
Collapse
Affiliation(s)
- Sigvard Olofsson
- Department of Clinical Virology, University of Göteborg, Sweden.
| | | |
Collapse
|
43
|
Argnani R, Boccafogli L, Marconi PC, Manservigi R. Specific targeted binding of herpes simplex virus type 1 to hepatocytes via the human hepatitis B virus preS1 peptide. Gene Ther 2004; 11:1087-98. [PMID: 15057264 DOI: 10.1038/sj.gt.3302266] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To improve the utility of herpes simplex virus type 1 (HSV-1) vectors for gene therapy, the viral envelope needs to be manipulated to achieve cell-specific gene delivery. In this report, we have engineered an HSV-1 mutant virus, KgBpK(-) gC(-), deleted for the glycoprotein C (gC) and the heparan sulfate-binding domain (pK) of gB, in order to express gC:preS1 and gC:preS1 active peptide (preS1ap) fusion molecules. PreS1, and a 27 amino acid active peptide inside preS1 (preS1ap), are supposed to be the molecules that the human hepatitis B virus (HBV) needs to bind specifically to hepatocytes. Biochemical analysis demonstrated that the gC:preS1ap fusion molecule was expressed and incorporated into the envelope of the recombinant HSV-1 virus KgBpK(-)gC:preS1ap. Moreover, KgBpK(-)gC:preS1ap recombinant virus gained a specific binding activity to an hepatoblastoma cell line (HepG2) with a consequent productive infection. In addition, anti-preS1-specific antibodies were shown to neutralize recombinant virus infectivity, and a synthetic preS1ap peptide was able to elute KgBpK(-)gC:preS1ap virus bound on HpeG2 cells. These data provide further evidence that HSV-1 can productively infect cells through a specific binding to a non-HSV-1 receptor. Furthermore, these data strongly support the hypothesis that the HBV preS1ap molecule is an HBV ligand to hepatocytes.
Collapse
Affiliation(s)
- Rafaela Argnani
- Department of Experimental and Diagnostic Medicine, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | | | | | | |
Collapse
|
44
|
Abstract
Entry of herpes simplex virus (HSV) into cells depends upon multiple cell surface receptors and multiple proteins on the surface of the virion. The cell surface receptors include heparan sulphate chains on cell surface proteoglycans, a member of the tumor necrosis factor (TNF) receptor family and two members of the immunoglobulin superfamily related to the poliovirus receptor. The HSV ligands for these receptors are the envelope glycoproteins gB and gC for heparan sulphate and gD for the protein receptors and specific sites in heparan sulphate generated by certain 3-O-sulfotransferases. HSV gC also binds to the C3b component of complement and can block complement-mediated neutralization of virus. The purposes of this review are to summarize available information about these cell surface receptors and the viral ligands, gC and gD, and to discuss roles of these viral glycoproteins in immune evasion and cellular responses as well as in viral entry.
Collapse
Affiliation(s)
- Patricia G Spear
- Feinberg School of Medicine of Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
45
|
Duarte MER, Cauduro JP, Noseda DG, Noseda MD, Gonçalves AG, Pujol CA, Damonte EB, Cerezo AS. The structure of the agaran sulfate from Acanthophora spicifera (Rhodomelaceae, Ceramiales) and its antiviral activity. Relation between structure and antiviral activity in agarans. Carbohydr Res 2004; 339:335-47. [PMID: 14698892 DOI: 10.1016/j.carres.2003.09.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The sulfated agaran isolated by water extraction from the red seaweed, Acanthophora spicifera (Rhodomelaceae, Ceramiales), is made up of A-units highly substituted with sulfate groups on C-2 (28-30%), sulfates on C-2 and 4,6-O-(1'-carboxyethylidene) groups (9-15%), and only the C-2 sulfate groups (5-8%) with small amounts of C-6 sulfate, 6-O-methyl, and nonsubstituted residues. B-units are formed mainly by 3,6-anhydro-alpha-L-galactose (15-16%) and its precursor, alpha-L-galactose 6-sulfate (10-17%), together with lesser amounts of 3,6-anhydro-alpha-L-galactose 2-sulfate, alpha-L-galactose 2,6-disulfate, alpha-L-galactose 2,3,6-tri-sulfate, alpha-L-galactose 2,6-disulfate 3-xylose, 2-O-methyl-alpha-L-galactose, and unsubstituted alpha-L-galactose. Small, but significant quantities of beta-D-xylose were found in all the fractions, together with small amounts to traces of D-glucose. Some of the fractions have high antiviral activity. Attempts to correlate structure and antiviral activity in agarans are presented.
Collapse
Affiliation(s)
- Maria E R Duarte
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, P.O. Box 19046, CEP 81531-990, Curitiba, Paraná, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Trybala E, Roth A, Johansson M, Liljeqvist JA, Rekabdar E, Larm O, Bergström T. Glycosaminoglycan-binding ability is a feature of wild-type strains of herpes simplex virus type 1. Virology 2002; 302:413-9. [PMID: 12441085 DOI: 10.1006/viro.2002.1639] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adaptation of some viruses to replication in cultured cells selects variants that due to alterations in the viral attachment proteins convert to using heparan sulfate (HS) as initial receptor. We report that the nucleotide sequence of herpes simplex virus type 1 (HSV-1) glycoprotein C (gC), a principal attachment component of the virus, remained unchanged during adaptation of wild-type strains to cultured cells. Likewise, amino acid residues critical for binding of gC to HS were conserved in viral strains that replicated in vivo in different human tissues. Moreover wild-type HSV-1 strains derived directly from clinical specimens were, similar to their cell culture propagated progeny viruses and common laboratory strains, sensitive to heparin and demonstrated impairment in their ability to infect HS/chondroitin sulfate deficient cells. These results demonstrate that the HS-binding ability is a feature of wild-type strains of HSV-1.
Collapse
Affiliation(s)
- Edward Trybala
- Department of Clinical Virology, Göteborg University, Guldhedsgatan 10B, S-413 46 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
47
|
Iqbal M, McCauley JW. Identification of the glycosaminoglycan-binding site on the glycoprotein E(rns) of bovine viral diarrhoea virus by site-directed mutagenesis. J Gen Virol 2002; 83:2153-2159. [PMID: 12185268 DOI: 10.1099/0022-1317-83-9-2153] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine viral diarrhoea virus (BVDV) envelope glycoprotein E(rns) interacts with highly sulphated heparin-like glycosaminoglycans (GAGs) located on the cell surface as an early step in virus infection of cells. Site-directed mutagenesis of recombinant E(rns) was undertaken and analysis of mutants by heparin-affinity chromatography and cell surface binding showed that a cluster of basic amino acids (480KKLENKSK487) near the C terminus of E(rns) was essential for binding. Mutants with amino acid substitutions of lysine residues 481 and 485 in E(rns) reduced the binding of E(rns) to immobilized heparin and cellular GAGs but retained ribonuclease activity. In contrast to normal E(rns), E(rns) that was unable to bind to cells also failed to inhibit BVDV infection of cells when the cells were pre-incubated with E(rns). It is proposed that the cluster of basic residues (480KKLENKSK487) localized at the C-terminal end of E(rns) constitutes a GAG-binding site.
Collapse
Affiliation(s)
- Munir Iqbal
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury RG20 7NN, UK1
| | - John W McCauley
- Division of Molecular Biology, Institute for Animal Health, Compton Laboratory, Compton, Newbury RG20 7NN, UK1
| |
Collapse
|
48
|
Lubinski JM, Jiang M, Hook L, Chang Y, Sarver C, Mastellos D, Lambris JD, Cohen GH, Eisenberg RJ, Friedman HM. Herpes simplex virus type 1 evades the effects of antibody and complement in vivo. J Virol 2002; 76:9232-41. [PMID: 12186907 PMCID: PMC136467 DOI: 10.1128/jvi.76.18.9232-9241.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) encodes a complement-interacting glycoprotein, gC, and an immunoglobulin G (IgG) Fc binding glycoprotein, gE, that mediate immune evasion by affecting multiple aspects of innate and acquired immunity, including interfering with complement components C1q, C3, C5, and properdin and blocking antibody-dependent cellular cytotoxicity. Previous studies evaluated the individual contributions of gC and gE to immune evasion. Experiments in a murine model that examines the combined effects of gC and gE immune evasion on pathogenesis are now reported. Virulence of wild-type HSV-1 is compared with mutant viruses defective in gC-mediated C3 binding, gE-mediated IgG Fc binding, or both immune evasion activities. Eliminating both activities greatly increased susceptibility of HSV-1 to antibody and complement neutralization in vitro and markedly reduced virulence in vivo as measured by disease scores, virus titers, and mortality. Studies with C3 knockout mice indicated that other activities attributed to these glycoproteins, such as gC-mediated virus attachment to heparan sulfate or gE-mediated cell-to-cell spread, do not account for the reduced virulence of mutant viruses. The results support the importance of gC and gE immune evasion in vivo and suggest potential new targets for prevention and treatment of HSV disease.
Collapse
Affiliation(s)
- John M Lubinski
- Department of Medicine, Division of Infectious Diseases, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mårdberg K, Trybala E, Tufaro F, Bergström T. Herpes simplex virus type 1 glycoprotein C is necessary for efficient infection of chondroitin sulfate-expressing gro2C cells. J Gen Virol 2002; 83:291-300. [PMID: 11807221 DOI: 10.1099/0022-1317-83-2-291] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of glycoprotein C (gC) for binding of herpes simplex virus type 1 (HSV-1) to cell surface chondroitin sulfate (CS) and the consequences of this interaction for virus attachment and infectivity were studied. To this end, a panel of HSV-1 gC mutants, including a gC-negative (gC(-)) variant, and mouse fibroblasts expressing either cell surface CS or heparan sulfate (HS) were used. Comparing gC-positive (gC(+)) and gC(-) viruses in terms of their attachment to and infection of CS-expressing cells indicated that gC was essential for both functions. Furthermore, purified gC bound efficiently to isolated CS chains. However, hypertonic NaCl disrupted this interaction more easily as compared to the binding of gC to HS. Also, native and selectively desulfated heparins were approximately 10 times more efficient at inhibiting gC binding to CS-expressing cells than binding to HS-expressing cells. Experiments with the HSV-1 gC mutants revealed that specific, positively charged and hydrophobic amino acids within the N-terminal part of the protein were responsible for efficient binding as well as infectivity in both CS- and HS-expressing cells. When the infectivity of the gC mutants in the two cell types was compared, it appeared that more residues contributed to the infection of CS-expressing cells than to infection of HS-expressing cells. Taken together, analysis of gC function in cell systems with limited expression of glycosaminoglycans revealed that gC could interact with either CS or HS and that these interactions exhibited subtle but definite differences as regards to the involved structural features of gC, ionic strength dependency as well as sensitivity to specifically desulfated heparin compounds.
Collapse
Affiliation(s)
- Kristina Mårdberg
- Department of Clinical Virology, Göteborg University, Guldhedsgatan 10B, S-413 46 Göteborg, Sweden1
| | - Edward Trybala
- Department of Clinical Virology, Göteborg University, Guldhedsgatan 10B, S-413 46 Göteborg, Sweden1
| | - Frank Tufaro
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Boulevard, Vancouver, BC, CanadaV6T 1Z32
| | - Tomas Bergström
- Department of Clinical Virology, Göteborg University, Guldhedsgatan 10B, S-413 46 Göteborg, Sweden1
| |
Collapse
|