1
|
Zhang H, Liu Z, Zheng C, Ma H, Zeng M, Yang X. Root system architecture plasticity with beneficial rhizosphere microbes: Current findings and future perspectives. Microbiol Res 2025; 292:128028. [PMID: 39740636 DOI: 10.1016/j.micres.2024.128028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
The rhizosphere microbiota, often referred to as the plant's "second genome" plays a critical role in modulating root system architecture (RSA). Despite this, existing methods to analyze root phenotypes in the context of root-microbe interactions remain limited, and the precise mechanisms affecting RSA by microbes are still not fully understood. This review comprehensively evaluates current root phenotyping techniques relevant to plant-microbe interactions, discusses their limitations, and explores future directions for integrating advanced technologies to elucidate microbial roles in altering RSA. Here, we summarized that microbial metabolite, primarily through auxin signaling pathways, drive root development changes. By harnessing advanced phenotyping tools, we aim to uncover more detailed mechanisms by which microbes modify RSA, providing valuable insights into strategies for optimizing nutrient uptake, bolstering food security, and enhancing resilience against climate-induced environmental stresses.
Collapse
Affiliation(s)
- Hualiang Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Zilin Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | | | - Huimin Ma
- Faculty of Agronomy, Jilin Agricultural University, Chang Chun 130118, China
| | - Ming Zeng
- Université de Bordeaux, INRAE, BFP, UMR 1332, Villenave d'Ornon 33140, France
| | - Xuechen Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China.
| |
Collapse
|
2
|
Castillo-Texta MG, Ramírez-Trujillo JA, Dantán-González E, Ramírez-Yáñez M, Suárez-Rodríguez R. Endophytic Bacteria from the Desiccation-Tolerant Plant Selaginella lepidophylla and Their Potential as Plant Growth-Promoting Microorganisms. Microorganisms 2024; 12:2654. [PMID: 39770856 PMCID: PMC11728030 DOI: 10.3390/microorganisms12122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Bacteria associated with plants, whether rhizospheric, epiphytic, or endophytic, play a crucial role in plant productivity and health by promoting growth through complex mechanisms known as plant growth promoters. This study aimed to isolate, characterize, identify, and evaluate the potential of endophytic bacteria from the resurrection plant Selaginella lepidophylla in enhancing plant growth, using Arabidopsis thaliana ecotype Col. 0 as a model system. Plant growth-promotion parameters were assessed on the bacterial isolates; this assessment included the quantification of indole-3-acetic acid, phosphate solubilization, and biological nitrogen fixation, a trehalose quantification, and the siderophore production from 163 endophytic bacteria isolated from S. lepidophylla. The bacterial genera identified included Agrobacterium, Burkholderia, Curtobacterium, Enterobacter, Erwinia, Pantoea, Pseudomonas, and Rhizobium. The plant growth promotion in A. thaliana was evaluated both in Murashige Skoog medium, agar-water, and direct seed inoculation. The results showed that the bacterial isolates enhanced primary root elongation and lateral root and root hair development, and increased the fresh and dry biomass. Notably, three isolates promoted early flowering in A. thaliana. Based on these findings, we propose the S. lepidophylla bacterial isolates as ideal candidates for promoting growth in other agriculturally important plants.
Collapse
Affiliation(s)
- Maria Guadalupe Castillo-Texta
- Laboratorio de Fisiología Molecular de Plantas, Centro de Investigación en Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca 62209, Mexico;
| | - José Augusto Ramírez-Trujillo
- Laboratorio de Fisiología Molecular de Plantas, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca 62209, Mexico;
| | - Edgar Dantán-González
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca 62209, Mexico;
| | - Mario Ramírez-Yáñez
- Programa de Genómica Funcional de Eucariontes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca 62210, Mexico;
| | - Ramón Suárez-Rodríguez
- Laboratorio de Fisiología Molecular de Plantas, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca 62209, Mexico;
| |
Collapse
|
3
|
Vega-Celedón P, Castillo-Novales D, Bravo G, Cárdenas F, Romero-Silva MJ, Seeger M. Synthesis and Degradation of the Phytohormone Indole-3-Acetic Acid by the Versatile Bacterium Paraburkholderia xenovorans LB400 and Its Growth Promotion of Nicotiana tabacum Plant. PLANTS (BASEL, SWITZERLAND) 2024; 13:3533. [PMID: 39771231 PMCID: PMC11676955 DOI: 10.3390/plants13243533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Plant growth-promoting bacteria (PGPB) play a role in stimulating plant growth through mechanisms such as the synthesis of the phytohormone indole-3-acetic acid (IAA). The aims of this study were the characterization of IAA synthesis and degradation by the model aromatic-degrading bacterium Paraburkholderia xenovorans LB400, and its growth promotion of the Nicotiana tabacum plant. Strain LB400 was able to synthesize IAA (measured by HPLC) during growth in the presence of tryptophan and at least one additional carbon source; synthesis of anthranilic acid was also observed. RT-PCR analysis indicates that under these conditions, strain LB400 expressed the ipdC gene, which encodes indole-3-pyruvate decarboxylase, suggesting that IAA biosynthesis proceeds through the indole-3-pyruvate pathway. In addition, strain LB400 degraded IAA and grew on IAA as a sole carbon and energy source. Strain LB400 expressed the iacC and catA genes, which encode the α subunit of the aromatic-ring-hydroxylating dioxygenase in the IAA catabolic pathway and the catechol 1,2-dioxygenase, respectively, which may suggest a peripheral IAA pathway leading to the central catechol pathway. Notably, P. xenovorans LB400 promoted the growth of tobacco seedlings, increasing the number and the length of the roots. In conclusion, this study indicates that the versatile bacterium P. xenovorans LB400 is a PGPB.
Collapse
Affiliation(s)
- Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
- Center of Biotechnology “Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Diyanira Castillo-Novales
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
- Center of Biotechnology “Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Guillermo Bravo
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
- Center of Biotechnology “Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, San Francisco s/n La Palma, Quillota 2260000, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| | - Franco Cárdenas
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
| | - María José Romero-Silva
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.C.-N.); (G.B.); (M.J.R.-S.)
- Center of Biotechnology “Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile
- Millennium Nucleus Bioproducts, Genomics and Environmental Microbiology (BioGEM), Avenida España 1680, Valparaíso 2390123, Chile
| |
Collapse
|
4
|
Marasco R, Mosqueira MJ, Seferji KA, Al Romaih SM, Michoud G, Xu J, Bez C, Castillo Hernandez T, Venturi V, Blilou I, Daffonchio D. Desert-adapted plant growth-promoting pseudomonads modulate plant auxin homeostasis and mitigate salinity stress. Microb Biotechnol 2024; 17:e70043. [PMID: 39692704 DOI: 10.1111/1751-7915.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/17/2024] [Indexed: 12/19/2024] Open
Abstract
By providing adaptive advantages to plants, desert microorganisms are emerging as promising solutions to mitigate the negative and abrupt effects of climate change in agriculture. Among these, pseudomonads, commonly found in soil and in association with plants' root system, have been shown to enhance plant tolerance to salinity and drought, primarily affecting root system architecture in various hosts. However, a comprehensive understanding of how these bacteria affect plant responses at the cellular, physiological and molecular levels is still lacking. In this study, we investigated the effects of two Pseudomonas spp. strains, E102 and E141, which were previously isolated from date palm roots and have demonstrated efficacy in promoting drought tolerance in their hosts. These strains colonize plant roots, influencing root architecture by inhibiting primary root growth while promoting root hair elongation and lateral root formation. Strains E102 and E141 increased auxin levels in Arabidopsis, whereas this effect was diminished in IAA-defective mutant strains, which exhibited reduced IAA production. In all cases, the effectiveness of the bacteria relies on the functioning of the plant auxin response and transport machinery. Notably, such physiological and morphological changes provide an adaptive advantage to the plant, specifically under stress conditions such as salinity. Collectively, this study demonstrates that by leveraging the host's auxin signalling machinery, strains E102 and E141 significantly improve plant resilience to abiotic stresses, positioning them as potential biopromoters/bioprotectors for crop production and ecosystem restoration in alignment with Nature-based Solution approaches.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maria J Mosqueira
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kholoud A Seferji
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sarah M Al Romaih
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jian Xu
- Plant Systems Physiology, Radboud University, Nijmegen, The Netherlands
| | - Cristina Bez
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Tatiana Castillo Hernandez
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- African Genome Center, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Xu X, Yu TF, Wei JT, Ma XF, Liu YW, Zhang JP, Zheng L, Hou ZH, Chen J, Zhou YB, Chen M, Ma J, Jiang YF, Ji HT, Li LH, Ma YZ, Zhang ZA, Xu ZS. TaWRKY24 integrates the tryptophan metabolism pathways to participate in defense against Fusarium crown rot in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1764-1785. [PMID: 39499237 DOI: 10.1111/tpj.17079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024]
Abstract
Wheat growth process has been experiencing severe challenges arising from the adverse environment. Notably, the incidence of Fusarium crown rot (FCR), a severe soil-borne disease caused by Fusarium pseudograminearum (Fp), has significantly intensified in various wheat-growing regions, resulting in a decline in grain yield. However, the identification of wheat varieties and the exploration of effective gene resources resistant to FCR have not yet been accomplished. Here, we screened and identified the tryptophan metabolism pathway to participate in wheat resistance to FCR by correlation analysis between transcriptome and metabolome, and found that indole-3-acetaldehyde (IAAld) and melatonin, two key metabolites in the tryptophan metabolic pathway, were significantly accumulated in Fp-induced wheat stem bases. Interestingly, exogenous application of these two metabolites could significantly enhance wheat resistance against Fp. Additionally, we observed that the activity of TaALDHase, a crucial enzyme responsible for catalyzing IAAld to produce indole-3-acetic acid (IAA), was inhibited. Conversely, the activity of TaMTase, a rate-limiting involved in melatonin biosynthesis, was enhanced in the Fp-induced wheat transcriptome. Further analysis showed that TaWRKY24 could regulate IAA and melatonin biosynthesis by inhibiting the expression of TaALDHase and enhancing the transcription of TaMTase, respectively. Silencing of TaALDHase could significantly increase wheat resistance to FCR. However, interference with TaWRKY24 or TaMTase could decrease wheat resistance to FCR. Collectively, our findings demonstrate the crucial role of the tryptophan metabolism pathway in conferring resistance against FCR in wheat, thereby expanding its repertoire of biological functions within the plant system.
Collapse
Affiliation(s)
- Xing Xu
- College of Agronomy, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tai-Fei Yu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ji-Tong Wei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiao-Fei Ma
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Yong-Wei Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Drought-Alkali Tolerance in Wheat, Cangzhou, Shijiazhuang, 050051, China
| | - Jin-Peng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lei Zheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ze-Hao Hou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jun Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yong-Bin Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ming Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jian Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yun-Feng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hu-Tai Ji
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, China
| | - Li-Hui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Seed Industry Laboratory, Sanya, China
| | - You-Zhi Ma
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Seed Industry Laboratory, Sanya, China
| | - Zhi-An Zhang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhao-Shi Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Seed Industry Laboratory, Sanya, China
| |
Collapse
|
6
|
Li W, Cheng W, Jiang H, Fang C, Peng L, Tao L, Zhan Y, Huang X, Ma B, Chen X, Wu Y, Liu B, Fu X, Wu K, Ye Y. Mutation of rice EARLY LEAF LESION AND SENESCENCE 1 (ELS1), which encodes an anthranilate synthase α-subunit, induces ROS accumulation and cell death through activating the tryptophan synthesis pathway in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2723-2737. [PMID: 39540877 DOI: 10.1111/tpj.17141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Lesion-mimic mutants (LMMs) serve as valuable resources for uncovering the molecular mechanisms that govern programmed cell death (PCD) in plants. Despite extensive research, the regulatory mechanisms of PCD and lesion formation in various LMMs remain to be fully elucidated. In this study, we identified a rice LMM named early leaf lesion and senescence 1 (els1), cloned the causal gene through map-based cloning, and confirmed its function through complementation. ELS1 encodes an anthranilate synthase α-subunit involved in anthranilate biosynthesis. It is predominantly localized in chloroplasts and is primarily expressed in light-exposed tissues. Mutation of ELS1 triggers upregulation of its homologous gene, ASA1, via a genetic compensation response, leading to the activation of the tryptophan (Trp) synthesis pathway and amino acid metabolism. The accumulation of abnormal Trp-derived intermediate metabolites results in reactive oxygen species (ROS) production and abnormal PCD in the els1 mutant, ultimately causing the leaf lesion phenotype. The els1 mutant also exhibits reduced chlorophyll content, upregulation of genes related to chloroplast degradation and leaf senescence, and decreased activity of photosynthetic proteins, indicating that ELS1 plays a role in chloroplast development. These factors collectively contribute to the premature leaf senescence observed in the els1 mutant. Our findings shed light on the role of ELS1 in regulating ROS accumulation and PCD in rice, providing further genetic insights into the molecular mechanisms governing leaf lesions and senescence.
Collapse
Affiliation(s)
- Wenhao Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Weimin Cheng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hongrui Jiang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Cheng Fang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Lingling Peng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liangzhi Tao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Yue Zhan
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, 239000, China
| | - Bojun Ma
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xifeng Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuejin Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Binmei Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafeng Ye
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
7
|
Garipova S, Matyunina V, Chistoedova A, Markova O, Lubyanova A, Lastochkina O, Pedash E, Avalbaev A, Pusenkova L. Antioxidant System Activity in Roots and Shoots of Bean Cultivars in Response to Seed Treatment with Auxin as a Potential Model of Interaction with Endophytic Bacteria. PLANTS (BASEL, SWITZERLAND) 2024; 13:3365. [PMID: 39683157 DOI: 10.3390/plants13233365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Plant growth-promoting endophytic bacteria (PGPEB), producing auxins, are offered for a promising eco-friendly crop production. Precise bacterial strain selection is essential to ensure consistent and effective plant growth and resilience. Creating a model for the optimal dose-dependent interactions between PGPEB and hosts is necessary for understanding the mechanisms of high-precision selection of the inoculant composition to enhance bacterial preparations' efficacy. This study investigated the impact of pre-sowing treatment with exogenous auxin indole-3-acetic acid (IAA) at various concentrations (0, 10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001 mg L-1) on the growth and antioxidant responses of three cultivars (cvs) of Phaseolus vulgaris L. (bean): Ufimskaya, Elsa, and Zolotistaya. The findings showed dose-dependent and cultivar-specific responses of 7-day-old bean seedlings to exogenous IAA. Ufimskaya cv exhibited significant increases in shoot, main root, and total root lengths at 0.001 mg L-1 IAA, while higher and lower concentrations inhibited growth. The reduced catalase (CAT) activity in roots and the elevated CAT activity in shoots correlated with shoot length and total root length of Ufimskaya cv. Importantly, the growth parameters exhibited weak or no correlations with malondialdehyde (MDA) and H2O2 content in roots and shoots, which is a peculiarity of the Ufimskaya cv response to exogenic IAA in contrast to the shown earlier response to inoculation with endophytes. The growth of only the main root of Elsa cv peaked at 0.1 mg L-1 IAA, and there were neutral or inhibitory effects with other concentrations. The positive correlation between CAT activity in shoots and the main root length and total root length as well as positive correlation between MDA content in roots and the total root length of Elsa cultivar were revealed. The shoot length and total root length of Zolotistaya cv were neutral or negatively responded to all concentration IAA, but the number of roots increased by 2-4 times. For Zolotistaya cv, positive correlations were observed between CAT activity in roots and the length of the main root and the total root length. Overall, these cultivar-specific antioxidant responses to exogenous IAA may help create models for optimal dose-dependent interactions between auxin-producing PGPEB and plants, enhancing the effectiveness of microbial preparations for consistent bean growth promotion.
Collapse
Affiliation(s)
- Svetlana Garipova
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Viktoriia Matyunina
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Aelita Chistoedova
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Oksana Markova
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Alsu Lubyanova
- Institute of Biochemistry and Genetics, Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya 71, 450054 Ufa, Russia
| | - Oksana Lastochkina
- Institute of Biochemistry and Genetics, Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya 71, 450054 Ufa, Russia
| | - Ekaterina Pedash
- Institute of Nature and Human, Ufa University of Science and Technology, Zaki Validy Str. 32, 450076 Ufa, Russia
| | - Azamat Avalbaev
- Institute of Biochemistry and Genetics, Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Pr. Oktyabrya 71, 450054 Ufa, Russia
| | - Lyudmila Pusenkova
- Bashkir Research Institute of Agriculture, Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, R. Zorge Str. 19, 450059 Ufa, Russia
| |
Collapse
|
8
|
Ercole TG, Kava VM, Petters-Vandresen DAL, Nassif Gomes ME, Aluizio R, Ribeiro RA, Hungria M, Galli LV. Unlocking the growth-promoting and antagonistic power: A comprehensive whole genome study on Bacillus velezensis strains. Gene 2024; 927:148669. [PMID: 38866259 DOI: 10.1016/j.gene.2024.148669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Bacillus species are extensively documented as plant growth-promoting rhizobacteria, contributing significantly to the enhancement of soil fertility, nutrient recycling, and the control of phytopathogens. Utilizing them as biocontrol agents represents an environmentally friendly strategy, particularly within the rhizospheric community. This study presents the comprehensive genome sequences of three B. velezensis strains (LGMB12, LGMB319, and LGMB426) which were previously isolated from root samples of maize (Zea mays L.), along with a type strain FZB42. The research assesses the capability of the three strains for antagonizing fungi, specifically Fusarium graminearum, Fusarium verticillioides, Colletotrichum graminicola, and Stenocarpella sp. In paired cultures involving maize fungi, treatments containing bacteria B. velezensis exhibited statistically significant differences compared to both negative and positive treatments in terms of antagonism. Furthermore, genome mining techniques were employed to explore their inherent antagonistic potential. The assembly revealed that strains LGMB12, LGMB319, LGMB426, and FZB42 exhibit genome sizes of 4,187,541 bp, 4,244,954 bp, 3,976,537 bp, and 3,990,518 respectively. Their respective G + C content stands at 46.42 %, 46.50 %, 46.51 %, and 46.38 %. Moreover, the genomes present multiple gene clusters responsible for the synthesis of secondary metabolites and carbohydrate-active enzymes (CAZymes). These clusters highlight a diverse array of antibacterial and antifungal properties, complemented by numerous plant growth-promoting genes. These results highlight the potential of B. velezensis LGMB12, LGMB319, and LGMB426 strains as biocontrol and plant growth promotion agents, being promising candidates for further studies in agricultural production, including field trials.
Collapse
Affiliation(s)
- Tairine Graziella Ercole
- Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, 81531-980 Curitiba, PR, Brazil.
| | - Vanessa Merlo Kava
- Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, 81531-980 Curitiba, PR, Brazil.
| | - Desirrê Alexia Lourenço Petters-Vandresen
- Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, 81531-980 Curitiba, PR, Brazil.
| | - Maria Eduarda Nassif Gomes
- Pontifical Catholic University of Paraná, Imaculada Conceição St., 1155, 80215-901 Curitiba, PR, Brazil.
| | - Rodrigo Aluizio
- Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, 81531-980 Curitiba, PR, Brazil.
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, Distrito Federal, Brazil.
| | | | - Lygia Vitoria Galli
- Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, 81531-980 Curitiba, PR, Brazil.
| |
Collapse
|
9
|
Lorenzi AS, Chia MA. Cyanobacteria's power trio: auxin, siderophores, and nitrogen fixation to foster thriving agriculture. World J Microbiol Biotechnol 2024; 40:381. [PMID: 39532755 DOI: 10.1007/s11274-024-04191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Cyanobacteria, often overlooked in traditional agriculture, are gaining recognition for their roles in enhancing plant growth and soil health through diverse mechanisms. This review examines their multifaceted contributions to agricultural systems, highlighting their proficiency in auxin production, which promotes plant growth and development. Additionally, we examined cyanobacteria's ability to produce siderophores that enhance iron absorption and address micronutrient deficiencies, as well as their capacity for nitrogen fixation, which converts atmospheric nitrogen into a form that plants can utilize, all with the goal of reducing reliance on synthetic fertilizers. A meta-analysis of existing studies indicates significant positive effects of cyanobacteria on crop yield, although variability exists. While some research shows considerable yield increases, other studies report non-significant changes, suggesting benefits may depend on specific conditions and crop types. The overall random-effects model estimate indicates a significant aggregate effect, with a few exceptions, emphasizing the need for further research to optimize the use of cyanobacteria as biofertilizers. Although cyanobacteria-based products are limited in comparison to seaweed-derived alternatives, for instance, ongoing challenges include regulatory issues and production costs. Integrating cultivation with wastewater treatment could enhance competitiveness and viability in the agricultural market.
Collapse
Affiliation(s)
- Adriana Sturion Lorenzi
- Graduate Program in Microbial Biology, Institute of Biological Sciences, University of Brasília, UnB, Brasília, DF, Brazil.
- GenomaA Biotech, Piracicaba, SP, Brazil.
| | - Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria, Nigeria.
- Department of Ecology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
10
|
Chang YC, Lee PH, Hsu CL, Wang WD, Chang YL, Chuang HW. Decoding the Impact of a Bacterial Strain of Micrococcus luteus on Arabidopsis Growth and Stress Tolerance. Microorganisms 2024; 12:2283. [PMID: 39597672 PMCID: PMC11596720 DOI: 10.3390/microorganisms12112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Microbes produce various bioactive metabolites that can influence plant growth and stress tolerance. In this study, a plant growth-promoting rhizobacterium (PGPR), strain S14, was identified as Micrococcus luteus (designated as MlS14) using de novo whole-genome assembly. The MlS14 genome revealed major gene clusters for the synthesis of indole-3-acetic acid (IAA), terpenoids, and carotenoids. MlS14 produced significant amounts of IAA, and its volatile organic compounds (VOCs), specifically terpenoids, exhibited antifungal activity, suppressing the growth of pathogenic fungi. The presence of yellow pigment in the bacterial colony indicated carotenoid production. Treatment with MlS14 activated the expression of β-glucuronidase (GUS) driven by a promoter containing auxin-responsive elements. The application of MlS14 reshaped the root architecture of Arabidopsis seedlings, causing shorter primary roots, increased lateral root growth, and longer, denser root hairs; these characteristics are typically controlled by elevated exogenous IAA levels. MlS14 positively regulated seedling growth by enhancing photosynthesis, activating antioxidant enzymes, and promoting the production of secondary metabolites with reactive oxygen species (ROS) scavenging activity. Pretreatment with MlS14 reduced H2O2 and malondialdehyde (MDA) levels in seedlings under drought and heat stress, resulting in greater fresh weight during the post-stress period. Additionally, exposure to MlS14 stabilized chlorophyll content and growth rate in seedlings under salt stress. MlS14 transcriptionally upregulated genes involved in antioxidant defense and photosynthesis. Furthermore, genes linked to various hormone signaling pathways, such as abscisic acid (ABA), auxin, jasmonic acid (JA), and salicylic acid (SA), displayed increased expression levels, with those involved in ABA synthesis, using carotenoids as precursors, being the most highly induced. Furthermore, MlS14 treatment increased the expression of several transcription factors associated with stress responses, with DREB2A showing the highest level of induction. In conclusion, MlS14 played significant roles in promoting plant growth and stress tolerance. Metabolites such as IAA and carotenoids may function as positive regulators of plant metabolism and hormone signaling pathways essential for growth and adaptation to abiotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Huey-wen Chuang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan; (Y.-C.C.); (P.-H.L.); (C.-L.H.); (W.-D.W.); (Y.-L.C.)
| |
Collapse
|
11
|
Behera PR, Behera KK, Sethi G, Prabina BJ, Bai AT, Sipra BS, Adarsh V, Das S, Behera KC, Singh L, Mishra MK, Behera M. Enhancing Agricultural Sustainability Through Rhizomicrobiome: A Review. J Basic Microbiol 2024; 64:e2400100. [PMID: 38899609 DOI: 10.1002/jobm.202400100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024]
Abstract
Sustainable agriculture represents the responsible utilization of natural resources while safeguarding the well-being of the natural environment. It encompasses the objectives of preserving the environment, fostering economic growth, and promoting socioeconomic equality. To achieve sustainable development for humanity, it is imperative to prioritize sustainable agriculture. One significant approach to achieving this transition is the extensive utilization of microbes, which play a crucial role due to the genetic reliance of plants on the beneficial functions provided by symbiotic microbes. This review focuses on the significance of rhizospheric microbial communities, also known as the rhizomicrobiome (RM). It is a complex community of microorganisms that live in the rhizosphere and influence the plant's growth and health. It provides its host plant with various benefits related to plant growth, including biocontrol, biofertilization, phytostimulation, rhizoremediation, stress resistance, and other advantageous properties. Yet, the mechanisms by which the RM contributes to sustainable agriculture remain largely unknown. Investigating this microbial population presents a significant opportunity to advance toward sustainable agriculture. Hence, this study aims to provide an overview of the diversity and applications of RM in sustainable agriculture practices. Lately, there has been growing momentum in various areas related to rhizobiome research and its application in agriculture. This includes rhizosphere engineering, synthetic microbiome application, agent-based modeling of the rhizobiome, and metagenomic studies. So, developing bioformulations of these beneficial microorganisms that support plant growth could serve as a promising solution for future strategies aimed at achieving a new green revolution.
Collapse
Affiliation(s)
| | | | - Gangadhar Sethi
- Department of Botany, Shailabala Women's Autonomous College, Cuttack, Odisha, India
| | - B Jeberlin Prabina
- Department of Soil Science and Agricultural Chemistry, VOC AGRL College and Research Institute, Killikulam, India
| | - A Thoyajakshi Bai
- Department of Plant Pathology, College of Agriculture, Jawarharlal Nehru Krishi Vishwavidyalaya, Jabalpur, Madhya Pradesh, India
| | - B S Sipra
- Department of Botany, Ravenshaw University, Cuttack, Odisha, India
| | - Varanasi Adarsh
- School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Sasmita Das
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | | | - Lakshmi Singh
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Mihir Kumar Mishra
- Department of Plant Pathology, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Maheswari Behera
- School of Agriculture, GIET University, Rayagada, Odisha, India
- Department of Botany, College of Basic Science and Humanities, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
- Department of Plant Pathology, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
12
|
Iriart V, Rarick EM, Ashman TL. Rhizobial variation, more than plant variation, mediates plant symbiotic and fitness responses to herbicide stress. Ecology 2024:e4426. [PMID: 39440990 DOI: 10.1002/ecy.4426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/25/2024] [Accepted: 07/18/2024] [Indexed: 10/25/2024]
Abstract
Symbiotic mutualisms provide critical ecosystem services throughout the world. Anthropogenic stressors, however, may disrupt mutualistic interactions and impact ecosystem health. The plant-rhizobia symbiosis promotes plant growth and contributes to the nitrogen (N) cycle. While off-target herbicide exposure is recognized as a significant stressor impacting wild plants, we lack knowledge about how it affects the symbiotic relationship between plants and rhizobia. Moreover, we do not know whether the impact of herbicide exposure on symbiotic traits or plant fitness might be ameliorated by plant or rhizobial genetic variation. To address these gaps, we conducted a greenhouse study where we grew 17 full-sibling genetic families of red clover (Trifolium pratense) either alone (uninoculated) or in symbiosis with one of two genetic strains of rhizobia (Rhizobium leguminosarum) and exposed them to a concentration of the herbicide dicamba that simulated "drift" (i.e., off-target atmospheric movement) or a control solution. We recorded responses in immediate vegetative injury, key features of the plant-rhizobia mutualism (nodule number, nodule size, and N fixation), mutualism outcomes, and plant fitness (biomass). In general, we found that rhizobial variation more than plant variation determined outcomes of mutualism and plant fitness in response to herbicide exposure. Herbicide damage response depended on plant family, but also whether plants were inoculated with rhizobia and if so, with which strain. Rhizobial strain variation determined nodule number and size, but this was herbicide treatment-dependent. In contrast, strain and herbicide treatment independently impacted symbiotic N fixation. And while herbicide exposure significantly reduced plant fitness, this effect depended on inoculation state. Furthermore, the differential fitness benefits that the two rhizobial strains provided plants seemed to diminish under herbicidal conditions. Altogether, these findings suggest that exposure to low levels of herbicide impact key components of the plant-rhizobia mutualism as well as plant fitness, but genetic variation in the partners determines the magnitude and/or direction of these effects. In particular, our results highlight a strong role of rhizobial strain identity in driving both symbiotic and plant growth responses to herbicide stress.
Collapse
Affiliation(s)
- Veronica Iriart
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elizabeth M Rarick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Cruz FVDS, Barbosa da Costa N, Juneau P. Non-pathogenic microbiome associated to aquatic plants and anthropogenic impacts on this interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174663. [PMID: 38992379 DOI: 10.1016/j.scitotenv.2024.174663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/22/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
The microbiota associated with aquatic plants plays a crucial role in promoting plant growth and development. The structure of the plant microbiome is shaped by intricate interactions among hosts, microbes, and environmental factors. Consequently, anthropogenic pressures that disrupt these interactions can indirectly impact the ecosystem services provided by aquatic plants, such as CO2 fixation, provision of food resources, shelter to animals, nutrient cycling, and water purification. Presently, studies on plant-microbiota interactions primarily focus on terrestrial hosts and overlook aquatic environments with their unique microbiomes. Therefore, there is a pressing need for a comprehensive understanding of plant microbiomes in aquatic ecosystems. This review delves into the overall composition of the microbiota associated with aquatic plant, with a particular emphasis on bacterial communities, which have been more extensively studied. Subsequently, the functions provided by the microbiota to their aquatic plants hosts are explored, including the acquisition and mobilization of nutrients, production of auxin and related compounds, enhancement of photosynthesis, and protection against biotic and abiotic stresses. Additionally, the influence of anthropogenic stressors, such as climate change and aquatic contamination, on the interaction between microbiota and aquatic plants is discussed. Finally, knowledge gaps are highlighted and future directions in this field are suggested.
Collapse
Affiliation(s)
- Fernanda Vieira da Silva Cruz
- Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, EcotoQ, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, Montréal Succ. Centre-Ville, H3C 3P8 Montréal, QC, Canada
| | - Naíla Barbosa da Costa
- Institut national de la recherche scientifique - Centre Eau Terre Environnement, 490 Couronne St, Québec City, Québec G1K 9A9, Canada
| | - Philippe Juneau
- Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL, EcotoQ, TOXEN, Department of Biological Sciences, Université du Québec à Montréal, Montréal Succ. Centre-Ville, H3C 3P8 Montréal, QC, Canada.
| |
Collapse
|
14
|
Khalil A, Bramucci AR, Focardi A, Le Reun N, Willams NLR, Kuzhiumparambil U, Raina JB, Seymour JR. Widespread production of plant growth-promoting hormones among marine bacteria and their impacts on the growth of a marine diatom. MICROBIOME 2024; 12:205. [PMID: 39420440 PMCID: PMC11487934 DOI: 10.1186/s40168-024-01899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/01/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Reciprocal exchanges of metabolites between phytoplankton and bacteria influence the fitness of these microorganisms which ultimately shapes the productivity of marine ecosystems. Recent evidence suggests that plant growth-promoting hormones may be key metabolites within mutualistic phytoplankton-bacteria partnerships, but very little is known about the diversity of plant growth-promoting hormones produced by marine bacteria and their specific effects on phytoplankton growth. Here, we aimed to investigate the capacity of marine bacteria to produce 7 plant growth-promoting hormones and the effects of these hormones on Actinocyclus sp. growth. RESULTS We examined the plant growth-promoting hormone synthesis capabilities of 14 bacterial strains that enhance the growth of the common diatom Actinocyclus. Plant growth-promoting hormone biosynthesis was ubiquitous among the bacteria tested. Indeed all 14 strains displayed the genomic potential to synthesise multiple hormones, and mass-spectrometry confirmed that each strain produced at least 6 out of the 7 tested plant growth-promoting hormones. Some of the plant growth-promoting hormones identified here, such as brassinolide and trans-zeatin, have never been reported in marine microorganisms. Importantly, all strains produced the hormone indole-3 acetic acid (IAA) in high concentrations and released it into their surroundings. Furthermore, indole-3 acetic acid extracellular concentrations were positively correlated with the ability of each strain to promote Actinocyclus growth. When inoculated with axenic Actinocyclus cultures, only indole-3 acetic acid and gibberellic acid enhanced the growth of the diatom, with cultures exposed to indole-3 acetic acid exhibiting a two-fold increase in cell numbers. CONCLUSION Our results reveal that marine bacteria produce a much broader range of plant growth-promoting hormones than previously suspected and that some of these compounds enhance the growth of a marine diatom. These findings suggest plant growth-promoting hormones play a large role in microbial communication and broaden our knowledge of their fuctions in the marine environment. Video Abstract.
Collapse
Affiliation(s)
- Abeeha Khalil
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Anna R Bramucci
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amaranta Focardi
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nine Le Reun
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | | | | | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
15
|
Xi C, Ma Y, Amrofell MB, Moon TS. Manipulating the molecular specificity of transcriptional biosensors for tryptophan metabolites and analogs. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:102211. [PMID: 39513040 PMCID: PMC11542736 DOI: 10.1016/j.xcrp.2024.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Tryptophan and its metabolites, produced by the gut microbiota, are pivotal for human physiological and mental health. Yet, quantifying these structurally similar compounds with high specificity remains a challenge, hindering point-of-care diagnostics and targeted therapeutic interventions. Leveraging the innate specificity and adaptability of biological systems, we present a biosensing approach capable of identifying specific metabolites in complex contexts with minimal cross-activity. This study introduces a generalizable strategy that combines evolutionary analysis, key ligand-binding residue identification, and mutagenesis scanning to pinpoint ligand-specific transcription factor variants. Furthermore, we uncover regulatory mechanisms within uncharacterized ligand-binding domains, whether in homodimer interfaces or monomers, through structural prediction and ligand docking. Notably, our "plug-and-play" strategy broadens the detection spectrum, enabling the exclusive biosensing of indole-3-acetic acid (an auxin), tryptamine, indole-3-pyruvic acid, and other tryptophan derivatives in engineered probiotics. This groundwork paves the way to create highly specific transcriptional biosensors for potential clinical, agricultural, and industrial use.
Collapse
Affiliation(s)
- Chenggang Xi
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- These authors contributed equally
| | - Yuefeng Ma
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- These authors contributed equally
| | - Matthew B. Amrofell
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, USA
- X (formerly Twitter): @Moon_Synth_Bio
- Lead contact
| |
Collapse
|
16
|
Kumar S, Sindhu SS. Drought stress mitigation through bioengineering of microbes and crop varieties for sustainable agriculture and food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100285. [PMID: 39512260 PMCID: PMC11542684 DOI: 10.1016/j.crmicr.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Climate change and agriculture are intrinsically connected and sudden changes in climatic conditions adversely impact global food production and security. The climate change-linked abiotic stressors like drought and high temperatures are resulting in crop failure. The most severe abiotic stress drought significantly affect the stomatal closure, production of reactive oxygen species, transpiration, photosynthesis or other physiological processes and plant morphology, and adversely affect plant growth and crop yield. Therefore, there is an exigent need for cost effective and eco-friendly modern technologies to induce drought tolerance in crop plants leading to climate-adapted sustainable agricultural practices for sustained food production. Among many options being pursued in this regard, the use of plant growth promoting microbes (PGPMs) is the most sustainable approach to promote drought stress resilience in crop plants leading to better plant growth and crop productivity. These PGPMs confer drought resistance via various direct or indirect mechanisms including production of antioxidants, enzymes, exopolysaccharides, modulation of phytohormones level, osmotic adjustment by inducing the accumulation of sugars, along with increases in nutrients, water uptake and photosynthetic pigments. However, several technological and ecological challenges limit their use in agriculture and sometimes treatment with plant beneficial microbes fails to produce desired results under field conditions. Thus, development of synthetic microbial communities or host mediated microbiome engineering or development of transgenic plants with the capacity to express desired traits may promote plant survival and growth under drought stress conditions. The present review critically assesses research evidence on the plant growth and stress resilience promoting potentials of PGPMs and their genes as an approach to develop drought resilient plants leading to increased crop productivity. Effective collaboration among scientific communities, policymakers and regulatory agencies is needed to create strong frameworks that both promote and regulate the utilization of synthetic microbial communities and transgenic plants in agriculture.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
17
|
Li S, Tan X, He Z, Jiang L, Li Y, Yang L, Hoffmann AA, Zhao C, Fang J, Ji R. Transcriptome-wide N 6-methyladenosine profiling reveals growth-defense trade-offs in the response of rice to brown planthopper (Nilaparvata lugens) infestation. PEST MANAGEMENT SCIENCE 2024; 80:5364-5376. [PMID: 39031631 DOI: 10.1002/ps.8265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND N6-Methyladenosine (m6A) is a common messenger RNA (mRNA) modification that affects various physiological processes in stress responses. However, the role of m6A modifications in plants responses to herbivore stress remains unclear. RESULTS Here, we found that an infestation of brown planthopper (Nilaparvata lugens) female adults enhanced the resistance of rice to N. lugens. The m6A methylome analysis of N. lugens-infested and uninfested rice samples was performed to explore the interaction between rice and N. lugens. The m6A methylation mainly occurred in genes that were actively expressed in rice following N. lugens infestation, while an analysis of the whole-genomic mRNA distribution of m6A showed that N. lugens infestation caused an overall decrease in the number of m6A methylation sites across the chromosomes. The m6A methylation of genes involved in the m6A modification machinery and several defense-related phytohormones (jasmonic acid and salicylic acid) pathways was increased in N. lugens-infested rice compared to that in uninfested rice. In contrast, m6A modification levels of growth-related phytohormone (auxin and gibberellin) biosynthesis-related genes were significantly attenuated during N. lugens infestation, accompanied by the down-regulated expression of these transcripts, indicating that rice growth was restricted during N. lugens attack to rapidly optimize resource allocation for plant defense. Integrative analysis of the differential patterns of m6A methylation and the corresponding transcripts showed a positive correlation between m6A methylation and transcriptional regulation. CONCLUSION The m6A modification is an important strategy for regulating the expression of genes involved in rice defense and growth during rice-N. lugens interactions. These findings provide new ideas for formulating strategies to control herbivorous pests. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuai Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Xinyang Tan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zhen He
- School of Plant Protection, Yangzhou University, Yangzhou, China
| | - Lei Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yali Li
- Wuhan Benagen Technology Company Limited, Wuhan, China
| | - Liu Yang
- Wuhan Benagen Technology Company Limited, Wuhan, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Chunqing Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- School of Life Sciences, Anhui Normal University/Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui, China
| |
Collapse
|
18
|
Seitz VA, McGivern BB, Borton MA, Chaparro JM, Schipanski ME, Prenni JE, Wrighton KC. Cover crop root exudates impact soil microbiome functional trajectories in agricultural soils. MICROBIOME 2024; 12:183. [PMID: 39342284 PMCID: PMC11439266 DOI: 10.1186/s40168-024-01886-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/27/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Cover cropping is an agricultural practice that uses secondary crops to support the growth of primary crops through various mechanisms including erosion control, weed suppression, nutrient management, and enhanced biodiversity. Cover crops may elicit some of these ecosystem services through chemical interactions with the soil microbiome via root exudation, or the release of plant metabolites from roots. Phytohormones are one metabolite type exuded by plants that activate the rhizosphere microbiome, yet managing this chemical interaction remains an untapped mechanism for optimizing plant-soil-microbiome interactions. Currently, there is limited understanding on the diversity of cover crop phytohormone root exudation patterns and our aim was to understand how phytochemical signals selectively enrich specific microbial taxa and functionalities in agricultural soils. RESULTS Here, we link variability in cover crop root exudate composition to changes in soil microbiome functionality. Exudate chemical profiles from 4 cover crop species (Sorghum bicolor, Vicia villosa, Brassica napus, and Secale cereal) were used as the chemical inputs to decipher microbial responses. These distinct exudate profiles, along with a no exudate control, were amended to agricultural soil microcosms with microbial responses tracked over time using metabolomes and genome-resolved metatranscriptomes. Our findings illustrated microbial metabolic patterns were unique in response to cover crop exudate inputs over time, particularly by sorghum and cereal rye amended microcosms. In these microcosms, we identify novel microbial members (at the genera and family level) who produced IAA and GA4 over time. Additionally, we identified cover crop exudates exclusively enriched for bacterial nitrite oxidizers, while control microcosms were discriminated for nitrogen transport, mineralization, and assimilation, highlighting distinct changes in microbial nitrogen cycling in response to chemical inputs. CONCLUSIONS We highlight that root exudate amendments alter microbial community function (i.e., N cycling) and microbial phytohormone metabolisms, particularly in response to root exudates isolated from cereal rye and sorghum plants. Additionally, we constructed a soil microbial genomic catalog of microorganisms responding to commonly used cover crops, a public resource for agriculturally relevant microbes. Many of our exudate-stimulated microorganisms are representatives from poorly characterized or novel taxa, revealing the yet to be discovered metabolic reservoir harbored in agricultural soils. Our findings emphasize the tractability of high-resolution multi-omics approaches to investigate processes relevant for agricultural soils, opening the possibility of targeting specific soil biogeochemical outcomes through biological precision agricultural practices that use cover crops and the microbiome as levers for enhanced crop production. Video Abstract.
Collapse
Affiliation(s)
- Valerie A Seitz
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Bridget B McGivern
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jacqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA
| | - Meagan E Schipanski
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80523, USA.
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Kelly C Wrighton
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
19
|
Chaisupa P, Rahman MM, Hildreth SB, Moseley S, Gatling C, Bryant MR, Helm RF, Wright RC. Genetically Encoded, Noise-Tolerant, Auxin Biosensors in Yeast. ACS Synth Biol 2024; 13:2804-2819. [PMID: 39197086 PMCID: PMC11421217 DOI: 10.1021/acssynbio.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Auxins are crucial signaling molecules that regulate the growth, metabolism, and behavior of various organisms, most notably plants but also bacteria, fungi, and animals. Many microbes synthesize and perceive auxins, primarily indole-3-acetic acid (IAA, referred to as auxin herein), the most prevalent natural auxin, which influences their ability to colonize plants and animals. Understanding auxin biosynthesis and signaling in fungi may allow us to better control interkingdom relationships and microbiomes from agricultural soils to the human gut. Despite this importance, a biological tool for measuring auxin with high spatial and temporal resolution has not been engineered in fungi. In this study, we present a suite of genetically encoded, ratiometric, protein-based auxin biosensors designed for the model yeast Saccharomyces cerevisiae. Inspired by auxin signaling in plants, the ratiometric nature of these biosensors enhances the precision of auxin concentration measurements by minimizing clonal and growth phase variation. We used these biosensors to measure auxin production across diverse growth conditions and phases in yeast cultures and calibrated their responses to physiologically relevant levels of auxin. Future work will aim to improve the fold change and reversibility of these biosensors. These genetically encoded auxin biosensors are valuable tools for investigating auxin biosynthesis and signaling in S. cerevisiae and potentially other yeast and fungi and will also advance quantitative functional studies of the plant auxin perception machinery, from which they are built.
Collapse
Affiliation(s)
- Patarasuda Chaisupa
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Md Mahbubur Rahman
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sherry B Hildreth
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Saede Moseley
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chauncey Gatling
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Matthew R Bryant
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Richard F Helm
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- The Translational Plant Sciences Center (TPSC), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
20
|
Thenappan DP, Pandey R, Hada A, Jaiswal DK, Chinnusamy V, Bhattacharya R, Annapurna K. Physiological Basis of Plant Growth Promotion in Rice by Rhizosphere and Endosphere Associated Streptomyces Isolates from India. RICE (NEW YORK, N.Y.) 2024; 17:60. [PMID: 39259231 PMCID: PMC11391006 DOI: 10.1186/s12284-024-00732-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
This study demonstrated the plant growth-promoting capabilities of native actinobacterial strains obtained from different regions of the rice plant, including the rhizosphere (FT1, FTSA2, FB2, and FH7) and endosphere (EB6). We delved into the molecular mechanisms underlying the beneficial effects of these plant-microbe interactions by conducting a transcriptional analysis of a select group of key genes involved in phytohormone pathways. Through in vitro screening for various plant growth-promoting (PGP) traits, all tested isolates exhibited positive traits for indole-3-acetic acid synthesis and siderophore production, with FT1 being the sole producer of hydrogen cyanide (HCN). All isolates were identified as members of the Streptomyces genus through 16S rRNA amplification. In pot culture experiments, rice seeds inoculated with strains FB2 and FTSA2 exhibited significant increases in shoot dry mass by 7% and 34%, respectively, and total biomass by 8% and 30%, respectively. All strains led to increased leaf nitrogen levels, with FTSA2 demonstrating the highest increase (4.3%). On the contrary, strains FB2 and FT1 increased root length, root weight ratio, root volume, and root surface area, leading to higher root nitrogen content. All isolates, except for FB2, enhanced total chlorophyll and carotenoid levels. Additionally, qRT-PCR analysis supported these findings, revealing differential gene expression in auxin (OsAUX1, OsIAA1, OsYUCCA1, OsYUCCA3), gibberellin (OsGID1, OsGA20ox-1), and cytokinin (OsIPT3, OsIPT5) pathways in response to specific actinobacterial treatments. These actinobacterial strains, which enhance both aboveground and belowground crop characteristics, warrant further evaluation in field trials, either as individual strains or in consortia. This could lead to the development of commercial bioinoculants for use in integrated nutrient management practices.
Collapse
Affiliation(s)
- Dhivya P Thenappan
- Systems Plant Physiology, Texas A&M AgriLife Research and Extension Center, Uvalde, TX, 78801, USA.
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Rakesh Pandey
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Alkesh Hada
- Divsion of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Dinesh Kumar Jaiswal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Kannepalli Annapurna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
21
|
Hadizadeh I, Peivastegan B, Nielsen KL, Auvinen P, Sipari N, Pirhonen M. Transcriptome analysis unravels the biocontrol mechanism of Serratia plymuthica A30 against potato soft rot caused by Dickeya solani. PLoS One 2024; 19:e0308744. [PMID: 39240997 PMCID: PMC11379202 DOI: 10.1371/journal.pone.0308744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/29/2024] [Indexed: 09/08/2024] Open
Abstract
Endophytic bacterium Serratia plymuthica A30 was identified as a superior biocontrol agent due to its effective colonization of potato tuber, tolerance to cold conditions, and strong inhibitory action against various soft rot pathogens, including Dickeya solani. We characterized transcriptome changes in potato tubers inoculated with S. plymuthica A30, D. solani, or both at the early and the late phases of interaction. At the early phase and in the absence of the pathogen, A30 influenced the microbial recognition system to initiate plant priming. In the presence of the pathogen alongside biocontrol strain, defense signaling was highly stimulated, characterized by the induction of genes involved in the detoxification system, reinforcement of cell wall structure, and production of antimicrobial metabolites, highlighting A30's role in enhancing the host resistance against pathogen attack. This A30-induced resistance relied on the early activation of jasmonic acid signaling and its production in tubers, while defense signaling mediated by salicylic acid was suppressed. In the late phase, A30 actively interferes with plant immunity by inhibiting stress- and defense-related genes expression. Simultaneously, the genes involved in cell wall remodeling and indole-3-acetic acid signaling were activated, thereby enhancing cell wall remodeling to establish symbiotic relationship with the host. The endophytic colonization of A30 coincided with the induction of genes involved in the biosynthesis and signaling of ethylene and abscisic acid, while downregulating those related to gibberellic acid and cytokinin. This combination suggested fitness benefits for potato tubers by preserving dormancy, and delaying sprouting, which affects durability of tubers during storage. This study contributes valuable insights into the tripartite interaction among S. plymuthica A30, D. solani, and potato tubers, facilitating the development of biocontrol system for soft rot pathogens under storage conditions.
Collapse
Affiliation(s)
- Iman Hadizadeh
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Bahram Peivastegan
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | | | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nina Sipari
- Faculty of Biological and Environmental Sciences, Viikki Metabolomics Unit, University of Helsinki, Helsinki, Finland
| | - Minna Pirhonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Bertrand C, Martins R, Nunes F, Brandão P, Nascimento FX. Genomic insights into indole-3-acetic acid catabolism in the marine algae-associated bacterium, Marinomonas sp. NFXS50. Access Microbiol 2024; 6:000856.v3. [PMID: 39239567 PMCID: PMC11373566 DOI: 10.1099/acmi.0.000856.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Auxins, mainly in the form of indole-3-acetic acid (IAA), regulate several aspects of plant and algal growth and development. Consequently, plant and algae-associated bacteria developed the ability to modulate IAA levels, including IAA catabolism. In this work, we present and analyse the genome sequence of the IAA-degrading and marine algae-associated bacterium, Marinomonas sp. NFXS50, analyse its IAA catabolism gene cluster and study the prevalence of IAA catabolism genes in other Marinomonas genomes. Our findings revealed the presence of homologs of the Pseudomonas iac gene cluster, implicated in IAA catabolism, in the genome of strain NFXS50; however, differences were observed in the content and organization of the Marinomonas iac gene cluster when compared to that of the model iac-containing Pseudomonas putida 1290. These variations suggest potential adaptations in the IAA catabolism pathway, possibly influenced by substrate availability and evolutionary factors. The prevalence of iac genes across several Marinomonas species underscores the significance of IAA catabolism in marine environments, potentially influencing plant/algae-bacteria interactions. This study provides novel insights into the IAA catabolism in Marinomonas, laying the groundwork for future investigations into the role of iac genes in Marinomonas physiology and the regulation of marine plant/algae-bacteria interactions.
Collapse
Affiliation(s)
- Constança Bertrand
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rodrigo Martins
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Francisco Nunes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Pedro Brandão
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Francisco X Nascimento
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
23
|
Pathom-Aree W, Sattayawat P, Inwongwan S, Cheirsilp B, Liewtrakula N, Maneechote W, Rangseekaew P, Ahmad F, Mehmood MA, Gao F, Srinuanpan S. Microalgae growth-promoting bacteria for cultivation strategies: Recent updates and progress. Microbiol Res 2024; 286:127813. [PMID: 38917638 DOI: 10.1016/j.micres.2024.127813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Microalgae growth-promoting bacteria (MGPB), both actinobacteria and non-actinobacteria, have received considerable attention recently because of their potential to develop microalgae-bacteria co-culture strategies for improved efficiency and sustainability of the water-energy-environment nexus. Owing to their diverse metabolic pathways and ability to adapt to diverse conditions, microalgal-MGPB co-cultures could be promising biological systems under uncertain environmental and nutrient conditions. This review proposes the recent updates and progress on MGPB for microalgae cultivation through co-culture strategies. Firstly, potential MGPB strains for microalgae cultivation are introduced. Following, microalgal-MGPB interaction mechanisms and applications of their co-cultures for biomass production and wastewater treatment are reviewed. Moreover, state-of-the-art studies on synthetic biology and metabolic network analysis, along with the challenges and prospects of opting these approaches for microalgal-MGPB co-cultures are presented. It is anticipated that these strategies may significantly improve the sustainability of microalgal-MGPB co-cultures for wastewater treatment, biomass valorization, and bioproducts synthesis in a circular bioeconomy paradigm.
Collapse
Affiliation(s)
- Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamas Cheirsilp
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Naruepon Liewtrakula
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand
| | - Wageeporn Maneechote
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90110, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pharada Rangseekaew
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Muhammad Aamer Mehmood
- Bioenergy Research Center, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Fengzheng Gao
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, ETH Zurich, Zurich 8092, Switzerland; Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach 8603, Switzerland
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Biorefinery and Bioprocess Engineering Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
24
|
Timofeeva AM, Galyamova MR, Sedykh SE. How Do Plant Growth-Promoting Bacteria Use Plant Hormones to Regulate Stress Reactions? PLANTS (BASEL, SWITZERLAND) 2024; 13:2371. [PMID: 39273855 PMCID: PMC11397614 DOI: 10.3390/plants13172371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024]
Abstract
Phytohormones play a crucial role in regulating growth, productivity, and development while also aiding in the response to diverse environmental changes, encompassing both biotic and abiotic factors. Phytohormone levels in soil and plant tissues are influenced by specific soil bacteria, leading to direct effects on plant growth, development, and stress tolerance. Specific plant growth-promoting bacteria can either synthesize or degrade specific plant phytohormones. Moreover, a wide range of volatile organic compounds synthesized by plant growth-promoting bacteria have been found to influence the expression of phytohormones. Bacteria-plant interactions become more significant under conditions of abiotic stress such as saline soils, drought, and heavy metal pollution. Phytohormones function in a synergistic or antagonistic manner rather than in isolation. The study of plant growth-promoting bacteria involves a range of approaches, such as identifying singular substances or hormones, comparing mutant and non-mutant bacterial strains, screening for individual gene presence, and utilizing omics approaches for analysis. Each approach uncovers the concealed aspects concerning the effects of plant growth-promoting bacteria on plants. Publications that prioritize the comprehensive examination of the private aspects of PGPB and cultivated plant interactions are of utmost significance and crucial for advancing the practical application of microbial biofertilizers. This review explores the potential of PGPB-plant interactions in promoting sustainable agriculture. We summarize the interactions, focusing on the mechanisms through which plant growth-promoting bacteria have a beneficial effect on plant growth and development via phytohormones, with particular emphasis on detecting the synthesis of phytohormones by plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Anna M Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maria R Galyamova
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey E Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
25
|
Zhang Q, Li R, Lin Y, Zhao W, Lin Q, Ouyang L, Pang S, Zeng H. Dynamics of Physiological Properties and Endophytic Fungal Communities in the Xylem of Aquilaria sinensis (Lour.) with Different Induction Times. J Fungi (Basel) 2024; 10:562. [PMID: 39194888 DOI: 10.3390/jof10080562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Xylem-associated fungus can secrete many secondary metabolites to help Aquilaria trees resist various stresses and play a crucial role in facilitating agarwood formation. However, the dynamics of endophytic fungi in Aquilaria sinensis xylem after artificial induction have not been fully elaborated. Endophytic fungi communities and xylem physio-biochemical properties were examined before and after induction with an inorganic salt solution, including four different times (pre-induction (0M), the third (3M), sixth (6M) and ninth (9M) month after induction treatment). The relationships between fungal diversity and physio-biochemical indices were evaluated. The results showed that superoxide dismutase (SOD) and peroxidase (POD) activities, malondialdehyde (MDA) and soluble sugar content first increased and then decreased with induction time, while starch was heavily consumed after induction treatment. Endophytic fungal diversity was significantly lower after induction treatment than before, but the species richness was promoted. Fungal β-diversity was also clustered into four groups according to different times. Core species shifted from rare to dominant taxa with induction time, and growing species interactions in the network indicate a gradual complication of fungal community structure. Endophytic fungi diversity and potential functions were closely related to physicochemical indices that had less effect on the relative abundance of the dominant species. These findings help assess the regulatory mechanisms of microorganisms that expedite agarwood formation after artificial induction.
Collapse
Affiliation(s)
| | - Rongrong Li
- Fujian Academy of Forestry, Fuzhou 350012, China
| | - Yang Lin
- School of Design, Fujian University of Technology, Fuzhou 350001, China
| | - Weiwei Zhao
- College of Forestry, Central South University of Forestry & Technology, Changsha 410004, China
| | - Qiang Lin
- Fujian Academy of Forestry, Fuzhou 350012, China
| | - Lei Ouyang
- Fujian Academy of Forestry, Fuzhou 350012, China
| | - Shengjiang Pang
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 536000, China
| | - Huahao Zeng
- Fujian Academy of Forestry, Fuzhou 350012, China
| |
Collapse
|
26
|
Srinivasan S. Radiation-Tolerant Fibrivirga spp. from Rhizosphere Soil: Genome Insights and Potential in Agriculture. Genes (Basel) 2024; 15:1048. [PMID: 39202408 PMCID: PMC11354047 DOI: 10.3390/genes15081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
The rhizosphere of plants contains a wide range of microorganisms that can be cultivated and used for the benefit of agricultural practices. From garden soil near the rhizosphere region, Strain ES10-3-2-2 was isolated, and the cells were Gram-negative, aerobic, non-spore-forming rods that were 0.3-0.8 µm in diameter and 1.5-2.5 µm in length. The neighbor-joining method on 16S rDNA similarity revealed that the strain exhibited the highest sequence similarities with "Fibrivirga algicola JA-25" (99.2%) and Fibrella forsythia HMF5405T (97.3%). To further explore its biotechnological potentialities, we sequenced the complete genome of this strain employing the PacBio RSII sequencing platform. The genome of Strain ES10-3-2-2 comprises a 6,408,035 bp circular chromosome with a 52.8% GC content, including 5038 protein-coding genes and 52 RNA genes. The sequencing also identified three plasmids measuring 212,574 bp, 175,683 bp, and 81,564 bp. Intriguingly, annotations derived from the NCBI-PGAP, eggnog, and KEGG databases indicated the presence of genes affiliated with radiation-resistance pathway genes and plant-growth promotor key/biofertilization-related genes regarding Fe acquisition, K and P assimilation, CO2 fixation, and Fe solubilization, with essential roles in agroecosystems, as well as genes related to siderophore regulation. Additionally, T1SS, T6SS, and T9SS secretion systems are present in this species, like plant-associated bacteria. The inoculation of Strain ES10-3-2-2 to Arabidopsis significantly increases the fresh shoot and root biomass, thereby maintaining the plant quality compared to uninoculated controls. This work represents a link between radiation tolerance and the plant-growth mechanism of Strain ES10-3-2-2 based on in vitro experiments and bioinformatic approaches. Overall, the radiation-tolerant bacteria might enable the development of microbiological preparations that are extremely effective at increasing plant biomass and soil fertility, both of which are crucial for sustainable agriculture.
Collapse
Affiliation(s)
- Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 01797, Republic of Korea
| |
Collapse
|
27
|
Sharma V, Sharma DP, Salwan R. Surviving the stress: Understanding the molecular basis of plant adaptations and uncovering the role of mycorrhizal association in plant abiotic stresses. Microb Pathog 2024; 193:106772. [PMID: 38969183 DOI: 10.1016/j.micpath.2024.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Environmental stresses severely impair plant growth, resulting in significant crop yield and quality loss. Among various abiotic factors, salt and drought stresses are one of the major factors that affect the nutrients and water uptake by the plants, hence ultimately various physiological aspects of the plants that compromises crop yield. Continuous efforts have been made to investigate, dissect and improve plant adaptations at the molecular level in response to drought and salinity stresses. In this context, the plant beneficial microbiome presents in the rhizosphere, endosphere, and phyllosphere, also referred as second genomes of the plant is well known for its roles in plant adaptations. Exploration of beneficial interaction of fungi with host plants known as mycorrhizal association is one such special interaction that can facilitates the host plants adaptations. Mycorrhiza assist in alleviating the salinity and drought stresses of plants via redistributing the ion imbalance through translocation to different parts of the plants, as well as triggering oxidative machinery. Mycorrhiza association also regulates the level of various plant growth regulators, osmolytes and assists in acquiring minerals that are helpful in plant's adaptation against extreme environmental stresses. The current review examines the role of various plant growth regulators and plants' antioxidative systems, followed by mycorrhizal association during drought and salt stresses.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali PB 140413, India.
| | - D P Sharma
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India
| | - Richa Salwan
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India.
| |
Collapse
|
28
|
Li X, Tao H, Wang S, Zhang D, Xiong X, Cai Y. IAA Synthesis Pathway of Fitibacillus barbaricus WL35 and Its Regulatory Gene Expression Levels in Potato ( Solanum tuberosum L.). Microorganisms 2024; 12:1530. [PMID: 39203372 PMCID: PMC11356661 DOI: 10.3390/microorganisms12081530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Indole-3-acetic acid (IAA), as an important regulator of potato growth, seriously affects the growth and yield of potato. Although many studies have reported that IAA-producing Bacillus can promote plant growth, little research has been conducted on its synthesis pathway and molecular mechanisms. In this study, an IAA-producing strain WL35 was identified as Fitibacillus barbaricus, and its yield was 48.79 mg·L-1. The results of the pot experiments showed that WL35 significantly increased plant height, stem thickness, chlorophyll content, and number of leaves of potato plants by 31.68%, 30.03%, 32.93%, and 36.59%, respectively. In addition, in the field experiments, WL35-treated plants increased commercial potato yield by 16.45%, vitamin C content by 16.35%, protein content by 75%, starch content by 6.60%, and the nitrogen, phosphorus, and potassium accumulation by 9.98%, 12.70%, and 26.76%, respectively. Meanwhile, the synthetic pathway of WL35 was found to be dominated by the tryptophan-dependent pathway, the IAM, TAM, and IPA pathways worked together, and the pathways that played a role at different times were different. Furthermore, RNA-seq analysis showed that there were a total of 2875 DEGs regulated in the samples treated with WL35 seed dressing compared with the CK, of which 1458 genes were up-regulated and 1417 genes were down-regulated. Potato roots express differential genes enriched in processes such as carbohydrate metabolism processes and cellular polysaccharide metabolism, which regulate potato plant growth and development. The above results provide a theoretical basis for the further exploration of the synthesis pathway of IAA and its growth-promoting mechanism in potato.
Collapse
Affiliation(s)
- Xiaoyu Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.L.); (H.T.)
| | - Huan Tao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.L.); (H.T.)
| | - Shisong Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.L.); (H.T.)
| | - Di Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.L.); (H.T.)
| | - Xingyao Xiong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yanfei Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (X.L.); (H.T.)
| |
Collapse
|
29
|
Thompson MEH, Raizada MN. The Microbiome of Fertilization-Stage Maize Silks (Style) Encodes Genes and Expresses Traits That Potentially Promote Survival in Pollen/Style Niches and Host Reproduction. Microorganisms 2024; 12:1473. [PMID: 39065240 PMCID: PMC11278993 DOI: 10.3390/microorganisms12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Within flowers, the style channel receives pollen and transmits male gametes inside elongating pollen tubes to ovules. The styles of maize/corn are called silks. Fertilization-stage silks possess complex microbiomes, which may partially derive from pollen. These microbiomes lack functional analysis. We hypothesize that fertilization-stage silk microbiomes promote host fertilization to ensure their own vertical transmission. We further hypothesize that these microbes encode traits to survive stresses within the silk (water/nitrogen limitation) and pollen (dehydration/aluminum) habitats. Here, bacteria cultured from fertilization-stage silks of 14 North American maize genotypes underwent genome mining and functional testing, which revealed osmoprotection, nitrogen-fixation, and aluminum-tolerance traits. Bacteria contained auxin biosynthesis genes, and testing confirmed indole compound secretion, which is relevant, since pollen delivers auxin to silks to stimulate egg cell maturation. Some isolates encoded biosynthetic/transport compounds known to regulate pollen tube guidance/growth. The isolates encoded ACC deaminase, which degrades the precursor for ethylene that otherwise accelerates silk senescence. The findings suggest that members of the microbiome of fertilization-stage silks encode adaptations to survive the stress conditions of silk/pollen and have the potential to express signaling compounds known to impact reproduction. Overall, whereas these microbial traits have traditionally been assumed to primarily promote vegetative plant growth, this study proposes they may also play selfish roles during host reproduction.
Collapse
Affiliation(s)
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
30
|
Lee CY, Harper CP, Lee SG, Qi Y, Clay T, Aoi Y, Jez JM, Kasahara H, Blodgett JAV, Kunkel BN. Investigating the biosynthesis and roles of the auxin phenylacetic acid during Pseudomonas syringae- Arabidopsis thaliana pathogenesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1408833. [PMID: 39091312 PMCID: PMC11291249 DOI: 10.3389/fpls.2024.1408833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
Several plant-associated microbes synthesize the auxinic plant growth regulator phenylacetic acid (PAA) in culture; however, the role of PAA in plant-pathogen interactions is not well understood. In this study, we investigated the role of PAA during interactions between the phytopathogenic bacterium Pseudomonas syringae strain PtoDC3000 (PtoDC3000) and the model plant host, Arabidopsis thaliana. Previous work demonstrated that indole-3-acetaldehyde dehydrogenase A (AldA) of PtoDC3000 converts indole-3-acetaldehyde (IAAld) to the auxin indole-3-acetic acid (IAA). Here, we further demonstrated the biochemical versatility of AldA by conducting substrate screening and steady-state kinetic analyses, and showed that AldA can use both IAAld and phenylacetaldehyde as substrates to produce IAA and PAA, respectively. Quantification of auxin in infected plant tissue showed that AldA-dependent synthesis of either IAA or PAA by PtoDC3000 does not contribute significantly to the increase in auxin levels in infected A. thaliana leaves. Using available arogenate dehydratase (adt) mutant lines of A. thaliana compromised for PAA synthesis, we observed that a reduction in PAA-Asp and PAA-Glu is correlated with elevated levels of IAA and increased susceptibility. These results provide evidence that PAA/IAA homeostasis in A. thaliana influences the outcome of plant-microbial interactions.
Collapse
Affiliation(s)
- Chia-Yun Lee
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Christopher P. Harper
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Soon Goo Lee
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Yunci Qi
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
- United States Department of Agriculture-Agricultural Research Service, New Orleans, LA, United States
| | - Taylor Clay
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, United States
| | - Yuki Aoi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Joseph M. Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Hiroyuki Kasahara
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Joshua A. V. Blodgett
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Barbara N. Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
31
|
Abdelhamid SA, Abo Elsoud MM, El-Baz AF, Nofal AM, El-Banna HY. Optimisation of indole acetic acid production by Neopestalotiopsis aotearoa endophyte isolated from Thymus vulgaris and its impact on seed germination of Ocimum basilicum. BMC Biotechnol 2024; 24:46. [PMID: 38971771 PMCID: PMC11227711 DOI: 10.1186/s12896-024-00872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Microbial growth during plant tissue culture is a common problem that causes significant losses in the plant micro-propagation system. Most of these endophytic microbes have the ability to propagate through horizontal and vertical transmission. On the one hand, these microbes provide a rich source of several beneficial metabolites. RESULTS The present study reports on the isolation of fungal species from different in vitro medicinal plants (i.e., Breynia disticha major, Breynia disticha, Duranta plumieri, Thymus vulgaris, Salvia officinalis, Rosmarinus officinalis, and Ocimum basilicum l) cultures. These species were tested for their indole acetic acid (IAA) production capability. The most effective species for IAA production was that isolated from Thymus vulgaris plant (11.16 µg/mL) followed by that isolated from sweet basil plant (8.78 µg/mL). On screening for maximum IAA productivity, medium, "MOS + tryptophan" was chosen that gave 18.02 μg/mL. The macroscopic, microscopic examination and the 18S rRNA sequence analysis indicated that the isolate that given code T4 was identified as Neopestalotiopsis aotearoa (T4). The production of IAA by N. aotearoa was statistically modeled using the Box-Behnken design and optimized for maximum level, reaching 63.13 µg/mL. Also, IAA extract was administered to sweet basil seeds in vitro to determine its effect on plant growth traits. All concentrations of IAA extract boosted germination parameters as compared to controls, and 100 ppm of IAA extract exhibited a significant growth promotion effect for all seed germination measurements. CONCLUSIONS The IAA produced from N. aotearoa (T4) demonstrated an essential role in the enhancement of sweet basil (Ocimum basilicum) growth, suggesting that it can be employed to promote the plant development while lowering the deleterious effect of using synthetic compounds in the environment.
Collapse
Affiliation(s)
- Sayeda A Abdelhamid
- Department of Microbial Biotechnology, National Research Centre, Cairo, Egypt.
| | | | - A F El-Baz
- Department of Industrial Biotechnology, GEBRI, University of Sadat City, Sadat City, Menofia, Egypt
| | - Ashraf M Nofal
- Department of Sustainable Development, Environmental Studies and Research Institute, University of Sadat City, Menofia, Egypt
| | - Heba Y El-Banna
- Department of Vegetable and Floriculture, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| |
Collapse
|
32
|
da Fonseca JS, Sousa TF, de Almeida SVR, Silva CN, Castro GDS, Yamagishi MEB, Koolen HHF, Hanada RE, da Silva GF. Amazonian Bacteria from River Sediments as a Biocontrol Solution against Ralstonia solanacearum. Microorganisms 2024; 12:1364. [PMID: 39065132 PMCID: PMC11278729 DOI: 10.3390/microorganisms12071364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial wilt, caused by Ralstonia solanacearum, is one of the main challenges for sustainable tomato production in the Amazon region. This study evaluated the potential of bacteria isolated from sediments of the Solimões and Negro rivers for the biocontrol of this disease. From 36 bacteria selected through in vitro antibiosis, three promising isolates were identified: Priestia aryabhattai RN 11, Streptomyces sp. RN 24, and Kitasatospora sp. SOL 195, which inhibited the growth of the phytopathogen by 100%, 87.62%, and 100%, respectively. These isolates also demonstrated the ability to produce extracellular enzymes and plant growth-promoting compounds, such as indole-3-acetic acid (IAA), siderophore, and ammonia. In plant assays, during both dry and rainy seasons, P. aryabhattai RN 11 reduced disease incidence by 40% and 90%, respectively, while promoting the growth of infected plants. Streptomyces sp. RN 24 and Kitasatospora sp. SOL 195 exhibited high survival rates (85-90%) and pathogen suppression in the soil (>90%), demonstrating their potential as biocontrol agents. This study highlights the potential of Amazonian bacteria as biocontrol agents against bacterial wilt, contributing to the development of sustainable management strategies for this important disease.
Collapse
Affiliation(s)
- Jennifer Salgado da Fonseca
- Graduate Program in Biotechnology, Federal University of Amazonas, Manaus 69080-005, AM, Brazil; (J.S.d.F.); (T.F.S.)
| | - Thiago Fernandes Sousa
- Graduate Program in Biotechnology, Federal University of Amazonas, Manaus 69080-005, AM, Brazil; (J.S.d.F.); (T.F.S.)
| | - Suene Vanessa Reis de Almeida
- Graduate Program in Agriculture in the Humid Tropics, National Amazon Research Institute, Manaus 69060-062, AM, Brazil; (S.V.R.d.A.); (C.N.S.); (R.E.H.)
| | - Carina Nascimento Silva
- Graduate Program in Agriculture in the Humid Tropics, National Amazon Research Institute, Manaus 69060-062, AM, Brazil; (S.V.R.d.A.); (C.N.S.); (R.E.H.)
| | - Gleucinei dos Santos Castro
- Graduate Program in Biodiversity and Biotechnology, State University of Amazonas, Manaus 69065-001, AM, Brazil; (G.d.S.C.); (H.H.F.K.)
| | | | - Hector Henrique Ferreira Koolen
- Graduate Program in Biodiversity and Biotechnology, State University of Amazonas, Manaus 69065-001, AM, Brazil; (G.d.S.C.); (H.H.F.K.)
| | - Rogério Eiji Hanada
- Graduate Program in Agriculture in the Humid Tropics, National Amazon Research Institute, Manaus 69060-062, AM, Brazil; (S.V.R.d.A.); (C.N.S.); (R.E.H.)
| | | |
Collapse
|
33
|
Ercole TG, Kava VM, Petters-Vandresen DAL, Ribeiro RA, Hungria M, Galli LV. Unveiling Agricultural Biotechnological Prospects: The Draft Genome Sequence of Stenotrophomonas geniculata LGMB417. Curr Microbiol 2024; 81:247. [PMID: 38951210 DOI: 10.1007/s00284-024-03784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
Stenotrophomonas species are recognized as rhizobacteria that play a pivotal role in promoting plant growth by making substantial contributions to enhanced soil fertility, nutrient recycling, and phytopathogen control. Employing them as bioinputs constitutes an environmentally sound strategy, particularly within the rhizospheric community. This study revealed the draft genome sequence of Stenotrophomonas geniculata LGMB417, which was originally isolated from root samples of maize (Zea mays L.). This research assessed the potential of a bacterial strain at the molecular level through genome mining, aiming to identify genes with biotechnological significance for promoting plant growth and protection. The assembly findings indicate that strain LGMB417 possesses a genome size of 4,654,011 bp, with a G + C content of 66.50%. The draft genome sequence revealed the presence of gene clusters responsible for the synthesis of secondary metabolites and carbohydrate active enzymes (CAZymes), glycoside hydrolases (23), glycosyltransferases (18), carbohydrate esterases (5), polysaccharide lyases (2), carbohydrate-binding modules (2), and auxiliary activities (1). Several genes related to growth promotion were found in the genome, including those associated with phosphate transport and solubilization, nitrogen metabolism, siderophore production and iron transport, hormonal modulation, stress responses (such as to drought, temperature fluctuations, osmotic challenges, and oxidative conditions), and volatile organic compounds (VOCs). Subsequent phases will encompass investigations utilizing gene expression methodologies, with future explorations concentrating on facets pertinent to agricultural production, including comprehensive field studies.
Collapse
Affiliation(s)
- Tairine Graziella Ercole
- Postgraduate Program in Genetics, Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, Curitiba, PR, 81531-980, Brazil.
| | - Vanessa Merlo Kava
- Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, Curitiba, PR, 81531-980, Brazil
| | - Desirrê Alexia Lourenço Petters-Vandresen
- Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, Curitiba, PR, 81531-980, Brazil
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, Brasília, Distrito Federal, 71605-001, Brazil
| | | | - Lygia Vitoria Galli
- Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, Curitiba, PR, 81531-980, Brazil.
| |
Collapse
|
34
|
Sharavin DY, Belyaeva PG. Biotechnological potential of psychrotolerant methylobacteria isolated from biotopes of Antarctic oases. Arch Microbiol 2024; 206:323. [PMID: 38907777 DOI: 10.1007/s00203-024-04056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Ten strains of psychrotolerant methylotrophic bacteria were isolated from the samples collected in Larsemann and Bunger Hills (Antarctica). Most of the isolates are assigned to the genus Pseudomonas, representatives of the genera Janthinobacterium, Massilia, Methylotenera and Flavobacterium were also found. Majority of isolates were able to grow on a wide range of sugars, methylamines and other substrates. Optimal growth temperatures for the isolated strains varied from 6 °C to 28 °C. The optimal concentration of NaCl was 0.5-2.0%. The optimal pH values of the medium were 6-7. It was found that three strains synthesized indole-3-acetic acid on a medium with L-tryptophan reaching 11-12 μg/ml. The values of intracellular carbohydrates in several strains exceeded 50 μg/ml. Presence of calcium-dependent and lanthanum-dependent methanol dehydrogenase have been shown for some isolates. Strains xBan7, xBan20, xBan37, xBan49, xPrg27, xPrg48, xPrg51 showed the presence of free amino acids. Bioprospection of Earth cryosphere for such microorganisms has a potential in biotechnology.
Collapse
Affiliation(s)
- Dmitry Yuryevich Sharavin
- Laboratory of Cellular Immunology and Nanobiotechnology, Institute of Ecology and Genetics of Microorganisms (IEGM), 13, Golev st., Perm, 614081, Russia.
| | - Polina Gennadievna Belyaeva
- Laboratory of Cellular Immunology and Nanobiotechnology, Institute of Ecology and Genetics of Microorganisms (IEGM), 13, Golev st., Perm, 614081, Russia
| |
Collapse
|
35
|
Ali ML, Ferrieres L, Jass J, Hyötyläinen T. Metabolic Changes in Pseudomonas oleovorans Isolated from Contaminated Construction Material Exposed to Varied Biocide Treatments. Metabolites 2024; 14:326. [PMID: 38921461 PMCID: PMC11205842 DOI: 10.3390/metabo14060326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Biocide resistance poses a significant challenge in industrial processes, with bacteria like Pseudomonas oleovorans exhibiting intrinsic resistance to traditional antimicrobial agents. In this study, the impact of biocide exposure on the metabolome of two P. oleovorans strains, namely, P. oleovorans P4A, isolated from contaminated coating material, and P. oleovorans 1045 reference strain, were investigated. The strains were exposed to 2-Methylisothiazol-3(2H)-one (MI) MIT, 1,2-Benzisothiazol-3(2H)-one (BIT), and 5-chloro-2-methyl-isothiazol-3-one (CMIT) at two different sub-inhibitory concentrations and the lipids and polar and semipolar metabolites were analyzed by ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry UPLC-Q-TOF/MS. Exposure to the BIT biocide induced significant metabolic modifications in P. oleovorans. Notable changes were observed in lipid and metabolite profiles, particularly in phospholipids, amino acid metabolism, and pathways related to stress response and adaptation. The 1045 strain showed more pronounced metabolic alterations than the P4A strain, suggesting potential implications for lipid, amino acid metabolism, energy metabolism, and stress adaptation. Improving our understanding of how different substances interact with bacteria is crucial for making antimicrobial chemicals more effective and addressing the challenges of resistance. We observed that different biocides trigged significantly different metabolic responses in these strains. Our study shows that metabolomics can be used as a tool for the investigation of metabolic mechanisms underlying biocide resistance, and thus in the development of targeted biocides. This in turn can have implications in combating biocide resistance in bacteria such as P. oleovorans.
Collapse
Affiliation(s)
- Muatasem Latif Ali
- School of Science and Technology, Örebro University, Fakultetsgatan 1, SE 701 82 Örebro, Sweden; (M.L.A.); (J.J.)
- Saint-Gobain SWEDEN AB, SCANSPAC, Kemivägen 7, SE 705 97 Glanshammar, Sweden
| | - Lionel Ferrieres
- Saint-Gobain Recherche, 39 Quai Lucien Lefranc, FR-93303 Aubervilliers Cedex, France;
| | - Jana Jass
- School of Science and Technology, Örebro University, Fakultetsgatan 1, SE 701 82 Örebro, Sweden; (M.L.A.); (J.J.)
| | - Tuulia Hyötyläinen
- School of Science and Technology, Örebro University, Fakultetsgatan 1, SE 701 82 Örebro, Sweden; (M.L.A.); (J.J.)
| |
Collapse
|
36
|
Hamilton M, Ferrer‐González FX, Moran MA. Heterotrophic bacteria trigger transcriptome remodelling in the photosynthetic picoeukaryote Micromonas commoda. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13285. [PMID: 38778545 PMCID: PMC11112143 DOI: 10.1111/1758-2229.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Marine biogeochemical cycles are built on interactions between surface ocean microbes, particularly those connecting phytoplankton primary producers to heterotrophic bacteria. Details of these associations are not well understood, especially in the case of direct influences of bacteria on phytoplankton physiology. Here we catalogue how the presence of three marine bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA14 and Polaribacter dokdonensis MED152) individually and uniquely impact gene expression of the picoeukaryotic alga Micromonas commoda RCC 299. We find a dramatic transcriptomic remodelling by M. commoda after 8 h in co-culture, followed by an increase in cell numbers by 56 h compared with the axenic cultures. Some aspects of the algal transcriptomic response are conserved across all three bacterial co-cultures, including an unexpected reduction in relative expression of photosynthesis and carbon fixation pathways. Expression differences restricted to a single bacterium are also observed, with the Flavobacteriia P. dokdonensis uniquely eliciting changes in relative expression of algal genes involved in biotin biosynthesis and the acquisition and assimilation of nitrogen. This study reveals that M. commoda has rapid and extensive responses to heterotrophic bacteria in ways that are generalizable, as well as in a taxon specific manner, with implications for the diversity of phytoplankton-bacteria interactions ongoing in the surface ocean.
Collapse
Affiliation(s)
- Maria Hamilton
- Department of Marine SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Mary Ann Moran
- Department of Marine SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
37
|
Marash I, Leibman-Markus M, Gupta R, Israeli A, Teboul N, Avni A, Ori N, Bar M. Abolishing ARF8A activity promotes disease resistance in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112064. [PMID: 38492890 DOI: 10.1016/j.plantsci.2024.112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/18/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Auxin response factors (ARFs) are a family of transcription factors that regulate auxin-dependent developmental processes. Class A ARFs function as activators of auxin-responsive gene expression in the presence of auxin, while acting as transcriptional repressors in its absence. Despite extensive research on the functions of ARF transcription factors in plant growth and development, the extent, and mechanisms of their involvement in plant resistance, remain unknown. We have previously reported that mutations in the tomato AUXIN RESPONSE FACTOR8 (ARF8) genes SlARF8A and SlARF8B result in the decoupling of fruit development from pollination and fertilization, leading to partial or full parthenocarpy and increased yield under extreme temperatures. Here, we report that fine-tuning of SlARF8 activity results in increased resistance to fungal and bacterial pathogens. This resistance is mostly preserved under fluctuating temperatures. Thus, fine-tuning SlARF8 activity may be a potent strategy for increasing overall growth and yield.
Collapse
Affiliation(s)
- Iftah Marash
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel; School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Alon Israeli
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Naama Teboul
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Adi Avni
- School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Naomi Ori
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel.
| |
Collapse
|
38
|
Ahsan SM, Injamum-Ul-Hoque M, Das AK, Rahman MM, Mollah MMI, Paul NC, Choi HW. Plant-Entomopathogenic Fungi Interaction: Recent Progress and Future Prospects on Endophytism-Mediated Growth Promotion and Biocontrol. PLANTS (BASEL, SWITZERLAND) 2024; 13:1420. [PMID: 38794490 PMCID: PMC11124879 DOI: 10.3390/plants13101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Entomopathogenic fungi, often acknowledged primarily for their insecticidal properties, fulfill diverse roles within ecosystems. These roles encompass endophytism, antagonism against plant diseases, promotion of the growth of plants, and inhabitation of the rhizosphere, occurring both naturally and upon artificial inoculation, as substantiated by a growing body of contemporary research. Numerous studies have highlighted the beneficial aspects of endophytic colonization. This review aims to systematically organize information concerning the direct (nutrient acquisition and production of phytohormones) and indirect (resistance induction, antibiotic and secondary metabolite production, siderophore production, and mitigation of abiotic and biotic stresses) implications of endophytic colonization. Furthermore, a thorough discussion of these mechanisms is provided. Several challenges, including isolation complexities, classification of novel strains, and the impact of terrestrial location, vegetation type, and anthropogenic reluctance to use fungal entomopathogens, have been recognized as hurdles. However, recent advancements in biotechnology within microbial research hold promising solutions to many of these challenges. Ultimately, the current constraints delineate potential future avenues for leveraging endophytic fungal entomopathogens as dual microbial control agents.
Collapse
Affiliation(s)
- S. M. Ahsan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea;
| | - Md. Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (A.K.D.)
| | - Ashim Kumar Das
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (M.I.-U.-H.); (A.K.D.)
| | - Md. Mezanur Rahman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA;
| | - Md. Mahi Imam Mollah
- Department of Entomology, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh;
| | - Narayan Chandra Paul
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Hyong Woo Choi
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea;
- Institute of Cannabis Biotechnology, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
39
|
Schmidt V, Skokan R, Depaepe T, Kurtović K, Haluška S, Vosolsobě S, Vaculíková R, Pil A, Dobrev PI, Motyka V, Van Der Straeten D, Petrášek J. Phytohormone profiling in an evolutionary framework. Nat Commun 2024; 15:3875. [PMID: 38719800 PMCID: PMC11079000 DOI: 10.1038/s41467-024-47753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta.
Collapse
Affiliation(s)
- Vojtěch Schmidt
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Roman Skokan
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia.
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Katarina Kurtović
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Samuel Haluška
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia
| | - Roberta Vaculíková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Anthony Pil
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Petre Ivanov Dobrev
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Václav Motyka
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Jan Petrášek
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czechia.
- Department of Experimental Plant Biology, Charles University, Viničná 5, 128 44, Prague 2, Czechia.
| |
Collapse
|
40
|
Benítez SV, Carrasco R, Giraldo JD, Schoebitz M. Microbeads as carriers for Bacillus pumilus: a biofertilizer focus on auxin production. J Microencapsul 2024; 41:170-189. [PMID: 38469757 DOI: 10.1080/02652048.2024.2324812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
The study aimed to develop a solid biofertilizer using Bacillus pumilus, focusing on auxin production to enhance plant drought tolerance. Methods involved immobilising B. pumilus in alginate-starch beads, focusing on microbial concentration, biopolymer types, and environmental conditions. The optimal formulation showed a diameter of 3.58 mm ± 0.18, a uniform size distribution after 15 h of drying at 30 °C, a stable bacterial concentration (1.99 × 109 CFU g-1 ± 1.03 × 109 over 180 days at room temperature), a high auxin production (748.8 µg g-1 ± 10.3 of IAA in 7 days), and a water retention capacity of 37% ± 4.07. In conclusion, this new formulation of alginate + starch + L-tryptophan + B. pumilus has the potential for use in crops due to its compelling water retention, high viability in storage at room temperature, and high auxin production, which provides commercial advantages.
Collapse
Affiliation(s)
- Solange V Benítez
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile
| | - Rocio Carrasco
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile
| | - Juan D Giraldo
- Escuela de Ingeniería Ambiental, Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Puerto Montt, Chile
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Universidad de Concepción, Concepción, Chile
- Laboratory of Biofilms and Environmental Microbiology, Center of Biotechnology, University of Concepción, Concepción, Chile
| |
Collapse
|
41
|
Zhao C, Onyino J, Gao X. Current Advances in the Functional Diversity and Mechanisms Underlying Endophyte-Plant Interactions. Microorganisms 2024; 12:779. [PMID: 38674723 PMCID: PMC11052469 DOI: 10.3390/microorganisms12040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Plant phenotype is a complex entity largely controlled by the genotype and various environmental factors. Importantly, co-evolution has allowed plants to coexist with the biotic factors in their surroundings. Recently, plant endophytes as an external plant phenotype, forming part of the complex plethora of the plant microbial assemblage, have gained immense attention from plant scientists. Functionally, endophytes impact the plant in many ways, including increasing nutrient availability, enhancing the ability of plants to cope with both abiotic and biotic stress, and enhancing the accumulation of important plant secondary metabolites. The current state of research has been devoted to evaluating the phenotypic impacts of endophytes on host plants, including their direct influence on plant metabolite accumulation and stress response. However, there is a knowledge gap in how genetic factors influence the interaction of endophytes with host plants, pathogens, and other plant microbial communities, eventually controlling the extended microbial plant phenotype. This review will summarize how host genetic factors can impact the abundance and functional diversity of the endophytic microbial community, how endophytes influence host gene expression, and the host-endophyte-pathogen disease triangle. This information will provide novel insights into how breeders could specifically target the plant-endophyte extended phenotype for crop improvement.
Collapse
Affiliation(s)
- Caihong Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Johnmark Onyino
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiquan Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; (C.Z.); (J.O.)
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
42
|
Amenta ML, Vaccaro F, Varriale S, Sangaré JR, Defez R, Mengoni A, Bianco C. Cereals can trap endophytic bacteria with potential beneficial traits when grown ex-situ in harsh soils. FEMS Microbiol Ecol 2024; 100:fiae041. [PMID: 38544316 PMCID: PMC11009874 DOI: 10.1093/femsec/fiae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Microbial communities associated with plants growing in harsh conditions, including salinity and water deficiency, have developed adaptive features which permit them to grow and survive under extreme environmental conditions. In the present study, an ex-situ plant trapping method has been applied to collect the culturable microbial diversity associated with the soil from harsh and remote areas. Oryza sativa cv. Baldo and Triticum durum Primadur plants were used as recruiters, while the soil surrounding the roots of Oryza glaberrima plants from remote regions of Mali (West Africa) was used as substrate for their growth. The endophytic communities recruited by the two plant species belonged to Proteobacteria and Firmicutes, and the dominant genera were Bacillus, Kosakonia, and Enterobacter. These endophytes were characterized by analyzing some of the most common plant growth promoting traits. Halotolerant, inorganic phosphate-solubilizing and N-fixing strains were found, and some of them simultaneously showing these three traits. We verified that 'Baldo' recruited mostly halotolerant and P-solubilizers endophytes, while the endophytes selected by 'Primadur' were mainly N-fixers. The applied ex-situ plant trapping method allowed to isolate endophytes with potential beneficial traits that could be applied for the improvement of rice and wheat growth under adverse environmental conditions.
Collapse
Affiliation(s)
- Maria Laura Amenta
- National Research Council, Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| | - Francesca Vaccaro
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Stefano Varriale
- National Research Council,
Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| | - Jean Rodrigue Sangaré
- Institut d'Economie Rurale (IER), Centre Régional de Recherche Agronomique (CRRA) de Sikasso, B.P: 16, Mali
| | - Roberto Defez
- National Research Council, Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Carmen Bianco
- National Research Council, Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
43
|
Etesami H, Glick BR. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol Res 2024; 281:127602. [PMID: 38228017 DOI: 10.1016/j.micres.2024.127602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Indole-3-acetic acid (IAA), a fundamental phytohormone categorized under auxins, not only influences plant growth and development but also plays a critical role in plant-microbe interactions. This study reviews the role of IAA in bacteria-plant communication, with a focus on its biosynthesis, regulation, and the subsequent effects on host plants. Bacteria synthesize IAA through multiple pathways, which include the indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and several other routes, whose full mechanisms remain to be fully elucidated. The production of bacterial IAA affects root architecture, nutrient uptake, and resistance to various abiotic stresses such as drought, salinity, and heavy metal toxicity, enhancing plant resilience and thus offering promising routes to sustainable agriculture. Bacterial IAA synthesis is regulated through complex gene networks responsive to environmental cues, impacting plant hormonal balances and symbiotic relationships. Pathogenic bacteria have adapted mechanisms to manipulate the host's IAA dynamics, influencing disease outcomes. On the other hand, beneficial bacteria utilize IAA to promote plant growth and mitigate abiotic stresses, thereby enhancing nutrient use efficiency and reducing dependency on chemical fertilizers. Advancements in analytical methods, such as liquid chromatography-tandem mass spectrometry, have improved the quantification of bacterial IAA, enabling accurate measurement and analysis. Future research focusing on molecular interactions between IAA-producing bacteria and host plants could facilitate the development of biotechnological applications that integrate beneficial bacteria to improve crop performance, which is essential for addressing the challenges posed by climate change and ensuring global food security. This integration of bacterial IAA producers into agricultural practice promises to revolutionize crop management strategies by enhancing growth, fostering resilience, and reducing environmental impact.
Collapse
Affiliation(s)
- Hassan Etesami
- Soil Science Department, University of Tehran, Tehran, Iran.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
44
|
Zouagui R, Zouagui H, Aurag J, Ibrahimi A, Sbabou L. Functional analysis and comparative genomics of Rahnella perminowiae S11P1 and Variovorax sp. S12S4, two plant growth-promoting rhizobacteria isolated from Crocus sativus L. (saffron) rhizosphere. BMC Genomics 2024; 25:289. [PMID: 38500021 PMCID: PMC10946135 DOI: 10.1186/s12864-024-10088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/03/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Rahnella perminowiae S11P1 and Variovorax sp. S12S4 are two plant growth-promoting rhizobacteria that were previously isolated from the rhizosphere of Crocus sativus L. (saffron), and have demonstrated interesting PGP activities and promising results when used as inoculants in field trials. To further elucidate the molecular mechanisms underlying their beneficial effects on plant growth, comprehensive genome mining of S11P1 and S12S4 and comparative genomic analysis with closely related strains were conducted. RESULTS Functional annotation of the two strains predicted a large number of genes involved in auxin and siderophore production, nitrogen fixation, sulfur metabolism, organic acid biosynthesis, pyrroloquinoline quinone production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, volatile organic compounds production, and polyamine biosynthesis. In addition, numerous genes implicated in plant-bacteria interactions, such as those involved in chemotaxis and quorum sensing, were predicted. Moreover, the two strains carried genes involved in bacterial fitness under abiotic stress conditions. Comparative genomic analysis revealed an open pan-genomic structure for the two strains. COG annotation showed that higher fractions of core and accessory genes were involved in the metabolism and transport of carbohydrates and amino acids, suggesting the metabolic versatility of the two strains as effective rhizosphere colonizers. Furthermore, this study reports the first comparison of Multilocus sequence analysis (MLSA) and core-based phylogenies of the Rahnella and Variovorax genera. CONCLUSIONS The present study unveils the molecular mechanisms underlying plant growth promotion and biocontrol activity of S11P1 and S12S4, and provides a basis for their further biotechnological application in agriculture.
Collapse
Affiliation(s)
- Rahma Zouagui
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Houda Zouagui
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Jamal Aurag
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Azeddine Ibrahimi
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Laila Sbabou
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
| |
Collapse
|
45
|
Tsavkelova EA, Volynchikova EA, Potekhina NV, Lavrov KV, Avtukh AN. Auxin production and plant growth promotion by Microbacterium albopurpureum sp. nov. from the rhizoplane of leafless Chiloschista parishii Seidenf. orchid. FRONTIERS IN PLANT SCIENCE 2024; 15:1360828. [PMID: 38559760 PMCID: PMC10978784 DOI: 10.3389/fpls.2024.1360828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
The strains of the genus Microbacterium, with more than 150 species, inhabit diverse environments; plant-associated bacteria reveal their plant growth-promoting activities due to a number of beneficial characteristics. Through the performance of diverse techniques and methods, including isolation of a novel Microbacterium strain from the aerial roots of leafless epiphytic orchid, Chiloschista parishii Seidenf., its morphological and biochemical characterization, chemotaxonomy, phylogenetic and genome analysis, as well as bioassays and estimation of its auxin production capacity, a novel strain of ET2T is described. Despite that it shared 16S rRNA gene sequence similarity of 99.79% with Microbacterium kunmingense JXJ CY 27-2T, so they formed a monophyletic group on phylogenetic trees, the two strains showed clear divergence of their genome sequences. The average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values of ET2T differed greatly from phylogenetically close JXJ CY 27-2T. Based on the differences being below the threshold for species similarity, together with the unique chemotaxonomic characteristics, strain ET2T represents a novel species of the genus Microbacterium. Several genes, putatively involved in auxin biosynthesis were predicted. This strain revealed obvious plant growth-promoting activities, including diazotrophy and biosynthesis of tryptophan-dependent auxins (indole-3-acetic and indole-3-pyruvic acids). Microbial auxins directly stimulated the rhizogenesis, so that the ET2T-inoculated seeds of wheat, cucumber and garden cress showed evident promotion in their growth and development, both under optimal and under cold stress conditions. Based on phenotypic, chemotypic and genotypic evidences, the strain ET2T belongs to the genus Microbacterium, order Micrococcales, class Actinomycetes, and it represents a novel species, for which the name Microbacterium albopurpureum sp. nov. is proposed, with strain ET2T (VKPM Ac-2212, VKM Ас-2998) as the type strain.
Collapse
Affiliation(s)
- Elena A. Tsavkelova
- Department of Biology, Shenzhen Moscow State University and Beijing Institute of Technology (MSU-BIT) University, Shenzhen, Guangdong, China
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Konstantin V. Lavrov
- Genomic Center of National Research Centre (NRC) “Kurchatov Institute”, Moscow, Russia
| | - Alexander N. Avtukh
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
46
|
Volynchikova EA, Khrenova MG, Panova TV, Rodin VA, Zvereva MI, Tsavkelova EA. Complete genome sequence of new Microbacterium sp. strain ET2, isolated from roots of leafless orchid. Microbiol Resour Announc 2024; 13:e0089923. [PMID: 38385669 DOI: 10.1128/mra.00899-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Whole-genome sequence of ET2 strain, isolated from the roots of leafless orchid, constitutes a single circular chromosome of 3,604,840 bp (69.44% G + C content). BLAST+-based average nucleotide identity (ANIb) and digital DNA-DNA hybridization values indicate that ET2 may be a novel Microbacterium species. Genes putatively involved in plant-microbial interactions were predicted.
Collapse
Affiliation(s)
| | - Maria G Khrenova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana V Panova
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A Rodin
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Maria I Zvereva
- Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Elena A Tsavkelova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
47
|
Espindula E, Passaglia LMP. Maize-Azospirillum brasilense interaction: accessing maize's miRNA expression under the effect of an inhibitor of indole-3-acetic acid production by the plant. Braz J Microbiol 2024; 55:101-109. [PMID: 38214876 PMCID: PMC10920601 DOI: 10.1007/s42770-023-01236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
MicroRNA (miRNA) is a class of non-coding RNAs. They play essential roles in plants' physiology, as in the regulation of plant development, response to biotic and abiotic stresses, and symbiotic processes. This work aimed to better understand the importance of maize's miRNA during Azospirillum-plant interaction when the plant indole-3-acetic acid (IAA) production was inhibited with yucasin, an inhibitor of the TAM/YUC pathway. Twelve cDNA libraries from a previous Dual RNA-Seq experiment were used to analyze gene expression using a combined analysis approach. miRNA coding genes (miR) and their predicted mRNA targets were identified among the differentially expressed genes. Statistical differences among the groups indicate that Azospirillum brasilense, yucasin, IAA concentration, or all together could influence the expression of several maize's miRNAs. The miRNA's probable targets were identified, and some of them were observed to be differentially expressed. Dcl4, myb122, myb22, and morf3 mRNAs were probably regulated by their respective miRNAs. Other probable targets were observed responding to the IAA level, the bacterium, or all of them. A. brasilense was able to influence the expression of some maize's miRNA, for example, miR159f, miR164a, miR169j, miR396c, and miR399c. The results allow us to conclude that the bacterium can influence directly or indirectly the expression of some of the identified mRNA targets, probably due to an IAA-independent pathway, and that they are somehow involved in the previously observed physiological effects.
Collapse
Affiliation(s)
- Eliandro Espindula
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Centro Politécnico, Curitiba, PR, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
48
|
Seitz VA, McGivem BB, Borton MA, Chaparro JM, Schipanski ME, Prenni JE, Wrighton KC. Cover Crop Root Exudates Impact Soil Microbiome Functional Trajectories in Agricultural Soils. RESEARCH SQUARE 2024:rs.3.rs-3956430. [PMID: 38410449 PMCID: PMC10896397 DOI: 10.21203/rs.3.rs-3956430/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Background Cover cropping is an agricultural practice that uses secondary crops to support the growth of primary crops through various mechanisms including erosion control, weed suppression, nutrient management, and enhanced biodiversity. Cover crops may elicit some of these ecosystem services through chemical interactions with the soil microbiome via root exudation, or the release of plant metabolites from roots. Phytohormones are one metabolite type exuded by plants that activate the rhizosphere microbiome, yet managing this chemical interaction remains an untapped mechanism for optimizing plant-soil microbiome interactions. Currently, there is limited understanding on the diversity of cover crop phytohormone root exudation patterns and how these chemical messages selectively enrich specific microbial taxa and functionalities in agricultural soils. Results Here, we link variability in cover crop root exudate composition to changes in soil microbiome functionality. Exudate chemical profiles from 4 cover crop species (Sorghum bicolor, Vicia villosa, Brassica napus, and Secale cereal) were used as the chemical inputs to decipher microbial responses. These distinct exudate profiles, along with a no exudate control, were amended to agricultural soil microcosms with microbial responses tracked over time using metabolomes and genome-resolved metatranscriptomes. Our findings illustrated microbial metabolic patterns were unique in response to cover crop exudate inputs over time, particularly by sorghum and cereal rye amended microcosms where we identify novel microbial members (at the genera and family level) who produced IAA and GA4 over time. We also identify broad changes in microbial nitrogen cycling in response chemical inputs. Conclusions We highlight that root exudate amendments alter microbial community function and phytohormone metabolisms, particularly in response to root exudates isolated from cereal rye and sorghum plants. Additionally, we constructed a soil microbial genomic catalog of microorganisms responding to commonly used cover crops, a public resource for agriculturally-relevant microbes. Many of our exudate-stimulated microorganisms are representatives from poorly characterized or novel taxa, highlighting the yet to be discovered metabolic reservoir harbored in agricultural soils. Our findings emphasize the tractability of high-resolution multiomics approaches to investigate processes relevant for agricultural soils, opening the possibility of targeting specific soil biogeochemical outcomes through biological precision agricultural practices that use cover crops and the microbiome as levers for enhanced crop production.
Collapse
|
49
|
Behr JH, Kuhl-Nagel T, Sommermann L, Moradtalab N, Chowdhury SP, Schloter M, Windisch S, Schellenberg I, Maccario L, Sørensen SJ, Rothballer M, Geistlinger J, Smalla K, Ludewig U, Neumann G, Grosch R, Babin D. Long-term conservation tillage with reduced nitrogen fertilization intensity can improve winter wheat health via positive plant-microorganism feedback in the rhizosphere. FEMS Microbiol Ecol 2024; 100:fiae003. [PMID: 38224956 PMCID: PMC10847717 DOI: 10.1093/femsec/fiae003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024] Open
Abstract
Microbiome-based solutions are regarded key for sustainable agroecosystems. However, it is unclear how agricultural practices affect the rhizosphere microbiome, plant-microorganism interactions and crop performance under field conditions. Therefore, we installed root observation windows in a winter wheat field cultivated either under long-term mouldboard plough (MP) or cultivator tillage (CT). Each tillage practice was also compared at two nitrogen (N) fertilization intensities, intensive (recommended N-supply with pesticides/growth regulators) or extensive (reduced N-supply, no fungicides/growth regulators). Shoot biomass, root exudates and rhizosphere metabolites, physiological stress indicators, and gene expression were analyzed together with the rhizosphere microbiome (bacterial/archaeal 16S rRNA gene, fungal ITS amplicon, and shotgun metagenome sequencing) shortly before flowering. Compared to MP, the rhizosphere of CT winter wheat contained more primary and secondary metabolites, especially benzoxazinoid derivatives. Potential copiotrophic and plant-beneficial taxa (e.g. Bacillus, Devosia, and Trichoderma) as well as functional genes (e.g. siderophore production, trehalose synthase, and ACC deaminase) were enriched in the CT rhizosphere, suggesting that tillage affected belowground plant-microorganism interactions. In addition, physiological stress markers were suppressed in CT winter wheat compared to MP. In summary, tillage practice was a major driver of crop performance, root deposits, and rhizosphere microbiome interactions, while the N-fertilization intensity was also relevant, but less important.
Collapse
Affiliation(s)
- Jan Helge Behr
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Theresa Kuhl-Nagel
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Loreen Sommermann
- Anhalt University of Applied Sciences, Department of Agriculture
, Ecotrophology and Landscape Development, Strenzfelder Allee 28, 06406 Bernburg, Germany
| | - Narges Moradtalab
- University of Hohenheim, Institute of Crop Science (340 h), Fruwirthstraße 20, 70599 Stuttgart, Germany
| | - Soumitra Paul Chowdhury
- Institute of Network Biology
, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis
(COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Saskia Windisch
- University of Hohenheim, Institute of Crop Science (340 h), Fruwirthstraße 20, 70599 Stuttgart, Germany
| | - Ingo Schellenberg
- Anhalt University of Applied Sciences, Department of Agriculture
, Ecotrophology and Landscape Development, Strenzfelder Allee 28, 06406 Bernburg, Germany
| | - Lorrie Maccario
- University of Copenhagen, Department of Biology, Section of Microbiology, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Søren J Sørensen
- University of Copenhagen, Department of Biology, Section of Microbiology, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Michael Rothballer
- Institute of Network Biology
, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Joerg Geistlinger
- Anhalt University of Applied Sciences, Department of Agriculture
, Ecotrophology and Landscape Development, Strenzfelder Allee 28, 06406 Bernburg, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Uwe Ludewig
- University of Hohenheim, Institute of Crop Science (340 h), Fruwirthstraße 20, 70599 Stuttgart, Germany
| | - Günter Neumann
- University of Hohenheim, Institute of Crop Science (340 h), Fruwirthstraße 20, 70599 Stuttgart, Germany
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Plant-Microbe Systems, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
| | - Doreen Babin
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| |
Collapse
|
50
|
Zhang H, Rong Z, Li Y, Yin Z, Lu C, Zhao H, Kong L, Meng L, Ding X. NIT24 and NIT29-mediated IAA synthesis of Xanthomonas oryzae pv. oryzicola suppresses immunity and boosts growth in rice. MOLECULAR PLANT PATHOLOGY 2024; 25:e13409. [PMID: 38069667 PMCID: PMC10788589 DOI: 10.1111/mpp.13409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024]
Abstract
Auxin plays a pivotal role in the co-evolution of plants and microorganisms. Xanthomonas oryzae pv. oryzicola (Xoc) stands as a significant factor that affects rice yield and quality. However, the current understanding of Xoc's capability for indole 3-acetic acid (IAA) synthesis and its mechanistic implications remains elusive. In this study, we performed a comprehensive genomic analysis of Xoc strain RS105, leading to the identification of two nitrilase enzyme family (NIT) genes, designated as AKO15524.1 and AKO15829.1, subsequently named NIT24 and NIT29, respectively. Our investigation unveiled that the deletion of NIT24 and NIT29 resulted in a notable reduction in IAA synthesis capacity within RS105, thereby impacting extracellular polysaccharide production. This deficiency was partially ameliorated through exogenous IAA supplementation. The study further substantiated that NIT24 and NIT29 have nitrilase activity and the ability to catalyse IAA production in vitro. The lesion length and bacterial population statistics experiments confirmed that NIT24 and NIT29 positively regulated the pathogenicity of RS105, suggesting that NIT24 and NIT29 may regulate Xoc invasion by affecting IAA synthesis. Furthermore, our analysis corroborated mutant strains, RS105_ΔNIT24 and RS105_ΔNIT29, which elicited the outbreak of reactive oxygen species, the deposition of callose and the upregulation of defence-related gene expression in rice. IAA exerted a significant dampening effect on the immune responses incited by these mutant strains in rice. In addition, the absence of NIT24 and NIT29 affected the growth-promoting effect of Xoc on rice. This implies that Xoc may promote rice growth by secreting IAA, thus providing a more suitable microenvironment for its own colonization. In summary, our study provides compelling evidence for the existence of a nitrilase-dependent IAA biosynthesis pathway in Xoc. IAA synthesis-related genes promote Xoc colonization by inhibiting rice immune defence response and affecting rice growth by increasing IAA content in Xoc.
Collapse
Affiliation(s)
- Haimiao Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Zixuan Rong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Lingguang Kong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Lun Meng
- Shike Modern Agriculture Investment Co., LtdHezeChina
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| |
Collapse
|