1
|
Ma D, Gu C. Discovering functional interactions among schizophrenia-risk genes by combining behavioral genetics with cell biology. Neurosci Biobehav Rev 2024; 167:105897. [PMID: 39278606 DOI: 10.1016/j.neubiorev.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/26/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
Despite much progress in identifying risk genes for polygenic brain disorders, their core pathogenic mechanisms remain poorly understood. In particular, functions of many proteins encoded by schizophrenia risk genes appear diverse and unrelated, complicating the efforts to establish the causal relationship between genes and behavior. Using various mouse lines, recent studies indicate that alterations of parvalbumin-positive (PV+) GABAergic interneurons can lead to schizophrenia-like behavior. PV+ interneurons display fast spiking and contribute to excitation-inhibition balance and network oscillations via feedback and feedforward inhibition. Here, we first summarize different lines of genetically modified mice that display motor, cognitive, emotional, and social impairments used to model schizophrenia and related mental disorders. We highlight ten genes, encoding either a nuclear, cytosolic, or membrane protein. Next, we discuss their functional relationship in regulating fast spiking and other aspects of PV+ interneurons and in the context of other domains of schizophrenia. Future investigations combining behavioral genetics and cell biology should elucidate functional relationships among risk genes to identify the core pathogenic mechanisms underlying polygenic brain disorders.
Collapse
Affiliation(s)
- Di Ma
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Chen Gu
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Roy K, Zhou X, Otani R, Yuan PC, Ioka S, Vogt KE, Kondo T, Farag NHT, Ijiri H, Wu Z, Chitose Y, Amezawa M, Uygun DS, Cherasse Y, Nagase H, Li Y, Yanagisawa M, Abe M, Basheer R, Wang YQ, Saitoh T, Lazarus M. Optochemical control of slow-wave sleep in the nucleus accumbens of male mice by a photoactivatable allosteric modulator of adenosine A 2A receptors. Nat Commun 2024; 15:3661. [PMID: 38688901 PMCID: PMC11061178 DOI: 10.1038/s41467-024-47964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Optochemistry, an emerging pharmacologic approach in which light is used to selectively activate or deactivate molecules, has the potential to alleviate symptoms, cure diseases, and improve quality of life while preventing uncontrolled drug effects. The development of in-vivo applications for optochemistry to render brain cells photoresponsive without relying on genetic engineering has been progressing slowly. The nucleus accumbens (NAc) is a region for the regulation of slow-wave sleep (SWS) through the integration of motivational stimuli. Adenosine emerges as a promising candidate molecule for activating indirect pathway neurons of the NAc expressing adenosine A2A receptors (A2ARs) to induce SWS. Here, we developed a brain-permeable positive allosteric modulator of A2ARs (A2AR PAM) that can be rapidly photoactivated with visible light (λ > 400 nm) and used it optoallosterically to induce SWS in the NAc of freely behaving male mice by increasing the activity of extracellular adenosine derived from astrocytic and neuronal activity.
Collapse
Affiliation(s)
- Koustav Roy
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Xuzhao Zhou
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rintaro Otani
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ping-Chuan Yuan
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Shuji Ioka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kaspar E Vogt
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tamae Kondo
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nouran H T Farag
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruto Ijiri
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- PhD Program in Humanics, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Youhei Chitose
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University Research Center for Photo-Drug-Delivery Systems (HiU-P-DDS), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Mao Amezawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - David S Uygun
- Department of Psychiatry, Veterans Administration Boston Healthcare System and Harvard Medical School, West Roxbury, MA, USA
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yulong Li
- New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University Research Center for Photo-Drug-Delivery Systems (HiU-P-DDS), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Radhika Basheer
- Department of Psychiatry, Veterans Administration Boston Healthcare System and Harvard Medical School, West Roxbury, MA, USA
| | - Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China.
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
3
|
Wales-McGrath B, Mercer H, Piontkivska H. Changes in ADAR RNA editing patterns in CMV and ZIKV congenital infections. BMC Genomics 2023; 24:685. [PMID: 37968596 PMCID: PMC10652522 DOI: 10.1186/s12864-023-09778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND RNA editing is a process that increases transcriptome diversity, often through Adenosine Deaminases Acting on RNA (ADARs) that catalyze the deamination of adenosine to inosine. ADAR editing plays an important role in regulating brain function and immune activation, and is dynamically regulated during brain development. Additionally, the ADAR1 p150 isoform is induced by interferons in viral infection and plays a role in antiviral immune response. However, the question of how virus-induced ADAR expression affects host transcriptome editing remains largely unanswered. This question is particularly relevant in the context of congenital infections, given the dynamic regulation of ADAR editing during brain development, the importance of this editing for brain function, and subsequent neurological symptoms of such infections, including microcephaly, sensory issues, and other neurodevelopmental abnormalities. Here, we begin to address this question, examining ADAR expression in publicly available datasets of congenital infections of human cytomegalovirus (HCMV) microarray expression data, as well as mouse cytomegalovirus (MCMV) and mouse/ human induced pluripotent neuroprogenitor stem cell (hiNPC) Zika virus (ZIKV) RNA-seq data. RESULTS We found that in all three datasets, ADAR1 was overexpressed in infected samples compared to uninfected samples. In the RNA-seq datasets, editing rates were also analyzed. In all mouse infections cases, the number of editing sites was significantly increased in infected samples, albeit this was not the case for hiNPC ZIKV samples. Mouse ZIKV samples showed altered editing of well-established protein-recoding sites such as Gria3, Grik5, and Nova1, as well as editing sites that may impact miRNA binding. CONCLUSIONS Our findings provide evidence for changes in ADAR expression and subsequent dysregulation of ADAR editing of host transcriptomes in congenital infections. These changes in editing patterns of key neural genes have potential significance in the development of neurological symptoms, thus contributing to neurodevelopmental abnormalities. Further experiments should be performed to explore the full range of editing changes that occur in different congenital infections, and to confirm the specific functional consequences of these editing changes.
Collapse
Affiliation(s)
- Benjamin Wales-McGrath
- University of Pennsylvania, Perelman School of Medicine, Department of Genetics, Philadelphia, PA, USA
- Children's Hospital of Philadelphia, Division of Cancer Pathobiology, Philadelphia, PA, USA
| | - Heather Mercer
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.
- Brain Health Research Institute, Kent State University, Kent, OH, USA.
- Healthy Communities Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
4
|
Ma D, Sun C, Manne R, Guo T, Bosc C, Barry J, Magliery T, Andrieux A, Li H, Gu C. A cytoskeleton-membrane interaction conserved in fast-spiking neurons controls movement, emotion, and memory. Mol Psychiatry 2023; 28:3994-4010. [PMID: 37833406 PMCID: PMC10905646 DOI: 10.1038/s41380-023-02286-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
The pathogenesis of schizophrenia is believed to involve combined dysfunctions of many proteins including microtubule-associated protein 6 (MAP6) and Kv3.1 voltage-gated K+ (Kv) channel, but their relationship and functions in behavioral regulation are often not known. Here we report that MAP6 stabilizes Kv3.1 channels in parvalbumin-positive (PV+ ) fast-spiking GABAergic interneurons, regulating behavior. MAP6-/- and Kv3.1-/- mice display similar hyperactivity and avoidance reduction. Their proteins colocalize in PV+ interneurons and MAP6 deletion markedly reduces Kv3.1 protein level. We further show that two microtubule-binding modules of MAP6 bind the Kv3.1 tetramerization domain with high affinity, maintaining the channel level in both neuronal soma and axons. MAP6 knockdown by AAV-shRNA in the amygdala or the hippocampus reduces avoidance or causes hyperactivity and recognition memory deficit, respectively, through elevating projection neuron activity. Finally, knocking down Kv3.1 or disrupting the MAP6-Kv3.1 binding in these brain regions causes avoidance reduction and hyperactivity, consistent with the effects of MAP6 knockdown. Thus, disrupting this conserved cytoskeleton-membrane interaction in fast-spiking neurons causes different degrees of functional vulnerability in various neural circuits.
Collapse
Affiliation(s)
- Di Ma
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Chao Sun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- MCDB graduate program, The Ohio State University, Columbus, OH, USA
| | - Rahul Manne
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Tianqi Guo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Joshua Barry
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Thomas Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Houzhi Li
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
| | - Chen Gu
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
- MCDB graduate program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Gimenez U, Deloulme JC, Lahrech H. Rapid microscopic 3D-diffusion tensor imaging fiber-tracking of mouse brain in vivo by super resolution reconstruction: validation on MAP6-KO mouse model. MAGMA (NEW YORK, N.Y.) 2023; 36:577-587. [PMID: 36695926 DOI: 10.1007/s10334-023-01061-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 12/10/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
OBJECT Exploring mouse brains by rapid 3D-Diffusion Tensor Imaging (3D-DTI) of high spatial resolution (HSR) is challenging in vivo. Here we use the super resolution reconstruction (SRR) postprocessing method to demonstrate its performance on Microtubule-Associated-Protein6 Knock-Out (MAP6-KO) mice. MATERIALS AND METHODS Two spin-echo DTI were acquired (9.4T, CryoProbe RF-coil): (i)-multislice 2D-DTI, (echo-planar integrating reversed-gradient) acquired in vivo in the three orthogonal orientations (360 μm slice-thickness, 120 × 120 μm in-plane resolution, 56 min scan duration); used in SRR software to reconstruct SRR 3D-DTI with HSR in slice-plane (120 × 120 × 120 µm) and (ii)-microscopic 3D-DTI (µ-3D-DTI), (100 × 100 × 100 µm; 8 h 6 min) on fixed-brains ex vivo, that were removed after paramagnetic contrast-agent injection to accelerate scan acquisition using short repetition-times without NMR-signal sensitivity loss. RESULTS White-matter defects, quantified from both 3D-DTI fiber-tracking were found very similar. Indeed, as expected the fornix and cerebral-peduncle volume losses were - 39% and - 35% in vivo (SRR 3D-DTI) versus - 34% and - 32% ex vivo (µ-3D-DTI), respectively (p<0.001). This finding is robust since the µ-3D-DTI feasibility on MAP6-KO ex vivo was already validated by fluorescent-microscopy of cleared brains. DISCUSSION First performance of the SRR to generate rapid HSR 3D-DTI of mouse brains in vivo is demonstrated. The method is suitable in neurosciences for longitudinal studies to identify molecular and genetic abnormalities in mouse models that are of growing developments.
Collapse
Affiliation(s)
- Ulysse Gimenez
- University. Grenoble Alpes, Inserm, U1205, BrainTech Lab, 1, place Commandant Nal, 38700, La Tronche, Grenoble, France
- , BioSerenity company 20 Rue Berbier de Mets, 75013, Paris, France
| | - Jean Christophe Deloulme
- University. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut Neurosciences, 31, chemin Fortuné Ferrini, 38700, La Tronche, Grenoble, France
| | - Hana Lahrech
- University. Grenoble Alpes, Inserm, U1205, BrainTech Lab, 1, place Commandant Nal, 38700, La Tronche, Grenoble, France.
| |
Collapse
|
6
|
de Souza DAR, Mathieu H, Deloulme JC, Barbier EL. Evaluation of kernel low-rank compressed sensing in preclinical diffusion magnetic resonance imaging. Front Neurosci 2023; 17:1172830. [PMID: 37332879 PMCID: PMC10272537 DOI: 10.3389/fnins.2023.1172830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/28/2023] [Indexed: 06/20/2023] Open
Abstract
Compressed sensing (CS) is widely used to accelerate clinical diffusion MRI acquisitions, but it is not widely used in preclinical settings yet. In this study, we optimized and compared several CS reconstruction methods for diffusion imaging. Different undersampling patterns and two reconstruction approaches were evaluated: conventional CS, based on Berkeley Advanced Reconstruction Toolbox (BART-CS) toolbox, and a new kernel low-rank (KLR)-CS, based on kernel principal component analysis and low-resolution-phase (LRP) maps. 3D CS acquisitions were performed at 9.4T using a 4-element cryocoil on mice (wild type and a MAP6 knockout). Comparison metrics were error and structural similarity index measure (SSIM) on fractional anisotropy (FA) and mean diffusivity (MD), as well as reconstructions of the anterior commissure and fornix. Acceleration factors (AF) up to 6 were considered. In the case of retrospective undersampling, the proposed KLR-CS outperformed BART-CS up to AF = 6 for FA and MD maps and tractography. For instance, for AF = 4, the maximum errors were, respectively, 8.0% for BART-CS and 4.9% for KLR-CS, considering both FA and MD in the corpus callosum. Regarding undersampled acquisitions, these maximum errors became, respectively, 10.5% for BART-CS and 7.0% for KLR-CS. This difference between simulations and acquisitions arose mainly from repetition noise, but also from differences in resonance frequency drift, signal-to-noise ratio, and in reconstruction noise. Despite this increased error, fully sampled and AF = 2 yielded comparable results for FA, MD and tractography, and AF = 4 showed minor faults. Altogether, KLR-CS based on LRP maps seems a robust approach to accelerate preclinical diffusion MRI and thereby limit the effect of the frequency drift.
Collapse
Affiliation(s)
| | - Hervé Mathieu
- Université Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
- Université Grenoble Alpes, INSERM, US17, CNRS, UAR 3552, CHU Grenoble Alpes, Grenoble, France
| | | | - Emmanuel L. Barbier
- Université Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
- Université Grenoble Alpes, INSERM, US17, CNRS, UAR 3552, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
7
|
Iwanski MK, Kapitein LC. Cellular cartography: Towards an atlas of the neuronal microtubule cytoskeleton. Front Cell Dev Biol 2023; 11:1052245. [PMID: 37035244 PMCID: PMC10073685 DOI: 10.3389/fcell.2023.1052245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Microtubules, one of the major components of the cytoskeleton, play a crucial role during many aspects of neuronal development and function, such as neuronal polarization and axon outgrowth. Consequently, the microtubule cytoskeleton has been implicated in many neurodevelopmental and neurodegenerative disorders. The polar nature of microtubules is quintessential for their function, allowing them to serve as tracks for long-distance, directed intracellular transport by kinesin and dynein motors. Most of these motors move exclusively towards either the plus- or minus-end of a microtubule and some have been shown to have a preference for either dynamic or stable microtubules, those bearing a particular post-translational modification or those decorated by a specific microtubule-associated protein. Thus, it becomes important to consider the interplay of these features and their combinatorial effects on transport, as well as how different types of microtubules are organized in the cell. Here, we discuss microtubule subsets in terms of tubulin isotypes, tubulin post-translational modifications, microtubule-associated proteins, microtubule stability or dynamicity, and microtubule orientation. We highlight techniques used to study these features of the microtubule cytoskeleton and, using the information from these studies, try to define the composition, role, and organization of some of these subsets in neurons.
Collapse
Affiliation(s)
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
8
|
Lin Y, Roy K, Ioka S, Otani R, Amezawa M, Ishikawa Y, Cherasse Y, Kaushik MK, Klewe-Nebenius D, Zhou L, Yanagisawa M, Oishi Y, Saitoh T, Lazarus M. Positive allosteric adenosine A 2A receptor modulation suppresses insomnia associated with mania- and schizophrenia-like behaviors in mice. Front Pharmacol 2023; 14:1138666. [PMID: 37153764 PMCID: PMC10155833 DOI: 10.3389/fphar.2023.1138666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
Background: Insomnia is associated with psychiatric illnesses such as bipolar disorder or schizophrenia. Treating insomnia improves psychotic symptoms severity, quality of life, and functional outcomes. Patients with psychiatric disorders are often dissatisfied with the available therapeutic options for their insomnia. In contrast, positive allosteric modulation of adenosine A2A receptors (A2ARs) leads to slow-wave sleep without cardiovascular side effects in contrast to A2AR agonists. Methods: We investigated the hypnotic effects of A2AR positive allosteric modulators (PAMs) in mice with mania-like behavior produced by ablating GABAergic neurons in the ventral medial midbrain/pons area and in a mouse model of schizophrenia by knocking out of microtubule-associated protein 6. We also compared the properties of sleep induced by A2AR PAMs in mice with mania-like behavior with those induced by DORA-22, a dual orexin receptor antagonist that improves sleep in pre-clinical models, and the benzodiazepine diazepam. Results: A2AR PAMs suppress insomnia associated with mania- or schizophrenia-like behaviors in mice. A2AR PAM-mediated suppression of insomnia in mice with mania-like behavior was similar to that mediated by DORA-22, and, unlike diazepam, did not result in abnormal sleep. Conclusion: A2AR allosteric modulation may represent a new therapeutic avenue for sleep disruption associated with bipolar disorder or psychosis.
Collapse
Affiliation(s)
- Yang Lin
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Koustav Roy
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Shuji Ioka
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Rintaro Otani
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Mao Amezawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Yukiko Ishikawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Mahesh K. Kaushik
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Daniela Klewe-Nebenius
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Li Zhou
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
| | - Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- *Correspondence: Tsuyoshi Saitoh, ; Michael Lazarus,
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), Tsukuba, Ibaraki, Japan
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- *Correspondence: Tsuyoshi Saitoh, ; Michael Lazarus,
| |
Collapse
|
9
|
Lafanechère L. The microtubule cytoskeleton: An old validated target for novel therapeutic drugs. Front Pharmacol 2022; 13:969183. [PMID: 36188585 PMCID: PMC9521402 DOI: 10.3389/fphar.2022.969183] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
Compounds targeting microtubules are widely used in cancer therapy with a proven efficacy. However, because they also target non-cancerous cells, their administration leads to numerous adverse effects. With the advancement of knowledge on the structure of tubulin, the regulation of microtubule dynamics and their deregulation in pathological processes, new therapeutic strategies are emerging, both for the treatment of cancer and for other diseases, such as neuronal or even heart diseases and parasite infections. In addition, a better understanding of the mechanism of action of well-known drugs such as colchicine or certain kinase inhibitors contributes to the development of these new therapeutic approaches. Nowadays, chemists and biologists are working jointly to select drugs which target the microtubule cytoskeleton and have improved properties. On the basis of a few examples this review attempts to depict the panorama of these recent advances.
Collapse
|
10
|
Sen S, Lagas S, Roy A, Kumar H. Cytoskeleton saga: Its regulation in normal physiology and modulation in neurodegenerative disorders. Eur J Pharmacol 2022; 925:175001. [PMID: 35525310 DOI: 10.1016/j.ejphar.2022.175001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022]
Abstract
Cells are fundamental units of life. To ensure the maintenance of homeostasis, integrity of structural and functional counterparts is needed to be essentially balanced. The cytoskeleton plays a vital role in regulating the cellular morphology, signalling and other factors involved in pathological conditions. Microtubules, actin (microfilaments), intermediate filaments (IF) and their interactions are required for these activities. Various proteins associated with these components are primary requirements for directing their functions. Disruption of this organization due to faulty genetics, oxidative stress or impaired transport mechanisms are the major causes of dysregulated signalling cascades leading to various pathological conditions like Alzheimer's (AD), Parkinson's (PD), Huntington's disease (HD) or amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia (HSP) or any traumatic injury like spinal cord injury (SCI). Novel or conventional therapeutic approaches may be specific or non-specific, targeting either three basic components of the cytoskeleton or various cascades that serve as a cue to numerous pathways like ROCK signalling or the GSK-3β pathway. An enormous number of drugs have been redirected for modulating the cytoskeletal dynamics and thereby may pave the way for inhibiting the progression of these diseases and their complications.
Collapse
Affiliation(s)
- Santimoy Sen
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Sheetal Lagas
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
11
|
Kim B, Sasaki A, Murphy K, Matthews SG. DNA methylation signatures in human neonatal blood following maternal antenatal corticosteroid treatment. Transl Psychiatry 2022; 12:132. [PMID: 35354798 PMCID: PMC8967826 DOI: 10.1038/s41398-022-01902-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Antenatal corticosteroids (ACS) are used to treat women at risk of preterm birth to improve neonatal survival. Though affected children may be at long-term risk of neurobehavioural disorders, the driving mechanisms remain unknown. Animal studies have shown that ACS exposure can lead to overlapping changes in DNA methylation between the blood and the brain, identifying gene pathways for neurodevelopment, which highlights the potential to examine peripheral blood as a surrogate for inaccessible human brain tissue. We hypothesized that differential methylation will be identified in blood of term-born neonates following ACS. Mother-infant dyads that received ACS were retrospectively identified through the Ontario Birth Study at Sinai Health Complex and matched to untreated controls for maternal age, BMI, parity and foetal sex (n = 14/group). Genome-wide methylation differences were examined at single-nucleotide resolution in DNA extracted from dried bloodspot cards using reduced representative bisulfite sequencing approaches. 505 differentially methylated CpG sites (DMCs) were identified, wherein 231 were hypermethylated and 274 were hypomethylated. These sites were annotated to 219 genes, of which USP48, SH3PXD2A, NTM, CAMK2N2, MAP6D1 were five of the top ten genes with known neurological function. Collectively, the set of hypermethylated genes were enriched for pathways of transcription regulation, while pathways of proteasome activity were enriched among the set of hypomethylated genes. This study is the first to identify DNA methylation changes in human neonatal blood following ACS. Understanding the epigenetic changes that occur in response to ACS will support future investigations to delineate the effects of prenatal glucocorticoid exposure on human development.
Collapse
Affiliation(s)
- Bona Kim
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
| | - Aya Sasaki
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Kellie Murphy
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Percelay S, Freret T, Turnbull N, Bouet V, Boulouard M. Combination of MAP6 deficit, maternal separation and MK801 in female mice: A 3-hit animal model of neurodevelopmental disorder with cognitive deficits. Behav Brain Res 2021; 413:113473. [PMID: 34280461 DOI: 10.1016/j.bbr.2021.113473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022]
Abstract
Schizophrenia is a major psychiatric disease still lacking efficient treatment, particularly for cognitive deficits. To go further in research of new treatments that would encompass all the symptoms associated with this pathology, preclinical animal models need to be improved. To date, the aetiology of schizophrenia is unknown, but there is increasing evidence to highlight its multifactorial nature. We built a new neurodevelopmental mouse model gathering a triple factor combination (3-M): a genetic factor (partial deletion of MAP6 gene), an early stress (maternal separation) and a late pharmacological factor (MK801 administration, 0.05 mg/kg, i.p., daily for 5 days). The effects of each factor and of their combination were investigated on several behaviours including cognitive functions. While each individual factor induced slight deficits in one or another behavioural test, 3-M conditioning induces a wider phenotype with hyperlocomotion and cognitive deficits (working memory and social recognition). This study confirms the hypothesis that genetic, environmental and pharmacological factors, even if not deleterious by themselves, could act synergistically to induce a deleterious behavioural phenotype. It moreover encourages the use of such combined models to improve translational research on neurodevelopmental disorders.
Collapse
Affiliation(s)
- Solenn Percelay
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France.
| | - Thomas Freret
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| | - Nicole Turnbull
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| | - Valentine Bouet
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| | - Michel Boulouard
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, 14000, Caen, France
| |
Collapse
|
13
|
Pérez-Martín E, Muñoz-Castañeda R, Moutin MJ, Ávila-Zarza CA, Muñoz-Castañeda JM, Del Pilar C, Alonso JR, Andrieux A, Díaz D, Weruaga E. Oleoylethanolamide Delays the Dysfunction and Death of Purkinje Cells and Ameliorates Behavioral Defects in a Mouse Model of Cerebellar Neurodegeneration. Neurotherapeutics 2021; 18:1748-1767. [PMID: 33829414 PMCID: PMC8609004 DOI: 10.1007/s13311-021-01044-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Oleoylethanolamide (OEA) is an endocannabinoid that has been proposed to prevent neuronal damage and neuroinflammation. In this study, we evaluated the effects of OEA on the disruption of both cerebellar structure and physiology and on the behavior of Purkinje cell degeneration (PCD) mutant mice. These mice exhibit cerebellar degeneration, displaying microtubule alterations that trigger the selective loss of Purkinje cells and consequent behavioral impairments. The effects of different doses (1, 5, and 10 mg/kg, i.p.) and administration schedules (chronic and acute) of OEA were assessed at the behavioral, histological, cellular, and molecular levels to determine the most effective OEA treatment regimen. Our in vivo results demonstrated that OEA treatment prior to the onset of the preneurodegenerative phase prevented morphological alterations in Purkinje neurons (the somata and dendritic arbors) and decreased Purkinje cell death. This effect followed an inverted U-shaped time-response curve, with acute administration on postnatal day 12 (10 mg/kg, i.p.) being the most effective treatment regimen tested. Indeed, PCD mice that received this specific OEA treatment regimen showed improvements in motor, cognitive and social functions, which were impaired in these mice. Moreover, these in vivo neuroprotective effects of OEA were mediated by the PPARα receptor, as pretreatment with the PPARα antagonist GW6471 (2.5 mg/kg, i.p.) abolished them. Finally, our in vitro results suggested that the molecular effect of OEA was related to microtubule stability and structure since OEA administration normalized some alterations in microtubule features in PCD-like cells. These findings provide strong evidence supporting the use of OEA as a pharmacological agent to limit severe cerebellar neurodegenerative processes.
Collapse
Affiliation(s)
- Ester Pérez-Martín
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Rodrigo Muñoz-Castañeda
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Marie-Jo Moutin
- GIN, Univ. Grenoble Alpes, CNRS, CEA, Grenoble Institute Neurosciences, Inserm, U121638000, Grenoble, France
| | - Carmelo A Ávila-Zarza
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
- Department of Statistics, University of Salamanca, 37007, Salamanca, Spain
| | - José M Muñoz-Castañeda
- Department of Theoretical, Atomic and Optical Physics, University of Valladolid, 47071, Valladolid, Spain
| | - Carlos Del Pilar
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - José R Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
- Universidad de Tarapacá, Arica, Chile
| | - Annie Andrieux
- GIN, Univ. Grenoble Alpes, CNRS, CEA, Grenoble Institute Neurosciences, Inserm, U121638000, Grenoble, France
| | - David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
14
|
Cuveillier C, Boulan B, Ravanello C, Denarier E, Deloulme JC, Gory-Fauré S, Delphin C, Bosc C, Arnal I, Andrieux A. Beyond Neuronal Microtubule Stabilization: MAP6 and CRMPS, Two Converging Stories. Front Mol Neurosci 2021; 14:665693. [PMID: 34025352 PMCID: PMC8131560 DOI: 10.3389/fnmol.2021.665693] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
The development and function of the central nervous system rely on the microtubule (MT) and actin cytoskeletons and their respective effectors. Although the structural role of the cytoskeleton has long been acknowledged in neuronal morphology and activity, it was recently recognized to play the role of a signaling platform. Following this recognition, research into Microtubule Associated Proteins (MAPs) diversified. Indeed, historically, structural MAPs—including MAP1B, MAP2, Tau, and MAP6 (also known as STOP);—were identified and described as MT-binding and -stabilizing proteins. Extensive data obtained over the last 20 years indicated that these structural MAPs could also contribute to a variety of other molecular roles. Among multi-role MAPs, MAP6 provides a striking example illustrating the diverse molecular and cellular properties of MAPs and showing how their functional versatility contributes to the central nervous system. In this review, in addition to MAP6’s effect on microtubules, we describe its impact on the actin cytoskeleton, on neuroreceptor homeostasis, and its involvement in signaling pathways governing neuron development and maturation. We also discuss its roles in synaptic plasticity, brain connectivity, and cognitive abilities, as well as the potential relationships between the integrated brain functions of MAP6 and its molecular activities. In parallel, the Collapsin Response Mediator Proteins (CRMPs) are presented as examples of how other proteins, not initially identified as MAPs, fall into the broader MAP family. These proteins bind MTs as well as exhibiting molecular and cellular properties very similar to MAP6. Finally, we briefly summarize the multiple similarities between other classical structural MAPs and MAP6 or CRMPs.In summary, this review revisits the molecular properties and the cellular and neuronal roles of the classical MAPs, broadening our definition of what constitutes a MAP.
Collapse
|
15
|
Deurveilher S, Ko KR, Saumure BSC, Robertson GS, Rusak B, Semba K. Altered circadian activity and sleep/wake rhythms in the stable tubule only polypeptide (STOP) null mouse model of schizophrenia. Sleep 2021; 44:5981350. [PMID: 33186470 DOI: 10.1093/sleep/zsaa237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Sleep and circadian rhythm disruptions commonly occur in individuals with schizophrenia. Stable tubule only polypeptide (STOP) knockout (KO) mice show behavioral impairments resembling symptoms of schizophrenia. We previously reported that STOP KO mice slept less and had more fragmented sleep and waking than wild-type littermates under a light/dark (LD) cycle. Here, we assessed the circadian phenotype of male STOP KO mice by examining wheel-running activity rhythms and EEG/EMG-defined sleep/wake states under both LD and constant darkness (DD) conditions. Wheel-running activity rhythms in KO and wild-type mice were similarly entrained in LD, and had similar free-running periods in DD. The phase delay shift in response to a light pulse given early in the active phase under DD was preserved in KO mice. KO mice had markedly lower activity levels, lower amplitude activity rhythms, less stable activity onsets, and more fragmented activity than wild-type mice in both lighting conditions. KO mice also spent more time awake and less time in rapid eye movement sleep (REMS) and non-REMS (NREMS) in both LD and DD conditions, with the decrease in NREMS concentrated in the active phase. KO mice also showed altered EEG features and higher amplitude rhythms in wake and NREMS (but not REMS) amounts in both lighting conditions, with a longer free-running period in DD, compared to wild-type mice. These results indicate that the STOP null mutation in mice altered the regulation of sleep/wake physiology and activity rhythm expression, but did not grossly disrupt circadian mechanisms.
Collapse
Affiliation(s)
- Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Kristin Robin Ko
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| | - Brock St C Saumure
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - George S Robertson
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Benjamin Rusak
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,Department of Psychology & Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Kazue Semba
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.,Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.,Department of Psychology & Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
16
|
Gory-Fauré S, Powell R, Jonckheere J, Lanté F, Denarier E, Peris L, Nguyen CH, Buisson A, Lafanechère L, Andrieux A. Pyr1-Mediated Pharmacological Inhibition of LIM Kinase Restores Synaptic Plasticity and Normal Behavior in a Mouse Model of Schizophrenia. Front Pharmacol 2021; 12:627995. [PMID: 33790791 PMCID: PMC8006432 DOI: 10.3389/fphar.2021.627995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
The search for effective treatments for neuropsychiatric disorders is ongoing, with progress being made as brain structure and neuronal function become clearer. The central roles played by microtubules (MT) and actin in synaptic transmission and plasticity suggest that the cytoskeleton and its modulators could be relevant targets for the development of new molecules to treat psychiatric diseases. In this context, LIM Kinase - which regulates both the actin and MT cytoskeleton especially in dendritic spines, the post-synaptic compartment of the synapse - might be a good target. In this study, we analyzed the consequences of blocking LIMK1 pharmacologically using Pyr1. We investigated synaptic plasticity defects and behavioral disorders in MAP6 KO mice, an animal model useful for the study of psychiatric disorders, particularly schizophrenia. Our results show that Pyr1 can modulate MT dynamics in neurons. In MAP6 KO mice, chronic LIMK inhibition by long-term treatment with Pyr1 can restore normal dendritic spine density and also improves long-term potentiation, both of which are altered in these mice. Pyr1 treatment improved synaptic plasticity, and also reduced social withdrawal and depressive/anxiety-like behavior in MAP6 KO mice. Overall, the results of this study validate the hypothesis that modulation of LIMK activity could represent a new therapeutic strategy for neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sylvie Gory-Fauré
- Department of Molecular and Cellular Neurosciences, Grenoble Institute Neuroscience, Inserm U1216, Grenoble, France.,Université Grenoble Alpes, Grenoble, France
| | - Rebecca Powell
- Department of Molecular and Cellular Neurosciences, Grenoble Institute Neuroscience, Inserm U1216, Grenoble, France.,Université Grenoble Alpes, Grenoble, France
| | - Julie Jonckheere
- Department of Molecular and Cellular Neurosciences, Grenoble Institute Neuroscience, Inserm U1216, Grenoble, France.,Université Grenoble Alpes, Grenoble, France
| | - Fabien Lanté
- Department of Molecular and Cellular Neurosciences, Grenoble Institute Neuroscience, Inserm U1216, Grenoble, France.,Université Grenoble Alpes, Grenoble, France
| | - Eric Denarier
- Department of Molecular and Cellular Neurosciences, Grenoble Institute Neuroscience, Inserm U1216, Grenoble, France.,Université Grenoble Alpes, Grenoble, France.,Health Department, Interdisciplinary Research Institute of Grenoble, CEA, Grenoble, France
| | - Leticia Peris
- Department of Molecular and Cellular Neurosciences, Grenoble Institute Neuroscience, Inserm U1216, Grenoble, France.,Université Grenoble Alpes, Grenoble, France
| | - Chi Hung Nguyen
- Chimie et Modélisation pour la Biologie du Cancer, Institut Curie, PSL Research University, CNRS UMR9187, Inserm U1196, Orsay, France
| | - Alain Buisson
- Department of Molecular and Cellular Neurosciences, Grenoble Institute Neuroscience, Inserm U1216, Grenoble, France.,Université Grenoble Alpes, Grenoble, France
| | - Laurence Lafanechère
- Université Grenoble Alpes, Grenoble, France.,Microenvironment, Cell Plasticity and Signaling Department, Institute for Advanced Biosciences, CNRS UMR5309, Inserm U1209, Grenoble, France
| | - Annie Andrieux
- Department of Molecular and Cellular Neurosciences, Grenoble Institute Neuroscience, Inserm U1216, Grenoble, France.,Université Grenoble Alpes, Grenoble, France.,Health Department, Interdisciplinary Research Institute of Grenoble, CEA, Grenoble, France
| |
Collapse
|
17
|
Percelay S, Billard JM, Freret T, Andrieux A, Boulouard M, Bouet V. Functional Dysregulations in CA1 Hippocampal Networks of a 3-Hit Mouse Model of Schizophrenia. Int J Mol Sci 2021; 22:2644. [PMID: 33807989 PMCID: PMC7961987 DOI: 10.3390/ijms22052644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
For a better translation from treatment designs of schizophrenia to clinical efficiency, there is a crucial need to refine preclinical animal models. In order to consider the multifactorial nature of the disorder, a new mouse model associating three factors (genetic susceptibility-partial deletion of the MAP6 gene, early-life stress-maternal separation, and pharmacological treatment-chronic Δ-9-tetrahydrocannabinol during adolescence) has recently been described. While this model depicts a schizophrenia-like phenotype, the neurobiological correlates remain unknown. Synaptic transmission and functional plasticity of the CA1 hippocampal region of male and female 3-hit mice were therefore investigated using electrophysiological recordings on the hippocampus slice. While basal excitatory transmission remained unaffected, NMDA receptor (NMDAr)-mediated long-term potentiation (LTP) triggered by theta-burst (TBS) but not by high-frequency (HFS) stimulation was impaired in 3-hit mice. Isolated NMDAr activation was not affected or even increased in female 3-hit mice, revealing a sexual dimorphism. Considering that the regulation of LTP is more prone to inhibitory tone if triggered by TBS than by HFS, the weaker potentiation in 3-hit mice suggests a deficiency of intrinsic GABA regulatory mechanisms. Indeed, NMDAr activation was increased by GABAA receptor blockade in wild-type but not in 3-hit mice. This electrophysiological study highlights dysregulations of functional properties and plasticity in hippocampal networks of 3-hit mice, one of the mechanisms suspected to contribute to the pathophysiology of schizophrenia. It also shows differences between males and females, supporting the sexual dimorphism observed in the disorder. Combined with the previously reported study, the present data reinforce the face validity of the 3-hit model that will help to consider new therapeutic strategies for psychosis.
Collapse
Affiliation(s)
- Solenn Percelay
- UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, Normandie Université, 14000 Caen, France; (J.-M.B.); (T.F.); (M.B.); (V.B.)
| | - Jean-Marie Billard
- UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, Normandie Université, 14000 Caen, France; (J.-M.B.); (T.F.); (M.B.); (V.B.)
| | - Thomas Freret
- UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, Normandie Université, 14000 Caen, France; (J.-M.B.); (T.F.); (M.B.); (V.B.)
| | - Annie Andrieux
- Inserm U1216, CEA, Grenoble Institut Neurosciences, Université Grenoble Alpes, 38000 Grenoble, France;
| | - Michel Boulouard
- UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, Normandie Université, 14000 Caen, France; (J.-M.B.); (T.F.); (M.B.); (V.B.)
| | - Valentine Bouet
- UNICAEN, INSERM, COMETE, CYCERON, CHU Caen, Normandie Université, 14000 Caen, France; (J.-M.B.); (T.F.); (M.B.); (V.B.)
| |
Collapse
|
18
|
Gandini MA, Zamponi GW. Voltage‐gated calcium channel nanodomains: molecular composition and function. FEBS J 2021; 289:614-633. [DOI: 10.1111/febs.15759] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Maria A. Gandini
- Department of Physiology and Pharmacology Alberta Children’s Hospital Research Institute Hotchkiss Brain Institute Cumming School of Medicine University of Calgary AB Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology Alberta Children’s Hospital Research Institute Hotchkiss Brain Institute Cumming School of Medicine University of Calgary AB Canada
| |
Collapse
|
19
|
Bouet V, Percelay S, Leroux E, Diarra B, Léger M, Delcroix N, Andrieux A, Dollfus S, Freret T, Boulouard M. A new 3-hit mouse model of schizophrenia built on genetic, early and late factors. Schizophr Res 2021; 228:519-528. [PMID: 33298334 DOI: 10.1016/j.schres.2020.11.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Whether the etiology of schizophrenia remains unknown, its multifactorial aspect is conversely now well admitted. However, most preclinical models of the disease still rely on a mono-factorial construction and do not allow discover unequivocal treatments, particularly for negative and cognitive symptoms. The main interaction factors that have been implicated in schizophrenia are a genetic predisposition and unfavorable environmental factors. Here we propose a new animal model combining a genetic predisposition (1st hit: partial deletion of MAP-6 (microtubule-associated protein)) with an early postnatal stress (2nd hit: 24 h maternal separation at post-natal day 9), and a late cannabinoid exposure during adolescence (3rd hit: tetrahydrocannabinol THC from post-natal day 32 to 52; 8 mg/kg/day). The 2-hit mice displayed spatial memory deficits, decreased cortical thickness and fractional anisotropy of callosal fibers. The 3-hit mice were more severely affected as attested by supplementary deficits such a decrease in spontaneous activity, sociability-related behavior, working memory performances, an increase in anxiety-like behavior, a decrease in hippocampus volume together with impaired integrity of corpus callosum fibers (less axons, less myelin). Taken together, these results show that the new 3-hit model displays several landmarks mimicking negative and cognitive symptoms of schizophrenia, conferring a high relevance for research of new treatments. Moreover, this 3-hit model possesses a strong construct validity, which fits with gene x environment interactions hypothesis of schizophrenia. The 2-hit model, which associates maternal separation with THC exposure in wild-type mice gives a less severe phenotype, and could be useful for research on other forms of psychiatric diseases.
Collapse
Affiliation(s)
- Valentine Bouet
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France.
| | - Solenn Percelay
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France
| | - Elise Leroux
- Normandie Université, UNICAEN, EA 7466 ISTS, GIP Cyceron, 14000 Caen, France
| | - Boubacar Diarra
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France
| | - Marianne Léger
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France
| | - Nicolas Delcroix
- CNRS, UMS 3408, GIP CYCERON, Bd Henri Becquerel, BP5229, 14074 Caen cedex, France
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm U1216, CEA, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Sonia Dollfus
- Normandie Université, UNICAEN, EA 7466 ISTS, GIP Cyceron, 14000 Caen, France; CHU de Caen, Service de Psychiatrie Adulte, 14000 Caen, France
| | - Thomas Freret
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France
| | - Michel Boulouard
- Normandie Université, UNICAEN, INSERM, COMETE, CYCERON, CHYU CAEN, 14000 Caen, France
| |
Collapse
|
20
|
Regulation of actin dynamics in dendritic spines: Nanostructure, molecular mobility, and signaling mechanisms. Mol Cell Neurosci 2020; 109:103564. [DOI: 10.1016/j.mcn.2020.103564] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022] Open
|
21
|
Microtubule Dysfunction: A Common Feature of Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21197354. [PMID: 33027950 PMCID: PMC7582320 DOI: 10.3390/ijms21197354] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Neurons are particularly susceptible to microtubule (MT) defects and deregulation of the MT cytoskeleton is considered to be a common insult during the pathogenesis of neurodegenerative disorders. Evidence that dysfunctions in the MT system have a direct role in neurodegeneration comes from findings that several forms of neurodegenerative diseases are associated with changes in genes encoding tubulins, the structural units of MTs, MT-associated proteins (MAPs), or additional factors such as MT modifying enzymes which modulating tubulin post-translational modifications (PTMs) regulate MT functions and dynamics. Efforts to use MT-targeting therapeutic agents for the treatment of neurodegenerative diseases are underway. Many of these agents have provided several benefits when tested on both in vitro and in vivo neurodegenerative model systems. Currently, the most frequently addressed therapeutic interventions include drugs that modulate MT stability or that target tubulin PTMs, such as tubulin acetylation. The purpose of this review is to provide an update on the relevance of MT dysfunctions to the process of neurodegeneration and briefly discuss advances in the use of MT-targeting drugs for the treatment of neurodegenerative disorders.
Collapse
|
22
|
Guo B, Huang Y, Gao Q, Zhou Q. Stabilization of microtubules improves cognitive functions and axonal transport of mitochondria in Alzheimer's disease model mice. Neurobiol Aging 2020; 96:223-232. [PMID: 33039900 DOI: 10.1016/j.neurobiolaging.2020.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/08/2020] [Accepted: 09/05/2020] [Indexed: 01/08/2023]
Abstract
One major pathological process in Alzheimer's disease is mediated by hyperphosphorylated tau, which includes altered microtubules (MTs) and functions associated with tau. A potential way to compensate for altered MT function is to use an MT stabilizer, such as epothilone D (EpoD). Previous studies have demonstrated improved cognitive functions and axonal transport by EpoD in tau-mutation mice. Here, we demonstrated that extended EpoD treatment also has beneficial effects on APP/PS1 double-transgenic mice, improving their motor and spatial memory, increasing key synaptic protein levels, while not affecting amyloid plaque density or level of tau phosphorylation. Interestingly, EpoD appears to improve the retrieval of formed memories. We also observed improved axonal transport of mitochondria in cultured neurons from APP/PS1 mice. In addition, higher level of perineuronal nets are found in APP/PS1 mice injected with EpoD, suggesting potential contributions of increased inhibition. Our results suggest potential therapeutic value of EpoD in treating Alzheimer's disease.
Collapse
Affiliation(s)
- Baihong Guo
- Peking University, Shenzhen Graduate School, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Shenzhen, China
| | - Yangmei Huang
- Peking University, Shenzhen Graduate School, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Shenzhen, China
| | - Qingtao Gao
- Peking University, Shenzhen Graduate School, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Shenzhen, China
| | - Qiang Zhou
- Peking University, Shenzhen Graduate School, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Shenzhen, China.
| |
Collapse
|
23
|
Boulan B, Beghin A, Ravanello C, Deloulme JC, Gory-Fauré S, Andrieux A, Brocard J, Denarier E. AutoNeuriteJ: An ImageJ plugin for measurement and classification of neuritic extensions. PLoS One 2020; 15:e0234529. [PMID: 32673338 PMCID: PMC7365462 DOI: 10.1371/journal.pone.0234529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023] Open
Abstract
Morphometry characterization is an important procedure in describing neuronal cultures and identifying phenotypic differences. This task usually requires labor-intensive measurements and the classification of numerous neurites from large numbers of neurons in culture. To automate these measurements, we wrote AutoNeuriteJ, an imageJ/Fiji plugin that measures and classifies neurites from a very large number of neurons. We showed that AutoNeuriteJ is able to detect variations of neuritic growth induced by several compounds known to affect the neuronal growth. In these experiments measurement of more than 5000 mouse neurons per conditions was obtained within a few hours. Moreover, by analyzing mouse neurons deficient for the microtubule associated protein 6 (MAP6) and wild type neurons we illustrate that AutoNeuriteJ is capable to detect subtle phenotypic difference in axonal length. Overall the use of AutoNeuriteJ will provide rapid, unbiased and accurate measurement of neuron morphologies.
Collapse
Affiliation(s)
- Benoit Boulan
- Univ. Grenoble Alpes, Inserm U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Anne Beghin
- MechanoBiology Institute (MBI) at NUS Singapore MBI, T-Lab, Singapore
| | - Charlotte Ravanello
- Univ. Grenoble Alpes, Inserm U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | | | - Sylvie Gory-Fauré
- Univ. Grenoble Alpes, Inserm U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Jacques Brocard
- Univ. Grenoble Alpes, Inserm U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Eric Denarier
- Univ. Grenoble Alpes, Inserm U1216, CEA, Grenoble Institut Neurosciences, Grenoble, France
- * E-mail:
| |
Collapse
|
24
|
Cuveillier C, Delaroche J, Seggio M, Gory-Fauré S, Bosc C, Denarier E, Bacia M, Schoehn G, Mohrbach H, Kulić I, Andrieux A, Arnal I, Delphin C. MAP6 is an intraluminal protein that induces neuronal microtubules to coil. SCIENCE ADVANCES 2020; 6:eaaz4344. [PMID: 32270043 PMCID: PMC7112752 DOI: 10.1126/sciadv.aaz4344] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/09/2020] [Indexed: 06/01/2023]
Abstract
Neuronal activities depend heavily on microtubules, which shape neuronal processes and transport myriad molecules within them. Although constantly remodeled through growth and shrinkage events, neuronal microtubules must be sufficiently stable to maintain nervous system wiring. This stability is somehow maintained by various microtubule-associated proteins (MAPs), but little is known about how these proteins work. Here, we show that MAP6, previously known to confer cold stability to microtubules, promotes growth. More unexpectedly, MAP6 localizes in the lumen of microtubules, induces the microtubules to coil into a left-handed helix, and forms apertures in the lattice, likely to relieve mechanical stress. These features have not been seen in microtubules before and could play roles in maintaining axonal width or providing flexibility in the face of compressive forces during development.
Collapse
Affiliation(s)
- Camille Cuveillier
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Julie Delaroche
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Maxime Seggio
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Sylvie Gory-Fauré
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Eric Denarier
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Maria Bacia
- Univ. Grenoble Alpes, CNRS, CEA, Institut for Structural Biology (IBS), 38000 Grenoble, France
| | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, Institut for Structural Biology (IBS), 38000 Grenoble, France
| | - Hervé Mohrbach
- Laboratoire de Chimie et Physique Théorique, UMR 7019, Université de Lorraine
| | - Igor Kulić
- Institut Charles Sandron, CNRS-UdS, 67034 Strasbourg, France
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Isabelle Arnal
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| | - Christian Delphin
- Univ. Grenoble Alpes, Inserm U1216, CEA, CNRS, Grenoble Institut Neurosciences, GIN, 38000 Grenoble, France
| |
Collapse
|
25
|
Kim Y, Jang YN, Kim JY, Kim N, Noh S, Kim H, Queenan BN, Bellmore R, Mun JY, Park H, Rah JC, Pak DTS, Lee KJ. Microtubule-associated protein 2 mediates induction of long-term potentiation in hippocampal neurons. FASEB J 2020; 34:6965-6983. [PMID: 32237183 DOI: 10.1096/fj.201902122rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
Abstract
Microtubule-associated protein (MAP) 2 has been perceived as a static cytoskeletal protein enriched in neuronal dendritic shafts. Emerging evidence indicates dynamic functions for various MAPs in activity-dependent synaptic plasticity. However, it is unclear how MAP2 is associated with synaptic plasticity mechanisms. Here, we demonstrate that specific silencing of high-molecular-weight MAP2 in vivo abolished induction of long-term potentiation (LTP) in the Schaffer collateral pathway of CA1 pyramidal neurons and in vitro blocked LTP-induced surface delivery of AMPA receptors and spine enlargement. In mature hippocampal neurons, we observed rapid translocation of a subpopulation of MAP2, present in dendritic shafts, to spines following LTP stimulation. Time-lapse confocal imaging showed that spine translocation of MAP2 was coupled with LTP-induced spine enlargement. Consistently, immunogold electron microscopy revealed that LTP stimulation of the Schaffer collateral pathway promoted MAP2 labeling in spine heads of CA1 neurons. This translocation depended on NMDA receptor activation and Ras-MAPK signaling. Furthermore, LTP stimulation led to an increase in surface-expressed AMPA receptors specifically in the neurons with MAP2 spine translocation. Altogether, this study indicates a novel role for MAP2 in LTP mechanisms and suggests that MAP2 participates in activity-dependent synaptic plasticity in mature hippocampal networks.
Collapse
Affiliation(s)
- Yoonju Kim
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - You-Na Jang
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - Ji-Young Kim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Nari Kim
- Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Seulgi Noh
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyeyeon Kim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Bridget N Queenan
- Department of Pharmacology and Physiology, Interdisciplinary Program of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Ryan Bellmore
- Department of Pharmacology and Physiology, Interdisciplinary Program of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Ji Young Mun
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea
| | - Hyungju Park
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Jong Cheol Rah
- Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Daniel T S Pak
- Department of Pharmacology and Physiology, Interdisciplinary Program of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Basic Science Research Institute (KBRI), Daegu, Republic of Korea.,Center for Cortical Processing, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| |
Collapse
|
26
|
Pagnamenta AT, Heemeryck P, Martin HC, Bosc C, Peris L, Uszynski I, Gory-Fauré S, Couly S, Deshpande C, Siddiqui A, Elmonairy AA, Jayawant S, Murthy S, Walker I, Loong L, Bauer P, Vossier F, Denarier E, Maurice T, Barbier EL, Deloulme JC, Taylor JC, Blair EM, Andrieux A, Moutin MJ. Defective tubulin detyrosination causes structural brain abnormalities with cognitive deficiency in humans and mice. Hum Mol Genet 2019; 28:3391-3405. [PMID: 31363758 PMCID: PMC6891070 DOI: 10.1093/hmg/ddz186] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Reversible detyrosination of tubulin, the building block of microtubules, is crucial for neuronal physiology. Enzymes responsible for detyrosination were recently identified as complexes of vasohibins (VASHs) one or two with small VASH-binding protein (SVBP). Here we report three consanguineous families, each containing multiple individuals with biallelic inactivation of SVBP caused by truncating variants (p.Q28* and p.K13Nfs*18). Affected individuals show brain abnormalities with microcephaly, intellectual disability and delayed gross motor and speech development. Immunoblot testing in cells with pathogenic SVBP variants demonstrated that the encoded proteins were unstable and non-functional, resulting in a complete loss of VASH detyrosination activity. Svbp knockout mice exhibit drastic accumulation of tyrosinated tubulin and a reduction of detyrosinated tubulin in brain tissue. Similar alterations in tubulin tyrosination levels were observed in cultured neurons and associated with defects in axonal differentiation and architecture. Morphological analysis of the Svbp knockout mouse brains by anatomical magnetic resonance imaging showed a broad impact of SVBP loss, with a 7% brain volume decrease, numerous structural defects and a 30% reduction of some white matter tracts. Svbp knockout mice display behavioural defects, including mild hyperactivity, lower anxiety and impaired social behaviour. They do not, however, show prominent memory defects. Thus, SVBP-deficient mice recapitulate several features observed in human patients. Altogether, our data demonstrate that deleterious variants in SVBP cause this neurodevelopmental pathology, by leading to a major change in brain tubulin tyrosination and alteration of microtubule dynamics and neuron physiology.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- NIHR Oxford BRC, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Pierre Heemeryck
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Christophe Bosc
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Leticia Peris
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Ivy Uszynski
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Sylvie Gory-Fauré
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Simon Couly
- MMDN, Université de Montpellier, INSERM, EPHE, UMR_S1198, Montpellier, France
| | - Charu Deshpande
- South East Thames Regional Genetics Unit, Guys and St Thomas NHS Trust, London, UK
| | - Ata Siddiqui
- Department of Neuroradiology, Kings College Hospital, Denmark Hill, London SE5 9RS, UK
| | - Alaa A Elmonairy
- Ministry of Health, Kuwait Medical Genetics Center, Sulaibikhat 80901, Kuwait
| | | | | | - Sandeep Jayawant
- Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | | | - Ian Walker
- Clinical Biochemistry, Wexham Park Hospital, Slough, UK
| | - Lucy Loong
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Frédérique Vossier
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Eric Denarier
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Tangui Maurice
- MMDN, Université de Montpellier, INSERM, EPHE, UMR_S1198, Montpellier, France
| | - Emmanuel L Barbier
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Jean-Christophe Deloulme
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Jenny C Taylor
- NIHR Oxford BRC, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Edward M Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Annie Andrieux
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| | - Marie-Jo Moutin
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CEA, CNRS, 38000 Grenoble, France
| |
Collapse
|
27
|
Bodakuntla S, Jijumon AS, Villablanca C, Gonzalez-Billault C, Janke C. Microtubule-Associated Proteins: Structuring the Cytoskeleton. Trends Cell Biol 2019; 29:804-819. [PMID: 31416684 DOI: 10.1016/j.tcb.2019.07.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/27/2022]
Abstract
Microtubule-associated proteins (MAPs) were initially discovered as proteins that bind to and stabilize microtubules. Today, an ever-growing number of MAPs reveals a more complex picture of these proteins as organizers of the microtubule cytoskeleton that have a large variety of functions. MAPs enable microtubules to participate in a plethora of cellular processes such as the assembly of mitotic and meiotic spindles, neuronal development, and the formation of the ciliary axoneme. Although some subgroups of MAPs have been exhaustively characterized, a strikingly large number of MAPs remain barely characterized other than their interactions with microtubules. We provide a comprehensive view on the currently known MAPs in mammals. We discuss their molecular mechanisms and functions, as well as their physiological role and links to pathologies.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3348, F-91405 Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, F-91405 Orsay, France
| | - A S Jijumon
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3348, F-91405 Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, F-91405 Orsay, France
| | - Cristopher Villablanca
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Christian Gonzalez-Billault
- Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile.
| | - Carsten Janke
- Institut Curie, Paris Sciences et Lettres (PSL) Research University, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3348, F-91405 Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3348, F-91405 Orsay, France.
| |
Collapse
|
28
|
Jonckheere J, Deloulme JC, Dall’Igna G, Chauliac N, Pelluet A, Nguon AS, Lentini C, Brocard J, Denarier E, Brugière S, Couté Y, Heinrich C, Porcher C, Holtzmann J, Andrieux A, Suaud-Chagny MF, Gory-Fauré S. Short- and long-term efficacy of electroconvulsive stimulation in animal models of depression: The essential role of neuronal survival. Brain Stimul 2018; 11:1336-1347. [DOI: 10.1016/j.brs.2018.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/12/2018] [Accepted: 08/03/2018] [Indexed: 12/28/2022] Open
|
29
|
Sébastien M, Giannesini B, Aubin P, Brocard J, Chivet M, Pietrangelo L, Boncompagni S, Bosc C, Brocard J, Rendu J, Gory-Fauré S, Andrieux A, Fourest-Lieuvin A, Fauré J, Marty I. Deletion of the microtubule-associated protein 6 (MAP6) results in skeletal muscle dysfunction. Skelet Muscle 2018; 8:30. [PMID: 30231928 PMCID: PMC6147105 DOI: 10.1186/s13395-018-0176-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/12/2018] [Indexed: 01/23/2023] Open
Abstract
Background The skeletal muscle fiber has a specific and precise intracellular organization which is at the basis of an efficient muscle contraction. Microtubules are long known to play a major role in the function and organization of many cells, but in skeletal muscle, the contribution of the microtubule cytoskeleton to the efficiency of contraction has only recently been studied. The microtubule network is dynamic and is regulated by many microtubule-associated proteins (MAPs). In the present study, the role of the MAP6 protein in skeletal muscle organization and function has been studied using the MAP6 knockout mouse line. Methods The presence of MAP6 transcripts and proteins was shown in mouse muscle homogenates and primary culture using RT-PCR and western blot. The in vivo evaluation of muscle force of MAP6 knockout (KO) mice was performed on anesthetized animals using electrostimulation coupled to mechanical measurement and multimodal magnetic resonance. The impact of MAP6 deletion on microtubule organization and intracellular structures was studied using immunofluorescent labeling and electron microscopy, and on calcium release for muscle contraction using Fluo-4 calcium imaging on cultured myotubes. Statistical analysis was performed using Student’s t test or the Mann-Whitney test. Results We demonstrate the presence of MAP6 transcripts and proteins in skeletal muscle. Deletion of MAP6 results in a large number of muscle modifications: muscle weakness associated with slight muscle atrophy, alterations of microtubule network and sarcoplasmic reticulum organization, and reduction in calcium release. Conclusion Altogether, our results demonstrate that MAP6 is involved in skeletal muscle function. Its deletion results in alterations in skeletal muscle contraction which contribute to the global deleterious phenotype of the MAP6 KO mice. As MAP6 KO mouse line is a model for schizophrenia, our work points to a possible muscle weakness associated to some forms of schizophrenia. Electronic supplementary material The online version of this article (10.1186/s13395-018-0176-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muriel Sébastien
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | | | - Perrine Aubin
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Julie Brocard
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Mathilde Chivet
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Laura Pietrangelo
- CeSI-Met & DNICS, University G. d' Annunzio of Chieti, I-66100, Chieti, Italy
| | - Simona Boncompagni
- CeSI-Met & DNICS, University G. d' Annunzio of Chieti, I-66100, Chieti, Italy
| | - Christophe Bosc
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Jacques Brocard
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - John Rendu
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France.,CHU Grenoble, Biochimie et Génétique Moléculaire, F-38000, Grenoble, France
| | - Sylvie Gory-Fauré
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Annie Andrieux
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France.,CEA-Grenoble, BIG, F-38000, Grenoble, France
| | - Anne Fourest-Lieuvin
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France.,CEA-Grenoble, BIG, F-38000, Grenoble, France
| | - Julien Fauré
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France.,CHU Grenoble, Biochimie et Génétique Moléculaire, F-38000, Grenoble, France
| | - Isabelle Marty
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France. .,University Grenoble Alpes, F-38000, Grenoble, France. .,GIN- Inserm U1216 - Bat EJ Safra, Chemin Fortuné Ferrini, 38700, La Tronche, France.
| |
Collapse
|
30
|
Dissociated features of social cognition altered in mouse models of schizophrenia: Focus on social dominance and acoustic communication. Neuropharmacology 2018; 159:107334. [PMID: 30236964 DOI: 10.1016/j.neuropharm.2018.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/05/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023]
Abstract
Social and communication impairments are common features of psychiatric disorders. Animal models of schizophrenia display various social deficits due to difference in tests, mouse strains and drugs. Moreover, communication deficits have not been studied. Our objectives were to assess and compare three major features of social cognition in different mouse models of schizophrenia: interest for a social stimulus, organization and acceptance of social contact, and acoustic communication to question whether mouse models for schizophrenia with social dysfunction also exhibit vocal communication defects. To achieve these aims we treated acutely C57BL/6J mice either with MK-801 or ketamine and tested WT and microtubule-associated protein 6 -MAP6- KO mice in two complementary social tasks: the 3-chamber test which measures social motivation and the social interaction task -SIT- which relies on prefrontal cortex activity and measures the ability to organize and respond to a real interaction, and which promotes ultrasonic vocalizations. Our results reveal that schizophrenia models have intact interest for a social stimulus in the 3-chamber test. However, thanks to principal component analyses of social interaction data, we demonstrate that social motivation and the ability to act socially rely on distinct mechanisms in revealing a decrease in dominance and communication in pharmacological schizophrenia models along with social withdraw, classically observed in schizophrenia, in MK-801 model. In this latter model, some social parameters can be significantly improved by aripiprazole, an atypical antipsychotic. Our social protocol, combined with fine-tuned analysis, is expected to provide an innovative framework for testing future treatments in preclinical models. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
|
31
|
A key function for microtubule-associated-protein 6 in activity-dependent stabilisation of actin filaments in dendritic spines. Nat Commun 2018; 9:3775. [PMID: 30224655 PMCID: PMC6141585 DOI: 10.1038/s41467-018-05869-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/27/2018] [Indexed: 11/09/2022] Open
Abstract
Emerging evidence indicates that microtubule-associated proteins (MAPs) are implicated in synaptic function; in particular, mice deficient for MAP6 exhibit striking deficits in plasticity and cognition. How MAP6 connects to plasticity mechanisms is unclear. Here, we address the possible role of this protein in dendritic spines. We find that in MAP6-deficient cortical and hippocampal neurons, maintenance of mature spines is impaired, and can be restored by expressing a stretch of the MAP6 sequence called Mc modules. Mc modules directly bind actin filaments and mediate activity-dependent stabilisation of F-actin in dendritic spines, a key event of synaptic plasticity. In vitro, Mc modules enhance actin filament nucleation and promote the formation of stable, highly ordered filament bundles. Activity-induced phosphorylation of MAP6 likely controls its transfer to the spine cytoskeleton. These results provide a molecular explanation for the role of MAP6 in cognition, enlightening the connection between cytoskeletal dysfunction, synaptic impairment and neuropsychiatric illnesses. Microtubule-associated protein 6 (MAP6) is known to be important for synaptic plasticity and cognition, supposedly via interaction with microtubules. Here, the authors found that MAP6 is crucial for the stabilisation of enlarged synapses through its association with a different cytoskeletal element, actin.
Collapse
|
32
|
Stoddard D, Zhao Y, Bayless BA, Gui L, Louka P, Dave D, Suryawanshi S, Tomasi RFX, Dupuis-Williams P, Baroud CN, Gaertig J, Winey M, Nicastro D. Tetrahymena RIB72A and RIB72B are microtubule inner proteins in the ciliary doublet microtubules. Mol Biol Cell 2018; 29:2566-2577. [PMID: 30133348 PMCID: PMC6254578 DOI: 10.1091/mbc.e18-06-0405] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Doublet and triplet microtubules are essential and highly stable core structures of centrioles, basal bodies, cilia, and flagella. In contrast to dynamic cytoplasmic microtubules, their luminal surface is coated with regularly arranged microtubule inner proteins (MIPs). However, the protein composition and biological function(s) of MIPs remain poorly understood. Using genetic, biochemical, and imaging techniques, we identified Tetrahymena RIB72A and RIB72B proteins as ciliary MIPs. Fluorescence imaging of tagged RIB72A and RIB72B showed that both proteins colocalize to Tetrahymena cilia and basal bodies but assemble independently. Cryoelectron tomography of RIB72A and/or RIB72B knockout strains revealed major structural defects in the ciliary A-tubule involving MIP1, MIP4, and MIP6 structures. The defects of individual mutants were complementary in the double mutant. All mutants had reduced swimming speed and ciliary beat frequencies, and high-speed video imaging revealed abnormal highly curved cilia during power stroke. Our results show that RIB72A and RIB72B are crucial for the structural assembly of ciliary A-tubule MIPs and are important for proper ciliary motility.
Collapse
Affiliation(s)
- Daniel Stoddard
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453.,Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ying Zhao
- Department of Molecular, Cellular & Developmental Biology University of Colorado Boulder, Boulder, CO 80309
| | - Brian A Bayless
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Long Gui
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Panagiota Louka
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Drashti Dave
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Swati Suryawanshi
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Raphaël F-X Tomasi
- Department of Mechanics, LadHyX, CNRS and Ecole Polytechnique, 91128 Palaiseau Cedex, France.,Physical Microfluidics and Bioengineering, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Pascale Dupuis-Williams
- UMR-S 1174 Inserm, Universite Paris-Sud, 91405 Orsay Cedex, France.,Ecole Supérieure de Physique et de Chimie Industrielles ParisTech, 75005 Paris, France
| | - Charles N Baroud
- Department of Mechanics, LadHyX, CNRS and Ecole Polytechnique, 91128 Palaiseau Cedex, France.,Physical Microfluidics and Bioengineering, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Mark Winey
- Department of Molecular, Cellular & Developmental Biology University of Colorado Boulder, Boulder, CO 80309.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Daniela Nicastro
- Department of Biology, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02453.,Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
33
|
Muñoz-Castañeda R, Díaz D, Peris L, Andrieux A, Bosc C, Muñoz-Castañeda JM, Janke C, Alonso JR, Moutin MJ, Weruaga E. Cytoskeleton stability is essential for the integrity of the cerebellum and its motor- and affective-related behaviors. Sci Rep 2018; 8:3072. [PMID: 29449678 PMCID: PMC5814431 DOI: 10.1038/s41598-018-21470-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/29/2018] [Indexed: 01/06/2023] Open
Abstract
The cerebellum plays a key role in motor tasks, but its involvement in cognition is still being considered. Although there is an association of different psychiatric and cognitive disorders with cerebellar impairments, the lack of time-course studies has hindered the understanding of the involvement of cerebellum in cognitive and non-motor functions. Such association was here studied using the Purkinje Cell Degeneration mutant mouse, a model of selective and progressive cerebellar degeneration that lacks the cytosolic carboxypeptidase 1 (CCP1). The effects of the absence of this enzyme on the cerebellum of mutant mice were analyzed both in vitro and in vivo. These analyses were carried out longitudinally (throughout both the pre-neurodegenerative and neurodegenerative stages) and different motor and non-motor tests were performed. We demonstrate that the lack of CCP1 affects microtubule dynamics and flexibility, defects that contribute to the morphological alterations of the Purkinje cells (PCs), and to progressive cerebellar breakdown. Moreover, this degeneration led not only to motor defects but also to gradual cognitive impairments, directly related to the progression of cellular damage. Our findings confirm the cerebellar implication in non-motor tasks, where the formation of the healthy, typical PCs structure is necessary for normal cognitive and affective behavior.
Collapse
Affiliation(s)
- Rodrigo Muñoz-Castañeda
- Laboratory of Neural Plasticity and Neurorepair. Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, E-37007, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), E-37007, Salamanca, Spain
| | - David Díaz
- Laboratory of Neural Plasticity and Neurorepair. Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, E-37007, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), E-37007, Salamanca, Spain
| | - Leticia Peris
- Inserm, U1216, F-38000, Grenoble, France.,Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France
| | - Annie Andrieux
- Inserm, U1216, F-38000, Grenoble, France.,Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France.,CEA, BIG-GPC, F-38000, Grenoble, France
| | - Christophe Bosc
- Inserm, U1216, F-38000, Grenoble, France.,Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France
| | - José M Muñoz-Castañeda
- Physics Department, Aeronautics Engineering School, Polytechnic University of Madrid, E-28040, Madrid, Spain
| | - Carsten Janke
- Institut Curie, F-91405, Orsay, France.,Paris Sciences et Lettres Research University, F-75005, Paris, France.,Centre National de la Recherche Scientifique, UMR3348, F-91405, Orsay, France
| | - José R Alonso
- Laboratory of Neural Plasticity and Neurorepair. Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, E-37007, Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), E-37007, Salamanca, Spain.,Institute for Higher Research, University of Tarapaca, Arica, Chile
| | - Marie-Jo Moutin
- Inserm, U1216, F-38000, Grenoble, France.,Université Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000, Grenoble, France
| | - Eduardo Weruaga
- Laboratory of Neural Plasticity and Neurorepair. Institute for Neurosciences of Castile and Leon (INCyL), University of Salamanca, E-37007, Salamanca, Spain. .,Institute for Biomedical Research of Salamanca (IBSAL), E-37007, Salamanca, Spain.
| |
Collapse
|
34
|
Pocivavsek A, Rowland LM. Basic Neuroscience Illuminates Causal Relationship Between Sleep and Memory: Translating to Schizophrenia. Schizophr Bull 2018; 44:7-14. [PMID: 29136236 PMCID: PMC5768044 DOI: 10.1093/schbul/sbx151] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Patients with schizophrenia are often plagued by sleep disturbances that can exacerbate the illness, including potentiating psychosis and cognitive impairments. Cognitive dysfunction is a core feature of schizophrenia with learning and memory being particularly impaired. Sleep disruptions often accompanying the illness and may be key mechanism that contribute to these core dysfunctions. In this special translational neuroscience feature, we highlight the role of sleep in mediating cognitive function, with a special focus on learning and memory. By defining dysfunctional sleep architecture and rhythms in schizophrenia, we focus on the disarray of mechanisms critical to learning and memory and postulate an association between sleep disturbances and cognitive impairments in the disorder. Lastly, we review preclinical models of schizophrenia and highlight exciting translational research that may lead to new therapeutic approaches to alleviating sleep disturbances and effectively improving cognitive function in schizophrenia.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
35
|
Brocard J, Dufour F, Gory-Fauré S, Arnoult C, Bosc C, Denarier E, Peris L, Saoudi Y, De Waard M, Andrieux A. MAP6 interacts with Tctex1 and Ca v 2.2/N-type calcium channels to regulate calcium signalling in neurons. Eur J Neurosci 2017; 46:2754-2767. [PMID: 29094416 PMCID: PMC5765474 DOI: 10.1111/ejn.13766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/29/2022]
Abstract
MAP6 proteins were first described as microtubule‐stabilizing agents, whose properties were thought to be essential for neuronal development and maintenance of complex neuronal networks. However, deletion of all MAP6 isoforms in MAP6 KO mice does not lead to dramatic morphological aberrations of the brain but rather to alterations in multiple neurotransmissions and severe behavioural impairments. A search for protein partners of MAP6 proteins identified Tctex1 – a dynein light chain with multiple non‐microtubule‐related functions. The involvement of Tctex1 in calcium signalling led to investigate it in MAP6 KO neurons. In this study, we show that functional Cav2.2/N‐type calcium channels are deficient in MAP6 KO neurons, due to improper location. We also show that MAP6 proteins interact directly with both Tctex1 and the C‐terminus of Cav2.2/N‐type calcium channels. A balance of these two interactions seems to be crucial for MAP6 to modulate calcium signalling in neurons.
Collapse
Affiliation(s)
- Jacques Brocard
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Fabrice Dufour
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Sylvie Gory-Fauré
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Christophe Arnoult
- U1209, INSERM, Grenoble, France.,UMR 5309, CNRS, Grenoble, France.,Institute for Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
| | - Christophe Bosc
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Eric Denarier
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France.,CEA, BIG-GPC, Grenoble, France
| | - Leticia Peris
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Yasmina Saoudi
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | - Michel De Waard
- U1087, INSERM, Nantes, France.,UMR 6291, CNRS, Nantes, France.,Université Nantes, Nantes, France
| | - Annie Andrieux
- U1216, INSERM, Grenoble, F-38000, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France.,CEA, BIG-GPC, Grenoble, France
| |
Collapse
|
36
|
Ramkumar A, Jong BY, Ori-McKenney KM. ReMAPping the microtubule landscape: How phosphorylation dictates the activities of microtubule-associated proteins. Dev Dyn 2017; 247:138-155. [PMID: 28980356 DOI: 10.1002/dvdy.24599] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
Classical microtubule-associated proteins (MAPs) were originally identified based on their co-purification with microtubules assembled from mammalian brain lysate. They have since been found to perform a range of functions involved in regulating the dynamics of the microtubule cytoskeleton. Most of these MAPs play integral roles in microtubule organization during neuronal development, microtubule remodeling during neuronal activity, and microtubule stabilization during neuronal maintenance. As a result, mutations in MAPs contribute to neurodevelopmental disorders, psychiatric conditions, and neurodegenerative diseases. MAPs are post-translationally regulated by phosphorylation depending on developmental time point and cellular context. Phosphorylation can affect the microtubule affinity, cellular localization, or overall function of a particular MAP and can thus have profound implications for neuronal health. Here we review MAP1, MAP2, MAP4, MAP6, MAP7, MAP9, tau, and DCX, and how each is regulated by phosphorylation in neuronal physiology and disease. Developmental Dynamics 247:138-155, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amrita Ramkumar
- Department of Molecular and Cellular Biology, University of California, Davis, CA
| | - Brigette Y Jong
- Department of Molecular and Cellular Biology, University of California, Davis, CA
| | | |
Collapse
|
37
|
Gimenez U, Boulan B, Mauconduit F, Taurel F, Leclercq M, Denarier E, Brocard J, Gory-Fauré S, Andrieux A, Lahrech H, Deloulme JC. 3D imaging of the brain morphology and connectivity defects in a model of psychiatric disorders: MAP6-KO mice. Sci Rep 2017; 7:10308. [PMID: 28871106 PMCID: PMC5583184 DOI: 10.1038/s41598-017-10544-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/10/2017] [Indexed: 11/03/2022] Open
Abstract
In the central nervous system, microtubule-associated protein 6 (MAP6) is expressed at high levels and is crucial for cognitive abilities. The large spectrum of social and cognitive impairments observed in MAP6-KO mice are reminiscent of the symptoms observed in psychiatric diseases, such as schizophrenia, and respond positively to long-term treatment with antipsychotics. MAP6-KO mice have therefore been proposed to be a useful animal model for these diseases. Here, we explored the brain anatomy in MAP6-KO mice using high spatial resolution 3D MRI, including a volumetric T1w method to image brain structures, and Diffusion Tensor Imaging (DTI) for white matter fiber tractography. 3D DTI imaging of neuronal tracts was validated by comparing results to optical images of cleared brains. Changes to brain architecture included reduced volume of the cerebellum and the thalamus and altered size, integrity and spatial orientation of some neuronal tracks such as the anterior commissure, the mammillary tract, the corpus callosum, the corticospinal tract, the fasciculus retroflexus and the fornix. Our results provide information on the neuroanatomical defects behind the neurological phenotype displayed in the MAP6-KO mice model and especially highlight a severe damage of the corticospinal tract with defasciculation at the location of the pontine nuclei.
Collapse
Affiliation(s)
- Ulysse Gimenez
- INSERM, U1205, BrainTech Lab, F-38000, Grenoble, France.,Univ. Grenoble Alpes, F-38000, Grenoble, France
| | - Benoit Boulan
- Univ. Grenoble Alpes, F-38000, Grenoble, France.,INSERM, U1216, Grenoble Institut des Neurosciences, F-38000, Grenoble, France
| | - Franck Mauconduit
- INSERM, U1205, BrainTech Lab, F-38000, Grenoble, France.,Univ. Grenoble Alpes, F-38000, Grenoble, France
| | - Fanny Taurel
- INSERM, U1205, BrainTech Lab, F-38000, Grenoble, France.,Univ. Grenoble Alpes, F-38000, Grenoble, France
| | - Maxime Leclercq
- INSERM, U1205, BrainTech Lab, F-38000, Grenoble, France.,Univ. Grenoble Alpes, F-38000, Grenoble, France
| | - Eric Denarier
- Univ. Grenoble Alpes, F-38000, Grenoble, France.,INSERM, U1216, Grenoble Institut des Neurosciences, F-38000, Grenoble, France.,Commissariat à l'Energie Atomique, BIG-GPC, F-38000, Grenoble, France
| | - Jacques Brocard
- Univ. Grenoble Alpes, F-38000, Grenoble, France.,INSERM, U1216, Grenoble Institut des Neurosciences, F-38000, Grenoble, France
| | - Sylvie Gory-Fauré
- Univ. Grenoble Alpes, F-38000, Grenoble, France.,INSERM, U1216, Grenoble Institut des Neurosciences, F-38000, Grenoble, France
| | - Annie Andrieux
- Univ. Grenoble Alpes, F-38000, Grenoble, France.,INSERM, U1216, Grenoble Institut des Neurosciences, F-38000, Grenoble, France.,Commissariat à l'Energie Atomique, BIG-GPC, F-38000, Grenoble, France
| | - Hana Lahrech
- INSERM, U1205, BrainTech Lab, F-38000, Grenoble, France. .,Univ. Grenoble Alpes, F-38000, Grenoble, France.
| | - Jean Christophe Deloulme
- Univ. Grenoble Alpes, F-38000, Grenoble, France. .,INSERM, U1216, Grenoble Institut des Neurosciences, F-38000, Grenoble, France.
| |
Collapse
|
38
|
Potential Role of Microtubule Stabilizing Agents in Neurodevelopmental Disorders. Int J Mol Sci 2017; 18:ijms18081627. [PMID: 28933765 PMCID: PMC5578018 DOI: 10.3390/ijms18081627] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are characterized by neuroanatomical abnormalities indicative of corticogenesis disturbances. At the basis of NDDs cortical abnormalities, the principal developmental processes involved are cellular proliferation, migration and differentiation. NDDs are also considered “synaptic disorders” since accumulating evidence suggests that NDDs are developmental brain misconnection syndromes characterized by altered connectivity in local circuits and between brain regions. Microtubules and microtubule-associated proteins play a fundamental role in the regulation of basic neurodevelopmental processes, such as neuronal polarization and migration, neuronal branching and synaptogenesis. Here, the role of microtubule dynamics will be elucidated in regulating several neurodevelopmental steps. Furthermore, the correlation between abnormalities in microtubule dynamics and some NDDs will be described. Finally, we will discuss the potential use of microtubule stabilizing agents as a new pharmacological intervention for NDDs treatment.
Collapse
|
39
|
Dynamic Palmitoylation Targets MAP6 to the Axon to Promote Microtubule Stabilization during Neuronal Polarization. Neuron 2017; 94:809-825.e7. [PMID: 28521134 DOI: 10.1016/j.neuron.2017.04.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 02/19/2017] [Accepted: 04/27/2017] [Indexed: 11/22/2022]
Abstract
Microtubule-associated proteins (MAPs) are main candidates to stabilize neuronal microtubules, playing an important role in establishing axon-dendrite polarity. However, how MAPs are selectively targeted to specific neuronal compartments remains poorly understood. Here, we show specific localization of microtubule-associated protein 6 (MAP6)/stable tubule-only polypeptide (STOP) throughout neuronal maturation and its role in axonal development. In unpolarized neurons, MAP6 is present at the Golgi complex and in secretory vesicles. As neurons mature, MAP6 is translocated to the proximal axon, where it binds and stabilizes microtubules. Further, we demonstrate that dynamic palmitoylation, mediated by the family of α/β Hydrolase domain-containing protein 17 (ABHD17A-C) depalmitoylating enzymes, controls shuttling of MAP6 between membranes and microtubules and is required for MAP6 retention in axons. We propose a model in which MAP6's palmitoylation mediates microtubule stabilization, allows efficient organelle trafficking, and controls axon maturation in vitro and in situ.
Collapse
|
40
|
Gu Y, Jukkola P, Wang Q, Esparza T, Zhao Y, Brody D, Gu C. Polarity of varicosity initiation in central neuron mechanosensation. J Cell Biol 2017; 216:2179-2199. [PMID: 28606925 PMCID: PMC5496611 DOI: 10.1083/jcb.201606065] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/17/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022] Open
Abstract
Little is known about mechanical regulation of morphological and functional polarity of central neurons. In this study, we report that mechanical stress specifically induces varicosities in the axons but not the dendrites of central neurons by activating TRPV4, a Ca2+/Na+-permeable mechanosensitive channel. This process is unexpectedly rapid and reversible, consistent with the formation of axonal varicosities in vivo induced by mechanical impact in a mouse model of mild traumatic brain injury. In contrast, prolonged stimulation of glutamate receptors induces varicosities in dendrites but not in axons. We further show that axonal varicosities are induced by persistent Ca2+ increase, disassembled microtubules (MTs), and subsequently reversible disruption of axonal transport, and are regulated by stable tubulin-only polypeptide, an MT-associated protein. Finally, axonal varicosity initiation can trigger action potentials to antidromically propagate to the soma in retrograde signaling. Therefore, our study demonstrates a new feature of neuronal polarity: axons and dendrites preferentially respond to physical and chemical stresses, respectively.
Collapse
Affiliation(s)
- Yuanzheng Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH
| | - Peter Jukkola
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Qian Wang
- Biomedical Engineering Department, The Ohio State University, Columbus, OH
| | - Thomas Esparza
- Department of Neurology, Washington University, St. Louis, MO
| | - Yi Zhao
- Biomedical Engineering Department, The Ohio State University, Columbus, OH
| | - David Brody
- Department of Neurology, Washington University, St. Louis, MO
| | - Chen Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| |
Collapse
|
41
|
Omics analysis of mouse brain models of human diseases. Gene 2017; 600:90-100. [DOI: 10.1016/j.gene.2016.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 01/24/2023]
|
42
|
Reduced plasma levels of microtubule-associated STOP/MAP6 protein in autistic patients. Psychiatry Res 2016; 245:116-118. [PMID: 27541346 DOI: 10.1016/j.psychres.2016.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/20/2016] [Accepted: 08/07/2016] [Indexed: 11/23/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits and repetitive behaviors with restricted interests. A previous quantitative proteomic profiling study demonstrated that microtubule-associated stable tubule only polypeptide (STOP; also known as MAP6) protein was significant reduced in the cerebral cortex from BTBR mouse model of autism compared to the C57BL/6J mice. In the present study, the result showed that the concentration of STOP/MAP6 protein was significantly reduced in the plasma of autistic subjects than that in healthy controls. Finally, a possible mechanism of STOP/MAP6 protein in the pathogenesis of autism was proposed.
Collapse
|
43
|
Herrero-Garcia E, O'Bryan JP. Intersectin scaffold proteins and their role in cell signaling and endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:23-30. [PMID: 27746143 DOI: 10.1016/j.bbamcr.2016.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/08/2016] [Indexed: 11/29/2022]
Abstract
Intersectins (ITSNs) are a family of multi-domain proteins involved in regulation of diverse cellular pathways. These scaffold proteins are well known for regulating endocytosis but also play important roles in cell signaling pathways including kinase regulation and Ras activation. ITSNs participate in several human cancers, such as neuroblastomas and glioblastomas, while their downregulation is associated with lung injury. Alterations in ITSN expression have been found in neurodegenerative diseases such as Down Syndrome and Alzheimer's disease. Binding proteins for ITSNs include endocytic regulatory factors, cytoskeleton related proteins (i.e. actin or dynamin), signaling proteins as well as herpes virus proteins. This review will summarize recent studies on ITSNs, highlighting the importance of these scaffold proteins in the aforementioned processes.
Collapse
Affiliation(s)
- Erika Herrero-Garcia
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
44
|
Baas PW, Rao AN, Matamoros AJ, Leo L. Stability properties of neuronal microtubules. Cytoskeleton (Hoboken) 2016; 73:442-60. [PMID: 26887570 PMCID: PMC5541393 DOI: 10.1002/cm.21286] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/02/2016] [Accepted: 02/12/2016] [Indexed: 01/12/2023]
Abstract
Neurons are terminally differentiated cells that use their microtubule arrays not for cell division but rather as architectural elements required for the elaboration of elongated axons and dendrites. In addition to acting as compression-bearing struts that provide for the shape of the neuron, microtubules also act as directional railways for organelle transport. The stability properties of neuronal microtubules are commonly discussed in the biomedical literature as crucial to the development and maintenance of the nervous system, and have recently gained attention as central to the etiology of neurodegenerative diseases. Drugs that affect microtubule stability are currently under investigation as potential therapies for disease and injury of the nervous system. There is often a lack of consistency, however, in how the issue of microtubule stability is discussed in the literature, and this can affect the design and interpretation of experiments as well as potential therapeutic regimens. Neuronal microtubules are considered to be more stable than microtubules in dividing cells. On average, this is true, but in addition to an abundant stable microtubule fraction in neurons, there is also an abundant labile microtubule fraction. Both are functionally important. Individual microtubules consist of domains that differ in their stability properties, and these domains can also differ markedly in their composition as well as how they interact with various microtubule-related proteins in the neuron. Myriad proteins and pathways have been discussed as potential contributors to microtubule stability in neurons. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| | - Anand N Rao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew J Matamoros
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Lanfranco Leo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
45
|
Profitt MF, Deurveilher S, Robertson GS, Rusak B, Semba K. Disruptions of Sleep/Wake Patterns in the Stable Tubule Only Polypeptide (STOP) Null Mouse Model of Schizophrenia. Schizophr Bull 2016; 42:1207-15. [PMID: 26940700 PMCID: PMC4988734 DOI: 10.1093/schbul/sbw017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Disruption of sleep/wake cycles is common in patients with schizophrenia and correlates with cognitive and affective abnormalities. Mice deficient in stable tubule only polypeptide (STOP) show cognitive, behavioral, and neurobiological deficits that resemble those seen in patients with schizophrenia, but little is known about their sleep phenotype. We characterized baseline sleep/wake patterns and recovery sleep following sleep deprivation in STOP null mice. Polysomnography was conducted in adult male STOP null and wild-type (WT) mice under a 12:12 hours light:dark cycle before, during, and after 6 hours of sleep deprivation during the light phase. At baseline, STOP null mice spent more time awake and less time in non-rapid eye movement sleep (NREMS) over a 24-hour period, with more frequent transitions between wake and NREMS, compared to WT mice, especially during the dark phase. The distributions of wake, NREMS and REMS across the light and the dark phases differed by genotype, and so did features of the electroencephalogram (EEG). Following sleep deprivation, both genotypes showed homeostatic increases in sleep duration, with no significant genotype differences in the initial compensatory increase in sleep intensity (EEG delta power). These results indicate that STOP null mice sleep less overall, and their sleep and wake periods are more fragmented than those of WT mice. These features in STOP null mice are consistent with the sleep patterns observed in patients with schizophrenia.
Collapse
Affiliation(s)
- Maxine F. Profitt
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - George S. Robertson
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada;,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Benjamin Rusak
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada;,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada;,Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Kazue Semba
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada; Department of Psychiatry, Dalhousie University, Halifax, NS, Canada; Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
46
|
Papegaey A, Eddarkaoui S, Deramecourt V, Fernandez-Gomez FJ, Pantano P, Obriot H, Machala C, Anquetil V, Camuzat A, Brice A, Maurage CA, Le Ber I, Duyckaerts C, Buée L, Sergeant N, Buée-Scherrer V. Reduced Tau protein expression is associated with frontotemporal degeneration with progranulin mutation. Acta Neuropathol Commun 2016; 4:74. [PMID: 27435172 PMCID: PMC4952067 DOI: 10.1186/s40478-016-0345-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/10/2016] [Indexed: 12/12/2022] Open
Abstract
Reduction of Tau protein expression was described in 2003 by Zhukareva et al. in a variant of frontotemporal lobar degeneration (FTLD) referred to as diagnosis of dementia lacking distinctive histopathology, then re-classified as FTLD with ubiquitin inclusions. However, the analysis of Tau expression in FTLD has not been reconsidered since then. Knowledge of the molecular basis of protein aggregates and genes that are mutated in the FTLD spectrum would enable to determine whether the “Tau-less” is a separate pathological entity or if it belongs to an existing subclass of FTLD. To address this question, we have analyzed Tau expression in the frontal brain areas from control, Alzheimer’s disease and FTLD cases, including FTLD- Tau (MAPT), FTLD-TDP (sporadic, FTLD-TDP-GRN, FTLD-TDP-C9ORF72) and sporadic FTLD-FUS, using western blot and 2D-DIGE (Two-Dimensional fluorescence Difference Gel Electrophoresis) approaches. Surprisingly, we found that most of the FTLD-TDP-GRN brains are characterized by a huge reduction of Tau protein expression without any decrease in Tau mRNA levels. Interestingly, only cases affected by point mutations, rather than cases with total deletion of one GRN allele, seem to be affected by this reduction of Tau protein expression. Moreover, proteomic analysis highlighted correlations between reduced Tau protein level, synaptic impairment and massive reactive astrogliosis in these FTLD-GRN cases. Consistent with a recent study, our data also bring new insights regarding the role of progranulin in neurodegeneration by suggesting its involvement in lysosome and synaptic regulation. Together, our results demonstrate a strong association between progranulin deficiency and reduction of Tau protein expression that could lead to severe neuronal and glial dysfunctions. Our study also indicates that this FTLD-TDP-GRN subgroup could be part as a distinct entity of FTLD classification.
Collapse
|
47
|
Shao L, Golbaz K, Honer WG, Beasley CL. Deficits in axon-associated proteins in prefrontal white matter in bipolar disorder but not schizophrenia. Bipolar Disord 2016; 18:342-51. [PMID: 27218831 DOI: 10.1111/bdi.12395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/25/2016] [Accepted: 02/26/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Brain imaging studies have implicated white matter dysfunction in the pathophysiology of both bipolar disorder (BD) and schizophrenia (SCZ). However, the contribution of axons to white matter pathology in these disorders is not yet understood. Maintenance of neuronal function is dependent on the active transport of biological material, including synaptic proteins, along the axon. In this study, the expression of six proteins associated with axonal transport of synaptic cargoes was quantified in postmortem samples of prefrontal white matter in subjects with BD, those with SCZ, and matched controls, as a measure of axonal dysfunction in these disorders. METHODS Levels of the microtubule-associated proteins β-tubulin and microtubule-associated protein 6 (MAP6), the motor and accessory proteins kinesin-1 and disrupted-in-schizophrenia 1 (DISC1), and the synaptic cargoes synaptotagmin and synaptosomal-associated protein-25 (SNAP-25) were quantified in white matter adjacent to the dorsolateral prefrontal cortex in subjects with BD (n = 34), subjects with SCZ (n = 35), and non-psychiatric controls (n = 35) using immunoblotting and an enzyme-linked immunosorbent assay (ELISA). RESULTS Protein expression of β-tubulin, kinesin-1, DISC1, synaptotagmin, and SNAP-25 was significantly lower in subjects with BD compared to controls. Levels of axon-associated proteins were also lower in subjects with SCZ, but failed to reach statistical significance. CONCLUSIONS These data provide evidence for deficits in axon-associated proteins in prefrontal white matter in BD. Findings are suggestive of decreased axonal density or dysregulation of axonal function in this disorder.
Collapse
Affiliation(s)
- Li Shao
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Khashayar Golbaz
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Clare L Beasley
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
48
|
Gammie SC. Current Models and Future Directions for Understanding the Neural Circuitries of Maternal Behaviors in Rodents. ACTA ACUST UNITED AC 2016; 4:119-35. [PMID: 16251728 DOI: 10.1177/1534582305281086] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Maternal behaviors in rodents include a number of subcomponents, such as nursing, nest building, licking and grooming of pups, pup retrieval, and maternal aggression. Because each behavior involves a unique motor pattern, a unique ensemble neural circuitry must underlie each behavior. To what extent there is overlap in terms of brain regions and specific neurons for each circuit is being actively investigated. This review will first examine overlapping and separate components of pup retrieval and maternal aggression circuitries while examining a central role for medial preoptic area (MPA) in both behaviors. With an emphasis on experimental approaches, the review will then highlight recent findings and propose future directions for understanding maternal behavior regulation. Finally, examples for why studying the neural basis of maternal behaviors can bring insights to other areas of neuroscience, such as feeding, addiction, and anxiety and aggression regulation will be provided.
Collapse
|
49
|
Merenlender-Wagner A, Shemer Z, Touloumi O, Lagoudaki R, Giladi E, Andrieux A, Grigoriadis NC, Gozes I. New horizons in schizophrenia treatment: autophagy protection is coupled with behavioral improvements in a mouse model of schizophrenia. Autophagy 2015; 10:2324-32. [PMID: 25484074 DOI: 10.4161/15548627.2014.984274] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autophagy plays a key role in the pathophysiology of schizophrenia as manifested by a 40% decrease in BECN1/Beclin 1 mRNA in postmortem hippocampal tissues relative to controls. This decrease was coupled with the deregulation of the essential ADNP (activity-dependent neuroprotector homeobox), a binding partner of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) another major constituent of autophagy. The drug candidate NAP (davunetide), a peptide fragment from ADNP, enhanced the ADNP-LC3B interaction. Parallel genetic studies have linked allelic variation in the gene encoding MAP6/STOP (microtubule-associated protein 6) to schizophrenia, along with altered MAP6/STOP protein expression in the schizophrenic brain and schizophrenic-like behaviors in Map6-deficient mice. In this study, for the first time, we reveal significant decreases in hippocampal Becn1 mRNA and reversal by NAP but not by the antipsychotic clozapine (CLZ) in Map6-deficient (Map6(+/-)) mice. Normalization of Becn1 expression by NAP was coupled with behavioral protection against hyperlocomotion and cognitive deficits measured in the object recognition test. CLZ reduced hyperlocomotion below control levels and did not significantly affect object recognition. The combination of CLZ and NAP resulted in normalized outcome behaviors. Phase II clinical studies have shown NAP-dependent augmentation of functional activities of daily living coupled with brain protection. The current studies provide a new mechanistic pathway and a novel avenue for drug development.
Collapse
Key Words
- ADNP, activity-dependent neuroprotector homeobox (human)
- Adnp, activity-dependent neuroprotective protein (mouse)
- Adnp2 (mouse), ADNP2 (human), ADNP homeobox 2
- Becn1 (mouse), BECN1 (human), Beclin 1, autophagy-related
- CLZ, clozapine
- HUGO gene nomenclature committee database)
- Hprt/Hprt1, hypoxanthine phosphoribosyl transferase
- MGI database)
- Map1lc3b (mouse), MAP1LC3B (human), microtubule-associated protein 1 light chain 3 β
- Map6 (mouse), MAP6 (human), microtubule-associated protein 6
- NAP (davunetide); object recognition
- activity-dependent neuroprotective protein (ADNP
- activity-dependent neuroprotector homeobox (ADNP
- hyperactivity; immunohistochemistry
- microtubule-associated protein 6 (MAP6)/stable tubule only polypeptide (STOP) deficiency
- real-time PCR
Collapse
Affiliation(s)
- Avia Merenlender-Wagner
- a The Adams Super Center for Brain Studies; The Lily and Avraham Gildor Chair for the Investigation of Growth Factors; The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry; Sagol School of Neuroscience; Sackler Faculty of Medicine ; Tel Aviv University ; Tel Aviv ; Israel
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Penazzi L, Bakota L, Brandt R. Microtubule Dynamics in Neuronal Development, Plasticity, and Neurodegeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:89-169. [PMID: 26811287 DOI: 10.1016/bs.ircmb.2015.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are the basic information-processing units of the nervous system. In fulfilling their task, they establish a structural polarity with an axon that can be over a meter long and dendrites with a complex arbor, which can harbor ten-thousands of spines. Microtubules and their associated proteins play important roles during the development of neuronal morphology, the plasticity of neurons, and neurodegenerative processes. They are dynamic structures, which can quickly adapt to changes in the environment and establish a structural scaffold with high local variations in composition and stability. This review presents a comprehensive overview about the role of microtubules and their dynamic behavior during the formation and maturation of processes and spines in the healthy brain, during aging and under neurodegenerative conditions. The review ends with a discussion of microtubule-targeted therapies as a perspective for the supportive treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorène Penazzi
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|