1
|
Agawin NSR, García-Márquez MG, Espada DR, Freemantle L, Pintado Herrera MG, Tovar-Sánchez A. Distribution and accumulation of UV filters (UVFs) and conservation status of Posidonia oceanica seagrass meadows in a prominent Mediterranean coastal tourist hub. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174784. [PMID: 39009150 DOI: 10.1016/j.scitotenv.2024.174784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
This study investigates the presence and impact of UV filters in Posidonia oceanica meadows in Formentera, a Mediterranean tourist hotspot. It highlights the distribution of inorganic (TiO2 and ZnO) and organic UV filters (UVFs) in different environmental matrices, their accumulation in seagrass tissues and their impact on the seagrass health. In the overlying and canopy waters of P. oceanica, Zn concentrations surpassed Ti, with three organic UVFs (benzophenone-3 [BP-3], avobenzone and homosalate [HMS]) consistently detected. Ti concentrations were generally higher than Zn in rhizosphere sediments, along with recurrent presence of octocrylene, HMS, 2-ethylhexyl methoxycinnamate (EHMC), and 4-methylbenzylidene camphor (4-MBC). Maximum Zn concentrations were found in canopy waters (3052.9 ng L-1). Both Ti and Zn were found in all P. oceanica tissues and leaf epiphytes across all study sites. Additional UVFs like octocrylene, avobenzone, and BP-8 were also detected in P. oceanica tissues and epiphytes. Elevated levels of octocrylene in leaf epiphytes (2112.1 ng g-1 dw) and avobenzone in leaves (364.2 ng g-1 dw) and leaf epiphytes (199.6 ng g-1 dw) were observed in the Port of La Savina, the island's main entry port. Octocrylene concentrations (up to 2575 ng g-1 dw) in rhizosphere sediments near sewage discharge points exceeded reported maxima, highlighting wastewater treatment plants as significant sources of organic UVFs. Correlational analyses suggested that the accumulation of octocrylene, avobenzone, and BP-3 negatively impacted P. oceanica's conservation status, affecting global density, density at 100 % cover, and leaf morphometry. Positive correlations were observed between leaf polyphenols (antioxidants) and concentrations of avobenzone, benzophenone-8 (BP-8), and BP-3, indicating potential oxidative stress induced by UVFs in P. oceanica. Our study underscores the pervasive presence of UV filters in P. oceanica habitats, with implications for seagrass health and conservation, especially in areas of high tourism and sewage discharge.
Collapse
Affiliation(s)
- Nona S R Agawin
- Marine Ecology and Systematics (MarES), Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain.
| | | | - Diego Rita Espada
- Marine Ecology and Systematics (MarES), Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain; Institute of Biodiversity Research (IRBio), University of Barcelona, Barcelona, Spain
| | - Lillie Freemantle
- Department of Physical Chemistry, University of Cadiz, International Campus of Excellence of the Sea, Puerto Real, Cadiz, Spain
| | - Marina G Pintado Herrera
- Department of Physical Chemistry, University of Cadiz, International Campus of Excellence of the Sea, Puerto Real, Cadiz, Spain
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, ICMAN (CSIC), Puerto Real, Cadiz, Spain
| |
Collapse
|
2
|
Zhang F, Rosental L, Ji B, Brotman Y, Dai M. Metabolite-mediated adaptation of crops to drought and the acquisition of tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:626-644. [PMID: 38241088 DOI: 10.1111/tpj.16634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Drought is one of the major and growing threats to agriculture productivity and food security. Metabolites are involved in the regulation of plant responses to various environmental stresses, including drought stress. The complex drought tolerance can be ascribed to several simple metabolic traits. These traits could then be used for detecting the genetic architecture of drought tolerance. Plant metabolomes show dynamic differences when drought occurs during different developmental stages or upon different levels of drought stress. Here, we reviewed the major and most recent findings regarding the metabolite-mediated plant drought response. Recent progress in the development of drought-tolerant agents is also discussed. We provide an updated schematic overview of metabolome-driven solutions for increasing crop drought tolerance and thereby addressing an impending agricultural challenge.
Collapse
Affiliation(s)
- Fei Zhang
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Leah Rosental
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
| | - Boming Ji
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
| | - Mingqiu Dai
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
3
|
Setty J, Samant SB, Yadav MK, Manjubala M, Pandurangam V. Beneficial effects of bio-fabricated selenium nanoparticles as seed nanopriming agent on seed germination in rice (Oryza sativa L.). Sci Rep 2023; 13:22349. [PMID: 38102184 PMCID: PMC10724239 DOI: 10.1038/s41598-023-49621-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
Climate change and increasing population pressure have put the agriculture sector in an arduous situation. With increasing demand for agricultural production overuse of inputs have accentuated the negative impact on environment. Hence, sustainable agriculture is gaining prominence in recent times with an emphasis on judicious and optimum use of resources. The field of nanotechnology can immensely help in achieving sustainability in agriculture at various levels. Use of nutrients and plant protection chemicals in nano-form can increase their efficacy even at reduced doses thus decreasing their pernicious impact. Seed priming is one of the important agronomic practices with widely reported positive impacts on germination, seedling growth and pathogen resistance. In the current study, the effect and efficacy of selenium nanoparticles synthesized using phyto-extracts as a seed priming agent is studied. This nanopriming enhanced the germination, hastened the seedling emergence and growth with an increase in seedling vigour and nutrient status. This eco-friendly and economical method of synthesizing nanoparticles of various nutrient minerals can optimize the resource use thus helping in sustainable agriculture by reducing environment damage without compromising on efficacy.
Collapse
Affiliation(s)
- Jyotsna Setty
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| | - Sanjib Bal Samant
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Mayank Kumar Yadav
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Tallinn, Estonia
| | - M Manjubala
- Department of Farm Engineering and Agricultural Statistics, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Vijai Pandurangam
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
4
|
Tian S, Chen Y, Cai Z, Wang Q, Zhang J, Liu Z, Li Y, Zhao X. Effects of harpin and carbendazim on antioxidant accumulation in young jujube leaves. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Abstract
Jujube leaf tea is a functional beverage that soothes the nerves. In this study, we evaluated the effects of carbendazim and harpin on disease index, biomass accumulation, H2O2, antioxidant contents, and phenyl alanine ammonia lyase (PAL) activity in young jujube leaves. Compared to harpin, carbendazim decreased the disease index and induced higher H2O2 content. Additionally, the pesticide reduced young leaf biomass accumulation. In contrast, harpin increased vitamin C, glutathione, total phenolics, and total antioxidant capacity in young leaves compared to carbendazim. Compared with the control, harpin enhanced the PAL activity. Carbendazim residues were present in treated leaves for 14 days. Our study findings provide a method for improving jujube leaf tea quality from a pesticide utilization perspective.
Collapse
Affiliation(s)
- Shan Tian
- Life Science College, Luoyang Normal University , Luoyang , Henan 471934 , China
| | - Ying Chen
- Life Science College, Luoyang Normal University , Luoyang , Henan 471934 , China
| | - Zhien Cai
- Life Science College, Luoyang Normal University , Luoyang , Henan 471934 , China
| | - Qianjin Wang
- Life Science College, Luoyang Normal University , Luoyang , Henan 471934 , China
| | - Jiarui Zhang
- School of Life Sciences, Henan University , Kaifeng , Henan 475001 , China
| | - Zhilan Liu
- Grain and Oil Crops Technology Extension Station , Yongchuan , Chongqing 402160 , China
| | - Yueyue Li
- Life Science College, Luoyang Normal University , Luoyang , Henan 471934 , China
| | - Xusheng Zhao
- Life Science College, Luoyang Normal University , Luoyang , Henan 471934 , China
| |
Collapse
|
5
|
Ramazan S, Nazir I, Yousuf W, John R. Environmental stress tolerance in maize ( Zea mays): role of polyamine metabolism. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:85-96. [PMID: 35300784 DOI: 10.1071/fp21324] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 05/21/2023]
Abstract
Maize (Zea mays L.), a major multipurpose crop for food, feed and energy is extremely susceptible to environmental perturbations and setting off the major factors for limiting maize yield. Generally, plant yields are reduced and significantly lost to adverse environments and biotic strains. To ensure the safety of living cells under unfavourable circumstances, polyamines (PAs) play an important role in regulating the response under both abiotic and biotic stresses. It is the relative abundance of higher PAs (spermidine, Spd; spermine, Spm) vis-à-vis the diamine putrescine (Put) and PA catabolism that determines the stress tolerance in plants. Climate changes and increasing demands for production of maize have made it pressing to improve the stress tolerance strategies in this plant and it is imperative to understand the role of PAs in response to various environmental perturbations. Here, we critically review and summarise the recent literature on role of PAs in conferring stress tolerance in the golden crop. The responses in terms of PA accumulation, their mechanism of action and all the recent genetic manipulation studies carried out in PA metabolism pathway, ameliorating range of abiotic and biotic stresses have been discussed. As PA metabolism under stress conditions does not operate singly within cells and is always linked to other metabolic pathways in maize, its complex connections and role as a signalling molecule have also been discussed in this review.
Collapse
Affiliation(s)
- Salika Ramazan
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Ifra Nazir
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Waseem Yousuf
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - Riffat John
- Plant Molecular Biology Lab, Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| |
Collapse
|
6
|
Caddell D, Langenfeld NJ, Eckels MJH, Zhen S, Klaras R, Mishra L, Bugbee B, Coleman-Derr D. Photosynthesis in rice is increased by CRISPR/Cas9-mediated transformation of two truncated light-harvesting antenna. FRONTIERS IN PLANT SCIENCE 2023; 14:1050483. [PMID: 36743495 PMCID: PMC9893291 DOI: 10.3389/fpls.2023.1050483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Plants compete for light partly by over-producing chlorophyll in leaves. The resulting high light absorption is an effective strategy for out competing neighbors in mixed communities, but it prevents light transmission to lower leaves and limits photosynthesis in dense agricultural canopies. We used a CRISPR/Cas9-mediated approach to engineer rice plants with truncated light-harvesting antenna (TLA) via knockout mutations to individual antenna assembly component genes CpSRP43, CpSRP54a, and its paralog, CpSRP54b. We compared the photosynthetic contributions of these components in rice by studying the growth rates of whole plants, quantum yield of photosynthesis, chlorophyll density and distribution, and phenotypic abnormalities. Additionally, we investigated a Poales-specific duplication of CpSRP54. The Poales are an important family that includes staple crops such as rice, wheat, corn, millet, and sorghum. Mutations in any of these three genes involved in antenna assembly decreased chlorophyll content and light absorption and increased photosynthesis per photon absorbed (quantum yield). These results have significant implications for the improvement of high leaf-area-index crop monocultures.
Collapse
Affiliation(s)
- Daniel Caddell
- Plant Gene Expression Center, United States Department of Agriculture - Agricultural Research Service (USDA ARS), Albany, CA, United States
- Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA, United States
| | - Noah J. Langenfeld
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT, United States
| | - Madigan JH. Eckels
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT, United States
| | - Shuyang Zhen
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel Klaras
- Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA, United States
| | - Laxmi Mishra
- Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA, United States
| | - Bruce Bugbee
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT, United States
| | - Devin Coleman-Derr
- Plant Gene Expression Center, United States Department of Agriculture - Agricultural Research Service (USDA ARS), Albany, CA, United States
- Plant and Microbial Biology Department, University of California at Berkeley, Berkeley, CA, United States
| |
Collapse
|
7
|
Reactive Oxygen Species Distribution Involved in Stipe Gradient Elongation in the Mushroom Flammulina filiformis. Cells 2022; 11:cells11121896. [PMID: 35741023 PMCID: PMC9221348 DOI: 10.3390/cells11121896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
The mushroom stipe raises the pileus above the substrate into a suitable position for dispersing spores. The stipe elongates at different speeds along its length, with the rate of elongation decreasing in a gradient from the top to the base. However, the molecular mechanisms underlying stipe gradient elongation are largely unknown. Here, we used the model basidiomycete mushroom Flammulina filiformis to investigate the mechanism of mushroom stipe elongation and the role of reactive oxygen species (ROS) signaling in this process. Our results show that O2- and H2O2 exhibit opposite gradient distributions in the stipe, with higher O2- levels in the elongation region (ER), and higher H2O2 levels in the stable region (SR). Moreover, NADPH-oxidase-encoding genes are up-regulated in the ER, have a function in producing O2-, and positively regulate stipe elongation. Genes encoding manganese superoxide dismutase (MnSOD) are up-regulated in the SR, have a function in producing H2O2, and negatively regulate stipe elongation. Altogether, our data demonstrate that ROS (O2-/H2O2) redistribution mediated by NADPH oxidase and MnSODs is linked to the gradient elongation of the F. filiformis stipe.
Collapse
|
8
|
Berrios L, Rentsch JD. Linking Reactive Oxygen Species (ROS) to Abiotic and Biotic Feedbacks in Plant Microbiomes: The Dose Makes the Poison. Int J Mol Sci 2022; 23:ijms23084402. [PMID: 35457220 PMCID: PMC9030523 DOI: 10.3390/ijms23084402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
In nature, plants develop in complex, adaptive environments. Plants must therefore respond efficiently to environmental stressors to maintain homeostasis and enhance their fitness. Although many coordinated processes remain integral for achieving homeostasis and driving plant development, reactive oxygen species (ROS) function as critical, fast-acting orchestrators that link abiotic and biotic responses to plant homeostasis and development. In addition to the suite of enzymatic and non-enzymatic ROS processing pathways that plants possess, they also rely on their microbiota to buffer and maintain the oxidative window needed to balance anabolic and catabolic processes. Strong evidence has been communicated recently that links ROS regulation to the aggregated function(s) of commensal microbiota and plant-growth-promoting microbes. To date, many reports have put forth insightful syntheses that either detail ROS regulation across plant development (independent of plant microbiota) or examine abiotic–biotic feedbacks in plant microbiomes (independent of clear emphases on ROS regulation). Here we provide a novel synthesis that incorporates recent findings regarding ROS and plant development in the context of both microbiota regulation and plant-associated microbes. Specifically, we discuss various roles of ROS across plant development to strengthen the links between plant microbiome functioning and ROS regulation for both basic and applied research aims.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| | - Jeremy D. Rentsch
- Department of Biology, Francis Marion University, Florence, SC 29502, USA;
| |
Collapse
|
9
|
Tola AJ, Jaballi A, Missihoun TD. Protein Carbonylation: Emerging Roles in Plant Redox Biology and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1451. [PMID: 34371653 PMCID: PMC8309296 DOI: 10.3390/plants10071451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/26/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Plants are sessile in nature and they perceive and react to environmental stresses such as abiotic and biotic factors. These induce a change in the cellular homeostasis of reactive oxygen species (ROS). ROS are known to react with cellular components, including DNA, lipids, and proteins, and to interfere with hormone signaling via several post-translational modifications (PTMs). Protein carbonylation (PC) is a non-enzymatic and irreversible PTM induced by ROS. The non-enzymatic feature of the carbonylation reaction has slowed the efforts to identify functions regulated by PC in plants. Yet, in prokaryotic and animal cells, studies have shown the relevance of protein carbonylation as a signal transduction mechanism in physiological processes including hydrogen peroxide sensing, cell proliferation and survival, ferroptosis, and antioxidant response. In this review, we provide a detailed update on the most recent findings pertaining to the role of PC and its implications in various physiological processes in plants. By leveraging the progress made in bacteria and animals, we highlight the main challenges in studying the impacts of carbonylation on protein functions in vivo and the knowledge gap in plants. Inspired by the success stories in animal sciences, we then suggest a few approaches that could be undertaken to overcome these challenges in plant research. Overall, this review describes the state of protein carbonylation research in plants and proposes new research avenues on the link between protein carbonylation and plant redox biology.
Collapse
Affiliation(s)
| | | | - Tagnon D. Missihoun
- Groupe de Recherche en Biologie Végétale (GRBV), Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boul. des Forges, Trois-Rivières, QC G9A 5H7, Canada; (A.J.T.); (A.J.)
| |
Collapse
|
10
|
Reactive Oxygen Species and Antioxidants in Postharvest Vegetables and Fruits. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2020:8817778. [PMID: 33381540 PMCID: PMC7749770 DOI: 10.1155/2020/8817778] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/05/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Reducing oxidative species to non- or less-reactive matter is the principal function of an antioxidant. Plant-based food is the main external source of antioxidants that helps protect our cells from oxidative damage. During postharvest storage and distribution, fruits and vegetables often increase ROS production that is quenched by depleting their antioxidant pools to protect their cells, which may leave none for humans. ROS are molecules produced from oxygen metabolism; some of the most widely analyzed ROS in plants are singlet oxygen, superoxide, hydrogen peroxide, and hydroxyl radicals. ROS concentration and lifetime are determined by the availability and composition of the antioxidant system that includes enzymatic components such as SOD, CAT, and APX and nonenzymatic components such as vitamins, polyphenols, and carotenoid. Depending on its concentration in the cell, ROS can either be harmful or beneficial. At high concentrations, ROS can damage various kinds of biomolecules such as lipids, proteins, DNA, and RNA, whereas at low or moderate concentrations, ROS can act as second messengers in the intracellular signaling cascade that mediates various plant responses. Novel postharvest methods are sought to maintain fruit and vegetable quality, including minimizing ROS while preserving their antioxidant content.
Collapse
|
11
|
Schmitz J, Hüdig M, Meier D, Linka N, Maurino VG. The genome of Ricinus communis encodes a single glycolate oxidase with different functions in photosynthetic and heterotrophic organs. PLANTA 2020; 252:100. [PMID: 33170407 PMCID: PMC7655567 DOI: 10.1007/s00425-020-03504-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
The biochemical characterization of glycolate oxidase in Ricinus communis hints to different physiological functions of the enzyme depending on the organ in which it is active. Enzymatic activities of the photorespiratory pathway are not restricted to green tissues but are present also in heterotrophic organs. High glycolate oxidase (GOX) activity was detected in the endosperm of Ricinus communis. Phylogenetic analysis of the Ricinus L-2-hydroxy acid oxidase (Rc(L)-2-HAOX) family indicated that Rc(L)-2-HAOX1 to Rc(L)-2-HAOX3 cluster with the group containing streptophyte long-chain 2-hydroxy acid oxidases, whereas Rc(L)-2-HAOX4 clusters with the group containing streptophyte GOX. Rc(L)-2-HAOX4 is the closest relative to the photorespiratory GOX genes of Arabidopsis. We obtained Rc(L)-2-HAOX4 as a recombinant protein and analyze its kinetic properties in comparison to the Arabidopsis photorespiratory GOX. We also analyzed the expression of all Rc(L)-2-HAOXs and conducted metabolite profiling of different Ricinus organs. Phylogenetic analysis indicates that Rc(L)-2-HAOX4 is the only GOX encoded in the Ricinus genome (RcGOX). RcGOX has properties resembling those of the photorespiratory GOX of Arabidopsis. We found that glycolate, the substrate of GOX, is highly abundant in non-green tissues, such as roots, embryo of germinating seeds and dry seeds. We propose that RcGOX fulfills different physiological functions depending on the organ in which it is active. In autotrophic organs it oxidizes glycolate into glyoxylate as part of the photorespiratory pathway. In fast growing heterotrophic organs, it is most probably involved in the production of serine to feed the folate pathway for special demands of those tissues.
Collapse
Affiliation(s)
- Jessica Schmitz
- Plant Molecular Physiology and Biotechnology Division, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Meike Hüdig
- Plant Molecular Physiology and Biotechnology Division, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Molecular Plant Physiology Division, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Dieter Meier
- Plant Molecular Physiology and Biotechnology Division, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Nicole Linka
- Institute for Plant Biochemistry, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Veronica G Maurino
- Plant Molecular Physiology and Biotechnology Division, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany.
- Molecular Plant Physiology Division, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
12
|
Inoculation of maize seeds with Pseudomonas putida leads to enhanced seedling growth in combination with modified regulation of miRNAs and antioxidant enzymes. Symbiosis 2020. [DOI: 10.1007/s13199-020-00703-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
The Effects of Hydrogen Peroxide on Plant Growth, Mineral Accumulation, as Well as Biological and Chemical Properties of Ficus deltoidea. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10040599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen peroxide (H2O2) is defined as a reactive oxygen species (ROS), able to cause damage to a variety of cellular structures. On the other hand, recent work has demonstrated that H2O2 can also act as a potent signaling molecule that mediates various physiological and biochemical processes in plants. This study was carried out to investigate the effects of H2O2 on the growth, mineral nutrient accumulation, as well as the biologic and chemical properties of Ficus deltoidea var. deltoidea. F. deltoidea plants were spray-treated with 0- (control), 8-, 16-, 30- and 60-mM H2O2 under field conditions. Plant height, leaf area, chlorophyll content, net photosynthetic rate, stomatal conductance and quantum yield of the F. deltoidea plants significantly increased after treatment with 16 and 30-mM H2O2. The results indicate that 60-mM H2O2 increased the accumulation of arsenic, iron and sodium content in the leaves of F. deltoidea. On the other hand, 8-mM H2O2 significantly enhanced the accumulation of arsenic, iron, calcium and potassium content in the syconium of F. deltoidea plants. In addition, H2O2 treatment did not produce any significant effects on antimony and magnesium accumulation in the leaves or the syconium of F. deltoidea plants. The results show that the F. deltoidea plant has strong antidiabetic properties and its α-glucosidase activity increased in treated plants compared to standard acarbose. Hydrogen peroxide, particularly in concentrations of 16 and 30 mM, increased the antioxidant activity, total phenolic and flavonoid content and the vitexin and isovitexin content. There was a positive correlation between antioxidant activity with total phenol and total flavonoid content in H2O2-treated plants. The quantitative analysis by HPTLC indicates that the amount of vitexin and isovitexin increased with the higher concentrations of H2O2. From this study, it can be concluded that spraying 16 and 30-mM H2O2 once a week enhances growth, mineral accumulation and stimulates bioactive compounds of the F. deltoidea plants.
Collapse
|
14
|
Voothuluru P, Mäkelä P, Zhu J, Yamaguchi M, Cho IJ, Oliver MJ, Simmonds J, Sharp RE. Apoplastic Hydrogen Peroxide in the Growth Zone of the Maize Primary Root. Increased Levels Differentially Modulate Root Elongation Under Well-Watered and Water-Stressed Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:392. [PMID: 32373139 PMCID: PMC7186474 DOI: 10.3389/fpls.2020.00392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/18/2020] [Indexed: 05/28/2023]
Abstract
Reactive oxygen species (ROS) can act as signaling molecules involved in the acclimation of plants to various abiotic and biotic stresses. However, it is not clear how the generalized increases in ROS and downstream signaling events that occur in response to stressful conditions are coordinated to modify plant growth and development. Previous studies of maize (Zea mays L.) primary root growth under water deficit stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex, and that the rate of cell production is also decreased. It was observed that apoplastic ROS, particularly hydrogen peroxide (H2O2), increased specifically in the apical region of the growth zone under water stress, resulting at least partly from increased oxalate oxidase activity in this region. To assess the function of the increase in apoplastic H2O2 in root growth regulation, transgenic maize lines constitutively expressing a wheat oxalate oxidase were utilized in combination with kinematic growth analysis to examine effects of increased apoplastic H2O2 on the spatial pattern of cell elongation and on cell production in well-watered and water-stressed roots. Effects of H2O2 removal (via scavenger pretreatment) specifically from the apical region of the growth zone were also assessed. The results show that apoplastic H2O2 positively modulates cell production and root elongation under well-watered conditions, whereas the normal increase in apoplastic H2O2 in water-stressed roots is causally related to down-regulation of cell production and root growth inhibition. The effects on cell production were accompanied by changes in spatial profiles of cell elongation and in the length of the growth zone. However, effects on overall cell elongation, as reflected in final cell lengths, were minor. These results reveal a fundamental role of apoplastic H2O2 in regulating cell production and root elongation in both well-watered and water-stressed conditions.
Collapse
Affiliation(s)
- Priya Voothuluru
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Pirjo Mäkelä
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Jinming Zhu
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Mineo Yamaguchi
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - In-Jeong Cho
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, University of Missouri, Columbia, MO, United States
| | - Melvin J. Oliver
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, University of Missouri, Columbia, MO, United States
| | - John Simmonds
- Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Robert E. Sharp
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| |
Collapse
|
15
|
ZnCl 2 treatment improves nutrient quality and Zn accumulation in peanut seeds and sprouts. Sci Rep 2020; 10:2364. [PMID: 32047255 PMCID: PMC7012847 DOI: 10.1038/s41598-020-59434-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/27/2020] [Indexed: 11/08/2022] Open
Abstract
Peanut is a popular food due to its high nutrient content. The effects of ZnCl2 on peanut seed germination, fatty acid and sugar contents, vitamin biosynthesis, antioxidant content, and Zn assimilation were evaluated in this study. Treatment with ZnCl2 significantly improved the germination rate, enhanced reactive oxygen species production and reduced the content of total fatty acids in peanut seed and sprout. However, ZnCl2 treatment did not reduce total sugar or total protein relative to the control. Germination promoted the biosynthesis of phenolics and resveratrol and increased the antioxidant capacity, as evaluated by Fe3+ reducing power and 2,2-diphenyl-1-picrylhydrazyl radical scavenging ability, especially under Zn stress conditions. The vitamin content decreased in the following order among treatments: germinated seeds with ZnCl2 treatment > germinated seeds without ZnCl2 treatment > dormant seeds. Interestingly, Zn content was approximately five times higher in the germinated ZnCl2-treated seeds compared to in the untreated germinated seeds and the dormant seeds. The results of this study provide a new method for producing healthy foods with enhanced vitamin content and antioxidant capacity.
Collapse
|
16
|
Arena C, Vitale L, Bianchi AR, Mistretta C, Vitale E, Parisi C, Guerriero G, Magliulo V, De Maio A. The Ageing Process Affects the Antioxidant Defences and the Poly (ADPribosyl)ation Activity in Cistus Incanus L. Leaves. Antioxidants (Basel) 2019; 8:E528. [PMID: 31698730 PMCID: PMC6912739 DOI: 10.3390/antiox8110528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022] Open
Abstract
The ageing process in living organisms is characterised by the accumulation of several deleterious changes occurring in cells and tissues. The increase of reactive oxygen species with the advancement of age is responsible for the oxidative damage to proteins, lipids and DNA, enhancing the risk of diseases. The antioxidant response and the activation of the poly(ADP-ribosyl)ation process represent the first defences activated by organisms at all life stages to counteract damage to cell structures and genomic material. The regulation of poly(ADP ribosyl)ation with age is little known in plants, especially in combination with antioxidant defences modulation. In this study, the relationships between poly (ADP-ribose) polymerase (PARP) activity and enzymatic and non-enzymatic antioxidant pool have been studied together with the photosynthetic apparatus efficiency in the Mediterranean species Cistus incanus L., examining leaves at different developmental stages: young, mature and senescent. The photosynthetic performance was evaluated by chlorophyll a fluorescence measurement, the total soluble and fat-soluble antioxidant capacity, as well as the activities of enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione-S-transferase (GST), were determined by spectrophotometer, PARP activity was assessed by radioactive labelling. The highest photochemical activity was observed in young leaves, together with the highest GST activity. With the progress of the ageing process, the non-enzymatic antioxidant pool (namely ascorbic acid, α-tocopherol) declined, reaching the lowest value in senescent leaves, whereas PARP activity rose significantly. The overall results indicate that the decline of photosynthetic apparatus efficiency during senescence is due to the reduction of specific defences against oxidative damages, which increase the damages to DNA, as demonstrated by PARP activity rise.
Collapse
Affiliation(s)
- Carmen Arena
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli, Italy; (C.A.); (A.R.B.); (E.V.); (C.P.); (G.G.)
| | - Luca Vitale
- Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFoM), Via Patacca 85, 80056 Ercolano (NA), Italy; (L.V.); (C.M.); (V.M.)
| | - Anna Rita Bianchi
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli, Italy; (C.A.); (A.R.B.); (E.V.); (C.P.); (G.G.)
| | - Carmela Mistretta
- Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFoM), Via Patacca 85, 80056 Ercolano (NA), Italy; (L.V.); (C.M.); (V.M.)
| | - Ermenegilda Vitale
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli, Italy; (C.A.); (A.R.B.); (E.V.); (C.P.); (G.G.)
| | - Costantino Parisi
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli, Italy; (C.A.); (A.R.B.); (E.V.); (C.P.); (G.G.)
| | - Giulia Guerriero
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli, Italy; (C.A.); (A.R.B.); (E.V.); (C.P.); (G.G.)
| | - Vincenzo Magliulo
- Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFoM), Via Patacca 85, 80056 Ercolano (NA), Italy; (L.V.); (C.M.); (V.M.)
| | - Anna De Maio
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cinthia, 80126 Napoli, Italy; (C.A.); (A.R.B.); (E.V.); (C.P.); (G.G.)
| |
Collapse
|
17
|
Biswas MS, Fukaki H, Mori IC, Nakahara K, Mano J. Reactive oxygen species and reactive carbonyl species constitute a feed-forward loop in auxin signaling for lateral root formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:536-548. [PMID: 31306517 DOI: 10.1111/tpj.14456] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 05/27/2019] [Accepted: 07/02/2019] [Indexed: 05/13/2023]
Abstract
In auxin-stimulated roots, production of reactive oxygen species (ROS) via the hormone-induced activation of respiratory burst oxidase homologous NADPH oxidases facilitates lateral root (LR) formation. In this study, in order to verify that ROS can modulate auxin signaling, we examined the involvement of the lipid peroxide-derived agents known as reactive carbonyl species (RCS) in LR formation. When auxin was added to Arabidopsis thaliana roots, the levels of RCS, for example acrolein, 4-hydroxynonenal and crotonaldehyde, were increased prior to LR formation. Addition of the carbonyl scavenger carnosine suppressed auxin-induced LR formation. Addition of RCS to the roots induced the expression of the auxin-responsive DR5 promoter and the TIR1, IAA14, ARF7, LBD16 and PUCHI genes and facilitated LR formation without increasing the endogenous auxin level. DR5 and LBD16 were activated in the LR primordia. The auxin signaling-deficient mutants arf7 arf19 and slr-1 did not respond - and tir1 afb2 appeared to show a poor response - to RCS. When given to the roots RCS promoted the disappearance of the AXR3NT-GUS fusion protein, i.e. the degradation of the auxin/indole-3-acetic acid protein, as did auxin. These results indicate that the auxin-induced production of ROS and their downstream products RCS modulate the auxin signaling pathway in a feed-forward manner. RCS are key agents that connect the ROS signaling and the auxin signaling pathways.
Collapse
Affiliation(s)
- Md Sanaullah Biswas
- The United Graduate School of Agriculture, Tottori University, Koyama-Cho Minami 4-101, Tottori, 680-8550, Japan
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Kazuha Nakahara
- Faculty of Agriculture, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan
| | - Jun'ichi Mano
- The United Graduate School of Agriculture, Tottori University, Koyama-Cho Minami 4-101, Tottori, 680-8550, Japan
- Science Research Center, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan
- Graduate School of Sciences and Technologies for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan
| |
Collapse
|
18
|
Xu Y, Magwanga RO, Cai X, Zhou Z, Wang X, Wang Y, Zhang Z, Jin D, Guo X, Wei Y, Li Z, Wang K, Liu F. Deep Transcriptome Analysis Reveals Reactive Oxygen Species (ROS) Network Evolution, Response to Abiotic Stress, and Regulation of Fiber Development in Cotton. Int J Mol Sci 2019; 20:E1863. [PMID: 30991750 PMCID: PMC6514600 DOI: 10.3390/ijms20081863] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/03/2022] Open
Abstract
Reactive oxygen species (ROS) are important molecules in the plant, which are involved in many biological processes, including fiber development and adaptation to abiotic stress in cotton. We carried out transcription analysis to determine the evolution of the ROS genes and analyzed their expression levels in various tissues of cotton plant under abiotic stress conditions. There were 515, 260, and 261 genes of ROS network that were identified in Gossypium hirsutum (AD₁ genome), G. arboreum (A genome), and G. raimondii (D genome), respectively. The ROS network genes were found to be distributed in all the cotton chromosomes, but with a tendency of aggregating on either the lower or upper arms of the chromosomes. Moreover, all the cotton ROS network genes were grouped into 17 families as per the phylogenetic tress analysis. A total of 243 gene pairs were orthologous in G. arboreum and G. raimondii. There were 240 gene pairs that were orthologous in G. arboreum, G. raimondii, and G. hirsutum. The synonymous substitution value (Ks) peaks of orthologous gene pairs between the At subgenome and the A progenitor genome (G. arboreum), D subgenome and D progenitor genome (G. raimondii) were 0.004 and 0.015, respectively. The Ks peaks of ROS network orthologous gene pairs between the two progenitor genomes (A and D genomes) and two subgenomes (At and Dt subgenome) were 0.045. The majority of Ka/Ks value of orthologous gene pairs between the A, D genomes and two subgenomes of TM-1 were lower than 1.0. RNA seq. analysis and RT-qPCR validation, showed that, CSD1,2,3,5,6; FSD1,2; MSD1,2; APX3,11; FRO5.6; and RBOH6 played a major role in fiber development while CSD1, APX1, APX2, MDAR1, GPX4-6-7, FER2, RBOH6, RBOH11, and FRO5 were integral for enhancing salt stress in cotton. ROS network-mediated signal pathway enhances the mechanism of fiber development and regulation of abiotic stress in Gossypium. This study will enhance the understanding of ROS network and form the basic foundation in exploring the mechanism of ROS network-involving the fiber development and regulation of abiotic stress in cotton.
Collapse
Affiliation(s)
- Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Richard Odongo Magwanga
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
- Jaramogi Oginga Odinga University of Science and Technology (JOOUST), School of Biological and Physical Sciences (SPBS), P.O BOX 210-40600, Bondo, Kenya.
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Zhenmei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Dingsha Jin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Xinlei Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Yangyang Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
- Biological and Food Engineering, Anyang Institute of Technology, Anyang 455000, China.
| | - Zhenqing Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China.
| |
Collapse
|
19
|
Kaya H, Takeda S, Kobayashi MJ, Kimura S, Iizuka A, Imai A, Hishinuma H, Kawarazaki T, Mori K, Yamamoto Y, Murakami Y, Nakauchi A, Abe M, Kuchitsu K. Comparative analysis of the reactive oxygen species-producing enzymatic activity of Arabidopsis NADPH oxidases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:291-300. [PMID: 30570803 DOI: 10.1111/tpj.14212] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/03/2018] [Accepted: 12/14/2018] [Indexed: 05/23/2023]
Abstract
Reactive oxygen species (ROS) produced by NADPH oxidases, called respiratory burst oxidase homologs (Rbohs), play crucial roles in development as well as biotic and abiotic stress responses in plants. Arabidopsis has 10 Rboh genes, AtRbohA to AtRbohJ. Five AtRbohs (AtRbohC, -D, -F, -H and -J) are synergistically activated by Ca2+ -binding and protein phosphorylation to produce ROS that play various roles in planta, although the activities of the other Rbohs remain unknown. With a heterologous expression system, we found a range of ROS-producing activity among the AtRbohs with differences up to 100 times, indicating that the required amounts of ROS are different in each situation where AtRbohs act. To specify the functions of AtRbohs involved in cell growth, we focused on AtRbohC, -H and -J, which are involved in tip growth of root hairs or pollen tubes. Ectopic expression of the root hair factor AtRbohC/ROOT HAIR DEFECTIVE 2 (RHD2) in pollen tubes restored the atrbohH atrbohJ defects in tip growth of pollen tubes. However, expression of AtRbohH or -J in root hairs did not complement the tip growth defect in the atrbohC/rhd2 mutant. Our data indicate that Rbohs possess different ranges of enzymatic activity, and that some Rbohs have evolved to carry specific functions in cell growth.
Collapse
Affiliation(s)
- Hidetaka Kaya
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Seiji Takeda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522, Japan
- Biotechnology Research Department, Kyoto Prefectural Agriculture Forestry and Fisheries Technology Center, Kitainayazuma Oji 74, Seika-cho, Soraku-gun, Kyoto, 619-0244, Japan
| | - Masaki J Kobayashi
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Sachie Kimura
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ayako Iizuka
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Aya Imai
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Haruka Hishinuma
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tomoko Kawarazaki
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kyoichiro Mori
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yuta Yamamoto
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yuki Murakami
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ayuko Nakauchi
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Mitsutomo Abe
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
20
|
Ye XQ, Meng JL, Wu M. The effects of Solidago canadensis water extracts on maize seedling growth in association with the biomass allocation pattern. PeerJ 2019; 7:e6564. [PMID: 30881766 PMCID: PMC6419718 DOI: 10.7717/peerj.6564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 02/02/2019] [Indexed: 11/20/2022] Open
Abstract
Background Solidago canadensis L. is an aggressive exotic plant species in China that has potential allelopathic effects on competing plant species. Effects of hormesis are frequently observed in studies of allelopathy; however, the mechanisms of such effects need to be elucidated. Allelopathic compounds may affect the growth of recipient plants via alteration of biomass allocation patterns or photosynthetic capacity. The aim of this study was to determine how water extracts from S. canadensis affected the shoot and root growth of recipient plants and whether the underlying mechanism was related to the biomass allocation pattern or photosynthetic gas exchange capacity. Methods The water extracts from S. canadensis shoots at 12 different concentrations in the range of 0-0.25 g/ml were applied thrice in 9 days to maize seedlings cultivated in silica sand. The growth (shoot height, leaf length and area and root length) and biomass accumulation and allocation (specific leaf area (SLA), leaf area ratio (LAR) and leaf mass ratio (LMR)) were compared among maize seedlings exposed to different treatment concentrations. Gas exchange (photosynthetic light response curve) was measured and compared among maize seedlings exposed to three concentrations of water extract (0, 0.0125 and 0.2 g/ml) before and after the first application, and seedling growth was measured after the third and final application. Results The growth of seedlings (shoot height, leaf length and area and root length) was promoted at concentrations below 0.125 g/ml and inhibited at concentrations above this level (P < 0.05). The pattern of change in biomass accumulation and allocation was similar to that of shoot growth, but biomass accumulation and allocation was not significantly affected by the water extract treatments (P > 0.05). The water extract treatments did not significantly affect the photosynthetic capacity (P > 0.05), but the dark respiration rate was higher in the low-dose treatment than that in the high-dose treatment. Shoot height was positively correlated with the biomass allocation indicators SLA and LAR (P < 0.05) but not with LMR (P > 0.05). Conclusions The results suggested that the effects of the water extracts from S. canadensis were highly dependent on the concentration, with the growth of maize seedlings promoted at low concentrations of water extracts. The effects of the water extracts on the growth of maize seedlings were mainly due to the effects on the LAR, the allocation to leaf area growth, whereas the effects of the water extracts on leaf gas exchange capacity cannot explain variation of seedling growth. Thus, the stimulation of plant growth was very likely due to increased biomass allocation towards the shoot.
Collapse
Affiliation(s)
- Xiao Qi Ye
- Research Station of Hangzhou Bay Wetland Ecosystems, National Forestry Bureau/Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, P.R.China
| | - Jin Liu Meng
- Research Station of Hangzhou Bay Wetland Ecosystems, National Forestry Bureau/Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, P.R.China
| | - Ming Wu
- Research Station of Hangzhou Bay Wetland Ecosystems, National Forestry Bureau/Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, P.R.China
| |
Collapse
|
21
|
Bordenave CD, Granados Mendoza C, Jiménez Bremont JF, Gárriz A, Rodríguez AA. Defining novel plant polyamine oxidase subfamilies through molecular modeling and sequence analysis. BMC Evol Biol 2019; 19:28. [PMID: 30665356 PMCID: PMC6341606 DOI: 10.1186/s12862-019-1361-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/14/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The polyamine oxidases (PAOs) catabolize the oxidative deamination of the polyamines (PAs) spermine (Spm) and spermidine (Spd). Most of the phylogenetic studies performed to analyze the plant PAO family took into account only a limited number and/or taxonomic representation of plant PAOs sequences. RESULTS Here, we constructed a plant PAO protein sequence database and identified four subfamilies. Subfamily PAO back conversion 1 (PAObc1) was present on every lineage included in these analyses, suggesting that BC-type PAOs might play an important role in plants, despite its precise function is unknown. Subfamily PAObc2 was exclusively present in vascular plants, suggesting that t-Spm oxidase activity might play an important role in the development of the vascular system. The only terminal catabolism (TC) PAO subfamily (subfamily PAOtc) was lost in Superasterids but it was present in all other land plants. This indicated that the TC-type reactions are fundamental for land plants and that their function could being taken over by other enzymes in Superasterids. Subfamily PAObc3 was the result of a gene duplication event preceding Angiosperm diversification, followed by a gene extinction in Monocots. Differential conserved protein motifs were found for each subfamily of plant PAOs. The automatic assignment using these motifs was found to be comparable to the assignment by rough clustering performed on this work. CONCLUSIONS The results presented in this work revealed that plant PAO family is bigger than previously conceived. Also, they delineate important background information for future specific structure-function and evolutionary investigations and lay a foundation for the deeper characterization of each plant PAO subfamily.
Collapse
Affiliation(s)
- Cesar Daniel Bordenave
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología, INTECH - CONICET - UNSAM, Intendente Marino KM 8.2 - B7130IWA Chascomús, Buenos Aires, Argentina
| | - Carolina Granados Mendoza
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-367, Coyoacán, 04510, México City, Mexico
| | - Juan Francisco Jiménez Bremont
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Andrés Gárriz
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología, INTECH - CONICET - UNSAM, Intendente Marino KM 8.2 - B7130IWA Chascomús, Buenos Aires, Argentina
| | - Andrés Alberto Rodríguez
- Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología, INTECH - CONICET - UNSAM, Intendente Marino KM 8.2 - B7130IWA Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
22
|
Yang L, Wu Y, Zhang M, Zhang J, Stewart JM, Xing C, Wu J, Jin S. Transcriptome, cytological and biochemical analysis of cytoplasmic male sterility and maintainer line in CMS-D8 cotton. PLANT MOLECULAR BIOLOGY 2018; 97:537-551. [PMID: 30066309 DOI: 10.1007/s11103-018-0757-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/14/2018] [Indexed: 05/26/2023]
Abstract
Key message This research based on RNA-seq, biochemical, and cytological analyses sheds that ROS may serve as important signaling molecules of cytoplasmic male sterility in CMS-D8 cotton. To understand the mechanism of cytoplasmic male sterility in cotton (Gossypium hirsutum), transcriptomic, cytological, and biochemical analysis were performed between the cytoplasmic male sterility CMS-D8 line, Zhong41A, and its maintainer line Zhong41B. A total of 2335 differentially expressed genes (DEGs) were identified in the CMS line at three different stages of anther development. Bioinformatics analysis of these DEGs indicated their relationship to reactive oxygen species (ROS) homeostasis, including reduction-oxidation reactions and the metabolism of glutathione and ascorbate. At the same time, DEGs associated with tapetum development, especially the transition to secretory tapetum, were down-regulated in the CMS line. Biochemical analysis indicated that the ability of the CMS line to eliminate ROS was decreased, which led to the rapid release of H2O2. Cytological analysis revealed that the most crucial defect in the CMS line was the abnormal tapetum. All these results are consistent with the RNA sequencing data. On the basis of our findings, we propose that ROS act as signal molecules, which are released from mitochondria and transferred to the nucleus, triggering the formation of abnormal tapetum.
Collapse
Affiliation(s)
- Li Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yuanlong Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, People's Republic of China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, People's Republic of China.
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, People's Republic of China.
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| |
Collapse
|
23
|
Karpinska B, Zhang K, Rasool B, Pastok D, Morris J, Verrall SR, Hedley PE, Hancock RD, Foyer CH. The redox state of the apoplast influences the acclimation of photosynthesis and leaf metabolism to changing irradiance. PLANT, CELL & ENVIRONMENT 2018; 41:1083-1097. [PMID: 28369975 PMCID: PMC5947596 DOI: 10.1111/pce.12960] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/13/2017] [Accepted: 03/22/2017] [Indexed: 05/03/2023]
Abstract
The redox state of the apoplast is largely determined by ascorbate oxidase (AO) activity. The influence of AO activity on leaf acclimation to changing irradiance was explored in wild-type (WT) and transgenic tobacco (Nicotiana tobaccum) lines containing either high [pumpkin AO (PAO)] or low [tobacco AO (TAO)] AO activity at low [low light (LL); 250 μmol m-2 s-1 ] and high [high light (HL); 1600 μmol m-2 s-1 ] irradiance and following the transition from HL to LL. AO activities changed over the photoperiod, particularly in the PAO plants. AO activity had little effect on leaf ascorbate, which was significantly higher under HL than under LL. Apoplastic ascorbate/dehydroascorbate (DHA) ratios and threonate levels were modified by AO activity. Despite decreased levels of transcripts encoding ascorbate synthesis enzymes, leaf ascorbate increased over the first photoperiod following the transition from HL to LL, to much higher levels than LL-grown plants. Photosynthesis rates were significantly higher in the TAO leaves than in WT or PAO plants grown under HL but not under LL. Sub-sets of amino acids and fatty acids were lower in TAO and WT leaves than in the PAO plants under HL, and following the transition to LL. Light acclimation processes are therefore influenced by the apoplastic as well as chloroplastic redox state.
Collapse
Affiliation(s)
- Barbara Karpinska
- Centre for Plant Sciences, School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Kaiming Zhang
- Centre for Plant Sciences, School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- College of ForestryHenan Agricultural UniversityZhengzhou450002China
| | - Brwa Rasool
- Centre for Plant Sciences, School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Daria Pastok
- Centre for Plant Sciences, School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Jenny Morris
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Susan R. Verrall
- Information and Computational SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Pete E. Hedley
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Robert D. Hancock
- Cell and Molecular SciencesThe James Hutton InstituteInvergowrieDundeeDD2 5DAUK
| | - Christine H. Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
24
|
Hong L, Dumond M, Zhu M, Tsugawa S, Li CB, Boudaoud A, Hamant O, Roeder AHK. Heterogeneity and Robustness in Plant Morphogenesis: From Cells to Organs. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:469-495. [PMID: 29505739 DOI: 10.1146/annurev-arplant-042817-040517] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Development is remarkably reproducible, producing organs with the same size, shape, and function repeatedly from individual to individual. For example, every flower on the Antirrhinum stalk has the same snapping dragon mouth. This reproducibility has allowed taxonomists to classify plants and animals according to their morphology. Yet these reproducible organs are composed of highly variable cells. For example, neighboring cells grow at different rates in Arabidopsis leaves, sepals, and shoot apical meristems. This cellular variability occurs in normal, wild-type organisms, indicating that cellular heterogeneity (or diversity in a characteristic such as growth rate) is either actively maintained or, at a minimum, not entirely suppressed. In fact, cellular heterogeneity can contribute to producing invariant organs. Here, we focus on how plant organs are reproducibly created during development from these highly variable cells.
Collapse
Affiliation(s)
- Lilan Hong
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Science; Cornell University, Ithaca, New York 14853, USA; , ,
| | - Mathilde Dumond
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, INRA, CNRS, 69364 Lyon CEDEX 07, France; , ,
- Current affiliation: Department for Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland;
| | - Mingyuan Zhu
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Science; Cornell University, Ithaca, New York 14853, USA; , ,
| | - Satoru Tsugawa
- Theoretical Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan;
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Arezki Boudaoud
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, INRA, CNRS, 69364 Lyon CEDEX 07, France; , ,
| | - Olivier Hamant
- Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, INRA, CNRS, 69364 Lyon CEDEX 07, France; , ,
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Science; Cornell University, Ithaca, New York 14853, USA; , ,
| |
Collapse
|
25
|
Sun Y, Huang J, Zhong S, Gu H, He S, Qu LJ. Novel DYW-type pentatricopeptide repeat (PPR) protein BLX controls mitochondrial RNA editing and splicing essential for early seed development of Arabidopsis. J Genet Genomics 2018; 45:155-168. [PMID: 29580769 DOI: 10.1016/j.jgg.2018.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/20/2018] [Indexed: 01/01/2023]
Abstract
In plants, RNA editing is a post-transcriptional process that changes specific cytidine to uridine in both mitochondria and plastids. Most pentatricopeptide repeat (PPR) proteins are involved in organelle RNA editing by recognizing specific RNA sequences. We here report the functional characterization of a PPR protein from the DYW subclass, Baili Xi (BLX), which contains five PPR motifs and a DYW domain. BLX is essential for early seed development, as plants lacking the BLX gene was embryo lethal and the endosperm failed to initiate cellularization. BLX was highly expressed in the embryo and endosperm, and the BLX protein was specifically localized in mitochondria, which is essential for BLX function. We found that BLX was required for the efficient editing of 36 editing sites in mitochondria. Moreover, BLX was involved in the splicing regulation of the fourth intron of nad1 and the first intron of nad2. The loss of BLX function impaired the mitochondrial function and increased the reactive oxygen species (ROS) level. Genetic complementation with truncated variants of BLX revealed that, in addition to the DYW domain, only the fifth PPR motif was essential for BLX function. The upstream sequences of the BLX-targeted editing sites are not conserved, suggesting that BLX serves as a novel and major mitochondrial editing factor (MEF) via a new non-RNA-interacting manner. This finding provides new insights into how a DYW-type PPR protein with fewer PPR motifs regulates RNA editing in plants.
Collapse
Affiliation(s)
- Yan Sun
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Jiaying Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China; The National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Shan He
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China.
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China; The National Plant Gene Research Center (Beijing), Beijing 100101, China.
| |
Collapse
|
26
|
Grossmann G, Krebs M, Maizel A, Stahl Y, Vermeer JEM, Ott T. Green light for quantitative live-cell imaging in plants. J Cell Sci 2018; 131:jcs.209270. [PMID: 29361538 DOI: 10.1242/jcs.209270] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Plants exhibit an intriguing morphological and physiological plasticity that enables them to thrive in a wide range of environments. To understand the cell biological basis of this unparalleled competence, a number of methodologies have been adapted or developed over the last decades that allow minimal or non-invasive live-cell imaging in the context of tissues. Combined with the ease to generate transgenic reporter lines in specific genetic backgrounds or accessions, we are witnessing a blooming in plant cell biology. However, the imaging of plant cells entails a number of specific challenges, such as high levels of autofluorescence, light scattering that is caused by cell walls and their sensitivity to environmental conditions. Quantitative live-cell imaging in plants therefore requires adapting or developing imaging techniques, as well as mounting and incubation systems, such as micro-fluidics. Here, we discuss some of these obstacles, and review a number of selected state-of-the-art techniques, such as two-photon imaging, light sheet microscopy and variable angle epifluorescence microscopy that allow high performance and minimal invasive live-cell imaging in plants.
Collapse
Affiliation(s)
- Guido Grossmann
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.,Excellence Cluster CellNetworks, Heidelberg University, 69120 Heidelberg, Germany
| | - Melanie Krebs
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Alexis Maizel
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Joop E M Vermeer
- Laboratory for Cell Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Thomas Ott
- Faculty of Biology, Cell Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
27
|
Wu W, Lin Y, Liu P, Chen Q, Tian J, Liang C. Association of extracellular dNTP utilization with a GmPAP1-like protein identified in cell wall proteomic analysis of soybean roots. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:603-617. [PMID: 29329437 PMCID: PMC5853315 DOI: 10.1093/jxb/erx441] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 12/13/2017] [Indexed: 05/20/2023]
Abstract
Plant root cell walls are dynamic systems that serve as the first plant compartment responsive to soil conditions, such as phosphorus (P) deficiency. To date, evidence for the regulation of root cell wall proteins (CWPs) by P deficiency remains sparse. In order to gain a better understanding of the roles played by CWPs in the roots of soybean (Glycine max) in adaptation to P deficiency, we conducted an iTRAQ (isobaric tag for relative and absolute quantitation) proteomic analysis. A total of 53 CWPs with differential accumulation in response to P deficiency were identified. Subsequent qRT-PCR analysis correlated the accumulation of 21 of the 27 up-regulated proteins, and eight of the 26 down-regulated proteins with corresponding gene expression patterns in response to P deficiency. One up-regulated CWP, purple acid phosphatase 1-like (GmPAP1-like), was functionally characterized. Phaseolus vulgaris transgenic hairy roots overexpressing GmPAP1-like displayed an increase in root-associated acid phosphatase activity. In addition, relative growth and P content were significantly enhanced in GmPAP1-like overexpressing lines compared to control lines when deoxy-ribonucleotide triphosphate (dNTP) was applied as the sole external P source. Taken together, the results suggest that the modulation of CWPs may regulate complex changes in the root system in response to P deficiency, and that the cell wall-localized GmPAP1-like protein is involved in extracellular dNTP utilization in soybean.
Collapse
Affiliation(s)
- Weiwei Wu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
| | - Yan Lin
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
| | - Pandao Liu
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
- Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Hainan, P. R. China
| | - Qianqian Chen
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
| | - Jiang Tian
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
| | - Cuiyue Liang
- Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
28
|
Gorelova V, De Lepeleire J, Van Daele J, Pluim D, Meï C, Cuypers A, Leroux O, Rébeillé F, Schellens JHM, Blancquaert D, Stove CP, Van Der Straeten D. Dihydrofolate Reductase/Thymidylate Synthase Fine-Tunes the Folate Status and Controls Redox Homeostasis in Plants. THE PLANT CELL 2017; 29:2831-2853. [PMID: 28939595 PMCID: PMC5728131 DOI: 10.1105/tpc.17.00433] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/10/2017] [Accepted: 09/18/2017] [Indexed: 05/08/2023]
Abstract
Folates (B9 vitamins) are essential cofactors in one-carbon metabolism. Since C1 transfer reactions are involved in synthesis of nucleic acids, proteins, lipids, and other biomolecules, as well as in epigenetic control, folates are vital for all living organisms. This work presents a complete study of a plant DHFR-TS (dihydrofolate reductase-thymidylate synthase) gene family that implements the penultimate step in folate biosynthesis. We demonstrate that one of the DHFR-TS isoforms (DHFR-TS3) operates as an inhibitor of its two homologs, thus regulating DHFR and TS activities and, as a consequence, folate abundance. In addition, a novel function of folate metabolism in plants is proposed, i.e., maintenance of the redox balance by contributing to NADPH production through the reaction catalyzed by methylenetetrahydrofolate dehydrogenase, thus allowing plants to cope with oxidative stress.
Collapse
Affiliation(s)
- Vera Gorelova
- Department of Biology, Laboratory of Functional Plant Biology, Ghent University, 9000 Gent, Belgium
| | - Jolien De Lepeleire
- Department of Biology, Laboratory of Functional Plant Biology, Ghent University, 9000 Gent, Belgium
| | | | - Dick Pluim
- Laboratory of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Coline Meï
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 38054 Grenoble Cedex 9, France
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Olivier Leroux
- Department of Biology, Ghent University, 9000 Gent, Belgium
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Vegetale, UMR168 CNRS-CEA-INRA-Universite Joseph Fourier Grenoble I, Bioscience and Biotechnologies Institute of Grenoble, CEA-Grenoble, 38054 Grenoble Cedex 9, France
| | - Jan H M Schellens
- Laboratory of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Dieter Blancquaert
- Department of Biology, Laboratory of Functional Plant Biology, Ghent University, 9000 Gent, Belgium
| | | | | |
Collapse
|
29
|
Variable Cell Growth Yields Reproducible OrganDevelopment through Spatiotemporal Averaging. Dev Cell 2017; 38:15-32. [PMID: 27404356 DOI: 10.1016/j.devcel.2016.06.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/04/2016] [Accepted: 06/09/2016] [Indexed: 11/22/2022]
Abstract
Organ sizes and shapes are strikingly reproducible, despite the variable growth and division of individual cells within them. To reveal which mechanisms enable this precision, we designed a screen for disrupted sepal size and shape uniformity in Arabidopsis and identified mutations in the mitochondrial i-AAA protease FtsH4. Counterintuitively, through live imaging we observed that variability of neighboring cell growth was reduced in ftsh4 sepals. We found that regular organ shape results from spatiotemporal averaging of the cellular variability in wild-type sepals, which is disrupted in the less-variable cells of ftsh4 mutants. We also found that abnormal, increased accumulation of reactive oxygen species (ROS) in ftsh4 mutants disrupts organ size consistency. In wild-type sepals, ROS accumulate in maturing cells and limit organ growth, suggesting that ROS are endogenous signals promoting termination of growth. Our results demonstrate that spatiotemporal averaging of cellular variability is required for precision in organ size.
Collapse
|
30
|
Avramova V, AbdElgawad H, Vasileva I, Petrova AS, Holek A, Mariën J, Asard H, Beemster GTS. High Antioxidant Activity Facilitates Maintenance of Cell Division in Leaves of Drought Tolerant Maize Hybrids. FRONTIERS IN PLANT SCIENCE 2017; 8:84. [PMID: 28210264 PMCID: PMC5288369 DOI: 10.3389/fpls.2017.00084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/16/2017] [Indexed: 05/18/2023]
Abstract
We studied the impact of drought on growth regulation in leaves of 13 maize varieties with different drought sensitivity and geographic origins (Western Europe, Egypt, South Africa) and the inbred line B73. Combining kinematic analysis of the maize leaf growth zone with biochemical measurements at a high spatial resolution allowed us to examine the correlation between the regulation of the cellular processes cell division and elongation, and the molecular redox-regulation in response to drought. Moreover, we demonstrated differences in the response of the maize lines to mild and severe levels of water deficit. Kinematic analysis indicated that drought tolerant lines experienced less impact on leaf elongation rate due to a smaller reduction of cell production, which, in turn, was due to a smaller decrease of meristem size and number of cells in the leaf meristem. Clear differences in growth responses between the groups of lines with different geographic origin were observed in response to drought. The difference in drought tolerance between the Egyptian hybrids was significantly larger than between the European and South-African hybrids. Through biochemical analyses, we investigated whether antioxidant activity in the growth zone, contributes to the drought sensitivity differences. We used a hierarchical clustering to visualize the patterns of lipid peroxidation, H2O2 and antioxidant concentrations, and enzyme activities throughout the growth zone, in response to stress. The results showed that the lines with different geographic region used different molecular strategies to cope with the stress, with the Egyptian hybrids responding more at the metabolite level and African and the European hybrids at the enzyme level. However, drought tolerance correlated with both, higher antioxidant levels throughout the growth zone and higher activities of the redox-regulating enzymes CAT, POX, APX, and GR specifically in leaf meristems. These findings provide evidence for a link between antioxidant regulation in the leaf meristem, cell division, and drought tolerance.
Collapse
Affiliation(s)
- Viktoriya Avramova
- Research Group of Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Hamada AbdElgawad
- Research Group of Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
- Department of Botany, Faculty of Science, University of Beni-SuefBeni-Suef, Egypt
| | - Ivanina Vasileva
- Research Group of Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Alexandra S. Petrova
- Research Group of Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Anna Holek
- Research Group of Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Joachim Mariën
- Research Group of Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Han Asard
- Research Group of Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
| | - Gerrit T. S. Beemster
- Research Group of Integrated Molecular Plant Physiology Research, Department of Biology, University of AntwerpAntwerp, Belgium
| |
Collapse
|
31
|
Schmidt R, Kunkowska AB, Schippers JHM. Role of Reactive Oxygen Species during Cell Expansion in Leaves. PLANT PHYSIOLOGY 2016; 172:2098-2106. [PMID: 27794099 PMCID: PMC5129704 DOI: 10.1104/pp.16.00426] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/25/2016] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species as potent regulators of leaf development poses special interest for cell expansion.
Collapse
Affiliation(s)
- Romy Schmidt
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Alicja B Kunkowska
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Jos H M Schippers
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
32
|
Bircheneder S, Dresselhaus T. Why cellular communication during plant reproduction is particularly mediated by CRP signalling. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4849-61. [PMID: 27382112 DOI: 10.1093/jxb/erw271] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Secreted cysteine-rich peptides (CRPs) represent one of the main classes of signalling peptides in plants. Whereas post-translationally modified small non-CRP peptides (psNCRPs) are mostly involved in signalling events during vegetative development and interactions with the environment, CRPs are overrepresented in reproductive processes including pollen germination and growth, self-incompatibility, gamete activation and fusion as well as seed development. In this opinion paper we compare the involvement of both types of peptides in vegetative and reproductive phases of the plant lifecycle. Besides their conserved cysteine pattern defining structural features, CRPs exhibit hypervariable primary sequences and a rapid evolution rate. As a result, CRPs represent a pool of highly polymorphic signalling peptides involved in species-specific functions during reproduction and thus likely represent key players to trigger speciation in plants by supporting reproductive isolation. In contrast, precursers of psNCRPs are proteolytically processed into small functional domains with high sequence conservation and act in more general processes. We discuss parallels in downstream processes of CRP signalling in both reproduction and defence against pathogenic fungi and alien pollen tubes, with special emphasis on the role of ROS and ion channels. In conclusion we suggest that CRP signalling during reproduction in plants has evolved from ancient defence mechanisms.
Collapse
Affiliation(s)
- Susanne Bircheneder
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
33
|
Zhang F, Jin X, Wang L, Li S, Wu S, Cheng C, Zhang T, Guo W. A Cotton Annexin Affects Fiber Elongation and Secondary Cell Wall Biosynthesis Associated with Ca2+ Influx, ROS Homeostasis, and Actin Filament Reorganization. PLANT PHYSIOLOGY 2016; 171:1750-70. [PMID: 27255486 PMCID: PMC4936584 DOI: 10.1104/pp.16.00597] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 05/23/2023]
Abstract
Annexins play pivotal roles in a variety of cellular processes as well as in fiber development; however, the functional mechanisms of their activities are unclear. Here, an annexin gene that is preferentially expressed in fibers, GhFAnnxA, was found to be significantly associated with various cotton (Gossypium hirsutum) fiber traits. Transgenic analysis demonstrated that GhFAnnxA affected cotton fiber elongation and was involved in secondary cell wall (SCW) biosynthesis. Functional studies demonstrated that GhFAnnxA may act as a Ca(2+) conductance regulator and that reactive oxygen species (ROS) produced by Rbohs in a Ca(2+)-dependent manner may determine fiber elongation caused by elevated intracellular turgor and cell wall loosening. However, excessive hydrogen peroxide (H2O2) inhibited cotton fiber elongation in vitro. We speculate that a positive feedback loop involving ROS and Ca(2+) is regulated by GhCDPK1 and regulates fiber cell elongation. Furthermore, the convergence of actin filaments is altered by their interaction with GhFAnnxA, and this also may contribute to fiber elongation. Moreover, GhFAnnxA may affect SCW biosynthesis through changes in cell wall components caused by an increase in H2O2 levels. These results not only provide new insights into the signaling pathways of GhFAnnxA in fiber development but also clarify the role of ROS in fiber development.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Xuanxiang Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Like Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Shufen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Shuang Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Chaoze Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| |
Collapse
|
34
|
Kai K, Kasa S, Sakamoto M, Aoki N, Watabe G, Yuasa T, Iwaya-Inoue M, Ishibashi Y. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination. PLANT SIGNALING & BEHAVIOR 2016; 11:e1180492. [PMID: 27110861 PMCID: PMC4977456 DOI: 10.1080/15592324.2016.1180492] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
NADPH oxidase catalyzes the production of the superoxide anion (O2(-)), a reactive oxygen species (ROS), and regulates the germination of barley (Hordeum vulgare L.). Diphenyleneiodonium (DPI) chloride, an NADPH oxidase inhibitor, delayed barley germination, and exogenous H2O2 (an ROS) partially rescued it. Six enzymes, ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA20-oxidase (GA20ox) and GA3-oxidase (GA3ox), catalyze the transformation of trans-geranylgeranyl diphosphate to active gibberellin, which promotes germination. Exogenous H2O2 promoted the expressions of HvKAO1 and HvGA3ox1 in barley embryos. These results suggest that ROS produced by NADPH oxidase are involved in gibberellin biosynthesis through the regulation of HvKAO1 and HvGA3ox1.
Collapse
Affiliation(s)
- Kyohei Kai
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Shinsuke Kasa
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Masatsugu Sakamoto
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Nozomi Aoki
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Gaku Watabe
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Takashi Yuasa
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Mari Iwaya-Inoue
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
| | - Yushi Ishibashi
- Crop Science Laboratory, Faculty of Agriculture, Kyushu University, Hakozaki, Higashi-ku, Fukuoka, Japan
- Yushi Ishibashi
| |
Collapse
|
35
|
Airianah OB, Vreeburg RAM, Fry SC. Pectic polysaccharides are attacked by hydroxyl radicals in ripening fruit: evidence from a fluorescent fingerprinting method. ANNALS OF BOTANY 2016; 117:441-55. [PMID: 26865506 PMCID: PMC4765547 DOI: 10.1093/aob/mcv192] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/02/2015] [Accepted: 10/27/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Many fruits soften during ripening, which is important commercially and in rendering the fruit attractive to seed-dispersing animals. Cell-wall polysaccharide hydrolases may contribute to softening, but sometimes appear to be absent. An alternative hypothesis is that hydroxyl radicals ((•)OH) non-enzymically cleave wall polysaccharides. We evaluated this hypothesis by using a new fluorescent labelling procedure to 'fingerprint' (•)OH-attacked polysaccharides. METHODS We tagged fruit polysaccharides with 2-(isopropylamino)-acridone (pAMAC) groups to detect (a) any mid-chain glycosulose residues formed in vivo during (•)OH action and (b) the conventional reducing termini. The pAMAC-labelled pectins were digested with Driselase, and the products resolved by high-voltage electrophoresis and high-pressure liquid chromatography. KEY RESULTS Strawberry, pear, mango, banana, apple, avocado, Arbutus unedo, plum and nectarine pectins all yielded several pAMAC-labelled products. GalA-pAMAC (monomeric galacturonate, labelled with pAMAC at carbon-1) was produced in all species, usually increasing during fruit softening. The six true fruits also gave pAMAC·UA-GalA disaccharides (where pAMAC·UA is an unspecified uronate, labelled at a position other than carbon-1), with yields increasing during softening. Among false fruits, apple and strawberry gave little pAMAC·UA-GalA; pear produced it transiently. CONCLUSIONS GalA-pAMAC arises from pectic reducing termini, formed by any of three proposed chain-cleaving agents ((•)OH, endopolygalacturonase and pectate lyase), any of which could cause its ripening-related increase. In contrast, pAMAC·UA-GalA conjugates are diagnostic of mid-chain oxidation of pectins by (•)OH. The evidence shows that (•)OH radicals do indeed attack fruit cell wall polysaccharides non-enzymically during softening in vivo. This applies much more prominently to drupes and berries (true fruits) than to false fruits (swollen receptacles). (•)OH radical attack on polysaccharides is thus predominantly a feature of ovary-wall tissue.
Collapse
Affiliation(s)
- Othman B Airianah
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Robert A M Vreeburg
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
36
|
Jiang K, Moe-Lange J, Hennet L, Feldman LJ. Salt Stress Affects the Redox Status of Arabidopsis Root Meristems. FRONTIERS IN PLANT SCIENCE 2016; 7:81. [PMID: 26904053 PMCID: PMC4744855 DOI: 10.3389/fpls.2016.00081] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/16/2016] [Indexed: 05/04/2023]
Abstract
We report the redox status (profiles) for specific populations of cells that comprise the Arabidopsis root tip. For recently germinated, 3-5-day-old seedlings we show that the region of the root tip with the most reduced redox status includes the root cap initials, the quiescent center and the most distal portion of the proximal meristem, and coincides with (overlays) the region of the auxin maximum. As one moves basally, further into the proximal meristem, and depending on the growth conditions, the redox status becomes more oxidized, with a 5-10 mV difference in redox potential between the two borders delimiting the proximal meristem. At the point on the root axis at which cells of the proximal meristem cease division and enter the transition zone, the redox potential levels off, and remains more or less unchanged throughout the transition zone. As cells leave the transition zone and enter the zone of elongation the redox potentials become more oxidized. Treating roots with salt (50, 100, and 150 mM NaCl) results in marked changes in root meristem structure and development, and is preceded by changes in the redox profile, which flattens, and initially becomes more oxidized, with pronounced changes in the redox potentials of the root cap, the root cap initials and the quiescent center. Roots exposed to relatively mild levels of salt (<100 mM) are able to re-establish a normal, pre-salt treatment redox profile 3-6 days after exposure to salt. Coincident with the salt-associated changes in redox profiles are changes in the distribution of auxin transporters (AUX1, PIN1/2), which become more diffuse in their localization. We conclude that salt stress affects root meristem maintenance, in part, through changes in redox and auxin transport.
Collapse
Affiliation(s)
- Keni Jiang
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeley, CA, USA
| | | | - Lauriane Hennet
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeley, CA, USA
| | - Lewis J. Feldman
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeley, CA, USA
| |
Collapse
|
37
|
Avramova V, AbdElgawad H, Zhang Z, Fotschki B, Casadevall R, Vergauwen L, Knapen D, Taleisnik E, Guisez Y, Asard H, Beemster GTS. Drought Induces Distinct Growth Response, Protection, and Recovery Mechanisms in the Maize Leaf Growth Zone. PLANT PHYSIOLOGY 2015; 169:1382-96. [PMID: 26297138 PMCID: PMC4587441 DOI: 10.1104/pp.15.00276] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/20/2015] [Indexed: 05/08/2023]
Abstract
Drought is the most important crop yield-limiting factor, and detailed knowledge of its impact on plant growth regulation is crucial. The maize (Zea mays) leaf growth zone offers unique possibilities for studying the spatiotemporal regulation of developmental processes by transcriptional analyses and methods that require more material, such as metabolite and enzyme activity measurements. By means of a kinematic analysis, we show that drought inhibits maize leaf growth by inhibiting cell division in the meristem and cell expansion in the elongation zone. Through a microarray study, we observed the down-regulation of 32 of the 54 cell cycle genes, providing a basis for the inhibited cell division. We also found evidence for an up-regulation of the photosynthetic machinery and the antioxidant and redox systems. This was confirmed by increased chlorophyll content in mature cells and increased activity of antioxidant enzymes and metabolite levels across the growth zone, respectively. We demonstrate the functional significance of the identified transcriptional reprogramming by showing that increasing the antioxidant capacity in the proliferation zone, by overexpression of the Arabidopsis (Arabidopsis thaliana) iron-superoxide dismutase gene, increases leaf growth rate by stimulating cell division. We also show that the increased photosynthetic capacity leads to enhanced photosynthesis upon rewatering, facilitating the often-observed growth compensation.
Collapse
Affiliation(s)
- Viktoriya Avramova
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium (V.A., H.Ab., L.V., Y.G., H.As., G.T.S.B.);Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef 62511, Egypt (H.Ab.);Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China (Z.Z.);Institute of Animal Reproduction and Food Research, 10-748 Olsztyn, Poland (B.F.);Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, S2002 LRK Rosario, Argentina (R.C.);Department of Veterinary Sciences, University of Antwerp, Campus Drie Eiken, 2610 Wilrijk, Belgium (D.K.); andConsejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), X5020ICA Cordoba, Argentina (E.T.)
| | - Hamada AbdElgawad
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium (V.A., H.Ab., L.V., Y.G., H.As., G.T.S.B.);Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef 62511, Egypt (H.Ab.);Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China (Z.Z.);Institute of Animal Reproduction and Food Research, 10-748 Olsztyn, Poland (B.F.);Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, S2002 LRK Rosario, Argentina (R.C.);Department of Veterinary Sciences, University of Antwerp, Campus Drie Eiken, 2610 Wilrijk, Belgium (D.K.); andConsejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), X5020ICA Cordoba, Argentina (E.T.)
| | - Zhengfeng Zhang
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium (V.A., H.Ab., L.V., Y.G., H.As., G.T.S.B.);Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef 62511, Egypt (H.Ab.);Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China (Z.Z.);Institute of Animal Reproduction and Food Research, 10-748 Olsztyn, Poland (B.F.);Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, S2002 LRK Rosario, Argentina (R.C.);Department of Veterinary Sciences, University of Antwerp, Campus Drie Eiken, 2610 Wilrijk, Belgium (D.K.); andConsejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), X5020ICA Cordoba, Argentina (E.T.)
| | - Bartosz Fotschki
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium (V.A., H.Ab., L.V., Y.G., H.As., G.T.S.B.);Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef 62511, Egypt (H.Ab.);Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China (Z.Z.);Institute of Animal Reproduction and Food Research, 10-748 Olsztyn, Poland (B.F.);Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, S2002 LRK Rosario, Argentina (R.C.);Department of Veterinary Sciences, University of Antwerp, Campus Drie Eiken, 2610 Wilrijk, Belgium (D.K.); andConsejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), X5020ICA Cordoba, Argentina (E.T.)
| | - Romina Casadevall
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium (V.A., H.Ab., L.V., Y.G., H.As., G.T.S.B.);Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef 62511, Egypt (H.Ab.);Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China (Z.Z.);Institute of Animal Reproduction and Food Research, 10-748 Olsztyn, Poland (B.F.);Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, S2002 LRK Rosario, Argentina (R.C.);Department of Veterinary Sciences, University of Antwerp, Campus Drie Eiken, 2610 Wilrijk, Belgium (D.K.); andConsejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), X5020ICA Cordoba, Argentina (E.T.)
| | - Lucia Vergauwen
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium (V.A., H.Ab., L.V., Y.G., H.As., G.T.S.B.);Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef 62511, Egypt (H.Ab.);Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China (Z.Z.);Institute of Animal Reproduction and Food Research, 10-748 Olsztyn, Poland (B.F.);Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, S2002 LRK Rosario, Argentina (R.C.);Department of Veterinary Sciences, University of Antwerp, Campus Drie Eiken, 2610 Wilrijk, Belgium (D.K.); andConsejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), X5020ICA Cordoba, Argentina (E.T.)
| | - Dries Knapen
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium (V.A., H.Ab., L.V., Y.G., H.As., G.T.S.B.);Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef 62511, Egypt (H.Ab.);Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China (Z.Z.);Institute of Animal Reproduction and Food Research, 10-748 Olsztyn, Poland (B.F.);Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, S2002 LRK Rosario, Argentina (R.C.);Department of Veterinary Sciences, University of Antwerp, Campus Drie Eiken, 2610 Wilrijk, Belgium (D.K.); andConsejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), X5020ICA Cordoba, Argentina (E.T.)
| | - Edith Taleisnik
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium (V.A., H.Ab., L.V., Y.G., H.As., G.T.S.B.);Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef 62511, Egypt (H.Ab.);Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China (Z.Z.);Institute of Animal Reproduction and Food Research, 10-748 Olsztyn, Poland (B.F.);Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, S2002 LRK Rosario, Argentina (R.C.);Department of Veterinary Sciences, University of Antwerp, Campus Drie Eiken, 2610 Wilrijk, Belgium (D.K.); andConsejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), X5020ICA Cordoba, Argentina (E.T.)
| | - Yves Guisez
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium (V.A., H.Ab., L.V., Y.G., H.As., G.T.S.B.);Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef 62511, Egypt (H.Ab.);Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China (Z.Z.);Institute of Animal Reproduction and Food Research, 10-748 Olsztyn, Poland (B.F.);Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, S2002 LRK Rosario, Argentina (R.C.);Department of Veterinary Sciences, University of Antwerp, Campus Drie Eiken, 2610 Wilrijk, Belgium (D.K.); andConsejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), X5020ICA Cordoba, Argentina (E.T.)
| | - Han Asard
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium (V.A., H.Ab., L.V., Y.G., H.As., G.T.S.B.);Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef 62511, Egypt (H.Ab.);Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China (Z.Z.);Institute of Animal Reproduction and Food Research, 10-748 Olsztyn, Poland (B.F.);Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, S2002 LRK Rosario, Argentina (R.C.);Department of Veterinary Sciences, University of Antwerp, Campus Drie Eiken, 2610 Wilrijk, Belgium (D.K.); andConsejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), X5020ICA Cordoba, Argentina (E.T.)
| | - Gerrit T S Beemster
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium (V.A., H.Ab., L.V., Y.G., H.As., G.T.S.B.);Department of Botany, Faculty of Science, University of Beni-Suef, Beni-Suef 62511, Egypt (H.Ab.);Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China (Z.Z.);Institute of Animal Reproduction and Food Research, 10-748 Olsztyn, Poland (B.F.);Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario, S2002 LRK Rosario, Argentina (R.C.);Department of Veterinary Sciences, University of Antwerp, Campus Drie Eiken, 2610 Wilrijk, Belgium (D.K.); andConsejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria (INTA), X5020ICA Cordoba, Argentina (E.T.)
| |
Collapse
|
38
|
Gibson SW, Todd CD. Arabidopsis AIR12 influences root development. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:479-89. [PMID: 26600675 PMCID: PMC4646869 DOI: 10.1007/s12298-015-0323-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/13/2015] [Accepted: 09/21/2015] [Indexed: 05/05/2023]
Abstract
Arabidopsis AUXIN INDUCED IN ROOTS (AIR 12) is a predicted to encode a glycosylphosphatidylinositol tail anchored protein. It has been associated with extracellular redox processes, but little is known about its physiological role. An air12 mutant line demonstrated increased germination rates in the presence of a range of abiotic stress factors and hormones, but not in the presence of ABA. Disruption of AIR12 also affected primary and lateral root development and was linked to changes in root catalase activity and superoxide production. We suggest AIR12 is an extracellular constituent linking both hormone and reactive oxygen signaling in plants.
Collapse
Affiliation(s)
| | - Christopher D. Todd
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2 Canada
| |
Collapse
|
39
|
Airaki M, Leterrier M, Valderrama R, Chaki M, Begara-Morales JC, Barroso JB, del Río LA, Palma JM, Corpas FJ. Spatial and temporal regulation of the metabolism of reactive oxygen and nitrogen species during the early development of pepper (Capsicum annuum) seedlings. ANNALS OF BOTANY 2015; 116:679-93. [PMID: 25808658 PMCID: PMC4577988 DOI: 10.1093/aob/mcv023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/02/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development. METHODS The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate-glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide ((·)NO), superoxide radical (O2 (·-)) and peroxynitrite (ONOO(-)) was investigated using confocal laser scanning microscopy. KEY RESULTS The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme. CONCLUSIONS There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling, and their temporal and spatial regulation contributes to the success of seedling establishment.
Collapse
Affiliation(s)
- Morad Airaki
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain and
| | - Marina Leterrier
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain and
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, Campus 'Las Lagunillas', University of Jaén, E-23071 Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, Campus 'Las Lagunillas', University of Jaén, E-23071 Jaén, Spain
| | - Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, Campus 'Las Lagunillas', University of Jaén, E-23071 Jaén, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, Campus 'Las Lagunillas', University of Jaén, E-23071 Jaén, Spain
| | - Luis A del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain and
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain and
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain and
| |
Collapse
|
40
|
Bourdais G, Burdiak P, Gauthier A, Nitsch L, Salojärvi J, Rayapuram C, Idänheimo N, Hunter K, Kimura S, Merilo E, Vaattovaara A, Oracz K, Kaufholdt D, Pallon A, Anggoro DT, Glów D, Lowe J, Zhou J, Mohammadi O, Puukko T, Albert A, Lang H, Ernst D, Kollist H, Brosché M, Durner J, Borst JW, Collinge DB, Karpiński S, Lyngkjær MF, Robatzek S, Wrzaczek M, Kangasjärvi J. Large-Scale Phenomics Identifies Primary and Fine-Tuning Roles for CRKs in Responses Related to Oxidative Stress. PLoS Genet 2015; 11:e1005373. [PMID: 26197346 PMCID: PMC4511522 DOI: 10.1371/journal.pgen.1005373] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 06/19/2015] [Indexed: 12/20/2022] Open
Abstract
Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins characterized by the presence of two domains of unknown function 26 (DUF26) in their ectodomain. The CRKs form one of the largest groups of receptor-like protein kinases in plants, but their biological functions have so far remained largely uncharacterized. We conducted a large-scale phenotyping approach of a nearly complete crk T-DNA insertion line collection showing that CRKs control important aspects of plant development and stress adaptation in response to biotic and abiotic stimuli in a non-redundant fashion. In particular, the analysis of reactive oxygen species (ROS)-related stress responses, such as regulation of the stomatal aperture, suggests that CRKs participate in ROS/redox signalling and sensing. CRKs play general and fine-tuning roles in the regulation of stomatal closure induced by microbial and abiotic cues. Despite their great number and high similarity, large-scale phenotyping identified specific functions in diverse processes for many CRKs and indicated that CRK2 and CRK5 play predominant roles in growth regulation and stress adaptation, respectively. As a whole, the CRKs contribute to specificity in ROS signalling. Individual CRKs control distinct responses in an antagonistic fashion suggesting future potential for using CRKs in genetic approaches to improve plant performance and stress tolerance.
Collapse
Affiliation(s)
- Gildas Bourdais
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Paweł Burdiak
- Department of Plant Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Adrien Gauthier
- Department of Biosciences, Plant Biology, University of Helsinki, Helsinki, Finland
| | - Lisette Nitsch
- Laboratory of Biochemistry and Microspectroscopy Center, Wageningen University, Wageningen, The Netherlands
| | - Jarkko Salojärvi
- Department of Biosciences, Plant Biology, University of Helsinki, Helsinki, Finland
| | - Channabasavangowda Rayapuram
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Niina Idänheimo
- Department of Biosciences, Plant Biology, University of Helsinki, Helsinki, Finland
| | - Kerri Hunter
- Department of Biosciences, Plant Biology, University of Helsinki, Helsinki, Finland
| | - Sachie Kimura
- Department of Biosciences, Plant Biology, University of Helsinki, Helsinki, Finland
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Aleksia Vaattovaara
- Department of Biosciences, Plant Biology, University of Helsinki, Helsinki, Finland
| | - Krystyna Oracz
- Department of Plant Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
- Department of Plant Physiology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - David Kaufholdt
- Department of Biosciences, Plant Biology, University of Helsinki, Helsinki, Finland
| | - Andres Pallon
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Damar Tri Anggoro
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Dawid Glów
- Department of Plant Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Jennifer Lowe
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Ji Zhou
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Omid Mohammadi
- Department of Biosciences, Plant Biology, University of Helsinki, Helsinki, Finland
| | - Tuomas Puukko
- Department of Biosciences, Plant Biology, University of Helsinki, Helsinki, Finland
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Hans Lang
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mikael Brosché
- Department of Biosciences, Plant Biology, University of Helsinki, Helsinki, Finland
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jan Willem Borst
- Laboratory of Biochemistry and Microspectroscopy Center, Wageningen University, Wageningen, The Netherlands
| | - David B. Collinge
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Michael F. Lyngkjær
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Michael Wrzaczek
- Department of Biosciences, Plant Biology, University of Helsinki, Helsinki, Finland
| | - Jaakko Kangasjärvi
- Department of Biosciences, Plant Biology, University of Helsinki, Helsinki, Finland
- Distinguished Scientist Fellowship Program, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
41
|
A Comparative Proteomic Analysis of the Buds and the Young Expanding Leaves of the Tea Plant (Camellia sinensis L.). Int J Mol Sci 2015; 16:14007-38. [PMID: 26096006 PMCID: PMC4490536 DOI: 10.3390/ijms160614007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 01/24/2023] Open
Abstract
Tea (Camellia sinensis L.) is a perennial woody plant that is widely cultivated to produce a popular non-alcoholic beverage; this beverage has received much attention due to its pleasant flavor and bioactive ingredients, particularly several important secondary metabolites. Due to the significant changes in the metabolite contents of the buds and the young expanding leaves of tea plants, high-performance liquid chromatography (HPLC) analysis and isobaric tags for relative and absolute quantitation (iTRAQ) analysis were performed. A total of 233 differentially expressed proteins were identified. Among these, 116 proteins were up-regulated and 117 proteins were down-regulated in the young expanding leaves compared with the buds. A large array of diverse functions was revealed, including roles in energy and carbohydrate metabolism, secondary metabolite metabolism, nucleic acid and protein metabolism, and photosynthesis- and defense-related processes. These results suggest that polyphenol biosynthesis- and photosynthesis-related proteins regulate the secondary metabolite content of tea plants. The energy and antioxidant metabolism-related proteins may promote tea leaf development. However, reverse transcription quantitative real-time PCR (RT-qPCR) showed that the protein expression levels were not well correlated with the gene expression levels. These findings improve our understanding of the molecular mechanism of the changes in the metabolite content of the buds and the young expanding leaves of tea plants.
Collapse
|
42
|
Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene 2015; 566:95-108. [PMID: 25895479 DOI: 10.1016/j.gene.2015.04.041] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/02/2015] [Accepted: 04/14/2015] [Indexed: 11/23/2022]
Abstract
Class III peroxidases (PRXs) are plant-specific enzymes that play key roles in the responses to biotic and abiotic stress during plant growth and development. In this study, we identified 119 nonredundant PRX genes (designated ZmPRXs). These PRX genes were divided into 18 groups based on their phylogenetic relationships. We performed systematic bioinformatics analysis of the PRX genes, including analysis of gene structures, conserved motifs, phylogenetic relationships and gene expression profiles. The ZmPRXs are unevenly distributed on the 10 maize chromosomes. In addition, these genes have undergone 16 segmental duplication and 12 tandem duplication events, indicating that both segmental and tandem duplication were the main contributors to the expansion of the maize PRX family. Ka/Ks analysis suggested that most duplicated ZmPRXs experienced purifying selection, with limited functional divergence during the duplication events, and comparative analysis among maize, sorghum and rice revealed that there were independent duplication events besides the whole-genome duplication of the maize genome. Furthermore, microarray analysis indicated that most highly expressed genes might play significant roles in root. We examined the expression of five candidate ZmPRXs under H2O2, SA, NaCl and PEG stress conditions using quantitative real-time PCR (qRT-PCR), revealing differential expression patterns. This study provides useful information for further functional analysis of the PRX gene family in maize.
Collapse
|
43
|
Kärkönen A, Kuchitsu K. Reactive oxygen species in cell wall metabolism and development in plants. PHYTOCHEMISTRY 2015; 112:22-32. [PMID: 25446232 DOI: 10.1016/j.phytochem.2014.09.016] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/14/2014] [Accepted: 09/22/2014] [Indexed: 05/18/2023]
Abstract
Although reactive oxygen species (ROS) are highly toxic substances that are produced during aerobic respiration and photosynthesis, many studies have demonstrated that ROS, such as superoxide anion radical (O2(·-)) and hydrogen peroxide (H2O2), are produced in the plant cell wall in a highly regulated manner. These molecules are important signalling messengers playing key roles in controlling a broad range of physiological processes, such as cellular growth and development, as well as adaptation to environmental changes. Given the toxicity of ROS, especially of hydroxyl radical (·OH), the enzymatic ROS production needs to be tightly regulated both spatially and temporally. Respiratory burst oxidase homologues (Rboh) have been identified as ROS-producing NADPH oxidases, which act as key signalling nodes integrating multiple signal transduction pathways in plants. Also other enzyme systems, such as class III peroxidases, amine oxidases, quinone reductases and oxalate oxidases contribute to apoplastic ROS production, some especially in certain plant taxa. Here we discuss the interrelationship among different enzymes producing ROS in the plant cell wall, as well as the physiological roles of the ROS produced.
Collapse
Affiliation(s)
- Anna Kärkönen
- Department of Agricultural Sciences, University of Helsinki, Finland
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan.
| |
Collapse
|
44
|
Abstract
Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (
Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the
nshb genes, consisting of
hb1,
hb2,
hb3,
hb4 and
hb5, and a single copy of the
thb gene exist in
Oryza sativa var. indica and
O.
sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O
2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O
2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O
2-transport, O
2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice
nshb and
thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice
nshbs and
thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the
cis-elements and
trans-acting factors that regulate the expression of rice
hb genes, and the partial understanding of the evolution of rice Hbs.
Collapse
Affiliation(s)
- Raúl Arredondo-Peter
- Laboratorio de Biofísica y Biología Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62210, Mexico
| | - Jose F Moran
- Instituto de Agrobiotecnología, IdAB-CSIC-Universidad Pública de Navarra-Gobierno de Navarra, Navarre, E-31192, Spain
| | - Gautam Sarath
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, University of Nebraska-Lincoln, Lincoln, NE, 68583-0937, USA
| |
Collapse
|
45
|
Han S, Fang L, Ren X, Wang W, Jiang J. MPK6 controls H2 O2-induced root elongation by mediating Ca2+ influx across the plasma membrane of root cells in Arabidopsis seedlings. THE NEW PHYTOLOGIST 2015; 205:695-706. [PMID: 25145265 DOI: 10.1111/nph.12990] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/17/2014] [Indexed: 05/02/2023]
Abstract
Mitogen-activated protein kinases (MPKs) play critical roles in signalling and growth, and Ca(2+) and H2 O2 control plant growth processes associated with abscisic acid (ABA). However, it remains unclear how MPKs are involved in H2 O2 - and Ca(2+) -mediated root elongation. Root elongation in seedlings of the loss-of-function mutant Atmpk6 (Arabidopsis thaliana MPK6) was less sensitive to moderate H2 O2 or ABA than that in wild-type (WT) plants. The enhanced elongation was a result of root cell expansion. This effect disappeared when ABA-induced H2 O2 accumulation or the cytosolic Ca(2+) increase were defective. Molecular and biochemical evidence showed that increased expression of the cell wall peroxidase PRX34 in Atmpk6 root cells enhanced apoplastic H2 O2 generation; this promoted a cytosolic Ca(2+) increase and Ca(2+) influx across the plasma membrane. The plasma membrane damage caused by high levels of H2 O2 was ameliorated in a Ca(2+) -dependent manner. These results suggested that there was intensified PRX34-mediated H2 O2 generation in the apoplast and increased Ca(2+) flux into the cytosol of Atmpk6 root cells; that is, the spatial separation of apoplastic H2 O2 from cytosolic Ca(2+) in root cells prevented H2 O2 -induced inhibition of root elongation in Atmpk6 seedlings.
Collapse
Affiliation(s)
- Shuan Han
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Jinming Street, Kaifeng, Henan, 475004, China
| | | | | | | | | |
Collapse
|
46
|
Kaya H, Iwano M, Takeda S, Kanaoka MM, Kimura S, Abe M, Kuchitsu K. Apoplastic ROS production upon pollination by RbohH and RbohJ in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2015; 10:e989050. [PMID: 25751652 PMCID: PMC4623480 DOI: 10.4161/15592324.2014.989050] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 05/17/2023]
Abstract
Reactive oxygen species (ROS) accumulate at the tip of growing pollen tubes. In Arabidopsis, NADPH oxidases RbohH and RbohJ are localized at the plasma membrane of pollen tube tip and produce ROS in a Ca(2+)-dependent manner. The ROS produced by Rbohs and Ca(2+) presumably play a critical role in the positive feedback regulation that maintains the tip growth. Ultrastructural cytochemical analysis revealed ROS accumulation in the apoplast/cell wall of the pollen grains on the stigmatic papillae in the wild type, but not in the rbohH rbohJ double mutant, suggesting that apoplastic ROS derived from RbohH and RbohJ are involved in pollen tube elongation into the stigmatic papillae by affecting the cell wall metabolism.
Collapse
Affiliation(s)
- Hidetaka Kaya
- Department of Applied Biological Science; Tokyo University of Science; Noda, Japan
- Correspondence to: Hidetaka Kaya; ; Kazuyuki Kuchitsu;
| | - Megumi Iwano
- Graduate School of Biological Sciences; Nara Institute of Science and Technology; Ikoma, Japan
| | - Seiji Takeda
- Graduate School of Life and Environmental Sciences; Kyoto Prefectural University; Kyoto, Japan
- Biotechnology Research Department; Kyoto Prefectural Agriculture Forestry and Fisheries Technology Center; Kyoto, Japan
| | - Masahiro M Kanaoka
- Division of Biological Science; Graduate School of Science
- Institute of Transformative Bio-Molecules (ITbM); Nagoya University; Nagoya, Japan
| | - Sachie Kimura
- Department of Applied Biological Science; Tokyo University of Science; Noda, Japan
| | - Mitsutomo Abe
- Department of Biological Science; Graduate School of Science; The University of Tokyo; Tokyo, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science; Tokyo University of Science; Noda, Japan
- Correspondence to: Hidetaka Kaya; ; Kazuyuki Kuchitsu;
| |
Collapse
|
47
|
Abstract
Peptide signals have emerged as an important class of regulators in cell-to-cell communication in plants. Several families of small, secreted proteins with a conserved C-terminal Pro-rich motif have been identified as functional peptide signals in Arabidopsis thaliana. These proteins are presumed to be trimmed proteolytically and undergo posttranslational modifications, such as hydroxylation of Pro residues and glycosylation, to form mature, bioactive signals. Identification and matching of such ligands with their respective receptors remains a major challenge since the genes encoding them often show redundancy and low expression restricted to a few cells or particular developmental stages. To overcome these difficulties, we propose the use of ectopic expression of receptor genes in suitable plant cells like Nicotiana benthamiana for testing ligand candidates in receptor output assays and in binding studies. As an example, we used the IDA peptide HAE/HSL2 receptor signaling system known to regulate floral organ abscission. We demonstrate that the oxidative burst response can be employed as readout for receptor activation by synthetic peptides and that a new, highly sensitive, nonradioactive labeling approach can be used to reveal a direct correlation between peptide activity and receptor affinity. We suggest that these approaches will be of broad value for the field of ligand-receptor studies in plants.
Collapse
|
48
|
Kaya H, Nakajima R, Iwano M, Kanaoka MM, Kimura S, Takeda S, Kawarazaki T, Senzaki E, Hamamura Y, Higashiyama T, Takayama S, Abe M, Kuchitsu K. Ca2+-activated reactive oxygen species production by Arabidopsis RbohH and RbohJ is essential for proper pollen tube tip growth. THE PLANT CELL 2014; 26:1069-80. [PMID: 24610725 PMCID: PMC4001369 DOI: 10.1105/tpc.113.120642] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/03/2014] [Accepted: 02/17/2014] [Indexed: 05/17/2023]
Abstract
In flowering plants, pollen germinates on the stigma and pollen tubes grow through the style to fertilize the ovules. Enzymatic production of reactive oxygen species (ROS) has been suggested to be involved in pollen tube tip growth. Here, we characterized the function and regulation of the NADPH oxidases RbohH and RbohJ (Respiratory burst oxidase homolog H and J) in pollen tubes in Arabidopsis thaliana. In the rbohH and rbohJ single mutants, pollen tube tip growth was comparable to that of the wild type; however, tip growth was severely impaired in the double mutant. In vivo imaging showed that ROS accumulation in the pollen tube was impaired in the double mutant. Both RbohH and RbohJ, which contain Ca(2+) binding EF-hand motifs, possessed Ca(2+)-induced ROS-producing activity and localized at the plasma membrane of the pollen tube tip. Point mutations in the EF-hand motifs impaired Ca(2+)-induced ROS production and complementation of the double mutant phenotype. We also showed that a protein phosphatase inhibitor enhanced the Ca(2+)-induced ROS-producing activity of RbohH and RbohJ, suggesting their synergistic activation by protein phosphorylation and Ca(2+). Our results suggest that ROS production by RbohH and RbohJ is essential for proper pollen tube tip growth, and furthermore, that Ca(2+)-induced ROS positive feedback regulation is conserved in the polarized cell growth to shape the long tubular cell.
Collapse
Affiliation(s)
- Hidetaka Kaya
- Department of Applied Biological Science, Tokyo
University of Science, Noda, Chiba 278-8510, Japan
- Department of Biological Science, Graduate School of
Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Nakajima
- Department of Applied Biological Science, Tokyo
University of Science, Noda, Chiba 278-8510, Japan
| | - Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of
Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Masahiro M. Kanaoka
- Division of Biological Science, Graduate School of
Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules, Nagoya
University, Nagoya, Aichi 464-8602, Japan
| | - Sachie Kimura
- Department of Applied Biological Science, Tokyo
University of Science, Noda, Chiba 278-8510, Japan
| | - Seiji Takeda
- Graduate School of Life and Environmental Sciences, Kyoto
Prefectural University, Soraku-gun, Kyoto 619-0244, Japan
| | - Tomoko Kawarazaki
- Department of Applied Biological Science, Tokyo
University of Science, Noda, Chiba 278-8510, Japan
| | - Eriko Senzaki
- Department of Applied Biological Science, Tokyo
University of Science, Noda, Chiba 278-8510, Japan
| | - Yuki Hamamura
- Division of Biological Science, Graduate School of
Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of
Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules, Nagoya
University, Nagoya, Aichi 464-8602, Japan
- JST, ERATO, Higashiyama Live-Holonics Project, Nagoya
University, Nagoya, Aichi 464-8602, Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of
Science and Technology, Ikoma, Nara 630-0101, Japan
| | - Mitsutomo Abe
- Department of Biological Science, Graduate School of
Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo
University of Science, Noda, Chiba 278-8510, Japan
- Address correspondence to
| |
Collapse
|
49
|
Dunajska-Ordak K, Skorupa-Kłaput M, Kurnik K, Tretyn A, Tyburski J. Cloning and Expression Analysis of a Gene Encoding for Ascorbate Peroxidase and Responsive to Salt Stress in Beet ( Beta vulgaris). PLANT MOLECULAR BIOLOGY REPORTER 2014; 32:162-175. [PMID: 24465083 PMCID: PMC3893476 DOI: 10.1007/s11105-013-0636-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BvpAPX is a full-length cDNA-encoding peroxisomal ascorbate peroxidase isolated from leaves of salt-stressed beet (Beta vulgaris) plants. A high level of identity has been reported between the deduced amino acid sequence of BvpAPX and other known ascorbate peroxidases. The genomic sequence of BvpAPX revealed a gene composed of 5 exons and 4 introns. Several sequence motifs revealed in the 5'UTR region of the gene confer to BvpAPX a putative responsiveness to various abiotic stresses. We determined the effect of salt stress on BvpAPX expression in leaves of the cultivated beet varieties, Huzar and Janosik, and their wild salt-tolerant relative B. vulgaris ssp. maritima. Plants were subjected to salt stress during a 32-day culture period (long-term salt treatment). An alternative salinization protocol consisted of an 18-h incubation of detached beet leaves in media supplemented with toxic salt concentrations (short-term salt treatment). RT-Q-PCR analysis revealed that BvpAPX expression markedly increased in leaves of plants subjected to conditions of long-term treatment with salinity, whereas BvpAPX transcript levels remained unaffected in detached leaves during short-term salt treatment. In addition, several leaf redox system parameters, such as ascorbate peroxidase activity or ascorbic acid, hydrogen peroxide, and lipid hydroperoxide concentration, were determined in the leaves of beet plants subjected to salt stress conditions.
Collapse
Affiliation(s)
- Kamila Dunajska-Ordak
- Chair of Plant Physiology and Biotechnology, Nicolas Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Monika Skorupa-Kłaput
- Chair of Plant Physiology and Biotechnology, Nicolas Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Katarzyna Kurnik
- Chair of Plant Physiology and Biotechnology, Nicolas Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Andrzej Tretyn
- Chair of Plant Physiology and Biotechnology, Nicolas Copernicus University, Lwowska 1, 87-100 Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolas Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Jarosław Tyburski
- Chair of Plant Physiology and Biotechnology, Nicolas Copernicus University, Lwowska 1, 87-100 Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolas Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
50
|
Hu G, Koh J, Yoo MJ, Grupp K, Chen S, Wendel JF. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense. THE NEW PHYTOLOGIST 2013; 200:570-582. [PMID: 23795774 DOI: 10.1111/nph.12381] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/27/2013] [Indexed: 05/27/2023]
Abstract
Pima cotton (Gossypium barbadense) is widely cultivated because of its long, strong seed trichomes ('fibers') used for premium textiles. These agronomically advanced fibers were derived following domestication and thousands of years of human-mediated crop improvement. To gain an insight into fiber development and evolution, we conducted comparative proteomic and transcriptomic profiling of developing fiber from an elite cultivar and a wild accession. Analyses using isobaric tag for relative and absolute quantification (iTRAQ) LC-MS/MS technology identified 1317 proteins in fiber. Of these, 205 were differentially expressed across developmental stages, and 190 showed differential expression between wild and cultivated forms, 14.4% of the proteome sampled. Human selection may have shifted the timing of developmental modules, such that some occur earlier in domesticated than in wild cotton. A novel approach was used to detect possible biased expression of homoeologous copies of proteins. Results indicate a significant partitioning of duplicate gene expression at the protein level, but an approximately equal degree of bias for each of the two constituent genomes of allopolyploid cotton. Our results demonstrate the power of complementary transcriptomic and proteomic approaches for the study of the domestication process. They also provide a rich database for mining for functional analyses of cotton improvement or evolution.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jin Koh
- Department of Biology, University of Florida, Gainesville, FL, 32610, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Kara Grupp
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, 32610, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|