1
|
Wei W, Yang C, Su Z, Wang Y, Wang P, Yan X, Zhou Z. Engineering a Yeast Cell Factory to Sustainably Biosynthesize Parthenolide. ACS Synth Biol 2025; 14:729-739. [PMID: 40050240 DOI: 10.1021/acssynbio.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The sesquiterpene lactone parthenolide is a promising anticancer drug. Its biosynthesis via a microbial cell factory has been considered as a sustainable alternative to plant extraction. Herein, systematic metabolic engineering approaches, as well as the introduction of a novel noncanonical tricarboxylic acid (TCA) cycle, were employed to enhance the production of the key precursor germacrene A. By identifying two new dehydrogenases and controlling the expression of parthenolide synthase, we further achieved the elimination of byproducts and enhanced parthenolide production. A two-stage fermentation approach and in situ product extraction using macroreticular resin were further applied to relieve the nocuous effect of costunolide and parthenolide on the growth of yeast cell factories, ultimately achieving a titer of 549.7 mg/L for parthenolide and 972.7 mg/L for costunolide in a 10 L fermenter, which represents the highest reported titer obtained by microbial fermentation. The strategies should also contribute to the microbial cell factory-construction for other natural products exhibiting toxicity.
Collapse
Affiliation(s)
- Wenping Wei
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengshuai Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhen Su
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Liu D, Luo C, Dai R, Huang X, Chen X, He L, Mao H, Li J, Zhang L, Yang QY, Mei Z. AMIR: a multi-omics data platform for Asteraceae plants genetics and breeding research. Nucleic Acids Res 2025; 53:D1563-D1575. [PMID: 39377391 PMCID: PMC11701549 DOI: 10.1093/nar/gkae833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
As the largest family of dicotyledon, the Asteraceae family comprises a variety of economically important crops, ornamental plants and numerous medicinal herbs. Advancements in genomics and transcriptomic have revolutionized research in Asteraceae species, generating extensive omics data that necessitate an efficient platform for data integration and analysis. However, existing databases face challenges in mining genes with specific functions and supporting cross-species studies. To address these gaps, we introduce the Asteraceae Multi-omics Information Resource (AMIR; https://yanglab.hzau.edu.cn/AMIR/), a multi-omics hub for the Asteraceae plant community. AMIR integrates diverse omics data from 74 species, encompassing 132 genomes, 4 408 432 genes annotated across seven different perspectives, 3897 transcriptome sequencing samples spanning 131 organs, tissues and stimuli, 42 765 290 unique variants and 15 662 metabolites genes. Leveraging these data, AMIR establishes the first pan-genome, comparative genomics and transcriptome system for the Asteraceae family. Furthermore, AMIR offers user-friendly tools designed to facilitate extensive customized bioinformatics analyses. Two case studies demonstrate AMIR's capability to provide rapid, reproducible and reliable analysis results. In summary, by integrating multi-omics data of Asteraceae species and developing powerful analytical tools, AMIR significantly advances functional genomics research and contributes to breeding practices of Asteraceae.
Collapse
Affiliation(s)
- Dongxu Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengfang Luo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Dai
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyan Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongxia Mao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Linna Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Yong Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Zhinan Mei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Li C, Li Y, Wang J, Lu F, Zheng L, Yang L, Sun W, Ro DK, Qu X, Wu Y, Zhang Y. An independent biosynthetic route to frame a xanthanolide-type sesquiterpene lactone in Asteraceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17199. [PMID: 39642193 DOI: 10.1111/tpj.17199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
Xanthanolides, also described as seco-guaianolides, are unique sesquiterpene lactones (STLs) with diverse bioactivities. Most of xanthanolides are 12,8-olides based on the position of their lactone ring. The biosynthetic pathway leading to xanthanolides has hitherto been elusive, especially how nature creates the xanthane skeleton is a long-standing question. This study reports the elucidation of a complete biosynthetic pathway to the important 12,8-xanthanolide 8-epi-xanthatin. The xanthane-type backbone is directly derived from the central precursor germacrene-type sesquiterpene, germacrene A acid, via oxidative rearrangement, catalyzed by an unusual cytochrome P450. Subsequently, a 12,8-lactone ring is formed within this xanthane-type backbone resulting in xanthanolides. The biosynthetic pathway for xanthanolides contrasts with the previously unified biosynthetic route for diverse 12,6-guaianolides, in which a 12,6-lactone ring formation precedes the transformation of a germacrene-type skeleton into a guaiane-type structure. The discovery of the full biosynthetic pathway of 8-epi-xanthantin opens new opportunities for producing xanthanolides in microbial organisms using synthetic biology strategies.
Collapse
Affiliation(s)
- Changfu Li
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuanjun Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jinxu Wang
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Fengliu Lu
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lifen Zheng
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lu Yang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenwen Sun
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Alberta, Canada
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yansheng Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, Synthetic Biology Research Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
Khurram I, Khan MU, Ibrahim S, Ghani MU, Amin I, Falzone L, Herrera-Bravo J, Setzer WN, Sharifi-Rad J, Calina D. Thapsigargin and its prodrug derivatives: exploring novel approaches for targeted cancer therapy through calcium signaling disruption. Med Oncol 2024; 42:7. [PMID: 39557802 DOI: 10.1007/s12032-024-02541-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
Thapsigargin, a sesquiterpene lactone derived from Thapsia garganica L., has demonstrated mixed potential as an anticancer agent due to its potent ability to disrupt calcium signaling and induce apoptosis. This review evaluates the chemopreventive and chemotherapeutic potential of thapsigargin, focusing on its molecular mechanisms and toxicity. An extensive literature review of studies published since 2015 was conducted using databases such as PubMed/MedLine and Science Direct. Findings indicate that thapsigargin's primary mechanism is the inhibition of sarco/endoplasmic reticulum calcium ATPase, leading to endoplasmic reticulum stress and cell death in various cancer types. Despite these effects, thapsigargin's non-specific cytotoxicity results in significant side effects, including organ damage and histamine-related reactions. Recent advances in targeted delivery, especially with the prodrug mipsagargin, initially suggested promise in minimizing these toxicities by selectively activating in cancer cells expressing prostate-specific membrane antigen (PSMA). However, the completion of clinical trials with no ongoing studies suggests that the viability of mipsagargin and other prodrugs remains uncertain, especially in light of the toxicities observed. While thapsigargin and its derivatives present a potential pathway in cancer treatment, their future role in oncology requires careful re-evaluation.
Collapse
Affiliation(s)
- Iqra Khurram
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Saooda Ibrahim
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Usman Ghani
- Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Iram Amin
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile.
| | - William N Setzer
- Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT, 84043, USA
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador.
- Centro de Estudios Tecnológicos y, Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| |
Collapse
|
5
|
Agatha O, Mutwil-Anderwald D, Tan JY, Mutwil M. Plant sesquiterpene lactones. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230350. [PMID: 39343024 PMCID: PMC11449222 DOI: 10.1098/rstb.2023.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 10/01/2024] Open
Abstract
Sesquiterpene lactones (STLs) are a prominent group of plant secondary metabolites predominantly found in the Asteraceae family and have multiple ecological roles and medicinal applications. This review describes the evolutionary and ecological significance of STLs, highlighting their roles in plant defence mechanisms against herbivory and as phytotoxins, alongside their function as environmental signalling molecules. We also cover the substantial role of STLs in medicine and their mode of action in health and disease. We discuss the biosynthetic pathways and the various modifications that make STLs one of the most diverse groups of metabolites. Finally, we discuss methods for identifying and predicting STL biosynthesis pathways. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Olivia Agatha
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Daniela Mutwil-Anderwald
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Jhing Yein Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive , Singapore 637551, Singapore
| |
Collapse
|
6
|
Fordjour E, Liu CL, Yang Y, Bai Z. Recent advances in lycopene and germacrene a biosynthesis and their role as antineoplastic drugs. World J Microbiol Biotechnol 2024; 40:254. [PMID: 38916754 DOI: 10.1007/s11274-024-04057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Sesquiterpenes and tetraterpenes are classes of plant-derived natural products with antineoplastic effects. While plant extraction of the sesquiterpene, germacrene A, and the tetraterpene, lycopene suffers supply chain deficits and poor yields, chemical synthesis has difficulties in separating stereoisomers. This review highlights cutting-edge developments in producing germacrene A and lycopene from microbial cell factories. We then summarize the antineoplastic properties of β-elemene (a thermal product from germacrene A), sesquiterpene lactones (metabolic products from germacrene A), and lycopene. We also elaborate on strategies to optimize microbial-based germacrene A and lycopene production.
Collapse
Affiliation(s)
- Eric Fordjour
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Chun-Li Liu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu , 214122, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
7
|
Chen FY, Mu QY, Xu BY, Lei YC, Liu HY, Fang X. Functional analysis of CYP71AV1 reveals the evolutionary landscape of artemisinin biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1361959. [PMID: 38576787 PMCID: PMC10991709 DOI: 10.3389/fpls.2024.1361959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
Artemisinin biosynthesis, unique to Artemisia annua, is suggested to have evolved from the ancestral costunolide biosynthetic pathway commonly found in the Asteraceae family. However, the evolutionary landscape of this process is not fully understood. The first oxidase in artemisinin biosynthesis, CYP71AV1, also known as amorpha-4,11-diene oxidase (AMO), has specialized from ancestral germacrene A oxidases (GAOs). Unlike GAO, which exhibits catalytic promiscuity toward amorpha-4,11-diene, the natural substrate of AMO, AMO has lost its ancestral activity on germacrene A. Previous studies have suggested that the loss of the GAO copy in A. annua is responsible for the abolishment of the costunolide pathway. In the genome of A. annua, there are two copies of AMO, each of which has been reported to be responsible for the different product profiles of high- and low-artemisinin production chemotypes. Through analysis of their tissue-specific expression and comparison of their sequences with those of other GAOs, it was discovered that one copy of AMO (AMOHAP) exhibits a different transcript compared to the reported artemisinin biosynthetic genes and shows more sequence similarity to other GAOs in the catalytic regions. Furthermore, in a subsequent in vitro enzymatic assay, the recombinant protein of AMOHAP unequivocally demonstrated GAO activity. This result clearly indicates that AMOHAP is a GAO rather than an AMO and that its promiscuous activity on amorpha-4,11-diene has led to its misidentification as an AMO in previous studies. In addition, the divergent expression pattern of AMOHAP compared to that of the upstream germacrene A synthase may have contributed to the abolishment of costunolide biosynthesis in A. annua. Our findings reveal a complex evolutionary landscape in which the emergence of a new metabolic pathway replaces an ancestral one.
Collapse
Affiliation(s)
- Fang-Yan Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiu-Yan Mu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Bing-Yi Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Yu-Chen Lei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Hui-Ying Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
8
|
Schmidt TJ. Arnica montana L.: Doesn't Origin Matter? PLANTS (BASEL, SWITZERLAND) 2023; 12:3532. [PMID: 37895999 PMCID: PMC10609804 DOI: 10.3390/plants12203532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023]
Abstract
Arnica montana L. (Asteraceae) has a long and successful tradition in Europe as herbal medicine. Arnica flowers (i.e., the flowerheads of Arnica montana) are monographed in the European Pharmacopoeia (Ph. Eur.), and a European Union herbal monograph exists, in which its use as traditional herbal medicine is recommended. According to this monograph, Arnica flowers (Arnicae flos Ph. Eur.) and preparations thereof may be used topically to treat blunt injuries and traumas, inflammations and rheumatic muscle and joint complaints. The main bioactive constituents are sesquiterpene lactones (STLs) of the helenanolide type. Among these, a variety of esters of helenalin and 11α,13-dihydrohelenalin with low-molecular-weight carboxylic acids, namely, acetic, isobutyric, methacrylic, methylbutyric as well as tiglic acid, represent the main constituents, in addition to small amounts of the unesterified parent STLs. A plethora of reports exist on the pharmacological activities of these STLs, and it appears unquestioned that they represent the main active principles responsible for the herbal drug's efficacy. It has been known for a long time, however, that considerable differences in the STL pattern occur between A. montana flowers from plants growing in middle or Eastern Europe with some originating from the Iberic peninsula. In the former, Helenalin esters usually predominate, whereas the latter contains almost exclusively 11α,13-Dihydrohelenalin derivatives. Differences in pharmacological potency, on the other hand, have been reported for the two subtypes of Arnica-STLs in various instances. At the same time, it has been previously proposed that one should distinguish between two subspecies of A. montana, subsp. montana occurring mainly in Central and Eastern Europe and subsp. atlantica in the southwestern range of the species distribution, i.e., on the Iberian Peninsula. The question hence arises whether or not the geographic origin of Arnica montana flowers is of any relevance for the medicinal use of the herbal drug and the pharmaceutical quality, efficacy and safety of its products and whether the chemical/pharmacological differences should not be recognized in pharmacopoeia monographs. The present review attempts to answer these questions based on a summary of the current state of botanical, phytochemical and pharmacological evidence.
Collapse
Affiliation(s)
- Thomas J Schmidt
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry (IPBP), PharmaCampus-Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
9
|
De Bruyn C, Ruttink T, Lacchini E, Rombauts S, Haegeman A, De Keyser E, Van Poucke C, Desmet S, Jacobs TB, Eeckhaut T, Goossens A, Van Laere K. Identification and characterization of CYP71 subclade cytochrome P450 enzymes involved in the biosynthesis of bitterness compounds in Cichorium intybus. FRONTIERS IN PLANT SCIENCE 2023; 14:1200253. [PMID: 37426959 PMCID: PMC10324620 DOI: 10.3389/fpls.2023.1200253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
Industrial chicory (Cichorium intybus var. sativum) and witloof (C. intybus var. foliosum) are crops with an important economic value, mainly cultivated for inulin production and as a leafy vegetable, respectively. Both crops are rich in nutritionally relevant specialized metabolites with beneficial effects for human health. However, their bitter taste, caused by the sesquiterpene lactones (SLs) produced in leaves and taproot, limits wider applications in the food industry. Changing the bitterness would thus create new opportunities with a great economic impact. Known genes encoding enzymes involved in the SL biosynthetic pathway are GERMACRENE A SYNTHASE (GAS), GERMACRENE A OXIDASE (GAO), COSTUNOLIDE SYNTHASE (COS) and KAUNIOLIDE SYNTHASE (KLS). In this study, we integrated genome and transcriptome mining to further unravel SL biosynthesis. We found that C. intybus SL biosynthesis is controlled by the phytohormone methyl jasmonate (MeJA). Gene family annotation and MeJA inducibility enabled the pinpointing of candidate genes related with the SL biosynthetic pathway. We specifically focused on members of subclade CYP71 of the cytochrome P450 family. We verified the biochemical activity of 14 C. intybus CYP71 enzymes transiently produced in Nicotiana benthamiana and identified several functional paralogs for each of the GAO, COS and KLS genes, pointing to redundancy in and robustness of the SL biosynthetic pathway. Gene functionality was further analyzed using CRISPR/Cas9 genome editing in C. intybus. Metabolite profiling of mutant C. intybus lines demonstrated a successful reduction in SL metabolite production. Together, this study increases our insights into the C. intybus SL biosynthetic pathway and paves the way for the engineering of C. intybus bitterness.
Collapse
Affiliation(s)
- Charlotte De Bruyn
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Annelies Haegeman
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Ellen De Keyser
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Christof Van Poucke
- Technology and Food Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | | | - Thomas B. Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Tom Eeckhaut
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Katrijn Van Laere
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| |
Collapse
|
10
|
Liu J, Guo X, Guo X, Zhong B, Wang T, Liu D, Jin H, Ren J, Liu Z, Gao J, Li SM, Fan A, Lin W. Concise Biosynthesis of Tropone-Containing Spiromaterpenes by a Sesquiterpene Cyclase and a Multifunctional P450 from a Deep-Sea-Derived Spiromastix sp. Fungus. JOURNAL OF NATURAL PRODUCTS 2022; 85:2723-2730. [PMID: 36414326 DOI: 10.1021/acs.jnatprod.2c00614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spiromaterpenes are a group of rare tropone-containing sesquiterpenes with antineuroinflammatory activity. Herein, we elucidate their biosynthetic pathway in a deep-sea-derived Spiromastix sp. fungus by heterologous expression, biochemical characterization, and incubation experiments. The sesquiterpene cyclase SptA was first characterized to catalyze the production of guaia-1(5),6-diene, and a multifunctional cytochrome P450 catalyzed the tropone ring formation. These results provide important clues for the rational mining of bioactive guaiane-type sesquiterpenes and expand the repertoire of P450 activities to synthesize unique building blocks of natural products.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Xiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Xingchen Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Boyuan Zhong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Tao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100013, People's Republic of China
| | - Jiangtao Gao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
- Institute of Ocean Research, Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, People's Republic of China
| |
Collapse
|
11
|
Park S, Mani V, Kim JA, Lee SI, Lee K. Combinatorial transient gene expression strategies to enhance terpenoid production in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1034893. [PMID: 36582649 PMCID: PMC9793405 DOI: 10.3389/fpls.2022.1034893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/18/2022] [Indexed: 05/13/2023]
Abstract
Introduction The monoterpenoid linalool and sesquiterpenoid costunolide are ubiquitous plant components that have been economically exploited for their respective essential oils and pharmaceutical benefits. In general, monoterpenes and sesquiterpenes are produced by the plastid 2-C-methyl-D-erythritol 4-phosphate (MEP) and cytosolic mevalonate (MVA) pathways, respectively. Herein, we investigated the individual and combinatorial potential of MEP and MVA pathway genes in increasing linalool and costunolide production in Nicotiana benthamiana. Methods First, six genes from the MEP (1-deoxy-D-xylulose-5-phosphate synthase, 1-deoxy-D-xylulose 5-phosphate reductoisomerase, 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, geranyl pyrophosphate synthase, and linalool synthase) and MVA (acetoacetyl-CoA-thiolase, hydroxy-3-methylglutaryl-CoA reductase, farnesyl pyrophosphate synthase, germacrene A synthase, germacrene A oxidase, and costunolide synthase) pathways were separately cloned into the modular cloning (MoClo) golden gateway cassette. Second, the cassettes were transformed individually or in combination into the leaves of N. benthamiana by agroinfiltration. Results and discussion Five days post infiltration (DPI), all selected genes were transiently 5- to 94-fold overexpressed. Quantification using gas chromatography-Q-orbitrap-mass spectrometry (GC-Q-Orbitrap-MS) determined that the individual and combinatorial expression of MEP genes increased linalool production up to 50-90ng.mg-1 fresh leaf weight. Likewise, MVA genes increased costunolide production up to 70-90ng.mg-1 fresh leaf weight. Our findings highlight that the transient expression of MEP and MVA pathway genes (individually or in combination) enhances linalool and costunolide production in plants.
Collapse
Affiliation(s)
| | | | | | | | - Kijong Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
12
|
Mahood HE, Sarropoulou V, Tzatzani TT. Effect of explant type (leaf, stem) and 2,4-D concentration on callus induction: influence of elicitor type (biotic, abiotic), elicitor concentration and elicitation time on biomass growth rate and costunolide biosynthesis in gazania (Gazania rigens) cell suspension cultures. BIORESOUR BIOPROCESS 2022; 9:100. [PMID: 38647613 PMCID: PMC10991164 DOI: 10.1186/s40643-022-00588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
Gazania rigens (L.) Gaertn. (Asteraceae) is a medicinal plant with high ornamental potential and use in landscaping. The therapeutic potential of sesquiterpene lactones (SLs) as plant natural products for pharmaceutical development has gained extensive interest with costunolide (chemical name: 6E,10E,11aR-6,10-dimethyl-3-methylidene-3a,4,5,8,9,11a-hexahydrocyclodeca[b]furan-2-one) used as a popular herbal remedy due to its anti-cancer, antioxidant, anti-inflammatory, anti-microbial, anti-allergic, and anti-diabetic activities, among others. In the present study, two explant types (leaf, stem) and four 2,4-dichlorophenoxy acetic acid (2,4-D) concentrations (0, 0.5, 1 and 2 mg/L) were tested for callusing potential. The results showed that stem explants treated with 1.5 mg/L 2,4-D exhibited higher callus induction percentage (90%) followed by leaf explants (80%) with 1 mg/L 2,4-D, after a 4-week period. Cell suspension cultures were established from friable callus obtained from stem explants following a sigmoid pattern of growth curve with a maximum fresh weight at 20 days of subculture and a minimum one at 5 days of subculture. In the following stage, the effects of elicitation of cell suspension cultures with either yeast extract (YE) or methyl jasmonate (MeJA), each applied in five concentrations (0, 100, 150, 200 and 250 mg/L) on cell growth (fresh and dry biomass) and costunolide accumulation were tested. After 20 days of culture, YE or MeJA suppressed cell growth as compared to the non-elicited cells, while costunolide accumulation was better enhanced under the effect of 150 mg/L MeJA followed by 200 mg/L YE, respectively. In the subsequent experiment conducted, the optimal concentration of the two elicitors (200 mg/L YE, 150 mg/L MeJA) was selected to investigate further elicitation time (0, 5, 10, 15 and 20 days). The results revealed that YE biotic elicitation stimulated cell growth and costunolide production, being maximum on day 20 for fresh biomass, on day 5 for dry biomass and on day 15 for the bioactive compound. Accordingly, cell growth parameters were maximized under the effect of abiotic elicitation with MeJA for 15 days, while highest costunolide content was achieved after 10 days. Overall, MeJA served as a better elicitor type than YE for biomass and costunolide production. Irrespective of elicitor type, elicitor concentration and elicitation time, maximal response was obtained with 150 mg/L MeJA for 10 days regarding costunolide accumulation (18.47 ppm) and 15 days for cell growth (fresh weight: 954 mg and dry weight: 76.3 mg). The application of elicitors can lead the large quantity of costunolide to encounter extensive range demand through marketable production without endangering of G. rigens.
Collapse
Affiliation(s)
- Huda E Mahood
- Department of Horticulture, College of Agriculture, University of Al-Qadisiyah, Al Diwaniyah, 58002, Iraq
| | - Virginia Sarropoulou
- Institute of Plant Breeding and Genetic Resources, Laboratory of Protection and Evaluation of Native and Floriculture Species, Hellenic Agricultural Organization (HAO)-DEMETER, Balkan Botanic Garden of Kroussia, Thermi, P.O. Box 60458, P.C. 570 01, Thessaloniki, Greece.
| | - Thiresia-Teresa Tzatzani
- Institute of Olive Tree, Subtropical Crops & Viticulture, Laboratory of Subtropical Plants & Tissue Culture, Hellenic Agricultural Organization (HAO)-DEMETER, 167 K. Karamanlis Avenue, 73134, Chania, Greece
| |
Collapse
|
13
|
Shi Y, Dong T, Zeng B, Yao M, Wang Y, Xie Z, Xiao W, Yuan Y. Production of Plant Sesquiterpene Lactone Parthenolide in the Yeast Cell Factory. ACS Synth Biol 2022; 11:2473-2483. [PMID: 35723427 DOI: 10.1021/acssynbio.2c00132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parthenolide, a kind of sesquiterpene lactone, is the direct precursor for the promising anti-glioblastoma drug ACT001. Compared with traditional parthenolide source from plant extraction, de novo biosynthesis of parthenolide in microorganisms has the potential to make a sustainable supply. Herein, an integrated strategy was designed with P450 source screening, nicotinamide adenine dinucleotide phosphate (NADPH) supply, and endoplasmic reticulum (ER) size rewiring to manipulate three P450s regarded as the bottleneck for parthenolide production. Germacrene A oxidase from Cichorium intybus, costunolide synthase from Lactuca sativa, and parthenolide synthase from Tanacetum parthenium have the best efficiency, resulting in a parthenolide titer of 2.19 mg/L, which was first achieved in yeast. The parthenolide titer was further increased by 300% with NADPH supplementation and ER expanding stepwise. Finally, the highest titers of 31.0 mg/L parthenolide and 648.5 mg/L costunolide in microbes were achieved in 2.0 L fed-batch fermentation. This study not only provides an alternative microbial platform for producing sesquiterpene lactones in a sustainable way but also highlights a general strategy for manipulating multiple plant-derived P450s in microbes.
Collapse
Affiliation(s)
- Yiting Shi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Tianyu Dong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Boxuan Zeng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zexiong Xie
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.,Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen 518071, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Zhang B, Wang Z, Han X, Liu X, Wang Q, Zhang J, Zhao H, Tang J, Luo K, Zhai Z, Zhou J, Liu P, He W, Luo H, Yu S, Gao Q, Zhang L, Li D. The chromosome-scale assembly of endive (Cichorium endivia) genome provides insights into the sesquiterpenoid biosynthesis. Genomics 2022; 114:110400. [PMID: 35691507 DOI: 10.1016/j.ygeno.2022.110400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/06/2022] [Accepted: 06/04/2022] [Indexed: 11/25/2022]
Abstract
Endive (Cichorium endivia L.) is a leafy vegetable in the Asteraceae family. Sesquiterpene lactones (STLs) in endive leaves bring a bitter taste that varies between varieties. Despite their importance in breeding varieties with unique flavours, sesquiterpenoid biosynthesis pathways in endive are poorly understood. We assembled a chromosome-scale endive genome of 641 Mb with a contig N50 of 5.16 Mb and annotated 46,711 protein-coding genes. Several gene families, especially terpene synthases (TPS) genes, expanded significantly in the C. endivia genome. STLs biosynthesis-related genes and TPS genes in more bitter varieties have shown a higher level of expression, which could be attributed to genomic variations. Our results penetrate the origin and diversity of bitter taste and facilitate the molecular breeding of endive varieties with unique bitter tastes. The high-quality endive assembly would provide a reference genome for studying the evolution and diversity of Asteraceae.
Collapse
Affiliation(s)
- Bin Zhang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Zhiwei Wang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Xiangyang Han
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Xue Liu
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Qi Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Jiao Zhang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Hong Zhao
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Kangsheng Luo
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Zhaodong Zhai
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Jun Zhou
- College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Pangyuan Liu
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Weiming He
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Shuancang Yu
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China
| | - Qiang Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China; Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing 100097, PR China.
| |
Collapse
|
15
|
Cloning and Functional Characterization of Two Germacrene A Oxidases Isolated from Xanthium sibiricum. Molecules 2022; 27:molecules27103322. [PMID: 35630799 PMCID: PMC9145264 DOI: 10.3390/molecules27103322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/04/2023] Open
Abstract
Sesquiterpene lactones (STLs) from the cocklebur Xanthium sibiricum exhibit significant anti-tumor activity. Although germacrene A oxidase (GAO), which catalyzes the production of Germacrene A acid (GAA) from germacrene A, an important precursor of germacrene-type STLs, has been reported, the remaining GAOs corresponding to various STLs’ biosynthesis pathways remain unidentified. In this study, 68,199 unigenes were studied in a de novo transcriptome assembly of X. sibiricum fruits. By comparison with previously published GAO sequences, two candidate X. sibiricum GAO gene sequences, XsGAO1 (1467 bp) and XsGAO2 (1527 bp), were identified, cloned, and predicted to encode 488 and 508 amino acids, respectively. Their protein structure, motifs, sequence similarity, and phylogenetic position were similar to those of other GAO proteins. They were most strongly expressed in fruits, according to a quantitative real-time polymerase chain reaction (qRT-PCR), and both XsGAO proteins were localized in the mitochondria of tobacco leaf epidermal cells. The two XsGAO genes were cloned into the expression vector for eukaryotic expression in Saccharomyces cerevisiae, and the enzyme reaction products were detected by gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS) methods. The results indicated that both XsGAO1 and XsGAO2 catalyzed the two-step conversion of germacrene A (GA) to GAA, meaning they are unlike classical GAO enzymes, which catalyze a three-step conversion of GA to GAA. This cloning and functional study of two GAO genes from X. sibiricum provides a useful basis for further elucidation of the STL biosynthesis pathway in X. sibiricum.
Collapse
|
16
|
Zhukovsky D, Dar’in D, Bakulina O, Krasavin M. Preparation and Synthetic Applications of Five-to-Seven-Membered Cyclic α-Diazo Monocarbonyl Compounds. Molecules 2022; 27:2030. [PMID: 35335391 PMCID: PMC8954351 DOI: 10.3390/molecules27062030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
The reactivity of cyclic α-diazo monocarbonyl compounds differs from that of their acyclic counterparts. In this review, we summarize the current literature available on the synthesis and synthetic applications of three major classes of cyclic α-diazo monocarbonyl compounds: α-diazo ketones, α-diazo lactones and α-diazo lactams.
Collapse
Affiliation(s)
- Daniil Zhukovsky
- Research & Development Department, BratskChemSyntez LLC, PharmaSyntez Company, 5A/1 Kommunalnaya St., 665717 Bratsk, Russia;
| | - Dmitry Dar’in
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Olga Bakulina
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
- Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| |
Collapse
|
17
|
Guo X, Fang D, Sahu SK, Yang S, Guang X, Folk R, Smith SA, Chanderbali AS, Chen S, Liu M, Yang T, Zhang S, Liu X, Xu X, Soltis PS, Soltis DE, Liu H. Chloranthus genome provides insights into the early diversification of angiosperms. Nat Commun 2021; 12:6930. [PMID: 34836973 PMCID: PMC8626473 DOI: 10.1038/s41467-021-26922-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
Chloranthales remain the last major mesangiosperm lineage without a nuclear genome assembly. We therefore assemble a high-quality chromosome-level genome of Chloranthus spicatus to resolve enigmatic evolutionary relationships, as well as explore patterns of genome evolution among the major lineages of mesangiosperms (eudicots, monocots, magnoliids, Chloranthales, and Ceratophyllales). We find that synteny is highly conserved between genomic regions of Amborella, Vitis, and Chloranthus. We identify an ancient single whole-genome duplication (WGD) (κ) prior to the divergence of extant Chloranthales. Phylogenetic inference shows Chloranthales as sister to magnoliids. Furthermore, our analyses indicate that ancient hybridization may account for the incongruent phylogenetic placement of Chloranthales + magnoliids relative to monocots and eudicots in nuclear and chloroplast trees. Long genes and long introns are found to be prevalent in both Chloranthales and magnoliids compared to other angiosperms. Overall, our findings provide an improved context for understanding mesangiosperm relationships and evolution and contribute a valuable genomic resource for future investigations.
Collapse
Affiliation(s)
- Xing Guo
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Dongming Fang
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Sunil Kumar Sahu
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Shuai Yang
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Xuanmin Guang
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Ryan Folk
- grid.260120.70000 0001 0816 8287Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762 United States of America
| | - Stephen A. Smith
- grid.214458.e0000000086837370Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48103 United States of America
| | - Andre S. Chanderbali
- grid.15276.370000 0004 1936 8091Florida Museum of Natural History, University of Florida, Gainesville, FL United States of America
| | - Sisi Chen
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China ,grid.9227.e0000000119573309South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650 China
| | - Min Liu
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Ting Yang
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Shouzhou Zhang
- grid.9227.e0000000119573309Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen, Chinese Academy of Sciences, Shenzhen, 518004 China
| | - Xin Liu
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China ,grid.21155.320000 0001 2034 1839BGI-Fuyang, BGI-Shenzhen, Fuyang, 236009 China
| | - Xun Xu
- grid.21155.320000 0001 2034 1839State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China ,grid.21155.320000 0001 2034 1839Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518083 China
| | - Pamela S. Soltis
- grid.15276.370000 0004 1936 8091Florida Museum of Natural History, University of Florida, Gainesville, FL United States of America
| | - Douglas E. Soltis
- grid.15276.370000 0004 1936 8091Florida Museum of Natural History, University of Florida, Gainesville, FL United States of America ,grid.15276.370000 0004 1936 8091Department of Biology, University of Florida, Gainesville, FL 32611 United States of America
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China. .,Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
18
|
Liu W, Winssinger N. Synthesis of α-exo-Methylene-γ-butyrolactones: Recent Developments and Applications in Natural Product Synthesis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1577-6085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractThe α-exo-methylene-γ-butyrolactone moiety is present in a vast array of structurally diverse natural products and is often central to their biological activity. In this short review, we summarize new approaches to α-exo-methylene-γ-butyrolactones developed over the past decade as well as their applications in total synthesis.1 Introduction2 Approaches to α-exo-Methylene-γ-butyrolactones2.1 Enantioselective Synthesis via Lactonization Approaches2.2 Enantioselective Halolactonizations2.3 Enantioselective Barbier-Type Allylation2.4 C–H Insertion/Olefination Sequences2.5 Alkene Cyclization2.6 Strain-Driven Dyotropic Rearrangement3 β-(Hydroxymethylalkyl)-α-exo-methylene-γ-butyrolactones4 Applications in Total Synthesis4.1 Sesquiterpene Lactones4.2 Lignans4.3 Other Monocyclic Natural Products4.4 Choice of Methodology in Recent Total Syntheses5 Summary and Outlook
Collapse
|
19
|
Gong DY, Chen XY, Guo SX, Wang BC, Li B. Recent advances and new insights in biosynthesis of dendrobine and sesquiterpenes. Appl Microbiol Biotechnol 2021; 105:6597-6606. [PMID: 34463801 DOI: 10.1007/s00253-021-11534-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
Sesquiterpenes are one of the most diverse groups of secondary metabolites that have mainly been observed in terpenoids. It is a natural terpene containing 15 carbon atoms in the molecule and three isoprene units with chain, ring, and other skeleton structures. Sesquiterpenes have been shown to display multiple biological activities such as anti-inflammatory, anti-feedant, anti-microbial, anti-tumor, anti-malarial, and immunomodulatory properties; therefore, their therapeutic effects are essential. In order to overcome the problem of low-yielding sesquiterpene content in natural plants, regulating their biosynthetic pathways has become the focus of many researchers. In plant and microbial systems, many genetic engineering strategies have been used to elucidate biosynthetic pathways and high-level production of sesquiterpenes. Here, we will introduce the research progress and prospects of the biosynthesis of artemisinin, costunolide, parthenolide, and dendrobine. Furthermore, we explore the biosynthesis of dendrobine by evaluating whether the biosynthetic strategies of these sesquiterpene compounds can be applied to the formation of dendrobine and its intermediate compounds. KEY POINTS: • The development of synthetic biology has promoted the study of terpenoid metabolism and provided an engineering platform for the production of high-value terpenoid products. • Some possible intermediate compounds of dendrobine were screened out and the possible pathway of dendrobine biosynthesis was speculated. • The possible methods of dendrobine biosynthesis were explored and speculated.
Collapse
Affiliation(s)
- Dao-Yong Gong
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
- College of Bioengineering of Chongqing University, Chongqing, 400045, People's Republic of China
| | - Xing-Yue Chen
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
| | - Shun-Xing Guo
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
| | - Bo-Chu Wang
- College of Bioengineering of Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Biao Li
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
20
|
Grafakou ME, Barda C, Heilmann J, Skaltsa H. In vitro cytotoxic and anti-inflammatory activities of sesquiterpene lactones from Centaurea papposa (Coss.) Greuter. Nat Prod Res 2021; 36:3211-3215. [PMID: 34355629 DOI: 10.1080/14786419.2021.1955882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the pursuit of highly active specialized metabolites from endemic plants, Centaurea papposa (Coss.) Greuter, an endemic plant in Algeria and Tunisia, was investigated and afforded eleven sesquiterpene lactones (1-11). Cytotoxic evaluation of these compounds using the in vitro MTT assay on three human cancerous cell lines (HeLa, SK-MEL-28 and HepG2), revealed that isolates 4, 8 and 9 (IC50 ≤ 10 μM) could be potential anti-cancer drugs for cervical cancer according to the National Cancer Institute. Further evaluation of the in vitro anti-inflammatory activity showed that compounds 1 and 4 inhibited the TNF-α induced ICAM-1 expression in HMEC-1 endothelial cells at a maximum of 21% and 2% of the control (IC50 values 21.9 and 5.7 μM, respectively). The Michael reactions of the α-methylene-γ-lactone ring seem to be responsible for the strong activity, while no toxicity was observed in the HMEC-1 cells in all the range of tested concentrations (6.25-50.0 µM).
Collapse
Affiliation(s)
- Maria-Eleni Grafakou
- Faculty of Pharmacy, Department of Pharmacognosy & Chemistry of Natural Products, School of Health Sciences, National & Kapodistrian University of Athens, Zografou, Greece.,Chair of Pharmaceutical Biology, Faculty of Pharmacy and Chemistry, University of Regensburg, Regensburg, Germany
| | - Christina Barda
- Faculty of Pharmacy, Department of Pharmacognosy & Chemistry of Natural Products, School of Health Sciences, National & Kapodistrian University of Athens, Zografou, Greece
| | - Joerg Heilmann
- Chair of Pharmaceutical Biology, Faculty of Pharmacy and Chemistry, University of Regensburg, Regensburg, Germany
| | - Helen Skaltsa
- Faculty of Pharmacy, Department of Pharmacognosy & Chemistry of Natural Products, School of Health Sciences, National & Kapodistrian University of Athens, Zografou, Greece
| |
Collapse
|
21
|
Guaianolide Sesquiterpene Lactones from Centaurothamnus maximus. Molecules 2021; 26:molecules26072055. [PMID: 33916714 PMCID: PMC8038342 DOI: 10.3390/molecules26072055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/20/2022] Open
Abstract
Centaurothamnus maximus (family Asteraceae), is a leafy shrub indigenous to the southwestern Arabian Peninsula. With a paucity of phytochemical data on this species, we set out to chemically characterize the plant. From the aerial parts, two newly identified guaianolides were isolated: 3β-hydroxy-4α(acetoxy)-4β(hydroxymethyl)-8α-(4-hydroxy methacrylate)-1αH,5αH, 6αH-gual-10(14),11(13)-dien-6,12-olide (1) and 15-descarboxy picrolide A (2). Seven previously reported compounds were also isolated: 3β, 4α, 8α-trihydroxy-4-(hydroxymethyl)-lαH, 5αH, 6βH, 7αH-guai-10(14),11(13)-dien-6,12-olide (3), chlorohyssopifolin B (4), cynaropikrin (5), hydroxyjanerin (6), chlorojanerin (7), isorhamnetin (8), and quercetagetin-3,6-dimethyl ether-4’-O-β-d-pyranoglucoside (9). Chemical structures were elucidated using spectroscopic techniques, including High Resolution Fast Atom Bombardment Mass Spectrometry (HR-FAB-MS), 1D NMR; 1H, 13C NMR, Distortionless Enhancement by Polarization Transfer (DEPT), and 2D NMR (1H-1H COSY, HMQC, HMBC) analyses. In addition, a biosynthetic pathway for compounds 1–9 is proposed. The chemotaxonomic significance of the reported sesquiterpenoids and flavonoids considering reports from other Centaurea species is examined.
Collapse
|
22
|
Thakur V, Bains S, Kaur R, Singh K. Identification and characterization of SlbHLH, SlDof and SlWRKY transcription factors interacting with SlDPD gene involved in costunolide biosynthesis in Saussurea lappa. Int J Biol Macromol 2021; 173:146-159. [PMID: 33482203 DOI: 10.1016/j.ijbiomac.2021.01.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/26/2020] [Accepted: 01/17/2021] [Indexed: 11/27/2022]
Abstract
The genes involved in costunolide biosynthesis in Saussurea lappa have been identified recently by our lab. However, the study of transcriptional regulators of these genes was lacking for better opportunities for engineering the pharmacologically important biosynthetic pathway. Therefore, we cloned the promoter region of diphosphomevalonate decarboxylase gene (DPD) and analyzed its cis-acting regulatory elements to reveal the potential transcription factor (TF) binding sites for Dof, bHLH and WRKY family proteins in the gene promoter. The transcriptome study approach followed by the hidden Markov model based search, digital gene expression, co-expression network analysis, conserved domain properties and evolutionary analyses were carried out to screen out seven putative TFs for the DPD-TF interaction studies. Yeast one-hybrid assays were performed and three TFs were reported, namely, SlDOF2, SlbHLH3 and SlWRKY2 from Dof, bHLH and WRKY families, respectively that interacted positively with the DPD gene of the costunolide biosynthetic pathway. The tissue specific relative gene expression studies also supported the linked co-expression of the gene and its interacting TFs The present report will improve the understanding of transcriptional regulation pattern of costunolide biosynthetic pathway.
Collapse
Affiliation(s)
- Vasundhara Thakur
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Savita Bains
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Ravneet Kaur
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
23
|
Zhang H, Zhang GM, He S, Shi ZC, Zhang XM, Wang JY. A Construction of α-Alkenyl Lactones via Reduction Radical Cascade Reaction of Allyl Alcohols and Acetylenic Acids. Org Lett 2020; 22:8337-8344. [PMID: 33040535 DOI: 10.1021/acs.orglett.0c02973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iron-catalyzed cascade reaction of radical reduction of allyl alcohols and acetylenic acids to construct polysubstituted α-alkenyl lactones has been developed. In this paper, various allyl alcohols can form allyl ester intermediates and are further transformed into alkyl radicals, which form products through intramolecular reflex-Michael addition. In addition, this method can be used to prepare spirocycloalkenyl lactones. Interestingly, this protocol can be used to synthesize the skeleton structure of natural products. Moreover, the product can be further transformed into a β-methylene tetrahydrofuran and tetrahydrofuran diene.
Collapse
Affiliation(s)
- Hua Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guo-Min Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuai He
- Southwest Minzu University, Chengdu 610041, P. R. China
| | | | - Xiao-Mei Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Ji-Yu Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| |
Collapse
|
24
|
Thakur V, Bains S, Pathania S, Sharma S, Kaur R, Singh K. Comparative transcriptomics reveals candidate transcription factors involved in costunolide biosynthesis in medicinal plant-Saussurea lappa. Int J Biol Macromol 2020; 150:52-67. [DOI: 10.1016/j.ijbiomac.2020.01.312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 01/01/2023]
|
25
|
Applications of Sesquiterpene Lactones: A Review of Some Potential Success Cases. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093001] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sesquiterpene lactones, a vast range of terpenoids isolated from Asteraceae species, exhibit a broad spectrum of biological effects and several of them are already commercially available, such as artemisinin. Here the most recent and impactful results of in vivo, preclinical and clinical studies involving a selection of ten sesquiterpene lactones (alantolactone, arglabin, costunolide, cynaropicrin, helenalin, inuviscolide, lactucin, parthenolide, thapsigargin and tomentosin) are presented and discussed, along with some of their derivatives. In the authors’ opinion, these compounds have been neglected compared to others, although they could be of great use in developing important new pharmaceutical products. The selected sesquiterpenes show promising anticancer and anti-inflammatory effects, acting on various targets. Moreover, they exhibit antifungal, anxiolytic, analgesic, and antitrypanosomal activities. Several studies discussed here clearly show the potential that some of them have in combination therapy, as sensitizing agents to facilitate and enhance the action of drugs in clinical use. The derivatives show greater pharmacological value since they have better pharmacokinetics, stability, potency, and/or selectivity. All these natural terpenoids and their derivatives exhibit properties that invite further research by the scientific community.
Collapse
|
26
|
Frey M. Traps and Pitfalls-Unspecific Reactions in Metabolic Engineering of Sesquiterpenoid Pathways. Molecules 2020; 25:E1935. [PMID: 32331245 PMCID: PMC7221646 DOI: 10.3390/molecules25081935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
The characterization of plant enzymes by expression in prokaryotic and eukaryotic (yeast and plants) heterologous hosts has widely been used in recent decades to elucidate metabolic pathways in plant secondary metabolism. Yeast and plant systems provide the cellular environment of a eukaryotic cell and the subcellular compartmentalization necessary to facilitate enzyme function. The expression of candidate genes in these cell systems and the identification of the resulting products guide the way for the identification of enzymes with new functions. However, in many cases, the detected compounds are not the direct enzyme products but are caused by unspecific subsequent reactions. Even if the mechanisms for these unspecific reactions are in many cases widely reported, there is a lack of overview of potential reactions that may occur to provide a guideline for researchers working on the characterization of new enzymes. Here, an across-the-board summary of rearrangement reactions of sesquiterpenes in metabolic pathway engineering is presented. The different kinds of unspecific reactions as well as their chemical and cellular background are explained and strategies how to spot and how to avoid these unspecific reactions are given. Also, a systematic approach of classification of unspecific reactions is introduced. It is hoped that this mini-review will stimulate a discussion on how to systematically classify unspecific reactions in metabolic engineering and to expand this approach to other classes of plant secondary metabolites.
Collapse
Affiliation(s)
- Maximilian Frey
- Institute of Biology, Dept. of Biochemistry of Plant Secondary Metabolism (190b), University of Hohenheim, Garbenstraße 30, 70593 Stuttgart, Germany
| |
Collapse
|
27
|
Harmange Magnani CS, Thach DQ, Haelsig KT, Maimone TJ. Syntheses of Complex Terpenes from Simple Polyprenyl Precursors. Acc Chem Res 2020; 53:949-961. [PMID: 32202757 DOI: 10.1021/acs.accounts.0c00055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
From structure elucidation and biogenesis to synthetic methodology and total synthesis, terpene natural products have profoundly influenced the development of organic chemistry. Moreover, their myriad functional attributes range from fragrance to pharmaceuticals and have had great societal impact. Ruzicka's formulation of the "biogenetic isoprene rule," a Nobel Prize winning discovery now over 80 years old, allowed for identification of higher order terpene (aka "isoprenoid") structures from simple five-carbon isoprene fragments. Notably, the isoprene rule still holds pedagogical value to students of organic chemistry today. Our laboratory has completed syntheses of over two dozen terpene and meroterpene structures to date, and the isoprene rule has served as a key pattern recognition tool for our synthetic planning purposes. At the strategic level, great opportunity exists in finding unique and synthetically simplifying ways to connect the formal C5 isoprene fragments embedded in terpenes. Biomimetic cationic polyene cyclizations represent the earliest incarnation of this idea, which has facilitated expedient routes to certain terpene polycycle classes. Nonetheless, a large swath of terpene chemical space remains inaccessible using this approach.In this Account, we describe strategic insight into our endeavors in terpene synthesis published over the last five years. We show how biosynthetic understanding, combined with a desire to utilize abundant and inexpensive [C5]n building blocks, has led to efficient, abiotic syntheses of multiple complex terpenes with disparate ring systems. Informed by nature, but unconstrained by its processes, our synthetic assembly exploits chemical reactivity across diverse reaction types-including radical, anionic, pericyclic, and metal-mediated transformations.First, we detail an eight-step synthesis of the cembrane diterpene chatancin from dihydrofarnesal using a bioinspired-but not -mimetic-cycloaddition. Next, we describe the assembly of the antimalarial cardamom peroxide using a polyoxygenation cascade to fuse multiple units of molecular oxygen onto a dimeric skeleton. This three-to-four-step synthesis arises from (-)-myrtenal, an inexpensive pinene oxidation product. We then show how a radical cyclization cascade can forge the hallmark cyclooctane ring system of the complex sesterterpene 6-epi-ophiobolin N from two simple polyprenyl precursors, (-)-linalool and farnesol. To access the related, more complex metabolite 6-epi-ophiobolin A, we exploited the plasticity of our synthetic route and found that use of geraniol (C10) rather than farnesol (C15) gave us the flexibility needed to address the additional oxidation found in this congener. Following this work, we describe two strategies to access several guaianolide sesquiterpenes. Retrosynthetic disconnection to monoterpenes, carvone or (-)-linalool, coupled with a powerful allylation strategy allowed us to address guaianolides with disparate stereochemical motifs. Finally, we examine a semisynthetic approach to the illicium sesquiterpenes from the abundant 15-carbon feedstock terpene (+)-cedrol using an abiotic ring shift and multiple C-H oxidation reactions inspired by a postulated biosynthesis of this natural product class.
Collapse
Affiliation(s)
| | - Danny Q. Thach
- Department of Chemistry, University of California—Berkeley, Berkeley, California 94720, United States
| | - Karl T. Haelsig
- Department of Chemistry, University of California—Berkeley, Berkeley, California 94720, United States
| | - Thomas J. Maimone
- Department of Chemistry, University of California—Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
28
|
Peña-Espinoza M, Valente AH, Bornancin L, Simonsen HT, Thamsborg SM, Williams AR, López-Muñoz R. Anthelmintic and metabolomic analyses of chicory (Cichorium intybus) identify an industrial by-product with potent in vitro antinematodal activity. Vet Parasitol 2020; 280:109088. [PMID: 32278938 DOI: 10.1016/j.vetpar.2020.109088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/20/2023]
Abstract
Chicory (Cichorium intybus) is a bioactive forage rich in sesquiterpene lactones (SLs) with reported in vitro and in vivo anthelmintic activity in livestock. However, the on-farm adoption of chicory as an anthelmintic crop is limited and may be facilitated by using standardised industrial chicory material. Chicory root pulp is a by-product obtained from industrial chicory roots after inulin extraction and can potentially retain SLs. However, SL content and associated anthelmintic activity of chicory root pulp have not been investigated. Here, we evaluated the anthelmintic activity of SL-enriched extracts from chicory root pulp and forage chicory, and used untargeted metabolomics and molecular networking to identify potential anthelmintic molecules. Six different sources of chicory material were used: fresh chicory root pulp (from industrial chicory roots C. intybus var. sativum; "Root Pulp"), fresh leaves from chicory cv. Spadona (sampled on four occasions) and fresh leaves from chicory cv. Choice. The resulting extracts were tested for anthelmintic activity against the free-living nematode Caenorhabditis elegans and the pig nematode Ascaris suum. The cytotoxicity of the chicory extracts was evaluated on mammalian (Vero) cells. In the C. elegans assays, the Root Pulp was the most potent extract and induced paralysis in >95% of worms exposed to >250 μg extract/mL (EC50 = 64.2 μg/mL). In the A. suum assays, the Root Pulp was also the most potent chicory extract to inhibit worm motility (EC50 = 87.6 μg/mL), followed closely by two of the Spadona leaf extracts (EC50 = 89.8 μg/mL and 112.2 μg/mL) The Root Pulp extract had the lowest cytotoxicity of all tested extracts towards mammalian cells, with a selectivity index of 5.37. Untargeted metabolomics revealed that chicory Root Pulp had a markedly different chemical profile in comparison with forage chicory extracts. Molecular networking confirmed several SLs and SL-derivatives mainly present in chicory root pulp, that may be responsible of its potent anti-parasitic activity. Bioactivity-based molecular networking of chicory root pulp and the most potent forage chicory extracts revealed a high predicted anthelmintic score for the guaianolide SL 11,13-dihydro-lactucopicrin. In conclusion, chicory root pulp showed potent and selective in vitro anthelmintic activity against C. elegans and A. suum, with low cytotoxicity in mammalian cells. The promising anthelmintic activity of chicory root pulp should be confirmed in vivo to further explore the potential of this agro-industrial by-product as a nutraceutical anthelmintic for livestock and as novel source of anti-parasitic compounds.
Collapse
Affiliation(s)
- Miguel Peña-Espinoza
- Instituto de Farmacologia y Morfofisiologia, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| | - Angela H Valente
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 100, 1870, Frederiksberg C, Denmark
| | - Louis Bornancin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800, Kongens Lyngby, Denmark
| | - Henrik T Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800, Kongens Lyngby, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 100, 1870, Frederiksberg C, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 100, 1870, Frederiksberg C, Denmark
| | - Rodrigo López-Muñoz
- Instituto de Farmacologia y Morfofisiologia, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
29
|
Mir MA, Hamdani SS, Sheikh BA, Mehraj U. Recent Advances in Metabolites from Medicinal Plants in Cancer Prevention and Treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573395515666191102094330] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cancer is the second leading cause of death and morbidity in the world among noncommunicable diseases after cardiovascular ailments. With the advancement in science and research, a number of therapies have been developed to treat cancer, including chemotherapy, radiotherapy and immunotherapy. Chemo and radiotherapy have been in use since the last two decades, however these are not devoid of their own intrinsic problems, such as myelotoxicity, cardiotoxicity, nephrotoxicity, neurotoxicity and immunosuppression. Hence, there is an urgent need to develop alternative methods for the treatment of cancer. An increase in the cases of various cancers has encouraged the researchers to discover novel, more effective drugs from plant sources. In this review, fifteen medicinal plants alongside their products with anticancer effects will be introduced and discussed, as well as the most important plant compounds responsible for the anticancer activity of the plant. Several phenolic and alkaloid compounds have been demonstrated to have anticancer effects on various types of cancers. The most fundamental and efficient role exhibited by these secondary plant metabolites against cancer involves removing free radicals and antioxidant effects, induction of apoptosis, cell cycle arrest and inhibition of angiogenesis. Moreover, recent studies have shown that plants and their metabolites may provide an alternative to the existing approaches, including chemotherapies and radiotherapies, in the treatment of cancer. In this review, a brief overview of important secondary metabolites having anticancer activity will be given, along with the major molecular mechanisms involved in the disease. In addition to this, recent advances in secondary metabolites from various medicinal plants in the prevention and treatment of cancer will be explored.
Collapse
Affiliation(s)
- Manzoor A. Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Syed S. Hamdani
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Bashir A. Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
30
|
Hu X, Musacchio AJ, Shen X, Tao Y, Maimone TJ. Allylative Approaches to the Synthesis of Complex Guaianolide Sesquiterpenes from Apiaceae and Asteraceae. J Am Chem Soc 2019; 141:14904-14915. [PMID: 31448610 DOI: 10.1021/jacs.9b08001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With hundreds of unique members isolated to date, guaianolide lactones represent a particularly prolific class of terpene natural products. Given their extensive documented therapeutic properties and fascinating chemical structures, these metabolites have captivated the synthetic chemistry community for many decades. As a result of divergent biosynthetic pathways, which produce a wide array of stereochemical and oxidative permutations, a unifying synthetic pathway to this broad family of natural products is challenging. Herein we document the evolution of a chiral-pool-based synthetic program aimed at accessing an assortment of guaianolides, particularly those from the plant family Apiaceae as well as Asteraceae, members of which possess distinct chemical substructures and necessitate deviating synthetic platforms. An initial route employing the linear monoterpene linalool generated a lower oxidation state guaianolide but was not compatible with the majority of family members. A double-allylation disconnection using a carvone-derived fragment was then developed to access first an Asteraceae-type guaianolide and then various Apiaceae congeners. Finally, using these findings in conjunction with a tandem polyoxygenation cascade, we developed a pathway to highly oxygenated nortrilobolide. A variety of interesting observations in metal-mediated aldehyde allylation and alkene polyoxygenation are reported and discussed.
Collapse
Affiliation(s)
| | | | | | | | - Thomas J Maimone
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| |
Collapse
|
31
|
|
32
|
Shulha O, Zidorn C. Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae revisited: An update (2008-2017). PHYTOCHEMISTRY 2019; 163:149-177. [PMID: 30837086 DOI: 10.1016/j.phytochem.2019.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Ten years after the first overview on sesquiterpene lactones in the Cichorieae tribe of the Asteraceae family, we present an update. This review summarizes all chemosystematically relevant reports on sesquiterpene lactones and their immediate precursors from the Cichorieae (syn.: Lactuceae) tribe of the Asteraceae published between 2008 and 2017 and also includes some corrections to the 2008 review. The number of sesquiterpene lactones and sesquiterpenic acids as immediate precursor of sesquiterpene lactones reported for the Cichorieae has increased from 360 to 475 (+32%) within one decade. The number of known source species increased from 139 to 157 (+13%) and the number of chemosystematic reports (reported compounds per taxon) increased from 838 to 1241 (+48%). Notwithstanding this high interest in sesquiterpene lactones of the Cichorieae, still only from 30 out of 94 currently accepted genera within the Cichorieae at least one sesquiterpene lactone has been reported so far.
Collapse
Affiliation(s)
- Oleksandr Shulha
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany.
| |
Collapse
|
33
|
Karunanithi PS, Dhanota P, Addison JB, Tong S, Fiehn O, Zerbe P. Functional characterization of the cytochrome P450 monooxygenase CYP71AU87 indicates a role in marrubiin biosynthesis in the medicinal plant Marrubium vulgare. BMC PLANT BIOLOGY 2019; 19:114. [PMID: 30909879 PMCID: PMC6434833 DOI: 10.1186/s12870-019-1702-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/06/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Horehound (Marrubium vulgare) is a medicinal plant whose signature bioactive compounds, marrubiin and related furanoid diterpenoid lactones, have potential applications for the treatment of cardiovascular diseases and type II diabetes. Lack of scalable plant cultivation and the complex metabolite profile of M. vulgare limit access to marrubiin via extraction from plant biomass. Knowledge of the marrubiin-biosynthetic enzymes can enable the development of metabolic engineering platforms for marrubiin production. We previously identified two diterpene synthases, MvCPS1 and MvELS, that act sequentially to form 9,13-epoxy-labd-14-ene. Conversion of 9,13-epoxy-labd-14-ene by cytochrome P450 monooxygenase (P450) enzymes can be hypothesized to facilitate key functional modification reactions in the formation of marrubiin and related compounds. RESULTS Mining a M. vulgare leaf transcriptome database identified 95 full-length P450 candidates. Cloning and functional analysis of select P450 candidates showing high transcript abundance revealed a member of the CYP71 family, CYP71AU87, that catalyzed the hydroxylation of 9,13-epoxy-labd-14-ene to yield two isomeric products, 9,13-epoxy labd-14-ene-18-ol and 9,13-epoxy labd-14-ene-19-ol, as verified by GC-MS and NMR analysis. Additional transient Nicotiana benthamiana co-expression assays of CYP71AU87 with different diterpene synthase pairs suggested that CYP71AU87 is specific to the sequential MvCPS1 and MvELS product 9,13-epoxy-labd-14-ene. Although the P450 products were not detectable in planta, high levels of CYP71AU87 gene expression in marrubiin-accumulating tissues supported a role in the formation of marrubiin and related diterpenoids in M. vulgare. CONCLUSIONS In a sequential reaction with the diterpene synthase pair MvCPS1 and MvELS, CYP71AU87 forms the isomeric products 9,13-epoxy labd-14-ene-18/19-ol as probable intermediates in marrubiin biosynthesis. Although its metabolic relevance in planta will necessitate further genetic studies, identification of the CYP71AU87 catalytic activity expands our knowledge of the functional landscape of plant P450 enzymes involved in specialized diterpenoid metabolism and can provide a resource for the formulation of marrubiin and related bioactive natural products.
Collapse
Affiliation(s)
- Prema S. Karunanithi
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, CA USA
| | - Puja Dhanota
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, CA USA
| | - J. Bennett Addison
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182 USA
| | - Shen Tong
- West Coast Metabolomics Center, University of California-Davis, 1 Shields Avenue, Davis, CA USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California-Davis, 1 Shields Avenue, Davis, CA USA
- Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Philipp Zerbe
- Department of Plant Biology, University of California Davis, 1 Shields Avenue, Davis, CA USA
| |
Collapse
|
34
|
Sánchez LA, Capitan Z, Romero LI, Ortega-Barría E, Gerwick WH, Cubilla-Rios L. Bio-Assay Guided Isolation of Germacranes with Anti-Protozoan Activity from Magnolia sororum. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0700201101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the course of our search for antiprotozoal agents from terrestrial plants, three new germacranes 1, 2 and 3, together with the well known sesquiterpene lactones parthenolide (4) and costunolide (5), were isolated from Magnolia sororum using bioassay-guided fractionation methods. The structures of these new compounds were elucidated by 1D and 2D NMR spectroscopic analysis. Compound 5 exhibited activity (IC50 = 9.4 μM) in vitro against the Leishmania mexicana parasite. Additionally, all compounds were also evaluated against Trypanosoma cruzi and Monkey Vero cells without showing much activity.
Collapse
Affiliation(s)
- Luis A. Sánchez
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural and Exact Sciences and Technology, P.O. Box 0824-00159, University of Panama, Panama City, Republic of Panama
| | - Zeuz Capitan
- Instituto de Investigaciones Científicas Avanzadas y Servicios de Alta Tecnología (INDICASAT), National Bureau of Science Technology and Innovation, Clayton, Ancon, Republic of Panama
| | - Luz I. Romero
- Instituto de Investigaciones Científicas Avanzadas y Servicios de Alta Tecnología (INDICASAT), National Bureau of Science Technology and Innovation, Clayton, Ancon, Republic of Panama
| | - Eduardo Ortega-Barría
- Instituto de Investigaciones Científicas Avanzadas y Servicios de Alta Tecnología (INDICASAT), National Bureau of Science Technology and Innovation, Clayton, Ancon, Republic of Panama
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| | - Luis Cubilla-Rios
- Laboratory of Tropical Bioorganic Chemistry, Faculty of Natural and Exact Sciences and Technology, P.O. Box 0824-00159, University of Panama, Panama City, Republic of Panama
| |
Collapse
|
35
|
Beyraghdar Kashkooli A, van der Krol AR, Rabe P, Dickschat JS, Bouwmeester H. Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production. Metab Eng 2019; 54:12-23. [PMID: 30822491 DOI: 10.1016/j.ymben.2019.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/11/2019] [Accepted: 01/21/2019] [Indexed: 01/06/2023]
Abstract
The therapeutic properties of complex terpenes often depend on the stereochemistry of their functional groups. However, stereospecific chemical synthesis of terpenes is challenging. To overcome this challenge, metabolic engineering can be employed using enzymes with suitable stereospecific catalytic activity. Here we used a combinatorial metabolic engineering approach to explore the stereospecific modification activity of the Artemisia annua artemisinic aldehyde ∆11(13) double bond reductase2 (AaDBR2) on products of the feverfew sesquiterpene biosynthesis pathway (GAS, GAO, COS and PTS). This allowed us to produce dihydrocostunolide and dihydroparthenolide. For dihydroparthenolide we demonstrate that the preferred order of biosynthesis of dihydroparthenolide is by reduction of the exocyclic methylene of parthenolide, rather than through C4-C5 epoxidation of dihydrocostunolide. Moreover, we demonstrate a promiscuous activity of feverfew CYP71CB1 on dihydrocostunolide and dihydroparthenolide for the production of 3β-hydroxy-dihydrocostunolide and 3β-hydroxy-dihydroparthenolide, respectively. Combined, these results offer new opportunities for engineering novel sesquiterpene lactones with potentially improved medicinal value.
Collapse
Affiliation(s)
- Arman Beyraghdar Kashkooli
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Alexander R van der Krol
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Patrick Rabe
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
36
|
Tian T, Xu T, Kirk SR, Filatov M, Jenkins S. Next-generation quantum theory of atoms in molecules for the ground and excited state of DHCL. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Testone G, Mele G, di Giacomo E, Tenore GC, Gonnella M, Nicolodi C, Frugis G, Iannelli MA, Arnesi G, Schiappa A, Biancari T, Giannino D. Transcriptome driven characterization of curly- and smooth-leafed endives reveals molecular differences in the sesquiterpenoid pathway. HORTICULTURE RESEARCH 2019; 6:1. [PMID: 30603088 PMCID: PMC6312536 DOI: 10.1038/s41438-018-0066-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 05/03/2023]
Abstract
Endives (Cichorium endivia L.) are popular vegetables, diversified into curly/frisée- and smooth/broad-leafed (escaroles) cultivar types (cultigroups), and consumed as fresh and bagged salads. They are rich in sesquiterpene lactones (STL) that exert proven function on bitter taste and human health. The assembly of a reference transcriptome of 77,022 unigenes and RNA-sequencing experiments were carried out to characterize the differences between endives and escaroles at the gene structural and expression levels. A set of 3177 SNPs distinguished smooth from curly cultivars, and an SNP-supported phylogenetic tree separated the cultigroups into two distinct clades, consistently with the botanical varieties of origin (crispum and latifolium, respectively). A pool of 699 genes maintained differential expression pattern (core-DEGs) in pairwise comparisons between curly vs smooth cultivars grown in the same environment. Accurate annotation allowed the identification of 26 genes in the sesquiterpenoid biosynthesis pathway, which included several g ermacrene A s ynthase, g ermacrene A o xidase and co stunolide s ynthase members (GAS/GAO/COS module), required for the synthesis of costunolide, a key precursor of lactucopicrin- and lactucin-like sesquiterpene lactones. The core-DEGs contained a GAS gene (contig83192) that was positively correlated with STL levels and recurrently more expressed in curly than smooth endives, suggesting a cultigroup-specific behavior. The significant positive correlation of GAS/GAO/COS transcription and STL abundance (2.4-fold higher in frisée endives) suggested that sesquiterpenoid pathway control occurs at the transcriptional level. Based on correlation analyses, five transcription factors (MYB, MYB-related and WRKY) were inferred to act on contig83192/GAS and specific STL, suggesting the occurrence of two distinct routes in STL biosynthesis.
Collapse
Affiliation(s)
- Giulio Testone
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | - Giovanni Mele
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | - Elisabetta di Giacomo
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, Napoli, NA Italy
| | - Maria Gonnella
- Institute of Sciences of Food Production, CNR, Bari, Italy
| | - Chiara Nicolodi
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | - Giovanna Frugis
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | - Maria Adelaide Iannelli
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| | | | | | | | - Donato Giannino
- Institute of Agricultural Biology and Biotechnology, Unit of Rome, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
38
|
Liu Q, Beyraghdar Kashkooli A, Manzano D, Pateraki I, Richard L, Kolkman P, Lucas MF, Guallar V, de Vos RCH, Franssen MCR, van der Krol A, Bouwmeester H. Kauniolide synthase is a P450 with unusual hydroxylation and cyclization-elimination activity. Nat Commun 2018; 9:4657. [PMID: 30405138 PMCID: PMC6220293 DOI: 10.1038/s41467-018-06565-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 07/31/2018] [Indexed: 01/06/2023] Open
Abstract
Guaianolides are an important class of sesquiterpene lactones with unique biological and pharmaceutical properties. They have been postulated to be derived from germacranolides, but for years no progress has been made in the elucidation of their biosynthesis that requires an unknown cyclization mechanism. Here we demonstrate the isolation and characterization of a cytochrome P450 from feverfew (Tanacetum parthenium), kauniolide synthase. Kauniolide synthase catalyses the formation of the guaianolide kauniolide from the germacranolide substrate costunolide. Unlike most cytochrome P450s, kauniolide synthase combines stereoselective hydroxylation of costunolide at the C3 position, with water elimination, cyclization and regioselective deprotonation. This unique mechanism of action is supported by in silico modelling and docking experiments. The full kauniolide biosynthesis pathway is reconstructed in the heterologous hosts Nicotiana benthamiana and yeast, paving the way for biotechnological production of guaianolide-type sesquiterpene lactones.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Arman Beyraghdar Kashkooli
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - David Manzano
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), 08193, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Campus Diagonal, Av. de Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Irini Pateraki
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Lea Richard
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Pim Kolkman
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Maria Fátima Lucas
- Barcelona Supercomputing Center (BSC), C/ Jordi Girona 29, 08034, Barcelona, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center (BSC), C/ Jordi Girona 29, 08034, Barcelona, Spain
- ICREA, Pg Lluís Companys 23, 08010, Barcelona, Spain
| | - Ric C H de Vos
- Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Maurice C R Franssen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Alexander van der Krol
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Plant Hormone Biology group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Bains S, Thakur V, Kaur J, Singh K, Kaur R. Elucidating genes involved in sesquiterpenoid and flavonoid biosynthetic pathways in Saussurea lappa by de novo leaf transcriptome analysis. Genomics 2018; 111:1474-1482. [PMID: 30343181 DOI: 10.1016/j.ygeno.2018.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/16/2018] [Accepted: 09/30/2018] [Indexed: 12/13/2022]
Abstract
Saussurea lappa (family Asteraceae) possesses immense pharmacological potential mainly due to the presence of sesquiterpene lactones. In spite of its medicinal importance, S. lappa has been poorly explored at the molecular level. We initiated leaf transcriptome sequencing of S. lappa using the illumina highseq 2000 platform and generated 62,039,614 raw reads. Trinity assembler generated 122,434 contigs with an N50 value of 1053 bp. The assembled transcripts were compared against the non-redundant protein database at NCBI. The Blast2GO analysis assigned gene ontology (GO) terms, categorized into molecular functions (3132), biological processes (4477) and cellular components (1.927). Using KEGG, around 476 contigs were assigned to 39 pathways. For secondary metabolic pathways, we identified transcripts encoding genes involved in sesquiterpenoid and flavonoid biosynthesis. Relatively low number of transcripts were also found encoding for genes involved in the alkaloid pathway. Our data will contribute to functional genomics and metabolic engineering studies in this plant.
Collapse
Affiliation(s)
- Savita Bains
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Vasundhara Thakur
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Jagdeep Kaur
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Kashmir Singh
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India
| | - Ravneet Kaur
- Deparment of Biotechnology, Panjab University, BMS Block I, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
40
|
Peña-Espinoza M, Valente AH, Thamsborg SM, Simonsen HT, Boas U, Enemark HL, López-Muñoz R, Williams AR. Antiparasitic activity of chicory (Cichorium intybus) and its natural bioactive compounds in livestock: a review. Parasit Vectors 2018; 11:475. [PMID: 30134991 PMCID: PMC6106872 DOI: 10.1186/s13071-018-3012-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/12/2018] [Indexed: 12/27/2022] Open
Abstract
Increasing drug resistance in gastrointestinal (GI) parasites of livestock and concerns about chemical residues in animal products and the environment are driving the development of alternative control strategies that are less reliant on the use of synthetic drugs. An increasingly investigated approach is the use of bioactive forages with antiparasitic properties as part of the animal's diet (nutraceuticals) or as potential sources of novel, natural parasiticides. Chicory (Cichorium intybus) is a multi-purpose crop and one of the most promising bioactive forages in temperate regions, and numerous in vivo trials have explored its potential against parasitic nematodes in livestock. However, it is unclear whether chicory can induce a direct and broad activity against various GI parasites in different livestock species, and the levels of chicory in the diet that are required to exert an efficient antiparasitic effect. Moreover, the mechanisms leading to the reported parasiticidal activity of chicory are still largely unknown, and its bioactive phytochemicals have only recently been investigated. In this review, we summarise the progress in the study of the antiparasitic activity of chicory and its natural bioactive compounds against GI parasites in livestock, through examination of the published literature. The available evidence indicates that feeding chicory can reduce faecal egg counts and/or worm burdens of abomasal nematodes, but not infections with intestinal worms, in ruminants. Highly chicory-rich diets (≥ 70% of chicory dry matter in the diet) may be necessary to directly affect abomasal parasitism. Chicory is known to synthesise several bioactive compounds with potential antiparasitic activity, but most research has been devoted to the role of sesquiterpene lactones (SL). Recent in vitro studies have confirmed direct and potent activity of SL-rich extracts from chicory against different GI helminths of livestock. Chicory SL have also been reported to exhibit antimalarial properties and its potential antiprotozoal activity in livestock remains to be evaluated. Furthermore, the detailed identification of the main antiparasitic metabolites of chicory and their pharmacokinetics need further confirmation. Research gaps and perspectives on the potential use of chicory as a nutraceutical forage and a source of bioactive compounds for parasite control in livestock are discussed.
Collapse
Affiliation(s)
- Miguel Peña-Espinoza
- Instituto de Farmacologia y Morfofisiologia, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Angela H. Valente
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 100, 1870 Frederiksberg C, Denmark
| | - Stig M. Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 100, 1870 Frederiksberg C, Denmark
| | - Henrik T. Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Ulrik Boas
- National Veterinary Institute, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Heidi L. Enemark
- Norwegian Veterinary Institute, Ullevålsveien 68, P.O. Box 750, N-0106 Oslo, Sentrum Norway
| | - Rodrigo López-Muñoz
- Instituto de Farmacologia y Morfofisiologia, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 100, 1870 Frederiksberg C, Denmark
| |
Collapse
|
41
|
Frey M, Schmauder K, Pateraki I, Spring O. Biosynthesis of Eupatolide-A Metabolic Route for Sesquiterpene Lactone Formation Involving the P450 Enzyme CYP71DD6. ACS Chem Biol 2018; 13:1536-1543. [PMID: 29758164 DOI: 10.1021/acschembio.8b00126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Sesquiterpene lactones are a class of natural compounds well-known for their bioactivity and are characteristic for the Asteraceae family. Most sesquiterpene lactones are considered derivatives of germacrene A acid (GAA). GAA can be stereospecifically hydroxylated by the cytochrome P450 enzymes (CYP) Lactuca sativa costunolide synthase CYP71BL2 (LsCOS) and Helianthus annuus GAA 8β-hydroxylase CYP71BL1 (HaG8H) at C6 (in α-orientation) or C8 (in β-orientation), respectively. Spontaneous subsequent lactonization of the resulting 6α-hydroxy-GAA leads to costunolide, whereas 8β-hydroxy-GAA has not yet been reported to cyclize to a sesquiterpene lactone. Sunflower and related species of the Heliantheae tribe contain sesquiterpene lactones mainly derived from inunolide (7,8-cis lactone) and eupatolide (8β-hydroxy-costunolide) precursors. However, the mechanism of 7,8-cis lactonization in general, and the 6,7-trans lactone formation in the sunflower tribe, remain elusive. Here, we show that, in plant cells, heterologous expression of CYP71BL1 leads to the formation of inunolide. Using a phylogenetic analysis of enzymes from the CYP71 family involved in sesquiterpenoid metabolism, we identified the CYP71DD6 gene, which was able to catalyze the 6,7-trans lactonization in sunflowers, using as a substrate 8β-hydroxy-GAA. Consequently, CYP71DD6 resulted in the synthesis of eupatolide, thus called HaES ( Helianthus annuus eupatolide synthase). Thus, our study shows the entry point for the biosynthesis of two distinct types of sesquiterpene lactones in sunflowers: the 6,7-trans lactones derived from eupatolide and the 7,8-cis lactones derived from inunolide. The implications for tissue-specific localization, based on expression studies, are discussed.
Collapse
Affiliation(s)
- Maximilian Frey
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Katharina Schmauder
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Irini Pateraki
- Department of Plant and Environment al Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, Denmark
| | - Otmar Spring
- Institute of Botany, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
42
|
Phenolics and terpenoids from a wild edible plant Lactuca orientalis (Boiss.) Boiss.: A preliminary study. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Dyer LA, Philbin CS, Ochsenrider KM, Richards LA, Massad TJ, Smilanich AM, Forister ML, Parchman TL, Galland LM, Hurtado PJ, Espeset AE, Glassmire AE, Harrison JG, Mo C, Yoon S, Pardikes NA, Muchoney ND, Jahner JP, Slinn HL, Shelef O, Dodson CD, Kato MJ, Yamaguchi LF, Jeffrey CS. Modern approaches to study plant–insect interactions in chemical ecology. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0009-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Heskes AM, Sundram TC, Boughton BA, Jensen NB, Hansen NL, Crocoll C, Cozzi F, Rasmussen S, Hamberger B, Hamberger B, Staerk D, Møller BL, Pateraki I. Biosynthesis of bioactive diterpenoids in the medicinal plant Vitex agnus-castus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:943-958. [PMID: 29315936 PMCID: PMC5838521 DOI: 10.1111/tpj.13822] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 05/11/2023]
Abstract
Vitex agnus-castus L. (Lamiaceae) is a medicinal plant historically used throughout the Mediterranean region to treat menstrual cycle disorders, and is still used today as a clinically effective treatment for premenstrual syndrome. The pharmaceutical activity of the plant extract is linked to its ability to lower prolactin levels. This feature has been attributed to the presence of dopaminergic diterpenoids that can bind to dopamine receptors in the pituitary gland. Phytochemical analyses of V. agnus-castus show that it contains an enormous array of structurally related diterpenoids and, as such, holds potential as a rich source of new dopaminergic drugs. The present work investigated the localisation and biosynthesis of diterpenoids in V. agnus-castus. With the assistance of matrix-assisted laser desorption ionisation-mass spectrometry imaging (MALDI-MSI), diterpenoids were localised to trichomes on the surface of fruit and leaves. Analysis of a trichome-specific transcriptome database, coupled with expression studies, identified seven candidate genes involved in diterpenoid biosynthesis: three class II diterpene synthases (diTPSs); three class I diTPSs; and a cytochrome P450 (CYP). Combinatorial assays of the diTPSs resulted in the formation of a range of different diterpenes that can account for several of the backbones of bioactive diterpenoids observed in V. agnus-castus. The identified CYP, VacCYP76BK1, was found to catalyse 16-hydroxylation of the diol-diterpene, peregrinol, to labd-13Z-ene-9,15,16-triol when expressed in Saccharomyces cerevisiae. Notably, this product is a potential intermediate in the biosynthetic pathway towards bioactive furan- and lactone-containing diterpenoids that are present in this species.
Collapse
Affiliation(s)
- Allison M. Heskes
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- Center for Synthetic Biology ‘bioSYNergy’Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- VILLUM Center for Plant PlasticityDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
| | - Tamil C.M. Sundram
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- Department of Plant ScienceKulliyyah of ScienceInternational Islamic University Malaysia50728Kuala LumpurMalaysia
| | - Berin A. Boughton
- Metabolomics AustraliaSchool of BioSciencesThe University of MelbourneVic.3010Australia
| | | | - Nikolaj L. Hansen
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- Center for Synthetic Biology ‘bioSYNergy’Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- VILLUM Center for Plant PlasticityDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
| | - Christoph Crocoll
- DynaMo CenterDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
| | - Federico Cozzi
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
| | - Simon Rasmussen
- Department of Bio and Health InformaticsTechnical University of DenmarkDK‐2800LyngbyDenmark
| | - Britta Hamberger
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- Center for Synthetic Biology ‘bioSYNergy’Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- VILLUM Center for Plant PlasticityDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
| | - Björn Hamberger
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- Center for Synthetic Biology ‘bioSYNergy’Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- VILLUM Center for Plant PlasticityDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
| | - Dan Staerk
- Department of Drug Design and PharmacologyFaculty of Health and Medical SciencesUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Birger L. Møller
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- Center for Synthetic Biology ‘bioSYNergy’Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- VILLUM Center for Plant PlasticityDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
| | - Irini Pateraki
- Plant Biochemistry LaboratoryDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- Center for Synthetic Biology ‘bioSYNergy’Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
- VILLUM Center for Plant PlasticityDepartment of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40DK‐1871Frederiksberg CDenmark
| |
Collapse
|
45
|
Ramachary DB, Prabhakar Reddy T, Suresh Kumar A. Organocatalytic umpolung annulative dimerization of ynones for the synthesis of 5-alkylidene-2-cyclopentenones. Org Biomol Chem 2018; 15:9785-9789. [PMID: 29143846 DOI: 10.1039/c7ob02424j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel phosphine-catalyzed umpolung [3 + 2]-annulative dimerization of ynones was developed to furnish functionally rich 5-alkylidene-2-cyclopentenones. In this protocol, ynone acts as both C2 and C3 synthons, which undergo [3 + 2]-annulative dimerization.
Collapse
|
46
|
Gou J, Hao F, Huang C, Kwon M, Chen F, Li C, Liu C, Ro DK, Tang H, Zhang Y. Discovery of a non-stereoselective cytochrome P450 catalyzing either 8α- or 8β-hydroxylation of germacrene A acid from the Chinese medicinal plant, Inula hupehensis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:92-106. [PMID: 29086444 DOI: 10.1111/tpj.13760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/09/2017] [Accepted: 10/23/2017] [Indexed: 05/22/2023]
Abstract
Sesquiterpene lactones (STLs) are C15 terpenoid natural products with α-methylene γ-lactone moiety. A large proportion of STLs in Asteraceae species is derived from the central precursor germacrene A acid (GAA). Formation of the lactone rings depends on the regio-(C6 or C8) and stereoselective (α- or β-)hydroxylations of GAA, producing STLs with four distinct stereo-configurations (12,6α-, 12,6β-, 12,8α-, and 12,8β-olide derivatives of GAA) in nature. Curiously, two configurations of STLs (C12,8α and C12,8β) are simultaneously present in the Chinese medicinal plant, Inula hupehensis. However, how these related yet distinct STL stereo-isomers are co-synthesized in I. hupehensis remains unknown. Here, we describe the functional identification of the I. hupehensis cytochrome P450 (CYP71BL6) that can catalyze the hydroxylation of GAA in either 8α- or 8β-configuration, resulting in the synthesis of both 8α- and 8β-hydroxyl GAAs. Of these two products, only 8α-hydroxyl GAA spontaneously lactonizes to the C12,8α-STL while the 8β-hydroxyl GAA remains stable without lactonization. Chemical structures of the C12,8α-STL, named inunolide, and 8β-hydroxyl GAA were fully elucidated by nuclear magnetic resonance analysis and mass spectrometry. The CYP71BL6 displays 63-66% amino acid identity to the previously reported CYP71BL1/2 catalyzing GAA 6α- or 8β-hydroxylation, indicating CYP71BL6 shares the same evolutionary lineage with other stereoselective cytochrome P450s, but catalyzes hydroxylation in a non-stereoselective manner. We observed that the CYP71BL6 transcript abundance correlates closely to the accumulation of C12,8-STLs in I. hupehensis. The identification of CYP71BL6 provides an insight into the biosynthesis of STLs in Asteraceae.
Collapse
Affiliation(s)
- Junbo Gou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fuhua Hao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematis, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Chongyang Huang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematis, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Moonhyuk Kwon
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, T2N 1N4, Canada
| | - Fangfang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Changfu Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Chaoyang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematis, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, T2N 1N4, Canada
| | - Huiru Tang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematis, University of Chinese Academy of Sciences, Wuhan, 430071, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Yansheng Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
47
|
Henquet MGL, Prota N, van der Hooft JJJ, Varbanova-Herde M, Hulzink RJM, de Vos M, Prins M, de Both MTJ, Franssen MCR, Bouwmeester H, Jongsma M. Identification of a drimenol synthase and drimenol oxidase from Persicaria hydropiper, involved in the biosynthesis of insect deterrent drimanes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1052-1063. [PMID: 28258968 DOI: 10.1111/tpj.13527] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
The sesquiterpenoid polygodial, which belongs to the drimane family, has been shown to be an antifeedant for a number of herbivorous insects. It is presumed to be synthesized from farnesyl diphosphate via drimenol, subsequent C-12 hydroxylation and further oxidations at both C-11 and C-12 to form a dialdehyde. Here, we have identified a drimenol synthase (PhDS) and a cytochrome P450 drimenol oxidase (PhDOX1) from Persicaria hydropiper. Expression of PhDS in yeast and plants resulted in production of drimenol alone. Co-expression of PhDS with PhDOX1 in yeast yielded drimendiol, the 12-hydroxylation product of drimenol, as a major product, and cinnamolide. When PhDS and PhDOX1 were transiently expressed by agro-infiltration in Nicotiana benthamiana leaves, drimenol was almost completely converted into cinnamolide and several additional drimenol derivatives were observed. In vitro assays showed that PhDOX1 only catalyses the conversion from drimenol to drimendiol, and not the further oxidation into an aldehyde. In yeast and heterologous plant hosts, the C-12 position of drimendiol is therefore likely to be further oxidized by endogenous enzymes into an aldehyde and subsequently converted to cinnamolide, presumably by spontaneous hemiacetal formation with the C-11 hydroxyl group followed by oxidation. Purified cinnamolide was confirmed by NMR and shown to be deterrent with an effective deterrent dose (ED50 ) of about 200-400 μg g-1 fresh weight against both whiteflies and aphids. The putative additional physiological and biochemical requirements for polygodial biosynthesis and stable storage in plant tissues are discussed.
Collapse
Affiliation(s)
- Maurice G L Henquet
- PRI-Bioscience, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Neli Prota
- PRI-Bioscience, Wageningen University and Research Centre, Wageningen, The Netherlands
- Laboratory of Plant Physiology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Justin J J van der Hooft
- PRI-Bioscience, Wageningen University and Research Centre, Wageningen, The Netherlands
- Laboratory of Biochemistry, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Marina Varbanova-Herde
- PRI-Bioscience, Wageningen University and Research Centre, Wageningen, The Netherlands
- Laboratory of Plant Physiology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | | | | | | | | | - Maurice C R Franssen
- Laboratory of Organic Chemistry, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Maarten Jongsma
- PRI-Bioscience, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
48
|
Abood S, Eichelbaum S, Mustafi S, Veisaga ML, López LA, Barbieri M. Biomedical Properties and Origins of Sesquiterpene Lactones, with a Focus on Dehydroleucodine. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dehydroleucodine, a sesquiterpene lactone, belongs to the terpenoid class of secondary metabolites. Dehydroleucodine and other Artemisia-derived phytochemicals evolved numerous biodefenses that were first co-opted for human pharmacological use by traditional cultures in the Middle East, Asia, Europe and the Americas. Later, these phytochemicals were modified through the use of medicinal chemical techniques to increase their potency. All sesquiterpene lactones contain an α-methylene-γ-lactone group, which confers thiol reactivity, which is responsible, in part, for their therapeutic effects. A wide range of therapeutic uses of sequiterpene lactones has been found, including anti-adipogenic, cytoprotective, anti-microbial, anti-viral, anti-fungal, anti-malarial and, anti-migraine effects. Dehydroleucodine significantly inhibits differentiation of murine preadipocytes and also significantly decreases the accumulation of lipid content by a dramatic down regulation of adipogenic-specific transcriptional factors PPARγ and C-EBPα. Dehydroleucodine also inhibits secretion of matrix metalloprotease-2 (MMP-2), which is a known protease involved in migration and invasion of B16 cells. In addition to these anti-adipogenic and anti-cancer effects, dehydroleucodine effectively neutralizes several bacterial species, including Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Helicobacter pylori, methicillin resistant Staphylococcus aueus (MRSA) and S. epidermis (MRSE). The compound also inhibits the growth and secretion of several toxins of Pseudomonas aeruginosa, possesses gastro-protective qualities and possesses anti-parasitic properties against Trypanosoma cruzi, responsible for Chagas disease. Other sesquiterpene lactones, such as parthenolide, costunolide, and helanin, also possess significant therapeutic utility.
Collapse
Affiliation(s)
- Steven Abood
- Department of Biological Sciences; Florida International University, Miami, FL 33199, USA
| | - Steven Eichelbaum
- Department of Biological Sciences; Florida International University, Miami, FL 33199, USA
| | - Sushmita Mustafi
- Department of Biological Sciences; Florida International University, Miami, FL 33199, USA
| | - Maria-Luisa Veisaga
- Biomolecular Sciences Institute; Florida International University, Miami, FL 33199, USA
| | - Luis A. López
- Laboratory of Cytoskeleton and Cell Cycle, Institute of Histology and Embryology, Faculty of Medicine, National University of Cuyo, 5500 Mendoza, Argentina
| | - Manuel Barbieri
- Department of Biological Sciences; Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute; Florida International University, Miami, FL 33199, USA
- Fairchild Tropical Botanic Garden, 10901 Old Cutler Road, Coral Gables, FL 33156, USA
- International Center of Tropical Botany, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
49
|
Andersen TB, Martinez-Swatson KA, Rasmussen SA, Boughton BA, Jørgensen K, Andersen-Ranberg J, Nyberg N, Christensen SB, Simonsen HT. Localization and in-Vivo Characterization of Thapsia garganica CYP76AE2 Indicates a Role in Thapsigargin Biosynthesis. PLANT PHYSIOLOGY 2017; 174:56-72. [PMID: 28275147 PMCID: PMC5411132 DOI: 10.1104/pp.16.00055] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/06/2017] [Indexed: 05/18/2023]
Abstract
The Mediterranean plant Thapsia garganica (dicot, Apiaceae), also known as deadly carrot, produces the highly toxic compound thapsigargin. This compound is a potent inhibitor of the sarcoplasmic-endoplasmic reticulum Ca2+-ATPase calcium pump in mammals and is of industrial importance as the active moiety of the anticancer drug mipsagargin, currently in clinical trials. Knowledge of thapsigargin in planta storage and biosynthesis has been limited. Here, we present the putative second step in thapsigargin biosynthesis, by showing that the cytochrome P450 TgCYP76AE2, transiently expressed in Nicotiana benthamiana, converts epikunzeaol into epidihydrocostunolide. Furthermore, we show that thapsigargin is likely to be stored in secretory ducts in the roots. Transcripts from TgTPS2 (epikunzeaol synthase) and TgCYP76AE2 in roots were found only in the epithelial cells lining these secretory ducts. This emphasizes the involvement of these cells in the biosynthesis of thapsigargin. This study paves the way for further studies of thapsigargin biosynthesis.
Collapse
Affiliation(s)
- Trine Bundgaard Andersen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.)
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.)
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| | - Karen Agatha Martinez-Swatson
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.)
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.)
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| | - Silas Anselm Rasmussen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.)
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.)
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| | - Berin Alain Boughton
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.)
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.)
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| | - Kirsten Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.)
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.)
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| | - Johan Andersen-Ranberg
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.)
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.)
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| | - Nils Nyberg
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.)
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.)
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| | - Søren Brøgger Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.)
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.)
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.)
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| | - Henrik Toft Simonsen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark (T.B.A., K.J., J.A.-R.);
- Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark (K.A.M.);
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs. Lyngby, Denmark (K.A.M., S.A.R., H.T.S.);
- Metabolomics Australia, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia (B.A.B.); and
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark (N.N., S.B.C.)
| |
Collapse
|
50
|
Testone G, Mele G, Di Giacomo E, Gonnella M, Renna M, Tenore GC, Nicolodi C, Frugis G, Iannelli MA, Arnesi G, Schiappa A, Giannino D. Insights into the Sesquiterpenoid Pathway by Metabolic Profiling and De novo Transcriptome Assembly of Stem-Chicory ( Cichorium intybus Cultigroup "Catalogna"). FRONTIERS IN PLANT SCIENCE 2016; 7:1676. [PMID: 27877190 PMCID: PMC5099503 DOI: 10.3389/fpls.2016.01676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/24/2016] [Indexed: 05/05/2023]
Abstract
Stem-chicory of the "Catalogna" group is a vegetable consumed for bitter-flavored stems. Type and levels of bitter sesquiterpene lactones (STLs) participate in conferring bitterness in vegetables. The content of lactucin-and lactucopocrin-like STLs was higher in "Molfettese" than "Galatina" landrace stalks, regardless of the cultivation sites, consistently with bitterness scores and gustative differences. The "Galatina" transcriptome assembly resulted in 58,872 unigenes, 77% of which were annotated, paving the way to molecular investigation of the STL pathway. Comparative transcriptome analysis allowed the identification of 69,352 SNPs and of 1640 differentially expressed genes that maintained the pattern independently of the site. Enrichment analyses revealed that 4 out of 29 unigenes were up-regulated in "Molfettese" vs "Galatina" within the sesquiterpenoid pathway. The expression of two germacrene A -synthase (GAS) and one -oxidase (GAO) genes of the costunolide branch correlated positively with the contents of lactucin-like molecules, supporting that STL biosynthesis regulation occurs at the transcriptional level. Finally, 46 genes encoding transcription factors (TFs) maintained a differential expression pattern between the two varieties regardless of the growth site; correlation analyses among TFs, GAS, GAO gene expressions and STLs contents suggest that one MYB and one bHLH may act in the pathway.
Collapse
Affiliation(s)
- Giulio Testone
- Institute of Agricultural Biology and Biotechnology, National Research CouncilRome, Italy
| | - Giovanni Mele
- Institute of Agricultural Biology and Biotechnology, National Research CouncilRome, Italy
| | - Elisabetta Di Giacomo
- Institute of Agricultural Biology and Biotechnology, National Research CouncilRome, Italy
| | - Maria Gonnella
- Institute of Sciences of Food Production, National Research CouncilBari, Italy
| | - Massimiliano Renna
- Institute of Sciences of Food Production, National Research CouncilBari, Italy
- Department of Agricultural and Environmental Science, University of BariBari, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico IINaples, Italy
| | - Chiara Nicolodi
- Institute of Agricultural Biology and Biotechnology, National Research CouncilRome, Italy
| | - Giovanna Frugis
- Institute of Agricultural Biology and Biotechnology, National Research CouncilRome, Italy
| | | | | | | | - Donato Giannino
- Institute of Agricultural Biology and Biotechnology, National Research CouncilRome, Italy
| |
Collapse
|