1
|
Yan Y, Chen Y, Zhu X, Wang Y, Qi H, Gui J, Zhang H, He J. The TCP transcription factor TAC8 positively regulates the tiller angle in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:39. [PMID: 39885061 DOI: 10.1007/s00122-024-04812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/27/2024] [Indexed: 02/01/2025]
Abstract
The tiller angle, one of the critical factors that determine the rice plant type, is closely related to rice yield. An appropriate rice tiller angle can improve rice photosynthetic efficiency and increase yields. In this study, we identified a transcription factor, TILLRE ANGLE CONTROL 8 (TAC8), that is highly expressed in the rice tiller base and positively regulates the tiller angle by regulating cell length and endogenous auxin content; TAC8 encodes a TEOSINTE BRANCHED1/CYCLOIDEA/PCF transcriptional activator that is highly expressed in the nucleus. RNA-seq revealed that TAC8 is involved mainly in the photoperiod and abiotic stress response in rice. Yeast two-hybrid assays verified that TAC8 interacts with CHLOROPHYLL A/B-BINDING PROTEIN 1, which responds to photoperiod, and haplotype analysis revealed that a 34-bp deletion at position 1516 in the promoter region and a 9-bp deletion at position 153 in the coding region can result in impaired function or loss of function of TAC8. This study provides a new genetic resource for designing ideal plant types with appropriate rice tiller angle.
Collapse
Affiliation(s)
- Yuntao Yan
- College of Agronomy, Hunan Agricultural University, Changsha, 420128, China
| | - Ya Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 420128, China
| | - Xiaoya Zhu
- College of Agronomy, Hunan Agricultural University, Changsha, 420128, China
| | - Yan Wang
- College of Agronomy, Hunan Agricultural University, Changsha, 420128, China
| | - Hui Qi
- College of Agronomy, Hunan Agricultural University, Changsha, 420128, China
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jinxin Gui
- College of Agronomy, Hunan Agricultural University, Changsha, 420128, China
| | - Haiqing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, 420128, China.
| | - Jiwai He
- College of Agronomy, Hunan Agricultural University, Changsha, 420128, China.
| |
Collapse
|
2
|
Wei H, Zhu H, Ying W, Janssens H, Kvasnica M, Winne JM, Gao Y, Friml J, Ma Q, Tan S, Liu X, Russinova E, Sun L. Structural insights into brassinosteroid export mediated by the Arabidopsis ABC transporter ABCB1. PLANT COMMUNICATIONS 2025; 6:101181. [PMID: 39497419 DOI: 10.1016/j.xplc.2024.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 10/31/2024] [Indexed: 12/15/2024]
Abstract
Brassinosteroids (BRs) are steroidal phytohormones indispensable for plant growth, development, and responses to environmental stresses. The export of bioactive BRs to the apoplast is essential for BR signaling initiation, which requires binding of a BR molecule to the extracellular domains of the plasma membrane-localized receptor complex. We have previously shown that the Arabidopsis thaliana ATP-binding cassette (ABC) transporter ABCB19 functions as a BR exporter and, together with its close homolog ABCB1, positively regulates BR signaling. Here, we demonstrate that ABCB1 is another BR transporter. The ATP hydrolysis activity of ABCB1 can be stimulated by bioactive BRs, and its transport activity was confirmed in proteoliposomes and protoplasts. Structures of ABCB1 were determined in substrate-unbound (apo), brassinolide (BL)-bound, and ATP plus BL-bound states. In the BL-bound structure, BL is bound to the hydrophobic cavity formed by the transmembrane domain and triggers local conformational changes. Together, our data provide additional insights into ABC transporter-mediated BR export.
Collapse
Affiliation(s)
- Hong Wei
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Heyuan Zhu
- University Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Wei Ying
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hilde Janssens
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacký University, 77900 Olomouc, Czech Republic
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Yongxiang Gao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Qian Ma
- University Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Shutang Tan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Xin Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Eugenia Russinova
- University Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Linfeng Sun
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
3
|
Yagi H, Hara-Nishimura I, Ueda H. Quantitative analysis of the root posture of Arabidopsis thaliana mutants with wavy roots. QUANTITATIVE PLANT BIOLOGY 2024; 5:e9. [PMID: 39777035 PMCID: PMC11706685 DOI: 10.1017/qpb.2024.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 01/11/2025]
Abstract
Plant postures are affected by environmental stimuli. When the gravitational direction changes, the Arabidopsis thaliana mutants myosin xif xik (xif xik) and atp-binding cassette b19 (abcb19) exhibit aberrantly enhanced organ bending. Whether their phenotypes are due to the same mechanism is unknown. We characterized the primary root postures of these mutants. Their roots exhibited enhanced gravitropic bending with the same root-tip angles. The wavy roots of vertically grown plants were quantitatively evaluated using four indices. The straightness index (root base-to-tip length to total root-length ratio) was similar for xif xik and abcb19, and it slightly decreased for xif xik abcb19. The curvature index was similar for abcb19 and xif xik abcb19, but it decreased for xif xik, suggesting the ABCB19 deficiency caused the roots to curve more sharply. Combination of these indices for quantitative analyses of root postures may distinguish between similar wavy-root phenotypes and clarify genetic relationships.
Collapse
Affiliation(s)
- Hiroki Yagi
- Graduate School of Natural Science, Konan University, Kobe658-8501, Japan
| | | | - Haruko Ueda
- Graduate School of Natural Science, Konan University, Kobe658-8501, Japan
- Faculty of Science and Engineering, Konan University, Kobe658-8501, Japan
| |
Collapse
|
4
|
Nahas Z, Ticchiarelli F, van Rongen M, Dillon J, Leyser O. The activation of Arabidopsis axillary buds involves a switch from slow to rapid committed outgrowth regulated by auxin and strigolactone. THE NEW PHYTOLOGIST 2024; 242:1084-1097. [PMID: 38503686 DOI: 10.1111/nph.19664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
Arabidopsis thaliana (Arabidopsis) shoot architecture is largely determined by the pattern of axillary buds that grow into lateral branches, the regulation of which requires integrating both local and systemic signals. Nodal explants - stem explants each bearing one leaf and its associated axillary bud - are a simplified system to understand the regulation of bud activation. To explore signal integration in bud activation, we characterised the growth dynamics of buds in nodal explants in key mutants and under different treatments. We observed that isolated axillary buds activate in two genetically and physiologically separable phases: a slow-growing lag phase, followed by a switch to rapid outgrowth. Modifying BRANCHED1 expression or the properties of the auxin transport network, including via strigolactone application, changed the length of the lag phase. While most interventions affected only the length of the lag phase, strigolactone treatment and a second bud also affected the rapid growth phase. Our results are consistent with the hypothesis that the slow-growing lag phase corresponds to the time during which buds establish canalised auxin transport out of the bud, after which they enter a rapid growth phase. Our work also hints at a role for auxin transport in influencing the maximum growth rate of branches.
Collapse
Affiliation(s)
- Zoe Nahas
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | | | - Martin van Rongen
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Jean Dillon
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| |
Collapse
|
5
|
Ying W, Wang Y, Wei H, Luo Y, Ma Q, Zhu H, Janssens H, Vukašinović N, Kvasnica M, Winne JM, Gao Y, Tan S, Friml J, Liu X, Russinova E, Sun L. Structure and function of the Arabidopsis ABC transporter ABCB19 in brassinosteroid export. Science 2024; 383:eadj4591. [PMID: 38513023 DOI: 10.1126/science.adj4591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024]
Abstract
Brassinosteroids are steroidal phytohormones that regulate plant development and physiology, including adaptation to environmental stresses. Brassinosteroids are synthesized in the cell interior but bind receptors at the cell surface, necessitating a yet to be identified export mechanism. Here, we show that a member of the ATP-binding cassette (ABC) transporter superfamily, ABCB19, functions as a brassinosteroid exporter. We present its structure in both the substrate-unbound and the brassinosteroid-bound states. Bioactive brassinosteroids are potent activators of ABCB19 ATP hydrolysis activity, and transport assays showed that ABCB19 transports brassinosteroids. In Arabidopsis thaliana, ABCB19 and its close homolog, ABCB1, positively regulate brassinosteroid responses. Our results uncover an elusive export mechanism for bioactive brassinosteroids that is tightly coordinated with brassinosteroid signaling.
Collapse
Affiliation(s)
- Wei Ying
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yaowei Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hong Wei
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yongming Luo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Qian Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Heyuan Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hilde Janssens
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacký University, 77900 Olomouc, Czech Republic
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Yongxiang Gao
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shutang Tan
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Xin Liu
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Linfeng Sun
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
6
|
Yue F, Zheng F, Li Q, Mei J, Shu C, Qian W. Comparative Transcriptome Analysis Points to the Biological Processes of Hybrid Incompatibility between Brassica napus and B. oleracea. PLANTS (BASEL, SWITZERLAND) 2023; 12:2622. [PMID: 37514237 PMCID: PMC10384443 DOI: 10.3390/plants12142622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Improving Brassica napus via introgression of the genome components from its parental species, B. oleracea and B. rapa, is an important breeding strategy. Interspecific hybridization between B. napus and B. rapa is compatible with high rate of survival ovules, while the hybridization between B. napus and B. oleracea is incompatible with the high occurrence of embryo abortion. To understand the diverse embryo fate in the two interspecific hybridizations, here, the siliques of B. napus pollinated with B. oleracea (AE) and B. rapa (NE) were employed for transcriptome sequencing at 8 and 16 days after pollination. Compared to NE and the parental line of B. napus, more specific differentially expressed genes (DEGs) (1274 and 1698) were obtained in AE and the parental line of B. napus at 8 and 16 days after pollination (DAP). These numbers were 51 and 5.8 times higher than the number of specific DEGs in NE and parental line of B. napus at 8 and 16 DAP, respectively, suggesting more complex transcriptional changes in AE. Most of DEGs in the terms of cell growth and cell wall formation exhibited down-regulated expression patterns (96(down)/131(all) in AE8, 174(down)/235(all) in AE16), while most of DEGs in the processes of photosynthesis, photorespiration, peroxisome, oxidative stress, and systemic acquired resistance exhibited up-regulated expression patterns (222(up)/304(all) in AE8, 214(up)/287(all) in AE16). This is in accordance with a high level of reactive oxygen species (ROS) in the siliques of B. napus pollinated with B. oleracea. Our data suggest that the disorder of plant hormone metabolism, retardation of cell morphogenesis, and the accumulation of ROS may be associated with hybrid incompatibility between B. napus and B. oleracea.
Collapse
Affiliation(s)
- Fang Yue
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Fajing Zheng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Qinfei Li
- College of Horticulture and Landscape, Southwest University, Chongqing 400715, China
| | - Jiaqin Mei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Chunlei Shu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Wei Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Jourquin J, Fernandez AI, Wang Q, Xu K, Chen J, Šimura J, Ljung K, Vanneste S, Beeckman T. GOLVEN peptides regulate lateral root spacing as part of a negative feedback loop on the establishment of auxin maxima. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad123. [PMID: 37004244 DOI: 10.1093/jxb/erad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 06/19/2023]
Abstract
Lateral root initiation requires the accumulation of auxin in lateral root founder cells, yielding a local auxin maximum. The positioning of auxin maxima along the primary root determines the density and spacing of lateral roots. The GOLVEN6 (GLV6) and GLV10 signaling peptides and their receptors have been established as regulators of lateral root spacing via their inhibitory effect on lateral root initiation in Arabidopsis. However, it remained unclear how these GLV peptides interfere with auxin signaling or homeostasis. Here, we show that GLV6/10 signaling regulates the expression of a subset of auxin response genes, downstream of the canonical auxin signaling pathway, while simultaneously inhibiting the establishment of auxin maxima within xylem-pole pericycle cells that neighbor lateral root initiation sites. We present genetic evidence that this inhibitory effect relies on the activity of the PIN3 and PIN7 auxin export proteins. Furthermore, GLV6/10 peptide signaling was found to enhance PIN7 abundance in the plasma membranes of xylem-pole pericycle cells, which likely stimulates auxin efflux from these cells. Based on these findings, we propose a model in which the GLV6/10 signaling pathway serves as a negative feedback mechanism that contributes to the robust patterning of auxin maxima along the primary root.
Collapse
Affiliation(s)
- Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| | - Ana Ibis Fernandez
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| | - Qing Wang
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| | - Ke Xu
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| | - Jian Chen
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Steffen Vanneste
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| |
Collapse
|
8
|
Mäkilä R, Wybouw B, Smetana O, Vainio L, Solé-Gil A, Lyu M, Ye L, Wang X, Siligato R, Jenness MK, Murphy AS, Mähönen AP. Gibberellins promote polar auxin transport to regulate stem cell fate decisions in cambium. NATURE PLANTS 2023; 9:631-644. [PMID: 36997686 PMCID: PMC10119023 DOI: 10.1038/s41477-023-01360-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Vascular cambium contains bifacial stem cells, which produce secondary xylem to one side and secondary phloem to the other. However, how these fate decisions are regulated is unknown. Here we show that the positioning of an auxin signalling maximum within the cambium determines the fate of stem cell daughters. The position is modulated by gibberellin-regulated, PIN1-dependent polar auxin transport. Gibberellin treatment broadens auxin maximum from the xylem side of the cambium towards the phloem. As a result, xylem-side stem cell daughter preferentially differentiates into xylem, while phloem-side daughter retains stem cell identity. Occasionally, this broadening leads to direct specification of both daughters as xylem, and consequently, adjacent phloem-identity cell reverts to being stem cell. Conversely, reduced gibberellin levels favour specification of phloem-side stem cell daughter as phloem. Together, our data provide a mechanism by which gibberellin regulates the ratio of xylem and phloem production.
Collapse
Affiliation(s)
- Riikka Mäkilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Brecht Wybouw
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ondřej Smetana
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Leo Vainio
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anna Solé-Gil
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Munan Lyu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Lingling Ye
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Xin Wang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Riccardo Siligato
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- European Commission, Joint Research Centre, Geel, Belgium
| | - Mark K Jenness
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Li K, Ji L, Xing Y, Zuo Z, Zhang L. Data-Independent Acquisition Proteomics Reveals the Effects of Red and Blue Light on the Growth and Development of Moso Bamboo ( Phyllostachys edulis) Seedlings. Int J Mol Sci 2023; 24:ijms24065103. [PMID: 36982175 PMCID: PMC10049362 DOI: 10.3390/ijms24065103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Moso bamboo is a rapidly growing species with significant economic, social, and cultural value. Transplanting moso bamboo container seedlings for afforestation has become a cost-effective method. The growth and development of the seedlings is greatly affected by the quality of light, including light morphogenesis, photosynthesis, and secondary metabolite production. Therefore, studies on the effects of specific light wavelengths on the physiology and proteome of moso bamboo seedlings are crucial. In this study, moso bamboo seedlings were germinated in darkness and then exposed to blue and red light conditions for 14 days. The effects of these light treatments on seedling growth and development were observed and compared through proteomics analysis. Results showed that moso bamboo has higher chlorophyll content and photosynthetic efficiency under blue light, while it displays longer internode and root length, more dry weight, and higher cellulose content under red light. Proteomics analysis reveals that these changes under red light are likely caused by the increased content of cellulase CSEA, specifically expressed cell wall synthetic proteins, and up-regulated auxin transporter ABCB19 in red light. Additionally, blue light is found to promote the expression of proteins constituting photosystem II, such as PsbP and PsbQ, more than red light. These findings provide new insights into the growth and development of moso bamboo seedlings regulated by different light qualities.
Collapse
Affiliation(s)
- Ke Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Luyao Ji
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaoyun Xing
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| | - Li Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
10
|
Zhang J, Zhang S, Zheng Z, Lu Z, Yang Y. Genomic divergence between two sister Ostrya species through linked selection and recombination. Ecol Evol 2022; 12:e9611. [PMID: 36540075 PMCID: PMC9754895 DOI: 10.1002/ece3.9611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Studying the evolution of genomic divergence between lineages is a topical issue in evolutionary biology. However, the evolutionary forces that shape the heterogeneous divergence of the genomic landscape are still poorly understood. Here, two wind-pollinated sister-species (Ostrya japonica and O. chinensis) are used to explore what these potential forces might be. A total of 40 individuals from 16 populations across their main distribution areas in China were sampled for genome-wide resequencing. Population demography analyses revealed that these two sister-species diverged at 3.06-4.43 Mya. Both population contraction and increased gene flow were detected during glacial periods, suggesting secondary contact at those times. All three parameters (D XY, π, and ρ) decreased in those regions showing high levels of differentiation (F ST). These findings indicate that linked selection and recombination played a key role in the genomic heterogeneous differentiation between the two Ostrya species. Genotype-environment association analyses showed that precipitation was the most important ecological factor for speciation. Such environmentally related genes and positive selection genes may have contributed to local adaptation and the maintenance of species boundaries.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Shangzhe Zhang
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Zeyu Zheng
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Zhiqiang Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro‐Ecosystems, College of EcologyLanzhou UniversityLanzhouChina
| |
Collapse
|
11
|
Mellor NL, Voß U, Ware A, Janes G, Barrack D, Bishopp A, Bennett MJ, Geisler M, Wells DM, Band LR. Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux. THE PLANT CELL 2022; 34:2309-2327. [PMID: 35302640 PMCID: PMC9134068 DOI: 10.1093/plcell/koac086] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/10/2022] [Indexed: 05/11/2023]
Abstract
Members of the B family of membrane-bound ATP-binding cassette (ABC) transporters represent key components of the auxin efflux machinery in plants. Over the last two decades, experimental studies have shown that modifying ATP-binding cassette sub-family B (ABCB) expression affects auxin distribution and plant phenotypes. However, precisely how ABCB proteins transport auxin in conjunction with the more widely studied family of PIN-formed (PIN) auxin efflux transporters is unclear, and studies using heterologous systems have produced conflicting results. Here, we integrate ABCB localization data into a multicellular model of auxin transport in the Arabidopsis thaliana root tip to predict how ABCB-mediated auxin transport impacts organ-scale auxin distribution. We use our model to test five potential ABCB-PIN regulatory interactions, simulating the auxin dynamics for each interaction and quantitatively comparing the predictions with experimental images of the DII-VENUS auxin reporter in wild-type and abcb single and double loss-of-function mutants. Only specific ABCB-PIN regulatory interactions result in predictions that recreate the experimentally observed DII-VENUS distributions and long-distance auxin transport. Our results suggest that ABCBs enable auxin efflux independently of PINs; however, PIN-mediated auxin efflux is predominantly through a co-dependent efflux where co-localized with ABCBs.
Collapse
Affiliation(s)
| | | | - Alexander Ware
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - George Janes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Duncan Barrack
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Anthony Bishopp
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Malcolm J Bennett
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Darren M Wells
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | | |
Collapse
|
12
|
Jenness MK, Tayengwa R, Bate GA, Tapken W, Zhang Y, Pang C, Murphy AS. Loss of Multiple ABCB Auxin Transporters Recapitulates the Major twisted dwarf 1 Phenotypes in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:840260. [PMID: 35528937 PMCID: PMC9069160 DOI: 10.3389/fpls.2022.840260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
FK506-BINDING PROTEIN 42/TWISTED DWARF 1 (FKBP42/TWD1) directly regulates cellular trafficking and activation of multiple ATP-BINDING CASSETTE (ABC) transporters from the ABCB and ABCC subfamilies. abcb1 abcb19 double mutants exhibit remarkable phenotypic overlap with twd1 including severe dwarfism, stamen elongation defects, and compact circinate leaves; however, twd1 mutants exhibit greater loss of polar auxin transport and additional helical twisting of roots, inflorescences, and siliques. As abcc1 abcc2 mutants do not exhibit any visible phenotypes and TWD1 does not interact with PIN or AUX1/LAX auxin transporters, loss of function of other ABCB auxin transporters is hypothesized to underly the remaining morphological phenotypes. Here, gene expression, mutant analyses, pharmacological inhibitor studies, auxin transport assays, and direct auxin quantitations were used to determine the relative contributions of loss of other reported ABCB auxin transporters (4, 6, 11, 14, 20, and 21) to twd1 phenotypes. From these analyses, the additional reduction in plant height and the twisted inflorescence, root, and silique phenotypes observed in twd1 compared to abcb1 abcb19 result from loss of ABCB6 and ABCB20 function. Additionally, abcb6 abcb20 root twisting exhibited the same sensitivity to the auxin transport inhibitor 1-napthalthalamic acid as twd1 suggesting they are the primary contributors to these auxin-dependent organ twisting phenotypes. The lack of obvious phenotypes in higher order abcb4 and abcb21 mutants suggests that the functional loss of these transporters does not contribute to twd1 root or shoot twisting. Analyses of ABCB11 and ABCB14 function revealed capacity for auxin transport; however, their activities are readily outcompeted by other substrates, suggesting alternate functions in planta, consistent with a spectrum of relative substrate affinities among ABCB transporters. Overall, the results presented here suggest that the ABCB1/19 and ABCB6/20 pairs represent the primary long-distance ABCB auxin transporters in Arabidopsis and account for all reported twd1 morphological phenotypes. Other ABCB transporters appear to participate in highly localized auxin streams or mobilize alternate transport substrates.
Collapse
Affiliation(s)
- Mark K. Jenness
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Reuben Tayengwa
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Gabrielle A. Bate
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Wiebke Tapken
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Yuqin Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Changxu Pang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Angus S. Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| |
Collapse
|
13
|
Do THT, Martinoia E, Lee Y, Hwang JU. 2021 update on ATP-binding cassette (ABC) transporters: how they meet the needs of plants. PLANT PHYSIOLOGY 2021; 187:1876-1892. [PMID: 35235666 PMCID: PMC8890498 DOI: 10.1093/plphys/kiab193] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/10/2021] [Indexed: 05/02/2023]
Abstract
Recent developments in the field of ABC proteins including newly identified functions and regulatory mechanisms expand the understanding of how they function in the development and physiology of plants.
Collapse
Affiliation(s)
- Thanh Ha Thi Do
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
| | - Enrico Martinoia
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Department of Plant and Microbial Biology, University Zurich, Zurich 8008, Switzerland
| | - Youngsook Lee
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Department of Life Sciences, POSTECH, Pohang 37673, South Korea
| | - Jae-Ung Hwang
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Author for communication:
| |
Collapse
|
14
|
Dong X, Liu C, Wang Y, Dong Q, Gai Y, Ji X. MicroRNA Profiling During Mulberry ( Morus atropurpurea Roxb) Fruit Development and Regulatory Pathway of miR477 for Anthocyanin Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:687364. [PMID: 34567022 PMCID: PMC8455890 DOI: 10.3389/fpls.2021.687364] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
To understand the mechanism of small non-coding RNAs (miRNA)-mediated development and ripening of mulberry fruits, three small RNA libraries from mulberry fruits at different development stages were constructed, and 159 conserved miRNAs as well as 86 novel miRNAs were successfully identified. Among the miRNAs identified, there were 90 miRNAs which showed differential expression patterns at different stages of fruit development and ripening. The target genes of these differential expressed (DE) miRNAs were involved in growth and development, transcription and regulation of transcription, metabolic processes, and etc. Interestingly, it was found that the expression level of mul-miR477 was increased with fruit ripening, and it can target the antisense lncRNA (Mul-ABCB19AS) of the ATP binding cassette (ABC) transporter B 19 gene (Mul-ABCB19). Our results showed that mul-miR477 can repress the expression of Mul-ABCB19AS and increase the expression of Mul-ABCB19, and it acted as a positive regulator participating anthocyanin accumulation through the regulatory network of mul-miR477-Mul-ABCB19AS-Mul-ABCB19.
Collapse
Affiliation(s)
- Xiaonan Dong
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Chaorui Liu
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Yuqi Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Qing Dong
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Yingping Gai
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Xianling Ji
- College of Forestry, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
15
|
Comprehensive Analysis and Expression Profiling of PIN, AUX/LAX, and ABCB Auxin Transporter Gene Families in Solanum tuberosum under Phytohormone Stimuli and Abiotic Stresses. BIOLOGY 2021; 10:biology10020127. [PMID: 33562678 PMCID: PMC7915614 DOI: 10.3390/biology10020127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary In this study, we provide comprehensive information on auxin transporter gene families in potato, including basic parameters, chromosomal distribution, phylogeny, co-expression network analysis, gene structure, tissue-specific expression patterns, subcellular localization, transcription analysis under exogenous hormone stimuli and abiotic stresses, and cis-regulatory element prediction. The responsiveness of auxin transporter family genes to auxin and polar auxin transport inhibitors implied their possible roles in auxin homoeostasis and redistribution. Additionally, the differential expression levels of auxin transporter family genes in response to abscisic acid and abiotic stresses suggested their specific adaptive mechanisms on tolerance to various environmental stimuli. Promoter cis-regulatory element description analyses indicated that a number of cis-regulatory elements within the promoters of auxin transporter genes in potato were targeted by relevant transcription factors to respond to diverse stresses. We are confident that our results provide a foundation for a better understanding of auxin transporters in potato, as we have demonstrated the biological significance of this family of genes in hormone signaling and adaption to environmental stresses. Abstract Auxin is the only plant hormone that exhibits transport polarity mediated by three families: auxin resistant (AUX) 1/like AUX1 (LAX) influx carriers, pin-formed (PIN) efflux carriers, and ATP-binding cassette B (ABCB) influx/efflux carriers. Extensive studies about the biological functions of auxin transporter genes have been reported in model plants. Information regarding these genes in potato remains scarce. Here, we conducted a comprehensive analysis of auxin transporter gene families in potato to examine genomic distributions, phylogeny, co-expression analysis, gene structure and subcellular localization, and expression profiling using bioinformatics tools and qRT-PCR analysis. From these analyses, 5 StLAXs, 10 StPINs, and 22 StABCBs were identified in the potato genome and distributed in 10 of 18 gene modules correlating to the development of various tissues. Transient expression experiments indicated that three representative auxin transporters showed plasma membrane localizations. The responsiveness to auxin and auxin transport inhibitors implied their possible roles in mediating intercellular auxin homoeostasis and redistribution. The differential expression under abscisic acid and abiotic stresses indicated their specific adaptive mechanisms regulating tolerance to environmental stimuli. A large number of auxin-responsive and stress-related cis-elements within their promoters could account for their responsiveness to diverse stresses. Our study aimed to understand the biological significance of potato auxin transporters in hormone signaling and tolerance to environmental stresses.
Collapse
|
16
|
Jenness MK, Tayengwa R, Murphy AS. An ATP-Binding Cassette Transporter, ABCB19, Regulates Leaf Position and Morphology during Phototropin1-Mediated Blue Light Responses. PLANT PHYSIOLOGY 2020; 184:1601-1612. [PMID: 32855213 PMCID: PMC7608178 DOI: 10.1104/pp.20.00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/18/2020] [Indexed: 05/25/2023]
Abstract
Blue light regulates multiple processes that optimize light capture and gas exchange in plants, including chloroplast movement, changes in stomatal conductance, and altered organ positioning. In Arabidopsis (Arabidopsis thaliana), these processes are primarily modulated by the blue light phototropin photoreceptors phot1 and phot2. Changes in leaf positioning and shape involve several signaling components that include NON-PHOTOTROPIC HYPOCOTYL3, PHYTOCHROME KINASE SUBSTRATE, ROOT PHOTOTROPISM2, and alterations in localized auxin streams. Direct phosphorylation of the auxin transporter ATP-BINDING CASSETTE subfamily B19 (ABCB19) by phot1 in phototropic seedlings suggests that phot1 may directly regulate ABCB19 to adjust auxin-dependent leaf responses. Here, abcb19 mutants were analyzed for fluence and blue light-dependent changes in leaf positioning and morphology. abcb19 displays upright petiole angles that remain unchanged in response to red and blue light. Similarly, abcb19 mutants develop irregularly wavy rosette leaves that are less sensitive to blue light-mediated leaf flattening. Visualization of auxin distribution, measurement of auxin transport in protoplasts, and direct quantification of free auxin levels suggest these irregularities are caused by misregulation of ABCB19-mediated auxin distribution in addition to light-dependent auxin biosynthesis.
Collapse
Affiliation(s)
- Mark K Jenness
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20740
| | - Reuben Tayengwa
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20740
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20740
| |
Collapse
|
17
|
Küpers JJ, Oskam L, Pierik R. Photoreceptors Regulate Plant Developmental Plasticity through Auxin. PLANTS 2020; 9:plants9080940. [PMID: 32722230 PMCID: PMC7463442 DOI: 10.3390/plants9080940] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
Light absorption by plants changes the composition of light inside vegetation. Blue (B) and red (R) light are used for photosynthesis whereas far-red (FR) and green light are reflected. A combination of UV-B, blue and R:FR-responsive photoreceptors collectively measures the light and temperature environment and adjusts plant development accordingly. This developmental plasticity to photoreceptor signals is largely regulated through the phytohormone auxin. The phytochrome, cryptochrome and UV Resistance Locus 8 (UVR8) photoreceptors are inactivated in shade and/or elevated temperature, which releases their repression of Phytochrome Interacting Factor (PIF) transcription factors. Active PIFs stimulate auxin synthesis and reinforce auxin signalling responses through direct interaction with Auxin Response Factors (ARFs). It was recently discovered that shade-induced hypocotyl elongation and petiole hyponasty depend on long-distance auxin transport towards target cells from the cotyledon and leaf tip, respectively. Other responses, such as phototropic bending, are regulated by auxin transport and signalling across only a few cell layers. In addition, photoreceptors can directly interact with components in the auxin signalling pathway, such as Auxin/Indole Acetic Acids (AUX/IAAs) and ARFs. Here we will discuss the complex interactions between photoreceptor and auxin signalling, addressing both mechanisms and consequences of these highly interconnected pathways.
Collapse
|
18
|
Huai J, Jing Y, Lin R. Functional analysis of ZmCOP1 and ZmHY5 reveals conserved light signaling mechanism in maize and Arabidopsis. PHYSIOLOGIA PLANTARUM 2020; 169:369-379. [PMID: 32208521 DOI: 10.1111/ppl.13099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/06/2020] [Accepted: 03/19/2020] [Indexed: 05/25/2023]
Abstract
Plants have evolved light signaling mechanisms to optimally adapt developmental patterns to the ambient light environments. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and LONG HYPOCOTYL5 (HY5) are two critical components in the light signaling pathway in Arabidopsis thaliana. COP1 acts as an E3 ubiquitin ligase that targets positive regulators, such as HY5, leading to their degradation in darkness. However, functional analysis of the COP1-HY5 module in maize (Zea mays) has not been reported. Here, we investigated the expression patterns and roles of the COP1 and HY5 orthologs, ZmCOP1 and ZmHY5, in regulating photomorphogenesis. These two genes have high amino acid identities with their Arabidopsis homolog and were both regulated by light. Subcellular localization assay showed that ZmCOP1 was distributed in the cytosol and ZmHY5 localized in the nucleus. Exogenous expression of ZmCOP1 rescued the physiological defects of the cop1-4 mutant, and expression of ZmHY5 complemented the long hypocotyl phenotype of the hy5-215 mutant in Arabidopsis. Yeast two-hybrid and fluorescence resonance energy transfer assays showed that ZmCOP1 interacted with ZmHY5. Our study gains insight into the conserved function and regulatory mechanism of the COP1-HY5 signaling pathway in maize and Arabidopsis.
Collapse
Affiliation(s)
- Junling Huai
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Chinese Academy of Sciences, CAS Center for Excellence in Molecular Plant Sciences, Beijing, 100093, China
| |
Collapse
|
19
|
van Rongen M, Bennett T, Ticchiarelli F, Leyser O. Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1. PLoS Genet 2019; 15:e1008023. [PMID: 30865619 PMCID: PMC6433298 DOI: 10.1371/journal.pgen.1008023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/25/2019] [Accepted: 02/14/2019] [Indexed: 01/26/2023] Open
Abstract
The shoot systems of plants are built by the action of the primary shoot apical meristem, established during embryogenesis. In the axil of each leaf produced by the primary meristem, secondary axillary shoot apical meristems are established. The dynamic regulation of the activity of these axillary meristems gives shoot systems their extraordinary plasticity of form. The ability of plants to activate or repress these axillary meristems appropriately requires communication between meristems that is environmentally sensitive. The transport network of the plant hormone auxin has long been implicated as a central player in this tuneable communication system, with other systemically mobile hormones, such as strigolactone and cytokinin, acting in part by modulating auxin transport. Until recently, the polar auxin transport stream, which provides a high conductance auxin transport route down stems dominated by the auxin export protein PIN-FORMED1 (PIN1), has been the focus for understanding long range auxin transport in the shoot. However, recently additional auxin exporters with important roles in the shoot have been identified, including PIN3, PIN4 and PIN7. These proteins contribute to a wider less polar stem auxin transport regime, which we have termed connective auxin transport (CAT), because of its role in communication across the shoot system. Here we present a genetic analysis of the role of CAT in shoot branching. We demonstrate that in Arabidopsis, CAT plays an important role in strigolactone-mediated shoot branching control, with the triple pin3pin4pin7 mutant able to suppress partially the highly branched phenotype of strigolactone deficient mutants. In contrast, the branchy phenotype of mutants lacking the axillary meristem-expressed transcription factor, BRANCHED1 (BRC1) is unaffected by pin3pin4pin7. We further demonstrate that mutation in the ABCB19 auxin export protein, which like PIN3 PIN4 and PIN7 is widely expressed in stems, has very different effects, implicating ABCB19 in auxin loading at axillary bud apices. The plant shoot system can be considered as a population of communicating growing tips, each driven by a shoot apical meristem. Communication between these meristems acts to mediate decisions about which meristems should be active and which dormant, depending on local and systemic environmental information, and hence how branchy a plant becomes. Here we analyse the role of transporters for the plant hormone auxin in this communication network and its ability to make meristem activity decisions. Previous work in this area has focussed on the auxin export protein PIN-FORMED1 (PIN1), which has a relatively narrow expression pattern in stems and is important for high conductance transport of auxin down toward the root. Here we analyse the unique contributions of more widely expressed auxin exporters, namely PIN3 PIN4 and PIN7, as well as ABCB19. We demonstrate that they have distinct roles in regulating axillary meristem activity. PIN3 PIN4 and PIN7 are likely important for communication between the axillary meristems and the main stem PIN1-dominated polar auxin transport stream. In contrast, our results suggest a role for ABCB19 in auxin loading at axillary shoot apices.
Collapse
Affiliation(s)
- Martin van Rongen
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Tom Bennett
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Matthes MS, Best NB, Robil JM, Malcomber S, Gallavotti A, McSteen P. Auxin EvoDevo: Conservation and Diversification of Genes Regulating Auxin Biosynthesis, Transport, and Signaling. MOLECULAR PLANT 2019; 12:298-320. [PMID: 30590136 DOI: 10.1016/j.molp.2018.12.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/02/2018] [Accepted: 12/16/2018] [Indexed: 05/08/2023]
Abstract
The phytohormone auxin has been shown to be of pivotal importance in growth and development of land plants. The underlying molecular players involved in auxin biosynthesis, transport, and signaling are quite well understood in Arabidopsis. However, functional characterizations of auxin-related genes in economically important crops, specifically maize and rice, are still limited. In this article, we comprehensively review recent functional studies on auxin-related genes in both maize and rice, compared with what is known in Arabidopsis, and highlight conservation and diversification of their functions. Our analysis is illustrated by phylogenetic analysis and publicly available gene expression data for each gene family, which will aid in the identification of auxin-related genes for future research. Current challenges and future directions for auxin research in maize and rice are discussed. Developments in gene editing techniques provide powerful tools for overcoming the issue of redundancy in these gene families and will undoubtedly advance auxin research in crops.
Collapse
Affiliation(s)
- Michaela Sylvia Matthes
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Norman Bradley Best
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Janlo M Robil
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Simon Malcomber
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA; Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group and Missouri Maize Center, University of Missouri-Columbia, 301 Christopher Bond Life Sciences Center, Columbia, MO 65211, USA.
| |
Collapse
|
21
|
Batista RA, Figueiredo DD, Santos-González J, Köhler C. Auxin regulates endosperm cellularization in Arabidopsis. Genes Dev 2019; 33:466-476. [PMID: 30819818 PMCID: PMC6446538 DOI: 10.1101/gad.316554.118] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 01/24/2019] [Indexed: 12/25/2022]
Abstract
Batista et al. show that increased auxin biosynthesis in the endosperm prevents its cellularization, leading to seed arrest. The endosperm is an ephemeral tissue that nourishes the developing embryo, similar to the placenta in mammals. In most angiosperms, endosperm development starts as a syncytium, in which nuclear divisions are not followed by cytokinesis. The timing of endosperm cellularization largely varies between species, and the event triggering this transition remains unknown. Here we show that increased auxin biosynthesis in the endosperm prevents its cellularization, leading to seed arrest. Auxin-overproducing seeds phenocopy paternal-excess triploid seeds derived from hybridizations of diploid maternal plants with tetraploid fathers. Concurrently, auxin-related genes are strongly overexpressed in triploid seeds, correlating with increased auxin activity. Reducing auxin biosynthesis and signaling reestablishes endosperm cellularization in triploid seeds and restores their viability, highlighting a causal role of increased auxin in preventing endosperm cellularization. We propose that auxin determines the time of endosperm cellularization, and thereby uncovered a central role of auxin in establishing hybridization barriers in plants.
Collapse
Affiliation(s)
- Rita A Batista
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 7080 Uppsala, Sweden
| | - Duarte D Figueiredo
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 7080 Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 7080 Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 7080 Uppsala, Sweden
| |
Collapse
|
22
|
Salazar R, Pollmann S, Morales-Quintana L, Herrera R, Caparrós-Ruiz D, Ramos P. In seedlings of Pinus radiata, jasmonic acid and auxin are differentially distributed on opposite sides of tilted stems affecting lignin monomer biosynthesis and composition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:215-223. [PMID: 30576980 DOI: 10.1016/j.plaphy.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 05/25/2023]
Abstract
Plants respond to the loss of vertical growth re-orientating their affected organs. In trees, this phenomenon has received the scientific attention due to its importance for the forestry industry. Nowadays it is accepted that auxin distribution is involved in the modulation of the tilting response, but how this distribution is controlled is not fully clear. Auxin transporters that determine the spatio-temporal auxin distribution in radiate pine seedlings exposed to 45° of tilting were identified. Additionally, based on indications for an intimate plant hormone crosstalk in this process, IAA and JA contents were evaluated. The experiments revealed that expression of the auxin transporters was down-regulated in the upper half of the tilted stem, while being induced in the lower half. Moreover, transporter-coding genes were first induced at the apical zone of the stem. IAA was consistently redistributed toward the lower half, which is in accordance with the expression profile of the auxin transporters. In contrast, JA was mainly accumulated in the upper half of tilted stems. Finally, lignin content and monomeric composition were analyzed in both sides of stem and along the time course of tilting. As expected, lignin accumulation was higher at the lower half of stem at longer times of tilting. However, the most marked difference was the accumulation of the H-lignin monomer in the lower half, while the G-lignin unit was more dominant in the upper half. Here, we provide detailed insight in the distribution of IAA and JA, affecting the lignin composition during the tilting response in Pinus radiata seedlings.
Collapse
Affiliation(s)
- Romina Salazar
- Instituto de Ciencias Biológicas, Campus Talca, Universidad de Talca, Avda. Lircay s/, Talca, Chile
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, Chile
| | - Raul Herrera
- Instituto de Ciencias Biológicas, Campus Talca, Universidad de Talca, Avda. Lircay s/, Talca, Chile
| | - David Caparrós-Ruiz
- Centre for Research in Agricultural Genomics (CRAG) Consorci CSIC-IRTA-UAB-UB Edifici CRAG Campus de Bellaterra de la UAB, 08193, Cerdanyola del Valles, Barcelona, Spain
| | - Patricio Ramos
- Instituto de Ciencias Biológicas, Campus Talca, Universidad de Talca, Avda. Lircay s/, Talca, Chile.
| |
Collapse
|
23
|
Jenness MK, Carraro N, Pritchard CA, Murphy AS. The Arabidopsis ATP-BINDING CASSETTE Transporter ABCB21 Regulates Auxin Levels in Cotyledons, the Root Pericycle, and Leaves. FRONTIERS IN PLANT SCIENCE 2019; 10:806. [PMID: 31275345 PMCID: PMC6593225 DOI: 10.3389/fpls.2019.00806] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/04/2019] [Indexed: 05/21/2023]
Abstract
The phytohormone auxin plays significant roles in regulating plant growth and development. In Arabidopsis, a subset of ATP-BINDING CASSETTE subfamily B (ABCB) transporters participate in polar movement of auxin by exclusion from and prevention of reuptake at the plasma membrane. A previous analysis identified ABCB21 as a conditional auxin uptake/efflux transporter that regulates cellular auxin levels, but clear physiological roles for ABCB21 in planta remain unknown. Here we show that ABCB21 maintains the acropetal auxin transport stream by regulating auxin levels in the pericycle. Loss of ABCB21 reduces rootward auxin transport and delays lateral root emergence. In seedling shoots, ABCB21 regulates mobilization of auxin from the photosynthetic cotyledons that is important for phototropic bending. In rosette leaves ABCB21 contributes to lateral auxin distribution. These results support a primary role for ABCB21 in regulating auxin distribution supplementary to the primary ABCB auxin transporters ABCB1 and 19.
Collapse
Affiliation(s)
- Mark K. Jenness
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Nicola Carraro
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
| | - Candace A. Pritchard
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Angus S. Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States
- *Correspondence: Angus S. Murphy
| |
Collapse
|
24
|
Miki Y, Takahashi D, Kawamura Y, Uemura M. Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation. J Proteomics 2018; 197:71-81. [PMID: 30447334 DOI: 10.1016/j.jprot.2018.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 01/19/2023]
Abstract
Freezing stress is one of the most important limiting factors of plant survival. Plants have developed a freezing adaptation mechanism upon sensing low temperatures (cold acclimation). Compositional changes in the plasma membrane, one of the initial sites of freezing injury, is prerequisite of achieving cold acclimation and have been investigated in several plant species. Conversely, the cold dehardening process at elevated temperatures (de-acclimation) has not yet been fully characterized and few studies have addressed the importance of the plasma membrane in the de-acclimation process. In the present study, we conducted shotgun proteomics with label-free semiquantification on plasma membrane fractions of Arabidopsis leaves during cold acclimation and de-acclimation. We consequently obtained a list of 873 proteins with significantly changed proteins in response to the two processes. Although the cold-acclimation-responsive proteins were globally returned to non-acclimated levels by de-acclimation, several representative cold-acclimation-responsive proteins tended to remain at higher abundance during de-acclimation process. Taken together, our results suggest plants deharden right after cold acclimation to restart growth and development but some cold-acclimation-induced changes of the plasma membrane may be maintained under de-acclimation to cope with the threat of sudden freezing during de-acclimation process. SIGNIFICANCE: Plant freezing tolerance can be enhanced by low temperature treatment (cold acclimation), while elevated temperatures right after cold acclimation can result in the dehardening of freezing tolerance (de-acclimation). However, the de-acclimation process, particularly its relevance to the plasma membrane as the primary site of freezing injury, has not been elucidated. In the present study, a comprehensive proteomic analysis of the plasma membrane during cold acclimation and de-acclimation was carried out as a first step to elucidating how plants respond to rising temperatures. Cold acclimation induced a number of proteomic changes as reported in previous studies, but most proteins, in general, immediately returned to NA levels during de-acclimation treatment for two days. However, the abundances of stress-related proteins (e.g. LTI29, COR78 and TIL) decreased slower than other functional proteins during de-acclimation. Therefore, plants harden during cold acclimation by aborting growth and development and accumulating stress-responsive proteins but seem to deharden quickly under subsequent elevated temperature to resume these processes while guarding against the threat of sudden temperature drops.
Collapse
Affiliation(s)
- Yushi Miki
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam D-14476, Germany
| | - Yukio Kawamura
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Matsuo Uemura
- Department of Plant-bioscience, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan; United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
25
|
Abstract
This review by Figueiredo and Köhler describes the molecular mechanisms driving seed development. They review the role of the hormone auxin for the initial development of the three seed structures and as a trigger of fertilization-independent seed development. The evolution of seeds defines a remarkable landmark in the history of land plants. A developing seed contains three genetically distinct structures: the embryo, the nourishing tissue, and the seed coat. While fertilization is necessary to initiate seed development in most plant species, apomicts have evolved mechanisms allowing seed formation independently of fertilization. Despite their socio–economical relevance, the molecular mechanisms driving seed development have only recently begun to be understood. Here we review the current knowledge on the role of the hormone auxin for the initial development of the three seed structures and as a trigger of fertilization-independent seed development.
Collapse
Affiliation(s)
- Duarte D Figueiredo
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-750 07, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala SE-750 07, Sweden
| |
Collapse
|
26
|
Kimura T, Haga K, Shimizu-Mitao Y, Takebayashi Y, Kasahara H, Hayashi KI, Kakimoto T, Sakai T. Asymmetric Auxin Distribution is Not Required to Establish Root Phototropism in Arabidopsis. PLANT & CELL PHYSIOLOGY 2018; 59:823-835. [PMID: 29401292 DOI: 10.1093/pcp/pcy018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/25/2018] [Indexed: 05/11/2023]
Abstract
An asymmetric auxin distribution pattern is assumed to underlie the tropic responses of seed plants. It is unclear, however, whether this pattern is required for root negative phototropism. We here demonstrate that asymmetric auxin distribution is not required to establish root phototropism in Arabidopsis. Our detailed analyses of auxin reporter genes indicate that auxin accumulates on the irradiated side of roots in response to an incidental gravitropic stimulus caused by phototropic bending. Further, an agravitropic mutant showed a suppression of this accumulation with an enhancement of the phototropic response. In this context, our pharmacological and genetic analyses revealed that both polar auxin transport and auxin biosynthesis are critical for the establishment of root gravitropism, but not for root phototropism, and that defects in these processes actually enhance phototropic responses in roots. The auxin response factor double mutant arf7 arf19 and the auxin receptor mutant tir1 showed a slight reduction in phototropic curvatures in roots, suggesting that the transcriptional regulation by some specific ARF proteins and their regulators is at least partly involved in root phototropism. However, the auxin antagonist PEO-IAA [α-(phenylethyl-2-one)-indole-3-acetic acid] suppressed root gravitropism and enhanced root phototropism, suggesting that the TIR1/AFB auxin receptors and ARF transcriptional factors play minor roles in root phototropism. Taken together, we conclude from our current data that the phototropic response in Arabidopsis roots is induced by an unknown mechanism that does not require asymmetric auxin distribution and that the Cholodny-Went hypothesis probably does not apply to root phototropism.
Collapse
Affiliation(s)
- Taro Kimura
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181 Japan
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083 Japan
| | - Ken Haga
- Department of Human Science and Common Education, Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro-cho, Minamisaitama-gun, Saitama, 345-8501 Japan
| | - Yasushi Shimizu-Mitao
- Department of Biological Science, Graduate School of Science, Osaka University, 1-4 Machikaneyama-cho, Toyonaka, Osaka, 560-0043 Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Hiroyuki Kasahara
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo, 183-8538 Japan
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama, 700-0005 Japan
| | - Tatsuo Kakimoto
- Department of Biological Science, Graduate School of Science, Osaka University, 1-4 Machikaneyama-cho, Toyonaka, Osaka, 560-0043 Japan
| | - Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181 Japan
| |
Collapse
|
27
|
Saravana Kumar RM, Gao LX, Yuan HW, Xu DB, Liang Z, Tao SC, Guo WB, Yan DL, Zheng BS, Edqvist J. Auxin enhances grafting success in Carya cathayensis (Chinese hickory). PLANTA 2018; 247:761-772. [PMID: 29214445 PMCID: PMC5809526 DOI: 10.1007/s00425-017-2824-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/28/2017] [Indexed: 05/12/2023]
Abstract
MAIN CONCLUSION Application of auxin to root stock and scion increases the success rate of grafting in Chinese hickory. The nuts of the Chinese hickory (Carya cathayensis) tree are considered both delicious and healthy. The popularity and high demand result is that the hickory nuts are of very high economical value for horticulture. This is particularly true for the Zhejiang province in eastern China where this tree is widely cultivated. However, there are several difficulties surrounding the hickory cultivation, such as for example long vegetative growth, tall trees, labour-intensive nut picking, and slow variety improvements. These complications form a great bottleneck in the expansion of the hickory industry. The development of an efficient grafting procedure could surpass at least some of these problems. In this study, we demonstrate that application of the auxin indole-3-acetic acid promotes the grafting process in hickory, whereas application of the auxin transport inhibitor 1-N-naphthylphthalamic acid inhibits the grafting process. Furthermore, we have identified hickory genes in the PIN, ABCB, and AUX/LAX-families known to encode influx and efflux carriers in the polar transport of auxin. We show that increased expression of several of these genes, such as CcPIN1b and CcLAX3, is correlating with successful grafting.
Collapse
Affiliation(s)
- R M Saravana Kumar
- State Key Laboratory for Subtropical Silviculture, Zhejiang A and F University, Linan, 311300, Zhejiang, China
| | - Liu Xiao Gao
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zinjingang campus, Hangzhou, 310058, China
| | - Hu Wei Yuan
- State Key Laboratory for Subtropical Silviculture, Zhejiang A and F University, Linan, 311300, Zhejiang, China
| | - Dong Bin Xu
- State Key Laboratory for Subtropical Silviculture, Zhejiang A and F University, Linan, 311300, Zhejiang, China
| | - Zhao Liang
- State Key Laboratory for Subtropical Silviculture, Zhejiang A and F University, Linan, 311300, Zhejiang, China
| | - Shen Chen Tao
- State Key Laboratory for Subtropical Silviculture, Zhejiang A and F University, Linan, 311300, Zhejiang, China
| | - Wen Bin Guo
- State Key Laboratory for Subtropical Silviculture, Zhejiang A and F University, Linan, 311300, Zhejiang, China
| | - Dao Liang Yan
- State Key Laboratory for Subtropical Silviculture, Zhejiang A and F University, Linan, 311300, Zhejiang, China
| | - Bing Song Zheng
- State Key Laboratory for Subtropical Silviculture, Zhejiang A and F University, Linan, 311300, Zhejiang, China
| | - Johan Edqvist
- IFM, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
28
|
Teale W, Palme K. Naphthylphthalamic acid and the mechanism of polar auxin transport. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:303-312. [PMID: 28992080 DOI: 10.1093/jxb/erx323] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Our current understanding of how plants move auxin through their tissues is largely built on the use of polar auxin transporter inhibitors. Although the most important proteins that mediate auxin transport and its regulation have probably all been identified and the mapping of their interactions is well underway, mechanistically we are still surprisingly far away from understanding how auxin is transported. Such an understanding will only emerge after new data are placed in the context of the wealth of physiological data on which they are founded. This review will look back over the use of a key inhibitor called naphthylphthalamic acid (NPA) and outline its contribution to our understanding of the molecular mechanisms of polar auxin transport, before proceeding to speculate on how its use is likely still to be informative.
Collapse
Affiliation(s)
- William Teale
- Institute of Biology II, Albert-Ludwigs-Universität of Freiburg, Germany
| | - Klaus Palme
- Institute of Biology II, Albert-Ludwigs-Universität of Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Germany
- Freiburg Institute of Advanced Sciences (FRIAS), Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
29
|
Yang C, Xie F, Jiang Y, Li Z, Huang X, Li L. Phytochrome A Negatively Regulates the Shade Avoidance Response by Increasing Auxin/Indole Acidic Acid Protein Stability. Dev Cell 2018; 44:29-41.e4. [DOI: 10.1016/j.devcel.2017.11.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/15/2017] [Accepted: 11/20/2017] [Indexed: 11/16/2022]
|
30
|
Zhang B, Xiao X, Zong J, Chen J, Li J, Guo H, Liu J. Comparative transcriptome analysis provides new insights into erect and prostrate growth in bermudagrass (Cynodon dactylon L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:31-37. [PMID: 29080425 DOI: 10.1016/j.plaphy.2017.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Bermudagrass (Cynodon dactylon L.) is a prominent warm-season turf and forage grass species with multiple applications. In most C. dactylon cultivars and accessions, erect-growing stems (shoot) and prostrate-growing stems (stolon) often coexist. These two types of stems are both formed through tillering but grow in two directions with different tiller angles. Elucidating the mechanism of tiller angle regulation in bermudagrass could provide important clues to breed cultivars with different plant architectural features for diverse usage. In this study, we compared the stem internode transcriptome of two bermudagrass wild accessions with extremely different tiller angles and stem growth directions. A total of 2088 and 12,141 unigenes were preferentially expressed in prostrate-growing wild accession C792 and erect-growing wild accession C793, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology-based Annotation System (KOBAS) analyses further indicated that light- and gravity-responsive genes were enriched in accession C792, whereas lignin synthesis-related genes were enriched in accession C793, which well explains the difference in lignification of vascular bundles and mechanical tissues in the two accessions. These results not only expand our understanding of the genetic control of tiller angle and stem growth direction in bermudagrass but also provide insight for future molecular breeding of C. dactylon and other turfgrass species with different plant architectures.
Collapse
Affiliation(s)
- Bing Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xiaolin Xiao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Junqin Zong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jianjian Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Hailin Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
31
|
Xu D, Miao J, Yumoto E, Yokota T, Asahina M, Watahiki M. YUCCA9-Mediated Auxin Biosynthesis and Polar Auxin Transport Synergistically Regulate Regeneration of Root Systems Following Root Cutting. PLANT & CELL PHYSIOLOGY 2017; 58:1710-1723. [PMID: 29016906 PMCID: PMC5921505 DOI: 10.1093/pcp/pcx107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/25/2017] [Indexed: 05/21/2023]
Abstract
Recovery of the root system following physical damage is an essential issue for plant survival. An injured root system is able to regenerate by increases in lateral root (LR) number and acceleration of root growth. The horticultural technique of root pruning (root cutting) is an application of this response and is a common garden technique for controlling plant growth. Although root pruning is widely used, the molecular mechanisms underlying the subsequent changes in the root system are poorly understood. In this study, root pruning was employed as a model system to study the molecular mechanisms of root system regeneration. Notably, LR defects in wild-type plants treated with inhibitors of polar auxin transport (PAT) or in the auxin signaling mutant auxin/indole-3-acetic acid19/massugu2 were recovered by root pruning. Induction of IAA19 following root pruning indicates an enhancement of auxin signaling by root pruning. Endogenous levels of IAA increased after root pruning, and YUCCA9 was identified as the primary gene responsible. PAT-related genes were induced after root pruning, and the YUCCA inhibitor yucasin suppressed root regeneration in PAT-related mutants. Therefore, we demonstrate the crucial role of YUCCA9, along with other redundant YUCCA family genes, in the enhancement of auxin biosynthesis following root pruning. This further enhances auxin transport and activates downstream auxin signaling genes, and thus increases LR number.
Collapse
Affiliation(s)
- Dongyang Xu
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Jiahang Miao
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Emi Yumoto
- Department of Biosciences, Teikyo University, Utsunomiya, 320-8551 Japan
| | - Takao Yokota
- Department of Biosciences, Teikyo University, Utsunomiya, 320-8551 Japan
| | - Masashi Asahina
- Department of Biosciences, Teikyo University, Utsunomiya, 320-8551 Japan
| | - Masaaki Watahiki
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
- Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
- Corresponding author: E-mail, ; Fax, +81-11-706-4473
| |
Collapse
|
32
|
Khandal H, Parween S, Roy R, Meena MK, Chattopadhyay D. MicroRNA profiling provides insights into post-transcriptional regulation of gene expression in chickpea root apex under salinity and water deficiency. Sci Rep 2017; 7:4632. [PMID: 28680071 PMCID: PMC5498500 DOI: 10.1038/s41598-017-04906-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/05/2017] [Indexed: 11/08/2022] Open
Abstract
Activity of root apical meristem (RAM) at the root apex is critical for stress-mediated modulation of root-architecture. Chickpea, like other legumes, possesses a basic open root meristem. Deep sequencing was used to perform microRNA expression profiling in root apex of chickpea (Cicer arietinum L.) in order to investigate post-transcriptional regulation of gene expression in this tissue in response to salinity and water deficit. Five small RNA libraries prepared from chickpea root apices at different stages of stress treatments were sequenced to obtain 284 unique miRNA sequences including 60 novel miRNAs belonging to total 255 families. Two hundred and fiftynine miRNAs were differentially expressed in stress. Six hundred and nine mRNA targets involved in diverse cellular processes were predicted for 244 miRNAs. Stress-responsive expression patterns of selected miRNAs, inverse expression patterns of their target genes and the target-cleavage sites were validated. Three candidate miRNA-target gene relationships were validated in transient expression system in chickpea. The miRNA expression profiling under salinity and water deficiency in a legume root apex and the reported function of their target genes suggested important roles of miRNA-mediated post-transcriptional regulation of gene expression involved in re-patterning of root hair cells, lateral root formation and high-affinity K+-uptake under these stresses.
Collapse
Affiliation(s)
- Hitaishi Khandal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sabiha Parween
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Riti Roy
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mukesh Kumar Meena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
33
|
Yu C, Dong W, Zhan Y, Huang ZA, Li Z, Kim IS, Zhang C. Genome-wide identification and expression analysis of ClLAX, ClPIN and ClABCB genes families in Citrullus lanatus under various abiotic stresses and grafting. BMC Genet 2017; 18:33. [PMID: 28388893 PMCID: PMC5384148 DOI: 10.1186/s12863-017-0500-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 03/30/2017] [Indexed: 01/21/2023] Open
Abstract
Background Auxin plays an important role in regulating plant growth and development as well as in the response of plants to abiotic stresses. Auxin is transported by three kinds of major protein families, including the AUXIN RESISTANT 1/LIKE AUX1 (AUX⁄LAX) influx carriers, the PIN-FORMED (PIN) efflux carriers and the ATP binding cassette B/P-glycoprotein/Multidrug-resistance (ABCB/MDR/PGP) efflux/condition carriers. The biological function of several auxin transporter genes has been well characterized in Arabidopsis thaliana. However, their function in response to exogenous auxin and abiotic stresses in watermelon (Citrullus lanatus. L) remained unknown. Results Here, the latest updated watermelon genome was used to characterise the ClLAX, ClPIN and ClABCB family genes from watermelon. The genome-wide analysis of the ClLAX, ClPIN and ClABCB family genes, including chromosome localisation, gene structure, and phylogenic relationships, was carried out. Seven ClLAXs, 11 ClPINs and 15 ClABCBs were mapped on 10 watermelon chromosomes. The expression profiles of the ClLAX, ClPIN and ClABCB genes under exogenous indole-3-acetic acid and various abiotic stresses (salt, drought, and cold stresses) treatments were performed by quantitative real-time PCR (qRT-PCR). The transcriptional level of majority ClLAX, ClPIN and ClABCB genes were changed by abiotic stresses in both shoots and roots. We also analysed the expression levels of ClLAX, ClPIN and ClABCB genes in graft response. Conclusion Analysis of the expression patterns of ClLAX, ClPIN and ClABCB genes under salt, drought, cold treatment and grafting response helps us to understand the possible roles of auxin transporter genes in watermelon adaptation to environmental stresses. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0500-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenliang Yu
- Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wenqi Dong
- Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yihua Zhan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zong-An Huang
- Institute of Vegetable Sciences, Wenzhou Academy of Agricultural Sciences, Wenzhou Vocational College of Science and Technology, Key Lab of Crop breeding in South Zhejiang, Wenzhou, 325014, China
| | - Zhimiao Li
- Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Il Seop Kim
- Dempartment of Horticulture, Kangwon National University, Chuncheon, 200-2071, Korea
| | - Chenghao Zhang
- Vegetable Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
34
|
Roberts WR, Roalson EH. Comparative transcriptome analyses of flower development in four species of Achimenes (Gesneriaceae). BMC Genomics 2017; 18:240. [PMID: 28320315 PMCID: PMC5359931 DOI: 10.1186/s12864-017-3623-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 03/11/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Flowers have an amazingly diverse display of colors and shapes, and these characteristics often vary significantly among closely related species. The evolution of diverse floral form can be thought of as an adaptive response to pollination and reproduction, but it can also be seen through the lens of morphological and developmental constraints. To explore these interactions, we use RNA-seq across species and development to investigate gene expression and sequence evolution as they relate to the evolution of the diverse flowers in a group of Neotropical plants native to Mexico-magic flowers (Achimenes, Gesneriaceae). RESULTS The assembled transcriptomes contain between 29,000 and 42,000 genes expressed during development. We combine sequence orthology and coexpression clustering with analyses of protein evolution to identify candidate genes for roles in floral form evolution. Over 25% of transcripts captured were distinctive to Achimenes and overrepresented by genes involved in transcription factor activity. Using a model-based clustering approach we find dynamic, temporal patterns of gene expression among species. Selection tests provide evidence of positive selection in several genes with roles in pigment production, flowering time, and morphology. Combining these approaches to explore genes related to flower color and flower shape, we find distinct patterns that correspond to transitions of floral form among Achimenes species. CONCLUSIONS The floral transcriptomes developed from four species of Achimenes provide insight into the mechanisms involved in the evolution of diverse floral form among closely related species with different pollinators. We identified several candidate genes that will serve as an important and useful resource for future research. High conservation of sequence structure, patterns of gene coexpression, and detection of positive selection acting on few genes suggests that large phenotypic differences in floral form may be caused by genetic differences in a small set of genes. Our characterized floral transcriptomes provided here should facilitate further analyses into the genomics of flower development and the mechanisms underlying the evolution of diverse flowers in Achimenes and other Neotropical Gesneriaceae.
Collapse
Affiliation(s)
- Wade R. Roberts
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164-1030 USA
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| | - Eric H. Roalson
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164-1030 USA
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 USA
| |
Collapse
|
35
|
Xue H, Shi T, Wang F, Zhou H, Yang J, Wang L, Wang S, Su Y, Zhang Z, Qiao Y, Li X. Interval mapping for red/green skin color in Asian pears using a modified QTL-seq method. HORTICULTURE RESEARCH 2017; 4:17053. [PMID: 29118994 PMCID: PMC5674137 DOI: 10.1038/hortres.2017.53] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 05/16/2023]
Abstract
Pears with red skin are attractive to consumers and provide additional health benefits. Identification of the gene(s) responsible for skin coloration can benefit cultivar selection and breeding. The use of QTL-seq, a bulked segregant analysis method, can be problematic when heterozygous parents are involved. The present study modified the QTL-seq method by introducing a |Δ(SNP-index)| parameter to improve the accuracy of mapping the red skin trait in a group of highly heterozygous Asian pears. The analyses were based on mixed DNA pools composed of 28 red-skinned and 27 green-skinned pear lines derived from a cross between the 'Mantianhong' and 'Hongxiangsu' red-skinned cultivars. The 'Dangshansuli' cultivar genome was used as reference for sequence alignment. An average single-nucleotide polymorphism (SNP) index was calculated using a sliding window approach (200-kb windows, 20-kb increments). Nine scaffolds within the candidate QTL interval were in the fifth linkage group from 111.9 to 177.1 cM. There was a significant linkage between the insertions/deletions and simple sequence repeat markers designed from the candidate intervals and the red/green skin (R/G) locus, which was in a 582.5-kb candidate interval that contained 81 predicted protein-coding gene models and was composed of two subintervals at the bottom of the fifth chromosome. The ZFRI 130-16, In2130-12 and In2130-16 markers located near the R/G locus could potentially be used to identify the red skin trait in Asian pear populations. This study provides new insights into the genetics controlling the red skin phenotype in this fruit.
Collapse
Affiliation(s)
- Huabai Xue
- College of Horticulture, Nanjing Agricultural
University, Nanjing
210095, China
- Zhengzhou Fruit Research Institute, Chinese
Academy of Agricultural Sciences (CAAS), Key Laboratory of Fruit Breeding Technology of
Ministry of Agriculture, Zhengzhou
450009, China
| | - Ting Shi
- College of Horticulture, Nanjing Agricultural
University, Nanjing
210095, China
| | - Fangfang Wang
- Zhengzhou Fruit Research Institute, Chinese
Academy of Agricultural Sciences (CAAS), Key Laboratory of Fruit Breeding Technology of
Ministry of Agriculture, Zhengzhou
450009, China
| | - Huangkai Zhou
- Guangzhou Gene Denovo Biotechnology Co.
Ltd, Guangzhou
510006, China
| | - Jian Yang
- Zhengzhou Fruit Research Institute, Chinese
Academy of Agricultural Sciences (CAAS), Key Laboratory of Fruit Breeding Technology of
Ministry of Agriculture, Zhengzhou
450009, China
| | - Long Wang
- Zhengzhou Fruit Research Institute, Chinese
Academy of Agricultural Sciences (CAAS), Key Laboratory of Fruit Breeding Technology of
Ministry of Agriculture, Zhengzhou
450009, China
| | - Suke Wang
- Zhengzhou Fruit Research Institute, Chinese
Academy of Agricultural Sciences (CAAS), Key Laboratory of Fruit Breeding Technology of
Ministry of Agriculture, Zhengzhou
450009, China
| | - Yanli Su
- Zhengzhou Fruit Research Institute, Chinese
Academy of Agricultural Sciences (CAAS), Key Laboratory of Fruit Breeding Technology of
Ministry of Agriculture, Zhengzhou
450009, China
| | - Zhen Zhang
- College of Horticulture, Nanjing Agricultural
University, Nanjing
210095, China
| | - Yushan Qiao
- College of Horticulture, Nanjing Agricultural
University, Nanjing
210095, China
| | - Xiugen Li
- Zhengzhou Fruit Research Institute, Chinese
Academy of Agricultural Sciences (CAAS), Key Laboratory of Fruit Breeding Technology of
Ministry of Agriculture, Zhengzhou
450009, China
| |
Collapse
|
36
|
Mostafa I, Yoo MJ, Zhu N, Geng S, Dufresne C, Abou-Hashem M, El-Domiaty M, Chen S. Membrane Proteomics of Arabidopsis Glucosinolate Mutants cyp79B2/B3 and myb28/29. FRONTIERS IN PLANT SCIENCE 2017; 8:534. [PMID: 28443122 PMCID: PMC5387099 DOI: 10.3389/fpls.2017.00534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/24/2017] [Indexed: 05/09/2023]
Abstract
Glucosinolates (Gls) constitute a major group of natural metabolites represented by three major classes (aliphatic, indolic and aromatic) of more than 120 chemical structures. In our previous work, soluble proteins and metabolites in Arabidopsis mutants deficient of aliphatic (myb28/29) and indolic Gls (cyp79B2B3) were analyzed. Here we focus on investigating the changes at the level of membrane proteins in these mutants. Our LC/MS-MS analyses of tandem mass tag (TMT) labeled peptides derived from the cyp79B2/B3 and myb28/29 relative to wild type resulted in the identification of 4,673 proteins, from which 2,171 are membrane proteins. Fold changes and statistical analysis showed 64 increased and 74 decreased in cyp79B2/B3, while 28 increased and 17 decreased in myb28/29. As to the shared protein changes between the mutants, one protein was increased and eight were decreased. Bioinformatics analysis of the changed proteins led to the discovery of three cytochromes in glucosinolate molecular network (GMN): cytochrome P450 86A7 (At1g63710), cytochrome P450 71B26 (At3g26290), and probable cytochrome c (At1g22840). CYP86A7 and CYP71B26 may play a role in hydroxyl-indolic Gls production. In addition, flavone 3'-O-methyltransferase 1 represents an interesting finding as it is likely to participate in the methylation process of the hydroxyl-indolic Gls to form methoxy-indolic Gls. The analysis also revealed additional new nodes in the GMN related to stress and defense activity, transport, photosynthesis, and translation processes. Gene expression and protein levels were found to be correlated in the cyp79B2/B3, but not in the myb28/29.
Collapse
Affiliation(s)
- Islam Mostafa
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig UniversityZagazig, Egypt
| | - Mi-Jeong Yoo
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
| | - Ning Zhu
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
| | - Sisi Geng
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | | | - Maged Abou-Hashem
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig UniversityZagazig, Egypt
| | - Maher El-Domiaty
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig UniversityZagazig, Egypt
| | - Sixue Chen
- Department of Biology, University of FloridaGainesville, FL, USA
- Genetics Institute, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
- Interdisciplinary Center for Biotechnology Research, University of FloridaGainesville, FL, USA
- *Correspondence: Sixue Chen
| |
Collapse
|
37
|
Figueiredo DD, Batista RA, Roszak PJ, Hennig L, Köhler C. Auxin production in the endosperm drives seed coat development in Arabidopsis. eLife 2016; 5. [PMID: 27848912 PMCID: PMC5135394 DOI: 10.7554/elife.20542] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
In flowering plants, seed development is initiated by the fusion of the maternal egg and central cells with two paternal sperm cells, leading to the formation of embryo and endosperm, respectively. The fertilization products are surrounded by the maternally derived seed coat, whose development prior to fertilization is blocked by epigenetic regulators belonging to the Polycomb Group (PcG) protein family. Here we show that fertilization of the central cell results in the production of auxin and most likely its export to the maternal tissues, which drives seed coat development by removing PcG function. We furthermore show that mutants for the MADS-box transcription factor AGL62 have an impaired transport of auxin from the endosperm to the integuments, which results in seed abortion. We propose that AGL62 regulates auxin transport from the endosperm to the integuments, leading to the removal of the PcG block on seed coat development. DOI:http://dx.doi.org/10.7554/eLife.20542.001 The seeds of rice, wheat and other flowering plants store a variety of nutrients, largely in the form of sugars, proteins and oils. These stored reserves provide the main source of calories for humans and livestock all over the world, so they are of major social and economic importance. Seed development is an intricate process. It begins after male sperm cells fuse with female gametes inside the flower. This leads to the formation of the embryo, which will develop into a new plant, and a structure called the endosperm, which nourishes the growing embryo. A protective seed coat surrounds the embryo and endosperm, which develops from certain parts of the parent flower. In order for the seed to develop successfully, these three components have to communicate so they can coordinate their growth. Auxin is a key plant hormone that is needed for plants to grow and develop properly and is necessary for the endosperm to form. Previous research has shown that the endosperm is also required to trigger the formation of the seed coat, but the signal that triggers this process has not yet been identified. Figueiredo et al. now address this question in a small flowering plant called Arabidopsis thaliana. The experiments show that the endosperm produces auxin, which acts as a molecular signal for the seed coat to start forming. Exposing unfertilized flowers to auxin caused a seed coat to form even though the endosperm was absent. This suggests that this hormone alone is sufficient to trigger the formation of the seed coat without any other signals. Further analysis revealed that a protein called AGL62 regulates the movement of auxin to the parts of the flower that give rise to the seed coat. In the absence of AGL62, the hormone remains trapped in the endosperm and the seed coat fails to develop. The next step following on from this work is to understand how auxin moves from the endosperm to the parts of the flower that form the seed coat. DOI:http://dx.doi.org/10.7554/eLife.20542.002
Collapse
Affiliation(s)
- Duarte D Figueiredo
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Rita A Batista
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Pawel J Roszak
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
38
|
Bennett T, Hines G, van Rongen M, Waldie T, Sawchuk MG, Scarpella E, Ljung K, Leyser O. Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices. PLoS Biol 2016; 14:e1002446. [PMID: 27119525 PMCID: PMC4847802 DOI: 10.1371/journal.pbio.1002446] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/18/2016] [Indexed: 11/18/2022] Open
Abstract
The bulk polar movement of the plant signaling molecule auxin through the stem is a long-recognized but poorly understood phenomenon. Here we show that the highly polar, high conductance polar auxin transport stream (PATS) is only part of a multimodal auxin transport network in the stem. The dynamics of auxin movement through stems are inconsistent with a single polar transport regime and instead suggest widespread low conductance, less polar auxin transport in the stem, which we term connective auxin transport (CAT). The bidirectional movement of auxin between the PATS and the surrounding tissues, mediated by CAT, can explain the complex auxin transport kinetics we observe. We show that the auxin efflux carriers PIN3, PIN4, and PIN7 are major contributors to this auxin transport connectivity and that their activity is important for communication between shoot apices in the regulation of shoot branching. We propose that the PATS provides a long-range, consolidated stream of information throughout the plant, while CAT acts locally, allowing tissues to modulate and be modulated by information in the PATS.
Collapse
Affiliation(s)
- Tom Bennett
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, United Kingdom
| | - Geneviève Hines
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, United Kingdom
| | - Martin van Rongen
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, United Kingdom
| | - Tanya Waldie
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, United Kingdom
| | - Megan G. Sawchuk
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, United Kingdom
| |
Collapse
|
39
|
Wang X, Ai G, Zhang C, Cui L, Wang J, Li H, Zhang J, Ye Z. Expression and diversification analysis reveals transposable elements play important roles in the origin of Lycopersicon-specific lncRNAs in tomato. THE NEW PHYTOLOGIST 2016; 209:1442-55. [PMID: 26494192 DOI: 10.1111/nph.13718] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/20/2015] [Indexed: 05/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) regulate gene expression and biological processes. With the development of high-throughput RNA sequencing technology, lncRNAs have been extensively studied in recent years. Nevertheless, the expression and evolution of lncRNAs in plants remain poorly understood. Here, we identified 413 and 709 multi-exon noncoding transcripts from 353 and 595 loci of the cultivar tomato Heinz1706 and its wild relative LA1589, respectively. Systematic comparison of the sequence and expression of lncRNAs showed that they are poorly conserved in Solanaceae, with only < 0.4% lncRNAs present in all sequenced genomes of tomato and potato. Sequence analysis of Lycopersicon-specific lncRNA loci in Solanum lycopersicum and S. pennellii showed that the origins of these molecules are associated with transposable elements (TEs). LncRNA-314, a fruit-specific lncRNA expressed in S. lycopersicum and S. pimpinellifolium, but not in S. pennellii, originated through two evolutionary events: speciation of S. pennellii resulted in insertion of a long terminal repeat (LTR) retrotransposon into chromosome 10 and contributed to most of the transcribed region of lncRNA-314; and a large deletion in Lycopersicon generated the promoter region and part of the transcribed region of lncRNA-314. These results provide novel insights into the evolution of lncRNAs in plants.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guo Ai
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Chunli Zhang
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Long Cui
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiafa Wang
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, MOE, and Key Laboratory of Horticultural Crop Biology and Genetic improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
40
|
Okamoto K, Ueda H, Shimada T, Tamura K, Koumoto Y, Tasaka M, Morita MT, Hara-Nishimura I. An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems. PLANT SIGNALING & BEHAVIOR 2016; 11:e1010947. [PMID: 26337543 PMCID: PMC4883830 DOI: 10.1080/15592324.2015.1010947] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A significant feature of plant cells is the extensive motility of organelles and the cytosol, which was originally defined as cytoplasmic streaming. We suggested previously that a three-way interaction between plant-specific motor proteins myosin XIs, actin filaments, and the endoplasmic reticulum (ER) was responsible for cytoplasmic streaming. (1) Currently, however, there are no reports of molecular components for cytoplasmic streaming other than the actin-myosin-cytoskeleton and ER-related proteins. In the present study, we found that elongated cells of inflorescence stems of Arabidopsis thaliana exhibit vigorous cytoplasmic streaming. Statistical analysis showed that the maximal velocity of plastid movements is 7.26 µm/s, which is much faster than the previously reported velocities of organelles. Surprisingly, the maximal velocity of streaming in the inflorescence stem cells was significantly reduced to 1.11 µm/s in an Arabidopsis mutant, abcb19-101, which lacks ATP BINDING CASSETTE SUBFAMILY B19 (ABCB19) that mediates the polar transport of the phytohormone auxin together with PIN-FORMED (PIN) proteins. Polar auxin transport establishes the auxin concentration gradient essential for plant development and tropisms. Deficiency of ABCB19 activity eventually caused enhanced gravitropic responses of the inflorescence stems and abnormally flexed inflorescence stems. These results suggest that ABCB19-mediated auxin transport plays a role not only in tropism regulation, but also in cytoplasmic streaming.
Collapse
Affiliation(s)
- Keishi Okamoto
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- These authors contributed equally to this work.
| | - Haruko Ueda
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- These authors contributed equally to this work.
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Tamura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yasuko Koumoto
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masao Tasaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
| | - Miyo Terao Morita
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0101, Japan
- Current address: Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Correspondence to: Ikuko Hara-Nishimura;
| |
Collapse
|
41
|
Li Z, Liu Z, Chen R, Li X, Tai P, Gong Z, Jia C, Liu W. DNA damage and genetic methylation changes caused by Cd in Arabidopsis thaliana seedlings. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2095-103. [PMID: 25914311 DOI: 10.1002/etc.3033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 03/25/2015] [Accepted: 04/19/2015] [Indexed: 05/05/2023]
Abstract
Amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MASP) techniques are sensitive to deoxyribonucleic acid (DNA) damage and genetic methylation, respectively. Using these 2 techniques, Arabidopsis thaliana cultured with 0 mg/L (control), 0.5 mg/L, 1.5 mg/L, and 5.0 mg/L Cd(2+) for 16 d was used to analyze the DNA damage and methylation changes as a result of cadmium (Cd). The DNA was amplified by 14 AFLP primer pairs and 13 MSAP primer combinations. In the AFLP experiment, 62 polymorphic sites were found in the patterns of 11 primer combinations and a total of 1116 fragments were obtained in these patterns. There were no polymorphic bands in the remaining 3 pairs. The proportions of polymorphic sites in the 0.5-mg/L Cd(2+) and 5.0-mg/L Cd(2+) treatments were significantly different. Seven polymorphic fragments were then separated and successfully sequenced, yielding 6 nucleobase substitutions and 1 nucleobase deletion. Similarly, in the MSAP experiment, the MSAP% and number of demethylated-type bands were unchanged after Cd treatment, but the number of methylated-type bands was increased significantly in the 5.0-mg/L Cd(2+) treatment group, a finding that may be associated with the AFLP results. The polymorphic bands were also sequenced and the functions of their homologous genes were determined. The DNA damage and methylation changes may be the primary cause of certain pathology changes as a result of Cd uptake in plants.
Collapse
Affiliation(s)
- Zhaoling Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Zhihong Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Life and Environmental, Deakin University, Warrnambool, Victoria, Australia
| | - Ruijuan Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojun Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Peidong Tai
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Zongqiang Gong
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Chunyun Jia
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Wan Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| |
Collapse
|
42
|
Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci U S A 2015; 112:11102-7. [PMID: 26283354 DOI: 10.1073/pnas.1512748112] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Grain size is one of the key factors determining grain yield. However, it remains largely unknown how grain size is regulated by developmental signals. Here, we report the identification and characterization of a dominant mutant big grain1 (Bg1-D) that shows an extra-large grain phenotype from our rice T-DNA insertion population. Overexpression of BG1 leads to significantly increased grain size, and the severe lines exhibit obviously perturbed gravitropism. In addition, the mutant has increased sensitivities to both auxin and N-1-naphthylphthalamic acid, an auxin transport inhibitor, whereas knockdown of BG1 results in decreased sensitivities and smaller grains. Moreover, BG1 is specifically induced by auxin treatment, preferentially expresses in the vascular tissue of culms and young panicles, and encodes a novel membrane-localized protein, strongly suggesting its role in regulating auxin transport. Consistent with this finding, the mutant has increased auxin basipetal transport and altered auxin distribution, whereas the knockdown plants have decreased auxin transport. Manipulation of BG1 in both rice and Arabidopsis can enhance plant biomass, seed weight, and yield. Taking these data together, we identify a novel positive regulator of auxin response and transport in a crop plant and demonstrate its role in regulating grain size, thus illuminating a new strategy to improve plant productivity.
Collapse
|
43
|
Lu X, Dittgen J, Piślewska-Bednarek M, Molina A, Schneider B, Svatoš A, Doubský J, Schneeberger K, Weigel D, Bednarek P, Schulze-Lefert P. Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding Cassette Transporter in Distinct Tryptophan Metabolic Pathways. PLANT PHYSIOLOGY 2015; 168:814-27. [PMID: 26023163 PMCID: PMC4741342 DOI: 10.1104/pp.15.00182] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/27/2015] [Indexed: 05/18/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) penetration (PEN) genes quantitatively contribute to the execution of different forms of plant immunity upon challenge with diverse leaf pathogens. PEN3 encodes a plasma membrane-resident pleiotropic drug resistance-type ATP-binding cassette transporter and is thought to act in a pathogen-inducible and PEN2 myrosinase-dependent metabolic pathway in extracellular defense. This metabolic pathway directs the intracellular biosynthesis and activation of tryptophan-derived indole glucosinolates for subsequent PEN3-mediated efflux across the plasma membrane at pathogen contact sites. However, PEN3 also functions in abiotic stress responses to cadmium and indole-3-butyric acid (IBA)-mediated auxin homeostasis in roots, raising the possibility that PEN3 exports multiple functionally unrelated substrates. Here, we describe the isolation of a pen3 allele, designated pen3-5, that encodes a dysfunctional protein that accumulates in planta like wild-type PEN3. The specific mutation in pen3-5 uncouples PEN3 functions in IBA-stimulated root growth modulation, callose deposition induced with a conserved peptide epitope of bacterial flagellin (flg22), and pathogen-inducible salicylic acid accumulation from PEN3 activity in extracellular defense, indicating the engagement of multiple PEN3 substrates in different PEN3-dependent biological processes. We identified 4-O-β-D-glucosyl-indol-3-yl formamide (4OGlcI3F) as a pathogen-inducible, tryptophan-derived compound that overaccumulates in pen3 leaf tissue and has biosynthesis that is dependent on an intact PEN2 metabolic pathway. We propose that a precursor of 4OGlcI3F is the PEN3 substrate in extracellular pathogen defense. These precursors, the shared indole core present in IBA and 4OGlcI3F, and allele-specific uncoupling of a subset of PEN3 functions suggest that PEN3 transports distinct indole-type metabolites in distinct biological processes.
Collapse
Affiliation(s)
- Xunli Lu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (X.L., J.Di., M.P.-B., P.B., P.S.-L.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland (M.P.-B., P.B.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28223 Madrid, Spain (A.M.); Research Groups on Biosynthesis/Nuclear Magnetic Resonance (B.S.) and Mass Spectrometry/Proteomics (A.S., J.Do.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (K.S., D.W.)
| | - Jan Dittgen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (X.L., J.Di., M.P.-B., P.B., P.S.-L.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland (M.P.-B., P.B.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28223 Madrid, Spain (A.M.); Research Groups on Biosynthesis/Nuclear Magnetic Resonance (B.S.) and Mass Spectrometry/Proteomics (A.S., J.Do.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (K.S., D.W.)
| | - Mariola Piślewska-Bednarek
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (X.L., J.Di., M.P.-B., P.B., P.S.-L.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland (M.P.-B., P.B.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28223 Madrid, Spain (A.M.); Research Groups on Biosynthesis/Nuclear Magnetic Resonance (B.S.) and Mass Spectrometry/Proteomics (A.S., J.Do.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (K.S., D.W.)
| | - Antonio Molina
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (X.L., J.Di., M.P.-B., P.B., P.S.-L.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland (M.P.-B., P.B.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28223 Madrid, Spain (A.M.); Research Groups on Biosynthesis/Nuclear Magnetic Resonance (B.S.) and Mass Spectrometry/Proteomics (A.S., J.Do.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (K.S., D.W.)
| | - Bernd Schneider
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (X.L., J.Di., M.P.-B., P.B., P.S.-L.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland (M.P.-B., P.B.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28223 Madrid, Spain (A.M.); Research Groups on Biosynthesis/Nuclear Magnetic Resonance (B.S.) and Mass Spectrometry/Proteomics (A.S., J.Do.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (K.S., D.W.)
| | - Aleš Svatoš
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (X.L., J.Di., M.P.-B., P.B., P.S.-L.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland (M.P.-B., P.B.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28223 Madrid, Spain (A.M.); Research Groups on Biosynthesis/Nuclear Magnetic Resonance (B.S.) and Mass Spectrometry/Proteomics (A.S., J.Do.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (K.S., D.W.)
| | - Jan Doubský
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (X.L., J.Di., M.P.-B., P.B., P.S.-L.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland (M.P.-B., P.B.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28223 Madrid, Spain (A.M.); Research Groups on Biosynthesis/Nuclear Magnetic Resonance (B.S.) and Mass Spectrometry/Proteomics (A.S., J.Do.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (K.S., D.W.)
| | - Korbinian Schneeberger
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (X.L., J.Di., M.P.-B., P.B., P.S.-L.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland (M.P.-B., P.B.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28223 Madrid, Spain (A.M.); Research Groups on Biosynthesis/Nuclear Magnetic Resonance (B.S.) and Mass Spectrometry/Proteomics (A.S., J.Do.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (K.S., D.W.)
| | - Detlef Weigel
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (X.L., J.Di., M.P.-B., P.B., P.S.-L.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland (M.P.-B., P.B.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28223 Madrid, Spain (A.M.); Research Groups on Biosynthesis/Nuclear Magnetic Resonance (B.S.) and Mass Spectrometry/Proteomics (A.S., J.Do.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (K.S., D.W.)
| | - Paweł Bednarek
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (X.L., J.Di., M.P.-B., P.B., P.S.-L.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland (M.P.-B., P.B.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28223 Madrid, Spain (A.M.); Research Groups on Biosynthesis/Nuclear Magnetic Resonance (B.S.) and Mass Spectrometry/Proteomics (A.S., J.Do.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (K.S., D.W.)
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (X.L., J.Di., M.P.-B., P.B., P.S.-L.);Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland (M.P.-B., P.B.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28223 Madrid, Spain (A.M.); Research Groups on Biosynthesis/Nuclear Magnetic Resonance (B.S.) and Mass Spectrometry/Proteomics (A.S., J.Do.), Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; andDepartment of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany (K.S., D.W.)
| |
Collapse
|
44
|
Gupta A, Singh M, Laxmi A. Multiple Interactions between Glucose and Brassinosteroid Signal Transduction Pathways in Arabidopsis Are Uncovered by Whole-Genome Transcriptional Profiling. PLANT PHYSIOLOGY 2015; 168:1091-105. [PMID: 26034265 PMCID: PMC4741329 DOI: 10.1104/pp.15.00495] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/31/2015] [Indexed: 05/20/2023]
Abstract
Brassinosteroid (BR) and glucose (Glc) regulate many common responses in plants. Here, we demonstrate that under etiolated growth conditions, extensive interdependence/overlap occurs between BR- and Glc-regulated gene expression as well as physiological responses. Glc could regulate the transcript level of 72% of BR-regulated genes at the whole-genome level, of which 58% of genes were affected synergistically and 42% of genes were regulated antagonistically. Presence of Glc along with BR in medium could affect BR induction/repression of 85% of BR-regulated genes. Glc could also regulate several genes involved in BR metabolism and signaling. Both BR and Glc coregulate a large number of genes involved in abiotic/biotic stress responses and growth and development. Physiologically, Glc and BR interact to regulate hypocotyl elongation growth of etiolated Arabidopsis (Arabidopsis thaliana) seedlings in a dose-dependent manner. Glc may interact with BR via a hexokinase1 (HXK1)-mediated pathway to regulate etiolated hypocotyl elongation. Brassinosteroid insensitive1 (BRI1) is epistatic to HXK1, as the Glc insensitive2bri1-6 double mutant displayed severe defects in hypocotyl elongation growth similar to its bri1-6 parent. Analysis of Glc and BR sensitivity in mutants defective in auxin response/signaling further suggested that Glc and BR signals may converge at S-phase kinase-associated protein1-Cullin-F-box-transport inhibitor response1/auxin-related f-box-auxin/indole-3-acetic acid-mediated auxin-signaling machinery to regulate etiolated hypocotyl elongation growth in Arabidopsis.
Collapse
Affiliation(s)
- Aditi Gupta
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Manjul Singh
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
45
|
Zhao W, Yang X, Yu H, Jiang W, Sun N, Liu X, Liu X, Zhang X, Wang Y, Gu X. RNA-Seq-based transcriptome profiling of early nitrogen deficiency response in cucumber seedlings provides new insight into the putative nitrogen regulatory network. PLANT & CELL PHYSIOLOGY 2015; 56:455-67. [PMID: 25432971 DOI: 10.1093/pcp/pcu172] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nitrogen (N) is both an important macronutrient and a signal for plant growth and development. However, the early regulatory mechanism of plants in response to N starvation is not well understood, especially in cucumber, an economically important crop that normally consumes excessive N during production. In this study, the early time-course transcriptome response of cucumber leaves under N deficiency was monitored using RNA sequencing (RNA-Seq). More than 23,000 transcripts were examined in cucumber leaves, of which 364 genes were differentially expressed in response to N deficiency. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, gene ontology (GO) and protein-protein interaction analysis, 64 signaling-related N-deficiency-responsive genes were identified. Furthermore, the potential regulatory mechanisms of anthocyanin accumulation, Chl decline and cell wall remodeling were assessed at the transcription level. Increased ascorbic acid synthesis was identified in cucumber seedlings and fruit under N-deficient conditions, and a new corresponding regulatory hypothesis has been proposed. A data cross-comparison between model plants and cucumber was made, and some common and specific N-deficient response mechanisms were found in the present study. Our study provides novel insights into the responses of cucumber to nitrogen starvation at the global transcriptome level, which are expected to be highly useful for dissecting the N response pathways in this major vegetable and for improving N fertilization practices.
Collapse
Affiliation(s)
- Wenchao Zhao
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China Beijing Key Laboratory for Agriculture Application and New Technology, Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China These authors contributed equally to this work
| | - Xueyong Yang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China These authors contributed equally to this work
| | - Hongjun Yu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China These authors contributed equally to this work
| | - Weijie Jiang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Na Sun
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Xiaoran Liu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Xiaolin Liu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Xiaomeng Zhang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Yan Wang
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| | - Xingfang Gu
- Key Laboratory of Horticultural Crops Genetic Improvement (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun S. St., Beijing 100081, China
| |
Collapse
|
46
|
Cole RA, McInally SA, Fowler JE. Developmentally distinct activities of the exocyst enable rapid cell elongation and determine meristem size during primary root growth in Arabidopsis. BMC PLANT BIOLOGY 2014; 14:386. [PMID: 25551204 PMCID: PMC4302519 DOI: 10.1186/s12870-014-0386-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/15/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Exocytosis is integral to root growth: trafficking components of systems that control growth (e.g., PIN auxin transport proteins) to the plasma membrane, and secreting materials that expand the cell wall to the apoplast. Spatiotemporal regulation of exocytosis in eukaryotes often involves the exocyst, an octameric complex that tethers selected secretory vesicles to specific sites on the plasma membrane and facilitates their exocytosis. We evaluated Arabidopsis lines with mutations in four exocyst components (SEC5, SEC8, EXO70A1 and EXO84B) to explore exocyst function in primary root growth. RESULTS The mutants have root growth rates that are 82% to 11% of wild-type. Even in lines with the most severe defects, the organization of the quiescent center and tissue layers at the root tips appears similar to wild-type, although meristematic, transition, and elongation zones are shorter. Reduced cell production rates in the mutants are due to the shorter meristems, but not to lengthened cell cycles. Additionally, mutants demonstrate reduced anisotropic cell expansion in the elongation zone, but not the meristematic zone, resulting in shorter mature cells that are similar in shape to wild-type. As expected, hypersensitivity to brefeldin A links the mutant root growth defect to altered vesicular trafficking. Several experimental approaches (e.g., dose-response measurements, localization of signaling components) failed to identify aberrant auxin or brassinosteroid signaling as a primary driver for reduced root growth in exocyst mutants. CONCLUSIONS The exocyst participates in two spatially distinct developmental processes, apparently by mechanisms not directly linked to auxin or brassinosteroid signaling pathways, to help establish root meristem size, and to facilitate rapid cell expansion in the elongation zone.
Collapse
Affiliation(s)
- Rex A Cole
- Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, 97331 OR USA
| | - Samantha A McInally
- Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, 97331 OR USA
| | - John E Fowler
- Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, 97331 OR USA
| |
Collapse
|
47
|
Wang Z, Rashotte AM, Dane F. Citrullus colocynthis NAC transcription factors CcNAC1 and CcNAC2 are involved in light and auxin signaling. PLANT CELL REPORTS 2014; 33:1673-86. [PMID: 24972826 DOI: 10.1007/s00299-014-1646-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 06/11/2014] [Indexed: 05/06/2023]
Abstract
Two novel NAC transcription factors from C itrullus colocynthis implicated in light and auxin signaling pathway. NAC transcription factors (NAM, ATAF1, 2, CUC2) have multiple functions in plant growth and development. Two NACs, CcNAC1 and CcNAC2, were recently identified in the highly drought-tolerant cucurbit species, Citrullus colocynthis. This study examines the functional role of these genes under different qualities of light based on the in silico analysis of the CcNAC1 and CcNAC2 promoters that revealed the presence of several light-associated motifs. The impact of both light and auxin on CcNAC1 and CcNAC2 expression was examined in C. colocynthis leaves, and using reporter (pCcNAC1, 2::GUS) lines in Arabidopsis. Furthermore, the effects of constitutive overexpression (OE-CcNAC1, 2) in Arabidopsis were also examined under a range of conditions to confirm reporter line linkages. White, blue, red, and far-red light treatments resulted in similar patterns of quantitative changes in CcNAC1and CcNAC2 expression in both species, with the highest transcript increases following red light. Photomorphogenic changes in Arabidopsis hypocotyls were correlated with gene transcript levels. In the absence of light, hypocotyls of OE-CcNAC1/CcNAC2 lines were significantly longer as compared to WT. The addition of exogenous auxin (+IAA) to growth medium also resulted in changes to the hypocotyl lengths of overexpression lines and spatiotemporal reporter line changes in seedlings. Our data suggest that CcNAC1, 2 might be functionally important in the light signaling pathway, and appear connected to the hormone auxin. This is the first study to indicate that NAC genes might play a role in both light and auxin signaling pathways.
Collapse
Affiliation(s)
- Zhuoyu Wang
- Department of Horticulture, Auburn University, Auburn, AL, 36849, USA
| | | | | |
Collapse
|
48
|
Nuruzzaman M, Zhang R, Cao HZ, Luo ZY. Plant pleiotropic drug resistance transporters: transport mechanism, gene expression, and function. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:729-40. [PMID: 24645852 DOI: 10.1111/jipb.12196] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/17/2014] [Indexed: 05/08/2023]
Abstract
Pleiotropic drug resistance (PDR) transporters belonging to the ABCG subfamily of ATP-binding cassette (ABC) transporters are identified only in fungi and plants. Members of this family are expressed in plants in response to various biotic and abiotic stresses and transport a diverse array of molecules across membranes. Although their detailed transport mechanism is largely unknown, they play important roles in detoxification processes, preventing water loss, transport of phytohormones, and secondary metabolites. This review provides insights into transport mechanisms of plant PDR transporters, their expression profiles, and multitude functions in plants.
Collapse
Affiliation(s)
- Mohammed Nuruzzaman
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China
| | | | | | | |
Collapse
|
49
|
Remy E, Duque P. Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants. Front Physiol 2014; 5:201. [PMID: 24910617 PMCID: PMC4038776 DOI: 10.3389/fphys.2014.00201] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/09/2014] [Indexed: 12/31/2022] Open
Abstract
Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette (ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals, and bacteria, MDR transporters make a primary contribution to cellular detoxification processes in plants, mainly through the extrusion of toxic compounds from the cell or their sequestration in the central vacuole. This review aims at summarizing the currently available information on the in vivo roles of MDR transporters in plant systems. Taken together, these data clearly indicate that the biological functions of ABC, MFS, and MATE carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity of plant MDR transporters also mediates biotic stress resistance and is instrumental in numerous physiological processes essential for optimal plant growth and development, including the regulation of ion homeostasis and polar transport of the phytohormone auxin.
Collapse
Affiliation(s)
- Estelle Remy
- Instituto Gulbenkian de Ciência Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência Oeiras, Portugal
| |
Collapse
|
50
|
Kushwah S, Laxmi A. The interaction between glucose and cytokinin signal transduction pathway in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2014; 37:235-53. [PMID: 23763631 DOI: 10.1111/pce.12149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/20/2013] [Indexed: 05/07/2023]
Abstract
Cytokinins (CKs) and glucose (GLC) control a number of common responses in plants. We hypothesize that there may be an extensive overlap between CK- and GLC-signalling pathways. Microarray along with physiological analysis has been performed to find out the interdependence/overlap between CK and GLC signal transduction pathways in Arabidopsis seedlings. GLC could transcriptionally affect 76% of CK-regulated genes at whole genome level, 89% of which are agonistically regulated. GLC may also affect CK-regulated gene expression via non-transcriptional pathways. GLC can regulate several genes involved in CK metabolism and signalling. A number of gene families involved in development and stress are commonly regulated by CK and GLC. Physiologically, both GLC and CK could regulate hypocotyl length in dark. GLC and CK signalling may integrate at the level of type A Arabidopsis response regulators (ARRs) in controlling hypocotyl length. Both GLC and CK signalling cannot alter hypocotyl length in dark in auxin-signalling mutants auxin response2/indole-3-acetic acid7 (AXR2/IAA7) and AXR3/IAA17 suggesting that they may involve auxin-signalling component as a nodal point. Here, we demonstrate that there is an extensive overlap between CK- and GLC-regulated gene expression and physiological responses.
Collapse
Affiliation(s)
- Sunita Kushwah
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | | |
Collapse
|