1
|
Basso MF, Girardin G, Vergata C, Buti M, Martinelli F. Genome-wide transcript expression analysis reveals major chickpea and lentil genes associated with plant branching. FRONTIERS IN PLANT SCIENCE 2024; 15:1384237. [PMID: 38962245 PMCID: PMC11220206 DOI: 10.3389/fpls.2024.1384237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
The search for elite cultivars with better architecture has been a demand by farmers of the chickpea and lentil crops, which aims to systematize their mechanized planting and harvesting on a large scale. Therefore, the identification of genes associated with the regulation of the branching and architecture of these plants has currently gained great importance. Herein, this work aimed to gain insight into transcriptomic changes of two contrasting chickpea and lentil cultivars in terms of branching pattern (little versus highly branched cultivars). In addition, we aimed to identify candidate genes involved in the regulation of shoot branching that could be used as future targets for molecular breeding. The axillary and apical buds of chickpea cultivars Blanco lechoso and FLIP07-318C, and lentil cultivars Castellana and Campisi, considered as little and highly branched, respectively, were harvested. A total of 1,624 and 2,512 transcripts were identified as differentially expressed among different tissues and contrasting cultivars of chickpea and lentil, respectively. Several gene categories were significantly modulated such as cell cycle, DNA transcription, energy metabolism, hormonal biosynthesis and signaling, proteolysis, and vegetative development between apical and axillary tissues and contrasting cultivars of chickpea and lentil. Based on differential expression and branching-associated biological function, ten chickpea genes and seven lentil genes were considered the main players involved in differentially regulating the plant branching between contrasting cultivars. These collective data putatively revealed the general mechanism and high-effect genes associated with the regulation of branching in chickpea and lentil, which are potential targets for manipulation through genome editing and transgenesis aiming to improve plant architecture.
Collapse
Affiliation(s)
| | | | - Chiara Vergata
- Department of Biology, University of Florence, Florence, Italy
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | | |
Collapse
|
2
|
Reyer A, Bazihizina N, Jaślan J, Scherzer S, Schäfer N, Jaślan D, Becker D, Müller TD, Pommerrenig B, Neuhaus HE, Marten I, Hedrich R. Sugar beet PMT5a and STP13 carriers suitable for proton-driven plasma membrane sucrose and glucose import in taproots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2219-2232. [PMID: 38602250 DOI: 10.1111/tpj.16740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Sugar beet (Beta vulgaris) is the major sugar-producing crop in Europe and Northern America, as the taproot stores sucrose at a concentration of around 20%. Genome sequence analysis together with biochemical and electrophysiological approaches led to the identification and characterization of the TST sucrose transporter driving vacuolar sugar accumulation in the taproot. However, the sugar transporters mediating sucrose uptake across the plasma membrane of taproot parenchyma cells remained unknown. As with glucose, sucrose stimulation of taproot parenchyma cells caused inward proton fluxes and plasma membrane depolarization, indicating a sugar/proton symport mechanism. To decipher the nature of the corresponding proton-driven sugar transporters, we performed taproot transcriptomic profiling and identified the cold-induced PMT5a and STP13 transporters. When expressed in Xenopus laevis oocytes, BvPMT5a was characterized as a voltage- and H+-driven low-affinity glucose transporter, which does not transport sucrose. In contrast, BvSTP13 operated as a high-affinity H+/sugar symporter, transporting glucose better than sucrose, and being more cold-tolerant than BvPMT5a. Modeling of the BvSTP13 structure with bound mono- and disaccharides suggests plasticity of the binding cleft to accommodate the different saccharides. The identification of BvPMT5a and BvSTP13 as taproot sugar transporters could improve breeding of sugar beet to provide a sustainable energy crop.
Collapse
Affiliation(s)
- Antonella Reyer
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Nadia Bazihizina
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
- Department of Agrifood Production and Environmental Sciences, Università degli Studi di Firenze, Florence, 50019, Sesto Fiorentino, Italy
| | - Justyna Jaślan
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Sönke Scherzer
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Nadine Schäfer
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Dawid Jaślan
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilians-Universität, 80336, Munich, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Thomas D Müller
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, 06484, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Irene Marten
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-Universität (JMU), Würzburg, 97082, Germany
| |
Collapse
|
3
|
Li CH, Tu YC, Wen MF, Tien HJ, Yen HE. Exogenous myo-inositol increases salt tolerance and accelerates CAM induction in the early juvenile stage of the facultative halophyte Mesembryanthemum crystallinum but not in the late juvenile stage. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:363-377. [PMID: 36949582 DOI: 10.1071/fp22285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/21/2023] [Indexed: 05/03/2023]
Abstract
Mesembryanthemum crystallinum L. (ice plant) develops salt tolerance during the transition from the juvenile to the adult stage through progressive morphological, physiological, biochemical, and molecular changes. Myo -inositol is the precursor for the synthesis of compatible solute D-pinitol and promotes Na+ transport in ice plants. We previously showed that supplying myo -inositol to 9-day-old seedlings alleviates salt damage by coordinating the expression of genes involved in inositol synthesis and transport, affecting osmotic adjustment and the Na/K balance. In this study, we examined the effects of myo -inositol on physiological parameters and inositol-related gene expression in early- and late-stage juvenile plants. The addition of myo -inositol to salt-treated, hydroponically grown late juvenile plants had no significant effects on growth or photosynthesis. In contrast, supplying exogenous myo -inositol to salt-treated early juvenile plants increased leaf biomass, relative water content, and chlorophyll content and improved PSII activity and CO2 assimilation. The treatment combining high salt and myo -inositol synergistically induced the expression of myo -inositol phosphate synthase (INPS ), myo -inositol O -methyltransferase (IMT ), and inositol transporters (INTs ), which modulated root-to-shoot Na/K ratio and increased leaf D-pinitol content. The results indicate that sufficient myo -inositol is a prerequisite for high salt tolerance in ice plant.
Collapse
Affiliation(s)
- Cheng-Hsun Li
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yun-Cheng Tu
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Meng-Fang Wen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsing-Jung Tien
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hungchen Emilie Yen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
4
|
Zhang L, Guo W, Lu Y, Zhou T, Wang Y, Tang X, Zhang J. Genome-wide characterization of the inositol transporters gene family in Populus and functional characterization of PtINT1b in response to salt stress. Int J Biol Macromol 2023; 228:197-206. [PMID: 36572075 DOI: 10.1016/j.ijbiomac.2022.12.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/06/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
Inositol transporters (INTs) can mediate the transmembrane transport of inositol, and play crucial roles in plant growth, development and stress resistance. However, the INT gene family in Populus has not been reported. Herein, nine INT genes were identified in the Populus trichocarpa genome and divided into three clades. Tandem duplication and whole-genome duplication events could induce the expansion of PtINT gene family. It was worth noting that PtINT1c* and 1d* formed by twice tandem gene duplication events of PtINT1b, but both had undergone partial structural loss during evolution. PtINT2_p1* and PtINT2_p2* might be originated from one INT2 gene by stop codon- and start codon-gain variants. Different members of PtINTs were localized to the plasma membrane or vacuolar membrane. PtINTs had diversified tissue expression profiles, and many members were significantly induced or suppressed after salt and drought treatments. PtINT1b was induced by drought and salinity stresses, and encoded a vacuolar inositol transporter. Overexpression of PtINT1b rendered the transgenic Arabidopsis plants more resistant to salt stress. In conclusion, this study provides valuable clues for future research on the function of PtINTs, and PtINT1b was identified as a candidate gene for genetic engineering to enhance salinity tolerance in plants.
Collapse
Affiliation(s)
- Li Zhang
- College of Agricultural and Biological Engineering, Heze Uninversity, Heze, Shandong 274015, China; State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Tai'an, Shandong 271000, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, Shandong, China
| | - Tianhua Zhou
- College of Agricultural and Biological Engineering, Heze Uninversity, Heze, Shandong 274015, China
| | - Yilei Wang
- College of Agricultural and Biological Engineering, Heze Uninversity, Heze, Shandong 274015, China
| | - Xin Tang
- College of Agricultural and Biological Engineering, Heze Uninversity, Heze, Shandong 274015, China.
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
5
|
Li J, Kim YJ, Zhang D. Source-To-Sink Transport of Sugar and Its Role in Male Reproductive Development. Genes (Basel) 2022; 13:1323. [PMID: 35893060 PMCID: PMC9329892 DOI: 10.3390/genes13081323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Sucrose is produced in leaf mesophyll cells via photosynthesis and exported to non-photosynthetic sink tissues through the phloem. The molecular basis of source-to-sink long-distance transport in cereal crop plants is of importance due to its direct influence on grain yield-pollen grains, essential for male fertility, are filled with sugary starch, and rely on long-distance sugar transport from source leaves. Here, we overview sugar partitioning via phloem transport in rice, especially where relevant for male reproductive development. Phloem loading and unloading in source leaves and sink tissues uses a combination of the symplastic, apoplastic, and/or polymer trapping pathways. The symplastic and polymer trapping pathways are passive processes, correlated with source activity and sugar gradients. In contrast, apoplastic phloem loading/unloading involves active processes and several proteins, including SUcrose Transporters (SUTs), Sugars Will Eventually be Exported Transporters (SWEETs), Invertases (INVs), and MonoSaccharide Transporters (MSTs). Numerous transcription factors combine to create a complex network, such as DNA binding with One Finger 11 (DOF11), Carbon Starved Anther (CSA), and CSA2, which regulates sugar metabolism in normal male reproductive development and in response to changes in environmental signals, such as photoperiod.
Collapse
Affiliation(s)
- Jingbin Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Pusan National University, Miryang 50463, Korea;
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064, Australia
| |
Collapse
|
6
|
Dinant S, Le Hir R. Delving deeper into the link between sugar transport, sugar signaling, and vascular system development. PHYSIOLOGIA PLANTARUM 2022; 174:e13684. [PMID: 35396718 DOI: 10.1111/ppl.13684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Plant growth and development rely on the transport and use of sugars produced during photosynthesis. Sugars have a dual function as nutrients and signal molecules in the cell. Many factors maintaining sugar homeostasis and signaling are now identified, but our understanding of the mechanisms involved in coordinating intracellular and intercellular sugar translocation is still limited. We also know little about the interplay between sugar transport and signaling and the formation of the vascular system, which controls long-distance sugar translocation. Sugar signaling has been proposed to play a role; however, evidence to support this hypothesis is still limited. Here, we exploited recent transcriptomics datasets produced in aerial organs of Arabidopsis to identify genes coding for sugar transporters or signaling components expressed in the vascular cells. We identified genes belonging to sugar transport and signaling for which no information is available regarding a role in vasculature development. In addition, the transcriptomics datasets obtained from sugar-treated Arabidopsis seedlings were used to assess the sugar-responsiveness of known genes involved in vascular differentiation. Interestingly, several key regulators of vascular development were found to be regulated by either sucrose or glucose. Especially CLE41, which controls the procambial cell fate, was oppositely regulated by sucrose or glucose in these datasets. Even if more experimental data are necessary to confirm these findings, this survey supports a link between sugar transport/signaling and vascular system development.
Collapse
Affiliation(s)
- Sylvie Dinant
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Rozenn Le Hir
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
7
|
Wang J, Chen J, Huang S, Han D, Li J, Guo D. Investigating the Mechanism of Unilateral Cross Incompatibility in Longan ( Dimocarpus longan Lour.) Cultivars (Yiduo × Shixia). FRONTIERS IN PLANT SCIENCE 2022; 12:821147. [PMID: 35222456 PMCID: PMC8874016 DOI: 10.3389/fpls.2021.821147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Longan (Dimocarpus longan Lour.) is an important subtropical fruit tree in China. Nearly 90% of longan fruit imports from Thailand are from the cultivar Yiduo. However, we have observed that there exists a unilateral cross incompatibility (UCI) when Yiduo is used as a female parent and Shixia (a famous Chinese cultivar) as a male parent. Here, we performed a comparative transcriptome analysis coupled with microscopy of pistils from two reciprocal pollination combinations [Shixia♂ × Yiduo♀(SY) and Yiduo♀ × Shixia♂(YS)] 4, 8, 12, and 24 h after pollination. We also explored endogenous jasmonic acid (JA) and jasmonyl isoleucine (JA-Ile) levels in pistils of the crosses. The microscopic observations showed that the UCI was sporophytic. The endogenous JA and JA-Ile levels were higher in YS than in SY at the studied time points. We found 7,251 differentially expressed genes from the transcriptome analysis. Our results highlighted that genes associated with JA biosynthesis and signaling, pollen tube growth, cell wall modification, starch and sucrose biosynthesis, and protein processing in endoplasmic reticulum pathways were differentially regulated between SY and YS. We discussed transcriptomic changes in the above-mentioned pathways regarding the observed microscopic and/or endogenous hormone levels. This is the first report on the elaboration of transcriptomic changes in longan reciprocal pollination combination showing UCI. The results presented here will enable the longan breeding community to better understand the mechanisms of UCI.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Ji Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shilian Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Dongmei Han
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianguang Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Dongliang Guo
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
8
|
Li CH, Tien HJ, Wen MF, Yen HE. Myo-inositol transport and metabolism participate in salt tolerance of halophyte ice plant seedlings. PHYSIOLOGIA PLANTARUM 2021; 172:1619-1629. [PMID: 33511710 DOI: 10.1111/ppl.13353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/06/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Myo-inositol and its metabolic derivatives such as pinitol, galactinol, and raffinose affect growth and development and are also involved in stress adaptation. Previous studies have identified myo-inositol transporters (INTs) as transporters of Na+ from root to shoot in the halophyte ice plant (Mesembryanthemum crystallinum). We found that the supply of myo-inositol could alleviate the dehydration effects of salt-stressed ice plant seedlings by decreasing the Na/K ratio in roots and increasing the Na/K ratio in shoots. Analyses of the uptake of exogenous myo-inositol revealed that ice plant seedlings contained intrinsic high-affinity transporters and inducible low-affinity uptake systems. The presence of Na+ facilitated both high- and low-affinity myo-inositol uptake. Six INT genes were identified from the ice plant transcriptome and named McINT1a, 1b, 2, 4a, 4b, and 4c, according to the classification of the Arabidopsis INT family. In seedlings treated with myo-inositol, salt, or myo-inositol plus salt, the expression patterns of all McINT members differed in shoot and root, which indicates organ-specific regulation of McINTs by salt and myo-inositol. The expression of McINT2, 4a, 4b, and 4c was induced by salt stress in shoot and root, but that of McINT1a and 1b was salt-induced only in shoot. The expression of pinitol biosynthesis gene IMT1 was induced by salt and myo-inositol, and their combination had a synergistic effect on the accumulation of pinitol. Supply of myo-inositol to salt-treated seedlings alleviated the detrimental effects by maintaining a low root Na/K ratio and providing precursors for the synthesis of compatible solute to maintain the osmotic balance.
Collapse
Affiliation(s)
- Cheng-Hsun Li
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Hsing-Jung Tien
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Meng-Fang Wen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Hungchen Emilie Yen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
9
|
Hu L, Zhou K, Yang S, Liu Y, Li Y, Zhang Z, Zhang J, Gong X, Ma F. MdINT1 enhances apple salinity tolerance by regulating the antioxidant system, homeostasis of ions, and osmosis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:689-698. [PMID: 32750646 DOI: 10.1016/j.plaphy.2020.06.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Myo-inositol is a versatile compound and plays a vital role in plant growth and stress tolerance. Previously, we found that exogenous application of myo-inositol enhanced the salinity tolerance in Malus hupehensis Rehd. by enhancing myo-inositol metabolism. In this study, we found that the tonoplast-localized myo-inositol transporter 1 (MdINT1) was involved in myo-inositol accumulation and conferred salinity tolerance in apple. MdINT1 is characterized by the highest transcripts among the four apple INT-like genes and could be induced by salt stress at the transcriptional level. Also, it was shown that myo-inositol level was slightly decreased in the leaves of transgenic apple lines over-expressing MdINT1, but was significantly increased in the leaves and roots of MdINT1 silencing line. Interestingly, overexpression of MdINT1 enhanced salinity tolerance by promoting Na+ and K+ balance, antioxidant activity, and accumulation of osmoprotectants in transgenic apple lines. In contrast, under salinity conditions, the MdINT1-mediated protective roles in the antioxidant activity, homeostasis of ions and osmosis were compromised, which in turn increased the risk of salt intolerance in the MdINT1 silencing line.
Collapse
Affiliation(s)
- Lingyu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kun Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shulin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yangtiansu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhijun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jingyun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
10
|
Grebnev G, Cvitkovic M, Fritz C, Cai G, Smith AS, Kost B. Quantitative Structural Organization of Bulk Apical Membrane Traffic in Pollen Tubes. PLANT PHYSIOLOGY 2020; 183:1559-1585. [PMID: 32482906 PMCID: PMC7401101 DOI: 10.1104/pp.20.00380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 05/13/2023]
Abstract
Pollen tube tip growth depends on balancing secretion of cell wall material with endocytic recycling of excess material incorporated into the plasma membrane (PM). The classical model of tip growth, which predicts bulk secretion, occurs apically, and is compensated by subapical endocytosis, has been challenged in recent years. Many signaling proteins and lipids with important functions in the regulation of membrane traffic underlying tip growth associate with distinct regions of the pollen tube PM, and understanding the mechanisms responsible for the targeting of these regulatory factors to specific PM domains requires quantitative information concerning the sites of bulk secretion and endocytosis. Here, we quantitatively characterized the spatial organization of membrane traffic during tip growth by analyzing steady-state distributions and dynamics of FM4-64-labeled lipids and YFP-tagged transmembrane (TM) proteins in tobacco (Nicotiana tabacum) pollen tubes growing normally or treated with Brefeldin A to block secretion. We established that (1) secretion delivers TM proteins and recycled membrane lipids to the same apical PM domain, and (2) FM4-64-labeled lipids, but not the analyzed TM proteins, undergo endocytic recycling within a clearly defined subapical region. We mathematically modeled the steady-state PM distributions of all analyzed markers to better understand differences between them and to support the experimental data. Finally, we mapped subapical F-actin fringe and trans-Golgi network positioning relative to sites of bulk secretion and endocytosis to further characterize functions of these structures in apical membrane traffic. Our results support and further define the classical model of apical membrane traffic at the tip of elongating pollen tubes.
Collapse
Affiliation(s)
- Gleb Grebnev
- Cell Biology, Department of Biology, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
| | - Mislav Cvitkovic
- PULS Group, Department of Physics, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Carolin Fritz
- Cell Biology, Department of Biology, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Ana-Suncana Smith
- PULS Group, Department of Physics, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Benedikt Kost
- Cell Biology, Department of Biology, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
11
|
Liu HT, Ji Y, Liu Y, Tian SH, Gao QH, Zou XH, Yang J, Dong C, Tan JH, Ni DA, Duan K. The sugar transporter system of strawberry: genome-wide identification and expression correlation with fruit soluble sugar-related traits in a Fragaria × ananassa germplasm collection. HORTICULTURE RESEARCH 2020; 7:132. [PMID: 32793356 PMCID: PMC7385174 DOI: 10.1038/s41438-020-00359-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 05/24/2023]
Abstract
Sugar from plant photosynthesis is a basic requirement for life activities. Sugar transporters are the proteins that mediate sugar allocation among or within source/sink organs. The transporters of the major facilitator superfamily (MFS) targeting carbohydrates represent the largest family of sugar transporters in many plants. Strawberry (Fragaria × ananassa Duchesne) is an important crop appreciated worldwide for its unique fruit flavor. The involvement of MFS sugar transporters (STs) in cultivated strawberry fruit sugar accumulation is largely unknown. In this work, we characterized the genetic variation associated with fruit soluble sugars in a collection including 154 varieties. Then, a total of 67 ST genes were identified in the v4.0 genome integrated with the v4.0.a2 protein database of F. vesca, the dominant subgenome provider for modern cultivated strawberry. Phylogenetic analysis updated the nomenclature of strawberry ST homoeologs. Both the chromosomal distribution and structural characteristics of the ST family were improved. Semi-RT-PCR analysis in nine tissues from cv. Benihoppe screened 34 highly expressed ST genes in fruits. In three varieties with dramatically differing fruit sugar levels, qPCR integrated with correlation analysis between ST transcript abundance and sugar content identified 13 sugar-correlated genes. The correlations were re-evaluated across 19 varieties, including major commercial cultivars grown in China. Finally, a model of the contribution of the sugar transporter system to subcellular sugar allocation in strawberry fruits was proposed. Our work highlights the involvement of STs in controlling strawberry fruit soluble sugars and provides candidates for the future functional study of STs in strawberry development and responses and a new approach for strawberry genetic engineering and molecular breeding.
Collapse
Affiliation(s)
- Hai-Ting Liu
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418 China
| | - Ying Ji
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418 China
| | - Ya Liu
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
| | - Shu-Hua Tian
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
| | - Qing-Hua Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418 China
| | - Xiao-Hua Zou
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
| | - Jing Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
| | - Chao Dong
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
| | - Jia-Hui Tan
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
- Environmental Engineering College, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008 China
| | - Di-An Ni
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418 China
| | - Ke Duan
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403 China
| |
Collapse
|
12
|
Ram C, Annamalai M, Koramutla MK, Kansal R, Arora A, Jain PK, Bhattacharya R. Characterization of STP4 promoter in Indian mustard Brassica juncea for use as an aphid responsive promoter. Biotechnol Lett 2020; 42:2013-2033. [PMID: 32676799 DOI: 10.1007/s10529-020-02961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Brassica juncea, a major oilseed crop, suffers substantial yield losses due to infestation by mustard aphids (Lipaphis erysimi). Unavailability of resistance genes within the accessible gene pool underpins significance of the transgenic strategy in developing aphid resistance. In this study, we aimed for the identification of an aphid-responsive promoter from B. juncea, based on the available genomic resources. RESULTS A monosaccharide transporter gene, STP4 in B. juncea was activated by aphids and sustained increased expression as the aphids colonized the plants. We cloned the upstream intergenic region of STP4 and validated its stand-alone aphid-responsive promoter activity. Further, deletion analysis identified the putative cis-elements important for the aphid responsive promoter activity. CONCLUSION The identified STP4 promoter can potentially be used for driving high level aphid-inducible expression of transgenes in plants. Use of aphid-responsive promoter instead of constitutive promoters can potentially reduce the metabolic burden of transgene-expression on the host plant.
Collapse
Affiliation(s)
- Chet Ram
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Muthuganeshan Annamalai
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Murali Krishna Koramutla
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Rekha Kansal
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Pradeep K Jain
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Ramcharan Bhattacharya
- ICAR-National Institute for Plant Biotechnology, ICAR-Indian Agricultural Research Institute Campus, New Delhi, 110012, India.
| |
Collapse
|
13
|
Komaitis F, Kalliampakou K, Botou M, Nikolaidis M, Kalloniati C, Skliros D, Du B, Rennenberg H, Amoutzias GD, Frillingos S, Flemetakis E. Molecular and physiological characterization of the monosaccharide transporters gene family in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3110-3125. [PMID: 32016431 DOI: 10.1093/jxb/eraa055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Monosaccharide transporters (MSTs) represent key components of the carbon transport and partitioning mechanisms in plants, mediating the cell-to-cell and long-distance distribution of a wide variety of monosaccharides. In this study, we performed a thorough structural, molecular, and physiological characterization of the monosaccharide transporter gene family in the model legume Medicago truncatula. The complete set of MST family members was identified with a novel bioinformatic approach. Prolonged darkness was used as a test condition to identify the relevant transcriptomic and metabolic responses combining MST transcript profiling and metabolomic analysis. Our results suggest that MSTs play a pivotal role in the efficient partitioning and utilization of sugars, and possibly in the mechanisms of carbon remobilization in nodules upon photosynthate-limiting conditions, as nodules are forced to acquire a new role as a source of both C and N.
Collapse
Affiliation(s)
- Fotios Komaitis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Katerina Kalliampakou
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Maria Botou
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, Greece
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Chrysanthi Kalloniati
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Baoguo Du
- Institute of Forest Sciences, Faculty of Environment and Natural Resources, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Heinz Rennenberg
- Institute of Forest Sciences, Faculty of Environment and Natural Resources, Albert Ludwig University of Freiburg, Freiburg, Germany
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Grigoris D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Stathis Frillingos
- Laboratory of Biological Chemistry, Department of Medicine, University of Ioannina, Ioannina, Greece
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
14
|
Genome-wide identification, expression, and association analysis of the monosaccharide transporter (MST) gene family in peanut ( Arachis hypogaea L.). 3 Biotech 2020; 10:130. [PMID: 32154043 DOI: 10.1007/s13205-020-2123-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/05/2020] [Indexed: 10/25/2022] Open
Abstract
In this study, we reported the genome-wide analysis of the whole sugar transporter gene family of a legume species, peanut (Arachis hypogaea L.), including the chromosome locations, gene structures, phylogeny, expression patterns, as well as comparative genomic analysis with Arabidopsis, rice, grape, and soybean. A total of 76 AhMST genes (AhMST1-76) were identified from the peanut genome and located unevenly in 20 chromosomes. Phylogeny analysis indicated that the AhMSTs can be divided into eight groups including two undefined peanut-specific groups. Transcriptional profiles revealed that many AhMST genes showed tissue-specific expression, the majority of the AhMST genes mainly expressed in sink organs and floral organ of peanut. Chromosome distribution pattern and synteny analysis strongly indicated that genome-wide segmental and tandem duplication contributed to the expansion of peanut MST genes. Four common orthologs (AhMST9, AhMST13, AhMST40, and AhMST43) between peanut and the other four species were identified by comparative genomic analysis, which might play important roles in maintaining the growth and development of plant. Furthermore, four polymorphic sites in AhMST11, AhMST13, and AhMST60 were significantly correlated with hundred pod weight (HPW) and hundred seed weight (HSW) by association analysis. In a word, these results will provide new insights for understanding the functions of AhMST family members to sugar transporting and the potential for yield improvement in peanut.
Collapse
|
15
|
Tang RJ, Luan M, Wang C, Lhamo D, Yang Y, Zhao FG, Lan WZ, Fu AG, Luan S. Plant Membrane Transport Research in the Post-genomic Era. PLANT COMMUNICATIONS 2020; 1:100013. [PMID: 33404541 PMCID: PMC7747983 DOI: 10.1016/j.xplc.2019.100013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/14/2019] [Accepted: 12/06/2019] [Indexed: 05/17/2023]
Abstract
Membrane transport processes are indispensable for many aspects of plant physiology including mineral nutrition, solute storage, cell metabolism, cell signaling, osmoregulation, cell growth, and stress responses. Completion of genome sequencing in diverse plant species and the development of multiple genomic tools have marked a new era in understanding plant membrane transport at the mechanistic level. Genes coding for a galaxy of pumps, channels, and carriers that facilitate various membrane transport processes have been identified while multiple approaches are developed to dissect the physiological roles as well as to define the transport capacities of these transport systems. Furthermore, signaling networks dictating the membrane transport processes are established to fully understand the regulatory mechanisms. Here, we review recent research progress in the discovery and characterization of the components in plant membrane transport that take advantage of plant genomic resources and other experimental tools. We also provide our perspectives for future studies in the field.
Collapse
Affiliation(s)
- Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Mingda Luan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Dhondup Lhamo
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Yang Yang
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Fu-Geng Zhao
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wen-Zhi Lan
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ai-Gen Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Corresponding author
| |
Collapse
|
16
|
Niño-González M, Novo-Uzal E, Richardson DN, Barros PM, Duque P. More Transporters, More Substrates: The Arabidopsis Major Facilitator Superfamily Revisited. MOLECULAR PLANT 2019; 12:1182-1202. [PMID: 31330327 DOI: 10.1016/j.molp.2019.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 05/20/2023]
Abstract
The Major Facilitator Superfamily (MFS) is ubiquitous in living organisms and represents the largest group of secondary active membrane transporters. In plants, significant research efforts have focused on the role of specific families within the MFS, particularly those transporting macronutrients (C, N, and P) that constitute the vast majority of the members of this superfamily. Other MFS families remain less explored, although a plethora of additional substrates and physiological functions have been uncovered. Nevertheless, the lack of a systematic approach to analyzing the MFS as a whole has obscured the high diversity and versatility of these transporters. Here, we present a phylogenetic analysis of all annotated MFS domain-containing proteins encoded in the Arabidopsis thaliana genome and propose that this superfamily of transporters consists of 218 members, clustered in 22 families. In reviewing the available information regarding the diversity in biological functions and substrates of Arabidopsis MFS members, we provide arguments for intensified research on these membrane transporters to unveil the breadth of their physiological relevance, disclose the molecular mechanisms underlying their mode of action, and explore their biotechnological potential.
Collapse
Affiliation(s)
| | | | | | - Pedro M Barros
- Genomics of Plant Stress Unit, ITQB NOVA - Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
17
|
Strobl SM, Kischka D, Heilmann I, Mouille G, Schneider S. The Tonoplastic Inositol Transporter INT1 From Arabidopsis thaliana Impacts Cell Elongation in a Sucrose-Dependent Way. FRONTIERS IN PLANT SCIENCE 2018; 9:1657. [PMID: 30505313 PMCID: PMC6250803 DOI: 10.3389/fpls.2018.01657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/25/2018] [Indexed: 05/29/2023]
Abstract
The tonoplastic inositol transporter INT1 is the only known transport protein in Arabidopsis that facilitates myo-inositol import from the vacuole into the cytoplasm. Impairment of the release of vacuolar inositol by knockout of INT1 results in a severe inhibition of cell elongation in roots as well as in etiolated hypocotyls. Importantly, a more strongly reduced cell elongation was observed when sucrose was supplied in the growth medium, and this sucrose-dependent effect can be complemented by the addition of exogenous myo-inositol. Comparing int1 mutants (defective in transport) with mutants defective in myo-inositol biosynthesis (mips1 mutants) revealed that the sucrose-induced inhibition in cell elongation does not just depend on inositol depletion. Secondary effects as observed for altered availability of inositol in biosynthesis mutants, as disturbed membrane turnover, alterations in PIN protein localization or alterations in inositol-derived signaling molecules could be ruled out to be responsible for impairing the cell elongation in int1 mutants. Although the molecular mechanism remains to be elucidated, our data implicate a crucial role of INT1-transported myo-inositol in regulating cell elongation in a sucrose-dependent manner and underline recent reports of regulatory roles for sucrose and other carbohydrate intermediates as metabolic semaphores.
Collapse
Affiliation(s)
- Sabrina Maria Strobl
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Dominik Kischka
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Ingo Heilmann
- Department of Cellular Biochemistry, Institute for Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris Saclay, Versailles, France
| | - Sabine Schneider
- Molecular Plant Physiology, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
18
|
Sasse J, Martinoia E, Northen T. Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? TRENDS IN PLANT SCIENCE 2018; 23:25-41. [PMID: 29050989 DOI: 10.1016/j.tplants.2017.09.003] [Citation(s) in RCA: 778] [Impact Index Per Article: 129.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/25/2017] [Accepted: 09/07/2017] [Indexed: 05/18/2023]
Abstract
Plant health in natural environments depends on interactions with complex and dynamic communities comprising macro- and microorganisms. While many studies have provided insights into the composition of rhizosphere microbiomes (rhizobiomes), little is known about whether plants shape their rhizobiomes. Here, we discuss physiological factors of plants that may govern plant-microbe interactions, focusing on root physiology and the role of root exudates. Given that only a few plant transport proteins are known to be involved in root metabolite export, we suggest novel families putatively involved in this process. Finally, building off of the features discussed in this review, and in analogy to well-known symbioses, we elaborate on a possible sequence of events governing rhizobiome assembly.
Collapse
Affiliation(s)
- Joelle Sasse
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Enrico Martinoia
- Department of Plant and Microbial Biology, University of Zurich, Zurich 8008, Switzerland
| | - Trent Northen
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint Genome Institute, Walnut Creek, CA 94958, USA.
| |
Collapse
|
19
|
Borghi M, Fernie AR. Floral Metabolism of Sugars and Amino Acids: Implications for Pollinators' Preferences and Seed and Fruit Set. PLANT PHYSIOLOGY 2017; 175:1510-1524. [PMID: 28986424 PMCID: PMC5717749 DOI: 10.1104/pp.17.01164] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/04/2017] [Indexed: 05/10/2023]
Abstract
New discoveries open up future directions in the study of the primary metabolism of flowers.
Collapse
Affiliation(s)
- Monica Borghi
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
20
|
Hu W, Zhang H, Chen H, Tang M. Arbuscular mycorrhizas influence Lycium barbarum tolerance of water stress in a hot environment. MYCORRHIZA 2017; 27:451-463. [PMID: 28185001 DOI: 10.1007/s00572-017-0765-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/27/2017] [Indexed: 05/08/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi can assist their hosts to cope with water stress and other abiotic stresses in different ways. In order to test whether AM plants have a greater capacity than control plants to cope with water stress, we investigated the water status and photosynthetic capacity of Lycium barbarum colonized or not by the AM fungus Rhizophagus irregularis under three water conditions during a hot summer. Sugar levels and transcriptional responses of both plant and AM fungus aquaporin genes in roots were analyzed. Compared with control plants, AM plants increased transpiration rate and stomatal conductance but decreased leaf relative water content under moderate water stress. Severe water stress, however, did not inhibit the quantum yield of PSII photochemistry in AM plants versus control plants. AM plants had higher expression levels of plasma membrane intrinsic proteins or tonoplast intrinsic proteins and Rir-AQP2 and lower leaf temperature than control plants under dry-hot stress. Additionally, AM plant sugar levels under normal water conditions were similar to those of control plants under moderate water stress, but sugar levels of AM plants especially increased with severe water stress. When these aspects of performance of AM and control plants under different water conditions are compared overall, AM plants displayed an obvious superiority over control plants at coping with moderate water stress in the hot environment; AM plants maintained normal photochemical processes under severe water stress, while sugar levels were affected strongly.
Collapse
Affiliation(s)
- Wentao Hu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Haoqiang Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ming Tang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
21
|
Dual-targeting of Arabidopsis DMP1 isoforms to the tonoplast and the plasma membrane. PLoS One 2017; 12:e0174062. [PMID: 28384172 PMCID: PMC5383025 DOI: 10.1371/journal.pone.0174062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/02/2017] [Indexed: 12/26/2022] Open
Abstract
The reports of dual-targeted proteins in plants have steadily increased over the past years. The vast majority of these proteins are soluble proteins distributed between compartments of the non-secretory pathway, predominantly chloroplasts and mitochondria. In contrast, dual-targeted transmembrane proteins, especially of the secretory pathway, are rare and the mechanisms leading to their differential targeting remain largely unknown. Here, we report dual-targeting of the Arabidopsis DUF679 Membrane Protein 1 (DMP1) to the tonoplast (TP) and the plasma membrane (PM). In Arabidopsis and tobacco two equally abundant DMP1 isoforms are synthesized by alternative translation initiation: a full length protein, DMP1.1, and a truncated one, DMP1.2, which lacks the N-terminal 19 amino acids including a TP-targeting dileucine motif. Accumulation of DMP1.1 and DMP1.2 in the TP and the PM, respectively, is Brefeldin A-sensitive, indicating transit via the Golgi. However, DMP1.2 interacts with DMP1.1, leading to extensive rerouting of DMP1.2 to the TP and “eclipsed” localization of DMP1.2 in the PM where it is barely visible by confocal laser scanning microscopy but clearly detectable by membrane fractionation. It is demonstrated that eGFP fusion to either DMP1 terminus can cause mistargeting artifacts: C-terminal fusion to DMP1.1 or DMP1.2 results in altered ER export and N-terminal fusion to DMP1.1 causes mistargeting to the PM, presumably by masking of the TP targeting signal. These results illustrate how the interplay of alternative translation initiation, presence or absence of targeting information and rerouting due to protein-protein interaction determines the ultimate distribution of a transmembrane protein between two membranes.
Collapse
|
22
|
Punshon T, Jackson BP, Meharg AA, Warczack T, Scheckel K, Guerinot ML. Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:209-220. [PMID: 28043702 PMCID: PMC5303541 DOI: 10.1016/j.scitotenv.2016.12.111] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 05/20/2023]
Abstract
This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciation and availability, through to mechanisms of uptake by crop plants and potential mitigation strategies. This review makes a case for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to work toward a long-term solution to the presence of arsenic in agronomic systems. The past two decades have seen important advances in our understanding of how biogeochemical and physiological processes influence human exposure to soil arsenic, and this must now prompt an informed reconsideration and unification of regulations to protect the quality of agricultural and residential soils.
Collapse
Affiliation(s)
- Tracy Punshon
- Dartmouth College, Department of Biology, 78 College Street, Hanover, NH 03755, USA.
| | - Brian P Jackson
- Dartmouth College, Department of Earth Sciences, Hanover, NH 03755, USA.
| | - Andrew A Meharg
- Institute for Global Food Security, Queen's University Belfast, Belfast BT9 5HN, United Kingdom.
| | - Todd Warczack
- Dartmouth College, Department of Biology, 78 College Street, Hanover, NH 03755, USA.
| | - Kirk Scheckel
- USEPA Office of Research and Development, National Risk Management Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45224, USA.
| | - Mary Lou Guerinot
- Dartmouth College, Department of Biology, 78 College Street, Hanover, NH 03755, USA.
| |
Collapse
|
23
|
Duan GL, Hu Y, Schneider S, McDermott J, Chen J, Sauer N, Rosen BP, Daus B, Liu Z, Zhu YG. Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds. NATURE PLANTS 2016; 2:15202. [PMID: 27004129 PMCID: PMC4758254 DOI: 10.1038/nplants.2015.202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 11/16/2015] [Indexed: 05/02/2023]
Abstract
Arsenic contamination of groundwater and soils threatens the health of tens of millions of people worldwide. Understanding the way in which arsenic is taken up by crops such as rice, which serve as a significant source of arsenic in the human diet, is therefore important. Membrane transport proteins that catalyse arsenic uptake by roots, and translocation through the xylem to shoots, have been characterized in a number of plants, including rice. The transporters responsible for loading arsenic from the xylem into the phloem and on into the seeds, however, are yet to be identified. Here, we show that transporters responsible for inositol uptake in the phloem in Arabidopsis also transport arsenic. Transformation of Saccharomyces cerevisiae with AtINT2 or AtINT4 led to increased arsenic accumulation and increased sensitivity to arsenite. Expression of AtINT2 in Xenopus laevis oocytes also induced arsenite import. Disruption of AtINT2 or AtINT4 in Arabidopsis thaliana led to a reduction in phloem, silique and seed arsenic concentrations in plants fed with arsenite through the roots, relative to wild-type plants. These plants also exhibited a large drop in silique and seed arsenic concentrations when fed with arsenite through the leaves. We conclude that in Arabidopsis, inositol transporters are responsible for arsenite loading into the phloem, the key source of arsenic in seeds.
Collapse
Affiliation(s)
- Gui-Lan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ying Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sabine Schneider
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
- Erlangen Center of Plant Science (ECROPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Joseph McDermott
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| | - Norbert Sauer
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
- Erlangen Center of Plant Science (ECROPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| | - Birgit Daus
- Helmholtz Centre for Environmental Research GmbH – UFZ, Department Analytical Chemistry, Permoserstrasse 15/04318 Leipzig/Germany
| | - Zijuan Liu
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Science, Xiamen, China
| |
Collapse
|
24
|
Fettke J, Fernie AR. Intracellular and cell-to-apoplast compartmentation of carbohydrate metabolism. TRENDS IN PLANT SCIENCE 2015; 20:490-497. [PMID: 26008154 DOI: 10.1016/j.tplants.2015.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/20/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
In most plants, carbohydrates represent the major energy store as well as providing the building blocks for essential structural polymers. Although the major pathways for carbohydrate biosynthesis, degradation, and transport are well characterized, several key steps have only recently been discovered. In addition, several novel minor metabolic routes have been uncovered in the past few years. Here we review current studies of plant carbohydrate metabolism detailing the expanding compendium of functionally characterized transport proteins as well as our deeper comprehension of more minor and conditionally activated metabolic pathways. We additionally explore the pertinent questions that will allow us to enhance our understanding of the response of both major and minor carbohydrate fluxes to changing cellular circumstances.
Collapse
Affiliation(s)
- Joerg Fettke
- Biopolymer Analytics, University of Potsdam, Potsdam-Golm, Germany.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
25
|
Schneider S. Inositol transport proteins. FEBS Lett 2015; 589:1049-58. [DOI: 10.1016/j.febslet.2015.03.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/05/2015] [Accepted: 03/18/2015] [Indexed: 12/27/2022]
|
26
|
Sambe MAN, He X, Tu Q, Guo Z. A cold-induced myo-inositol transporter-like gene confers tolerance to multiple abiotic stresses in transgenic tobacco plants. PHYSIOLOGIA PLANTARUM 2015; 153:355-64. [PMID: 25131886 DOI: 10.1111/ppl.12249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/30/2014] [Accepted: 04/26/2014] [Indexed: 05/15/2023]
Abstract
A full length cDNA encoding a myo-inositol transporter-like protein, named as MfINT-like, was cloned from Medicago sativa subsp. falcata (herein falcata), a species with greater cold tolerance than alfalfa (M. sativa subsp. sativa). MfINT-like is located on plasma membranes. MfINT-like transcript was induced 2-4 h after exogenous myo-inositol treatment, 24-96 h with cold, and 96 h by salinity. Given that myo-inositol accumulates higher in falcata after 24 h of cold treatment, myo-inositol is proposed to be involved in cold-induced expression of MfINT-like. Higher levels of myo-inositol was observed in leaves of transgenic tobacco plants overexpressing MfINT-like than the wild-type but not in the roots of plants grown on myo-inositol containing medium, suggesting that transgenic plants had higher myo-inositol transport activity than the wild-type. Transgenic plants survived better to freezing temperature, and had lower ion leakage and higher maximal photochemical efficiency of photosystem II (Fv /Fm ) after chilling treatment. In addition, greater plant fresh weight was observed in transgenic plants as compared with the wild-type when plants were grown under drought or salinity stress. The results suggest that MfINT-like mediated transport of myo-inositol is associated with plant tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Mame Abdou Nahr Sambe
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China
| | | | | | | |
Collapse
|
27
|
Wolfenstetter S, Chakravorty D, Kula R, Urano D, Trusov Y, Sheahan MB, McCurdy DW, Assmann SM, Jones AM, Botella JR. Evidence for an unusual transmembrane configuration of AGG3, a class C Gγ subunit of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:388-98. [PMID: 25430066 PMCID: PMC4334566 DOI: 10.1111/tpj.12732] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 05/20/2023]
Abstract
Heterotrimeric G proteins are crucial for the perception of external signals and subsequent signal transduction in animal and plant cells. In both model systems, the complex comprises one Gα, one Gβ, and one Gγ subunit. However, in addition to the canonical Gγ subunits (class A), plants also possess two unusual, plant-specific classes of Gγ subunits (classes B and C) that have not yet been found in animals. These include Gγ subunits lacking the C-terminal CaaX motif (class B), which is important for membrane anchoring of the protein; the presence of such subunits gives rise to a flexible sub-population of Gβ/γ heterodimers that are not necessarily restricted to the plasma membrane. Plants also contain class C Gγ subunits, which are twice the size of canonical Gγ subunits, with a predicted transmembrane domain and a large cysteine-rich extracellular C-terminus. However, neither the presence of the transmembrane domain nor the membrane topology have been unequivocally demonstrated. Here, we provide compelling evidence that AGG3, a class C Gγ subunit of Arabidopsis, contains a functional transmembrane domain, which is sufficient but not essential for plasma membrane localization, and that the cysteine-rich C-terminus is extracellular.
Collapse
Affiliation(s)
- Susanne Wolfenstetter
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - David Chakravorty
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia
- Biology Department, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802, USA
| | - Ryan Kula
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Daisuke Urano
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, United States of America
| | - Yuri Trusov
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia
| | - Michael B. Sheahan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, 2308 Australia
| | - David W. McCurdy
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, 2308 Australia
| | - Sarah M. Assmann
- Biology Department, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802, USA
| | - Alan M. Jones
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, United States of America
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States of America
- To whom correspondence should be addressed.
| | - Jose R. Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
28
|
Reuscher S, Akiyama M, Yasuda T, Makino H, Aoki K, Shibata D, Shiratake K. The sugar transporter inventory of tomato: genome-wide identification and expression analysis. PLANT & CELL PHYSIOLOGY 2014; 55:1123-41. [PMID: 24833026 DOI: 10.1093/pcp/pcu052] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The mobility of sugars between source and sink tissues in plants depends on sugar transport proteins. Studying the corresponding genes allows the manipulation of the sink strength of developing fruits, thereby improving fruit quality for human consumption. Tomato (Solanum lycopersicum) is both a major horticultural crop and a model for the development of fleshy fruits. In this article we provide a comprehensive inventory of tomato sugar transporters, including the SUCROSE TRANSPORTER family, the SUGAR TRANSPORTER PROTEIN family, the SUGAR FACILITATOR PROTEIN family, the POLYOL/MONOSACCHARIDE TRANSPORTER family, the INOSITOL TRANSPORTER family, the PLASTIDIC GLUCOSE TRANSLOCATOR family, the TONOPLAST MONOSACCHARIDE TRANSPORTER family and the VACUOLAR GLUCOSE TRANSPORTER family. Expressed sequence tag (EST) sequencing and phylogenetic analyses established a nomenclature for all analyzed tomato sugar transporters. In total we identified 52 genes in tomato putatively encoding sugar transporters. The expression of 29 sugar transporter genes in vegetative tissues and during fruit development was analyzed. Several sugar transporter genes were expressed in a tissue- or developmental stage-specific manner. This information will be helpful to better understand source to sink movement of photoassimilates in tomato. Identification of fruit-specific sugar transporters might be a first step to find novel genes contributing to tomato fruit sugar accumulation.
Collapse
Affiliation(s)
- Stefan Reuscher
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 JapanThese authors contributed equally to this work
| | - Masahito Akiyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 JapanThese authors contributed equally to this work
| | - Tomohide Yasuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | - Haruko Makino
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen-cho, Sakai, 599-8531 Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, Kazusa-kamatari, Kisarazu, 292-0818 Japan
| | - Katsuhiro Shiratake
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| |
Collapse
|
29
|
Vogelmann K, Subert C, Danzberger N, Drechsel G, Bergler J, Kotur T, Burmester T, Hoth S. Plasma membrane-association of SAUL1-type plant U-box armadillo repeat proteins is conserved in land plants. FRONTIERS IN PLANT SCIENCE 2014; 5:37. [PMID: 24600457 PMCID: PMC3928556 DOI: 10.3389/fpls.2014.00037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/27/2014] [Indexed: 05/08/2023]
Abstract
Post-translational protein modification plays a pivotal role in the regulation and specific turnover of proteins. One of these important modifications is the ubiquitination of target proteins, which can occur at distinct cellular compartments. At the plasma membrane, ubiquitination regulates the internalization and thus trafficking of membrane proteins such as receptors and channels. The Arabidopsis plant U-box (PUB) armadillo repeat (PUB-ARM) ubiquitin ligase SAUL1 (SENESCENCE-ASSOCIATED UBIQUITIN LIGASE1) is part of the ubiquitination machinery at the plasma membrane. In contrast to most other PUB-ARM proteins, SAUL1 carries additional C-terminal ARM repeats responsible for plasma membrane-association. Here, we demonstrated that the C-terminal ARM repeat domain is also essential and sufficient to mediate plasma membrane-association of the closest Arabidopis paralog AtPUB43. We investigated targeting of PUB-ARM ubiquitin ligases of different plant species to find out whether plasma membrane-association of SAUL1-type PUB-ARM proteins is conserved. Phylogenetic analysis identified orthologs of SAUL1 in these plant species. Intracellular localization of transiently expressed GFP fusion proteins revealed that indeed plasma membrane-association due to additional C-terminal ARM repeats represents a conserved feature of SAUL1-type proteins. Analyses of transgenic Arabidopsis plants overexpressing N-terminally masked or truncated proteins revealed that interfering with the function of SAUL1-type proteins resulted in severe growth defects. Our results suggest an ancient origin of ubiquitination at the plasma membrane in the evolution of land plants.
Collapse
Affiliation(s)
- Katja Vogelmann
- Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität HamburgHamburg, Germany
| | - Christa Subert
- Department Biologie, Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| | - Nina Danzberger
- Department Biologie, Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-NürnbergErlangen, Germany
| | - Gabriele Drechsel
- Zentrum für Molekularbiologie der Pflanzen, Allgemeine Genetik, Universität TübingenTübingen, Germany
| | - Johannes Bergler
- Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität HamburgHamburg, Germany
| | - Tanja Kotur
- Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität HamburgHamburg, Germany
| | - Thorsten Burmester
- Stoffwechselphysiologie, Biozentrum Grindel, Universität HamburgHamburg, Germany
| | - Stefan Hoth
- Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität HamburgHamburg, Germany
- *Correspondence: Stefan Hoth, Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany e-mail:
| |
Collapse
|
30
|
Rodriguez-Enriquez MJ, Mehdi S, Dickinson HG, Grant-Downton RT. A novel method for efficient in vitro germination and tube growth of Arabidopsis thaliana pollen. THE NEW PHYTOLOGIST 2013; 197:668-679. [PMID: 23173941 DOI: 10.1111/nph.12037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/04/2012] [Indexed: 05/06/2023]
Abstract
In addition to its importance in studies of plant reproduction and fertility, pollen is as widely employed as a model system of cell growth and development. This work demands robust, reproducible methods to induce pollen germination and morphologically normal growth of pollen tubes in vitro. Despite numerous advantages of Arabidopsis thaliana as a model plant, such experiments on pollen germination and pollen tube growth have often proved challenging. Our new method employs a physical cellulosic membrane, overlying an agarose substrate. By modulating the substrate composition, we provide important insights into the mechanisms promoting pollen growth both in vitro and in vivo. This effective new technical approach to A. thaliana pollen germination and tube growth results in swift, consistent and unprecedented levels of germination to over 90%. It can also promote rapid growth of long, morphologically normal pollen tubes. This technical development demonstrates that exogenous spermidine and a cellulosic substrate are key factors in stimulating germination. It has potential to greatly assist the study of reproduction in A. thaliana and its closest relatives, not only for the study of germination levels and pollen tube growth dynamics by microscopy, but also for biochemical and molecular analysis of germinating pollen.
Collapse
Affiliation(s)
- M J Rodriguez-Enriquez
- Instituto de Bioorgánica Antonio González (IUBO), University of La Laguna, Avenida Astrofísico Francisco Sánchez, 38206, La Laguna, Tenerife, Spain
| | - S Mehdi
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - H G Dickinson
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - R T Grant-Downton
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
31
|
Doidy J, Grace E, Kühn C, Simon-Plas F, Casieri L, Wipf D. Sugar transporters in plants and in their interactions with fungi. TRENDS IN PLANT SCIENCE 2012; 17:413-22. [PMID: 22513109 DOI: 10.1016/j.tplants.2012.03.009] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/06/2012] [Accepted: 03/17/2012] [Indexed: 05/18/2023]
Abstract
Sucrose and monosaccharide transporters mediate long distance transport of sugar from source to sink organs and constitute key components for carbon partitioning at the whole plant level and in interactions with fungi. Even if numerous families of plant sugar transporters are defined; efflux capacities, subcellular localization and association to membrane rafts have only been recently reported. On the fungal side, the investigation of sugar transport mechanisms in mutualistic and pathogenic interactions is now emerging. Here, we review the essential role of sugar transporters for distribution of carbohydrates inside plant cells, as well as for plant-fungal interaction functioning. Altogether these data highlight the need for a better comprehension of the mechanisms underlying sugar exchanges between fungi and their host plants.
Collapse
Affiliation(s)
- Joan Doidy
- UMR INRA 1347, Agrosup, Université de Bourgogne, Agroécologie, Pôle Interactions Plantes Microorganismes ERL CNRS 6300, BP 86510, 21065 Dijon Cedex, France
| | | | | | | | | | | |
Collapse
|
32
|
Gonzalez-Salgado A, Steinmann ME, Greganova E, Rauch M, Mäser P, Sigel E, Bütikofer P. myo-Inositol uptake is essential for bulk inositol phospholipid but not glycosylphosphatidylinositol synthesis in Trypanosoma brucei. J Biol Chem 2012; 287:13313-23. [PMID: 22351763 DOI: 10.1074/jbc.m112.344812] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
myo-Inositol is an essential precursor for the production of inositol phosphates and inositol phospholipids in all eukaryotes. Intracellular myo-inositol is generated by de novo synthesis from glucose 6-phosphate or is provided from the environment via myo-inositol symporters. We show that in Trypanosoma brucei, the causative pathogen of human African sleeping sickness and nagana in domestic animals, myo-inositol is taken up via a specific proton-coupled electrogenic symport and that this transport is essential for parasite survival in culture. Down-regulation of the myo-inositol transporter using RNA interference inhibited uptake of myo-inositol and blocked the synthesis of the myo-inositol-containing phospholipids, phosphatidylinositol and inositol phosphorylceramide; in contrast, it had no effect on glycosylphosphatidylinositol production. This together with the unexpected localization of the myo-inositol transporter in both the plasma membrane and the Golgi demonstrate that metabolism of endogenous and exogenous myo-inositol in T. brucei is strictly segregated.
Collapse
Affiliation(s)
- Amaia Gonzalez-Salgado
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
33
|
Wippel K, Sauer N. Arabidopsis SUC1 loads the phloem in suc2 mutants when expressed from the SUC2 promoter. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:669-79. [PMID: 22021573 PMCID: PMC3254675 DOI: 10.1093/jxb/err255] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/18/2011] [Accepted: 07/27/2011] [Indexed: 05/18/2023]
Abstract
Active loading of sucrose into phloem companion cells (CCs) is an essential process in apoplastic loaders, such as Arabidopsis or tobacco (Nicotiana sp.), and is even used by symplastic loaders such as melon (Cucumis melo) under certain stress conditions. Reduction of the amount or complete removal of the transporters catalysing this transport step results in severe developmental defects. Here we present analyses of two Arabidopsis lines, suc2-4 and suc2-5, that carry a null allele of the SUC2 gene which encodes the Arabidopsis phloem loader. These lines were complemented with constructs expressing either the Arabidopsis SUC1 or the Ustilago maydis srt1 cDNA from the SUC2 promoter. Both SUC1 and Srt1 are energy-dependent sucrose/H(+) symporters and differ in specific kinetic properties from the SUC2 protein. Transgene expression was confirmed by RT-PCRs, the subcellular localization of Srt1 in planta with an Srt1-RFP fusion, and the correct CC-specific localization of the recombinant proteins by immunolocalization with anti-Srt1 and anti-SUC1 antisera. The transport capacity of Srt1 was studied in Srt1-GFP expressing Arabidopsis protoplasts. Although both proteins were found exclusively in CCs, only SUC1 complemented the developmental defects of suc2-4 and suc2-5 mutants. As SUC1 and Srt1 are well characterized, this result provides an insight into the properties that are essential for sucrose transporters to load the phloem successfully.
Collapse
Affiliation(s)
- Kathrin Wippel
- Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Norbert Sauer
- Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
- Erlangen Center of Plant Science (ECROPS), Universität Erlangen-Nürnberg, Staudtstraße 5, D-91058 Erlangen, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Wolfenstetter S, Wirsching P, Dotzauer D, Schneider S, Sauer N. Routes to the tonoplast: the sorting of tonoplast transporters in Arabidopsis mesophyll protoplasts. THE PLANT CELL 2012; 24:215-32. [PMID: 22253225 PMCID: PMC3289566 DOI: 10.1105/tpc.111.090415] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/22/2011] [Accepted: 12/28/2011] [Indexed: 05/05/2023]
Abstract
Vacuoles perform a multitude of functions in plant cells, including the storage of amino acids and sugars. Tonoplast-localized transporters catalyze the import and release of these molecules. The mechanisms determining the targeting of these transporters to the tonoplast are largely unknown. Using the paralogous Arabidopsis thaliana inositol transporters INT1 (tonoplast) and INT4 (plasma membrane), we performed domain swapping and mutational analyses and identified a C-terminal di-leucine motif responsible for the sorting of higher plant INT1-type transporters to the tonoplast in Arabidopsis mesophyll protoplasts. We demonstrate that this motif can reroute other proteins, such as INT4, SUCROSE TRANSPORTER2 (SUC2), or SWEET1, to the tonoplast and that the position of the motif relative to the transmembrane helix is critical. Rerouted INT4 is functionally active in the tonoplast and complements the growth phenotype of an int1 mutant. In Arabidopsis plants defective in the β-subunit of the AP-3 adaptor complex, INT1 is correctly localized to the tonoplast, while sorting of the vacuolar sucrose transporter SUC4 is blocked in cis-Golgi stacks. Moreover, we demonstrate that both INT1 and SUC4 trafficking to the tonoplast is sensitive to brefeldin A. Our data show that plants possess at least two different Golgi-dependent targeting mechanisms for newly synthesized transporters to the tonoplast.
Collapse
Affiliation(s)
| | | | | | | | - Norbert Sauer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Molecular Plant Physiology and ECROPS (Erlangen Center of Plant Science), D-91058 Erlangen, Germany
| |
Collapse
|
35
|
Slewinski TL. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective. MOLECULAR PLANT 2011; 4:641-62. [PMID: 21746702 DOI: 10.1093/mp/ssr051] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Vascular plants contain two gene families that encode monosaccharide transporter proteins. The classical monosaccharide transporter(-like) gene superfamily is large and functionally diverse, while the recently identified SWEET transporter family is smaller and, thus far, only found to transport glucose. These transporters play essential roles at many levels, ranging from organelles to the whole plant. Many family members are essential for cellular homeostasis and reproductive success. Although most transporters do not directly participate in long-distance transport, their indirect roles greatly impact carbon allocation and transport flux to the heterotrophic tissues of the plant. Functional characterization of some members from both gene families has revealed their diverse roles in carbohydrate partitioning, phloem function, resource allocation, plant defense, and sugar signaling. This review highlights the broad impacts and implications of monosaccharide transport by describing some of the functional roles of the monosaccharide transporter(-like) superfamily and the SWEET transporter family.
Collapse
Affiliation(s)
- Thomas L Slewinski
- Department of Plant Biology, Cornell University, 262 Plant Science Building, Ithaca, NY 14853, USA.
| |
Collapse
|
36
|
Ruiz-Medrano R, Xoconostle-Cázares B, Ham BK, Li G, Lucas WJ. Vascular expression in Arabidopsis is predicted by the frequency of CT/GA-rich repeats in gene promoters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:130-44. [PMID: 21435051 DOI: 10.1111/j.1365-313x.2011.04581.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Phloem-transported signals play an important role in regulating plant development and in orchestrating responses to environmental stimuli. Among such signals, phloem-mobile RNAs have been shown to play an important role as long-distance signaling agents. At maturity, angiosperm sieve elements are enucleate, and thus transcripts in the phloem translocation stream probably originate from the nucleate companion cells. In the present study, a pumpkin (Cucurbita maxima) phloem transcriptome was used to test for the presence of common motifs within the promoters of this unique set of genes, which may function to coordinate expression in cells of the vascular system. A bioinformatics analysis of the upstream sequences from 150 Arabidopsis genes homologous to members of the pumpkin phloem transcriptome identified degenerate sequences containing CT/GA- and GT/CA-rich motifs that were common to many of these promoters. Parallel studies performed on genes shown previously to be expressed in phloem tissues identified similar motifs. An expanded analysis, based on homologs of the pumpkin phloem transcriptome from cucumber (Cucumis sativus), identified similar sets of common motifs within the promoters of these genes. Promoter analysis offered support for the hypothesis that these motifs regulate expression within the vascular system. Our findings are discussed in terms of a role for these motifs in coordinating gene expression within the companion cell/sieve element system. These motifs could provide a useful bioinformatics tool for genome-wide screens on plants for which phloem tissues cannot readily be obtained.
Collapse
Affiliation(s)
- Roberto Ruiz-Medrano
- Department of Biotechnology and Bioengineering, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida IPN 2508, Zacatenco, 07360 Mexico DF, Mexico
| | | | | | | | | |
Collapse
|
37
|
Endres S, Tenhaken R. Down-regulation of the myo-inositol oxygenase gene family has no effect on cell wall composition in Arabidopsis. PLANTA 2011; 234:157-69. [PMID: 21394467 PMCID: PMC3123461 DOI: 10.1007/s00425-011-1394-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 02/24/2011] [Indexed: 05/19/2023]
Abstract
The enzyme myo-inositol oxygenase (MIOX; E.C. 1.13.99.1) catalyzes the ring-opening four-electron oxidation of myo-inositol into glucuronic acid, which is subsequently activated to UDP-glucuronic acid (UDP-GlcA) and serves as a precursor for plant cell wall polysaccharides. Starting from single T-DNA insertion lines in different MIOX-genes a quadruple knockdown (miox1/2/4/5-mutant) was obtained by crossing, which exhibits greater than 90% down-regulation of all four functional MIOX genes. Miox1/2/4/5-mutant shows no visible phenotype and produces viable pollen. The alternative pathway to UDP-glucuronic acid via UDP-glucose is upregulated in the miox1/2/4/5-mutant as a compensatory mechanism. Miox1/2/4/5-mutant is impaired in the utilization of myo-inositol for seedling growth. The incorporation of myo-inositol derived sugars into cell walls is strongly (>90%) inhibited. Instead, myo-inositol and metabolites produced from myo-inositol such as galactinol accumulate in the miox1/2/4/5-mutant. The increase in galactinol and raffinose family oligosaccharides does not enhance stress tolerance. The ascorbic acid levels are the same in mutant and wild type plants.
Collapse
Affiliation(s)
- Stefanie Endres
- Department of Cell Biology, Plant Physiology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| | - Raimund Tenhaken
- Department of Cell Biology, Plant Physiology, University of Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria
| |
Collapse
|
38
|
Lahuta LB, Dzik T. D-chiro-inositol affects accumulation of raffinose family oligosaccharides in developing embryos of Pisum sativum. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:352-8. [PMID: 20947202 DOI: 10.1016/j.jplph.2010.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 05/30/2023]
Abstract
Developing garden pea embryos are able to take up exogenously applied cyclitols: myo-inositol, which naturally occurs in pea, and two cyclitols absent in pea plants: d-chiro-inositol and d-pinitol. The competition in the uptake of cyclitols by pea embryo, insensitivity to glucose and sucrose, and susceptibility to inhibitor(s) of H(+)-symporters (e.g. CCCP and antimycin A) suggest that a common cyclitol transporter is involved. Both d-chiro-inositol and d-pinitol can be translocated through the pea plant to developing embryos. During seed maturation drying, they are used for synthesis of mainly mono-galactosides, such as fagopyritol B1 and galactosyl pinitol A. Accumulation of d-chiro-inositol (and formation of fagopyritols), but not d-pinitol, strongly reduces accumulation of verbascose, the main raffinose oligosaccharide in pea seeds. The reasons for the observed changes are discussed.
Collapse
Affiliation(s)
- Lesław B Lahuta
- Department of Plant Physiology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Oczapowskiego, Poland.
| | | |
Collapse
|
39
|
Cotsaftis O, Plett D, Johnson AAT, Walia H, Wilson C, Ismail AM, Close TJ, Tester M, Baumann U. Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress. MOLECULAR PLANT 2011; 4:25-41. [PMID: 20924028 DOI: 10.1093/mp/ssq056] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Elevated salinity imposes osmotic and ion toxicity stresses on living cells and requires a multitude of responses in order to enable plant survival. Building on earlier work profiling transcript levels in rice (Oryza sativa) shoots of FL478, a salt-tolerant indica recombinant inbred line, and IR29, a salt-sensitive cultivar, transcript levels were compared in roots of these two accessions as well as in the roots of two additional salt-tolerant indica genotypes, the landrace Pokkali and the recombinant inbred line IR63731. The aim of this study was to compare transcripts in the sensitive and the tolerant lines in order to identify genes likely to be involved in plant salinity tolerance, rather than in responses to salinity per se. Transcript profiles of several gene families with known links to salinity tolerance are described (e.g. HKTs, NHXs). The putative function of a set of genes identified through their salt responsiveness, transcript levels, and/or chromosomal location (i.e. underneath QTLs for salinity tolerance) is also discussed. Finally, the parental origin of the Saltol region in FL478 is further investigated. Overall, the dataset presented appears to be robust and it seems likely that this system could provide a reliable strategy for the discovery of novel genes involved in salinity tolerance.
Collapse
Affiliation(s)
- Olivier Cotsaftis
- Australian Centre for Plant Functional Genomics, Private Mail Bag 1, Glen Osmond, SA 5064, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Afoufa-Bastien D, Medici A, Jeauffre J, Coutos-Thévenot P, Lemoine R, Atanassova R, Laloi M. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling. BMC PLANT BIOLOGY 2010; 10:245. [PMID: 21073695 PMCID: PMC3095327 DOI: 10.1186/1471-2229-10-245] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 11/12/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. RESULTS In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters), has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3), one polyol (VvPMT5) and one sucrose (VvSUC27) transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2) and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2) genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5), in roots (VvHT2) or in mature leaves (VvHT5). CONCLUSIONS This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and revealed that sugar transporter gene families in this woody plant are strongly comparable to those of herbaceous species. Dedicated macroarrays have provided a Vitis sugar transporter genes expression profiling, which will likely contribute to understand their physiological functions in plant and berry development. The present results might also have a significant impact on our knowledge on plant sugar transporters.
Collapse
Affiliation(s)
- Damien Afoufa-Bastien
- UMR-CNRS-UP 6503 - LACCO - Laboratoire de Catalyse en Chimie Organique - Equipe Physiologie Moléculaire du Transport de Sucres - Université de Poitiers - Bâtiment Botanique - 40 Avenue du Recteur Pineau, 86022 Poitiers cedex, France
| | - Anna Medici
- UMR-CNRS-UP 6503 - LACCO - Laboratoire de Catalyse en Chimie Organique - Equipe Physiologie Moléculaire du Transport de Sucres - Université de Poitiers - Bâtiment Botanique - 40 Avenue du Recteur Pineau, 86022 Poitiers cedex, France
| | - Julien Jeauffre
- UMR-CNRS-UP 6503 - LACCO - Laboratoire de Catalyse en Chimie Organique - Equipe Physiologie Moléculaire du Transport de Sucres - Université de Poitiers - Bâtiment Botanique - 40 Avenue du Recteur Pineau, 86022 Poitiers cedex, France
- UMR Génétique et Horticulture (GenHort) - INRA/INH/UA - BP 60057 - 49071 Beaucouzé cedex, France
| | - Pierre Coutos-Thévenot
- UMR-CNRS-UP 6503 - LACCO - Laboratoire de Catalyse en Chimie Organique - Equipe Physiologie Moléculaire du Transport de Sucres - Université de Poitiers - Bâtiment Botanique - 40 Avenue du Recteur Pineau, 86022 Poitiers cedex, France
| | - Rémi Lemoine
- UMR-CNRS-UP 6503 - LACCO - Laboratoire de Catalyse en Chimie Organique - Equipe Physiologie Moléculaire du Transport de Sucres - Université de Poitiers - Bâtiment Botanique - 40 Avenue du Recteur Pineau, 86022 Poitiers cedex, France
| | - Rossitza Atanassova
- UMR-CNRS-UP 6503 - LACCO - Laboratoire de Catalyse en Chimie Organique - Equipe Physiologie Moléculaire du Transport de Sucres - Université de Poitiers - Bâtiment Botanique - 40 Avenue du Recteur Pineau, 86022 Poitiers cedex, France
| | - Maryse Laloi
- UMR-CNRS-UP 6503 - LACCO - Laboratoire de Catalyse en Chimie Organique - Equipe Physiologie Moléculaire du Transport de Sucres - Université de Poitiers - Bâtiment Botanique - 40 Avenue du Recteur Pineau, 86022 Poitiers cedex, France
| |
Collapse
|
42
|
Dusotoit-Coucaud A, Porcheron B, Brunel N, Kongsawadworakul P, Franchel J, Viboonjun U, Chrestin H, Lemoine R, Sakr S. Cloning and characterization of a new polyol transporter (HbPLT2) in Hevea brasiliensis. PLANT & CELL PHYSIOLOGY 2010; 51:1878-1888. [PMID: 20929914 DOI: 10.1093/pcp/pcq151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Quebrachitol is a cyclic polyol and, along with sucrose, is one of the main sugars in Hevea latex. However, in contrast to sucrose, the mechanism and regulation of quebrachitol absorption is still unknown. Screening a latex-derived cDNA library using polyol transporter-specific probes, two full-length cDNAs were isolated, and named HbPLT1 and HbPLT2 (for Hevea brasiliensis polyol transporter 1 and 2, respectively). Their respective sequences exhibited close similarity with the previously cloned acyclic sugar polyol transporters, and shared the main features of the major facilitative superfamily. The functional activity of one of the cDNAs was determined by using an HbPLT2-complemented yeast strain. These strains displayed a marginal absorption of cyclic (inositol) and acyclic (mannitol and sorbitol) polyol but no absorption of sucrose, hexose and glycerol. Active absorption for xylitol was detected, and was competitively inhibited by quebrachitol. HbPLT1 and HbPLT2 expression patterns varied in response to different stimuli. Bark treatment with ethylene resulted in an early and significant up-regulation of HbPLT2 transcripts in laticifers as well as in inner bark cells, when compared with HbPLT1. Other treatments, especially mechanical wounding, strongly induced HbPLT2 transcripts. These data were consistent with the presence of ethylene and a wound-responsive regulatory cis-element on the sequence of the HbPLT2 promoter. All these findings together with those recently obtained for sucrose transporters and aquaporins are discussed in relation to the different roles for quebrachitol in Hevea brasiliensis.
Collapse
|
43
|
Wilson-O'Brien AL, Patron N, Rogers S. Evolutionary ancestry and novel functions of the mammalian glucose transporter (GLUT) family. BMC Evol Biol 2010; 10:152. [PMID: 20487568 PMCID: PMC2890515 DOI: 10.1186/1471-2148-10-152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 05/21/2010] [Indexed: 01/25/2023] Open
Abstract
Background In general, sugar porters function by proton-coupled symport or facilitative transport modes. Symporters, coupled to electrochemical energy, transport nutrients against a substrate gradient. Facilitative carriers transport sugars along a concentration gradient, thus transport is dependent upon extracellular nutrient levels. Across bacteria, fungi, unicellular non-vertebrates and plants, proton-coupled hexose symport is a crucial process supplying energy under conditions of nutrient flux. In mammals it has been assumed that evolution of whole body regulatory mechanisms would eliminate this need. To determine whether any isoforms bearing this function might be conserved in mammals, we investigated the relationship between the transporters of animals and the proton-coupled hexose symporters found in other species. Results We took a comparative genomic approach and have performed the first comprehensive and statistically supported phylogenetic analysis of all mammalian glucose transporter (GLUT) isoforms. Our data reveals the mammalian GLUT proteins segregate into five distinct classes. This evolutionary ancestry gives insight to structure, function and transport mechanisms within the groups. Combined with biological assays, we present novel evidence that, in response to changing nutrient availability and environmental pH, proton-coupled, active glucose symport function is maintained in mammalian cells. Conclusions The analyses show the ancestry, evolutionary conservation and biological importance of the GLUT classes. These findings significantly extend our understanding of the evolution of mammalian glucose transport systems. They also reveal that mammals may have conserved an adaptive response to nutrient demand that would have important physiological implications to cell survival and growth.
Collapse
Affiliation(s)
- Amy L Wilson-O'Brien
- Department of Medicine, St, Vincent's, The University of Melbourne, Fitzroy, Victoria 3065, Australia
| | | | | |
Collapse
|
44
|
Dotzauer D, Wolfenstetter S, Eibert D, Schneider S, Dietrich P, Sauer N. Novel PSI Domains in Plant and Animal H+-Inositol Symporters. Traffic 2010; 11:767-81. [DOI: 10.1111/j.1600-0854.2010.01057.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
45
|
Klepek YS, Volke M, Konrad KR, Wippel K, Hoth S, Hedrich R, Sauer N. Arabidopsis thaliana POLYOL/MONOSACCHARIDE TRANSPORTERS 1 and 2: fructose and xylitol/H+ symporters in pollen and young xylem cells. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:537-50. [PMID: 19969532 PMCID: PMC2803217 DOI: 10.1093/jxb/erp322] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/12/2009] [Accepted: 10/19/2009] [Indexed: 05/20/2023]
Abstract
The genome of Arabidopsis thaliana contains six genes, AtPMT1 to AtPMT6 (Arabidopsis thaliana POLYOL/MONOSACCHARIDE TRANSPORTER 1-6), which form a distinct subfamily within the large family of more than 50 monosaccharide transporter-like (MST-like) genes. So far, only AtPMT5 [formerly named AtPLT5 (At3g18830)] has been characterized and was shown to be a plasma membrane-localized H(+)-symporter with broad substrate specificity. The characterization of AtPMT1 (At2g16120) and AtPMT2 (At2g16130), two other, almost identical, members of this transporter subfamily, are presented here. Expression of the AtPMT1 and AtPMT2 cDNAs in baker's yeast (Saccharomyces cerevisiae) revealed that these proteins catalyse the energy-dependent, high-capacity transport of fructose and xylitol, and the transport of several other compounds with lower rates. Expression of their cRNAs in Xenopus laevis oocytes showed that both proteins are voltage-dependent and catalyse the symport of their substrates with protons. Fusions of AtPMT1 or AtPMT2 with the green fluorescent protein (GFP) localized to Arabidopsis plasma membranes. Analyses of reporter genes performed with AtPMT1 or AtPMT2 promoter sequences showed expression in mature (AtPMT2) or germinating (AtPMT1) pollen grains, as well as in growing pollen tubes, hydathodes, and young xylem cells (both genes). The expression was confirmed with an anti-AtPMT1/AtPMT2 antiserum (alphaAtPMT1/2) raised against peptides conserved in AtPMT1 and AtPMT2. The physiological roles of the proteins are discussed and related to plant cell wall modifications.
Collapse
Affiliation(s)
- Yvonne-Simone Klepek
- Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Melanie Volke
- Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Kai R. Konrad
- Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl Botanik I, Molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Kathrin Wippel
- Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Stefan Hoth
- Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | - Rainer Hedrich
- Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl Botanik I, Molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Norbert Sauer
- Molekulare Pflanzenphysiologie, Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
46
|
Pieslinger AM, Hoepflinger MC, Tenhaken R. Cloning of Glucuronokinase from Arabidopsis thaliana, the last missing enzyme of the myo-inositol oxygenase pathway to nucleotide sugars. J Biol Chem 2009; 285:2902-10. [PMID: 19951951 PMCID: PMC2823444 DOI: 10.1074/jbc.m109.069369] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nucleotide sugars are building blocks for carbohydrate polymers in plant cell walls. They are synthesized from sugar-1-phosphates or epimerized as nucleotide sugars. The main precursor for primary cell walls is UDP-glucuronic acid, which can be synthesized via two independent pathways. One starts with the ring cleavage of myo-inositol into glucuronic acid, which requires a glucuronokinase and a pyrophosphorylase for activation into UDP-glucuronate. Here we report on the purification of glucuronokinase from Lilium pollen. A 40-kDa protein was purified combining six chromatographic steps and peptides were de novo sequenced. This allowed the cloning of the gene from Arabidopsis thaliana and the expression of the recombinant protein in Escherichia coli for biochemical characterization. Glucuronokinase is a novel member of the GHMP-kinase superfamily having an unique substrate specificity for d-glucuronic acid with a Km of 0.7 mm. It requires ATP as phosphate donor (Km 0.56 mm). In Arabidopsis, the gene is expressed in all plant tissues with a preference for pollen. Genes for glucuronokinase are present in (all) plants, some algae, and a few bacteria as well as in some lower animals.
Collapse
Affiliation(s)
- Anja Maria Pieslinger
- Department of Cell Biology, Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | | | | |
Collapse
|
47
|
Yuan L, Graff L, Loqué D, Kojima S, Tsuchiya YN, Takahashi H, von Wirén N. AtAMT1;4, a pollen-specific high-affinity ammonium transporter of the plasma membrane in Arabidopsis. PLANT & CELL PHYSIOLOGY 2009; 50:13-25. [PMID: 19073648 PMCID: PMC2638712 DOI: 10.1093/pcp/pcn186] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 11/27/2008] [Indexed: 05/19/2023]
Abstract
Pollen represents an important nitrogen sink in flowers to ensure pollen viability. Since pollen cells are symplasmically isolated during maturation and germination, membrane transporters are required for nitrogen import across the pollen plasma membrane. This study describes the characterization of the ammonium transporter AtAMT1;4, a so far uncharacterized member of the Arabidopsis AMT1 family, which is suggested to be involved in transporting ammonium into pollen. The AtAMT1;4 gene encodes a functional ammonium transporter when heterologously expressed in yeast or when overexpressed in Arabidopsis roots. Concentration-dependent analysis of (15)N-labeled ammonium influx into roots of AtAMT1;4-transformed plants allowed characterization of AtAMT1;4 as a high-affinity transporter with a K(m) of 17 microM. RNA and protein gel blot analysis showed expression of AtAMT1;4 in flowers, and promoter-gene fusions to the green fluorescent protein (GFP) further defined its exclusive expression in pollen grains and pollen tubes. The AtAMT1;4 protein appeared to be localized to the plasma membrane as indicated by protein gel blot analysis of plasma membrane-enriched membrane fractions and by visualization of GFP-tagged AtAMT1;4 protein in pollen grains and pollen tubes. However, no phenotype related to pollen function could be observed in a transposon-tagged line, in which AtAMT1;4 expression is disrupted. These results suggest that AtAMT1;4 mediates ammonium uptake across the plasma membrane of pollen to contribute to nitrogen nutrition of pollen via ammonium uptake or retrieval.
Collapse
Affiliation(s)
- Lixing Yuan
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
- Molecular Plant Nutrition, Institute of Plant Nutrition, University of Hohenheim, D-70593 Stuttgart, Germany
| | - Lucile Graff
- Molecular Plant Nutrition, Institute of Plant Nutrition, University of Hohenheim, D-70593 Stuttgart, Germany
| | - Dominique Loqué
- Molecular Plant Nutrition, Institute of Plant Nutrition, University of Hohenheim, D-70593 Stuttgart, Germany
| | - Soichi Kojima
- Molecular Plant Nutrition, Institute of Plant Nutrition, University of Hohenheim, D-70593 Stuttgart, Germany
| | | | | | - Nicolaus von Wirén
- Molecular Plant Nutrition, Institute of Plant Nutrition, University of Hohenheim, D-70593 Stuttgart, Germany
| |
Collapse
|
48
|
Schneider S, Beyhl D, Hedrich R, Sauer N. Functional and physiological characterization of Arabidopsis INOSITOL TRANSPORTER1, a novel tonoplast-localized transporter for myo-inositol. THE PLANT CELL 2008; 20:1073-87. [PMID: 18441213 PMCID: PMC2390729 DOI: 10.1105/tpc.107.055632] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana INOSITOL TRANSPORTER1 (INT1) is a member of a small gene family with only three more genes (INT2 to INT4). INT2 and INT4 were shown to encode plasma membrane-localized transporters for different inositol epimers, and INT3 was characterized as a pseudogene. Here, we present the functional and physiological characterization of the INT1 protein, analyses of the tissue-specific expression of the INT1 gene, and analyses of phenotypic differences observed between wild-type plants and mutant lines carrying the int1.1 and int1.2 alleles. INT1 is a ubiquitously expressed gene, and Arabidopsis lines with T-DNA insertions in INT1 showed increased intracellular myo-inositol concentrations and reduced root growth. In Arabidopsis, tobacco (Nicotiana tabacum), and Saccharomyces cerevisiae, fusions of the green fluorescent protein to the C terminus of INT1 were targeted to the tonoplast membranes. Finally, patch-clamp analyses were performed on vacuoles from wild-type plants and from both int1 mutant lines to study the transport properties of INT1 at the tonoplast. In summary, the presented molecular, physiological, and functional studies demonstrate that INT1 is a tonoplast-localized H(+)/inositol symporter that mediates the efflux of inositol that is generated during the degradation of inositol-containing compounds in the vacuolar lumen.
Collapse
Affiliation(s)
- Sabine Schneider
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | | | | | |
Collapse
|
49
|
Schneider S, Schneidereit A, Udvardi P, Hammes U, Gramann M, Dietrich P, Sauer N. Arabidopsis INOSITOL TRANSPORTER2 mediates H+ symport of different inositol epimers and derivatives across the plasma membrane. PLANT PHYSIOLOGY 2007; 145:1395-407. [PMID: 17951450 PMCID: PMC2151703 DOI: 10.1104/pp.107.109033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 09/24/2007] [Indexed: 05/18/2023]
Abstract
Of the four genes of the Arabidopsis (Arabidopsis thaliana) INOSITOL TRANSPORTER family (AtINT family) so far only AtINT4 has been described. Here we present the characterization of AtINT2 and AtINT3. cDNA sequencing revealed that the AtINT3 gene is incorrectly spliced and encodes a truncated protein of only 182 amino acids with four transmembrane helices. In contrast, AtINT2 codes for a functional transporter. AtINT2 localization in the plasma membrane was demonstrated by transient expression of an AtINT2-GREEN FLUORESCENT PROTEIN fusion in Arabidopsis and tobacco (Nicotiana tabacum) epidermis cells and in Arabidopsis protoplasts. Its functional and kinetic properties were determined by expression in yeast (Saccharomyces cerevisiae) cells and Xenopus laevis oocytes. Expression of AtINT2 in a Deltaitr1 (inositol uptake)/Deltaino1 (inositol biosynthesis) double mutant of bakers' yeast complemented the deficiency of this mutant to grow on low concentrations of myoinositol. In oocytes, AtINT2 mediated the symport of H(+) and several inositol epimers, such as myoinositol, scylloinositol, d-chiroinositol, and mucoinositol. The preference for individual epimers differed from that found for AtINT4. Moreover, AtINT2 has a lower affinity for myoinositol (K(m) = 0.7-1.0 mm) than AtINT4 (K(m) = 0.24 mm), and the K(m) is slightly voltage dependent, which was not observed for AtINT4. Organ and tissue specificity of AtINT2 expression was analyzed in AtINT2 promoter/reporter gene plants and showed weak expression in the anther tapetum, the vasculature, and the leaf mesophyll. A T-DNA insertion line (Atint2.1) and an Atint2.1/Atint4.2 double mutant were analyzed under different growth conditions. The physiological roles of AtINT2 are discussed.
Collapse
Affiliation(s)
- Sabine Schneider
- Molekulare Pflanzenphysiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Schröder B, Wrocklage C, Pan C, Jäger R, Kösters B, Schäfer H, Elsässer HP, Mann M, Hasilik A. Integral and associated lysosomal membrane proteins. Traffic 2007; 8:1676-1686. [PMID: 17897319 DOI: 10.1111/j.1600-0854.2007.00643.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We searched for novel proteins in lysosomal membranes, tentatively participating in molecular transport across the membrane and/or in interactions with other compartments. In membranes purified from placental lysosomes, we identified 58 proteins, known to reside at least partially in the lysosomal membrane. These included 17 polypeptides comprising or associated with the vacuolar adenosine triphosphatase. We report on additional 86 proteins that were significantly enriched in the lysosomal membrane fraction. Among these, 12 novel proteins of unknown functions were found. Three were orthologues of rat proteins that have been identified in tritosomes by Bagshaw RD et al. (A proteomic analysis of lysosomal integral membrane proteins reveals the diverse composition of the organelle. Mol Cell Proteomics 2005;4:133-143). Here, the proteins encoded by LOC201931 (FLJ38482) and LOC51622 (C7orf28A) were expressed with an appended fluorescent tag in HeLa cells and found to be present in lysosomal organelles. Among the lysosomally enriched proteins, also 16 enzymes and transporters were detected that had not been assigned to lysosomal membranes previously. Finally, our results identified a particular set of proteins with known functions in signaling and targeting to be at least partially associated with lysosomes.
Collapse
Affiliation(s)
- Bernd Schröder
- Institute of Physiological Chemistry, Philipps-University Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Christian Wrocklage
- Institute of Physiological Chemistry, Philipps-University Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Cuiping Pan
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ralf Jäger
- Institute of Medical Biometry and Epidemiology, Philipps-University Marburg, Bunsenstraße 3, 35032 Marburg, Germany
| | - Bernd Kösters
- Institute of Physiological Chemistry, Philipps-University Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Helmut Schäfer
- Institute of Medical Biometry and Epidemiology, Philipps-University Marburg, Bunsenstraße 3, 35032 Marburg, Germany
| | - Hans-Peter Elsässer
- Institute of Cytobiology and Cytopathology, Philipps-University Marburg, Robert-Koch-Straße 6, 35032 Marburg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Andrej Hasilik
- Institute of Physiological Chemistry, Philipps-University Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| |
Collapse
|