1
|
Lu L, Delrot S, Liang Z. From acidity to sweetness: a comprehensive review of carbon accumulation in grape berries. MOLECULAR HORTICULTURE 2024; 4:22. [PMID: 38835095 DOI: 10.1186/s43897-024-00100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Most of the carbon found in fruits at harvest is imported by the phloem. Imported carbon provide the material needed for the accumulation of sugars, organic acids, secondary compounds, in addition to the material needed for the synthesis of cell walls. The accumulation of sugars during fruit development influences not only sweetness but also various parameters controlling fruit composition (fruit "quality"). The accumulation of organic acids and sugar in grape berry flesh cells is a key process for berry development and ripening. The present review presents an update of the research on grape berry development, anatomical structure, sugar and acid metabolism, sugar transporters, and regulatory factors.
Collapse
Affiliation(s)
- Lizhen Lu
- State Key Laboratory of Plant Diversity and Prominent Crop, Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Serge Delrot
- Bordeaux University, Bordeaux Sciences Agro, INRAE, UMR EGFV, ISVV, Villenave d'Ornon, 33882, France
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Prominent Crop, Beijing Key Laboratory of Grape Science and Oenology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
2
|
Wang W, Huang S, Wang Z, Cao P, Luo M, Wang F. Unraveling wheat's response to salt stress during early growth stages through transcriptomic analysis and co-expression network profiling. BMC Genom Data 2024; 25:36. [PMID: 38609855 PMCID: PMC11015659 DOI: 10.1186/s12863-024-01221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Soil salinization is one of the vital factors threatening the world's food security. To reveal the biological mechanism of response to salt stress in wheat, this study was conducted to resolve the transcription level difference to salt stress between CM6005 (salt-tolerant) and KN9204 (salt-sensitive) at the germination and seedling stage. RESULTS To investigate the molecular mechanism underlying salt tolerance in wheat, we conducted comprehensive transcriptome analyses at the seedling and germination stages. Two wheat cultivars, CM6005 (salt-tolerant) and KN9204 (salt-sensitive) were subjected to salt treatment, resulting in a total of 24 transcriptomes. Through expression-network analysis, we identified 17 modules, 16 and 13 of which highly correlate with salt tolerance-related phenotypes in the germination and seedling stages, respectively. Moreover, we identified candidate Hub genes associated with specific modules and explored their regulatory relationships using co-expression data. Enrichment analysis revealed specific enrichment of gibberellin-related terms and pathways in CM6005, highlighting the potential importance of gibberellin regulation in enhancing salt tolerance. In contrast, KN9204 exhibited specific enrichment in glutathione-related terms and activities, suggesting the involvement of glutathione-mediated antioxidant mechanisms in conferring resistance to salt stress. Additionally, glucose transport was found to be a fundamental mechanism for salt tolerance during wheat seedling and germination stages, indicating its potential universality in wheat. Wheat plants improve their resilience and productivity by utilizing adaptive mechanisms like adjusting osmotic balance, bolstering antioxidant defenses, accumulating compatible solutes, altering root morphology, and regulating hormones, enabling them to better withstand extended periods of salt stress. CONCLUSION Through utilizing transcriptome-level analysis employing WGCNA, we have revealed a potential regulatory mechanism that governs the response to salt stress and recovery in wheat cultivars. Furthermore, we have identified key candidate central genes that play a crucial role in this mechanism. These central genes are likely to be vital components within the gene expression network associated with salt tolerance. The findings of this study strongly support the molecular breeding of salt-tolerant wheat, particularly by utilizing the genetic advancements based on CM6005 and KN9204.
Collapse
Affiliation(s)
- Wei Wang
- Cangzhou Academy of Agriculture and Forestry Sciences, 061001, Cangzhou, Hebei, China.
- Hebei Key Laboratory of Drought-Alkali Tolerance in Wheat, 061001, Cangzhou, Hebei, China.
| | - Sufang Huang
- Cangzhou Academy of Agriculture and Forestry Sciences, 061001, Cangzhou, Hebei, China
- Hebei Key Laboratory of Drought-Alkali Tolerance in Wheat, 061001, Cangzhou, Hebei, China
| | - Zhi Wang
- Cangzhou Academy of Agriculture and Forestry Sciences, 061001, Cangzhou, Hebei, China
- Hebei Key Laboratory of Drought-Alkali Tolerance in Wheat, 061001, Cangzhou, Hebei, China
| | - Pingping Cao
- Cangzhou Academy of Agriculture and Forestry Sciences, 061001, Cangzhou, Hebei, China
- Hebei Key Laboratory of Drought-Alkali Tolerance in Wheat, 061001, Cangzhou, Hebei, China
| | - Meng Luo
- Shanghai Majorbio Bio-pharm Technology Co., Ltd, 200120, Shanghai, China
| | - Fengzhi Wang
- Cangzhou Academy of Agriculture and Forestry Sciences, 061001, Cangzhou, Hebei, China.
- Hebei Key Laboratory of Drought-Alkali Tolerance in Wheat, 061001, Cangzhou, Hebei, China.
| |
Collapse
|
3
|
He JZ, Dorion S, Carmona-Rojas LM, Rivoal J. Carbon Fluxes in Potato ( Solanum tuberosum) Remain Stable in Cell Cultures Exposed to Nutritional Phosphate Deficiency. BIOLOGY 2023; 12:1190. [PMID: 37759596 PMCID: PMC10525292 DOI: 10.3390/biology12091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Nutritional phosphate deficiency is a major limitation to plant growth. Here, we monitored fluxes in pathways supporting respiratory metabolism in potato (Solanum tuberosum) cell cultures growing in control or limiting phosphate conditions. Sugar uptake was quantified using [U-14C]sucrose as precursor. Carbohydrate degradation through glycolysis and respiratory pathways was estimated using the catabolism of [U-14C]sucrose to 14CO2. Anaplerotic carbon flux was assessed by labeling with NaH14CO3. The data showed that these metabolic fluxes displayed distinct patterns over culture time. However, phosphate depletion had relatively little impact on the various fluxes. Sucrose uptake was higher during the first six days of culture, followed by a decline, which was steeper in Pi-sufficient cells. Anaplerotic pathway flux was more important at day three and decreased thereafter. In contrast, the flux between sucrose and CO2 was at a maximum in the mid-log phase of the culture, with a peak at Day 6. Metabolization of [U-14C]sucrose into neutral, basic and acidic fractions was also unaffected by phosphate nutrition. Hence, the well-documented changes in central metabolism enzymes activities in response to Pi deficiency do not drastically modify metabolic fluxes, but rather result in the maintenance of the carbon fluxes that support respiration.
Collapse
Affiliation(s)
- Jiang Zhou He
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.Z.H.); (S.D.); (L.M.C.-R.)
| | - Sonia Dorion
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.Z.H.); (S.D.); (L.M.C.-R.)
| | - Laura Michell Carmona-Rojas
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.Z.H.); (S.D.); (L.M.C.-R.)
- Grupo de Biotecnologiía, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medelliín 050010, Colombia
| | - Jean Rivoal
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.Z.H.); (S.D.); (L.M.C.-R.)
| |
Collapse
|
4
|
Bai Q, Chen X, Zheng Z, Feng J, Zhang Y, Shen Y, Huang Y. Vacuolar Phosphate Transporter1 (VPT1) may transport sugar in response to soluble sugar status of grape fruits. HORTICULTURE RESEARCH 2023; 10:uhac260. [PMID: 37533675 PMCID: PMC10392026 DOI: 10.1093/hr/uhac260] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/17/2022] [Indexed: 08/04/2023]
Abstract
Vacuolar Phosphate Transporter1 (VPT1)-mediated phosphate uptake in the vacuoles is essential to plant development and fruit ripening. Interestingly, here we find that the VPT1 may transport sugar in response to soluble sugar status of fruits. The VvVPT1 protein isolated from grape (Vitis vinifera) berries was tonoplast-localized and contains SPX (Syg1/Pho81/XPR1) and MFS (major facilitator superfamily) domains. Its mRNA expression was significantly increased during fruit ripening and induced by sucrose. Functional analyses based on transient transgenic systems in grape berry showed that VvVPT1 positively regulated berry ripening and significantly affected hexose contents, fruit firmness, and ripening-related gene expression. The VPT1 proteins (Grape VvVPT1, strawberry FaVPT1, and Arabidopsis AtVPT1) all showed low affinity for phosphate verified in yeast system, while they appear different in sugar transport capacity, consistent with fruit sugar status. Thus, our findings reveal a role for VPT1 in fruit ripening, associated to its SPX and MFS domains in direct transport of soluble sugar available into the vacuole, and open potential avenues for genetic improvement in fleshy fruit.
Collapse
Affiliation(s)
| | | | | | - Jinjing Feng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yanjun Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yuanyue Shen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | | |
Collapse
|
5
|
Zhang Y, Chang BM, Burdet B, Dai Z, Delrot S, Keller M. Apoplastic sugar may be lost from grape berries and retrieved in pedicels. PLANT PHYSIOLOGY 2022; 190:592-604. [PMID: 35642904 PMCID: PMC9434297 DOI: 10.1093/plphys/kiac262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
In ripening grape (Vitis sp.) berries, the combination of rapid sugar import, apoplastic phloem unloading, and water discharge via the xylem creates a potential risk for apoplastic sugar to be lost from the berries. We investigated the likelihood of such sugar loss and a possible sugar retrieval mechanism in the pedicels of different Vitis genotypes. Infusion of D-glucose-1-13C or L-glucose-1-13C to the stylar end of attached berries demonstrated that both sugars can be leached from the berries, but only the nontransport sugar L-glucose moved beyond the pedicels. No 13C enrichment was found in peduncles and leaves. Genes encoding 10 sugar transporters were expressed in the pedicels throughout grape ripening. Using an immunofluorescence technique, we localized the sucrose transporter SUC27 to pedicel xylem parenchyma cells. These results indicate that pedicels possess the molecular machinery for sugar retrieval from the apoplast. Plasmodesmata were observed between vascular parenchyma cells in pedicels, and movement of the symplastically mobile dye carboxyfluorescein demonstrated that the symplastic connection is physiologically functional. Taken together, the chemical, molecular, and anatomical evidence gathered here supports the idea that some apoplastic sugar can be leached from grape berries and is effectively retrieved in a two-step process in the pedicels. First, sugar transporters may actively retrieve leached sugar from the xylem. Second, retrieved sugar may move symplastically to the pedicel parenchyma for local use or storage, or to the phloem for recycling back to the berry.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
- Ste. Michelle Wine Estates, Prosser, WA, USA
| | | | | | - Zhanwu Dai
- INRAE, University of Bordeaux, ISVV, Villenave d’Ornon, France
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Serge Delrot
- INRAE, University of Bordeaux, ISVV, Villenave d’Ornon, France
| | | |
Collapse
|
6
|
Parrilla J, Medici A, Gaillard C, Verbeke J, Gibon Y, Rolin D, Laloi M, Finkelstein RR, Atanassova R. Grape ASR Regulates Glucose Transport, Metabolism and Signaling. Int J Mol Sci 2022; 23:ijms23116194. [PMID: 35682874 PMCID: PMC9181829 DOI: 10.3390/ijms23116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
To decipher the mediator role of the grape Abscisic acid, Stress, Ripening (ASR) protein, VvMSA, in the pathways of glucose signaling through the regulation of its target, the promoter of hexose transporter VvHT1, we overexpressed and repressed VvMSA in embryogenic and non-embryogenic grapevine cells. The embryogenic cells with organized cell proliferation were chosen as an appropriate model for high sensitivity to the glucose signal, due to their very low intracellular glucose content and low glycolysis flux. In contrast, the non-embryogenic cells displaying anarchic cell proliferation, supported by high glycolysis flux and a partial switch to fermentation, appeared particularly sensitive to inhibitors of glucose metabolism. By using different glucose analogs to discriminate between distinct pathways of glucose signal transduction, we revealed VvMSA positioning as a transcriptional regulator of the glucose transporter gene VvHT1 in glycolysis-dependent glucose signaling. The effects of both the overexpression and repression of VvMSA on glucose transport and metabolism via glycolysis were analyzed, and the results demonstrated its role as a mediator in the interplay of glucose metabolism, transport and signaling. The overexpression of VvMSA in the Arabidopsis mutant abi8 provided evidence for its partial functional complementation by improving glucose absorption activity.
Collapse
Affiliation(s)
- Jonathan Parrilla
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Anna Medici
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- Institut des Sciences des Plantes de Montpellier (IPSiM), UMR CNRS/INRAE/Institut Agro/Université de Montpellier, 2 Place Pierre Viala, 34000 Montpellier, France
| | - Cécile Gaillard
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Jérémy Verbeke
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- GReD-UMR CNRS 6293/INSERM U1103, CRBC, Faculté de Médecine, Université Clermont-Auvergne, 28 Place Henri Dunant, 63001 Clermont-Ferrand, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie (BFP), INRA, Université de Bordeaux, 33882 Bordeaux, France; (Y.G.); (D.R.)
| | - Dominique Rolin
- UMR 1332 Biologie du Fruit et Pathologie (BFP), INRA, Université de Bordeaux, 33882 Bordeaux, France; (Y.G.); (D.R.)
| | - Maryse Laloi
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
| | - Ruth R. Finkelstein
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA;
| | - Rossitza Atanassova
- UMR CNRS 7267 Écologie et Biologie des Interactions, Équipe Sucres & Echanges Végétaux Environnement, Université de Poitiers, 3 Rue Jacques Fort, 86073 Poitiers, France; (J.P.); (A.M.); (C.G.); (J.V.); (M.L.)
- Correspondence:
| |
Collapse
|
7
|
De Rosa V, Falchi R, Moret E, Vizzotto G. Insight into Carbohydrate Metabolism and Signaling in Grapevine Buds during Dormancy Progression. PLANTS (BASEL, SWITZERLAND) 2022; 11:1027. [PMID: 35448755 PMCID: PMC9028844 DOI: 10.3390/plants11081027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Perennial fruit crops enter dormancy to ensure bud tissue survival during winter. However, a faster phenological advancement caused by global warming exposes bud tissue to a higher risk of spring frost damage. Tissue dehydration and soluble sugars accumulation are connected to freezing tolerance, but non-structural carbohydrates also act as metabolic substrates and signaling molecules. A deepened understanding of sugar metabolism in the context of winter freezing resistance is required to gain insight into adaptive possibilities to cope with climate changes. In this study, the soluble sugar content was measured in a cold-tolerant grapevine hybrid throughout the winter season. Moreover, the expression of drought-responsive hexose transporters VvHT1 and VvHT5, raffinose synthase VvRS and grapevine ABA-, Stress- and Ripening protein VvMSA was analyzed. The general increase in sugars in December and January suggests that they can participate in protecting bud tissues against low temperatures. The modulation of VvHT5, VvINV and VvRS appeared consistent with the availability of the different sugar species; challenging results were obtained for VvHT1 and VvMSA, suggesting interesting hypotheses about their role in the sugar-hormone crosstalk. The multifaceted role of sugars on the intricate phenomenon, which is the response of dormant buds to changing temperature, is discussed.
Collapse
|
8
|
Increased Varietal Aroma Diversity of Marselan Wine by Mixed Fermentation with Indigenous Non-Saccharomyces Yeasts. FERMENTATION 2021. [DOI: 10.3390/fermentation7030133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The common use of commercial yeasts usually leads to dull wine with similar aromas and tastes. Therefore, screening for novel indigenous yeasts to practice is a promising method. In this research, aroma discrepancies among six wine groups fermentated with indigenous yeasts were analyzed. Three Saccharomyces yeasts (FS36, HL12, YT28) and three matched non-Saccharomyces yeasts (FS31, HL9, YT2) were selected from typical Chinese vineyards. The basic oenological parameters, aroma compounds, and sensory evaluation were analyzed. The results showed that each indigenous Saccharomyces yeast had excellent fermentation capacity, and mixed-strain fermentation groups produced more glycerol, contributing to sweeter and rounder taste. The results from GC-MS, principal components analysis (PCA), and sensory evaluation highlighted that the HL mixed group kept the most content of Marselan varietal flavors such as calamenene and β-damascone hereby ameliorated the whole aroma quality. Our study also implied that the indigenous yeast from the same region as the grape variety seems more conducive to preserve the natural variety characteristics of grapes.
Collapse
|
9
|
Garrido A, Engel J, Mumm R, Conde A, Cunha A, De Vos RCH. Metabolomics of Photosynthetically Active Tissues in White Grapes: Effects of Light Microclimate and Stress Mitigation Strategies. Metabolites 2021; 11:metabo11040205. [PMID: 33808188 PMCID: PMC8067353 DOI: 10.3390/metabo11040205] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022] Open
Abstract
The effects of climate change are becoming a real concern for the viticulture sector, with impacts on both grapevine physiology and the quality of the fresh berries and wine. Short-term mitigation strategies, like foliar kaolin application and smart irrigation regimes, have been implemented to overcome these problems. We previously showed that these strategies also influence the photosynthetic activity of the berries themselves, specifically in the exocarp and seed. In the present work, we assessed the modulating effects of both canopy-light microclimate, kaolin and irrigation treatments on the metabolic profiles of the exocarp and seed, as well as the potential role of berry photosynthesis herein. Berries from the white variety Alvarinho were collected at two contrasting light microclimate positions within the vine canopy (HL—high light and LL—low light) from both irrigated and kaolin-treated plants, and their respective controls, at three fruit developmental stages (green, véraison and mature). Untargeted liquid chromatography mass spectrometry (LCMS) profiling of semi-polar extracts followed by multivariate statistical analysis indicate that both the light microclimate and irrigation influenced the level of a series of phenolic compounds, depending on the ripening stage of the berries. Moreover, untargeted gas chromatography mass spectrometry (GCMS) profiling of polar extracts show that amino acid and sugar levels were influenced mainly by the interaction of irrigation and kaolin treatments. The results reveal that both photosynthetically active berry tissues had a distinct metabolic profile in response to the local light microclimate, which suggests a specific role of photosynthesis in these tissues. A higher light intensity within the canopy mainly increased the supply of carbon precursors to the phenylpropanoid/flavonoid pathway, resulting in increased levels of phenolic compounds in the exocarp, while in seeds, light mostly influenced compounds related to carbon storage and seed development. In addition, our work provides new insights into the influence of abiotic stress mitigation strategies on the composition of exocarps and seeds, which are both important tissues for the quality of grape-derived products.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Correspondence: (A.G.); (A.C.)
| | - Jasper Engel
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands; (J.E.); (R.M.); (R.C.H.D.V.)
- Business Unit Biometris, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Roland Mumm
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands; (J.E.); (R.M.); (R.C.H.D.V.)
| | - Artur Conde
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Cunha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (A.G.); (A.C.)
| | - Ric C. H. De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands; (J.E.); (R.M.); (R.C.H.D.V.)
| |
Collapse
|
10
|
Wu P, Zhang Y, Zhao S, Li L. Comprehensive Analysis of Evolutionary Characterization and Expression for Monosaccharide Transporter Family Genes in Nelumbo nucifera. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.537398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sugar transporters, an important class of transporters for sugar function, regulate many processes associated with growth, maturation, and senescence processes in plants. In this study, a total of 35 NuMSTs were identified in the Nelumbo nucifera genome and grouped by conserved domains and phylogenetic analysis. Additionally, we identified 316 MST genes in 10 other representative plants and performed a comparative analysis with Nelumbo nucifera genes, including evolutionary trajectory, gene duplication, and expression pattern. A large number of analyses across plants and algae indicated that the MST family could have originated from STP and Glct, expanding to form STP and SFP by dispersed duplication. Finally, a quantitative real-time polymerase chain reaction and cis-element analysis showed that some of them may be regulated by plant hormones (e.g., abscisic acid), biotic stress factors, and abiotic factors (e.g., drought, excessive cold, and light). We found that under the four abiotic stress conditions, only NuSTP5 expression was upregulated, generating a stress response, and ARBE and LTR were present in NuSTP5. In summary, our findings are significant for understanding and exploring the molecular evolution and mechanisms of NuMSTs in plants.
Collapse
|
11
|
Iqbal S, Ni X, Bilal MS, Shi T, Khalil-ur-Rehman M, Zhenpeng P, Jie G, Usman M, Gao Z. Identification and expression profiling of sugar transporter genes during sugar accumulation at different stages of fruit development in apricot. Gene 2020; 742:144584. [DOI: 10.1016/j.gene.2020.144584] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|
12
|
Li YM, Forney C, Bondada B, Leng F, Xie ZS. The Molecular Regulation of Carbon Sink Strength in Grapevine ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2020; 11:606918. [PMID: 33505415 PMCID: PMC7829256 DOI: 10.3389/fpls.2020.606918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/08/2020] [Indexed: 05/17/2023]
Abstract
Sink organs, the net receivers of resources from source tissues, provide food and energy for humans. Crops yield and quality are improved by increased sink strength and source activity, which are affected by many factors, including sugars and hormones. With the growing global population, it is necessary to increase photosynthesis into crop biomass and yield on a per plant basis by enhancing sink strength. Sugar translocation and accumulation are the major determinants of sink strength, so understanding molecular mechanisms and sugar allocation regulation are conducive to develop biotechnology to enhance sink strength. Grapevine (Vitis vinifera L.) is an excellent model to study the sink strength mechanism and regulation for perennial fruit crops, which export sucrose from leaves and accumulates high concentrations of hexoses in the vacuoles of fruit mesocarp cells. Here recent advances of this topic in grape are updated and discussed, including the molecular biology of sink strength, including sugar transportation and accumulation, the genes involved in sugar mobilization and their regulation of sugar and other regulators, and the effects of hormones on sink size and sink activity. Finally, a molecular basis model of the regulation of sugar accumulation in the grape is proposed.
Collapse
Affiliation(s)
- You-Mei Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Charles Forney
- Kentville Research and Development Centre, Agriculture and Agri-Food Canada, Kentville, NS, Canada
| | - Bhaskar Bondada
- Wine Science Center, Washington State University, Richland, WA, United States
| | - Feng Leng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhao-Sen Xie
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Zhao-Sen Xie,
| |
Collapse
|
13
|
Pagliarani C, Boccacci P, Chitarra W, Cosentino E, Sandri M, Perrone I, Mori A, Cuozzo D, Nerva L, Rossato M, Zuccolotto P, Pezzotti M, Delledonne M, Mannini F, Gribaudo I, Gambino G. Distinct Metabolic Signals Underlie Clone by Environment Interplay in "Nebbiolo" Grapes Over Ripening. FRONTIERS IN PLANT SCIENCE 2019; 10:1575. [PMID: 31867031 PMCID: PMC6904956 DOI: 10.3389/fpls.2019.01575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/11/2019] [Indexed: 05/05/2023]
Abstract
Several research studies were focused to understand how grapevine cultivars respond to environment; nevertheless, the biological mechanisms tuning this phenomenon need to be further deepened. Particularly, the molecular processes underlying the interplay between clones of the same cultivar and environment were poorly investigated. To address this issue, we analyzed the transcriptome of berries from three "Nebbiolo" clones grown in different vineyards, during two ripening seasons. RNA-sequencing data were implemented with analyses of candidate genes, secondary metabolites, and agronomical parameters. This multidisciplinary approach helped to dissect the complexity of clone × environment interactions, by identifying the molecular responses controlled by genotype, vineyard, phenological phase, or a combination of these factors. Transcripts associated to sugar signalling, anthocyanin biosynthesis, and transport were differently modulated among clones, according to changes in berry agronomical features. Conversely, genes involved in defense response, such as stilbene synthase genes, were significantly affected by vineyard, consistently with stilbenoid accumulation. Thus, besides at the cultivar level, clone-specific molecular responses also contribute to shape the agronomic features of grapes in different environments. This reveals a further level of complexity in the regulation of genotype × environment interactions that has to be considered for orienting viticultural practices aimed at enhancing the quality of grape productions.
Collapse
Affiliation(s)
- Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
- Council for Agricultural Research and Economics, Centre of Viticultural and Enology Research (CREA-VE), Conegliano, Italy
| | | | - Marco Sandri
- DMS StatLab, University of Brescia, Brescia, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Alessia Mori
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Danila Cuozzo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
- Council for Agricultural Research and Economics, Centre of Viticultural and Enology Research (CREA-VE), Conegliano, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Paola Zuccolotto
- Big&Open Data Innovation Laboratory, University of Brescia, Brescia, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Franco Mannini
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| |
Collapse
|
14
|
Kuang L, Chen S, Guo Y, Ma H. Quantitative Proteome Analysis Reveals Changes in the Protein Landscape During Grape Berry Development With a Focus on Vacuolar Transport Proteins. FRONTIERS IN PLANT SCIENCE 2019; 10:641. [PMID: 31156689 PMCID: PMC6530609 DOI: 10.3389/fpls.2019.00641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/29/2019] [Indexed: 05/08/2023]
Abstract
The vacuole plays a central role in fruit growth and quality formation, yet its proteomic landscape is largely unknown. In the present study, a protocol for isolating intact vacuoles from grape flesh tissue was successfully established. Quantitative proteome analysis identified 2533 proteins from five sampling dates along Cabernet Sauvignon berry development from stage I to III; among them, 1443 proteins were identified on all five sampling dates in at least two biological replicates per sample and were designated core proteome, and 1820 were recruited as differentially abundant proteins (DAPs) by sequential pairwise comparisons using arbitrary fold change of >1.5 and P < 0.05. Metabolism consistently constituted the largest category of identified proteins for both core proteome and DAPs, together with a consistently high proportion of protein-fate category proteins, indicating that the classic lytic functions of vegetative cell vacuoles are maintained throughout berry development; accumulation of metabolites involved in high sugar and other berry qualities in the late developmental stage added to the conventional lytic role of the flesh cell vacuoles. Overall increases in abundance of the DAPs were seen in the transporter proteins, membrane fusion/vesicle trafficking, and protein-fate categories, and decreased abundance was seen for DAPs in the stress, energy and cytoskeleton categories as berry development progressed. A very pronounced proteomic change was revealed between late stage I and mid stage II, with 915 increased and 114 decreased DAPs, demonstrating a significant surge of the vacuolar proteome underlying the rather static phenotypical and physiological phase. We identified 161 transport proteins with differential abundance, including proton pumps, aquaporins, sugar transporters, ATP-binding cassette transporters and ion transport proteins, together with organic compound transport proteins, the highest number and variety of berry tonoplast transporters found in grape proteome efforts to date. We further found a pre-positive increment of 96 transport proteins from the middle of stage II, before the berry undergoes its dramatic physiological changes at and following véraison. Our results are the first to describe the proteome of a vacuole-enriched preparation, toward understanding the functions of the largest compartment in berry cells during grape growth and ripening.
Collapse
Affiliation(s)
- Liuqing Kuang
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| | - Shangwu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiqin Ma
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Zhang Z, Zou L, Ren C, Ren F, Wang Y, Fan P, Li S, Liang Z. VvSWEET10 Mediates Sugar Accumulation in Grapes. Genes (Basel) 2019; 10:genes10040255. [PMID: 30925768 PMCID: PMC6523336 DOI: 10.3390/genes10040255] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/05/2023] Open
Abstract
Sugar accumulation is a critical event during grape berry ripening that determines the grape market values. Berry cells are highly dependent on sugar transporters to mediate cross-membrane transport. However, the role of sugar transporters in improving sugar accumulation in berries is not well established in grapes. Herein we report that a Sugars Will Eventually be Exported Transporter (SWEET), that is, VvSWEET10, was strongly expressed at the onset of ripening (véraison) and can improve grape sugar content. VvSWEET10 encodes a plasma membrane-localized transporter, and the heterologous expression of VvSWEET10 indicates that VvSWEET10 is a hexose-affinity transporter and has a broad spectrum of sugar transport functions. VvSWEET10 overexpression in grapevine calli and tomatoes increased the glucose, fructose, and total sugar levels significantly. The RNA sequencing results of grapevine transgenic calli showed that many sugar transporter genes and invertase genes were upregulated and suggest that VvSWEET10 may mediate sugar accumulation. These findings elucidated the role of VvSWEET10 in sugar accumulation and will be beneficial for the improvement of grape berry quality in the future.
Collapse
Affiliation(s)
- Zhan Zhang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Luming Zou
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chong Ren
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fengrui Ren
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China.
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China.
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing 100093, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
16
|
Jiu S, Haider MS, Kurjogi MM, Zhang K, Zhu X, Fang J. Genome-wide Characterization and Expression Analysis of Sugar Transporter Family Genes in Woodland Strawberry. THE PLANT GENOME 2018; 11:170103. [PMID: 30512042 DOI: 10.3835/plantgenome2017.11.0103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In higher plants, sugars are nutrients and important signal molecules. Sugar transporters (STs) facilitate sugar transport across membranes and are associated with loading and unloading of the conducting complex. Strawberry ( Duchesne ex Rozier) is one of the most economically important and widely cultivated fruit crop and a model plant among fleshy fruits worldwide. In this study, 66 woodland strawberry ( L.) ST (FvST) genes were identified and further classified into eight distinct subfamilies in the woodland strawberry genome based on the phylogenetic analysis. In the promoter sequences of FvST gene families, a search for -regulatory elements suggested that some of them might probably be regulated by plant hormones (e.g., salicylic acid, abscisic acid, and auxin), abiotic (e.g., drought, excessive cold, and light), and biotic stress factors. Exon-intron analysis showed that each subfamily manifested closely associated gene architectural features based on similar number or length of exons. Moreover, to comprehend the potential evolution mechanism of FvST gene family, the analysis of genome duplication events was performed. The segmental and tandem duplication analysis elucidated that some of ST genes arose through whole-genome duplication (WGD) or segmental duplication, accompanied by tandem duplications. The expression analysis of 24 FvST genes in vegetative and during fruit development has shown that the expression of several ST genes was tissue and developmental stage specific. Generally, our findings are important in understanding of the allocation of photo assimilates from source to sink cell and provide insights into the genomic organization and expression profiling of FvST gene families in woodland strawberry.
Collapse
|
17
|
Conde A, Neves A, Breia R, Pimentel D, Dinis LT, Bernardo S, Correia CM, Cunha A, Gerós H, Moutinho-Pereira J. Kaolin particle film application stimulates photoassimilate synthesis and modifies the primary metabolome of grape leaves. JOURNAL OF PLANT PHYSIOLOGY 2018; 223:47-56. [PMID: 29486461 DOI: 10.1016/j.jplph.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 05/20/2023]
Abstract
Water scarcity is associated with extreme temperatures and high irradiance, and significantly and increasingly affects grapevine yield and quality. In this context, the foliar application of kaolin, a chemically inert mineral that greatly reflects ultraviolet and infrared radiations, as well as, in part, photosynthetically active radiation, has recently been shown to decrease photoinhibition in mature leaves. Here, the influence of this particle film on grapevine leaf metabolome and carbohydrate metabolism was evaluated. Molecular mechanisms underlying photoassimilate synthesis, metabolism and transport capacity were assessed by targeted transcriptional analyses and enzymatic activity assays. Kaolin application increased sucrose concentration in leaves and sucrose transport/phloem loading capacity, as suggested by the stimulation of the transcription of sucrose transporters VvSUC12 and VvSUC27 in these source organs. While the biosynthesis of sucrose increased, as evidenced by higher sucrose content and sucrose phosphate synthase (SPS) activity in leaves, the concentration of transitory starch before the dark period remained unaltered, despite a higher total amylolytic activity in the leaves of kaolin-treated plants. Metabolomic analysis by GC-TOF-MS showed that the application of kaolin enhanced the amounts of simple sugars, including fructose, maltose, xylulose, xylose, sophorose, ribose and erythrose; sugars-phosphate, like mannose-6-Pi, hexose-6-Pi, glucose-6-Pi, glucose-1-Pi, glycerol-α-Pi and fructose-6-Pi; polyols, like xylitol, maltitol, lactitol, glycerol, galactinol and erythritol; organic acids and amino acids.
Collapse
Affiliation(s)
- Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal.
| | - Andreia Neves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Richard Breia
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Diana Pimentel
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Lia-Tânia Dinis
- Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Sara Bernardo
- Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Carlos Manuel Correia
- Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Ana Cunha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - José Moutinho-Pereira
- Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant/CITAB-UM), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
18
|
Griesser M, Martinez SC, Eitle MW, Warth B, Andre CM, Schuhmacher R, Forneck A. The ripening disorder berry shrivel affects anthocyanin biosynthesis and sugar metabolism in Zweigelt grape berries. PLANTA 2018; 247:471-481. [PMID: 29075874 PMCID: PMC5778156 DOI: 10.1007/s00425-017-2795-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/27/2017] [Indexed: 05/23/2023]
Abstract
MAIN CONCLUSION Timescale analyses suggest the berry shrivel (BS) disorder is induced before veraison with strong effects on anthocyanin biosynthesis, and minor effects on sugar transport and metabolism. Berry shrivel (BS)-affected grapes have low sugar contents, high acidity, less anthocyanins and flaccid berries. To date no pathogenic causes are known, and studies to elucidate the molecular basis leading to symptom induction and development are limited. Here we present a study on pre-symptomatic as well as symptomatic BS berries to characterize early metabolic changes, with focus on anthocyanin biosynthesis and sugars metabolism. Healthy and BS berries from six sampling time points were used (BBCH79-BBCH89). Our objectives are (1) to search for the beginning of BS-related physiological processes; (2) to search for key enzymes and sugar transporters involved in BS induction and development and (3) to understand the consequences on polyphenol biosynthesis. We employed high performance anion exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology for sugar and polyphenol analyses, respectively. Additionally we conducted expression analyses (qPCR) of key genes and enzymatic activity assays. Our results show that BS-related processes start before veraison, as determined by slightly reduced hexose contents and reduced expression levels of a vacuolar invertase (VviGIN1), two monosaccharide transporters (VviTMT2, VviTMT3) and the anthocyanin biosynthesis (VviUFGT, VviMYBA1/2) genes. Lower amounts of delphinidin and cyanidin glycosidic forms were determined, while caftaric acid, quercetin-3-O-glucuronide and (+)-catechin were increased in BS berries. Although not all results were conclusive, especially for the sugar metabolism, our data provide important knowledge to improve the understanding of the highly complex berry shrivel ripening disorder.
Collapse
Affiliation(s)
- Michaela Griesser
- Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Straße 24, Tulln, 3430, Vienna, Austria.
| | - Sara Crespo Martinez
- Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Straße 24, Tulln, 3430, Vienna, Austria
| | - Markus W Eitle
- Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Straße 24, Tulln, 3430, Vienna, Austria
| | - Benedikt Warth
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Straße 20, Tulln, 3430, Vienna, Austria
- Department of Food Chemistry and Toxicology, University of Vienna, Währingerstraße 38, 1090, Vienna, Austria
| | - Christelle M Andre
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Avenue des Hauts-Fourneaux, L-4362, Esch/Alzette, Luxembourg
| | - Rainer Schuhmacher
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Straße 20, Tulln, 3430, Vienna, Austria
| | - Astrid Forneck
- Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Straße 24, Tulln, 3430, Vienna, Austria
| |
Collapse
|
19
|
Rogiers SY, Coetzee ZA, Walker RR, Deloire A, Tyerman SD. Potassium in the Grape ( Vitis vinifera L.) Berry: Transport and Function. FRONTIERS IN PLANT SCIENCE 2017; 8:1629. [PMID: 29021796 PMCID: PMC5623721 DOI: 10.3389/fpls.2017.01629] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
K+ is the most abundant cation in the grape berry. Here we focus on the most recent information in the long distance transport and partitioning of K+ within the grapevine and postulate on the potential role of K+ in berry sugar accumulation, berry water relations, cellular growth, disease resistance, abiotic stress tolerance and mitigating senescence. By integrating information from several different plant systems we have been able to generate new hypotheses on the integral functions of this predominant cation and to improve our understanding of how these functions contribute to grape berry growth and ripening. Valuable contributions to the study of K+ in membrane stabilization, turgor maintenance and phloem transport have allowed us to propose a mechanistic model for the role of this cation in grape berry development.
Collapse
Affiliation(s)
- Suzy Y. Rogiers
- New South Wales Department of Primary Industries, Wagga Wagga, NSW, Australia
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
| | - Zelmari A. Coetzee
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Rob R. Walker
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
- Agriculture and Food (CSIRO), Glen Osmond, SA, Australia
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Alain Deloire
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- Department of Biology-Ecology, SupAgro, Montpellier, France
| | - Stephen D. Tyerman
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, SA, Australia
| |
Collapse
|
20
|
Aguilera-Alvarado GP, Sánchez-Nieto S. Plant Hexokinases are Multifaceted Proteins. PLANT & CELL PHYSIOLOGY 2017; 58:1151-1160. [PMID: 28449056 DOI: 10.1093/pcp/pcx062] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/19/2017] [Indexed: 05/09/2023]
Abstract
Sugars are the main carbon and energy source in cells, but they can also act as signaling molecules that affect the whole plant life cycle. Certain tissues can produce sugars and supply them to others, and this plant tissue heterogeneity makes sugar signaling a highly complex process that requires elements capable of perceiving changes in sugar concentrations among different tissues, cell compartments and developmental stages. In plants, the regulatory effects of glucose (Glc) have been the most studied to date. The first Glc sensor identified in plants was hexokinase (HXK), which is currently recognized as a dual-function protein. In addition to its catalytic activity, this enzyme can also repress the expression of some photosynthetic genes in response to high internal Glc concentrations. Additionally, the catalytic activity of HXKs has a profound impact on cell metabolism and other sugar signaling pathways that depend on phosphorylated hexoses and intermediate glycolytic products. HXKs are the only proteins that are able to phosphorylate Glc in plants, since no evidence has been provided to date concerning the existence of a glucokinase. Moreover, the intracellular localization of HXKs seems to be crucial to their activity and sensor functions. Recently, two new and surprising functions have been described for HXKs. In this review, we discuss the versatility of HXKs in regard to their catalytic and glucose sensor activities, intracellular location, protein-protein and hormone interactions, as well as how these HXK characteristics influence plant growth and development, in an effort to understand this enzyme's role in improving plant productivity.
Collapse
Affiliation(s)
- G Paulina Aguilera-Alvarado
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, México 04510, DF, México
| | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Conjunto E. Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, México 04510, DF, México
| |
Collapse
|
21
|
Shangguan L, Mu Q, Fang X, Zhang K, Jia H, Li X, Bao Y, Fang J. RNA-Sequencing Reveals Biological Networks during Table Grapevine ('Fujiminori') Fruit Development. PLoS One 2017; 12:e0170571. [PMID: 28118385 PMCID: PMC5261597 DOI: 10.1371/journal.pone.0170571] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/06/2017] [Indexed: 11/19/2022] Open
Abstract
Grapevine berry development is a complex and genetically controlled process, with many morphological, biochemical and physiological changes occurring during the maturation process. Research carried out on grapevine berry development has been mainly concerned with wine grape, while barely focusing on table grape. 'Fujiminori' is an important table grapevine cultivar, which is cultivated in most provinces of China. In order to uncover the dynamic networks involved in anthocyanin biosynthesis, cell wall development, lipid metabolism and starch-sugar metabolism in 'Fujiminori' fruit, we employed RNA-sequencing (RNA-seq) and analyzed the whole transcriptome of grape berry during development at the expanding period (40 days after full bloom, 40DAF), véraison period (65DAF), and mature period (90DAF). The sequencing depth in each sample was greater than 12×, and the expression level of nearly half of the expressed genes were greater than 1. Moreover, greater than 64% of the clean reads were aligned to the Vitis vinifera reference genome, and 5,620, 3,381, and 5,196 differentially expressed genes (DEGs) were identified between different fruit stages, respectively. Results of the analysis of DEGs showed that the most significant changes in various processes occurred from the expanding stage to the véraison stage. The expression patterns of F3'H and F3'5'H were crucial in determining red or blue color of the fruit skin. The dynamic networks of cell wall development, lipid metabolism and starch-sugar metabolism were also constructed. A total of 4,934 SSR loci were also identified from 4,337 grapevine genes, which may be helpful for the development of phylogenetic analysis in grapevine and other fruit trees. Our work provides the foundation for developmental research of grapevine fruit as well as other non-climacteric fruits.
Collapse
MESH Headings
- Anthocyanins/metabolism
- Carbohydrate Metabolism/genetics
- Cell Wall/metabolism
- DNA, Complementary/genetics
- Fruit/growth & development
- Fruit/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Gene Regulatory Networks
- Genes, Plant
- Hybridization, Genetic
- Lipid Metabolism/genetics
- Phylogeny
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Plant/analysis
- RNA, Plant/genetics
- Real-Time Polymerase Chain Reaction
- Sequence Analysis, RNA
- Transcriptome
- Vitis/genetics
- Vitis/growth & development
Collapse
Affiliation(s)
- Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Qian Mu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
- Shandong Academy of Grape, Jinan, Shandong, PR. China
| | - Xiang Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Kekun Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xiaoying Li
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| |
Collapse
|
22
|
Analytical and Fluorimetric Methods for the Characterization of the Transmembrane Transport of Specialized Metabolites in Plants. Methods Mol Biol 2016. [PMID: 26843171 DOI: 10.1007/978-1-4939-3393-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The characterization of membrane transport of specialized metabolites is essential to understand their metabolic fluxes and to implement metabolic engineering strategies towards the production of increased levels of these valuable metabolites. Here, we describe a set of procedures to isolate tonoplast membranes, to check their purity and functionality, and to characterize their transport properties. Transport is assayed directly by HPLC analysis and quantification of the metabolites actively accumulated in the vesicles, and indirectly using the pH sensitive fluorescent probe ACMA (9-amino-6- chloro-2-methoxyacridine), when a proton antiport is involved.
Collapse
|
23
|
Noronha H, Conde C, Delrot S, Gerós H. Identification and functional characterization of grapevine transporters that mediate glucose-6-phosphate uptake into plastids. PLANTA 2015; 242:909-20. [PMID: 26007686 DOI: 10.1007/s00425-015-2329-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/08/2015] [Indexed: 05/28/2023]
Abstract
Two grapevine glucose-6-Pi plastidial transporters differently expressed in plant organs and in response to environmental and hormonal signals are characterized. They are involved in starch accumulation in berries and canes. In grapevine, starch accumulation in the trunk is important for winter storage of carbon and in the flower for reproductive development. Berries also accumulate starch in their plastids, which are also involved in the synthesis of aroma compounds important for fruit quality. The present work characterizes two glucose-phosphate translocators (VvGPT1, VvGPT2) that control the accumulation of starch in grape amyloplasts. Three different splicing variants identified for VvGPT2 (VvGPT2α, VvGPT2β and VvGPT2Ω) were more expressed in the leaves than in other organs. In contrast, VvGPT1 transcripts were more abundant in mature berries, canes and flowers than in the leaves. Expression of 35S-VvGPT1-GFP and 35S-VvGPT2Ω-GFP in tobacco leaf epidermal cells showed that the fusion proteins localized at the plastidial envelope. Complementation of the Arabidopsis pgi1-1 mutant impaired in leaf starch synthesis restored its ability to synthesize starch, demonstrating that VvGPT1 and VvGPT2Ω mediate the transport of glucose-6-Pi across the plastidial envelope. In grape cell suspensions, ABA, light and galactinol, together with sucrose and fructose, significantly increased the transcript abundance of VvGPT1, whereas VvGPT2Ω expression was affected only by sucrose. In addition, elicitation with methyl jasmonate strongly upregulated VvGPT1, VvGPT2Ω and VvPAL1, suggesting a role for GPTs in the production of secondary compounds in grapevine. Moreover, in grapevines cultivated in field conditions, VvGPT1 expression was higher in berries more exposed to the sun and subjected to higher temperatures. Although both VvGPT1 and VvGPT2 mediate the same function at the molecular level, they exhibit different expression levels and regulation in plant organs and in response to environmental and hormonal signals.
Collapse
Affiliation(s)
- Henrique Noronha
- Centro de Investigação e de Tecnologias Agro-ambientais e Biológicas CITAB, Vila Real, Portugal
| | | | | | | |
Collapse
|
24
|
Larsen PE, Collart FR, Dai Y. Predicting Ecological Roles in the Rhizosphere Using Metabolome and Transportome Modeling. PLoS One 2015; 10:e0132837. [PMID: 26332409 PMCID: PMC4557938 DOI: 10.1371/journal.pone.0132837] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/18/2015] [Indexed: 12/17/2022] Open
Abstract
The ability to obtain complete genome sequences from bacteria in environmental samples, such as soil samples from the rhizosphere, has highlighted the microbial diversity and complexity of environmental communities. However, new algorithms to analyze genome sequence information in the context of community structure are needed to enhance our understanding of the specific ecological roles of these organisms in soil environments. We present a machine learning approach using sequenced Pseudomonad genomes coupled with outputs of metabolic and transportomic computational models for identifying the most predictive molecular mechanisms indicative of a Pseudomonad's ecological role in the rhizosphere: a biofilm, biocontrol agent, promoter of plant growth, or plant pathogen. Computational predictions of ecological niche were highly accurate overall with models trained on transportomic model output being the most accurate (Leave One Out Validation F-scores between 0.82 and 0.89). The strongest predictive molecular mechanism features for rhizosphere ecological niche overlap with many previously reported analyses of Pseudomonad interactions in the rhizosphere, suggesting that this approach successfully informs a system-scale level understanding of how Pseudomonads sense and interact with their environments. The observation that an organism's transportome is highly predictive of its ecological niche is a novel discovery and may have implications in our understanding microbial ecology. The framework developed here can be generalized to the analysis of any bacteria across a wide range of environments and ecological niches making this approach a powerful tool for providing insights into functional predictions from bacterial genomic data.
Collapse
Affiliation(s)
- Peter E. Larsen
- Argonne National Laboratory, Biosciences Division, Argonne, IL, United States of America
- University of Illinois at Chicago, Department of Bioengineering, Chicago, IL, United States of America
| | - Frank R. Collart
- Argonne National Laboratory, Biosciences Division, Argonne, IL, United States of America
| | - Yang Dai
- University of Illinois at Chicago, Department of Bioengineering, Chicago, IL, United States of America
| |
Collapse
|
25
|
Li JM, Zheng DM, Li LT, Qiao X, Wei SW, Bai B, Zhang SL, Wu J. Genome-Wide Function, Evolutionary Characterization and Expression Analysis of Sugar Transporter Family Genes in Pear (Pyrus bretschneideri Rehd). PLANT & CELL PHYSIOLOGY 2015; 56:1721-37. [PMID: 26079674 DOI: 10.1093/pcp/pcv090] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 06/10/2015] [Indexed: 05/22/2023]
Abstract
The sugar transporter (ST) plays an important role in plant growth, development and fruit quality. In this study, a total of 75 ST genes were identified in the pear (Pyrus bretschneideri Rehd) genome based on systematic analysis. Furthermore, all ST genes identified were grouped into eight subfamilies according to conserved domains and phylogenetic analysis. Analysis of cis-regulatory element sequences of all ST genes identified the MYBCOREATCYCB1 promoter in sucrose transporter (SUT) and monosaccharide transporter (MST) genes of pear, while in grape it is exclusively found in SUT subfamily members, indicating divergent transcriptional regulation in different species. Gene duplication event analysis indicated that whole-genome duplication (WGD) and segmental duplication play key roles in ST gene amplification, followed by tandem duplication. Estimation of positive selection at codon sites of ST paralog pairs indicated that all plastidic glucose translocator (pGlcT) subfamily members have evolved under positive selection. In addition, the evolutionary history of ST gene duplications indicated that the ST genes have experienced significant expansion in the whole ST gene family after the second WGD, especially after apple and pear divergence. According to the global RNA sequencing results of pear fruit development, gene expression profiling showed the expression of 53 STs. Combined with quantitative real-time PCR (qRT-PCR) analysis, two polyol/monosaccharide transporter (PLT) and three tonoplast monosaccharide transporter (tMT) members were identified as candidate genes, which may play important roles in sugar accumulation during pear fruit development and ripening. Identification of highly expressed STs in fruit is important for finding novel genes contributing to enhanced levels of sugar content in pear fruit.
Collapse
Affiliation(s)
- Jia-Ming Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan-man Zheng
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lei-ting Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu-wei Wei
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Bai
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shao-ling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
26
|
Xu F, Xi ZM, Zhang H, Zhang CJ, Zhang ZW. Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera 'Cabernet Sauvignon' berries during véraison. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 94:197-208. [PMID: 26760954 DOI: 10.1016/j.plaphy.2015.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/25/2015] [Accepted: 06/08/2015] [Indexed: 05/02/2023]
Abstract
Sugar unloading in grape berries is a crucial step in the long-distance transport of carbohydrates from grapevine leaves to berries. Brassinosteroids (BRs) mediate many physiological processes in plants including carbohydrate metabolism. Here, 'Cabernet Sauvignon' (Vitis vinifera L.) grape berries cultivated in clay loam fields were treated with an exogenous BR (24-epibrassinolide; EBR), a BR synthesis inhibitor (brassinazole; Brz), Brz + EBR (sprayed with EBR 24 h after a Brz treatment), and deionized water (control) at the onset of véraison. The EBR treatment sharply increased the soluble sugars content in the berries, but decreased it in the skins. The EBR and Brz + EBR treatments significantly promoted the activities of both invertases (acidic and neutral) and sucrose synthase (sucrolytic) at various stages of ripening. The mRNA levels of genes encoding sucrose metabolic invertase (VvcwINV), and monosaccharide (VvHT3, 4, 5 and 6) and disaccharide (VvSUC12 and 27) transporters were increased by the EBR and/or Brz + EBR treatments. Generally, the effects of the Brz treatment on the measured targets contrasted with the effects of the EBR treatments. The EBR and Brz treatments inhibited the biosynthesis of the endogenous BRs 6-deoxocastastarone and castasterone. Both EBR and Brz + EBR treatments increased the brassinolide contents, down-regulated the expression of genes encoding BRs biosynthetic enzymes BRASSINOSTEROID-6-OXIDASE and DWARF1, (VvBR6OX1 and VvDWF1) and induced BR receptor gene BRASSINOSTEROID INSENSITIVE 1 (VvBRI1) expression in deseeded berries. Together, these results show that BRs are involved in controlling sugar unloading in grape berries during véraison.
Collapse
Affiliation(s)
- Fan Xu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Zhu-Mei Xi
- College of Enology, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China.
| | - Hui Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Cheng-Jun Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Zhen-Wen Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling 712100, China.
| |
Collapse
|
27
|
Conde A, Regalado A, Rodrigues D, Costa JM, Blumwald E, Chaves MM, Gerós H. Polyols in grape berry: transport and metabolic adjustments as a physiological strategy for water-deficit stress tolerance in grapevine. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:889-906. [PMID: 25433029 DOI: 10.1093/jxb/eru446] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Polyols are important metabolites that often function as carbon and energy sources and/or osmoprotective solutes in some plants. In grapevine, and in the grape berry in particular, the molecular aspects of polyol transport and metabolism and their physiological relevance are virtually unknown to date. Here, the biochemical function of a grapevine fruit mesocarp polyol transporter (VvPLT1) was characterized after its heterologous expression in yeast. This H(+)-dependent plasma membrane carrier transports mannitol (K m=5.4mM) and sorbitol (K m=9.5mM) over a broad range of polyols and monosaccharides. Water-deficit stress triggered an increase in the expression of VvPLT1 at the fully mature stage, allowing increased polyol uptake into pulp cells. Plant polyol dehydrogenases are oxireductases that reversibly oxidize polyols into monosaccharides. Mannitol catabolism in grape cells (K m=30.1mM mannitol) and mature berry mesocarps (K m=79mM) was, like sorbitol dehydrogenase activity, strongly inhibited (50-75%) by water-deficit stress. Simultaneously, fructose reduction into polyols via mannitol and sorbitol dehydrogenases was stimulated, contributing to their higher intracellular concentrations in water-deficit stress. Accordingly, the concentrations of mannitol, sorbitol, galactinol, myo-inositol, and dulcitol were significantly higher in berry mesocarps from water-deficit-stressed Tempranillo grapevines. Metabolomic profiling of the berry pulp by GC-TOF-MS also revealed many other changes in its composition induced by water deficit. The impact of polyols on grape berry composition and plant response to water deficit stress, via modifications in polyol transport and metabolism, was analysed by integrating metabolomics with transcriptional analysis and biochemical approaches.
Collapse
Affiliation(s)
- Artur Conde
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB-UM), Portugal Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Ana Regalado
- Instituto de Tecnologia Química e Biológica, Apartado 127, 2781-901 Oeiras, Portugal
| | - Diana Rodrigues
- Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - J Miguel Costa
- Instituto de Tecnologia Química e Biológica, Apartado 127, 2781-901 Oeiras, Portugal Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Eduardo Blumwald
- Department of Plant Sciences, UC Davis, One Shields Ave, Davis, CA 95616, USA
| | - M Manuela Chaves
- Instituto de Tecnologia Química e Biológica, Apartado 127, 2781-901 Oeiras, Portugal Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Hernâni Gerós
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB-UM), Portugal Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar (AgroBioPlant), Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
28
|
Fraige K, González-Fernández R, Carrilho E, Jorrín-Novo JV. Metabolite and proteome changes during the ripening of Syrah and Cabernet Sauvignon grape varieties cultured in a nontraditional wine region in Brazil. J Proteomics 2015; 113:206-25. [DOI: 10.1016/j.jprot.2014.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/22/2014] [Accepted: 09/26/2014] [Indexed: 01/19/2023]
|
29
|
Medici A, Laloi M, Atanassova R. Profiling of sugar transporter genes in grapevine coping with water deficit. FEBS Lett 2014; 588:3989-97. [PMID: 25261250 DOI: 10.1016/j.febslet.2014.09.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/03/2014] [Indexed: 11/15/2022]
Abstract
The profiling of grapevine (Vitis vinifera L.) genes under water deficit was specifically targeted to sugar transporters. Leaf water status was characterized by physiological parameters and soluble sugars content. The expression analysis provided evidence that VvHT1 hexose transporter gene was strongly down-regulated by the increased sugar content under mild water-deficit. The genes of monosaccharide transporter VvHT5, sucrose carrier VvSUC11, vacuolar invertase VvGIN2 and grape ASR (ABA, stress, ripening) were up-regulated under severe water stress. Their regulation in a drought-ABA signalling network and possible roles in complex interdependence between sugar subcellular partitioning and cell influx/efflux under Grapevine acclimation to dehydration are discussed.
Collapse
Affiliation(s)
- Anna Medici
- Université de Poitiers, UMR CNRS 7267 Écologie & Biologie des Interactions, Équipe Sucres & Echanges Végétaux/Environnement - SEVE, TSA 51106, 86073 Poitiers Cedex 9, France.
| | - Maryse Laloi
- Université de Poitiers, UMR CNRS 7267 Écologie & Biologie des Interactions, Équipe Sucres & Echanges Végétaux/Environnement - SEVE, TSA 51106, 86073 Poitiers Cedex 9, France.
| | - Rossitza Atanassova
- Université de Poitiers, UMR CNRS 7267 Écologie & Biologie des Interactions, Équipe Sucres & Echanges Végétaux/Environnement - SEVE, TSA 51106, 86073 Poitiers Cedex 9, France.
| |
Collapse
|
30
|
Lecourieux F, Kappel C, Lecourieux D, Serrano A, Torres E, Arce-Johnson P, Delrot S. An update on sugar transport and signalling in grapevine. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:821-32. [PMID: 24323501 DOI: 10.1093/jxb/ert394] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In addition to their role as a source of reduced carbon, sugars may directly or indirectly control a wide range of activities in plant cells, through transcriptional and post-translational regulation. This control has been studied in detail using Arabidopsis thaliana, where genetic analysis offers many possibilities. Much less is known about perennial woody species. For several years, various aspects of sugar sensing and signalling have been investigated in the grape (Vitis vinifera L.) berry, an organ that accumulates high concentrations of hexoses in the vacuoles of flesh cells. Here we review various aspects of this topic: the molecular basis of sugar transport and its regulation by sugars in grapevine; the functional analysis of several sugar-induced genes; the effects of some biotic and abiotic stresses on the sugar content of the berry; and finally the effects of exogenous sugar supply on the ripening process in field conditions. A picture of complex feedback and multiprocess regulation emerges from these data.
Collapse
|
31
|
Rizzuti A, Caliandro R, Gallo V, Mastrorilli P, Chita G, Latronico M. A combined approach for characterisation of fresh and brined vine leaves by X-ray powder diffraction, NMR spectroscopy and direct infusion high resolution mass spectrometry. Food Chem 2013; 141:1908-15. [PMID: 23870909 DOI: 10.1016/j.foodchem.2013.05.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/04/2013] [Accepted: 05/13/2013] [Indexed: 12/16/2022]
Abstract
X-ray powder diffraction was combined, for the first time, with Nuclear Magnetic Resonance spectroscopy and direct infusion mass spectrometry to characterise fresh and brined grape leaves. Covariance analysis of data generated by the three techniques was performed with the aim to correlate information deriving from the solid part with those obtained for soluble metabolites. The results obtained indicate that crystalline components can be correlated to the metabolites contained in the grape leaves, paving the way to the use of X-ray diffraction analysis for food fingerprinting purposes. Moreover it was ascertained that, differently from most of the metabolites present in the fresh vine leaves, linolenic acid (an omega-3-fatty acid) and quercetin-3-O-glucuronide (a polyphenol metabolite) do not undergo sensible degradation during the brining process, which is used as preservative method for the grape leaves.
Collapse
Affiliation(s)
- Antonino Rizzuti
- Dipartimento di Ingegneria Civile Ambientale del Territorio Edile e di Chimica, Politecnico di Bari, Via Orabona 4, I-70125 Bari, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Martins V, Hanana M, Blumwald E, Gerós H. Copper transport and compartmentation in grape cells. PLANT & CELL PHYSIOLOGY 2012; 53:1866-1880. [PMID: 22952251 DOI: 10.1093/pcp/pcs125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Copper-based fungicides have been widely used against several grapevine (Vitis vinifera L.) diseases since the late 1800s when the Bordeaux mixture was developed, but their intensive use has raised phytotoxicity concerns. In this study, physiological, biochemical and molecular approaches were combined to investigate the impacts of copper in grape cells and how it is transported and compartmented intracellularly. Copper reduced the growth and viability of grape cells (CSB, Cabernet Sauvignon Berry) in a dose-dependent manner above 100 µM and was accumulated in specific metal ion sinks. The copper-sensitive probe Phen Green SK was used to characterize copper transport across the plasma membrane of CSB cells. The transport system (K(m) = 583 µM; V(max) = 177 × 10(-6) %ΔF min(-1) protoplast(-1)) was regulated by copper availability in the culture medium, stimulated by Ca(2+) and inhibited by Zn(2+). The pH-sensitive fluorescent probe ACMA (9-amino-6-chloro-2-methoxyacridine) was used to evaluate the involvement of proton-dependent copper transport across the tonoplast. Cu(2+) compartmentation in the vacuole was dependent on the transmembrane pH gradient generated by both V-H(+)-ATPase and V-H(+)-pyrophosphatase (PPase). High copper levels in the growth medium did not affect the activity of V-H(+)-PPase but decreased the magnitude of the H(+) gradient generated by V-H(+)-ATPase. Expression studies of VvCTr genes showed that VvCTr1 and VvCTr8 were distinctly affected by CuSO(4) availability in grape cell cultures and that both genes were highly expressed in the green stage of grape berries.
Collapse
Affiliation(s)
- Viviana Martins
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas, Portugal
| | | | | | | |
Collapse
|
33
|
Li Y, Li LL, Fan RC, Peng CC, Sun HL, Zhu SY, Wang XF, Zhang LY, Zhang DP. Arabidopsis sucrose transporter SUT4 interacts with cytochrome b5-2 to regulate seed germination in response to sucrose and glucose. MOLECULAR PLANT 2012; 5:1029-41. [PMID: 22311778 DOI: 10.1093/mp/sss001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
It remains unknown whether a sucrose transporter mediates sugar signaling. Here, we report that the Arabidopsis (Arabidopsis thaliana) sucrose transporter SUT4 interacts with five members of the Arabidopsis cytochrome b5 (Cyb5) family, and sucrose represses the interaction between SUT4 and a Cyb5 member Cyb5-2/A. We observed that down-regulation of SUT4 and three cytochrome b5 members (Cyb5-2, Cyb5-4, and Cyb5-6) confers the sucrose- and glucose-insensitive phenotypes in the sucrose/glucose-induced inhibition of seed germination. The sut4 cyb5-2 double mutant displays slightly stronger sucrose/glucose-insensitive phenotypes than either the sut4 or cyb5-2 single mutant. We showed that the SUT4/Cyb5-2-mediated signaling in the sucrose/glucose-induced inhibition of seed germination does not require ABA or the currently known ABI2/ABI4/ABI5-mediated signaling pathway(s). These data provide evidence that the sucrose transporter SUT4 interacts with Cyb5 to positively mediate sucrose and glucose signaling in the sucrose/glucose-induced inhibition of seed germination.
Collapse
Affiliation(s)
- Yan Li
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wu HX, Yang W, Zhang ZX, Huang T, Yao GK, Xu HH. Uptake and phloem transport of glucose-fipronil conjugate in Ricinus communis involve a carrier-mediated mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6088-94. [PMID: 22587652 DOI: 10.1021/jf300546t] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Some compounds containing glucose are absorbed via the monosaccharide transporters of the plasma membrane. A glucose-fipronil conjugate, N-[3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazol-5-yl]-1-(β-d-glucopyranosyl)-1H-1,2,3-triazole-4-methanamine (GTF), has been synthesized in our previous work. GTF exhibits moderate phloem mobility in Ricinus communis. In the current paper, we demonstrate that the uptake of GTF by Ricinus seedling cotyledon discs is partly mediated by an active carrier system (K(m)1 = 0.17 mM; V(max)1 = 2.2 nmol cm(-2) h(-1)). Four compounds [d-glucose, sucrose, phloridzin, and carbonyl cyanide m-chlorophenylhydrazone (CCCP)] were examined for their effect on GTF uptake. Phloridzin as well as CCCP markedly inhibit GTF uptake, and d-glucose weakly competes with it. The phloem transport of GTF in Ricinus seedlings is found to involve an active carrier-mediated mechanism that effectively contributes to the GTF phloem loading. The results prove that adding a glucose core is a reasonable and feasible approach to confer phloem mobility to fipronil by utilizing plant monosaccharide transporters.
Collapse
Affiliation(s)
- Han-Xiang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, China
| | | | | | | | | | | |
Collapse
|
35
|
Saumonneau A, Laloi M, Lallemand M, Rabot A, Atanassova R. Dissection of the transcriptional regulation of grape ASR and response to glucose and abscisic acid. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1495-1510. [PMID: 22140241 DOI: 10.1093/jxb/err391] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Despite the fact that the precise physiological function of ASRs [abscisic acid (ABA), stress, ripening] remains unknown, they have been suggested to play a dual role in the plant response to environmental cues, as highly hydrophilic proteins for direct protection, as well as transcription factors involved in the regulation of gene expression. To investigate further the biological positioning of grape ASR in the hormonal and metabolic signal network, three promoters corresponding to its cDNA were isolated and submited to a detailed in silico and functional analysis. The results obtained provided evidence for the allelic polymorphism of the grape ASR gene, the organ-preferential expression conferred on the GUS reporter gene, and the specific phloem tissue localization revealed by in situ hybridization. The study of glucose and ABA signalling in its transcriptional control, by transfection of grape protoplasts using the dual luciferase system, revealed the complexity of ASR gene expression regulation. A model was proposed allowing a discussion of the place of ASR in the fine tuning of hormonal and metabolic signalling involved in the integration of environmental cues by the plant organism.
Collapse
Affiliation(s)
- Amélie Saumonneau
- University of Poitiers, UMR CNRS 6503 LACCO, Physiologie Moléculaire du Transport des Sucres chez les Plantes, Bâtiment Botanique B31, 3 rue Jacques Fort, 86022 Poitiers, France
| | | | | | | | | |
Collapse
|
36
|
Li G, Xin H, Zheng XF, Li S, Hu Z. Identification of the abscisic acid receptor VvPYL1 in Vitis vinifera. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:244-8. [PMID: 21974741 DOI: 10.1111/j.1438-8677.2011.00504.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The phytohormone abscisic acid (ABA) plays a central role in many developmental processes and in responses to several abiotic stresses. Identification of the ABA receptor is a first step towards understanding ABA signalling. In this study, using homology analysis, we cloned three genes, named VvPYL1, VvPYL2 and VvPYL3, from Vitis vinifera. An isothermal titration calorimetry assay suggested that VvPYL1 could bind to ABA. A phosphatase activity assay demonstrated that VvPYL1 inhibits phosphatase activity of ABI1, a negative regulator of ABA signalling, in the presence of ABA. Subcellular localisation demonstrates that VvPYL1 is distributed in both the nucleus and cytosol, which is similar to the subcellular localisation of ABA receptors in Arabidopsis. We therefore conclude that VvPYL1 is an ABA receptor that modulates ABA signalling by inhibiting type 2C protein phosphatases (PP2Cs).
Collapse
Affiliation(s)
- G Li
- Key Laboratory of Ministry of Education for Plant Developmental Biology, College of Life Science, Wuhan University, Wuhan, China
| | | | | | | | | |
Collapse
|
37
|
Poschet G, Hannich B, Raab S, Jungkunz I, Klemens PA, Krueger S, Wic S, Neuhaus HE, Büttner M. A novel Arabidopsis vacuolar glucose exporter is involved in cellular sugar homeostasis and affects the composition of seed storage compounds. PLANT PHYSIOLOGY 2011; 157:1664-76. [PMID: 21984725 PMCID: PMC3327193 DOI: 10.1104/pp.111.186825] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/06/2011] [Indexed: 05/18/2023]
Abstract
Subcellular sugar partitioning in plants is strongly regulated in response to developmental cues and changes in external conditions. Besides transitory starch, the vacuolar sugars represent a highly dynamic pool of instantly accessible metabolites that serve as energy source and osmoprotectant. Here, we present the molecular identification and functional characterization of the vacuolar glucose (Glc) exporter Arabidopsis (Arabidopsis thaliana) Early Responsive to Dehydration-Like6 (AtERDL6). We demonstrate tonoplast localization of AtERDL6 in plants. In Arabidopsis, AtERDL6 expression is induced in response to factors that activate vacuolar Glc pools, like darkness, heat stress, and wounding. On the other hand, AtERDL6 transcript levels drop during conditions that trigger Glc accumulation in the vacuole, like cold stress and external sugar supply. Accordingly, sugar analyses revealed that Aterdl6 mutants have elevated vacuolar Glc levels and that Glc flux across the tonoplast is impaired under stress conditions. Interestingly, overexpressor lines indicated a very similar function for the ERDL6 ortholog Integral Membrane Protein from sugar beet (Beta vulgaris). Aterdl6 mutant plants display increased sensitivity against external Glc, and mutant seeds exhibit a 10% increase in seed weight due to enhanced levels of seed sugars, proteins, and lipids. Our findings underline the importance of vacuolar Glc export during the regulation of cellular Glc homeostasis and the composition of seed reserves.
Collapse
|
38
|
Conde A, Silva P, Agasse A, Conde C, Gerós H. Mannitol transport and mannitol dehydrogenase activities are coordinated in Olea europaea under salt and osmotic stresses. PLANT & CELL PHYSIOLOGY 2011; 52:1766-75. [PMID: 21893515 DOI: 10.1093/pcp/pcr121] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The intracellular accumulation of organic compatible solutes functioning as osmoprotectants, such as polyols, is an important response mechanism of several plants to drought and salinity. In Olea europaea a mannitol transport system (OeMaT1) was previously characterized as a key player in plant response to salinity. In the present study, heterotrophic sink models, such as olive cell suspensions and fruit tissues, and source leaves were used for analytical, biochemical and molecular studies. The kinetic parameters of mannitol dehydrogenase (MTD) determined in cells growing in mannitol, at 25°C and pH 9.0, were as follows: K(m), 54.5 mM mannitol; and V(max), 0.47 μmol h⁻¹ mg⁻¹ protein. The corresponding cDNA was cloned and named OeMTD1. OeMTD1 expression was correlated with MTD activity, OeMaT1 expression and carrier-mediated mannitol transport in mannitol- and sucrose-grown cells. Furthermore, sucrose-grown cells displayed only residual OeMTD activity, even though high levels of OeMTD1 transcription were observed. There is evidence that OeMTD is regulated at both transcriptional and post-transcriptional levels. MTD activity and OeMTD1 expression were repressed after Na+, K+ and polyethylene glycol (PEG) treatments, in both mannitol- and sucrose-grown cells. In contrast, salt and drought significantly increased mannitol transport activity and OeMaT1 expression. Taken together, these studies support that olive trees cope with salinity and drought by coordinating mannitol transport with intracellular metabolism.
Collapse
Affiliation(s)
- Artur Conde
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB), Portugal
| | | | | | | | | |
Collapse
|
39
|
Vega A, Gutiérrez RA, Peña-Neira A, Cramer GR, Arce-Johnson P. Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera. PLANT MOLECULAR BIOLOGY 2011; 77:261-74. [PMID: 21786204 DOI: 10.1007/s11103-011-9807-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 07/06/2011] [Indexed: 05/21/2023]
Abstract
Virus infections in grapevine cause important economic losses and affect fruit quality worldwide. Although the phenotypic symptoms associated to viral infections have been described, the molecular plant response triggered by virus infection is still poorly understood in Vitis vinifera. As a first step to understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process. Genes with altered expression in berries harvested from GLRaV-3-infected vines as compared to uninfected tissue include anthocyanin biosynthesis and sugar metabolism genes. The reduction in transcript accumulation for sugar and anthocyanin metabolism during fruit development is consistent with a dramatic reduction in anthocyanin biosynthesis as well as reduced sugar levels in berries, a hallmark phenotypic change observed in virus infected grapevines. Analysis of key regulatory factors provides a mechanism for the observed gene expression changes. Our results provide insight into commonly observed phenotypic alterations in virus infected vines and the molecular mechanisms associated with the plant response to the virus during berry ripening.
Collapse
Affiliation(s)
- Andrea Vega
- Center for Genome Regulation, Millennium Nucleus Center for Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | | | |
Collapse
|
40
|
Castellarin SD, Gambetta GA, Wada H, Shackel KA, Matthews MA. Fruit ripening in Vitis vinifera: spatiotemporal relationships among turgor, sugar accumulation, and anthocyanin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4345-54. [PMID: 21586429 PMCID: PMC3153685 DOI: 10.1093/jxb/err150] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/06/2011] [Accepted: 04/13/2011] [Indexed: 05/12/2023]
Abstract
This study reports the first observations indicating the spatiotemporal relationships among genetic and physiological aspects of ripening in the berry of Vitis vinifera. At the onset of ripening in the red flesh variety Alicante Bouschet, colour development began in the flesh at the stylar end of the fruit and progressed toward the pedicel end flesh and into the skin. Tissue solute potential and cell turgor also decreased first in the flesh. The decrease in flesh solute potential was due to accumulation of sugars, glucose and fructose, an accumulation that is integral to ripening. Expression of the anthocyanin biosynthesis-related genes VvMybA and VvUFGT was linearly related to the decrease in solute potential. Expression of VvMybA, and to a lesser extent VvUFGT, was correspondingly low in green tissue, higher in the red, stylar end flesh of berries beginning to ripen, and greatest in red berries. In contrast, expression of the abscisic acid biosynthesis-related genes VvNCED1 and VvNCED2 was not correlated with the other spatiotemporal aspects of the onset of ripening. These results, together with earlier work showing that sugar accumulation and acid loss also begin in the stylar flesh in other varieties, indicate that ripening in the grape berry originates in the stylar end flesh.
Collapse
Affiliation(s)
- Simone D Castellarin
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Via delle Scienze 208, 33100 Udine, Italy.
| | | | | | | | | |
Collapse
|
41
|
Sharathchandra RG, Stander C, Jacobson D, Ndimba B, Vivier MA. Proteomic analysis of grape berry cell cultures reveals that developmentally regulated ripening related processes can be studied using cultured cells. PLoS One 2011; 6:e14708. [PMID: 21379583 PMCID: PMC3040747 DOI: 10.1371/journal.pone.0014708] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/04/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND This work describes a proteomics profiling method, optimized and applied to berry cell suspensions to evaluate organ-specific cultures as a platform to study grape berry ripening. Variations in berry ripening within a cluster(s) on a vine and in a vineyard are a major impediment towards complete understanding of the functional processes that control ripening, specifically when a characterized and homogenous sample is required. Berry cell suspensions could overcome some of these problems, but their suitability as a model system for berry development and ripening needs to be established first. METHODOLOGY/PRINCIPAL FINDINGS In this study we report on the proteomic evaluation of the cytosolic proteins obtained from synchronized cell suspension cultures that were established from callus lines originating from green, véraison and ripe Vitis vinifera berry explants. The proteins were separated using liquid phase IEF in a Microrotofor cell and SDS PAGE. This method proved superior to gel-based 2DE. Principal component analysis confirmed that biological and technical repeats grouped tightly and importantly, showed that the proteomes of berry cultures originating from the different growth/ripening stages were distinct. A total of twenty six common bands were selected after band matching between different growth stages and twenty two of these bands were positively identified. Thirty two % of the identified proteins are currently annotated as hypothetical. The differential expression profile of the identified proteins, when compared with published literature on grape berry ripening, suggested common trends in terms of relative abundance in the different developmental stages between real berries and cell suspensions. CONCLUSIONS The advantages of having suspension cultures that accurately mimic specific developmental stages are profound and could significantly contribute to the study of the intricate regulatory and signaling networks responsible for berry development and ripening.
Collapse
Affiliation(s)
- Ramaschandra G. Sharathchandra
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| | - Charmaine Stander
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| | - Dan Jacobson
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
| | - Bongani Ndimba
- Proteomics Research Laboratory, Department of Biotechnology, University of Western Cape, Bellville, South Africa
| | - Melané A. Vivier
- Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Stellenbosch, South Africa
- * E-mail:
| |
Collapse
|
42
|
Ali K, Maltese F, Fortes AM, Pais MS, Choi YH, Verpoorte R. Monitoring biochemical changes during grape berry development in Portuguese cultivars by NMR spectroscopy. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.08.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Afoufa-Bastien D, Medici A, Jeauffre J, Coutos-Thévenot P, Lemoine R, Atanassova R, Laloi M. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling. BMC PLANT BIOLOGY 2010; 10:245. [PMID: 21073695 PMCID: PMC3095327 DOI: 10.1186/1471-2229-10-245] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 11/12/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. RESULTS In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters), has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3), one polyol (VvPMT5) and one sucrose (VvSUC27) transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2) and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2) genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5), in roots (VvHT2) or in mature leaves (VvHT5). CONCLUSIONS This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and revealed that sugar transporter gene families in this woody plant are strongly comparable to those of herbaceous species. Dedicated macroarrays have provided a Vitis sugar transporter genes expression profiling, which will likely contribute to understand their physiological functions in plant and berry development. The present results might also have a significant impact on our knowledge on plant sugar transporters.
Collapse
Affiliation(s)
- Damien Afoufa-Bastien
- UMR-CNRS-UP 6503 - LACCO - Laboratoire de Catalyse en Chimie Organique - Equipe Physiologie Moléculaire du Transport de Sucres - Université de Poitiers - Bâtiment Botanique - 40 Avenue du Recteur Pineau, 86022 Poitiers cedex, France
| | - Anna Medici
- UMR-CNRS-UP 6503 - LACCO - Laboratoire de Catalyse en Chimie Organique - Equipe Physiologie Moléculaire du Transport de Sucres - Université de Poitiers - Bâtiment Botanique - 40 Avenue du Recteur Pineau, 86022 Poitiers cedex, France
| | - Julien Jeauffre
- UMR-CNRS-UP 6503 - LACCO - Laboratoire de Catalyse en Chimie Organique - Equipe Physiologie Moléculaire du Transport de Sucres - Université de Poitiers - Bâtiment Botanique - 40 Avenue du Recteur Pineau, 86022 Poitiers cedex, France
- UMR Génétique et Horticulture (GenHort) - INRA/INH/UA - BP 60057 - 49071 Beaucouzé cedex, France
| | - Pierre Coutos-Thévenot
- UMR-CNRS-UP 6503 - LACCO - Laboratoire de Catalyse en Chimie Organique - Equipe Physiologie Moléculaire du Transport de Sucres - Université de Poitiers - Bâtiment Botanique - 40 Avenue du Recteur Pineau, 86022 Poitiers cedex, France
| | - Rémi Lemoine
- UMR-CNRS-UP 6503 - LACCO - Laboratoire de Catalyse en Chimie Organique - Equipe Physiologie Moléculaire du Transport de Sucres - Université de Poitiers - Bâtiment Botanique - 40 Avenue du Recteur Pineau, 86022 Poitiers cedex, France
| | - Rossitza Atanassova
- UMR-CNRS-UP 6503 - LACCO - Laboratoire de Catalyse en Chimie Organique - Equipe Physiologie Moléculaire du Transport de Sucres - Université de Poitiers - Bâtiment Botanique - 40 Avenue du Recteur Pineau, 86022 Poitiers cedex, France
| | - Maryse Laloi
- UMR-CNRS-UP 6503 - LACCO - Laboratoire de Catalyse en Chimie Organique - Equipe Physiologie Moléculaire du Transport de Sucres - Université de Poitiers - Bâtiment Botanique - 40 Avenue du Recteur Pineau, 86022 Poitiers cedex, France
| |
Collapse
|
44
|
McCurdy DW, Dibley S, Cahyanegara R, Martin A, Patrick JW. Functional characterization and RNAi-mediated suppression reveals roles for hexose transporters in sugar accumulation by tomato fruit. MOLECULAR PLANT 2010; 3:1049-63. [PMID: 20833733 DOI: 10.1093/mp/ssq050] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hexoses accumulate to high concentrations (∼ 200 mM) in storage parenchyma cells of tomato fruit. Hexoses are sourced from the fruit apoplasm as hydrolysis products of phloem-imported sucrose. Three hexose transporters (LeHT1, LeHT2, LeHT3), expressed in fruit storage parenchyma cells, may contribute to hexose uptake by these cells. An analysis of their full-length sequences demonstrated that all three transporters belong to the STP sub-family of monosaccharide transporters that localize to plasma membranes. Heterologous expression of LeHT1 (and previously LeHT2, Gear et al., 2000), but not LeHT3, rescued a hexose transport-impaired yeast mutant when raised on glucose or fructose as the sole carbon source. Biochemically, LeHT1, similarly to LeHT2, exhibited transport properties consistent with a high-affinity glucose/H(+) symporter. Significantly, LeHT1 and LeHT2 also functioned as low-affinity fructose/H(+) symporters with apparent K(m) values commensurate with those of fruit tissues. A substantial reduction (80-90%) in fruit expression levels of all LeHT genes by RNAi-mediated knockdown caused a 55% decrease in fruit hexose accumulation. In contrast, photoassimilate production by source leaves and phloem transport capacity to fruit were unaffected by transporter knockdown. Collectively, these findings demonstrate that LeHTs play key roles in driving accumulation of hexoses into storage parenchyma cells during tomato fruit development.
Collapse
Affiliation(s)
- David W McCurdy
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | |
Collapse
|
45
|
Büttner M. The Arabidopsis sugar transporter (AtSTP) family: an update. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:35-41. [PMID: 20712619 DOI: 10.1111/j.1438-8677.2010.00383.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Arabidopsis sugar transporter (AtSTP) family is one of the best characterised families within the monosaccharide transporter (MST)-like genes. However, several aspects are still poorly investigated or not yet addressed experimentally, such as post-translational modifications and other factors affecting transport activity. This mini-review summarises recent advances in the AtSTP family as well as objectives for future studies.
Collapse
Affiliation(s)
- M Büttner
- University Heidelberg, Institute for Plant Science (HIP), Heidelberg, Germany.
| |
Collapse
|
46
|
Gambetta GA, Matthews MA, Shaghasi TH, McElrone AJ, Castellarin SD. Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape. PLANTA 2010; 232:219-34. [PMID: 20407788 PMCID: PMC2872022 DOI: 10.1007/s00425-010-1165-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 03/30/2010] [Indexed: 05/18/2023]
Abstract
The onset of ripening involves changes in sugar metabolism, softening, and color development. Most understanding of this process arises from work in climacteric fruits where the control of ripening is predominately by ethylene. However, many fruits such as grape are nonclimacteric, where the onset of ripening results from the integration of multiple hormone signals including sugars and abscisic acid (ABA). In this study, we identified ten orthologous gene families in Vitis vinifera containing components of sugar and ABA-signaling pathways elucidated in model systems, including PP2C protein phosphatases, and WRKY and homeobox transcription factors. Gene expression was characterized in control- and deficit-irrigated, field-grown Cabernet Sauvignon. Sixty-seven orthologous genes were identified, and 38 of these were expressed in berries. Of the genes expressed in berries, 68% were differentially expressed across development and/or in response to water deficit. Orthologs of several families were induced at the onset of ripening, and induced earlier and to higher levels in response to water deficit; patterns of expression that correlate with sugar and ABA accumulation during ripening. Similar to field-grown berries, ripening phenomena were induced in immature berries when cultured with sucrose and ABA, as evidenced by changes in color, softening, and gene expression. Finally, exogenous sucrose and ABA regulated key orthologs in culture, similar to their regulation in the field. This study identifies novel candidates in the control of nonclimacteric fruit ripening and demonstrates that grape orthologs of key sugar and ABA-signaling components are regulated by sugar and ABA in fleshy fruit.
Collapse
Affiliation(s)
- Gregory A Gambetta
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
47
|
Hayes MA, Feechan A, Dry IB. Involvement of abscisic acid in the coordinated regulation of a stress-inducible hexose transporter (VvHT5) and a cell wall invertase in grapevine in response to biotrophic fungal infection. PLANT PHYSIOLOGY 2010; 153:211-21. [PMID: 20348211 PMCID: PMC2862438 DOI: 10.1104/pp.110.154765] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Accepted: 03/21/2010] [Indexed: 05/18/2023]
Abstract
Biotrophic fungal and oomycete pathogens alter carbohydrate metabolism in infected host tissues. Symptoms such as elevated soluble carbohydrate concentrations and increased invertase activity suggest that a pathogen-induced carbohydrate sink is established. To identify pathogen-induced regulators of carbohydrate sink strength, quantitative real-time polymerase chain reaction was used to measure transcript levels of invertase and hexose transporter genes in biotrophic pathogen-infected grapevine (Vitis vinifera) leaves. The hexose transporter VvHT5 was highly induced in coordination with the cell wall invertase gene VvcwINV by powdery and downy mildew infection. However, similar responses were also observed in response to wounding, suggesting that this is a generalized response to stress. Analysis of the VvHT5 promoter region indicated the presence of multiple abscisic acid (ABA) response elements, suggesting a role for ABA in the transition from source to sink under stress conditions. ABA treatment of grape leaves was found to reproduce the same gene-specific transcriptional changes as observed under biotic and abiotic stress conditions. Furthermore, the key regulatory ABA biosynthetic gene, VvNCED1, was activated under these same stress conditions. VvHT5 promoter::beta-glucuronidase-directed expression in transgenic Arabidopsis (Arabidopsis thaliana) was activated by infection with powdery mildew and by ABA treatment, and the expression was closely associated with vascular tissue adjacent to infected regions. Unlike VvHT1 and VvHT3, which appear to be predominantly involved in hexose transport in developing leaves and berries, VvHT5 appears to have a specific role in enhancing sink strength under stress conditions, and this is controlled through ABA. Our data suggest a central role for ABA in the regulation of VvcwINV and VvHT5 expression during the transition from source to sink in response to infection by biotrophic pathogens.
Collapse
Affiliation(s)
| | | | - Ian B. Dry
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
48
|
Lecourieux F, Lecourieux D, Vignault C, Delrot S. A sugar-inducible protein kinase, VvSK1, regulates hexose transport and sugar accumulation in grapevine cells. PLANT PHYSIOLOGY 2010; 152:1096-106. [PMID: 19923236 PMCID: PMC2815899 DOI: 10.1104/pp.109.149138] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 11/10/2009] [Indexed: 05/20/2023]
Abstract
In grapevine (Vitis vinifera), as in many crops, soluble sugar content is a major component of yield and economical value. This paper identifies and characterizes a Glycogen Synthase Kinase3 protein kinase, cloned from a cDNA library of grape Cabernet Sauvignon berries harvested at the ripening stage. This gene, called VvSK1, was mainly expressed in flowers, berries, and roots. In the berries, it was strongly expressed at postvéraison, when the berries accumulate glucose, fructose, and abscisic acid. In grapevine cell suspensions, VvSK1 transcript abundance is increased by sugars and abscisic acid. In transgenic grapevine cells overexpressing VvSK1, the expression of four monosaccharide transporters (VvHT3, VvHT4, VvHT5, and VvHT6) was up-regulated, the rate of glucose uptake was increased 3- to 5-fold, and the amount of glucose and sucrose accumulation was more than doubled, while the starch amount was not affected. This work provides, to our knowledge, the first example of the control of sugar uptake and accumulation by a sugar-inducible protein kinase.
Collapse
Affiliation(s)
- Fatma Lecourieux
- UMR Ecophysiology and Grape Functional Genomics, University of Bordeaux, INRA, Institut des Sciences de Vigne et du Vin, 33882 Villenave d'Ornon, France.
| | | | | | | |
Collapse
|
49
|
Fontes N, Silva R, Vignault C, Lecourieux F, Gerós H, Delrot S. Purification and functional characterization of protoplasts and intact vacuoles from grape cells. BMC Res Notes 2010; 3:19. [PMID: 20181000 PMCID: PMC2830944 DOI: 10.1186/1756-0500-3-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 01/22/2010] [Indexed: 11/18/2022] Open
Abstract
Background During grape berry ripening, the vacuoles accumulate water, sugars and secondary metabolites, causing great impact in plant productivity and wine quality. However, the molecular basis of these compartmentation processes is still poorly understood. As in many species, the major bottleneck to study these aspects in grapevine is to obtain highly purified vacuoles with a good yield. The present paper describes an isolation method of protoplasts and intact vacuoles from grape berry cells and their functional characterization by transport and cytometric assays. Findings Protoplasts were prepared by enzymatic digestion of grape cells, and vacuoles were released and purified by a Ficoll step gradient centrifugation. The tonoplast stained strongly with the fluorescent dye FM1-43 and most vacuoles maintained an internal acidic pH, as assessed by Neutral Red. Flow cytometry analysis of vacuole samples incubated with the calcium-sensitive fluorescent probe Fluo-4 AM revealed a well-defined sub-population of intact vacuoles. As assessed by the pH-sensitive probe ACMA, intact vacuoles generated and maintained a pH gradient through the activity of V-ATPase and V-PPase and were able to transport Ca2+ via a proton-dependent transport system. Conclusions Highly pure, intact and functional protoplast and vacuole populations from grape cells were obtained with the present method, which revealed to be fast and efficient. The capacity of the vacuole population to sequester protons and accumulate Ca2+ strongly suggests the intactness and physiological integrity of these extremely fragile organelles. Grapevine protoplasts and vacuoles may be used as models for both basic research and biotechnological approaches, such as proteomics, solute uptake and compartmentation, toxicological assessments and breeding programs.
Collapse
Affiliation(s)
- Natacha Fontes
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB), Portugal.
| | | | | | | | | | | |
Collapse
|
50
|
Grimplet J, Wheatley MD, Jouira HB, Deluc LG, Cramer GR, Cushman JC. Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions. Proteomics 2009; 9:2503-28. [PMID: 19343710 DOI: 10.1002/pmic.200800158] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to investigate the unique contribution of individual wine grape (Vitis vinifera) berry tissues and water-deficit to wine quality traits, a survey of tissue-specific differences in protein and selected metabolites was conducted using pericarp (skin and pulp) and seeds of berries from vines grown under well-watered and water-deficit stress conditions. Of 1047 proteins surveyed from pericarp by 2-D PAGE, 90 identified proteins showed differential expression between the skin and pulp. Of 695 proteins surveyed from seed tissue, 163 were identified and revealed that the seed and pericarp proteomes were nearly completely distinct from one another. Water-deficit stress altered the abundance of approximately 7% of pericarp proteins, but had little effect on seed protein expression. Comparison of protein and available mRNA expression patterns showed that 32% pericarp and 69% seed proteins exhibited similar quantitative expression patterns indicating that protein accumulation patterns are strongly influenced by post-transcriptional processes. About half of the 32 metabolites surveyed showed tissue-specific differences in abundance with water-deficit stress affecting the accumulation of seven of these compounds. These results provide novel insights into the likely tissue-specific origins and the influence of water-deficit stress on the accumulation of key flavor and aroma compounds in wine.
Collapse
Affiliation(s)
- Jérôme Grimplet
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV 89557-0200, USA
| | | | | | | | | | | |
Collapse
|