1
|
Kang M, Choi Y, Kim H, Choi MS, Lee S, Hyun Y, Kim SG. Loss-of-function variants of CYP706A3 in two natural accessions of Arabidopsis thaliana increase floral sesquiterpene emission. BMC PLANT BIOLOGY 2025; 25:275. [PMID: 40025437 PMCID: PMC11874846 DOI: 10.1186/s12870-025-06283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The major floral scent compounds of Arabidopsis thaliana flowers are terpenes. Although A. thaliana is generally considered to be a self-pollinating plant, there are natural variation in terpene volatile emission from flowers. However, the genetic mechanisms underlying the natural variation in Arabidopsis floral scents remain limited. RESULTS Here, we screened 116 natural accessions of A. thaliana and observed a substantial variability in the levels of terpene emission across these accessions. A genome-wide association study (GWAS) uncovered a genomic region associated with the observed variability in myrcene, one of monoterpene compounds. We then performed high-throughput genetic mapping using two representative accessions: Col-0 and Fr-2, which emit low and large amounts of floral terpenes, respectively. Next-generation mapping and RNA sequencing analyses revealed that the natural premature stop codon of CYP706A3 of Fr-2, located at the 98th codon, confers high emission of sesquiterpene from flowers. We also found an independent mutation of CYP706A3 of Np-0 in different position, leading to increased sesquiterpene emission. Interestingly, the expression levels of defense-related genes in Fr-2 were lower than those in Col-0 flowers, which suggests that terpene volatiles are potentially linked to floral defense. CONCLUSIONS The natural variation in Arabidopsis floral scent emission was partially explained by one natural allele of CYP706A3. Since some natural accessions harboring a functional allele of CYP706A3 still emit the large amount of floral sesquiterpene, it is possible that rare variants located on other loci increase scent emission.
Collapse
Affiliation(s)
- Moonyoung Kang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yuri Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyeonjin Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea
| | - Min-Soo Choi
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seula Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youbong Hyun
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, Korea Advanced Institute for Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
2
|
Lazo J, Tapia J, Guerra FP. Cadmium and Copper Stress Responses in Soapbark Tree ( Quillaja saponaria): Effects on Growth, Metal Accumulation, Saponin Concentration, and Gene Expression. PLANTS (BASEL, SWITZERLAND) 2025; 14:709. [PMID: 40094634 PMCID: PMC11901668 DOI: 10.3390/plants14050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Heavy metals such as Cu and Cd are important pollutants. Quillay (Quillaja saponaria) is a tree species endemic to Chile that is of worldwide commercial interest due to its saponins. It can grow on contaminated sites. However, the biological mechanisms underlying its defensive responses remain elusive. This study aimed to characterize Quillay plants under Cu and Cd stress and identify mechanisms controlling their interaction with these metals. We subjected six-month-old plants to Cu (75, 150, and 300 μM) and Cd (20, 40, and 80 μM) in hydroponics for a week and assessed growth, metal accumulation, saponin production, and the expression of a suite of stress-induced genes. Those genes are related to phytochelatins (PCS) and metallothioneins (MT), the antioxidant system (GS and GR), and metal transporters (COPT1). The results indicated that both metals were accumulated mainly in roots, with 339.9 and 433.8 mg/kg DW, for Cd and Cu, respectively, exhibiting a metal excluder pattern. Cd increased the length of the principal root. Higher doses of Cd and Cu augmented the saponin content (62.8% and 41.2% compared to control, respectively). The genes GS, GR, and COPT1 modified their transcriptional levels depending on the metal and organ evaluated. These results provide evidence of specific defensive responses of this species against heavy metal stress, which is helpful to guide new research efforts and support the development of strategies for using Quillay for phytoremediation.
Collapse
Affiliation(s)
- Javiera Lazo
- Escuela de Bioquímica, Universidad de Talca, Talca 3460000, Chile
| | - Jaime Tapia
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Fernando P. Guerra
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
3
|
Kaushik S, Ranjan A, Sidhu A, Singh AK, Sirhindi G. Cadmium toxicity: its' uptake and retaliation by plant defence system and ja signaling. Biometals 2024; 37:755-772. [PMID: 38206521 DOI: 10.1007/s10534-023-00569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Cadmium (Cd+2) renders multifarious environmental stresses and highly toxic to nearly all living organisms including plants. Cd causes toxicity by unnecessary augmentation of ROS that targets essential molecules and fundamental processes in plants. In response, plants outfitted a repertory of mechanisms to offset Cd toxicity. The main elements of these are Cd chelation, sequestration into vacuoles, and adjustment of Cd uptake by transporters and escalation of antioxidative mechanism. Signal molecules like phytohormones and reactive oxygen species (ROS) activate the MAPK cascade, the activation of the antioxidant system andsynergistic crosstalk between different signal molecules in order to regulate plant responses to Cd toxicity. Transcription factors like WRKY, MYB, bHLH, bZIP, ERF, NAC etc., located downstream of MAPK, and are key factors in regulating Cd toxicity responses in plants. Apart from this, MAPK and Ca2+signaling also have a salient involvement in rectifying Cd stress in plants. This review highlighted the mechanism of Cd uptake, translocation, detoxification and the key role of defense system, MAPKs, Ca2+ signals and jasmonic acid in retaliating Cd toxicity via synchronous management of various other regulators and signaling components involved under stress condition.
Collapse
Affiliation(s)
- Shruti Kaushik
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Alok Ranjan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biotechnology, Patna Women's College, Bihar, 800001, India
| | - Anmol Sidhu
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
4
|
Dingus A, Roslund MI, Brauner S, Sinkkonen A, Weidenhamer JD. Arabidopsis response to copper is mediated by density and root exudates: Evidence that plant density and toxic soils can shape plant communities. AMERICAN JOURNAL OF BOTANY 2024; 111:e16285. [PMID: 38353923 DOI: 10.1002/ajb2.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 02/22/2024]
Abstract
PREMISE Plants grown at high densities show increased tolerance to heavy metals for reasons that are not clear. A potential explanation is the release of citrate by plant roots, which binds metals and prevents uptake. Thus, pooled exudates at high plant densities might increase tolerance. We tested this exclusion facilitation hypothesis using mutants of Arabidopsis thaliana defective in citrate exudation. METHODS Wild type Arabidopsis and two allelic mutants for the Ferric Reductase Defective 3 (FRD3) gene were grown at four densities and watered with copper sulfate at four concentrations. Plants were harvested before bolting and dried. Shoot biomass was measured, and shoot material and soil were digested in nitric acid. Copper contents were determined by atomic absorption. RESULTS In the highest-copper treatment, density-dependent reduction in toxicity was observed in the wild type but not in FRD3 mutants. For both mutants, copper concentrations per gram biomass were up to seven times higher than for wild type plants, depending on density and copper treatment. In all genotypes, total copper accumulation was greater at higher plant densities. Plant size variation increased with density and copper treatment because of heterogeneous distribution of copper throughout the soil. CONCLUSIONS These results support the hypothesis that citrate exudation is responsible for density-dependent reductions in toxicity of metals. Density-dependent copper uptake and growth in contaminated soils underscores the importance of density in ecotoxicological testing. In soils with a heterogeneous distribution of contaminants, competition for nontoxic soil regions may drive size hierarchies and determine competitive outcomes.
Collapse
Affiliation(s)
- Abigail Dingus
- Department of Chemistry, Geology, and Physics, Ashland University, Ashland, Ohio, 44805, USA
- Department of Biology and Toxicology, Ashland University, Ashland, Ohio, 44805, USA
| | - Marja I Roslund
- Natural Resources Institute Finland, Horticulture Technologies, Turku and Helsinki, Finland
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Soren Brauner
- Department of Biology and Toxicology, Ashland University, Ashland, Ohio, 44805, USA
| | - Aki Sinkkonen
- Natural Resources Institute Finland, Horticulture Technologies, Turku and Helsinki, Finland
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Jeffrey D Weidenhamer
- Department of Chemistry, Geology, and Physics, Ashland University, Ashland, Ohio, 44805, USA
| |
Collapse
|
5
|
Pakdee O, Tshering S, Pokethitiyook P, Meetam M. Examination of the Metallothionein Gene Family in Greater Duckweed Spirodela polyrhiza. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010125. [PMID: 36616254 PMCID: PMC9824710 DOI: 10.3390/plants12010125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 05/27/2023]
Abstract
Duckweeds are aquatic plants that proliferate rapidly in a wide range of freshwaters, and they are regarded as a potential source of sustainable biomass for various applications and the cost-effective bioremediation of heavy metal pollutants. To understand the cellular and molecular basis that underlies the high metal tolerance and accumulation capacity of duckweeds, we examined the forms and transcript profiles of the metallothionein (MT) gene family in the model duckweed Spirodela polyrhiza, whose genome has been completely sequenced. Four S. polyrhiza MT-like genes were identified and annotated as SpMT2a, SpMT2b, SpMT3, and SpMT4. All except SpMT2b showed high sequence homology including the conserved cysteine residues with the previously described MTs from flowering plants. The S. polyrhiza genome appears to lack the root-specific Type 1 MT. The transcripts of SpMT2a, SpMT2b, and SpMT3 could be detected in the vegetative whole-plant tissues. The transcript abundance of SpMT2a was upregulated several-fold in response to cadmium stress, and the heterologous expression of SpMT2a conferred copper and cadmium tolerance to the metal-sensitive ∆cup1 strain of Saccharomyces cerevisiae. Based on these results, we proposed that SpMT2a may play an important role in the metal detoxification mechanism of duckweed.
Collapse
Affiliation(s)
- Orathai Pakdee
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Shomo Tshering
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Prayad Pokethitiyook
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Metha Meetam
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Terwayet Bayouli I, Robledo-Mahón T, Meers E, Calvo C, Aranda E. Assessment of the antioxidative response and culturable micro-organisms of Lygeum spartum Loefl. ex L. for prospective phytoremediation applications. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:293-304. [PMID: 35635282 DOI: 10.1080/15226514.2022.2077694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Abundant plant species in arid industrial areas are mining phyto-resources for sustainable phyto-management. However, the association with their rhizosphere is still poorly known for phytoremediation purposes. This study aims to assess the heavy metals (HMs) and metalloids uptake of Lygeum spartum Loefl. ex L. growing in cement plant vicinity and screen associated culturome for potential phytoremediation use. Bioaccumulation factor (BAF), the translocation factor (TF), and the mobility ratio (MR) were studied along with four sites. Lipid peroxidation (MDA), free proline (Pro), Non-protein thiols (NPTs), and reduced glutathione (GSH) were tested for evaluating the plant antioxidative response. Bacteria and fungi associated with L. spartum Loefl. ex L. were identified by 16S rRNA and fungal internal transcribed spacer (ITS1-ITS2) gene sequencing. Our results showed an efficient uptake of As, Pb, and Zn and enhanced GSH (0.34 ± 0.03) and NPTs (528.7 ± 14.4 nmol g-1 FW) concentrations in the highly polluted site. No significant variation of Arbuscular Mycorrhizal Fungi (AMF) was found. Among 29 bacterial isolates, potential bioremediation were Bacillus simplex and Bacillus atrophaeus. Thus, L. spartum Loefl. ex L. and its associated microbiota have the potential for phytoremediation applications. Novelty statement: This work has been set in line with the investigation of the integrative biology of Lygeum spartum Loefl ex L. and the screening of its associated microbiome for potential phytoremediation applications. This work is the first work conducted in a cement plant vicinity investigating the associated fungi and bacteria of L. spartum Loefl. ex L. and been part of a sectorial research project since 2011, for assessing the impact of industrial pollution and recognizing the accumulation potential of plant species for further phyto-management applications.
Collapse
Affiliation(s)
| | - Tatiana Robledo-Mahón
- Department of Microbiology, Institute of Water Research, University of Granada, Granada, Spain
- Department of Microbiology, Pharmacy Faculty, University of Granada, Granada, Spain
| | - Erik Meers
- Department of Green Chemistry & Technology, Ghent University, Ghent, Belgium
| | - Concepción Calvo
- Department of Microbiology, Institute of Water Research, University of Granada, Granada, Spain
- Department of Microbiology, Pharmacy Faculty, University of Granada, Granada, Spain
| | - Elisabet Aranda
- Department of Microbiology, Institute of Water Research, University of Granada, Granada, Spain
| |
Collapse
|
7
|
Hendrix S, Verbruggen N, Cuypers A, Meyer AJ. Essential trace metals in plant responses to heat stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1775-1788. [PMID: 35018415 DOI: 10.1093/jxb/erab507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Essential trace metals function as structural components or cofactors in many proteins involved in a wide range of physiological processes in plants. Hence, trace metal deficiency can significantly hamper plant growth and development. On the other hand, excess concentrations of trace metals can also induce phytotoxicity, for example via an enhanced production of reactive oxygen species. Besides their roles in plant growth under favourable environmental conditions, trace metals also contribute to plant responses to biotic and abiotic stresses. Heat is a stress factor that will become more prevalent due to increasing climate change and is known to negatively affect crop yield and quality, posing a severe threat to food security for future generations. Gaining insight into heat stress responses is essential to develop strategies to optimize plant growth and quality under unfavourable temperatures. In this context, trace metals deserve particular attention as they contribute to defence responses and are important determinants of plant nutritional value. Here, we provide an overview of heat-induced effects on plant trace metal homeostasis and the involvement of trace metals and trace metal-dependent enzymes in plant responses to heat stress. Furthermore, avenues for future research on the interactions between heat stress and trace metals are discussed.
Collapse
Affiliation(s)
- Sophie Hendrix
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nathalie Verbruggen
- Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Sytar O, Ghosh S, Malinska H, Zivcak M, Brestic M. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. PHYSIOLOGIA PLANTARUM 2021; 173:148-166. [PMID: 33219524 DOI: 10.1111/ppl.13285] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/19/2020] [Accepted: 11/17/2020] [Indexed: 05/19/2023]
Abstract
Most of the heavy metals (HMs), and metals/metalloids are released into the nature either by natural phenomenon or anthropogenic activities. Being sessile organisms, plants are constantly exposed to HMs in the environment. The metal non-hyperaccumulating plants are susceptible to excess metal concentrations. They tend to sequester metals in their root vacuoles by forming complexes with metal ligands, as a detoxification strategy. In contrast, the metal-hyperaccumulating plants have adaptive intrinsic regulatory mechanisms to hyperaccumulate or sequester excess amounts of HMs into their above-ground tissues rather than accumulating them in roots. They have unique abilities to successfully carry out normal physiological functions without showing any visible stress symptoms unlike metal non-hyperaccumulators. The unique abilities of accumulating excess metals in hyperaccumulators partly owes to constitutive overexpression of metal transporters and ability to quickly translocate HMs from root to shoot. Various metal ligands also play key roles in metal hyperaccumulating plants. These metal hyperaccumulating plants can be used in metal contaminated sites to clean-up soils. Exploiting the knowledge of natural populations of metal hyperaccumulators complemented with cutting-edge biotechnological tools can be useful in the future. The present review highlights the recent developments in physiological and molecular mechanisms of metal accumulation of hyperaccumulator plants in the lights of metal ligands and transporters. The contrasting mechanisms of metal accumulation between hyperaccumulators and non-hyperaccumulators are thoroughly compared. Moreover, uses of different metal hyperaccumulators for phytoremediation purposes are also discussed in detail.
Collapse
Affiliation(s)
- Oksana Sytar
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
- Department of Plant Biology, Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Supriya Ghosh
- Department of Botany, University of Kalyani, Kalyani, Nadia-741235, India
| | - Hana Malinska
- Department of Biology, Jan Evangelista Purkyne University, Usti nad Labem, Czech Republic
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Amaral Dos Reis R, Hendrix S, Mourato MP, Louro Martins L, Vangronsveld J, Cuypers A. Efficient regulation of copper homeostasis underlies accession-specific sensitivities to excess copper and cadmium in roots of Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153434. [PMID: 34020275 DOI: 10.1016/j.jplph.2021.153434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The commonly used Arabidopsis thaliana natural accessions Columbia (Col-0) and Wassilewskija (Ws) are known to differ in their metal sensitivity, with Col-0 being more sensitive to copper (Cu) and cadmium (Cd) than Ws. As both Cu and Cd are known to affect Cu homeostasis, it was investigated whether this process is part of an accession-specific mechanism underlying their difference in metal sensitivity. As roots are the first contact point during metal exposure, responses were compared between roots of both accessions of hydroponically grown plants exposed to excess Cu or Cd for 24 and 72 h. Root Cu levels increased in both accessions under Cu and Cd exposure. However, under Cu exposure, the downregulation of Cu transporter (COPT) genes in combination with a more pronounced upregulation of metallothionein gene MT2b indicated that Ws plants coped better with the elevated Cu concentrations. The Cd-induced disturbance in Cu homeostasis was more efficiently counteracted in roots of Ws plants than in Col-0 plants. This was indicated by a higher upregulation of the SPL7-mediated pathway, crucial in the regulation of the Cu homeostasis response. In conclusion, maintaining the Cu homeostasis response in roots is key to accession-specific differences in Cu and Cd sensitivity.
Collapse
Affiliation(s)
- Rafaela Amaral Dos Reis
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | | | - Luísa Louro Martins
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
10
|
Llerena JPP, Coasaca RL, Rodriguez HOL, Llerena SÁP, Valencia YD, Mazzafera P. Metallothionein production is a common tolerance mechanism in four species growing in polluted Cu mining areas in Peru. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112009. [PMID: 33556811 DOI: 10.1016/j.ecoenv.2021.112009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Cu pollution is a problem in mining areas in Peru. Here we evaluate the phytoextraction capacity, physiological and proteomic responses of four species growing in copper-contaminated areas in Arequipa, Peru. The plants used in the experiments were obtained by collecting seedlings (Tessaria integrifolia, Bacharis salicifolia), rhizomes (Eleocharis montevidensis) and seeds (Chenopodium murale) along a polluted river. They were exposed to solutions containing 2, 4, 8, 16 and 32 mg Cu L-1 during 20 days. Growth was affected in a concentration-dependent way. According to the tolerance index, B. salicifolia and C. murale were the most sensitive species, but with greater Cu phytoextraction capacity and accumulation in the biomass. The content and ratio of photosynthetic pigments changed differently for each specie and carotenoids level were less affected than chlorophyll. Cu also induced changes in the protein and sugar contents. Antioxidant enzyme activities (catalase and superoxide dismutase) increased with a decrease in the malondialdehyde. There were marked changes in the protein 2D-PAGE profiles with an increase in the abundance of metallothioneins (MT) of class II type I and II. Our results suggest that these species can grow in Cu polluted areas because they developed multiple tolerance mechanisms, such as and MTs production seems a important one.
Collapse
Affiliation(s)
- Juan Pablo Portilla Llerena
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru.
| | - Raúl Lima Coasaca
- Department of Sanitation and Environment, Faculty of Civil Engineering, Architecture and Urbanism, State University of Campinas, Campinas, SP 13083-970, Brazil; School of Chemical Engineering, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Herbert Omar Lazo Rodriguez
- Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Sofía Ángela Portilla Llerena
- Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Ysabel Diaz Valencia
- Academic Department of Biology, Professional and Academic School of Biology, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil; Department of Crop Science, College of Agriculture "Luiz de Queiroz" - ESALQ, University of São Paulo - USP, Piracicaba, SP, Brazil
| |
Collapse
|
11
|
Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C. Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 2020; 11:255-277. [PMID: 30632600 DOI: 10.1039/c8mt00247a] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cd is the third major contaminant of greatest hazard to the environment after mercury and lead and is considered as the only metal that poses health risks to both humans and animals at plant tissue concentrations that are generally not phytotoxic. Cd accumulation in plant shoots depends on Cd entry through the roots, sequestration within root vacuoles, translocation in the xylem and phloem, and Cd dilution within the plant shoot throughout its growth. Several metal transporters, processes, and channels are involved from the first step of Cd reaching the root cells and until its final accumulation in the edible parts of the plant. It is hard to demonstrate one step as the pivotal factor to decide the Cd tolerance or accumulation ability of plants since the role of a specific transporter/process varies among plant species and even cultivars. In this review, we discuss the sources of Cd pollutants, Cd toxicity to plants, and mechanisms of Cd uptake and redistribution in plant tissues. The metal transporters involved in Cd transport within plant tissues are also discussed and how their manipulation can control Cd uptake and/or translocation. Finally, we discuss the beneficial effects of Se on plants under Cd stress, and how it can minimize or mitigate Cd toxicity in plants.
Collapse
Affiliation(s)
- Marwa A Ismael
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | | | | | | | | | | |
Collapse
|
12
|
Pakdee O, Songnuan W, Panvisavas N, Pokethitiyook P, Yokthongwattana K, Meetam M. Functional characterization of metallothionein-like genes from Physcomitrella patens: expression profiling, yeast heterologous expression, and disruption of PpMT1.2a gene. PLANTA 2019; 250:427-443. [PMID: 31037485 DOI: 10.1007/s00425-019-03173-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Physcomitrella patens contains four metallothionein-like genes. Three were shown to confer metal tolerance in yeast. Transcript profiling suggests their roles in senescence and reproductive development or cadmium and oxidative stress. Metallothioneins (MTs) have been suggested to play various roles including metal detoxification, nutrient remobilization, ROS scavenging, stress tolerance, and plant development. However, little is known about the forms and functions of MTs in bryophytes. The moss Physcomitrella patens genome was found to contain four MT-like genes. Amino acid sequence composition showed that the P. patens MTs (PpMTs) were clustered with Type 1 plant MTs, and could be further classified into two sub-types, herein referred to as sub-type 1: PpMT1.1a and PpMT1.1b and sub-type 2: PpMT1.2a and PpMT1.2b. Transcript abundance of PpMT1.1b and PpMT1.2b was upregulated in the gametophore compared to protonema, and all, except PpMT1.2a, were highly induced in senescing gametophytes. PpMT1.1a and PpMT1.1b transcripts were upregulated in protonema treated with cadmium and hydrogen peroxide. Unlike many higher plant MTs, the PpMT transcript abundance was not strongly induced in response to copper and zinc. These results suggest that PpMTs may play a role in protecting P. patens from cadmium and oxidative stress and may be involved in tissues senescence and reproductive development. The PpMTs, except PpMT1.2b, were also able to confer metal tolerance and accumulation when heterologously expressed in the ∆cup1 yeast. A P. patens mutant lacking PpMT1.2a through targeted gene disruption was generated. However, it did not show any alteration in growth phenotypes under senescence-induced conditions or hypersensitivity to cadmium, copper, zinc, H2O2, and NaCl stresses. Further characterization of additional P. patens mutants lacking single or multiple PpMTs may provide insight into the physiological roles of bryophytic MTs.
Collapse
Affiliation(s)
- Orathai Pakdee
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, 10400, Thailand
| | - Wisuwat Songnuan
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nathinee Panvisavas
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Prayad Pokethitiyook
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, 10400, Thailand
| | | | - Metha Meetam
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
- Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, 10400, Thailand.
| |
Collapse
|
13
|
Motaharpoor Z, Taheri H, Nadian H. Rhizophagus irregularis modulates cadmium uptake, metal transporter, and chelator gene expression in Medicago sativa. MYCORRHIZA 2019; 29:389-395. [PMID: 31218402 DOI: 10.1007/s00572-019-00900-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are considered a potential biotechnological tool for mitigating heavy metal (HM) toxicity. A greenhouse experiment was conducted to evaluate the impacts of the AM fungus Rhizophagus irregularis on cadmium (Cd) uptake, mycorrhizal colonization, and some plant growth parameters of Medicago sativa (alfalfa) in Cd-polluted soils. In addition, expression of two metal chelators (MsPCS1 (phytochelatin synthase) and MsMT2 (metallothionein)) and two metal transporter genes (MsIRT1 and MsNramp1) was analyzed using quantitative real-time PCR (qRT-PCR). Cd addition had a significant negative effect on mycorrhizal colonization. However, AMF symbiosis promoted the accumulation of biomass under both stressed and unstressed conditions compared with non-mycorrhizal (NM) plants. Results also showed that inoculation with R. irregularis significantly reduced shoot Cd concentration in polluted soils. Transcripts abundance of MsPCS1, MsMT2, MsIRT1, and MsNRAMP1 genes were downregulated compared with NM plants indicating that metal sequestration within hyphal fungi probably made Cd concentration insufficient in root cells for induction of these genes. These results suggest that reduction of shoot Cd concentration in M. sativa colonized by R. irregularis could be a promising strategy for safe production of this plant in Cd-polluted soils.
Collapse
Affiliation(s)
- Zahra Motaharpoor
- Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Hengameh Taheri
- Department of Plant Production and Genetics, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
| | - Habibollah Nadian
- Department of Soil Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| |
Collapse
|
14
|
Probing the binding effects of zinc and cadmium with garlic phytocystatin: Implication of the abiotic stress on garlic phytocystatin. Int J Biol Macromol 2019; 133:945-956. [DOI: 10.1016/j.ijbiomac.2019.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/10/2019] [Accepted: 04/05/2019] [Indexed: 11/24/2022]
|
15
|
Giacomini DA, Gaines T, Beffa R, Tranel PJ. Optimizing RNA-seq studies to investigate herbicide resistance. PEST MANAGEMENT SCIENCE 2018; 74:2260-2264. [PMID: 29222921 DOI: 10.1002/ps.4822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 05/11/2023]
Abstract
Transcriptomic profiling, specifically via RNA sequencing (RNA-seq), is becoming one of the more commonly used methods for investigating non-target site resistance (NTSR) to herbicides due to its high throughput capabilities and utility in organisms with little to no previous sequence information. A review of the weed science RNA-seq literature revealed some basic principles behind generating quality data from these types of studies. First, studies that included more replicates per biotype and took steps to control for genetic background had significantly better control of false positives and, consequently, shorter lists of potential resistance genes to sift through. Pooling of biological replicates prior to sequencing was successful in some cases, but likely contributed to an overall increase in the false discovery rate. Although the inclusion of herbicide-treated samples was common across most of the studies, it ultimately introduced difficulties in interpretation of the final results due to challenges in capturing the right sampling window after treatment and to the induction of stress responses in the injured herbicide-sensitive plants. RNA-seq is an effective tool for NTSR gene discovery, but careful consideration should be given to finding the most powerful and cost-effective balance between replicate number, sequencing depth and treatment number. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Darci A Giacomini
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Todd Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Roland Beffa
- Bayer AG, CropScience Division, Industriepark Hoechst, Frankfurt, Germany
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
16
|
Amaral Dos Reis R, Keunen E, Mourato MP, Martins LL, Vangronsveld J, Cuypers A. Accession-specific life strategies affect responses in leaves of Arabidopsis thaliana plants exposed to excess Cu and Cd. JOURNAL OF PLANT PHYSIOLOGY 2018; 223:37-46. [PMID: 29471274 DOI: 10.1016/j.jplph.2018.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/20/2018] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
The natural accession Columbia (Col-0) is considered as the reference genome of the model plant Arabidopsis thaliana. Nonetheless, Col-0 plants are more sensitive to excess copper (Cu) and cadmium (Cd) than other widely used accessions such as Wassilewskija (Ws) plants. In the current study, this accession-specific metal sensitivity is further explored by comparing the responses in leaves of Col-0 and Ws plants exposed to excess Cu and Cd. Our results suggest that different life strategies favored by both accessions under physiological conditions affect their response to metal exposure. While Col-0 plants mainly invest in metal detoxification, Ws plants center on nutrient homeostasis. In particular, the higher expression of genes related to Cu homeostasis genes in non-exposed conditions indicates that Ws plants possess a constitutively efficient metal homeostasis. On the other hand, oxidative stress-related MAPK signaling appears to be boosted in leaves of Col-0 plants exposed to excess Cu. Furthermore, the upregulation of the glutathione (GSH) biosynthesis GSH2 gene and the increased GSH concentration after Cd exposure suggest the activation of detoxification mechanisms, such as phytochelatin production, to counteract the more severe Cd-induced oxidative stress in leaves of Col-0 plants. Exposure to Cd also led to a more pronounced ethylene signaling response in leaves of Col-0 as compared to Ws plants, which could be related to Cd-induced GSH metabolism. In conclusion, accession-specific life strategies clearly affect the way in which leaves of A. thaliana plants cope with excess Cu and Cd.
Collapse
Affiliation(s)
- Rafaela Amaral Dos Reis
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| | - Els Keunen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| | - Miguel Pedro Mourato
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal.
| | - Luísa Louro Martins
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal.
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
17
|
Structural and functional variability in root-associated bacterial microbiomes of Cd/Zn hyperaccumulator Sedum alfredii. Appl Microbiol Biotechnol 2017; 101:7961-7976. [PMID: 28894921 DOI: 10.1007/s00253-017-8469-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/08/2017] [Accepted: 07/30/2017] [Indexed: 01/27/2023]
Abstract
Interactions between roots and microbes affect plant's resistance to abiotic stress. However, the structural and functional variation of root-associated microbiomes and their effects on metal accumulation in hyperaccumulators remain poorly understood. Here, we characterize the root-associated microbiota of a hyperaccumulating (HP) and a non-hyperaccumulating (NHP) genotype of Sedum alfredii by 16S ribosomal RNA gene profiling. We show that distinct microbiomes are observed in four spatially separable compartments: the bulk soil, rhizosphere, rhizoplane, and endosphere. Both the rhizosphere and rhizoplane were preferentially colonized by Proteobacteria, and the endosphere by Actinobacteria. The rhizosphere and endophytic microbiomes were dominated by the family of Sphingomonadaceae and Streptomycetaceae, respectively, which benefited for their survival and adaptation. The bacterial α-diversity decreases along the spatial gradient from the rhizosphere to the endosphere. Soil type and compartment were strongest determinants of root-associated community variation, and host genotype explained a small, but significant amount of variation. The enrichment of Bacteroidetes and depletion of Firmicutes and Planctomycetes in the HP endosphere compared with that of the NHP genotype may affect metal hyperaccumulation. Program PICRUSt predicted moderate functional differences in bacterial consortia across rhizocompartments and soil types. The functional categories involved in membrane transporters (specifically ATP-binding cassette transporters) and energy metabolism were overrepresented in endosphere of HP in comparison with NHP genotypes. Taken together, our study reveals substantial variation in structure and function of microbiomes colonizing different compartments, with the endophytic microbiota potentially playing an important role in heavy metal hyperaccumulation.
Collapse
|
18
|
Phenotypic and biochemical alterations in relation to MT2 gene expression in Plantago ovata Forsk under zinc stress. Biometals 2017; 30:171-184. [DOI: 10.1007/s10534-017-9990-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/08/2017] [Indexed: 10/20/2022]
|
19
|
Zhou S, Jia L, Chu H, Wu D, Peng X, Liu X, Zhang J, Zhao J, Chen K, Zhao L. Arabidopsis CaM1 and CaM4 Promote Nitric Oxide Production and Salt Resistance by Inhibiting S-Nitrosoglutathione Reductase via Direct Binding. PLoS Genet 2016; 12:e1006255. [PMID: 27684709 PMCID: PMC5042403 DOI: 10.1371/journal.pgen.1006255] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/23/2016] [Indexed: 12/19/2022] Open
Abstract
Salt is a major threat to plant growth and crop productivity. Calmodulin (CaM), the most important multifunctional Ca2+ sensor protein in plants, mediates reactions against environmental stresses through target proteins; however, direct proof of the participation of CaM in salt tolerance and its corresponding signaling pathway in vivo is lacking. In this study, we found that AtCaM1 and AtCaM4 produced salt-responsive CaM isoforms according to real-time reverse transcription-polymerase chain reaction analyses; this result was verified based on a phenotypic analysis of salt-treated loss-of-function mutant and transgenic plants. We also found that the level of nitric oxide (NO), an important salt-responsive signaling molecule, varied in response to salt treatment depending on AtCaM1 and AtCaM4 expression. GSNOR is considered as an important and widely utilized regulatory component of NO homeostasis in plant resistance protein signaling networks. In vivo and in vitro protein-protein interaction assays revealed direct binding between AtCaM4 and S-nitrosoglutathione reductase (GSNOR), leading to reduced GSNOR activity and an increased NO level. Overexpression of GSNOR intensified the salt sensitivity of cam4 mutant plants accompanied by a reduced internal NO level, whereas a gsnor deficiency increased the salt tolerance of cam4 plants accompanied by an increased internal NO level. Physiological experiments showed that CaM4-GSNOR, acting through NO, reestablished the ion balance to increase plant resistance to salt stress. Together, these data suggest that AtCaM1 and AtCaM4 serve as signals in plant salt resistance by promoting NO accumulation through the binding and inhibition of GSNOR. This could be a conserved defensive signaling pathway in plants and animals.
Collapse
Affiliation(s)
- Shuo Zhou
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Lixiu Jia
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Hongye Chu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Dan Wu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Xuan Peng
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Xu Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Jiaojiao Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Junfeng Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
| | - Kunming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A & F University, Yangling, China
| | - Liqun Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, China
- * E-mail:
| |
Collapse
|
20
|
Zhao L, Ortiz C, Adeleye AS, Hu Q, Zhou H, Huang Y, Keller AA. Metabolomics to Detect Response of Lettuce (Lactuca sativa) to Cu(OH)2 Nanopesticides: Oxidative Stress Response and Detoxification Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9697-707. [PMID: 27483188 DOI: 10.1021/acs.est.6b02763] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
There has been an increasing influx of nanopesticides into agriculture in recent years. Understanding the interaction between nanopesticides and edible plants is crucial in evaluating the potential impact of nanotechnology on the environment and agriculture. Here we exposed lettuce plants to Cu(OH)2 nanopesticides (1050-2100 mg/L) through foliar spray for one month. Inductively coupled plasma-mass spectrometry (ICP-MS) results indicate that 97-99% (1353-2501 mg/kg) of copper was sequestered in the leaves and only a small percentage (1-3%) (17.5-56.9 mg/kg) was translocated to root tissues through phloem loading. Gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) based metabolomics combined with partial least squares-discriminant analysis (PLS-DA) multivariate analysis revealed that Cu(OH)2 nanopesticides altered metabolite levels of lettuce leaves. Tricarboxylic (TCA) cycle and a number of amino acid-related biological pathways were disturbed. Some antioxidant levels (cis-caffeic acid, chlorogenic acid, 3,4-dihydroxycinnamic acid, dehydroascorbic acid) were significantly decreased compared to the control, indicating that oxidative stress and a defense response occurred. Nicotianamine, a copper chelator, increased by 12-27 fold compared to the control, which may represent a detoxification mechanism. The up-regulation of polyamines (spermidine and putrescine) and potassium may mitigate oxidative stress and enhance tolerance. The data presented here provide a molecular-scale perspective on the response of plants to copper nanopesticides.
Collapse
Affiliation(s)
- Lijuan Zhao
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| | - Cruz Ortiz
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| | - Adeyemi S Adeleye
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| | - Qirui Hu
- Neuroscience Research Institute, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Hongjun Zhou
- Neuroscience Research Institute and Molecular, Cellular and Developmental Biology, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Yuxiong Huang
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| |
Collapse
|
21
|
Li LS, Meng YP, Cao QF, Yang YZ, Wang F, Jia HS, Wu SB, Liu XG. Type 1 Metallothionein (ZjMT) Is Responsible for Heavy Metal Tolerance in Ziziphus jujuba. BIOCHEMISTRY (MOSCOW) 2016; 81:565-73. [PMID: 27301284 DOI: 10.1134/s000629791606002x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Metallothioneins (MTs) are a family of low molecular weight, cysteine-rich, metal-binding proteins that are able to make cells to uptake heavy metals from the environment. Molecular and functional characterization of this gene family improves understanding of the mechanisms underlying heavy metal tolerance in higher organisms. In this study, a cDNA clone, encoding 74-a.a. metallothionein type 1 protein (ZjMT), was isolated from the cDNA library of Ziziphus jujuba. At the N- and C-terminals of the deduced amino acid sequence of ZjMT, six cysteine residues were arranged in a CXCXXXCXCXXXCXC and CXCXXXCXCXXCXC structure, respectively, indicating that ZjMT is a type 1 MT. Quantitative PCR analysis of plants subjected to cadmium stress showed enhanced expression of ZjMT gene in Z. jujuba within 24 h upon Cd exposure. Escherichia coli cells expressing ZjMT exhibited enhanced metal tolerance and higher accumulation of metal ions compared with control cells. The results indicate that ZjMT contributes to the detoxification of metal ions and provides marked tolerance against metal stresses. Therefore, ZjMT may be a potential candidate for tolerance enhancement in vulnerable plants to heavy metal stress and E. coli cells containing the ZjMT gene may be applied to adsorb heavy metals in polluted wastewater.
Collapse
Affiliation(s)
- Lan-Song Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, 030024 Taiyuan, China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang Z, Xu L, Zhao J, Wang X, White JC, Xing B. CuO Nanoparticle Interaction with Arabidopsis thaliana: Toxicity, Parent-Progeny Transfer, and Gene Expression. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6008-6016. [PMID: 27226046 DOI: 10.1021/acs.est.6b01017] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CuO nanoparticles (NPs) (20, 50 mg L(-1)) inhibited seedling growth of different Arabidopsis thaliana ecotypes (Col-0, Bay-0, and Ws-2), as well as the germination of their pollens and harvested seeds. For most of growth parameters (e.g., biomass, relative growth rate, root morphology change), Col-0 was the more sensitive ecotype to CuO NPs compared to Bay-0 and Ws-2. Equivalent Cu(2+) ions and CuO bulk particles had no effect on Arabidopsis growth. After CuO NPs (50 mg L(-1)) exposure, Cu was detected in the roots, leaves, flowers and harvested seeds of Arabidopsis, and its contents were significantly higher than that in CuO bulk particles (50 mg L(-1)) and Cu(2+) ions (0.15 mg L(-1)) treatments. Based on X-ray absorption near-edge spectroscopy analysis (XANES), Cu in the harvested seeds was confirmed as being mainly in the form of CuO (88.8%), which is the first observation on the presence of CuO NPs in the plant progeny. Moreover, after CuO NPs exposure, two differentially expressed genes (C-1 and C-3) that regulated root growth and reactive oxygen species generation were identified, which correlated well with the physiological root inhibition and oxidative stress data. This current study provides direct evidence for the negative effects of CuO NPs on Arabidopsis, including accumulation and parent-progeny transfer of the particles, which may have significant implications with regard to the risk of NPs to food safety and security.
Collapse
Affiliation(s)
- Zhenyu Wang
- Institute of Costal Environmental Pollution Control, and Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China , Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Lina Xu
- Institute of Costal Environmental Pollution Control, and Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China , Qingdao 266100, China
| | - Jian Zhao
- Institute of Costal Environmental Pollution Control, and Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China , Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiangke Wang
- School of Environment and Chemical Engineering, North China Electric Power University , Beijing 102206, China
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
23
|
Singh S, Parihar P, Singh R, Singh VP, Prasad SM. Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics. FRONTIERS IN PLANT SCIENCE 2016; 6:1143. [PMID: 26904030 PMCID: PMC4744854 DOI: 10.3389/fpls.2015.01143] [Citation(s) in RCA: 468] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/02/2015] [Indexed: 05/18/2023]
Abstract
Heavy metal contamination of soil and water causing toxicity/stress has become one important constraint to crop productivity and quality. This situation has further worsened by the increasing population growth and inherent food demand. It has been reported in several studies that counterbalancing toxicity due to heavy metal requires complex mechanisms at molecular, biochemical, physiological, cellular, tissue, and whole plant level, which might manifest in terms of improved crop productivity. Recent advances in various disciplines of biological sciences such as metabolomics, transcriptomics, proteomics, etc., have assisted in the characterization of metabolites, transcription factors, and stress-inducible proteins involved in heavy metal tolerance, which in turn can be utilized for generating heavy metal-tolerant crops. This review summarizes various tolerance strategies of plants under heavy metal toxicity covering the role of metabolites (metabolomics), trace elements (ionomics), transcription factors (transcriptomics), various stress-inducible proteins (proteomics) as well as the role of plant hormones. We also provide a glance of some strategies adopted by metal-accumulating plants, also known as "metallophytes."
Collapse
Affiliation(s)
- Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Vijay P. Singh
- Department of Botany, Government Ramanuj Pratap Singhdev Post Graduate College, Sarguja UniversityBaikunthpur, India
| | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| |
Collapse
|
24
|
Shabani L, Sabzalian MR, Mostafavi pour S. Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea. MYCORRHIZA 2016; 26:67-76. [PMID: 26041568 DOI: 10.1007/s00572-015-0647-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/26/2015] [Indexed: 05/04/2023]
Abstract
Mycorrhizal fungi are key microorganisms for enhancing phytoremediation of soils contaminated with heavy metals. In this study, the effects of the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae (=Glomus mosseae) on physiological and molecular mechanisms involved in the nickel (Ni) tolerance of tall fescue (Festuca arundinacea = Schedonorus arundinaceus) were investigated. Nickel addition had a pronounced negative effect on tall fescue growth and photosynthetic pigment contents, as well as on AMF colonization. Phosphorus content increased markedly in mycorrhizal plants (M) compared to non-inoculated (NM) ones. However, no significant difference was observed in root carbohydrate content between AMF-inoculated and non-inoculated plants. For both M and NM plants, Ni concentrations in shoots and roots increased according to the addition of the metal into soil, but inoculation with F. mosseae led to significantly lower Ni translocation from roots to the aboveground parts compared to non-inoculated plants. ABC transporter and metallothionein transcripts accumulated to considerably higher levels in tall fescue plants colonized by F. mosseae than in the corresponding non-mycorrhizal plants. These results highlight the importance of mycorrhizal colonization in alleviating Ni-induced stress by reducing Ni transport from roots to shoots of tall fescue plants.
Collapse
Affiliation(s)
- Leila Shabani
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran.
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | | |
Collapse
|
25
|
Wenzel WW, Adriano DC, Salt D, Smith R. Phytoremediation: A Plant-Microbe-Based Remediation System. AGRONOMY MONOGRAPHS 2015. [DOI: 10.2134/agronmonogr37.c18] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Walter W. Wenzel
- Institute of Soil Science; Universität für Bodenkultur; Vienna Austria
| | - Domy C. Adriano
- Savannah River Ecology Laboratory; University of Georgia; Aiken South Carolina
| | - David Salt
- Chemistry Department; Northern Arizona University; Flagstaff Arizona
| | - Robert Smith
- AgBiotech Center; Rutgers University; New Brunswick New Jersey
| |
Collapse
|
26
|
Mirzahossini Z, Shabani L, Sabzalian MR, Sharifi-Tehrani M. ABC transporter and metallothionein expression affected by NI and Epichloe endophyte infection in tall fescue. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:13-19. [PMID: 26024809 DOI: 10.1016/j.ecoenv.2015.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 05/06/2015] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
Epichloe endophytes are symbiotic fungi which unlike mycorrhiza grow within aerial parts of host plants. The fungi may increase host tolerance to both biotic and abiotic stresses. In this study, the effect of endophyte infection on growth and tolerance, carbohydrate contents and ABC (ABC transporter) and MET (metallothionein) expression in the leaves of tall fescue (Festuca arundinacea) plants cultivated in Ni polluted soil were evaluated. The endophyte infected (E+) and non-infected (E-) fescue plants were cultivated in soil under different Ni concentrations (30, 90 and 180mgkg(-1)). Growth parameters including root, shoot, total biomass, tiller number and total chlorophyll content of plants and H2O2 content of shoots were measured at the end of experiment. Ni translocation to the shoots, carbohydrate contents in roots and expression of ABC and MET of the leaves were also measured after 10 weeks of growth. Results demonstrated the beneficial effect of endophyte association on growth and Ni tolerance of tall fescue under Ni stress through an avoidance mechanism (reduction of Ni accumulation and translocation to the shoots). Endophyte infected plants showed less ABC and MET expression compared to the endophyte free plants. In endophyte free plants, H2O2 production had a significant positive correlation with genes expression, indicating that an increase in H2O2 might be involved in the up-regulation of ABC and MET under Ni stress.
Collapse
Affiliation(s)
- Zahra Mirzahossini
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Leila Shabani
- Department of Biology, Faculty of Sciences, Shahrekord University, Shahrekord, Iran.
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | |
Collapse
|
27
|
Liu J, Shi X, Qian M, Zheng L, Lian C, Xia Y, Shen Z. Copper-induced hydrogen peroxide upregulation of a metallothionein gene, OsMT2c, from Oryza sativa L. confers copper tolerance in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2015; 294:99-108. [PMID: 25867584 DOI: 10.1016/j.jhazmat.2015.03.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/20/2015] [Accepted: 03/27/2015] [Indexed: 05/29/2023]
Abstract
Metallothioneins (MTs) are low-molecular-weight, cysteine-rich metal-binding proteins found in numerous genera and species, but their functions in abiotic stress tolerance remain unclear. Here, a MT gene from Oryza sativa, OsMT2c, was isolated and characterized, encoding a type 2 MT, and observed expression in the roots, leaf sheathes, and leaves, but only weak expression in seeds. OsMT2c was upregulated by copper (Cu) and hydrogen peroxide (H2O2) treatments. Excessive Cu elicited a rapid and sustained production and release of H2O2 in rice, and exogenous H2O2 scavengers N,N'-dimethylthiourea (DMTU) and ascorbic acid (Asc) decreased H2O2 production and OsMT2c expression. Furthermore, the expression of OsMT2c increased in the osapx2 mutant in which the H2O2 levels were higher than in wild-type (WT) plants. These results showed that Cu increased MT2c expression through the production and accumulation of Cu-induced H2O2 in O. sativa. In addition, the transgenic OsMT2c-overexpressing Arabidopsis displayed improved tolerance to Cu stress and exhibited increased reactive oxygen species (ROS) scavenging ability compared to WT and empty-vector (Ev) seedlings.
Collapse
Affiliation(s)
- Jia Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaoting Shi
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Meng Qian
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Chunlan Lian
- Asian Natural Environmental Science Center, The University of Tokyo, Tokyo 188-0002, Japan
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
28
|
Li Y, Chen YY, Yang SG, Tian WM. Cloning and characterization of HbMT2a, a metallothionein gene from Hevea brasiliensis Muell. Arg differently responds to abiotic stress and heavy metals. Biochem Biophys Res Commun 2015; 461:95-101. [DOI: 10.1016/j.bbrc.2015.03.175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
|
29
|
Chen C, Song Y, Zhuang K, Li L, Xia Y, Shen Z. Proteomic Analysis of Copper-Binding Proteins in Excess Copper-Stressed Roots of Two Rice (Oryza sativa L.) Varieties with Different Cu Tolerances. PLoS One 2015; 10:e0125367. [PMID: 25919452 PMCID: PMC4412397 DOI: 10.1371/journal.pone.0125367] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/12/2015] [Indexed: 12/30/2022] Open
Abstract
To better understand the mechanisms involved in the heavy metal stress response and tolerance in plants, a proteomic approach was used to investigate the differences in Cu-binding protein expression in Cu-tolerant and Cu-sensitive rice varieties. Cu-binding proteins from Cu-treated rice roots were separated using a new IMAC method in which an IDA-sepharose column was applied prior to the Cu-IMAC column to remove metal ions from protein samples. More than 300 protein spots were reproducibly detected in the 2D gel. Thirty-five protein spots exhibited changes greater than 1.5-fold in intensity compared to the control. Twenty-four proteins contained one or more of nine putative metal-binding motifs reported by Smith et al., and 19 proteins (spots) contained one to three of the top six motifs reported by Kung et al. The intensities of seven protein spots were increased in the Cu-tolerant variety B1139 compared to the Cu-sensitive variety B1195 (p<0.05) and six protein spots were markedly up-regulated in B1139, but not detectable in B1195. Four protein spots were significantly up-regulated in B1139, but unchanged in B1195 under Cu stress. In contrast, two protein spots were significantly down-regulated in B1195, but unchanged in B1139. These Cu-responsive proteins included those involved in antioxidant defense and detoxification (spots 5, 16, 21, 22, 28, 29 and 33), pathogenesis (spots 5, 16, 21, 22, 28, 29 and 33), regulation of gene transcription (spots 8 and 34), amino acid synthesis (spots 8 and 34), protein synthesis, modification, transport and degradation (spots 1, 2, 4, 10, 15, 19, 30, 31, 32 and 35), cell wall synthesis (spot 14), molecular signaling (spot 3), and salt stress (spots 7, 9 and 27); together with other proteins, such as a putative glyoxylate induced protein, proteins containing dimeric alpha-beta barrel domains, and adenosine kinase-like proteins. Our results suggest that these proteins, together with related physiological processes, play an important role in the detoxification of excess Cu and in maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yufeng Song
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Kai Zhuang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Lu Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, People’s Republic of China
| |
Collapse
|
30
|
Anjum NA, Hasanuzzaman M, Hossain MA, Thangavel P, Roychoudhury A, Gill SS, Rodrigo MAM, Adam V, Fujita M, Kizek R, Duarte AC, Pereira E, Ahmad I. Jacks of metal/metalloid chelation trade in plants-an overview. FRONTIERS IN PLANT SCIENCE 2015; 6:192. [PMID: 25883598 PMCID: PMC4382971 DOI: 10.3389/fpls.2015.00192] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/10/2015] [Indexed: 05/18/2023]
Abstract
Varied environmental compartments including soils are being contaminated by a myriad toxic metal(loid)s (hereafter termed as "metal/s") mainly through anthropogenic activities. These metals may contaminate food chain and bring irreparable consequences in human. Plant-based approach (phytoremediation) stands second to none among bioremediation technologies meant for sustainable cleanup of soils/sites with metal-contamination. In turn, the capacity of plants to tolerate potential consequences caused by the extracted/accumulated metals decides the effectiveness and success of phytoremediation system. Chelation is among the potential mechanisms that largely govern metal-tolerance in plant cells by maintaining low concentrations of free metals in cytoplasm. Metal-chelation can be performed by compounds of both thiol origin (such as GSH, glutathione; PCs, phytochelatins; MTs, metallothioneins) and non-thiol origin (such as histidine, nicotianamine, organic acids). This paper presents an appraisal of recent reports on both thiol and non-thiol compounds in an effort to shed light on the significance of these compounds in plant-metal tolerance, as well as to provide scientific clues for the advancement of metal-phytoextraction strategies.
Collapse
Affiliation(s)
- Naser A. Anjum
- Centre for Environmental and Marine Studies and Department of Chemistry, University of AveiroAveiro, Portugal
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural UniversityDhaka, Bangladesh
| | - Mohammad A. Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural UniversityMymensingh, Bangladesh
| | - Palaniswamy Thangavel
- Department of Environmental Science, School of Life Sciences, Periyar UniversitySalem, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous)Kolkata, India
| | - Sarvajeet S. Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand UniversityRohtak, India
| | - Miguel A. Merlos Rodrigo
- Central European Institute of Technology, Brno University of TechnologyBrno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czech Republic
| | - Vojtěch Adam
- Central European Institute of Technology, Brno University of TechnologyBrno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czech Republic
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa UniversityMiki-cho, Japan
| | - Rene Kizek
- Central European Institute of Technology, Brno University of TechnologyBrno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in BrnoBrno, Czech Republic
| | - Armando C. Duarte
- Centre for Environmental and Marine Studies and Department of Chemistry, University of AveiroAveiro, Portugal
| | - Eduarda Pereira
- Centre for Environmental and Marine Studies and Department of Chemistry, University of AveiroAveiro, Portugal
| | - Iqbal Ahmad
- Centre for Environmental and Marine Studies and Department of Chemistry, University of AveiroAveiro, Portugal
- Centre for Environmental and Marine Studies and Department of Biology, University of AveiroAveiro, Portugal
| |
Collapse
|
31
|
Gu CS, Liu LQ, Zhao YH, Deng YM, Zhu XD, Huang SZ. Overexpression of Iris. lactea var. chinensis metallothionein llMT2a enhances cadmium tolerance in Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 105:22-28. [PMID: 24780229 DOI: 10.1016/j.ecoenv.2014.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
Metallothioneins (MTs) are cysteine-rich, low molecular weight, heavy metal-binding protein molecules. Here, a full-length cDNA homologue of MT2a (type 2 metallothionein) was isolated from the cadmium-tolerant species Iris. lactea var. chinensis (I. lactea var. chinensis). Expression of IlMT2a in I. lactea var. chinensis roots and leaves was up-regulated in response to cadmium stress. When the gene was constitutively expressed in Arabidopsis thaliana (A. thaliana), root length of transgenic lines was longer than that of wild-type under 50μM or 100μM cadmium stress. However, there was no difference of cadmium absorption between wild-type and trangenic lines. Histochemical staining by 3,3-diaminobenzidine (DAB) and nitroblue tetrazoliu (NBT) clearly demonstrated that transgenic lines accumulated remarkably less H2O2 and O2(-) than wild-type. Together, IlMT2a may be a promising gene for the cadmium tolerance improvement.
Collapse
Affiliation(s)
- Chun-Sun Gu
- Institute of Botany, Jiangsu Province and Chinese Academy of Science, Nanjing 210014, China
| | - Liang-qin Liu
- College of Horticulture, Nanjing Agricultural University Nanjing 210014, China
| | - Yan-Hai Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Science, Nanjing 210014, China
| | - Yan-ming Deng
- Institute of Agrobiotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xu-dong Zhu
- College of Horticulture, Nanjing Agricultural University Nanjing 210014, China
| | - Su-Zhen Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Science, Nanjing 210014, China.
| |
Collapse
|
32
|
Zhou B, Yao W, Wang S, Wang X, Jiang T. The metallothionein gene, TaMT3, from Tamarix androssowii confers Cd2+ tolerance in tobacco. Int J Mol Sci 2014; 15:10398-409. [PMID: 24918294 PMCID: PMC4100158 DOI: 10.3390/ijms150610398] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 11/18/2022] Open
Abstract
Cadmium (Cd) is a nonessential microelement and low concentration Cd2+ has strong toxicity to plant growth. Plant metallothioneins, a class of low molecular, cystein(Cys)-rich and heavy-metal binding proteins, play an important role in both metal chaperoning and scavenging of reactive oxygen species (ROS) with their large number of cysteine residues and therefore, protect plants from oxidative damage. In this study, a metallothionein gene, TaMT3, isolated from Tamarix androssowii was transformed into tobacco (Nicotiana tobacum) through Agrobacterium-mediated leaf disc method, and correctly expressed under the control of 35S promoter. Under Cd2+ stress, the transgenic tobacco showed significant increases of superoxide dismutase (SOD) activity and chlorophyll concentration, but decreases of peroxidase (POD) activity and malondialdehyde (MDA) accumulation when compared to the non-transgenic tobacco. Vigorous growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weight were significantly larger than those of the non-transgenic tobacco under Cd2+ stress. These results demonstrated that the expression of the exogenous TaMT3 gene increased the ability of ROS cleaning-up, indicating a stronger tolerance to Cd2+ stress.
Collapse
Affiliation(s)
- Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| | - Shengji Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| | - Xinwang Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
33
|
R Benatti M, Yookongkaew N, Meetam M, Guo WJ, Punyasuk N, AbuQamar S, Goldsbrough P. Metallothionein deficiency impacts copper accumulation and redistribution in leaves and seeds of Arabidopsis. THE NEW PHYTOLOGIST 2014; 202:940-951. [PMID: 24635746 DOI: 10.1111/nph.12718] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/22/2013] [Indexed: 05/29/2023]
Abstract
Most angiosperm genomes contain several genes encoding metallothionein (MT) proteins that can bind metals including copper (Cu) and zinc (Zn). Metallothionein genes are highly expressed under various conditions but there is limited information about their function. We have studied Arabidopsis mutants that are deficient in multiple MTs to learn about the functions of MTs in plants. T-DNA insertions were identified in four of the five Arabidopsis MT genes expressed in vegetative tissues. These were crossed to produce plants deficient in four MTs (mt1a/mt2a/mt2b/mt3). The concentration of Cu was lower in seeds but higher in old leaves of the quad-MT mutant compared to wild-type plants. Experiments with stable isotopes showed that Cu in seeds came from two sources: directly from roots and via remobilization from other organs. Mobilization of Cu out of senescing leaves was disrupted in MT-deficient plants. Tolerance to Cu, Zn and paraquat was unaffected by MT deficiency but these plants were slightly more sensitive to cadmium (Cd). The quad-MT mutant showed no change in resistance to a number of microbial pathogens, or in the progression of leaf senescence. Although these MTs are not required to complete the plant's life cycle, MTs are important for Cu homeostasis and distribution in Arabidopsis.
Collapse
Affiliation(s)
- Matheus R Benatti
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Nimnara Yookongkaew
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Metha Meetam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Woei-Jiun Guo
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Napassorn Punyasuk
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
| | - Synan AbuQamar
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Peter Goldsbrough
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
34
|
Bhoomika K, Pyngrope S, Dubey RS. Effect of aluminum on protein oxidation, non-protein thiols and protease activity in seedlings of rice cultivars differing in aluminum tolerance. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:497-508. [PMID: 24655385 DOI: 10.1016/j.jplph.2013.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
The effect of toxic concentrations of aluminum (Al) was investigated on contents of protein-thiols, non-protein and total thiols, protein carbonylation and protease activity in the seedlings of Al-sensitive (Al-S) Indica rice cv. HUR-105 and Al-tolerant (Al-T) cv. Vandana grown in sand cultures. Al treatment of 178 μM and 421 μM for 3-12 days caused a significant decline in the level of protein thiols, rise in non-protein thiols (NPTs) as well as protein carbonyl content and an insignificant alteration in the level of total thiols in cv. HUR-105 seedlings. However, in the seedlings of Al-T cv. Vandana, no significant alteration could be observed on any of these parameters with Al treatment. Al treatment inhibited protease activity in roots, whereas the opposite trend was seen in shoots. New isozymes of protease appeared in shoots of cv. Vandana with increased level of Al treatment. Our results show a link between protein thiols and NPTs and suggest the role of NPTs in the repair and protection of protein thiols. Inhibitory effect of Al on protease activity in roots could be a major reason for Al rhizotoxic effects. Al tolerance in rice appears to be associated with lesser content of protein thiols in roots, smaller amount of carbonylated proteins in roots as well as shoots and higher protease activity in shoots.
Collapse
Affiliation(s)
- Kumari Bhoomika
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Samantha Pyngrope
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rama S Dubey
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
35
|
Schiller M, Hegelund JN, Pedas P, Kichey T, Laursen KH, Husted S, Schjoerring JK. Barley metallothioneins differ in ontogenetic pattern and response to metals. PLANT, CELL & ENVIRONMENT 2014; 37:353-367. [PMID: 23808399 DOI: 10.1111/pce.12158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/12/2013] [Accepted: 06/20/2013] [Indexed: 06/02/2023]
Abstract
The barley genome encodes a family of 10 metallothioneins (MTs) that have not previously been subject to extensive gene expression profiling. We show here that expression of MT1a, MT2b1, MT2b2 and MT3 in barley leaves increased more than 50-fold during the first 10 d after germination. Concurrently, the root-specific gene MT1b1 was 1000-fold up-regulated. Immunolocalizations provided the first evidence for accumulation of MT1a and MT2a proteins in planta, with correlation to transcript levels. In developing grains, MT2a and MT4 expression increased 4- and 300-fold over a 28-day-period after pollination. However, among the MT grain transcripts MT2c was the most abundant, whereas MT4 was the least abundant. Excess Cu up-regulated three out of the six MTs expressed in leaves of young barley plants. In contrast, most MTs were down-regulated by excess Zn or Cd. Zn starvation led to up-regulation of MT1a, whereas Cu starvation up-regulated MT2a, which has two copper-responsive elements in the promoter. Arabidopsis lines constitutively overexpressing barley MT2a showed increased sensitivity to excess Cd and Zn but no Cu-induced response. We suggest that barley MTs are differentially involved in intracellular homeostasis of essential metal ions and that a subset of barley MTs is specifically involved in Cu detoxification.
Collapse
Affiliation(s)
- Michaela Schiller
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871, Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
36
|
Gupta OP, Sharma P, Gupta RK, Sharma I. MicroRNA mediated regulation of metal toxicity in plants: present status and future perspectives. PLANT MOLECULAR BIOLOGY 2014; 84:1-18. [PMID: 23975146 DOI: 10.1007/s11103-013-0120-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 08/03/2013] [Indexed: 05/23/2023]
Abstract
The human population is increasing at an alarming rate, whereas heavy metals (HMs) pollution is mounting serious environmental problem, which could lead to serious concern about the future sufficiency of global food production. Some HMs such as Mn, Cu, and Fe, at lower concentration serves as an essential vital component of plant cell as they are crucial in various enzyme catalyzed biochemical reactions. At higher concentration, a vast variety of HMs such as Mn, Cu, Cd, Fe, Hg, Al and As, impose toxic reaction in the plant system which greatly affect the crop yield. Recently, microRNAs (miRNAs) that are small class of non-coding riboregulator have emerged as central regulator of numerous abiotic stresses including HMs. Increasing reports indicate that plants have evolved specialized inbuilt mechanism viz. signal transduction, translocation and sequestration to counteract the toxic response of HMs. Combining computational and wet laboratory approaches have produced sufficient evidences concerning active involvement of miRNAs during HMs toxicity response by regulating various transcription factors and protein coding genes involved in plant growth and development. However, the direct role of miRNA in controlling various signaling molecules, transporters and chelating agents of HM metabolism is poorly understood. This review focuses on the latest progress made in the area of direct involvement of miRNAs in signaling, translocation and sequestration as well as recently added miRNAs in response to different HMs in plants.
Collapse
Affiliation(s)
- O P Gupta
- Quality and Basic Sciences, Directorate of Wheat Research, Karnal, 132001, India,
| | | | | | | |
Collapse
|
37
|
Love A, Banerjee BD, Babu CR. Assessment of oxidative stress markers and concentrations of selected elements in the leaves of Cassia occidentalis growing wild on a coal fly ash basin. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:6553-6562. [PMID: 23307051 DOI: 10.1007/s10661-012-3046-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
Assessment of oxidative stress levels and tissue concentrations of elements in plants growing wild on fly ash basins is critical for realistic hazard identification of fly ash disposal areas. Hitherto, levels of oxidative stress markers in plants growing wild on fly ash basins have not been adequately investigated. We report here concentrations of selected metal and metalloid elements and levels of oxidative stress markers in leaves of Cassia occidentalis growing wild on a fly ash basin (Badarpur Thermal Power Station site) and a reference site (Garhi Mandu Van site). Plants growing on the fly ash basin had significantly high foliar concentration of As, Ni, Pb and Se and low foliar concentration of Mn and Fe compared to the plants growing on the reference site. The plants inhabiting the fly ash basin showed signs of oxidative stress and had elevated levels of lipid peroxidation, electrolyte leakage from cells and low levels of chlorophyll a and total carotenoids compared to plants growing at the reference site. The levels of both protein thiols and nonprotein thiols were elevated in plants growing on the fly ash basin compared to plants growing on the reference site. However, no differences were observed in the levels of cysteine, reduced glutathione and oxidized glutathione in plants growing at both the sites. Our study suggests that: (1) fly ash triggers oxidative stress responses in plants growing wild on fly ash basin, and (2) elevated levels of protein thiols and nonprotein thiols may have a role in protecting the plants from environmental stress.
Collapse
Affiliation(s)
- Amit Love
- Centre for Environmental Management of Degraded Ecosystems (CEMDE), School of Environmental Studies, University of Delhi, Delhi, 110007, India.
| | | | | |
Collapse
|
38
|
Peer WA, Cheng Y, Murphy AS. Evidence of oxidative attenuation of auxin signalling. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2629-39. [PMID: 23709674 DOI: 10.1093/jxb/ert152] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Indole-3-acetic acid (IAA) is the principle auxin in Arabidopsis and is synthesized primarily in meristems and nodes. Auxin is transported to distal parts of the plant in response to developmental programming or environmental stimuli to activate cell-specific responses. As with any signalling event, the signal must be attenuated to allow the system to reset. Local auxin accumulations are thus reduced by conjugation or catabolism when downstream responses have reached their optima. In most cell types, localized auxin accumulation increases both reactive oxygen species (ROS) and an irreversible catabolic product 2-oxindole-3-acid acid (oxIAA). oxIAA is inactive and does not induce expression of the auxin-responsive reporters DR5 or 2XD0. Here it is shown that oxIAA is not transported from cell to cell, although it appears to be a substrate for the ATP-binding cassette subfamily G (ABCG) transporters that are positioned primarily on the outer lateral surface of the root epidermis. However, oxIAA and oxIAA-Glc levels are higher in ABCB mutants that accumulate auxin due to defective cellular export. Auxin-induced ROS production appears to be at least partially mediated by the NAD(P)H oxidase RbohD. oxIAA levels are higher in mutants that lack ROS-scavenging flavonoids (tt4) and are lower in mutants that accumulate excess flavonols (tt3). These data suggest a model where IAA signalling is attenuated by IAA catabolism to oxIAA. Flavonoids appear to buffer ROS accumulations that occur with localized increases in IAA. This buffering of IAA oxidation would explain some growth responses observed in flavonoid-deficient mutants that cannot be explained by their established role in partially inhibiting auxin transport.
Collapse
Affiliation(s)
- Wendy Ann Peer
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | | | | |
Collapse
|
39
|
Auguy F, Fahr M, Moulin P, Brugel A, Laplaze L, Mzibri ME, Filali-Maltouf A, Doumas P, Smouni A. Lead tolerance and accumulation in Hirschfeldia incana, a Mediterranean Brassicaceae from metalliferous mine spoils. PLoS One 2013; 8:e61932. [PMID: 23667449 PMCID: PMC3646990 DOI: 10.1371/journal.pone.0061932] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 03/18/2013] [Indexed: 12/01/2022] Open
Abstract
Lead is a heavy metal of particular concern with respect to environmental quality and health. The lack of plant species that accumulate and tolerate Pb is a limiting factor to understand the molecular mechanisms involved in Pb tolerance. In this study we identified Hirschfeldia incana, a Brassicaceae collected from metalliferous mine spoils in Morocco, as a Pb accumulator plant. H. incana exhibited high Pb accumulation in mine soils and in hydroponic cultures. Major Pb accumulation occurred in the roots and a part of Pb translocated from the roots to the shoots, even to the siliques. These findings demonstrated that H. incana is a Pb accumulator species. The expression of several candidate genes after Pb-exposure was measured by quantitative PCR and two of them, HiHMA4 and HiMT2a, coding respectively for a P1B-type ATPase and a metallothionein, were particularly induced by Pb-exposure in both roots and leaves. The functional characterization of HiHMA4 and HiMT2a was achieved using Arabidopsis T-DNA insertional mutants. Pb content and primary root growth analysis confirmed the role of these two genes in Pb tolerance and accumulation. H. incana could be considered as a good experimental model to identify genes involved in lead tolerance and accumulation in plants.
Collapse
Affiliation(s)
- Florence Auguy
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Montpellier, France
- Centre National de l’Energie, des Sciences et des Techniques Nucléaires, Laboratoire de Biotechnologie des Plantes, Rabat, Maroc
- Laboratoire Mixte International, Université Mohammed V - Agdal, Rabat, Maroc
| | - Mouna Fahr
- Centre National de l’Energie, des Sciences et des Techniques Nucléaires, Laboratoire de Biotechnologie des Plantes, Rabat, Maroc
- Laboratoire Mixte International, Université Mohammed V - Agdal, Rabat, Maroc
- Laboratoire de Physiologie et Biotechnologie Végétale, Université Mohammed V - Agdal, Rabat, Maroc
| | - Patricia Moulin
- Laboratoire Mixte International, Université Mohammed V - Agdal, Rabat, Maroc
- Institut de Recherche pour le Développement, Unité de Service Instrumentation, Moyens Analytiques, Observatoires en Géophysique et Océanographie, Laboratoire de Microbiologie et Biologie Moléculaire, Université Mohammed V - Agdal, Rabat, Maroc
| | - Anaïs Brugel
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Montpellier, France
| | - Laurent Laplaze
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Montpellier, France
- Institut de Recherche pour le Développement, Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress Environnementaux, Laboratoire Commun de Microbiologie, Dakar, Sénégal
| | - Mohamed El Mzibri
- Centre National de l’Energie, des Sciences et des Techniques Nucléaires, Laboratoire de Biotechnologie des Plantes, Rabat, Maroc
- Laboratoire Mixte International, Université Mohammed V - Agdal, Rabat, Maroc
| | - Abdelkarim Filali-Maltouf
- Laboratoire Mixte International, Université Mohammed V - Agdal, Rabat, Maroc
- Laboratoire de Microbiologie et Biologie Moléculaire, Université Mohammed V - Agdal, Rabat, Maroc
| | - Patrick Doumas
- Institut de Recherche pour le Développement, Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes, Montpellier, France
- Centre National de l’Energie, des Sciences et des Techniques Nucléaires, Laboratoire de Biotechnologie des Plantes, Rabat, Maroc
- Laboratoire Mixte International, Université Mohammed V - Agdal, Rabat, Maroc
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche Biochimie et Physiologie Moléculaire des Plantes, Montpellier, France
| | - Abdelaziz Smouni
- Centre National de l’Energie, des Sciences et des Techniques Nucléaires, Laboratoire de Biotechnologie des Plantes, Rabat, Maroc
- Laboratoire de Physiologie et Biotechnologie Végétale, Université Mohammed V - Agdal, Rabat, Maroc
| |
Collapse
|
40
|
Fidalgo F, Azenha M, Silva AF, Sousa A, Santiago A, Ferraz P, Teixeira J. Copper‐induced stress in
S
olanum nigrum
L. and antioxidant defense system responses. Food Energy Secur 2013. [DOI: 10.1002/fes3.20] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Fernanda Fidalgo
- BioFIG – Center for Biodiversity, Functional and Integrative Genomics Departamento de Biologia Faculdade de Ciências Universidade do Porto Rua do Campo Alegre s/n 4169‐007 Porto Portugal
| | - Manuel Azenha
- CIQ‐UP Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre 687 4169‐007 Porto Portugal
| | - António F. Silva
- CIQ‐UP Departamento de Química e Bioquímica Faculdade de Ciências Universidade do Porto Rua do Campo Alegre 687 4169‐007 Porto Portugal
| | - Alexandra Sousa
- BioFIG – Center for Biodiversity, Functional and Integrative Genomics Departamento de Biologia Faculdade de Ciências Universidade do Porto Rua do Campo Alegre s/n 4169‐007 Porto Portugal
| | - Ana Santiago
- BioFIG – Center for Biodiversity, Functional and Integrative Genomics Departamento de Biologia Faculdade de Ciências Universidade do Porto Rua do Campo Alegre s/n 4169‐007 Porto Portugal
| | - Pedro Ferraz
- BioFIG – Center for Biodiversity, Functional and Integrative Genomics Departamento de Biologia Faculdade de Ciências Universidade do Porto Rua do Campo Alegre s/n 4169‐007 Porto Portugal
| | - Jorge Teixeira
- BioFIG – Center for Biodiversity, Functional and Integrative Genomics Departamento de Biologia Faculdade de Ciências Universidade do Porto Rua do Campo Alegre s/n 4169‐007 Porto Portugal
| |
Collapse
|
41
|
Ghoshal N, Talapatra S, Moulick A, Chakraborty A, Raychaudhuri SS. Alterations in transcriptome and proteome on metallothioneins following oxidative stress induced by sublethal doses of cadmium and gamma rays inPlantago ovata. Int J Radiat Biol 2013; 89:571-82. [DOI: 10.3109/09553002.2013.782109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Molecular Cloning, Modeling, and Characterization of Type 2 Metallothionein from Plantago ovata Forsk. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/756983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plantago ovata Forsk is a medicinally important plant. Metallothioneins are cysteine rich proteins involved in the detoxification of heavy metals. Molecular cloning and modeling of MT from P. ovata is not reported yet. The present investigation will describe the isolation, structure prediction, characterization, and expression under copper stress of type 2 metallothionein (MT2) from this species. The gene of the protein comprises three exons and two introns. The deduced protein sequence contains 81 amino acids with a calculated molecular weight of about 8.1 kDa and a theoretical pI value of 4.77. The transcript level of this protein was increased in response to copper stress. Homology modeling was used to construct a three-dimensional structure of P. ovata MT2. The 3D structure model of P. ovata MT2 will provide a significant clue for further structural and functional study of this protein.
Collapse
|
43
|
Cozza R, Bruno L, Bitonti MB. Expression pattern of a type-2 metallothionein gene in a wild population of the psammophyte Silene nicaeensis. PROTOPLASMA 2013; 250:381-389. [PMID: 22688806 DOI: 10.1007/s00709-012-0425-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
Silene nicaeensis is a wild Mediterranean grass often restricted to sandy sea shore and exhibiting an excellent tolerance to drought and salinity. Within Silene genus, several heavy metal-tolerant ecotypes have been identified, but information on molecular basis of such metal tolerance is still limited. Conceivably, salt-tolerant plants may represent a powerful tool for the remediation of heavy metal contaminated sites in saline environment. Here, a gene encoding a metallothionein protein was isolated from S. nicaeensis. Sequence analysis identified the motifs characteristic of type II metallothionein and designated as SnMT2. SnMT2 expression was investigated in plants collected from two sites differing in Metal Pollution Index (MPI). SnMT2 expression by polymerase chain reaction-based semi-quantitative transcript analysis showed a high accumulation in the leaves; in situ hybridization showed a steady localization of SnMT2 mRNA in the vascular bundle and in proliferating tissues. Moreover, an increase of SnMT2 was observed in the root of plants collected from area with higher MPI. The putative role of SnMT2 in metal tolerance is discussed.
Collapse
Affiliation(s)
- Radiana Cozza
- Department of Ecology, University of Calabria, 87030 Arcavacata di Rende (CS), Italy.
| | | | | |
Collapse
|
44
|
Transgenic Approaches to Enhance Phytoremediation of Heavy Metal-Polluted Soils. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-35564-6_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Abstract
It is known that heavy metals are taken up and translocated by plants to different degrees. Phytoremediation, the use of plants to decontaminate soil by taking up heavy metals, shows considerable promise as a low-cost technique and has received much attention in recent years. However, its application is still very limited due to low biomass of hyperaccumulators, unavailability of the suitable plant species and long growing seasons required. Therefore, to maximize phytoextraction efficiency, it is important to select a fast-growing and high-biomass plant with high uptake of heavy metals, which is also compatible with mechanized cultivation techniques and local weather conditions. Trees in particular have a number of attributes (e.g. high biomass, economic value), which make them attractive plants for such a use. This paper reviews the potential for the phytoremediation of heavy metal-contaminated land by trees. In summary, we present the research progress of phytoremediation by trees and suggest ways in which this concept can be applied and improved.
Collapse
|
46
|
Lin YF, Aarts MGM. The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 2012; 69:3187-206. [PMID: 22903262 PMCID: PMC11114967 DOI: 10.1007/s00018-012-1089-z] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 01/09/2023]
Abstract
When plants are subjected to high metal exposure, different plant species take different strategies in response to metal-induced stress. Largely, plants can be distinguished in four groups: metal-sensitive species, metal-resistant excluder species, metal-tolerant non-hyperaccumulator species, and metal-hypertolerant hyperaccumulator species, each having different molecular mechanisms to accomplish their resistance/tolerance to metal stress or reduce the negative consequences of metal toxicity. Plant responses to heavy metals are molecularly regulated in a process called metal homeostasis, which also includes regulation of the metal-induced reactive oxygen species (ROS) signaling pathway. ROS generation and signaling plays an important duel role in heavy metal detoxification and tolerance. In this review, we will compare the different molecular mechanisms of nutritional (Zn) and non-nutritional (Cd) metal homeostasis between metal-sensitive and metal-adapted species. We will also include the role of metal-induced ROS signal transduction in this comparison, with the aim to provide a comprehensive overview on how plants cope with Zn/Cd stress at the molecular level.
Collapse
Affiliation(s)
- Ya-Fen Lin
- Laboratory of Genetics, Wageningen University, The Netherlands.
| | | |
Collapse
|
47
|
Xia Y, Qi Y, Yuan Y, Wang G, Cui J, Chen Y, Zhang H, Shen Z. Overexpression of Elsholtzia haichowensis metallothionein 1 (EhMT1) in tobacco plants enhances copper tolerance and accumulation in root cytoplasm and decreases hydrogen peroxide production. JOURNAL OF HAZARDOUS MATERIALS 2012; 233-234:65-71. [PMID: 22818176 DOI: 10.1016/j.jhazmat.2012.06.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/08/2012] [Accepted: 06/25/2012] [Indexed: 06/01/2023]
Abstract
To evaluate the functional roles of metallothionein (MT) in copper tolerance, we generated transgenic tobacco plants overexpressing EhMT1 from the Cu-accumulator Elsholtzia haichowensis Sun. Overexpression of EhMT1 in tobacco plants imparted increased copper (Cu) tolerance based on seedling dry biomass when compared to wild-type plants. Plants expressing EhMT1 accumulated more Cu in roots, which was mainly attributable to an increase of the soluble fraction. Levels of lipid peroxidation and production of hydrogen peroxide were lower in roots of transgenic tobacco than in wild-type plants. EhMT1 was suggested to bind Cu in the cytoplasm, thereby decreasing activity of free Cu(2+) ions and blocking Cu(2+) from interacting with cytoplasmic components, which in turn decreases the production of reactive oxygen species. In addition, our results also indicate that EhMT1-overexpressing tobacco has a more efficient antioxidant system, with improved peroxidase activity to better cope with oxidative stress.
Collapse
Affiliation(s)
- Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang FQ, Wang YS, Sun CC, Lou ZP, Dong JD. A novel metallothionein gene from a mangrove plant Kandelia candel. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1633-1641. [PMID: 22711547 DOI: 10.1007/s10646-012-0952-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/24/2012] [Indexed: 06/01/2023]
Abstract
A new metallothionein (MT) gene was cloned from Kandelia candel, a mangrove plant with constitutional tolerance to heavy metals, by rapid amplification of cDNA ends and named KMT, which is composed of two exons and one intron. The full length of KMT cDNA was 728 bp including 121 bp 5' noncoding domain, 240 bp open reading frame and 384 bp 3' termination. The coding region of KMT represented a putative 79 amino acid protein with a molecular weight of 7.75 kDa. At each of the amino- and carboxy-terminal of the putative protein, cysteine residues were arranged in Cys-Cys, Cys-X-Cys and Cys-X-X-Cys, indicating that the putative protein was a novel type 2 MT. Sequence and homology analysis showed the KMT protein sequence shared more than 60 % homology with other plant type 2 MT-like protein genes. At amino acid level, the KMT was shown homology with the MT of Quercus suber (83 %), of Ricinus communis (81 %) and of Arabidopsis thaliana (64 %). Function studies using protease-deficient Escherichia coli strain BL21 Star ™(DE3) confirmed the functional nature of this KMT gene in sequestering both essential (Zn) and non-essential metals (Cd and Hg) and the E. coli BL21 with KMT can live in 1,000 μmol/L Zn, 120 μmol/L Hg, and 2,000 μmol/L Cd. The information could provide more details of the causative molecular and biochemical mechanisms (including heavy metal sequestration) of the KMT in K. candel or a scientific basis for marine heavy-metal environment remediation with K. candel. This study also provides a great significance of protecting mangrove species and mangrove ecosystem.
Collapse
Affiliation(s)
- Feng-Qin Zhang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | |
Collapse
|
49
|
Hossain Z, Komatsu S. Contribution of proteomic studies towards understanding plant heavy metal stress response. FRONTIERS IN PLANT SCIENCE 2012; 3:310. [PMID: 23355841 PMCID: PMC3555118 DOI: 10.3389/fpls.2012.00310] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/24/2012] [Indexed: 05/18/2023]
Abstract
Modulation of plant proteome composition is an inevitable process to cope with the environmental challenges including heavy metal (HM) stress. Soil and water contaminated with hazardous metals not only cause permanent and irreversible health problems, but also result substantial reduction in crop yields. In course of time, plants have evolved complex mechanisms to regulate the uptake, mobilization, and intracellular concentration of metal ions to alleviate the stress damages. Since, the functional translated portion of the genome plays an essential role in plant stress response, proteomic studies provide us a finer picture of protein networks and metabolic pathways primarily involved in cellular detoxification and tolerance mechanism. In the present review, an attempt is made to present the state of the art of recent development in proteomic techniques and significant contributions made so far for better understanding the complex mechanism of plant metal stress acclimation. Role of metal stress-related proteins involved in antioxidant defense system and primary metabolism is critically reviewed to get a bird's-eye view on the different strategies of plants to detoxify HMs. In addition to the advantages and disadvantages of different proteomic methodologies, future applications of proteome study of subcellular organelles are also discussed to get the new insights into the plant cell response to HMs.
Collapse
Affiliation(s)
- Zahed Hossain
- Department of Botany, West Bengal State UniversityKolkata, West Bengal, India
- *Correspondence: Setsuko Komatsu, National Institute of Crop Science, Kannondai 2-1-18, Tsukuba 305-8518, Japan. e-mail:; Zahed Hossain, Department of Botany, West Bengal State University, Kolkata 700126, West Bengal, India. e-mail:
| | - Setsuko Komatsu
- National Institute of Crop ScienceTsukuba, Japan
- *Correspondence: Setsuko Komatsu, National Institute of Crop Science, Kannondai 2-1-18, Tsukuba 305-8518, Japan. e-mail:; Zahed Hossain, Department of Botany, West Bengal State University, Kolkata 700126, West Bengal, India. e-mail:
| |
Collapse
|
50
|
Biochemical and Functional Responses of Arabidopsis thaliana Exposed to Cadmium, Copper and Zinc. THE PLANT FAMILY BRASSICACEAE 2012. [DOI: 10.1007/978-94-007-3913-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|