1
|
Wang M, Wang T, Kou J, Wu J, Shao G, Wei J, Liu J, Ma P. SmJAZ3/4 positively and SmJAZ8 negatively regulates salt tolerance in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109151. [PMID: 39332329 DOI: 10.1016/j.plaphy.2024.109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Salvia miltiorrhiza Bunge, a model plant for medicinal research, is extensively utilized for its dried roots and rhizomes for treatment of various diseases. Soil salinization hinders the large-scale cultivation and industrial production of S. miltiorrhiza by affecting its active compounds. Methyl jasmonate (MeJA) is a crucial plant hormone that regulates plant responses under salt stress. Jasmonate zim domain (JAZ) proteins function as transcriptional repressors in jasmonic acid (JA) signaling pathways. This study explores the interaction between JA and salt stress by using transgenic Arabidopsis thaliana to elucidate the roles of SmJAZ3, SmJAZ4, and SmJAZ8. We found that 2.5 μM MeJA reduced the inhibitory effect of 150 mM NaCl on wild-type seed germination, and this effect was reversed by 15 μM dihydroxyindole-2-carboxylic acid (DIECA). Similar results were observed in transgenic A. thaliana lines overexpressing SmJAZ3/4/8. Inclusion of SmJAZ3/4 enhanced salt resistance by increasing antioxidant enzyme activity, chlorophyll content, proline content, and Na+/K+ content, while SmJAZ8 had the opposite effect. These findings suggest that appropriate concentrations of MeJA can alleviate the negative effect of salt stress on plant growth and development. Investigating the salt tolerance of SmJAZ3/4/8 is significant for cultivating high-quality salt-tolerant S. miltiorrhiza.
Collapse
Affiliation(s)
- Mei Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Tong Wang
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jingyang Kou
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jiafeng Wu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Gaige Shao
- Xian Agricultural Technology Extension Center, Xian, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, China
| | - Jingying Liu
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
2
|
Wang S, Liu Y, Hao X, Chen Y, Wang Z, Shen Y. Enhancing plant defensins in a desert shrub: Exploring a regulatory pathway of AnWRKY29. Int J Biol Macromol 2024; 270:132259. [PMID: 38740161 DOI: 10.1016/j.ijbiomac.2024.132259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
A distinct family of plant-specific WRKY transcription factors plays a crucial role in modulating responses to biotic and abiotic stresses. In this investigation, we unveiled a signaling pathway activated in the desert shrub Ammopiptanthus nanus during feeding by the moth Spodoptera exigua. The process involves a Ca2+ flux that facilitates interaction between the protein kinase AnCIPK12 and AnWRKY29. AnWRKY29 directly interacts with the promoters of two key genes encoding AnPDF1 and AnHsfB1, involved in the biosynthesis of plant defensins. Consequently, AnWRKY29 exerts its transcriptional regulatory function, influencing plant defensins biosynthesis. This discovery implies that A. nanus can bolster resistance against herbivorous insects like S. exigua by utilizing this signaling pathway, providing an effective natural defense mechanism that supports its survival and reproductive success.
Collapse
Affiliation(s)
- Shuyao Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yahui Liu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xin Hao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingying Chen
- Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Illicium and Cinnamomum Engineering Technology Research Center of National Forestry and Grassland Administration, Guangxi Forestry Research Institute, Nanning 530002, China
| | - Zhaoyuan Wang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingbai Shen
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
3
|
Jiao F, Zhang D, Chen Y, Wu J. Genome-Wide Identification of Members of the Soybean CBL Gene Family and Characterization of the Functional Role of GmCBL1 in Responses to Saline and Alkaline Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1304. [PMID: 38794375 PMCID: PMC11124892 DOI: 10.3390/plants13101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Calcium ions function as key messengers in the context of intracellular signal transduction. The ability of plants to respond to biotic and abiotic stressors is highly dependent on the calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) signaling network. Here, a comprehensive effort was made to identify all members of the soybean CBL gene family, leading to the identification of 15 total genes distributed randomly across nine chromosomes, including 13 segmental duplicates. All the GmCBL gene subfamilies presented with similar gene structures and conserved motifs. Analyses of the expression of these genes in different tissues revealed that the majority of these GmCBLs were predominantly expressed in the roots. Significant GmCBL expression and activity increases were also observed in response to a range of stress-related treatments, including salt stress, alkaline stress, osmotic stress, or exposure to salicylic acid, brassinosteroids, or abscisic acid. Striking increases in GmCBL1 expression were observed in response to alkaline and salt stress. Subsequent analyses revealed that GmCBL1 was capable of enhancing soybean salt and alkali tolerance through the regulation of redox reactions. These results offer new insight into the complex mechanisms through which the soybean CBL gene family regulates the responses of these plants to environmental stressors, highlighting promising targets for efforts aimed at enhancing soybean stress tolerance.
Collapse
Affiliation(s)
| | | | | | - Jinhua Wu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (F.J.); (D.Z.); (Y.C.)
| |
Collapse
|
4
|
Chen JS, Wang ST, Mei Q, Sun T, Hu JT, Xiao GS, Chen H, Xuan YH. The role of CBL-CIPK signaling in plant responses to biotic and abiotic stresses. PLANT MOLECULAR BIOLOGY 2024; 114:53. [PMID: 38714550 DOI: 10.1007/s11103-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/06/2024] [Indexed: 05/10/2024]
Abstract
Plants have a variety of regulatory mechanisms to perceive, transduce, and respond to biotic and abiotic stress. One such mechanism is the calcium-sensing CBL-CIPK system responsible for the sensing of specific stressors, such as drought or pathogens. CBLs perceive and bind Calcium (Ca2+) in response to stress and then interact with CIPKs to form an activated complex. This leads to the phosphorylation of downstream targets, including transporters and ion channels, and modulates transcription factor levels and the consequent levels of stress-associated genes. This review describes the mechanisms underlying the response of the CBL-CIPK pathway to biotic and abiotic stresses, including regulating ion transport channels, coordinating plant hormone signal transduction, and pathways related to ROS signaling. Investigation of the function of the CBL-CIPK pathway is important for understanding plant stress tolerance and provides a promising avenue for molecular breeding.
Collapse
Affiliation(s)
- J S Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - S T Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Q Mei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - T Sun
- Chongqing Customs Technology Center, Chongqing, 400020, China
| | - J T Hu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - G S Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| | - H Chen
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Y H Xuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Xia C, Zhang X, Zuo Y, Zhang X, Zhang H, Wang B, Deng H. Genome-wide identification, expression analysis, and abiotic stress response of the CBL and CIPK gene families in Artocarpus nanchuanensis. Int J Biol Macromol 2024; 267:131454. [PMID: 38588845 DOI: 10.1016/j.ijbiomac.2024.131454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Artocarpus nanchuanensis, the northernmost species in the jackfruit genus, has great economic and horticultural value due to its nutritious fruit and beautiful tree shape. Calcineurin B-like proteins (CBLs) act as plant-specific Ca2+ sensors and participate in regulating plant responses to various abiotic stresses by interacting with CBL-interacting protein kinases (CIPKs). However, the characteristics and functions of the CBL and CIPK genes in A. nanchuanensis are still unclear. Here, we identified 14 CBL and 33 CIPK genes from the A. nanchuanensis genome, and based on phylogenetic analysis, they were divided into 4 and 7 clades, respectively. Gene structure and motif analysis indicated that the AnCBL and AnCIPK genes were relatively conserved. Colinear analysis showed that segmental duplication contributed to the expansion of the AnCBL and AnCIPK gene families. Expression analysis showed that AnCBL and AnCIPK genes were widely expressed in various tissues of A. nanchuanensis and exhibited tissue-specific expression. In addition, three genes (AnCBL6, AnCIPK7/8) may play important roles in response to salt, cold, and drought stresses. In summary, this study lays an important foundation for the improvement of stress resistance in A. nanchuanensis and provides new insight for the functional research on CBL and CIPK gene families.
Collapse
Affiliation(s)
- Changying Xia
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiao Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Youwei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Binru Wang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
6
|
Wang R, Chen P, Han M, Wang W, Hu X, He R, Tai F. Calcineurin B-like protein ZmCBL8-1 promotes salt stress resistance in Arabidopsis. PLANTA 2024; 259:49. [PMID: 38285217 DOI: 10.1007/s00425-024-04330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
MAIN CONCLUSION ZmCBL8-1 enhances salt stress tolerance in maize by improving the antioxidant system to neutralize ROS homeostasis and inducing Na+/H+ antiporter gene expressions of leaves. Calcineurin B-like proteins (CBLs) as plant-specific calcium sensors have been explored for their roles in the regulation of abiotic stress tolerance. Further, the functional variations in ZmCBL8, encoding a component of the salt overly sensitive pathway, conferred the salt stress tolerance in maize. ZmCBL8-1 is a transcript of ZmCBL8 found in maize, but its function in the salt stress response is still unclear. The present study aimed to characterize the protein ZmCBL8-1 that was determined to be composed of 194 amino acids (aa) with three conserved EF hands responsible for binding Ca2+. However, a 20-aa fragment was found to be missing from its C-terminus relative to another transcript of ZmCBL8. Results indicated that it harbored a dual-lipid modification motif MGCXXS at its N-terminus and was located on the cell membrane. The accumulation of ZmCBL8-1 transcripts was high in the roots but relatively lower in the leaves of maize under normal condition. In contrast, its expression was significantly decreased in the roots, while increased in the leaves under NaCl treatment. The overexpression of ZmCBL8-1 resulted in higher salt stress resistance of transgenic Arabidopsis in a Ca2+-dependent manner relative to that of the wild type (WT). In ZmCBL8-1-overexpressing plants exposed to NaCl, the contents of malondialdehyde and hydrogen peroxide were decreased in comparison with those in the WT, and the expression of key genes involved in the antioxidant defense system and Na+/H+ antiporter were upregulated. These results suggested that ZmCBL8-1 played a positive role in the response of leaves to salt stress by inducing the expression of Na+/H+ antiporter genes and enhancing the antioxidant system to neutralize the accumulation of reactive oxygen species. These observations further indicate that ZmCBL8-1 confers salt stress tolerance, suggesting that transcriptional regulation of the ZmCBL8 gene is important for salt tolerance.
Collapse
Affiliation(s)
- Ruilin Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Peimei Chen
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Minglei Han
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Rui He
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Sun C, Li Y, Zhao T, Bi W, Song Y, Liang X, Wang X, Dou D, Xu G. Potato calcium sensor modules StCBL3-StCIPK7 and StCBL3-StCIPK24 negatively regulate plant immunity. BMC PLANT BIOLOGY 2024; 24:30. [PMID: 38182981 PMCID: PMC10768403 DOI: 10.1186/s12870-023-04713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Potato late blight, caused by Phytophthora infestans, is the most devastating disease on potato. Dissecting critical immune components in potato will be supportive for engineering P. infestans resistance. Upon pathogens attack, plant Ca2+ signature is generated and decoded by an array of Ca2+ sensors, among which calcineurin B-like proteins (CBLs) coupled with plant specific CBL-interacting protein kinases (CIPKs) are much less explored in plant immunity. RESULTS In this study, we identified that two differential potato CBL-CIPK modules regulate plant defense responses against Phytophthora and ROS production, respectively. By deploying virus-induced gene silencing (VIGS) system-based pathogen inoculation assays, StCBL3 was shown to negatively regulate Phytophthora resistance. Consistently, StCBL3 was further found to negatively regulate PTI and ETI responses in Nicotiana benthamiana. Furthermore, StCIPK7 was identified to act together with StCBL3 to negatively regulate Phytophthora resistance. StCIPK7 physically interacts with StCBL3 and phosphorylates StCBL3 in a Ca2+-dependent manner. StCBL3 promotes StCIPK7 kinase activity. On the other hand, another StCBL3-interacting kinase StCIPK24 negatively modulating flg22-triggered accumulation of reactive oxygen species (ROS) by interacting with StRBOHB. CONCLUSIONS Together, these findings demonstrate that the StCBL3-StCIPK7 complex negatively modulates Phytophthora resistance and StCBL3-StCIPK24 complex negatively regulate ROS production. Our results offer new insights into the roles of potato CBL-CIPK in plant immunity and provide valuable gene resources to engineer the disease resistance potato in the future.
Collapse
Affiliation(s)
- Congcong Sun
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yuanyuan Li
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Tingting Zhao
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Weishuai Bi
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yingying Song
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiangxiu Liang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaodan Wang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Daolong Dou
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangyuan Xu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Ju XY, Gan S, Yang KX, Xu QB, Dai WW, Yangchen YT, Zhang J, Wang YN, Li RP, Yuan B. Characterization of a Novel Polysaccharide Derived from Rhizospheric Paecilomyces vaniformisi and Its Mechanism for Enhancing Salinity Resistance in Rice Seedlings. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20585-20601. [PMID: 38101321 DOI: 10.1021/acs.jafc.3c05430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Soil salinity is an important limiting factor in agricultural production. Rhizospheric fungi can potentially enhance crop salinity tolerance, but the precise role of signaling substances is still to be systematically elucidated. A rhizospheric fungus identified as Paecilomyces vaniformisi was found to enhance the salinity tolerance of rice seedlings. In this study, a novel polysaccharide (PPL2b) was isolated from P. vaniformisi and identified as consisting of Manp, Glcp, GalpA, and Galp. In a further study, PPL2b showed significant activity in alleviating salinity stress-induced growth inhibition in rice seedlings. The results indicated that under salinity stress, PPL2b enhances seed germination, plant growth (height and biomass), and biochemical parameters (soluble sugar and protein contents). Additionally, PPL2b regulates genes such as SOS1 and SKOR to decrease K+ efflux and increase Na+ efflux. PPL2b increased the expression and activity of genes related to antioxidant enzymes and nonenzyme substances in salinity-induced oxidative stress. Further study indicated that PPL2b plays a crucial role in regulating osmotic substances, such as proline and betaine, in maintaining the osmotic balance. It also modulates plant hormones to promote rice seedling growth and enhance their tolerance to soil salinity. The variables interacted and were divided into two groups (PC1 77.39% and PC2 18.77%) based on their relative values. Therefore, these findings indicate that PPL2b from P. vaniformisi can alleviate the inhibitory effects of salinity stress on root development, osmotic adjustment, ion balance, oxidative stress balance, and growth of rice seedlings. Furthermore, it suggests that polysaccharides produced by rhizospheric fungi could be utilized to enhance crop tolerance to salinity.
Collapse
Affiliation(s)
- Xiu-Yun Ju
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shu Gan
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Ke-Xin Yang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Quan-Bin Xu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Wei-Wei Dai
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | | | - Jie Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yue-Nan Wang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Rong-Peng Li
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Bo Yuan
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
9
|
Du J, Zhu X, He K, Kui M, Zhang J, Han X, Fu Q, Jiang Y, Hu Y. CONSTANS interacts with and antagonizes ABF transcription factors during salt stress under long-day conditions. PLANT PHYSIOLOGY 2023; 193:1675-1694. [PMID: 37379562 DOI: 10.1093/plphys/kiad370] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
CONSTANS (CO) is a critical regulator of flowering that combines photoperiodic and circadian signals in Arabidopsis (Arabidopsis thaliana). CO is expressed in multiple tissues, including seedling roots and young leaves. However, the roles and underlying mechanisms of CO in modulating physiological processes outside of flowering remain obscure. Here, we show that the expression of CO responds to salinity treatment. CO negatively mediated salinity tolerance under long-day (LD) conditions. Seedlings from co-mutants were more tolerant to salinity stress, whereas overexpression of CO resulted in plants with reduced tolerance to salinity stress. Further genetic analyses revealed the negative involvement of GIGANTEA (GI) in salinity tolerance requires a functional CO. Mechanistic analysis demonstrated that CO physically interacts with 4 critical basic leucine zipper (bZIP) transcription factors; ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTOR1 (ABF1), ABF2, ABF3, and ABF4. Disrupting these ABFs made plants hypersensitive to salinity stress, demonstrating that ABFs enhance salinity tolerance. Moreover, ABF mutations largely rescued the salinity-tolerant phenotype of co-mutants. CO suppresses the expression of several salinity-responsive genes and influences the transcriptional regulation function of ABF3. Collectively, our results show that the LD-induced CO works antagonistically with ABFs to modulate salinity responses, thus revealing how CO negatively regulates plant adaptation to salinity stress.
Collapse
Affiliation(s)
- Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiang Zhu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyi Kui
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiantang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
10
|
Zhang WJ, Zhou Y, Zhang Y, Su YH, Xu T. Protein phosphorylation: A molecular switch in plant signaling. Cell Rep 2023; 42:112729. [PMID: 37405922 DOI: 10.1016/j.celrep.2023.112729] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023] Open
Abstract
Protein phosphorylation modification is crucial for signaling transduction in plant development and environmental adaptation. By precisely phosphorylating crucial components in signaling cascades, plants can switch on and off the specific signaling pathways needed for growth or defense. Here, we have summarized recent findings of key phosphorylation events in typical hormone signaling and stress responses. More interestingly, distinct phosphorylation patterns on proteins result in diverse biological functions of these proteins. Thus, we have also highlighted latest findings that show how the different phosphosites of a protein, also named phosphocodes, determine the specificity of downstream signaling in both plant development and stress responses.
Collapse
Affiliation(s)
- Wen Jie Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yewei Zhou
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yi Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ying Hua Su
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Tongda Xu
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
11
|
Abdul Aziz M, Masmoudi K. Insights into the Transcriptomics of Crop Wild Relatives to Unravel the Salinity Stress Adaptive Mechanisms. Int J Mol Sci 2023; 24:9813. [PMID: 37372961 DOI: 10.3390/ijms24129813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
The narrow genomic diversity of modern cultivars is a major bottleneck for enhancing the crop's salinity stress tolerance. The close relatives of modern cultivated plants, crop wild relatives (CWRs), can be a promising and sustainable resource to broaden the diversity of crops. Advances in transcriptomic technologies have revealed the untapped genetic diversity of CWRs that represents a practical gene pool for improving the plant's adaptability to salt stress. Thus, the present study emphasizes the transcriptomics of CWRs for salinity stress tolerance. In this review, the impacts of salt stress on the plant's physiological processes and development are overviewed, and the transcription factors (TFs) regulation of salinity stress tolerance is investigated. In addition to the molecular regulation, a brief discussion on the phytomorphological adaptation of plants under saline environments is provided. The study further highlights the availability and use of transcriptomic resources of CWR and their contribution to pangenome construction. Moreover, the utilization of CWRs' genetic resources in the molecular breeding of crops for salinity stress tolerance is explored. Several studies have shown that cytoplasmic components such as calcium and kinases, and ion transporter genes such as Salt Overly Sensitive 1 (SOS1) and High-affinity Potassium Transporters (HKTs) are involved in the signaling of salt stress, and in mediating the distribution of excess Na+ ions within the plant cells. Recent comparative analyses of transcriptomic profiling through RNA sequencing (RNA-Seq) between the crops and their wild relatives have unraveled several TFs, stress-responsive genes, and regulatory proteins for generating salinity stress tolerance. This review specifies that the use of CWRs transcriptomics in combination with modern breeding experimental approaches such as genomic editing, de novo domestication, and speed breeding can accelerate the CWRs utilization in the breeding programs for enhancing the crop's adaptability to saline conditions. The transcriptomic approaches optimize the crop genomes with the accumulation of favorable alleles that will be indispensable for designing salt-resilient crops.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Khaled Masmoudi
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
12
|
Adavi B S, Pandesha PH, B J, Jha SK, Chinnusamy V, Sathee L. Nitrate supply regulates tissue calcium abundance and transcript level of Calcineurin B-like (CBL) gene family in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107724. [PMID: 37172401 DOI: 10.1016/j.plaphy.2023.107724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Calcium ion (Ca2+) is the most ubiquitous signalling molecule and is sensed by different classes of Ca2+ sensor proteins. Recent evidences underscore the role of calcium signalling in plant response to nitrogen/nitrate supply. Recently we found that under nitrate deficiency, a short-term supply of calcium could improve the plant biomass, nitrate assimilation, anthocyanin accumulation and expression of nitrate uptake and signalling genes. Long-term calcium supply, on the other hand, was not beneficial. Calcineurin B-like (CBL) proteins are one of the vital plant Ca2+ sensory protein family which is essential for stress perception and signaling. To understand the dynamics of CBL-mediated stress signalling in bread wheat, we identified CBL genes in bread wheat (Triticum aestivum) and its progenitors, namely Triticum dicoccoides, Triticum urartu and Aegilops tauschii with the aid of newly available whole-genome sequence. The expression of different CBLs and the changes in root Ca2+ localization in response to nitrate provision or deficiency were analysed. Expression of the CBLs were studied in two bread wheat genotypes with comparatively higher (B.T. Schomburgk, BTS) and lower (Gluyas early, GE) nitrate responsiveness and nitrogen use efficiency. High N promoted the expression of CBLs in seedling leaves while in roots the expression was promoted by N deficiency. At the 5 days after anthesis stage, nitrate starvation downregulated the expression of CBLs while nitrate supply enhanced the expression. At anthesis stage, expression of CBL6 was significantly promoted by HN in panicles of both the genotypes, the highest expression was recorded in BTS. Expression of CBL6 was significantly upregulated by short term nitrate treatment also suggesting its role in Primary nitrate response (PNR) in wheat. There was a significant down regulation of CBL6 expression post nitrate starvation, making it a probable regulator of nitrogen starvation response (NSR) as well. In seedling roots, the tissue localization of Ca2+ was increased both by high and low nitrate treatments, albeit at different magnitudes. Our results suggest that calcium signalling might be a major signalling pathway governing nitrogen responsiveness and CBL6 might be playing pivotal role in NSR and PNR in wheat.
Collapse
Affiliation(s)
- Sandeep Adavi B
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pratheek H Pandesha
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jagadhesan B
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shailendra K Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
13
|
Li KL, Tang RJ, Wang C, Luan S. Potassium nutrient status drives posttranslational regulation of a low-K response network in Arabidopsis. Nat Commun 2023; 14:360. [PMID: 36690625 PMCID: PMC9870859 DOI: 10.1038/s41467-023-35906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
Under low-potassium (K+) stress, a Ca2+ signaling network consisting of calcineurin B-like proteins (CBLs) and CBL-interacting kinases (CIPKs) play essential roles. Specifically, the plasma membrane CBL1/9-CIPK pathway and the tonoplast CBL2/3-CIPK pathway promotes K+ uptake and remobilization, respectively, by activating a series of K+ channels. While the dual CBL-CIPK pathways enable plants to cope with low-K+ stress, little is known about the early events that link external K+ levels to the CBL-CIPK proteins. Here we show that K+ status regulates the protein abundance and phosphorylation of the CBL-CIPK-channel modules. Further analysis revealed low K+-induced activation of VM-CBL2/3 happened earlier and was required for full activation of PM-CBL1/9 pathway. Moreover, we identified CIPK9/23 kinases to be responsible for phosphorylation of CBL1/9/2/3 in plant response to low-K+ stress and the HAB1/ABI1/ABI2/PP2CA phosphatases to be responsible for CBL2/3-CIPK9 dephosphorylation upon K+-repletion. Further genetic analysis showed that HAB1/ABI1/ABI2/PP2CA phosphatases are negative regulators for plant growth under low-K+, countering the CBL-CIPK network in plant response and adaptation to low-K+ stress.
Collapse
Affiliation(s)
- Kun-Lun Li
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
14
|
Zheng M, Li J, Zeng C, Liu X, Chu W, Lin J, Wang F, Wang W, Guo W, Xin M, Yao Y, Peng H, Ni Z, Sun Q, Hu Z. Subgenome-biased expression and functional diversification of a Na +/H + antiporter homoeologs in salt tolerance of polyploid wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1072009. [PMID: 36570929 PMCID: PMC9768589 DOI: 10.3389/fpls.2022.1072009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Common wheat (Triticum aestivum, BBAADD) is an allohexaploid species combines the D genome from Ae. tauschii and with the AB genomes from tetraploid wheat (Triticum turgidum). Compared with tetraploid wheat, hexaploid wheat has wide-ranging adaptability to environmental adversity such as salt stress. However, little is known about the molecular basis underlying this trait. The plasma membrane Na+/H+ transporter Salt Overly Sensitive 1 (SOS1) is a key determinant of salt tolerance in plants. Here we show that the upregulation of TaSOS1 expression is positively correlated with salt tolerance variation in polyploid wheat. Furthermore, both transcriptional analysis and GUS staining on transgenic plants indicated TaSOS1-A and TaSOS1-B exhibited higher basal expression in roots and leaves in normal conditions and further up-regulated under salt stress; while TaSOS1-D showed markedly lower expression in roots and leaves under normal conditions, but significant up-regulated in roots but not leaves under salt stress. Moreover, transgenic studies in Arabidopsis demonstrate that three TaSOS1 homoeologs display different contribution to salt tolerance and TaSOS1-D plays the prominent role in salt stress. Our findings provide insights into the subgenomic homoeologs variation potential to broad adaptability of natural polyploidy wheat, which might effective for genetic improvement of salinity tolerance in wheat and other crops.
Collapse
Affiliation(s)
- Mei Zheng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jinpeng Li
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Chaowu Zeng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- Institute of Crop Sciences, Xinjiang Academy of Agricultural Sciences, Urumuqi, China
| | - Xingbei Liu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Wei Chu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Jingchen Lin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Fengzhi Wang
- Hebei Key Laboratory of Crop Salt-alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou Academy of Agriculture and Forestry Science, Cangzhou, China
| | - Weiwei Wang
- Hebei Key Laboratory of Crop Salt-alkali Stress Tolerance Evaluation and Genetic Improvement, Cangzhou Academy of Agriculture and Forestry Science, Cangzhou, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding/Key Laboratory of Crop Heterosis and Utilization (Ministry of Education), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Cold Tolerance of ScCBL6 Is Associated with Tonoplast Transporters and Photosynthesis in Arabidopsis. Curr Issues Mol Biol 2022; 44:5579-5592. [DOI: 10.3390/cimb44110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Plants that are adapted to harsh environments offer enormous opportunity to understand stress responses in ecological systems. Stipa capillacea is widely distributed in the frigid and arid region of the Tibetan Plateau, but its signal transduction system under cold stress has not been characterized. In this study, we isolated a cDNA encoding the signal transduction protein, ScCBL6, from S. capillacea, and evaluated its role in cold tolerance by ectopically expressing it in Arabidopsis. Full-length ScCBL6 encode 227 amino acids, and are clustered with CBL6 in Stipa purpurea and Oryza sativa in a phylogenetic analysis. Compared with tolerance in wild-type (WT) plants, ScCBL6-overexpressing plants (ScCBL6-OXP) were more tolerant to cold stress but not to drought stress, as confirmed by their high photosynthetic capacity (Fv/Fm) and survival rate under cold stress. We further compared their cold-responsive transcriptome profiles by RNA sequencing. In total, 3931 genes were differentially expressed by the introduction of ScCBL6. These gene products were involved in multiple processes such as the immune system, lipid catabolism, and secondary metabolism. A KEGG pathway analysis revealed that they were mainly enriched in plant hormone signal transduction and biomacromolecule metabolism. Proteins encoded by differentially expressed genes were predicted to be localized in chloroplasts, mitochondria, and vacuoles, suggesting that ScCBL6 exerts a wide range of functions. Based on its tonoplast subcellular location combined with integrated transcriptome and physiological analyses of ScCBL6-OXP, we inferred that ScCBL6 improves plant cold stress tolerance in Arabidopsis via the regulation of photosynthesis, redox status, and tonoplast metabolite transporters.
Collapse
|
16
|
Zhang XX, Ren XL, Qi XT, Yang ZM, Feng XL, Zhang T, Wang HJ, Liang P, Jiang QY, Yang WJ, Fu Y, Chen M, Fu ZX, Xu B. Evolution of the CBL and CIPK gene families in Medicago: genome-wide characterization, pervasive duplication, and expression pattern under salt and drought stress. BMC PLANT BIOLOGY 2022; 22:512. [PMID: 36324083 PMCID: PMC9632064 DOI: 10.1186/s12870-022-03884-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/17/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Calcineurin B-like proteins (CBLs) are ubiquitous Ca2+ sensors that mediate plant responses to various stress and developmental processes by interacting with CBL-interacting protein kinases (CIPKs). CBLs and CIPKs play essential roles in acclimatization of crop plants. However, evolution of these two gene families in the genus Medicago is poorly understood. RESULTS A total of 68 CBL and 135 CIPK genes have been identified in five genomes from Medicago. Among these genomes, the gene number of CBLs and CIPKs shows no significant difference at the haploid genome level. Phylogenetic and comprehensive characteristic analyses reveal that CBLs and CIPKs are classified into four clades respectively, which is validated by distribution of conserved motifs. The synteny analysis indicates that the whole genome duplication events (WGDs) have contributed to the expansion of both families. Expression analysis demonstrates that two MsCBLs and three MsCIPKs are specifically expressed in roots, mature leaves, developing flowers and nitrogen fixing nodules of Medicago sativa spp. sativa, the widely grown tetraploid species. In particular, the expression of these five genes was highly up-regulated in roots when exposed to salt and drought stress, indicating crucial roles in stress responses. CONCLUSIONS Our study leads to a comprehensive understanding of evolution of CBL and CIPK gene families in Medicago, but also provides a rich resource to further address the functions of CBL-CIPK complexes in cultivated species and their closely related wild relatives.
Collapse
Affiliation(s)
- Xiao-Xia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiao-Long Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Tong Qi
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Min Yang
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, 075000, China
| | - Xiao-Lei Feng
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, 075000, China
| | - Tian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Jie Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Liang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi-Ying Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Jun Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Fu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Zhi-Xi Fu
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, China
| | - Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
17
|
Steinhorst L, He G, Moore LK, Schültke S, Schmitz-Thom I, Cao Y, Hashimoto K, Andrés Z, Piepenburg K, Ragel P, Behera S, Almutairi BO, Batistič O, Wyganowski T, Köster P, Edel KH, Zhang C, Krebs M, Jiang C, Guo Y, Quintero FJ, Bock R, Kudla J. A Ca 2+-sensor switch for tolerance to elevated salt stress in Arabidopsis. Dev Cell 2022; 57:2081-2094.e7. [PMID: 36007523 DOI: 10.1016/j.devcel.2022.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/03/2022] [Accepted: 08/04/2022] [Indexed: 12/20/2022]
Abstract
Excessive Na+ in soils inhibits plant growth. Here, we report that Na+ stress triggers primary calcium signals specifically in a cell group within the root differentiation zone, thus forming a "sodium-sensing niche" in Arabidopsis. The amplitude of this primary calcium signal and the speed of the resulting Ca2+ wave dose-dependently increase with rising Na+ concentrations, thus providing quantitative information about the stress intensity encountered. We also delineate a Ca2+-sensing mechanism that measures the stress intensity in order to mount appropriate salt detoxification responses. This is mediated by a Ca2+-sensor-switch mechanism, in which the sensors SOS3/CBL4 and CBL8 are activated by distinct Ca2+-signal amplitudes. Although the SOS3/CBL4-SOS2/CIPK24-SOS1 axis confers basal salt tolerance, the CBL8-SOS2/CIPK24-SOS1 module becomes additionally activated only in response to severe salt stress. Thus, Ca2+-mediated translation of Na+ stress intensity into SOS1 Na+/H+ antiporter activity facilitates fine tuning of the sodium extrusion capacity for optimized salt-stress tolerance.
Collapse
Affiliation(s)
- Leonie Steinhorst
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Gefeng He
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Lena K Moore
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Stefanie Schültke
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Ina Schmitz-Thom
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Yibo Cao
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kenji Hashimoto
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Zaida Andrés
- Instituto de Biología Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - Katrin Piepenburg
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam, Germany
| | - Paula Ragel
- Instituto de Biología Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - Smrutisanjita Behera
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Oliver Batistič
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Thomas Wyganowski
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Philipp Köster
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Chunxia Zhang
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Melanie Krebs
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Francisco J Quintero
- Instituto de Biología Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Cientificas, 41092 Seville, Spain
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
| |
Collapse
|
18
|
Xie Q, Zhou Y, Jiang X. Structure, Function, and Regulation of the Plasma Membrane Na +/H + Antiporter Salt Overly Sensitive 1 in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:866265. [PMID: 35432437 PMCID: PMC9009148 DOI: 10.3389/fpls.2022.866265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 05/24/2023]
Abstract
Physiological studies have confirmed that export of Na+ to improve salt tolerance in plants is regulated by the combined activities of a complex transport system. In the Na+ transport system, the Na+/H+ antiporter salt overly sensitive 1 (SOS1) is the main protein that functions to excrete Na+ out of plant cells. In this paper, we review the structure and function of the Na+/H+ antiporter and the physiological process of Na+ transport in SOS signaling pathway, and discuss the regulation of SOS1 during phosphorylation activation by protein kinase and the balance mechanism of inhibiting SOS1 antiporter at molecular and protein levels. In addition, we carried out phylogenetic tree analysis of SOS1 proteins reported so far in plants, which implied the specificity of salt tolerance mechanism from model plants to higher crops under salt stress. Finally, the high complexity of the regulatory network of adaptation to salt tolerance, and the feasibility of coping strategies in the process of genetic improvement of salt tolerance quality of higher crops were reviewed.
Collapse
Affiliation(s)
- Qing Xie
- National Innovation Center for Technology of Saline-Alkaline Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/School of Horticulture, Hainan University, Haikou, China
| | - Yang Zhou
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/School of Horticulture, Hainan University, Haikou, China
| | - Xingyu Jiang
- National Innovation Center for Technology of Saline-Alkaline Tolerant Rice/College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops/School of Horticulture, Hainan University, Haikou, China
| |
Collapse
|
19
|
Malakar P, Chattopadhyay D. Adaptation of plants to salt stress: the role of the ion transporters. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2021; 30:668-683. [PMID: 0 DOI: 10.1007/s13562-021-00741-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/28/2021] [Indexed: 05/27/2023]
|
20
|
Salt responsive alternative splicing of a RING finger E3 ligase modulates the salt stress tolerance by fine-tuning the balance of COP9 signalosome subunit 5A. PLoS Genet 2021; 17:e1009898. [PMID: 34784357 PMCID: PMC8631661 DOI: 10.1371/journal.pgen.1009898] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/30/2021] [Accepted: 10/20/2021] [Indexed: 01/08/2023] Open
Abstract
Increasing evidence points to the tight relationship between alternative splicing (AS) and the salt stress response in plants. However, the mechanisms linking these two phenomena remain unclear. In this study, we have found that Salt-Responsive Alternatively Spliced gene 1 (SRAS1), encoding a RING-Type E3 ligase, generates two splicing variants: SRAS1.1 and SRAS1.2, which exhibit opposing responses to salt stress. The salt stress-responsive AS event resulted in greater accumulation of SRAS1.1 and a lower level of SRAS1.2. Comprehensive phenotype analysis showed that overexpression of SRAS1.1 made the plants more tolerant to salt stress, whereas overexpression of SRAS1.2 made them more sensitive. In addition, we successfully identified the COP9 signalosome 5A (CSN5A) as the target of SRAS1. CSN5A is an essential player in the regulation of plant development and stress. The full-length SRAS1.1 promoted degradation of CSN5A by the 26S proteasome. By contrast, SRAS1.2 protected CSN5A by competing with SRAS1.1 on the same binding site. Thus, the salt stress-triggered AS controls the ratio of SRAS1.1/SRAS1.2 and switches on and off the degradation of CSN5A to balance the plant development and salt tolerance. Together, these results provide insights that salt-responsive AS acts as post-transcriptional regulation in mediating the function of E3 ligase. High salinity severely affects plant growth and development, impairing crop production worldwide. E3 ligase is a stress-responsive regulator through ubiquitin-proteasome system for selective protein degradation. The E3s are regulated by transcriptional regulation and post-translational modifications. Here, we have discovered that stress-responsive AS acts as a post-transcriptional regulation modulating the function of E3 ligases. Intriguingly, the truncated proteins generated by salt-responsive AS play opposite roles compared with the full-length E3 ligase. The truncated isoform losing key domain could not degrade the target protein, instead, it interacts and competes with the E3 ligase through binding the same domain of the targets. This finding contributes significantly to a deeper mechanistic understanding of how AS regulates the function of E3 ligase in response to salt stress.
Collapse
|
21
|
Calcium Sensor SlCBL4 Associates with SlCIPK24 Protein Kinase and Mediates Salt Tolerance in Solanum lycopersicum. PLANTS 2021; 10:plants10102173. [PMID: 34685982 PMCID: PMC8541381 DOI: 10.3390/plants10102173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Soil salinity is one of the major environmental stresses that restrict the growth and development of tomato (Solanum lycopersicum L.) worldwide. In Arabidopsis, the calcium signaling pathway mediated by calcineurin B-like protein 4 (CBL4) and CBL-interacting protein kinase 24 (CIPK24) plays a critical role in salt stress response. In this study, we identified and isolated two tomato genes similar to the Arabidopsis genes, designated as SlCBL4 and SlCIPK24, respectively. Bimolecular fluorescence complementation (BiFC) and pull-down assays indicated that SlCBL4 can physically interact with SlCIPK24 at the plasma membrane of plant cells in a Ca2+-dependent manner. Overexpression of SlCBL4 or superactive SlCIPK24 mutant (SlCIPK24M) conferred salt tolerance to transgenic tomato (cv. Moneymaker) plants. In particular, the SlCIPK24M-overexpression lines displayed dramatically enhanced tolerance to high salinity. It is notable that the transgenic plants retained higher contents of Na+ and K+ in the roots compared to the wild-type tomato under salt stress. Taken together, our findings clearly suggest that SlCBL4 and SlCIPK24 are functional orthologs of the Arabidopsis counterpart genes, which can be used or engineered to produce salt-tolerant tomato plants.
Collapse
|
22
|
Ródenas R, Vert G. Regulation of Root Nutrient Transporters by CIPK23: 'One Kinase to Rule Them All'. PLANT & CELL PHYSIOLOGY 2021; 62:553-563. [PMID: 33367898 DOI: 10.1093/pcp/pcaa156] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/27/2020] [Indexed: 05/21/2023]
Abstract
Protein kinases constitute essential regulatory components in the majority of cellular processes in eukaryotic cells. The CBL-INTERACTING PROTEIN KINASE (CIPK) family of plant protein kinases functions in calcium (Ca2+)-related signaling pathways and is therefore involved in the response to a wide variety of signals in plants. By covalently linking phosphate groups to their target proteins, CIPKs regulate the activity of downstream targets, their localization, their stability and their ability to interact with other proteins. In Arabidopsis, the CIPK23 kinase has emerged as a major hub driving root responses to diverse environmental stresses, including drought, salinity and nutrient imbalances, such as potassium, nitrate and iron deficiencies, as well as ammonium, magnesium and non-iron metal toxicities. This review will chiefly report on the prominent roles of CIPK23 in the regulation of plant nutrient transporters and on the underlying molecular mechanisms. We will also discuss the different scenarios explaining how a single promiscuous kinase, such as CIPK23, may convey specific responses to a myriad of signals.
Collapse
Affiliation(s)
- Reyes Ródenas
- Plant Science Research Laboratory (LRSV), UMR5546, CNRS, Université Toulouse 3, 24 Chemin de Borde Rouge, 31320 Auzeville Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546, CNRS, Université Toulouse 3, 24 Chemin de Borde Rouge, 31320 Auzeville Tolosane, France
| |
Collapse
|
23
|
Meng D, Dong B, Niu L, Song Z, Wang L, Amin R, Cao H, Li H, Yang Q, Fu Y. The pigeon pea CcCIPK14-CcCBL1 pair positively modulates drought tolerance by enhancing flavonoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1278-1297. [PMID: 33733535 DOI: 10.1111/tpj.15234] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 05/22/2023]
Abstract
Calcineurin B-like (CBL)-interacting protein kinases (CIPKs) play a central role in Ca2+ signalling and promote drought tolerance in plants. The CIPK gene family in pigeon pea (Cajanus cajan L.), a major food crop affected by drought, has not previously been characterised. Here, we identified 28 CIPK genes in the pigeon pea genome. Five CcCIPK genes were strongly upregulated in roots upon drought treatment and were selected for further characterisation. Overexpression of CcCIPK13 and CcCIPK14 increased survival rates by two- to three-fold relative to controls after 14 days of drought. Furthermore, the three major flavonoids, genistin, genistein and apigenin, were significantly upregulated in the same transgenic plants. Using CcCIPK14 as bait, we performed a yeast two-hybrid screen and identified six interactors, including CcCBL1. CcCIPK14 exhibited autophosphorylation and phosphorylation of CcCBL1 in vitro. CcCBL1-overexpressed plants displayed higher survival rates upon drought stress as well as higher expression of flavonoid biosynthetic genes and flavonoid content. CcCIPK14-overexpressed plants in which CcCBL1 transcript levels were reduced by RNA interference had lower survival rates, which indicated CcCBL1 in the same pathway as CcCIPK14. Together, our results demonstrate a role for the CcCIPK14-CcCBL1 complex in drought stress tolerance through the regulation of flavonoid biosynthesis in pigeon pea.
Collapse
Affiliation(s)
- Dong Meng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Forestry, Beijing Forestry University, Bejing, China
| | - Biying Dong
- College of Forestry, Beijing Forestry University, Bejing, China
| | - Lili Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Forestry, Beijing Forestry University, Bejing, China
| | - Zhihua Song
- College of Forestry, Beijing Forestry University, Bejing, China
| | - Litao Wang
- College of Forestry, Beijing Forestry University, Bejing, China
| | - Rohul Amin
- College of Forestry, Beijing Forestry University, Bejing, China
| | - Hongyan Cao
- College of Forestry, Beijing Forestry University, Bejing, China
| | - Hanghang Li
- College of Forestry, Beijing Forestry University, Bejing, China
| | - Qing Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Forestry, Beijing Forestry University, Bejing, China
| | - Yujie Fu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Forestry, Beijing Forestry University, Bejing, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| |
Collapse
|
24
|
Identification and Characterization of Abiotic Stress Responsive CBL-CIPK Family Genes in Medicago. Int J Mol Sci 2021; 22:ijms22094634. [PMID: 33924917 PMCID: PMC8124885 DOI: 10.3390/ijms22094634] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
The calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) play important roles in plant signal transduction and response to abiotic stress. Plants of Medicago genus contain many important forages, and their growth is often affected by a variety of abiotic stresses. However, studies on the CBL and CIPK family member and their function are rare in Medicago. In this study, a total of 23 CBL and 58 CIPK genes were identified from the genome of Medicago sativa as an important forage crop, and Medicaog truncatula as the model plant. Phylogenetic analysis suggested that these CBL and CIPK genes could be classified into five and seven groups, respectively. Moreover, these genes/proteins showed diverse exon-intron organizations, architectures of conserved protein motifs. Many stress-related cis-acting elements were found in their promoter region. In addition, transcriptional analyses showed that these CBL and CIPK genes exhibited distinct expression patterns in various tissues, and in response to drought, salt, and abscisic acid treatments. In particular, the expression levels of MtCIPK2 (MsCIPK3), MtCIPK17 (MsCIPK11), and MtCIPK18 (MsCIPK12) were significantly increased under PEG, NaCl, and ABA treatments. Collectively, our study suggested that CBL and CIPK genes play crucial roles in response to various abiotic stresses in Medicago.
Collapse
|
25
|
Sun W, Zhang B, Deng J, Chen L, Ullah A, Yang X. Genome-wide analysis of CBL and CIPK family genes in cotton: conserved structures with divergent interactions and expression. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:359-368. [PMID: 33707874 PMCID: PMC7907412 DOI: 10.1007/s12298-021-00943-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/15/2020] [Accepted: 01/28/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Calcineurin B-like proteins (CBLs) interact with CBL-interacting protein kinases (CIPKs) to form complex molecular modules in response to diverse abiotic stresses. Although previous studies demonstrated that the CBL-CIPK networks play a crucial role in plants response to abiotic stresses, however, little is known about their functions in cotton. In the present study, a total of 22 GhCBL and 79 GhCIPK gene family members were identified in upland cotton (Gossypium hirsutum Linn). Synteny analysis revealed that most genes of GhCBL and GhCIPK exist in pairs between At sub-genome and Dt sub-genome. Interaction analysis between GhCBL and GhCIPK proteins by yeast two-hybrid (Y2H) suggested that the GhCBL-GhCIPK networks were complex, and exhibited functional redundancy in cotton. Quantitative expression analysis by public transcriptome datasets revealed that some GhCBL and GhCIPK genes are differentially expressed under abiotic stress treatments, and especially under drought stress. Our results not only contribute to understanding the structural features of GhCBL and GhCIPK genes but also provide the basis for in-depth functional studies of GhCBL-GhCIPK networks in stress response for plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at (doi:10.1007/s12298-021-00943-1).
Collapse
Affiliation(s)
- Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Bing Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Jinwu Deng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Lin Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Abid Ullah
- Department of Botany, University of Malakand, Chakdara Dir Lower, 18800 Khyber Pakhtunkhwa Pakistan
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
26
|
Chen X, Ding Y, Yang Y, Song C, Wang B, Yang S, Guo Y, Gong Z. Protein kinases in plant responses to drought, salt, and cold stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:53-78. [PMID: 33399265 DOI: 10.1111/jipb.13061] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/19/2020] [Indexed: 05/20/2023]
Abstract
Protein kinases are major players in various signal transduction pathways. Understanding the molecular mechanisms behind plant responses to biotic and abiotic stresses has become critical for developing and breeding climate-resilient crops. In this review, we summarize recent progress on understanding plant drought, salt, and cold stress responses, with a focus on signal perception and transduction by different protein kinases, especially sucrose nonfermenting1 (SNF1)-related protein kinases (SnRKs), mitogen-activated protein kinase (MAPK) cascades, calcium-dependent protein kinases (CDPKs/CPKs), and receptor-like kinases (RLKs). We also discuss future challenges in these research fields.
Collapse
Affiliation(s)
- Xuexue Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chunpeng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng, 475001, China
| | - Baoshan Wang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan, 250000, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Institute of Life Science and Green Development, School of Life Sciences, Hebei University, Baoding, 071001, China
| |
Collapse
|
27
|
Song RF, Li TT, Liu WC. Jasmonic Acid Impairs Arabidopsis Seedling Salt Stress Tolerance Through MYC2-Mediated Repression of CAT2 Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:730228. [PMID: 34745163 PMCID: PMC8569249 DOI: 10.3389/fpls.2021.730228] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/24/2021] [Indexed: 05/17/2023]
Abstract
High salinity causes ionic, osmotic, and oxidative stresses to plants, and the antioxidant enzyme Catalase2 (CAT2) plays a vital role in this process, while how CAT2 expression is regulated during plant response to high salinity remains elusive. Here, we report that phytohormone jasmonic acid (JA) impairs plant salt stress tolerance by repressing CAT2 expression in an MYC2-dependent manner. Exogenous JA application decreased plant salt stress tolerance while the jar1 mutant with reduced bioactive JA-Ile accumulation showed enhanced salt stress tolerance. JA enhanced salt-induced hydrogen peroxide (H2O2) accumulation, while treatment with H2O2-scavenger glutathione compromised such effects of JA on plant H2O2 accumulation and salt stress tolerance. In addition, JA repressed CAT2 expression in salt-stressed wild-type plant but not in myc2, a mutant of the master transcriptional factor MYC2 in JA signaling, therefore, the myc2 mutant exhibited increased salt stress tolerance. Further study showed that mutation of CAT2 largely reverted lower reactive oxygen species (ROS) accumulation, higher CAT activity, and enhanced salt stress tolerance of the myc2 mutant in myc2 cat2-1 double mutant, revealing that CAT2 functions downstream JA-MYC2 module in plant response to high salinity. Together, our study reveals that JA impairs Arabidopsis seedling salt stress tolerance through MYC2-mediated repression of CAT2 expression.
Collapse
Affiliation(s)
- Ru-Feng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Ting-Ting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- *Correspondence: Wen-Cheng Liu
| |
Collapse
|
28
|
Chen X, Chen G, Li J, Hao X, Tuerxun Z, Chang X, Gao S, Huang Q. A maize calcineurin B-like interacting protein kinase ZmCIPK42 confers salt stress tolerance. PHYSIOLOGIA PLANTARUM 2021; 171:161-172. [PMID: 33064336 DOI: 10.1111/ppl.13244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 05/06/2023]
Abstract
Calcineurin B-like (CBL) and CBL-interacting protein kinase (CIPK) play a crucial role in biotic and abiotic stress responses. However, the roles of different CIPKs in biotic and abiotic stress responses are less well characterized. In this study, we identified a mutation leading to an early protein termination of the maize CIPK gene ZmCIPK42 that undergoes a G to A mutation at the coding region via searching for genes involved in salt stress tolerance and ion homeostasis from maize with querying the EMS mutant library of maize B73. The mutant zmcipk42 plants have less branched tassel and impaired salt stress tolerance at the seedling stage. Quantitative real-time PCR analysis revealed that ZmCIPK42was expressed in diverse tissues and was induced by NaCl stress. A yeast two-hybrid screen identified a proteinase inhibitor (ZmMPI) as well as calcineurin B-like protein 1 and protein 4 (ZmCBL1, ZmCBL4) as interaction partners of ZmCIPK42. These interactions were further confirmed by bimolecular fluorescence complementation in plant cells. Moreover, over-expressing ZmCIPK42 resulted in enhanced tolerance to high salinity in both maize and Arabidopsis. These findings suggest that ZmCIPK42 is a positive regulator of salt stress tolerance and is a promising candidate gene to improve salt stress tolerance in maize through genetic manipulation.
Collapse
Affiliation(s)
- Xunji Chen
- Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Xinjiang Key Laboratory of Crop Biotechnology, Urumqi, China
| | - Guo Chen
- Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Xinjiang Key Laboratory of Crop Biotechnology, Urumqi, China
| | - Jianping Li
- Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Xinjiang Key Laboratory of Crop Biotechnology, Urumqi, China
| | - Xiaoyan Hao
- Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Xinjiang Key Laboratory of Crop Biotechnology, Urumqi, China
| | - Zumuremu Tuerxun
- Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Xinjiang Key Laboratory of Crop Biotechnology, Urumqi, China
| | - Xiaochun Chang
- Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Xinjiang Key Laboratory of Crop Biotechnology, Urumqi, China
| | - Shengqi Gao
- Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Xinjiang Key Laboratory of Crop Biotechnology, Urumqi, China
| | - Quansheng Huang
- Institute of Nuclear Technology and Biotechnology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Xinjiang Key Laboratory of Crop Biotechnology, Urumqi, China
| |
Collapse
|
29
|
Zhang X, Li X, Zhao R, Zhou Y, Jiao Y. Evolutionary strategies drive a balance of the interacting gene products for the CBL and CIPK gene families. THE NEW PHYTOLOGIST 2020; 226:1506-1516. [PMID: 31967665 DOI: 10.1111/nph.16445] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/08/2020] [Indexed: 05/20/2023]
Abstract
Genes encoding interacting proteins tend to be co-retained after whole-genome duplication (WGD). The preferential retention after WGD has been explained by the gene balance hypothesis (GBH). However, small-scale duplications could independently occur in the connected gene families. Certain evolutionary strategies might keep the dosage balanced. Here, we examined the gene duplication, interaction and expression patterns of calcineurin B-like (CBL) and CBL-interacting protein kinase (CIPK) gene families to understand the underlying principles. The ratio of the CBL and CIPK gene numbers evolved from 5 : 7 in Physcomitrella to 10 : 26 in Arabidopsis, and retrotransposition, tandem duplication, and WGDs contributed to the expansion. Two pairs of CBLs and six pairs of CIPKs were retained after the α WGD in Arabidopsis, in which specific interaction patterns were identified. In some cases, two retained CBLs (CIPKs) might compete to interact with a sole CIPK (CBL). Results of gene expression analyses indicated that the relatively over-retained duplicates tend to show asymmetric expression, thus avoiding competition. In conclusion, our results suggested that the highly specific interaction, together with the differential gene expression pattern, jointly maintained the balanced dosage for the interacting CBL and CIPK proteins.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxia Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ran Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yun Zhou
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
30
|
Tang RJ, Wang C, Li K, Luan S. The CBL-CIPK Calcium Signaling Network: Unified Paradigm from 20 Years of Discoveries. TRENDS IN PLANT SCIENCE 2020; 25:604-617. [PMID: 32407699 DOI: 10.1016/j.tplants.2020.01.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 05/18/2023]
Abstract
Calcium (Ca2+) serves as an essential nutrient as well as a signaling agent in all eukaryotes. In plants, calcineurin B-like proteins (CBLs) are a unique group of Ca2+ sensors that decode Ca2+ signals by activating a family of plant-specific protein kinases known as CBL-interacting protein kinases (CIPKs). Interactions between CBLs and CIPKs constitute a signaling network that enables information integration and physiological coordination in response to a variety of extracellular cues such as nutrient deprivation and abiotic stresses. Studies in the past two decades have established a unified paradigm that illustrates the functions of CBL-CIPK complexes in controlling membrane transport through targeting transporters and channels in the plasma membrane and tonoplast.
Collapse
Affiliation(s)
- Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Kunlun Li
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
31
|
Sánchez-Barrena MJ, Chaves-Sanjuan A, Raddatz N, Mendoza I, Cortés Á, Gago F, González-Rubio JM, Benavente JL, Quintero FJ, Pardo JM, Albert A. Recognition and Activation of the Plant AKT1 Potassium Channel by the Kinase CIPK23. PLANT PHYSIOLOGY 2020; 182:2143-2153. [PMID: 32015077 PMCID: PMC7140914 DOI: 10.1104/pp.19.01084] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/23/2020] [Indexed: 05/18/2023]
Abstract
Plant growth largely depends on the maintenance of adequate intracellular levels of potassium (K+). The families of 10 Calcineurin B-Like (CBL) calcium sensors and 26 CBL-Interacting Protein Kinases (CIPKs) of Arabidopsis (Arabidopsis thaliana) decode the calcium signals elicited by environmental inputs to regulate different ion channels and transporters involved in the control of K+ fluxes by phosphorylation-dependent and -independent events. However, the detailed molecular mechanisms governing target specificity require investigation. Here, we show that the physical interaction between CIPK23 and the noncanonical ankyrin domain in the cytosolic side of the inward-rectifier K+ channel AKT1 regulates kinase docking and channel activation. Point mutations on this domain specifically alter binding to CIPK23, enhancing or impairing the ability of CIPK23 to regulate channel activity. Our data demonstrate the relevance of this protein-protein interaction that contributes to the formation of a complex between CIPK23/CBL1 and AKT1 in the membrane for the proper regulation of K+ transport.
Collapse
Affiliation(s)
- María José Sánchez-Barrena
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, E-28006 Madrid, Spain
| | - Antonio Chaves-Sanjuan
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, E-28006 Madrid, Spain
| | - Natalia Raddatz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, E-41092 Sevilla, Spain
| | - Imelda Mendoza
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, E-41092 Sevilla, Spain
| | - Álvaro Cortés
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al Instituto de Química Médica-Consejo Superior de Investigaciones Científicas, Universidad de Alcalá, E-28006 Madrid, Spain
| | - Federico Gago
- Área de Farmacología, Departamento de Ciencias Biomédicas, Unidad Asociada al Instituto de Química Médica-Consejo Superior de Investigaciones Científicas, Universidad de Alcalá, E-28006 Madrid, Spain
| | - Juana María González-Rubio
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, E-28006 Madrid, Spain
| | - Juan Luis Benavente
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, E-28006 Madrid, Spain
| | - Francisco J Quintero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, E-41092 Sevilla, Spain
| | - José M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, E-41092 Sevilla, Spain
| | - Armando Albert
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, E-28006 Madrid, Spain
| |
Collapse
|
32
|
CBL–CIPK module-mediated phosphoregulation: facts and hypothesis. Biochem J 2020; 477:853-871. [DOI: 10.1042/bcj20190339] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
Calcium (Ca2+) signaling is a versatile signaling network in plant and employs very efficient signal decoders to transduce the encoded message. The CBL–CIPK module is one of the sensor-relay decoders that have probably evolved with the acclimatization of land plant. The CBLs are unique proteins with non-canonical Ca2+ sensing EF-hands, N-terminal localization motif and a C-terminal phosphorylation motif. The partner CIPKs are Ser/Thr kinases with kinase and regulatory domains. Phosphorylation plays a major role in the functioning of the module. As the module has a functional kinase to transduce signal, it employs phosphorylation as a preferred mode for modulation of targets as well as its interaction with CBL. We analyze the data on the substrate regulation by the module from the perspective of substrate phosphorylation. We have also predicted some of the probable sites in the identified substrates that may be the target of the CIPK mediated phosphorylation. In addition, phosphatases have been implicated in reversing the CIPK mediated phosphorylation of substrates. Therefore, we have also presented the role of phosphatases in the modulation of the CBL–CIPK and its targets. We present here an overview of the phosphoregulation mechanism of the CBL–CIPK module.
Collapse
|
33
|
Su W, Huang L, Ling H, Mao H, Huang N, Su Y, Ren Y, Wang D, Xu L, Muhammad K, Que Y. Sugarcane calcineurin B-like (CBL) genes play important but versatile roles in regulation of responses to biotic and abiotic stresses. Sci Rep 2020; 10:167. [PMID: 31932662 PMCID: PMC6957512 DOI: 10.1038/s41598-019-57058-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/21/2019] [Indexed: 11/09/2022] Open
Abstract
Free calcium ions are common second messengers in plant cells. The calcineurin B-like protein (CBL) is a special calcium sensor that plays an important role in plant growth and stress response. In this study, we obtained three CBL genes (GenBank accession nos. KX013374, KX013375, and KX013376) from sugarcane variety ROC22. The open reading frames of ScCBL genes ranged from 642 to 678 base pairs in length and encoded polypeptides from 213 to 225 amino acids in length. ScCBL2-1, ScCBL3-1, and ScCBL4 were all located in the plasma membrane and cytoplasm. ScCBL2-1 and ScCBL3-1 expression was up-regulated by treatment with salicylic acid (SA), methyl jasmonate (MeJA), hydrogen peroxide (H2O2), polyethylene glycol (PEG), sodium chloride (NaCl), or copper chloride (CuCl2). ScCBL4 expression was down-regulated in response to all of these stresses (abscisic acid (ABA), SA, MeJA, and NaCl) except for H2O2, calcium chloride (CaCl2), PEG, and CuCl2. Expression in Escherichia coli BL21 cells showed that ScCBLs can enhance tolerance to NaCl or copper stress. Overexpression of ScCBLs in Nicotiana benthamiana leaves promoted their resistance to infection with the tobacco pathogen Ralstonia solanacearum. The results from the present study facilitate further research regarding ScCBL genes, and in particular, their roles in the response to various stresses in sugarcane.
Collapse
Affiliation(s)
- Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huaying Mao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ning Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongjuan Ren
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Khushi Muhammad
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Guangxi Collaborative Innovation Center of Sugarcane Industry, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
34
|
The dynamic responses of plant physiology and metabolism during environmental stress progression. Mol Biol Rep 2019; 47:1459-1470. [PMID: 31823123 DOI: 10.1007/s11033-019-05198-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
At adverse environmental conditions, plants produce various kinds of primary and secondary metabolites to protect themselves. Both primary and secondary metabolites play a significant role during the heat, drought, salinity, genotoxic and cold conditions. A multigene response is activated during the progression of these stresses in the plants which stimulate changes in various signaling molecules, amino acids, proteins, primary and secondary metabolites. Plant metabolism is perturbed because of either the inhibition of metabolic enzymes, shortage of substrates, excess demand for specific compounds or a combination of these factors. In this review, we aim to present how plants synthesize different kinds of natural products during the perception of various abiotic stresses. We also discuss how time-scale variable stresses influence secondary metabolite profiles, could be used as a stress marker in plants. This article has the potential to get the attention of researchers working in the area of quantitative trait locus mapping using metabolites as well as metabolomics genome-wide association.
Collapse
|
35
|
Passricha N, Saifi SK, Kharb P, Tuteja N. Rice lectin receptor‐like kinase provides salinity tolerance by ion homeostasis. Biotechnol Bioeng 2019; 117:498-510. [DOI: 10.1002/bit.27216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/18/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Nishat Passricha
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali MargNew Delhi India
| | - Shabnam K. Saifi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali MargNew Delhi India
| | - Pushpa Kharb
- Department of Molecular Biology, Biotechnology and BioinformaticsCOBS&H, CCS Haryana Agricultural UniversityHisar Haryana India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali MargNew Delhi India
| |
Collapse
|
36
|
Ma X, Gai WX, Qiao YM, Ali M, Wei AM, Luo DX, Li QH, Gong ZH. Identification of CBL and CIPK gene families and functional characterization of CaCIPK1 under Phytophthora capsici in pepper (Capsicum annuum L.). BMC Genomics 2019; 20:775. [PMID: 31653202 PMCID: PMC6814991 DOI: 10.1186/s12864-019-6125-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Background Calcineurin B-like proteins (CBLs) are major Ca2+ sensors that interact with CBL-interacting protein kinases (CIPKs) to regulate growth and development in plants. The CBL-CIPK network is involved in stress response, yet little is understood on how CBL-CIPK function in pepper (Capsicum annuum L.), a staple vegetable crop that is threatened by biotic and abiotic stressors. Results In the present study, nine CaCBL and 26 CaCIPK genes were identified in pepper and the genes were named based on their chromosomal order. Phylogenetic and structural analysis revealed that CaCBL and CaCIPK genes clustered in four and five groups, respectively. Quantitative real-time PCR (qRT-PCR) assays showed that CaCBL and CaCIPK genes were constitutively expressed in different tissues, and their expression patterns were altered when the plant was exposed to Phytophthora capsici, salt and osmotic stress. CaCIPK1 expression changed in response to stress, including exposure to P. capsici, NaCl, mannitol, salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), ethylene (ETH), cold and heat stress. Knocking down CaCIPK1 expression increased the susceptibility of pepper to P. capsici, reduced root activity, and altered the expression of defense related genes. Transient overexpression of CaCIPK1 enhanced H2O2 accumulation, cell death, and expression of genes involved in defense. Conclusions Nine CaCBL and 26 CaCIPK genes were identified in the pepper genome, and the expression of most CaCBL and CaCIPK genes were altered when the plant was exposed to stress. In particular, we found that CaCIPK1 is mediates the pepper plant’s defense against P. capsici. These results provide the groundwork for further functional characterization of CaCBL and CaCIPK genes in pepper.
Collapse
Affiliation(s)
- Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yi-Ming Qiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, People's Republic of China
| | - De-Xu Luo
- Xuhuai Region Huaiyin Institute of Agricultural Sciences, Huaian, Jiangsu, 223001, People's Republic of China
| | - Quan-Hui Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.,Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai, 810016, People's Republic of China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China. .,State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
37
|
Coyne K, Davis MM, Mizoguchi T, Hayama R. Temporal restriction of salt inducibility in expression of salinity-stress related gene by the circadian clock in Solanum lycopersicum. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:195-200. [PMID: 31768122 PMCID: PMC6854343 DOI: 10.5511/plantbiotechnology.19.0703a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Exposure to salinity causes plants to trigger transcriptional induction of a particular set of genes for initiating salinity-stress responses. Recent transcriptome analyses reveal that expression of a population of salinity-inducible genes also exhibits circadian rhythms. However, since the analyses were performed independently from those with salinity stress, it is unclear whether the observed circadian rhythms simply represent their basal expression levels independently from their induction by salinity, or these rhythms demonstrate the function of the circadian clock to actively limit the timing of occurrence of the salinity induction to particular times in the day. Here, by using tomato, we demonstrate that salt inducibility in expression of particular salinity-stress related genes is temporally controlled in the day. Occurrence of salinity induction in expression of SlSOS2 and P5CS, encoding a sodium/hydrogen antiporter and an enzyme for proline biosynthesis, is limited specifically to the morning, whereas that of SlDREB2, which encodes a transcription factor involved in tomato responses to several abiotic stresses such as salinity and drought, is restricted specifically to the evening. Our findings not only demonstrate potential importance in further investigating the basis and significance of circadian gated salinity stress responses under fluctuating day/night conditions, but also provide the potential to exploit an effective way for improving performance of salinity resistance in tomato.
Collapse
Affiliation(s)
- Kelsey Coyne
- Department of Biochemistry and Molecular Biology, The College of Wooster, 1189 Beall Avenue, Wooster, OH 44691, USA
| | - Melissa Mullen Davis
- Department of Biochemistry and Molecular Biology, The College of Wooster, 1189 Beall Avenue, Wooster, OH 44691, USA
| | - Tsuyoshi Mizoguchi
- Department of Natural Sciences, International Christian University, 3-10-2 Osawa, Mitaka, Tokyo 181-8585, Japan
| | - Ryosuke Hayama
- Department of Natural Sciences, International Christian University, 3-10-2 Osawa, Mitaka, Tokyo 181-8585, Japan
| |
Collapse
|
38
|
Vishwakarma K, Mishra M, Patil G, Mulkey S, Ramawat N, Pratap Singh V, Deshmukh R, Kumar Tripathi D, Nguyen HT, Sharma S. Avenues of the membrane transport system in adaptation of plants to abiotic stresses. Crit Rev Biotechnol 2019; 39:861-883. [DOI: 10.1080/07388551.2019.1616669] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kanchan Vishwakarma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Mitali Mishra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Gunvant Patil
- Department of Agronomy and Plant Genetics, University of Minnesota St. Paul, Minnesota, MN, USA
| | - Steven Mulkey
- Department of Agronomy and Plant Genetics, University of Minnesota St. Paul, Minnesota, MN, USA
| | - Naleeni Ramawat
- Amity Institute of Organic Agriculture, Amity University, Uttar Pradesh, Noida, India
| | - Vijay Pratap Singh
- Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Allahabad, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | | | - Henry T. Nguyen
- Department of Agronomy and Plant Genetics, University of Minnesota St. Paul, Minnesota, MN, USA
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
39
|
Ma Y, Cao J, Chen Q, He J, Liu Z, Wang J, Li X, Yang Y. The Kinase CIPK11 Functions as a Negative Regulator in Drought Stress Response in Arabidopsis. Int J Mol Sci 2019; 20:ijms20102422. [PMID: 31100788 PMCID: PMC6566343 DOI: 10.3390/ijms20102422] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
Drought is a major limiting factor for plant growth and crop productivity. Many Calcineurin B-like interacting protein kinases (CIPKs) play crucial roles in plant adaptation to environmental stresses. It is particularly essential to find the phosphorylation targets of CIPKs and to study the underlying molecular mechanisms. In this study, we demonstrate that CIPK11 acts as a novel component to modulate drought stress in plants. The overexpression of CIPK11 (CIPK11OE) in Arabidopsis resulted in the decreased tolerance of plant to drought stress. When compared to wild type plants, CIPK11OE plants exhibited higher leaf water loss and higher content of reactive oxygen species (ROS) after drought treatment. Additionally, a yeast two hybrid screening assay by using CIPK11 as a bait captures Di19-3, a Cys2/His2-type zinc-finger transcription factor that is involved in drought stress, as a new interactor of CIPK11. Biochemical analysis revealed that CIPK11 interacted with Di19-3 in vivo and it was capable of phosphorylating Di19-3 in vitro. Genetic studies revealed that the function of CIPK11 in regulating drought stress was dependent on Di19-3. The transcripts of stress responsive genes, such as RAB18, RD29A, RD29B, and DREB2A were down-regulated in the CIPK11OE plants. Whereas overexpression of CIPK11 in di19-3 mutant background, expression levels of those marker genes were not significantly altered. Taken together, our results demonstrate that CIPK11 partly mediates the drought stress response by regulating the transcription factor Di19-3.
Collapse
Affiliation(s)
- Yanlin Ma
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Jing Cao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Qiaoqiao Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Jiahan He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
40
|
Locascio A, Andrés-Colás N, Mulet JM, Yenush L. Saccharomyces cerevisiae as a Tool to Investigate Plant Potassium and Sodium Transporters. Int J Mol Sci 2019; 20:E2133. [PMID: 31052176 PMCID: PMC6539216 DOI: 10.3390/ijms20092133] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity. The baker's yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins can be expressed in yeast and are functional in this unicellular model system, which allows for productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used as a high-throughput platform for the identification of genes that confer stress tolerance and for the study of protein-protein interactions. In this review, we summarize advances regarding potassium and sodium transport that have been discovered using the yeast model system, the state-of-the-art of the available techniques and the future directions and opportunities in this field.
Collapse
Affiliation(s)
- Antonella Locascio
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Nuria Andrés-Colás
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain.
| |
Collapse
|
41
|
Passricha N, Saifi SK, Kharb P, Tuteja N. Marker-free transgenic rice plant overexpressing pea LecRLK imparts salinity tolerance by inhibiting sodium accumulation. PLANT MOLECULAR BIOLOGY 2019; 99:265-281. [PMID: 30604324 DOI: 10.1007/s11103-018-0816-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 12/18/2018] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE PsLecRLK overexpression in rice provides tolerance against salinity stress and cause upregulation of SOS1 pathway genes, which are responsible for extrusion of excess Na+ ion under stress condition. Soil salinity is one of the most devastating factors threatening cultivable land. Rice is a major staple crop and immensely affected by soil salinity. The small genome size of rice relative to wheat and barley, together with its salt sensitivity, makes it an ideal candidate for studies on salt stress response caused by a particular gene. Under stress conditions crosstalk between organelles and cell to cell response is imperative. LecRLK is an important family, which plays a key role under stress conditions and regulates the physiology of the plant. Here we have functionally validated the PsLecRLK gene in rice for salinity stress tolerance and hypothesized the model for its working. Salt stress sensitive rice variety IR64 was used for developing marker-free transgenic with modified binary vector pCAMBIA1300 overexpressing PsLecRLK gene. Comparison of transgenic and wild-type (WT) plants showed better physiological and biochemical results in transgenic lines with a low level of ROS, MDA and ion accumulation and a higher level of proline, relative water content, root/shoot ration, enzymatic activities of ROS scavengers and upregulation of stress-responsive genes. Based on the relative expression of stress-responsive genes and ionic content, the working model highlights the role of PsLecRLK in the extrusion of Na+ ion from the cell. This extrusion of Na+ ion is facilitated by higher expression of SOS1 (Na+/K+ channel) in transgenic plants as compared to WT plants. Altered expression of stress-responsive genes and change in biochemical and physiological properties of the cell suggests an extensive reprogramming of the stress-responsive metabolic pathways by PsLecRLK under stress condition, which could be responsible for the salt tolerance capability.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Calcium/metabolism
- Cell Death
- Cell Membrane/drug effects
- Cloning, Molecular
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/genetics
- Genes, Plant
- Germination
- Homozygote
- Ions
- Oryza/genetics
- Oryza/metabolism
- Pisum sativum/genetics
- Pisum sativum/metabolism
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Protein Transport/drug effects
- Reactive Oxygen Species/metabolism
- Receptors, Mitogen/genetics
- Receptors, Mitogen/metabolism
- SOS1 Protein/genetics
- SOS1 Protein/metabolism
- Salinity
- Salt Tolerance/genetics
- Salt Tolerance/physiology
- Sodium/metabolism
- Sodium Chloride/metabolism
- Sodium Chloride/pharmacology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Nishat Passricha
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shabnam K Saifi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pushpa Kharb
- Department of Molecular Biology, Biotechnology and Bioinformatics, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
42
|
Köster P, Wallrad L, Edel KH, Faisal M, Alatar AA, Kudla J. The battle of two ions: Ca 2+ signalling against Na + stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:39-48. [PMID: 29411929 DOI: 10.1111/plb.12704] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/30/2018] [Indexed: 05/22/2023]
Abstract
Soil salinity adversely affects plant growth, crop yield and the composition of ecosystems. Salinity stress impacts plants by combined effects of Na+ toxicity and osmotic perturbation. Plants have evolved elaborate mechanisms to counteract the detrimental consequences of salinity. Here we reflect on recent advances in our understanding of plant salt tolerance mechanisms. We discuss the embedding of the salt tolerance-mediating SOS pathway in plant hormonal and developmental adaptation. Moreover, we review newly accumulating evidence indicating a crucial role of a transpiration-dependent salinity tolerance pathway, that is centred around the function of the NADPH oxidase RBOHF and its role in endodermal and Casparian strip differentiation. Together, these data suggest a unifying and coordinating role for Ca2+ signalling in combating salinity stress at the cellular and organismal level.
Collapse
Affiliation(s)
- P Köster
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - L Wallrad
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - K H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| | - M Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A A Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, WWU Münster, Münster, Germany
| |
Collapse
|
43
|
Zhang Y, Lv Y, Jahan N, Chen G, Ren D, Guo L. Sensing of Abiotic Stress and Ionic Stress Responses in Plants. Int J Mol Sci 2018; 19:E3298. [PMID: 30352959 PMCID: PMC6275032 DOI: 10.3390/ijms19113298] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 01/30/2023] Open
Abstract
Plants need to cope with complex environments throughout their life cycle. Abiotic stresses, including drought, cold, salt and heat, can cause a reduction in plant growth and loss of crop yield. Plants sensing stress signals and adapting to adverse environments are fundamental biological problems. We review the stress sensors in stress sensing and the responses, and then discuss ionic stress signaling and the responses. During ionic stress, the calcineurin B-like proteins (CBL) and CBL-interacting protein kinases (CBL-CIPK) complex is identified as a primary element of the calcium sensor for perceiving environmental signals. The CBL-CIPK system shows specificity and variety in its response to different stresses. Obtaining a deeper understanding of stress signaling and the responses will mitigate or solve crop yield crises in extreme environments with fast-growing populations.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Yang Lv
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Noushin Jahan
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Guang Chen
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Deyong Ren
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Longbiao Guo
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
44
|
Arabidopsis calcineurin B-like proteins differentially regulate phosphorylation activity of CBL-interacting protein kinase 9. Biochem J 2018; 475:2621-2636. [PMID: 30054434 DOI: 10.1042/bcj20180372] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 11/17/2022]
Abstract
Calcium (Ca2+) is a versatile and ubiquitous second messenger in all eukaryotes including plants. In response to various stimuli, cytosolic calcium concentration ([Ca2+]cyt) is increased, leading to activation of Ca2+ sensors including Arabidopsis calcineurin B-like proteins (CBLs). CBLs interact with CBL-interacting protein kinases (CIPKs) to form CBL-CIPK complexes and transduce the signal downstream in the signalling pathway. Although there are many reports on the regulation of downstream targets by CBL-CIPK module, knowledge about the regulation of upstream components by individual CIPKs is inadequate. In the present study, we have carried out a detailed biochemical characterization of CIPK9, a known regulator of K+ deficiency in Arabidopsis, with its interacting CBLs. The present study suggests that CIPK9 specifically interacts with four CBLs, i.e. CBL1, CBL2, CBL3 and CBL9, in yeast two-hybrid assays. Out of these four CBLs, CBL2 and CBL3, specifically enhance the kinase activity of CIPK9, while the CBL1 and CBL9 decrease it as examined by in vitro kinase assays. In contrast, truncated CIPK9 (CIPK9ΔR), without the CBL-interacting regulatory C-terminal region, is not differentially activated by interacting CBLs. The protein phosphorylation assay revealed that CBL2 and CBL3 serve as preferred substrates of CIPK9. CBL2- and CBL3-CIPK9 complexes show altered requirement for metal cofactors when compared with CIPK9 alone. Moreover, the autophosphorylation of constitutively active CIPK9 (CIPK9T178D) and less active CIPK9 (CIPK9T178A) in the presence of CBL2 and CBL3 was further enhanced. Our study suggests that CIPK9 differentially phosphorylates interacting CBLs, and furthermore, the kinase activity of CIPK9 is also differentially regulated by specific interacting CBLs.
Collapse
|
45
|
Cho JH, Choi MN, Yoon KH, Kim KN. Ectopic Expression of SjCBL1, Calcineurin B-Like 1 Gene From Sedirea japonica, Rescues the Salt and Osmotic Stress Hypersensitivity in Arabidopsis cbl1 Mutant. FRONTIERS IN PLANT SCIENCE 2018; 9:1188. [PMID: 30210512 PMCID: PMC6123687 DOI: 10.3389/fpls.2018.01188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/25/2018] [Indexed: 05/22/2023]
Abstract
Extensive studies with Arabidopsis thaliana suggested that calcineurin B-like (CBL) proteins constitute a unique family of calcium sensors in plants, which mediate a variety of abiotic stress responses. However, little is known about their function in most plants that do not have available genome sequences. In this study, we have developed a pair of universal primers that make it possible to isolate CBL1-like genes from various plants without sequence information. Using these primers, we successfully cloned a full-length cDNA of CBL1-like gene in Sedirea japonica (SjCBL1). Bimolecular fluorescence complementation (BiFC) and pull-down assays demonstrated that like Arabidopsis CBL1 (AtCBL1), SjCBL1 can interacts physically with Arabidopsis CBL-interacting protein kinase 1 (AtCIPK1) at the plasma membrane of plant cells in a Ca2+-dependent manner. In addition, overexpression of SjCBL1 in the Arabidopsis cbl1 mutant resulted in not only rescuing the hypersensitive phenotype toward salt and osmotic stresses, but also substantially enhancing the tolerance to them. Taken together, these results strongly suggest that SjCBL1 is a functional ortholog of AtCBL1 in Sedirea japonica, which can play a critical role in response to salt and osmotic stresses. Therefore, it is clear that our findings should significantly contribute to broadening and deepening our understanding of the CBL1-mediated Ca2+ signaling networks in the plant kingdom.
Collapse
Affiliation(s)
| | | | | | - Kyung-Nam Kim
- Department of Molecular Biology, PERI, Sejong University, Seoul, South Korea
| |
Collapse
|
46
|
Cui XY, Du YT, Fu JD, Yu TF, Wang CT, Chen M, Chen J, Ma YZ, Xu ZS. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC PLANT BIOLOGY 2018; 18:93. [PMID: 29801463 PMCID: PMC5970481 DOI: 10.1186/s12870-018-1306-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/08/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND The calcineurin B-like protein (CBL)-interacting protein kinase (CIPK) signaling pathway responds to various abiotic stresses in plants. RESULTS Wheat CIPK23, isolated from wheat drought transcriptome data set, was induced by multiple abiotic stresses, including drought, salt, and abscisic acid (ABA). Compared with wild-type plants, TaCIPK23-overexpression wheat and Arabidopsis showed an higher survival rate under drought conditions with enhanced germination rate, developed root system, increased accumulation of osmolytes, and reduced water loss rate. Over-expression of TaCIPK23 rendered transgenic plants ABA sensitivity, as evidenced by delayed seed germination and the induction of stomatal closure. Consistent with the ABA-sensitive phenotype, the expression level of drought- and ABA-responsive genes were increased under drought conditions in the transgenic plants. In addition, using yeast two-hybrid system, pull-down and bimolecular fluorescence complementation (BiFc) assays, TaCIPK23 was found to interact with TaCBL1 on the plasma membrane. CONCLUSIONS These results suggest that TaCIPK23 plays important roles in ABA and drought stress responses, and mediates crosstalk between the ABA signaling pathway and drought stress responses in wheat.
Collapse
Affiliation(s)
- Xiao-Yu Cui
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Yong-Tao Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Jin-dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Chang-Tao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health/Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048 China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| |
Collapse
|
47
|
Cui XY, Du YT, Fu JD, Yu TF, Wang CT, Chen M, Chen J, Ma YZ, Xu ZS. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC PLANT BIOLOGY 2018. [PMID: 29801463 DOI: 10.1186/s12870-018-1306-5research] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND The calcineurin B-like protein (CBL)-interacting protein kinase (CIPK) signaling pathway responds to various abiotic stresses in plants. RESULTS Wheat CIPK23, isolated from wheat drought transcriptome data set, was induced by multiple abiotic stresses, including drought, salt, and abscisic acid (ABA). Compared with wild-type plants, TaCIPK23-overexpression wheat and Arabidopsis showed an higher survival rate under drought conditions with enhanced germination rate, developed root system, increased accumulation of osmolytes, and reduced water loss rate. Over-expression of TaCIPK23 rendered transgenic plants ABA sensitivity, as evidenced by delayed seed germination and the induction of stomatal closure. Consistent with the ABA-sensitive phenotype, the expression level of drought- and ABA-responsive genes were increased under drought conditions in the transgenic plants. In addition, using yeast two-hybrid system, pull-down and bimolecular fluorescence complementation (BiFc) assays, TaCIPK23 was found to interact with TaCBL1 on the plasma membrane. CONCLUSIONS These results suggest that TaCIPK23 plays important roles in ABA and drought stress responses, and mediates crosstalk between the ABA signaling pathway and drought stress responses in wheat.
Collapse
Affiliation(s)
- Xiao-Yu Cui
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Yong-Tao Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Chang-Tao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health/Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
48
|
Kudla J, Becker D, Grill E, Hedrich R, Hippler M, Kummer U, Parniske M, Romeis T, Schumacher K. Advances and current challenges in calcium signaling. THE NEW PHYTOLOGIST 2018; 218:414-431. [PMID: 29332310 DOI: 10.1111/nph.14966] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/21/2017] [Indexed: 05/21/2023]
Abstract
Content Summary 414 I. Introduction 415 II. Ca2+ importer and exporter in plants 415 III. The Ca2+ decoding toolkit in plants 415 IV. Mechanisms of Ca2+ signal decoding 417 V. Immediate Ca2+ signaling in the regulation of ion transport 418 VI. Ca2+ signal integration into long-term ABA responses 419 VII Integration of Ca2+ and hormone signaling through dynamic complex modulation of the CCaMK/CYCLOPS complex 420 VIII Ca2+ signaling in mitochondria and chloroplasts 422 IX A view beyond recent advances in Ca2+ imaging 423 X Modeling approaches in Ca2+ signaling 424 XI Conclusions: Ca2+ signaling a still young blooming field of plant research 424 Acknowledgements 425 ORCID 425 References 425 SUMMARY: Temporally and spatially defined changes in Ca2+ concentration in distinct compartments of cells represent a universal information code in plants. Recently, it has become evident that Ca2+ signals not only govern intracellular regulation but also appear to contribute to long distance or even organismic signal propagation and physiological response regulation. Ca2+ signals are shaped by an intimate interplay of channels and transporters, and during past years important contributing individual components have been identified and characterized. Ca2+ signals are translated by an elaborate toolkit of Ca2+ -binding proteins, many of which function as Ca2+ sensors, into defined downstream responses. Intriguing progress has been achieved in identifying specific modules that interconnect Ca2+ decoding proteins and protein kinases with downstream target effectors, and in characterizing molecular details of these processes. In this review, we reflect on recent major advances in our understanding of Ca2+ signaling and cover emerging concepts and existing open questions that should be informative also for scientists that are currently entering this field of ever-increasing breath and impact.
Collapse
Affiliation(s)
- Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, Am Hochanger 4, D-85354, Freising, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, University Würzburg, Julius-von-Sachs Platz 2, 97082, Würzburg, Germany
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 7/8, 48149, Münster, Germany
| | - Ursula Kummer
- Department of Modeling of Biological Processes, COS Heidelberg/Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Martin Parniske
- Institute of Genetics, Biocenter University of Munich (LMU), Großhaderner Straße 4, 82152, Martinsried, Germany
| | - Tina Romeis
- Department of Plant Biochemistry, Dahlem Center of Plant Sciences, Freie Universität Berlin, 14195, Berlin, Germany
| | - Karin Schumacher
- Department of Developmental Biology, Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| |
Collapse
|
49
|
Mo C, Wan S, Xia Y, Ren N, Zhou Y, Jiang X. Expression Patterns and Identified Protein-Protein Interactions Suggest That Cassava CBL-CIPK Signal Networks Function in Responses to Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2018; 9:269. [PMID: 29552024 PMCID: PMC5841119 DOI: 10.3389/fpls.2018.00269] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/14/2018] [Indexed: 05/30/2023]
Abstract
Cassava is an energy crop that is tolerant of multiple abiotic stresses. It has been reported that the interaction between Calcineurin B-like (CBL) protein and CBL-interacting protein kinase (CIPK) is implicated in plant development and responses to various stresses. However, little is known about their functions in cassava. Herein, 8 CBL (MeCBL) and 26 CIPK (MeCIPK) genes were isolated from cassava by genome searching and cloning of cDNA sequences of Arabidopsis CBLs and CIPKs. Reverse-transcriptase polymerase chain reaction (RT-PCR) analysis showed that the expression levels of MeCBL and MeCIPK genes were different in different tissues throughout the life cycle. The expression patterns of 7 CBL and 26 CIPK genes in response to NaCl, PEG, heat and cold stresses were analyzed by quantitative real-time PCR (qRT-PCR), and it was found that the expression of each was induced by multiple stimuli. Furthermore, we found that many pairs of CBLs and CIPKs could interact with each other via investigating the interactions between 8 CBL and 25 CIPK proteins using a yeast two-hybrid system. Yeast cells co-transformed with cassava MeCIPK24, MeCBL10, and Na+/H+ antiporter MeSOS1 genes exhibited higher salt tolerance compared to those with one or two genes. These results suggest that the cassava CBL-CIPK signal network might play key roles in response to abiotic stresses.
Collapse
|
50
|
Wang Y, Li T, John SJ, Chen M, Chang J, Yang G, He G. A CBL-interacting protein kinase TaCIPK27 confers drought tolerance and exogenous ABA sensitivity in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:103-113. [PMID: 29227949 DOI: 10.1016/j.plaphy.2017.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 05/22/2023]
Abstract
Drought is one of the major environmental stresses to plants. The calcium sensor, calcineurin B-like (CBL) proteins, and their interacting protein kinases (CIPK) play important roles in responding to abiotic stresses. In this study, we functionally characterized a CIPK gene from Triticum aestivum designated TaCIPK27. The transcriptional levels of TaCIPK27 were increased both in roots and leaves after treatment with polyethylene glycol 8000, abscisic acid and H2O2. Besides, TaCIPK27 interacted with AtCBL1, AtCBL3, AtCBL4, AtCBL5 and AtCBL9 in yeast two-hybrid assays. Ectopic overexpression of TaCIPK27 positively regulates drought tolerance in transgenic Arabidopsis compared with controls, which was demonstrated by seed germination and survival rates experiments, as well as the detection of physiological indices including ion leakage, malonic dialdehyde and H2O2 contents and antioxidant enzyme activities under normal and drought conditions. Moreover, higher concentration of endogenous abscisic acid was detected under drought in TaCIPK27 transgenic plants. In addition, TaCIPK27 transgenic plants were more sensitive to exogenous abscisic acid treatment at seed germination and seedling stage. The expression levels of somedrought stress and abscisic acid related genes were up-regulated in TaCIPK27 transgenic plants. The results suggest that TaCIPK27 functions as a positive regulator under drought partly in an ABA-dependent pathway.
Collapse
Affiliation(s)
- Yan Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tingting Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Shanita Judith John
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|