1
|
Li D, Chen X, Feng S. The Class II LBD protein MdLBD37 positively regulates the adaptability of apples to drought and salt stress. Biochem Biophys Res Commun 2025; 754:151528. [PMID: 40015074 DOI: 10.1016/j.bbrc.2025.151528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Lateral Organ Boundaries Domain (LBD) transcription factors are crucial for plant stress adaptation, yet their functional diversity in perennial crops remains unexplored. In this study, we characterized MdLBD37, a Class II LBD protein in apple (Malus domestica), and identified its key role in enhancing resilience to abiotic stresses. Phylogenetically clustered with anthocyanin repressors AtLBD37/38/39 from Arabidopsis thaliana, MdLBD37 exhibited conserved nuclear localization, supporting its transcriptional regulatory potential. The qRT-PCR analysis revealed that MdLBD37 expression was highest in the stems of 'Royal Gala' apple trees. MdLBD37 expression in apple seedlings was significantly induced by ABA, NaCl, and PEG treatments. Moreover, over-expression of MdLBD37 alleviated the growth inhibition of apple calli under PEG, NaCl, and ABA treatments, marked by increased biomass and reduced MDA accumulation, which suggested a reduction in oxidative damage. These findings not only broaden our understanding of Class II LBD proteins but also establish MdLBD37 as a promising target for developing climate-resilient apple cultivars through modulation of ABA-mediated stress signaling pathways.
Collapse
Affiliation(s)
- Dan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiuzheng Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shouqian Feng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
2
|
Zhang J, Liu L, Dong D, Xu J, Li H, Deng Q, Zhang Y, Huang W, Zhang H, Guo YD. The transcription factor SlLBD40 regulates seed germination by inhibiting cell wall remodeling enzymes during endosperm weakening. PLANT PHYSIOLOGY 2025; 197:kiaf022. [PMID: 39823429 DOI: 10.1093/plphys/kiaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025]
Abstract
Uniform seed germination is crucial for consistent seedling emergence and efficient seedling production. In this study, we identified a seed-expressed protein in tomato (Solanum lycopersicum), lateral organ boundaries domain 40 (SlLBD40), that regulates germination speed. CRISPR/Cas9-generated SlLBD40 knockout mutants exhibited faster germination due to enhanced seed imbibition, independent of the seed coat. The expression of SlLBD40 was induced during the imbibition process, particularly in the micropylar endosperm, suggesting its role in endosperm weakening. Gene ontology analysis of RNA-seq data indicated that differentially expressed genes were enriched in cell wall-related processes. SlLBD40 directly targeted genes encoding cell wall remodeling enzymes implicated in endosperm weakening, including expansin 6 (SlEXP6), xyloglucan endotransglucosylase/hydrolase 23 (SlXTH23), and endo-β-mannanase 1 (SlMAN1). Our findings shed light on the role of endosperm weakening in regulating seed germination and propose potential gene targets for improving germination in species constrained by endosperm strength.
Collapse
Affiliation(s)
- Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
- Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Lun Liu
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Danhui Dong
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiayi Xu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Hongxin Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qilin Deng
- Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yan Zhang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Haijun Zhang
- Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing 100097, China
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Dang H, Yu C, Nan S, Li Y, Du S, Zhao K, Wang S. Genome-wide identification and gene expression networks of LBD transcription factors in Populus trichocarpa. BMC Genomics 2024; 25:920. [PMID: 39358710 PMCID: PMC11448377 DOI: 10.1186/s12864-024-10848-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
The Lateral Organ Boundaries Domain (LBD) proteins, an exclusive family of transcription factors (TFs) found solely in plants, play pivotal roles in lateral organogenesis, stress adaptation, secondary growth, and hormonal signaling responses. In this study, a total of 55 PtLBD TFs from Populus trichocarpa were identified and systematically classified into two subfamilies, designated as subfamily-I and subfamily-II with seven distinct groups based on phylogenetic analysis. Gene structure detection indicated that the difference of phase numbers linking adjacent exons contribute to the variations in splicing patterns among different PtLBD groups. Numerous transcription factor binding sites and cis-elements pertinent to hormone signaling pathways and stress response mechanisms were identified within the upstream promoter regions of the PtLBD genes. Thirty-five PtLBDs were found to be engaged in either tandem or segmental duplications, and genomic collinearity analysis revealed a stronger alignment between PtLBD genes and eudicots plants compared to their relationship with monocots. GO enrichment and temporal-spatio expression patterns showed that PtLBD7 from subfamily-I and PtLBD20 from subfamily-II, along with other 13 PtLBDs, were involved in plant growth and development biological processes. The multilayered hierarchical gene networks (ML-hGRN) mediated by PtLBD7 and PtLBD20 indicated that PtLBDs were mainly function in poplar growth and stress tolerance through a multifaceted and intricate regulatory machinery. This study lays a solid groundwork for delving deeper into the roles and underlying mechanisms of LBD transcription factors in poplar, specifically those related to plant hormones and stress tolerance.
Collapse
Affiliation(s)
- Hui Dang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
- School of Innovation and Intrepreneurship, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Changhong Yu
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Siyuan Nan
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yajing Li
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Shuhui Du
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Kai Zhao
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Shengji Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
4
|
Wu C, Hou B, Wu R, Yang L, Lan G, Xia Z, Cao C, Pan Z, Lv B, Li P. Genome-Wide Analysis Elucidates the Roles of AhLBD Genes in Different Abiotic Stresses and Growth and Development Stages in the Peanut ( Arachis hypogea L.). Int J Mol Sci 2024; 25:10561. [PMID: 39408886 PMCID: PMC11476539 DOI: 10.3390/ijms251910561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The lateral organ boundaries domain (LBD) genes, as the plant-specific transcription factor family, play a crucial role in controlling plant architecture and stress tolerance. However, the functions of AhLBD genes in the peanut plant (Arachis hypogea L.) remain unclear. In this study, 73 AhLBDs were identified in the peanut plant and divided into three groups by phylogenetic tree analysis. Gene structure and conserved protein motif analysis supported the evolutionary conservation of AhLBDs. Tandem and segment duplications contributed to the expansion of AhLBDs. The evolutionary relationship analysis of LBD gene family between A. hypogaea and four other species indicated that the peanut plant had a close relationship with the soybean plant. AhLBDs played a very important role in response to growth and development as well as abiotic stress. Furthermore, gene expression profiling and real-time quantitative qRT-PCR analysis showed that AhLBD16, AhLBD33, AhLBD67, and AhLBD72 were candidate genes for salt stress, while AhLBD24, AhLBD33, AhLBD35, AhLBD52, AhLBD67, and AhLBD71 were candidate genes for drought stress. Our subcellular localization experiment revealed that AhLBD24, AhLBD33, AhLBD67, and AhLBD71 were located in the nucleus. Heterologous overexpression of AhLBD33 and AhLBD67 in Arabidopsis significantly enhanced tolerance to salt stress. Our results provide a theoretical basis and candidate genes for studying the molecular mechanism for abiotic stress in the peanut plant.
Collapse
Affiliation(s)
- Cuicui Wu
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, China; (B.H.); (R.W.); (L.Y.); (G.L.); (Z.X.); (C.C.); (Z.P.); (B.L.)
| | | | | | | | | | | | | | | | | | - Pengbo Li
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng 044000, China; (B.H.); (R.W.); (L.Y.); (G.L.); (Z.X.); (C.C.); (Z.P.); (B.L.)
| |
Collapse
|
5
|
Rong M, Gao SX, Wen D, Xu YH, Wei JH. The LOB domain protein, a novel transcription factor with multiple functions: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108922. [PMID: 39038384 DOI: 10.1016/j.plaphy.2024.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) protein, named for its LATERAL ORGAN BOUNDARIES (LOB) domain, is a member of a class of specific transcription factors commonly found in plants and is absent from all other groups of organisms. LBD TFs have been systematically identified in about 35 plant species and are involved in regulating various aspects of plant growth and development. However, research on the signaling network and regulatory functions of LBD TFs is insufficient, and only a few members have been studied. Moreover, a comprehensive review of these existing studies is lacking. In this review, the structure, regulatory mechanism and function of LBD TFs in recent years were reviewed in order to better understand the role of LBD TFs in plant growth and development, and to provide a new perspective for the follow-up study of LBD TFs.
Collapse
Affiliation(s)
- Mei Rong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Shi-Xi Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Dong Wen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yan-Hong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Jian-He Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China.
| |
Collapse
|
6
|
Hou X, Zhang K, Lyu Y. Functional Study on the Key Gene LaLBD37 Related to the Lily Bulblets Formation. Int J Mol Sci 2024; 25:9456. [PMID: 39273407 PMCID: PMC11395201 DOI: 10.3390/ijms25179456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Oriental hybrid lilies, known for their vibrant colors, diverse flower shapes, and long blooming seasons, require annual bulb propagation in horticultural production. This necessity can lead to higher production costs and limit their use in landscaping. The LA hybrid lily 'Aladdin' has shown strong self-reproduction capabilities in optimal cultivation environments, producing numerous high-quality underground stem bulblets. This makes it a valuable model for studying bulblet formation in lilies under natural conditions. Through transcriptome data analysis of different developmental stages of 'Aladdin' bulblets, the LaLBD37 gene, linked to bulblet formation, was identified. Bioinformatics analysis, subcellular localization studies, and transcriptional activation activity tests were conducted to understand the characteristics of LaLBD37. By introducing the LaLBD37 gene into 'Sorbonne' aseptic seedlings via Agrobacterium-mediated transformation, resistant plants were obtained. Positive plants were identified through various methods such as GUS activity detection, PCR, and fluorescence quantitative PCR. Phenotypic changes in positive plants were observed, and various physiological indicators were measured to confirm the role of LaLBD37 in bulblet formation, including soluble sugar content, starch content, sucrose synthase activity, and endogenous hormone levels. The findings suggest that the LaLBD37 gene plays a significant role in promoting the development of lily bulblets, offering insights for enhancing the reproductive capacity of Oriental hybrid lilies and exploring the molecular mechanisms involved in lily bulb regeneration.
Collapse
Affiliation(s)
- Xinru Hou
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Kewen Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Kirolinko C, Hobecker K, Cueva M, Botto F, Christ A, Niebel A, Ariel F, Blanco FA, Crespi M, Zanetti ME. A lateral organ boundaries domain transcription factor acts downstream of the auxin response factor 2 to control nodulation and root architecture in Medicago truncatula. THE NEW PHYTOLOGIST 2024; 242:2746-2762. [PMID: 38666352 DOI: 10.1111/nph.19766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/21/2024] [Indexed: 05/24/2024]
Abstract
Legume plants develop two types of root postembryonic organs, lateral roots and symbiotic nodules, using shared regulatory components. The module composed by the microRNA390, the Trans-Acting SIRNA3 (TAS3) RNA and the Auxin Response Factors (ARF)2, ARF3, and ARF4 (miR390/TAS3/ARFs) mediates the control of both lateral roots and symbiotic nodules in legumes. Here, a transcriptomic approach identified a member of the Lateral Organ Boundaries Domain (LBD) family of transcription factors in Medicago truncatula, designated MtLBD17/29a, which is regulated by the miR390/TAS3/ARFs module. ChIP-PCR experiments evidenced that MtARF2 binds to an Auxin Response Element present in the MtLBD17/29a promoter. MtLBD17/29a is expressed in root meristems, lateral root primordia, and noninfected cells of symbiotic nodules. Knockdown of MtLBD17/29a reduced the length of primary and lateral roots and enhanced lateral root formation, whereas overexpression of MtLBD17/29a produced the opposite phenotype. Interestingly, both knockdown and overexpression of MtLBD17/29a reduced nodule number and infection events and impaired the induction of the symbiotic genes Nodulation Signaling Pathway (NSP) 1 and 2. Our results demonstrate that MtLBD17/29a is regulated by the miR390/TAS3/ARFs module and a direct target of MtARF2, revealing a new lateral root regulatory hub recruited by legumes to act in the root nodule symbiotic program.
Collapse
Affiliation(s)
- Cristina Kirolinko
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| | - Karen Hobecker
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| | - Marianela Cueva
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| | - Florencia Botto
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| | - Aurélie Christ
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Sud, Evry and Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - Andreas Niebel
- Laboratoire des Interactions Plantes-Microorganismes, Université de Toulouse, INRAE, CNRS, 31326, Castanet-Tolosan, France
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| | - Martín Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Universities Paris-Sud, Evry and Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405, Orsay, France
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900, La Plata, Argentina
| |
Collapse
|
8
|
Hao L, Li S, Dai J, Wang L, Yan Z, Shi Y, Zheng M. Characterization and expression profiles of the ZmLBD gene family in Zea mays. Mol Biol Rep 2024; 51:554. [PMID: 38642178 DOI: 10.1007/s11033-024-09483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/26/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND The Lateral Organ Boundaries Domain (LBD) gene family is a family of plant-specific transcription factors (TFs) that are widely involved in processes such as lateral organ formation, stress response, and nutrient metabolism. However, the function of LBD genes in maize remains poorly understood. METHODS AND RESULTS In this study, a total of 49 ZmLBD genes were identified at the genome-wide level of maize, they were classified into nine branches based on phylogenetic relationships, and all of them were predicted to be nuclear localized. The 49 ZmLBD genes formed eight pairs of segmental duplicates, and members of the same branches' members had similar gene structure and conserved motif composition. The promoters of ZmLBD genes contain multiple types of cis-acting elements. In addition, by constructing the regulatory network of ZmLBD and other genes and miRNAs, 12 and 22 ZmLBDs were found to be involved in the gene regulatory network and miRNA regulatory network, respectively. The expression pattern analysis suggests that ZmLBD genes may be involved in different biological pathways, and drought stress induced the expressions of two inbred lines. CONCLUSIONS The findings enhance our comprehension of the potential roles of the ZmLBD gene family in maize growth and development, which is pivotal for genetic enhancement and breeding efforts pertaining to this significant crop.
Collapse
Affiliation(s)
- Lidong Hao
- Postdoctoral Work Station of Gansu Dunhuang Seed Group Co., Ltd, Jiuquan, 735000, Gansu, China
- Post-Doctoral Research Center of Biology, Lanzhou University, Lanzhou, 730000, Gansu, China
- Qionghai Tropical Crops Service Center, Qionghai, 571400, Hainan, China
| | - Shifeng Li
- Research Institute of Gansu Dunhuang Seed Industry Group Co., Ltd, Jiuquan, 735000, Gansu, China
| | - Jun Dai
- Qionghai Tropical Crops Service Center, Qionghai, 571400, Hainan, China.
| | - Li Wang
- Dongfang Agricultural Service Center, Dongfang, 572600, Hainan, China.
| | - Zhibin Yan
- Research Institute of Gansu Dunhuang Seed Industry Group Co., Ltd, Jiuquan, 735000, Gansu, China
| | - Yunqiang Shi
- Suihua Branch of Agricultural Science of Heilongjiang Province, Suihua, 152000, Heilongjiang, China
| | - Meiyu Zheng
- College of Agriculture and Hydraulic Engineering, Suihua University, Suihua, 152000, Heilongjiang, China
| |
Collapse
|
9
|
Zheng L, Chao Y, Wang Y, Xu Y, Li S. Genome-Wide Analysis of the LBD Gene Family in Melon and Expression Analysis in Response to Wilt Disease Infection. Genes (Basel) 2024; 15:442. [PMID: 38674376 PMCID: PMC11049230 DOI: 10.3390/genes15040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
LBD transcription factors are a class of transcription factors that regulate the formation of lateral organs, establish boundaries, and control secondary metabolism in plants. In this study, we identified 37 melon LBD transcription factors using bioinformatics methods and analyzed their basic information, chromosomal location, collinearity, evolutionary tree, gene structure, and expression patterns. The results showed that the genes were unevenly distributed across the 13 chromosomes of melon plants, with tandem repeats appearing on chromosomes 11 and 12. These 37 transcription factors can be divided into two major categories, Class I and Class II, and seven subfamilies: Ia, Ib, Ic, Id, Ie, IIa, and IIb. Of the 37 included transcription factors, 25 genes each contained between one to three introns, while the other 12 genes did not contain introns. Through cis-acting element analysis, we identified response elements such as salicylic acid, MeJA, abscisic acid, and auxin, gibberellic acid, as well as light response, stress response, and MYB-specific binding sites. Expression pattern analysis showed that genes in the IIb subfamilies play important roles in the growth and development of various organs in melon plants. Expression analysis found that the majority of melon LBD genes were significantly upregulated after infection with wilt disease, with the strongest response observed in the stem.
Collapse
Affiliation(s)
- Ling Zheng
- Department of Biology, Luoyang Normal University, Luoyang 471934, China; (Y.C.); (S.L.)
| | | | | | | | | |
Collapse
|
10
|
Shi L, Lin X, Tang B, Zhao R, Wang Y, Lin Y, Wu L, Zheng C, Zhu H. Genome-Wide Analysis of the Lateral Organ Boundaries Domain (LBD) Gene Family in Sweet Potato ( Ipomoea batatas). Genes (Basel) 2024; 15:237. [PMID: 38397226 PMCID: PMC10887590 DOI: 10.3390/genes15020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The LBD family is a plant-specific transcription factor family that plays an important role in a variety of biological processes. However, the function of IbLBD genes in sweet potato remains unclear. In this study, we identified a total of 53 IbLBD genes in sweet potato. Genetic structure showed that most of the IbLBD genes contained only two exons. Following the phylogenetic investigation, the IbLBD gene family was separated into Class I (45 members) and Class II (8) members. Both classes of proteins contained relatively conservative Motif1 and Motif2 domains. The chromosomal locations, gene duplications, promoters, PPI network, and GO annotation of the sweet potato LBD genes were also investigated. Furthermore, gene expression profiling and real-time quantitative PCR analysis showed that the expression of 12 IbLBD genes altered in six separate tissues and under various abiotic stresses. The IbLBD genes belonging to Class I were mostly expressed in the primary root, the pencil root, and the leaves of sweet potatoes, while the genes belonging to Class II were primarily expressed in the various sweet potato roots. The IbLBD genes belonging to Class I were mostly expressed in the primary root, the pencil root, and the leaves of sweet potatoes, while the genes belonging to Class II were primarily expressed in the fibrous root, pencil root, and tuber root.
Collapse
Affiliation(s)
- Lei Shi
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (L.S.); (X.L.); (B.T.); (Y.W.); (L.W.)
| | - Xiongjian Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (L.S.); (X.L.); (B.T.); (Y.W.); (L.W.)
| | - Binquan Tang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (L.S.); (X.L.); (B.T.); (Y.W.); (L.W.)
| | - Rong Zhao
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; (R.Z.); (Y.L.)
| | - Yichi Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (L.S.); (X.L.); (B.T.); (Y.W.); (L.W.)
| | - Yingyi Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; (R.Z.); (Y.L.)
| | - Liangliang Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (L.S.); (X.L.); (B.T.); (Y.W.); (L.W.)
| | - Chao Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (L.S.); (X.L.); (B.T.); (Y.W.); (L.W.)
| | - Hongbo Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (L.S.); (X.L.); (B.T.); (Y.W.); (L.W.)
| |
Collapse
|
11
|
Derelli Tufekci E. Genome-wide identification and analysis of Lateral Organ Boundaries Domain ( LBD) transcription factor gene family in melon ( Cucumis melo L.). PeerJ 2023; 11:e16020. [PMID: 37790611 PMCID: PMC10544307 DOI: 10.7717/peerj.16020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/11/2023] [Indexed: 10/05/2023] Open
Abstract
Background Lateral Organ Boundaries Domain (LBD) transcription factor (TF) gene family members play very critical roles in several biological processes like plant-spesific development and growth process, tissue regeneration, different biotic and abiotic stress responses in plant tissues and organs. The LBD genes have been analyzed in various species. Melon (Cucumis melo L.), a member of the Cucurbitaceae family, is economically important and contains important molecules for nutrition and human health such as vitamins A and C, β-carotenes, phenolic acids, phenolic acids, minerals and folic acid. However, no studies have been reported so far about LBD genes in melon hence this is the first study for LBD genes in this plant. Results In this study, 40 melon CmLBD TF genes were identified, which were separated into seven groups through phylogenetic analysis. Cis-acting elements showed that these genes were associated with plant growth and development, phytohormone and abiotic stress responses. Gene Ontology (GO) analysis revealed that of CmLBD genes especially function in regulation and developmental processes. The in silico and qRT-PCR expression patterns demonstrated that CmLBD01 and CmLBD18 are highly expressed in root and leaf tissues, CmLBD03 and CmLBD14 displayed a high expression in male-female flower and ovary tissues. Conclusions These results may provide important contributions for future research on the functional characterization of the melon LBD gene family and the outputs of this study can provide information about the evolution and characteristics of melon LBD gene family for next studies.
Collapse
Affiliation(s)
- Ebru Derelli Tufekci
- Department of Field Crops, Food and Agriculture Vocational High School, Cankiri Karatekin University, Cankiri, Turkey
| |
Collapse
|
12
|
Jiang Q, Wu X, Zhang X, Ji Z, Cao Y, Duan Q, Huang J. Genome-Wide Identification and Expression Analysis of AS2 Genes in Brassica rapa Reveal Their Potential Roles in Abiotic Stress. Int J Mol Sci 2023; 24:10534. [PMID: 37445710 DOI: 10.3390/ijms241310534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) gene family plays a pivotal role in plant growth, induction of phytohormones, and the abiotic stress response. However, the AS2 gene family in Brassica rapa has yet to be investigated. In this study, we identified 62 AS2 genes in the B. rapa genome, which were classified into six subfamilies and distributed across 10 chromosomes. Sequence analysis of BrAS2 promotors showed that there are several typical cis-elements involved in abiotic stress tolerance and stress-related hormone response. Tissue-specific expression analysis showed that BrAS2-47 exhibited ubiquitous expression in all tissues, indicating it may be involved in many biological processes. Gene expression analysis showed that the expressions of BrAS2-47 and BrAS2-10 were significantly downregulated under cold stress, heat stress, drought stress, and salt stress, while BrAS2-58 expression was significantly upregulated under heat stress. RT-qPCR also confirmed that the expression of BrAS2-47 and BrAS2-10 was significantly downregulated under cold stress, drought stress, and salt stress, and in addition BrAS2-56 and BrAS2-4 also changed significantly under the three stresses. In addition, protein-protein interaction (PPI) network analysis revealed that the Arabidopsis thaliana genes AT5G67420 (homologous gene of BrAS2-47 and BrAS2-10) and AT3G49940 (homologous gene of BrAS2-58) can interact with NIN-like protein 7 (NLP7), which has been previously reported to play a role in resistance to adverse environments. In summary, our findings suggest that among the BrAS2 gene family, BrAS2-47 and BrAS2-10 have the most potential for the regulation of abiotic stress tolerance. These results will facilitate future functional investigations of BrAS2 genes in B. rapa.
Collapse
Affiliation(s)
- Qiwei Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Xiaoyu Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Xiaoyu Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Zhaojing Ji
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Yunyun Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Jiabao Huang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| |
Collapse
|
13
|
Jiang X, Cui H, Wang Z, Kang J, Yang Q, Guo C. Genome-Wide Analysis of the LATERAL ORGAN BOUNDARIES Domain ( LBD) Members in Alfalfa and the Involvement of MsLBD48 in Nitrogen Assimilation. Int J Mol Sci 2023; 24:4644. [PMID: 36902075 PMCID: PMC10003661 DOI: 10.3390/ijms24054644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 03/04/2023] Open
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) proteins, a transcription factor family specific to the land plants, have been implicated in multiple biological processes including organ development, pathogen response and the uptake of inorganic nitrogen. The study focused on LBDs in legume forage Alfalfa. The genome-wide analysis revealed that in Alfalfa 178 loci across 31 allelic chromosomes encoded 48 unique LBDs (MsLBDs), and the genome of its diploid progenitor M. sativa spp. Caerulea encoded 46 LBDs. Synteny analysis indicated that the expansion of AlfalfaLBDs was attributed to the whole genome duplication event. The MsLBDs were divided into two major phylogenetic classes, and the LOB domain of the Class I members was highly conserved relative to that of the Class II. The transcriptomic data demonstrated that 87.5% of MsLBDs were expressed in at least one of the six test tissues, and Class II members were preferentially expressed in nodules. Moreover, the expression of Class II LBDs in roots was upregulated by the treatment of inorganic nitrogen such as KNO3 and NH4Cl (0.3 mM). The overexpression of MsLBD48, a Class II member, in Arabidopsis resulted in growth retardance with significantly declined biomass compared with the non-transgenic plants, and the transcription level of the genes involved in nitrogen uptake or assimilation, including NRT1.1, NRT2.1, NIA1 and NIA2 was repressed. Therefore, the LBDs in Alfalfa are highly conserved with their orthologs in embryophytes. Our observations that ectopic expression of MsLBD48 inhibited Arabidopsis growth by repressing nitrogen adaption suggest the negative role of the transcription factor in plant uptake of inorganic nitrogen. The findings imply the potential application of MsLBD48 in Alfalfa yield improvement via gene editing.
Collapse
Affiliation(s)
- Xu Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Huiting Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Junmei Kang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Qingchuan Yang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Changhong Guo
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
14
|
Badu-Apraku B, Adewale S, Paterne A, Offornedo Q, Gedil M. Mapping quantitative trait loci and predicting candidate genes for Striga resistance in maize using resistance donor line derived from Zea diploperennis. Front Genet 2023; 14:1012460. [PMID: 36713079 PMCID: PMC9877281 DOI: 10.3389/fgene.2023.1012460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023] Open
Abstract
The parasitic weed, Striga is a major biological constraint to cereal production in sub-Saharan Africa (SSA) and threatens food and nutrition security. Two hundred and twenty-three (223) F2:3 mapping population involving individuals derived from TZdEI 352 x TZEI 916 were phenotyped for four Striga-adaptive traits and genotyped using the Diversity Arrays Technology (DArT) to determine the genomic regions responsible for Striga resistance in maize. After removing distorted SNP markers, a genetic linkage map was constructed using 1,918 DArTseq markers which covered 2092.1 cM. Using the inclusive composite interval mapping method in IciMapping, twenty-three QTLs influencing Striga resistance traits were identified across four Striga-infested environments with five stable QTLs (qGY4, qSC2.1, qSC2.2, qSC5, and qSC6) detected in more than one environment. The variations explained by the QTLs ranged from 4.1% (qSD2.3) to 14.4% (qSC7.1). Six QTLs each with significant additive × environment interactions were also identified for grain yield and Striga damage. Gene annotation revealed candidate genes underlying the QTLs, including the gene models GRMZM2G077002 and GRMZM2G404973 which encode the GATA transcription factors, GRMZM2G178998 and GRMZM2G134073 encoding the NAC transcription factors, GRMZM2G053868 and GRMZM2G157068 which encode the nitrate transporter protein and GRMZM2G371033 encoding the SBP-transcription factor. These candidate genes play crucial roles in plant growth and developmental processes and defense functions. This study provides further insights into the genetic mechanisms of resistance to Striga parasitism in maize. The QTL detected in more than one environment would be useful for further fine-mapping and marker-assisted selection for the development of Striga resistant and high-yielding maize cultivars.
Collapse
|
15
|
Zhang C, Zhu P, Zhang M, Huang Z, Hippolyte AR, Hou Y, Lou X, Ji K. Identification, Classification and Characterization of LBD Transcription Factor Family Genes in Pinus massoniana. Int J Mol Sci 2022; 23:13215. [PMID: 36362005 PMCID: PMC9658656 DOI: 10.3390/ijms232113215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 09/11/2024] Open
Abstract
Transcription factors (TFs) are a class of proteins that play an important regulatory role in controlling the expression of plant target genes by interacting with downstream regulatory genes. The lateral organ boundary (LOB) structural domain (LBD) genes are a family of genes encoding plant-specific transcription factors that play important roles in regulating plant growth and development, nutrient metabolism, and environmental stresses. However, the LBD gene family has not been systematically identified in Pinus massoniana, one of the most important conifers in southern China. Therefore, in this study, we combined cell biology and bioinformatics approaches to identify the LBD gene family of P. massoniana by systematic gene structure and functional evolutionary analysis. We obtained 47 LBD gene family members, and all PmLBD members can be divided into two subfamilies, (Class I and Class II). By treating the plants with abiotic stress and growth hormone, etc., under qPCR-based analysis, we found that the expression of PmLBD genes was regulated by growth hormone and abiotic stress treatments, and thus this gene family in growth and development may be actively involved in plant growth and development and responses to adversity stress, etc. By subcellular localization analysis, PmLBD is a nuclear protein, and two of the genes, PmLBD44 and PmLBD45, were selected for functional characterization; secondly, yeast self-activation analysis showed that PmLBD44, PmLBD45, PmLBD46 and PmLBD47 had no self-activating activity. This study lays the foundation for an in-depth study of the role of the LBD gene family in other physiological activities of P. massoniana.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kongshu Ji
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
16
|
Wang L, Calabria J, Chen HW, Somssich M. The Arabidopsis thaliana-Fusarium oxysporum strain 5176 pathosystem: an overview. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6052-6067. [PMID: 35709954 PMCID: PMC9578349 DOI: 10.1093/jxb/erac263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Fusarium oxysporum is a soil-borne fungal pathogen of several major food crops. Research on understanding the molecular details of fungal infection and the plant's defense mechanisms against this pathogen has long focused mainly on the tomato-infecting F. oxysporum strains and their specific host plant. However, in recent years, the Arabidopsis thaliana-Fusarium oxysporum strain 5176 (Fo5176) pathosystem has additionally been established to study this plant-pathogen interaction with all the molecular biology, genetic, and genomic tools available for the A. thaliana model system. Work on this system has since produced several new insights, especially with regards to the role of phytohormones involved in the plant's defense response, and the receptor proteins and peptide ligands involved in pathogen detection. Furthermore, work with the pathogenic strain Fo5176 and the related endophytic strain Fo47 has demonstrated the suitability of this system for comparative studies of the plant's specific responses to general microbe- or pathogen-associated molecular patterns. In this review, we highlight the advantages of this specific pathosystem, summarize the advances made in studying the molecular details of this plant-fungus interaction, and point out open questions that remain to be answered.
Collapse
Affiliation(s)
- Liu Wang
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jacob Calabria
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hsiang-Wen Chen
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | | |
Collapse
|
17
|
Zhao L, Shan C, Shan T, Xu J, Zhang S, Tao Y, Wu J. Probing the transcriptome of Boehmeria nivea reveals candidate genes associated with the biosynthesis of chlorogenic acid. Gene X 2022; 833:146579. [PMID: 35598678 DOI: 10.1016/j.gene.2022.146579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/23/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022] Open
Abstract
Boehmeria nivea (L.) Gaudich is used in traditional Chinese medicine. Chlorogenic acids are major medically active components of Boehmeria nivea, which can be used clinically to treat hyperglycemia, pneumonia, and cancer. To identify the genes involved in chlorogenic acid biosynthesis, we analyzed transcriptome data from leaf, root, and stem tissues of Boehmeria nivea using the Illumina Hi-Seq 4000 platform. A total of 146,790 unigenes were obtained from Boehmeria nivea, of which 106,786 were annotated in public databases. In analyses of the KEGG (Kyoto Encyclopedia of Genes and Genome) database, 484 unigenes that encode the five key enzymes involved in chlorogenic acid biosynthesis were identified, and shikimate O-hydroxycinnamoyl transferase was spatially simulated. Some of these key enzyme unigenes expression levels were verified by RT-qPCR (real-time quantitative Polymerase Chain Reaction). Furthermore, multiple genes encoding plant resistance proteins or transcription factors were identified and analyzed. Differentially expressed genes were identified by performing pairwise comparison of genes between tissues. This study increases the number of public transcript datasets of this species and identifies candidate genes related to the biosynthesis of chlorogenic acid, laying a foundation for the further exploration of this pathway in Boehmeria nivea.
Collapse
Affiliation(s)
- Liqiang Zhao
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Chunmiao Shan
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Tingyu Shan
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Jingyao Xu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Shuaishuai Zhang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yijia Tao
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China.
| | - Jiawen Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China.
| |
Collapse
|
18
|
Tian Y, Han X, Qu Y, Zhang Y, Rong H, Wu K, Xu L. Genome-Wide Identification of the Ginkgo ( Ginkgo biloba L.) LBD Transcription Factor Gene and Characterization of Its Expression. Int J Mol Sci 2022; 23:ijms23105474. [PMID: 35628284 PMCID: PMC9141976 DOI: 10.3390/ijms23105474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lateral organ boundaries domain (LBD) proteins are plant-specific transcription factors involved in various transcriptional regulation processes. We identified a total of 37 GbLBD genes in ginkgo, and based on gene structure and phylogenetic analysis, the GbLBD gene family was classified into class I (33, with the largest number of Id genes (16)) and class II (4). The ginkgo LBD gene was also analyzed regarding its chromosomal distributions, gene duplications, promoters, and introns/exons. In addition, gene expression profiling and real-time quantitative PCR analysis showed that the expression of 14 GbLBD genes differed in six different tissues and three developmental stages. The GbLBD gene of class II were highly expressed relative to the class I gene in all tissues and developmental stages, while class Id gene were generally at low levels or were not expressed, especially in seed developmental stages. The expression pattern analysis of cold/drought treatment and IAA/ABA hormone treatment showed that abiotic stress treatment could significantly induce the expression of GbLBD gene, of which class II genes played a key role in stress treatment. Our study provides a solid foundation for further evolutionary and functional analysis of the ginkgo LBD gene family.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li’an Xu
- Correspondence: ; Tel.: +86-25-8542-7882
| |
Collapse
|
19
|
Feng S, Shi J, Hu Y, Li D, Guo L, Zhao Z, Lee GS, Qiao Y. Genome-Wide Analysis of Soybean Lateral Organ Boundaries Domain Gene Family Reveals the Role in Phytophthora Root and Stem Rot. FRONTIERS IN PLANT SCIENCE 2022; 13:865165. [PMID: 35599907 PMCID: PMC9116278 DOI: 10.3389/fpls.2022.865165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
The plant-specific lateral organ boundaries (LOB) domain (LBD) proteins, a family of transcription factors, play important roles in plant growth and development, as well as in responses to various stresses. However, little is known about the functions of LBD genes in soybean (Glycine max). In this study, we investigated the evolution and classification of the LBD family in soybean by a phylogenetic tree of the LBD gene family from 16 species. Phylogenetic analysis categorized these proteins into two classes (Class I and Class II) with seven subgroups. Moreover, we found that all the 18 LBD ancestors in angiosperm were kept in soybean, common bean genomes, and genome-wide duplication, suggesting the main force for the expansion of LBD from common bean to soybean. Analysis of gene expression profiling data indicated that 16 GmLBD genes were significantly induced at different time points after inoculation of soybean plants (cv. Huachun 6) with Phytophthora sojae (P. sojae). We further assessed the role of four highly upregulated genes, GmLBD9, GmLBD16, GmLBD23, and GmLBD88, in plant defense in soybean hairy roots using the transient overexpression and knockdown assays. The results showed that GmLBD9 and GmLBD23 negatively regulate plant immunity against P. sojae, whereas GmLBD16 and GmLBD88 positively manipulate plant immunity against P. sojae. Collectively, our findings expand our knowledge of the origin and evolution of the GmLBD gene family in soybean and promote the potential application of these genes in soybean genetic improvement.
Collapse
Affiliation(s)
- Siqi Feng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yongkang Hu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Die Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liang Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhibo Zhao
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Gang-Seob Lee
- National Institute of Agricultural Science, Jeonju, South Korea
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
20
|
Jia R, Li C, Wang Y, Qin X, Meng L, Sun X. Genome-Wide Analysis of LBD Transcription Factor Genes in Dendrobiumcatenatum. Int J Mol Sci 2022; 23:ijms23042089. [PMID: 35216201 PMCID: PMC8877895 DOI: 10.3390/ijms23042089] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) gene family comprises plant-specific transcription factors that control cell proliferation and differentiation during growth and development in many plant species. However, to date, no studies of the LBD gene family in Dendrobium catenatum have been reported. In this study, a genome-wide analysis of LBD genes was performed in D. catenatum and 24 LBD genes were identified. The genes were classified into two classes (I and II) based on phylogenetic relationships and motif structure. Subcellular localization analysis for DcaLBD6 and DcaLBD18 from class I and DcaLBD37 and DcaLBD41 from class II revealed that the proteins were localized in the nucleus. Transient expression analysis of DcaLBD6, DcaLBD18, DcaLBD37, and DcaLBD41 indicated that class I and class II members have opposite roles in regulating VASCULAR-RELATED NAC-DOMAIN 7 (VND7) expression. DcaLBD genes showed diverse expression patterns in response to different phytohormone treatments. Heat maps revealed diverse patterns of DcaLBD gene expression in different organs. These results lay the foundation for further detailed studies of the LBD gene family in D. catenatum.
Collapse
Affiliation(s)
- Ru Jia
- School of Life Sciences, Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China;
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (C.L.); (Y.W.); (X.Q.)
| | - Cheng Li
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (C.L.); (Y.W.); (X.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhua Wang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (C.L.); (Y.W.); (X.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangshi Qin
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (C.L.); (Y.W.); (X.Q.)
| | - Lihua Meng
- School of Life Sciences, Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China;
- Correspondence: (L.M.); (X.S.); Tel.: +86-871-65230873 (X.S.)
| | - Xudong Sun
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (C.L.); (Y.W.); (X.Q.)
- Correspondence: (L.M.); (X.S.); Tel.: +86-871-65230873 (X.S.)
| |
Collapse
|
21
|
Ricciardi V, Marcianò D, Sargolzaei M, Marrone Fassolo E, Fracassetti D, Brilli M, Moser M, Vahid SJ, Tavakole E, Maddalena G, Passera A, Casati P, Pindo M, Cestaro A, Costa A, Bonza MC, Maghradze D, Tirelli A, Failla O, Bianco PA, Quaglino F, Toffolatti SL, De Lorenzis G. Dissecting the susceptibility/resistance mechanism of Vitis vinifera for the future control of downy mildew. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224404002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Eurasian grapevine (Vitis vinifera), a species cultivated worldwide for high-quality wine production, is extremely susceptible to the agent of downy mildew, Plasmopara viticola. Nevertheless, germplasm from Georgia (Southern Caucasus, the first grapevine domestication centre), characterized by a high genetic variability, showed resistance traits to P. viticola. The cultivar Mgaloblishvili exhibited the most promising phenotype in terms of resistance against P. viticola. Its defence response results in: i) low disease intensity; ii) low sporulation; iii) damaged mycelium; iv) production of antimicrobial compounds such as volatile organic compounds (VOCs), whose effectiveness on the pathogen was evaluated by leafdisc assays. At the transcriptomic level, its resistance mechanism is determined by the differential expression of both resistance and susceptible genes. The resistance genes are related to: i) pathogen recognition through PAMP, DAMP and effector receptors; ii) ethylene signalling pathway; iii) synthesis of antimicrobial compounds (VOCs) and fungal wall degrading enzymes; iv) development of structural barriers (cell wall reinforcement). The first putative susceptible gene was the transcription factor VviLBDIf7 gene, whose validation was carried out by dsRNA (double-stranded RNA) assay. In this work, these unique results on plant-pathogen interaction are reviewed with the aim of developing new strategies to control the disease.
Collapse
|
22
|
Wu Y, Luo D, Fang L, Zhou Q, Liu W, Liu Z. Bidirectional lncRNA Transfer between Cuscuta Parasites and Their Host Plant. Int J Mol Sci 2022; 23:561. [PMID: 35008986 PMCID: PMC8745499 DOI: 10.3390/ijms23010561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/28/2021] [Accepted: 01/02/2022] [Indexed: 02/01/2023] Open
Abstract
Dodder species (Cuscuta spp.) are holoparasites that have extensive material exchange with their host plants through vascular connections. Recent studies on cross-species transfer have provided breakthrough insights, but little is known about the interaction mechanisms of the inter-plant mobile substances in parasitic systems. We sequenced the transcriptomes of dodder growing on soybean hosts to characterize the long non-coding RNA (lncRNA) transfer between the two species, and found that lncRNAs can move in high numbers (365 dodder lncRNAs and 14 soybean lncRNAs) in a bidirectional manner. Reverse transcription-polymerase chain reaction further confirmed that individual lncRNAs were trafficked in the dodder-soybean parasitic system. To reveal the potential functions of mobile transcripts, the Gene Ontology terms of mobile lncRNA target genes were predicted, and mobile dodder target genes were found to be mainly enriched in "metabolic process", "catalytic activity", "signaling", and "response to stimulus" categories, whereas mobile soybean target genes were enriched in organelle-related categories, indicating that specific mobile lncRNAs may be important in regulating dodder parasitism. Our findings reveal that lncRNAs are transferred between dodder and its host soybean plants, which may act as critical regulators to coordinate the host-dodder interaction at the whole parasitic level.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (Y.W.); (D.L.); (L.F.); (Q.Z.); (W.L.)
| |
Collapse
|
23
|
Xu J, Hu P, Tao Y, Song P, Gao H, Guan Y. Genome-wide identification and characterization of the Lateral Organ Boundaries Domain ( LBD) gene family in polyploid wheat and related species. PeerJ 2021; 9:e11811. [PMID: 34447619 PMCID: PMC8364319 DOI: 10.7717/peerj.11811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 06/27/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Wheat (Triticum aestivum) originated from three different diploid ancestral grass species and experienced two rounds of polyploidization. Exploring how certain wheat gene subfamilies have expanded during the evolutionary process is of great importance. The Lateral Organ Boundaries Domain (LBD) gene family encodes plant-specific transcription factors that share a highly conserved LOB domain and are prime candidates for this, as they are involved in plant growth, development, secondary metabolism and stress in various species. METHODS Using a genome-wide analysis of high-quality polyploid wheat and related species genome sequences, a total of 228 LBD members from five Triticeae species were identified, and phylogenetic relationship analysis of LBD members classified them into two main classes (classes I and II) and seven subgroups (classes I a-e, II a and II b). RESULTS The gene structure and motif composition analyses revealed that genes that had a closer phylogenetic relationship in the same subgroup also had a similar gene structure. Macrocollinearity and microcollinearity analyses of Triticeae species suggested that some LBD genes from wheat produced gene pairs across subgenomes of chromosomes 4A and 5A and that the complex evolutionary history of TaLBD4B-9 homologs was a combined result of chromosome translocation, polyploidization, gene loss and duplication events. Public RNA-seq data were used to analyze the expression patterns of wheat LBD genes in various tissues, different developmental stages and following abiotic and biotic stresses. Furthermore, qRT-PCR results suggested that some TaLBDs in class II responded to powdery mildew, regulated reproductive growth and were involved in embryo sac development in common wheat.
Collapse
Affiliation(s)
- Jun Xu
- Henan Institute of Science and Technology, Xinxiang, China
| | - Ping Hu
- Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of Crop/ Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation Genome Editing, Xinxiang, China
| | - Ye Tao
- Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of Crop/ Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation Genome Editing, Xinxiang, China
| | - Puwen Song
- Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of Crop/ Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation Genome Editing, Xinxiang, China
| | - Huanting Gao
- Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of Crop/ Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation Genome Editing, Xinxiang, China
| | - Yuanyuan Guan
- Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of Crop/ Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation Genome Editing, Xinxiang, China
| |
Collapse
|
24
|
Huang B, Huang Z, Ma R, Ramakrishnan M, Chen J, Zhang Z, Yrjälä K. Genome-wide identification and expression analysis of LBD transcription factor genes in Moso bamboo (Phyllostachys edulis). BMC PLANT BIOLOGY 2021; 21:296. [PMID: 34182934 PMCID: PMC8240294 DOI: 10.1186/s12870-021-03078-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Moso bamboo, the fastest growing plant on earth, is an important source for income in large areas of Asia, mainly cultivated in China. Lateral organ boundaries domain (LBD) proteins, a family of transcription factors unique to plants, are involved in multiple transcriptional regulatory pathways and play important roles in lateral organ development, pathogen response, secondary growth, and hormone response. The LBD gene family has not previously been characterized in moso bamboo (Phyllostachys edulis). RESULTS In this study, we identified 55 members of the LBD gene family from moso bamboo and found that they were distributed non-uniformly across its 18 chromosomes. Phylogenetic analysis showed that the moso bamboo LBD genes could be divided into two classes. LBDs from the same class share relatively conserved gene structures and sequences encoding similar amino acids. A large number of hormone response-associated cis-regulatory elements were identified in the LBD upstream promoter sequences. Synteny analysis indicated that LBDs in the moso bamboo genome showed greater collinearity with those of O. sativa (rice) and Zea mays (maize) than with those of Arabidopsis and Capsicum annuum (pepper). Numerous segmental duplicates were found in the moso bamboo LBD gene family. Gene expression profiles in four tissues showed that the LBD genes had different spatial expression patterns. qRT-PCR assays with the Short Time-series Expression Miner (STEM) temporal expression analysis demonstrated that six genes (PeLBD20, PeLBD29, PeLBD46, PeLBD10, PeLBD38, and PeLBD06) were consistently up-regulated during the rapid growth and development of bamboo shoots. In addition, 248 candidate target genes that function in a variety of pathways were identified based on consensus LBD binding motifs. CONCLUSIONS In the current study, we identified 55 members of the moso bamboo transcription factor LBD and characterized for the first time. Based on the short-time sequence expression software and RNA-seq data, the PeLBD gene expression was analyzed. We also investigated the functional annotation of all PeLBDs, including PPI network, GO, and KEGG enrichment based on String database. These results provide a theoretical basis and candidate genes for studying the molecular breeding mechanism of rapid growth of moso bamboo.
Collapse
Affiliation(s)
- Bin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang Province, People's Republic of China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High efficiency Utilization, Zhejiang A&F University, Zhejiang, China
| | - Zhinuo Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang Province, People's Republic of China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High efficiency Utilization, Zhejiang A&F University, Zhejiang, China
| | - Ruifang Ma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang Province, People's Republic of China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High efficiency Utilization, Zhejiang A&F University, Zhejiang, China
| | - Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jialu Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang Province, People's Republic of China
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High efficiency Utilization, Zhejiang A&F University, Zhejiang, China
| | - Zhijun Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang Province, People's Republic of China.
- Zhejiang Provincial Collaborative Innovation Centre for Bamboo Resources and High efficiency Utilization, Zhejiang A&F University, Zhejiang, China.
| | - Kim Yrjälä
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang Province, People's Republic of China.
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
25
|
Mehta S, Chakraborty A, Roy A, Singh IK, Singh A. Fight Hard or Die Trying: Current Status of Lipid Signaling during Plant-Pathogen Interaction. PLANTS (BASEL, SWITZERLAND) 2021; 10:1098. [PMID: 34070722 PMCID: PMC8228701 DOI: 10.3390/plants10061098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022]
Abstract
Plant diseases pose a substantial threat to food availability, accessibility, and security as they account for economic losses of nearly $300 billion on a global scale. Although various strategies exist to reduce the impact of diseases, they can introduce harmful chemicals to the food chain and have an impact on the environment. Therefore, it is necessary to understand and exploit the plants' immune systems to control the spread of pathogens and enable sustainable agriculture. Recently, growing pieces of evidence suggest a functional myriad of lipids to be involved in providing structural integrity, intracellular and extracellular signal transduction mediators to substantial cross-kingdom cell signaling at the host-pathogen interface. Furthermore, some pathogens recognize or exchange plant lipid-derived signals to identify an appropriate host or development, whereas others activate defense-related gene expression. Typically, the membrane serves as a reservoir of lipids. The set of lipids involved in plant-pathogen interaction includes fatty acids, oxylipins, phospholipids, glycolipids, glycerolipids, sphingolipids, and sterols. Overall, lipid signals influence plant-pathogen interactions at various levels ranging from the communication of virulence factors to the activation and implementation of host plant immune defenses. The current review aims to summarize the progress made in recent years regarding the involvement of lipids in plant-pathogen interaction and their crucial role in signal transduction.
Collapse
Affiliation(s)
- Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India;
| | - Amrita Chakraborty
- EVA4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic; (A.C.); (A.R.)
| | - Amit Roy
- EVA4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic; (A.C.); (A.R.)
- Excelentní Tým pro Mitigaci (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Kamýcká 129, Suchdol, 165 21 Prague 6, Czech Republic
| | - Indrakant K. Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi 110019, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi 110007, India
| |
Collapse
|
26
|
Marcianò D, Ricciardi V, Marone Fassolo E, Passera A, Bianco PA, Failla O, Casati P, Maddalena G, De Lorenzis G, Toffolatti SL. RNAi of a Putative Grapevine Susceptibility Gene as a Possible Downy Mildew Control Strategy. FRONTIERS IN PLANT SCIENCE 2021; 12:667319. [PMID: 34127927 PMCID: PMC8196239 DOI: 10.3389/fpls.2021.667319] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/20/2021] [Indexed: 05/07/2023]
Abstract
Downy mildew, caused by the oomycete Plasmopara viticola, is one of the diseases causing the most severe economic losses to grapevine (Vitis vinifera) production. To date, the application of fungicides is the most efficient method to control the pathogen and the implementation of novel and sustainable disease control methods is a major challenge. RNA interference (RNAi) represents a novel biotechnological tool with a great potential for controlling fungal pathogens. Recently, a candidate susceptibility gene (VviLBDIf7) to downy mildew has been identified in V. vinifera. In this work, the efficacy of RNAi triggered by exogenous double-stranded RNA (dsRNA) in controlling P. viticola infections has been assessed in a highly susceptible grapevine cultivar (Pinot noir) by knocking down VviLBDIf7 gene. The effects of dsRNA treatment on this target gene were assessed by evaluating gene expression, disease severity, and development of vegetative and reproductive structures of P. viticola in the leaf tissues. Furthermore, the effects of dsRNA treatment on off-target (EF1α, GAPDH, PEPC, and PEPCK) and jasmonic acid metabolism (COI1) genes have been evaluated. Exogenous application of dsRNA led to significant reductions both in VviLBDIf7 gene expression, 5 days after the treatment, and in the disease severity when artificial inoculation was carried out 7 days after dsRNA treatments. The pathogen showed clear alterations to both vegetative (hyphae and haustoria) and reproductive structures (sporangiophores) that resulted in stunted growth and reduced sporulation. Treatment with dsRNA showed signatures of systemic activity and no deleterious off-target effects. These results demonstrated the potential of RNAi for silencing susceptibility factors in grapevine as a sustainable strategy for pathogen control, underlying the possibility to adopt this promising biotechnological tool in disease management strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gabriella De Lorenzis
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Silvia Laura Toffolatti
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
27
|
Pazarlar S, Sanver U, Cetinkaya N. Exogenous pipecolic acid modulates plant defence responses against Podosphaera xanthii and Pseudomonas syringae pv. lachrymans in cucumber (Cucumis sativus L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:473-484. [PMID: 33547740 DOI: 10.1111/plb.13243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Systemic acquired resistance (SAR) is a long-lasting and broad-based resistance that can be activated following infection with (a)virulent pathogens and treatment with exogenous elicitors. Pipecolic acid (Pip), a Lys-derived non-protein amino acid, naturally occurs in many different plant species, and its N-hydroxylated derivative, N-hydroxypipecolic acid (NHP), acts as a crucial regulator of SAR. In the present study, we conducted a systemic analysis of the defence responses of a series of D,L-Pip-pretreated Cucumis sativus L. against Podosphaera xanthii (P. xanthii) and Pseudomonas syringae pv. lachrymans (Psl). The effects of D,L-Pip on ROS metabolism, defence-related gene expression, SA accumulation and activity of defence-related enzymes were evaluated. We show that exogenously applied D,L-Pip successfully induces SAR in cucumber against P. xanthii and Psl, but not Fusarium oxysporum f. sp. cucumerinum (Foc). Exogenous application of D,L-Pip via the root system is sufficient to activate the accumulation of free and conjugated salicylic acid (SA), and earlier and stronger upregulation of SAR-associated gene transcription upon P. xanthii infection. Furthermore, D,L-Pip treatment and subsequent pathogen inoculation promote hydrogen peroxide and superoxide accumulation, as well as Rboh transcription activation in cucumber plants, suggesting that D,L-Pip-triggered ROS production might be involved in enhanced defence reactions against P. xanthii. We also demonstrate that D,L-Pip pretreatment increases the activity of defence-associated enzymes, including peroxidase, chitinase and β-1,3-glucanase. The results presented in this report provide promising features of Pip as an elicitor in cucumber and call for further studies that may uncover its potential in production areas against different phytopathogens.
Collapse
Affiliation(s)
- S Pazarlar
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - U Sanver
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - N Cetinkaya
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| |
Collapse
|
28
|
Zou X, Du M, Liu Y, Wu L, Xu L, Long Q, Peng A, He Y, Andrade M, Chen S. CsLOB1 regulates susceptibility to citrus canker through promoting cell proliferation in citrus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1039-1057. [PMID: 33754403 DOI: 10.1111/tpj.15217] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 05/25/2023]
Abstract
Citrus sinensis lateral organ boundary 1 (CsLOB1) was previously identified as a critical disease susceptibility gene for citrus bacterial canker, which is caused by Xanthomonas citri subsp. citri (Xcc). However, the molecular mechanisms of CsLOB1 in citrus response to Xcc are still elusive. Here, we constructed transgenic plants overexpressing and RNAi-silencing of CsLOB1 using the canker-disease susceptible 'wanjincheng' orange (C. sinensis Osbeck) as explants. CsLOB1-overexpressing plants exhibited dwarf phenotypes with smaller and thicker leaf, increased branches and adventitious buds clustered on stems. These phenotypes were followed by a process of pustule- and canker-like development that exhibited enhanced cell proliferation. Pectin depolymerization and expansin accumulation were enhanced by CsLOB1 overexpression, while cellulose and hemicellulose synthesis were increased by CsLOB1 silence. Whilst overexpression of CsLOB1 increased susceptibility, RNAi-silencing of CsLOB1 enhanced resistance to canker disease without impairing pathogen entry. Transcriptome analysis revealed that CsLOB1 positively regulated cell wall degradation and modification processes, cytokinin metabolism, and cell division. Additionally, 565 CsLOB1-targeted genes were identified in chromatin immunoprecipitation-sequencing (ChIP-seq) experiments. Motif discovery analysis revealed that the most highly overrepresented binding sites had a conserved 6-bp 'GCGGCG' consensus DNA motif. RNA-seq and ChIP-seq data suggested that CsLOB1 directly activates the expression of four genes involved in cell wall remodeling, and three genes that participate in cytokinin and brassinosteroid hormone pathways. Our findings indicate that CsLOB1 promotes cell proliferation by mechanisms depending on cell wall remodeling and phytohormone signaling, which may be critical to citrus canker development and bacterial growth in citrus.
Collapse
Affiliation(s)
- Xiuping Zou
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Meixia Du
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Yunuo Liu
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Liu Wu
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Lanzhen Xu
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Qin Long
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Aihong Peng
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Yongrui He
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| | - Maxuel Andrade
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Shanchun Chen
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing, 400712, P. R. China
| |
Collapse
|
29
|
Sargolzaei M, Rustioni L, Cola G, Ricciardi V, Bianco PA, Maghradze D, Failla O, Quaglino F, Toffolatti SL, De Lorenzis G. Georgian Grapevine Cultivars: Ancient Biodiversity for Future Viticulture. FRONTIERS IN PLANT SCIENCE 2021; 12:630122. [PMID: 33613611 PMCID: PMC7892605 DOI: 10.3389/fpls.2021.630122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/13/2021] [Indexed: 05/14/2023]
Abstract
Grapevine (Vitis vinifera) is one of the most widely cultivated plant species of agricultural interest, and is extensively appreciated for its fruits and the wines made from its fruits. Considering the high socio-economic impact of the wine sector all over the world, in recent years, there has been an increase in work aiming to investigate the biodiversity of grapevine germplasm available for breeding programs. Various studies have shed light on the genetic diversity characterizing the germplasm from the cradle of V. vinifera domestication in Georgia (South Caucasus). Georgian germplasm is placed in a distinct cluster from the European one and possesses a rich diversity for many different traits, including eno-carpological and phenological traits; resistance to pathogens, such as oomycetes and phytoplasmas; resistance to abiotic stresses, such as sunburn. The aim of this review is to assess the potential of Georgian cultivars as a source of useful traits for breeding programs. The unique genetic and phenotypic aspects of Georgian germplasm were unraveled, to better understand the diversity and quality of the genetic resources available to viticulturists, as valuable resources for the coming climate change scenario.
Collapse
Affiliation(s)
- Maryam Sargolzaei
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Laura Rustioni
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento – Centro Ecotekne, Lecce, Italy
| | - Gabriele Cola
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Valentina Ricciardi
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Piero A. Bianco
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - David Maghradze
- Faculty of Viticulture and Winemaking, Caucasus International University, Tbilisi, Georgia
- National Wine Agency of Georgia, Tbilisi, Georgia
| | - Osvaldo Failla
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Fabio Quaglino
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Silvia L. Toffolatti
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
- *Correspondence: Silvia L. Toffolatti,
| | - Gabriella De Lorenzis
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Milano, Milan, Italy
- Gabriella De Lorenzis,
| |
Collapse
|
30
|
Liu L, Zhang J, Xu J, Li Y, Guo L, Wang Z, Zhang X, Zhao B, Guo YD, Zhang N. CRISPR/Cas9 targeted mutagenesis of SlLBD40, a lateral organ boundaries domain transcription factor, enhances drought tolerance in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110683. [PMID: 33218644 DOI: 10.1016/j.plantsci.2020.110683] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 05/19/2023]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN (LBD)-containing genes are plant-specific genes that play important roles in lateral organ development. In this study, we identified LBD40 (Solyc02g085910), which belongs to subfamily II of the LBD family of genes in tomato. LBD40 was highly expressed in roots and fruit. LBD40 expression was significantly induced by PEG and salt. Moreover, SlLBD40 expression was induced by methyl jasmonate treatment, while SlLBD40 expression could not be induced in the jasmonic acid-insensitive1 (jai1) mutant or MYC2-silenced plants, in which jasmonic acid (JA) signaling was disrupted. These findings demonstrate that SlLBD40 expression was dependent on JA signaling and that it might be downstream of SlMYC2, which is the master transcription factor in the JA signal transduction pathway. Overexpressing and CRISPR/Cas9 mediated knockout transgenic tomato plants were generated to explore SlLBD40 function. The drought tolerance test showed that two SlLBD40 knockout lines wilted slightly, while SlLBD40 overexpressing plants suffered severe wilting. The statistical water loss rate and midday leaf water potential also confirmed that knockout of SlLBD40 improved the water-holding ability of tomato under drought conditions. Taken together, our study demonstrates that SlLBD40, involved in JA signaling, was a negative regulator of drought tolerance and that knockout of SlLBD40 enhanced drought tolerance in tomato. This study also provides a novel function of SlLBD40, which belongs to subfamily II of LBD genes.
Collapse
Affiliation(s)
- Lun Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiayi Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yafei Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Luqin Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhirong Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xichun Zhang
- College of Plant Science & Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Bing Zhao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
31
|
Williamson-Benavides BA, Sharpe RM, Nelson G, Bodah ET, Porter LD, Dhingra A. Identification of Fusarium solani f. sp. pisi ( Fsp) Responsive Genes in Pisum sativum. Front Genet 2020; 11:950. [PMID: 33014017 PMCID: PMC7461991 DOI: 10.3389/fgene.2020.00950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Pisum sativum (pea) is rapidly emerging as an inexpensive and significant contributor to the plant-derived protein market. Due to its nitrogen-fixation capability, short life cycle, and low water usage, pea is a useful cover-and-break crop that requires minimal external inputs. It is critical for sustainable agriculture and indispensable for future food security. Root rot in pea, caused by the fungal pathogen Fusarium solani f. sp. pisi (Fsp), can result in a 15-60% reduction in yield. It is urgent to understand the molecular basis of Fsp interaction in pea to develop root rot tolerant cultivars. A complementary genetics and gene expression approach was undertaken in this study to identify Fsp-responsive genes in four tolerant and four susceptible pea genotypes. Time course RNAseq was performed on both sets of genotypes after the Fsp challenge. Analysis of the transcriptome data resulted in the identification of 42,905 differentially expressed contigs (DECs). Interestingly, the vast majority of DECs were overexpressed in the susceptible genotypes at all sampling time points, rather than in the tolerant genotypes. Gene expression and GO enrichment analyses revealed genes coding for receptor-mediated endocytosis, sugar transporters, salicylic acid synthesis, and signaling, and cell death were overexpressed in the susceptible genotypes. In the tolerant genotypes, genes involved in exocytosis, and secretion by cell, the anthocyanin synthesis pathway, as well as the DRR230 gene, a pathogenesis-related (PR) gene, were overexpressed. The complementary genetic and RNAseq approach has yielded a set of potential genes that could be targeted for improved tolerance against root rot in P. sativum. Fsp challenge produced a futile transcriptomic response in the susceptible genotypes. This type of response is hypothesized to be related to the speed at which the pathogen infestation advances in the susceptible genotypes and the preexisting level of disease-preparedness in the tolerant genotypes.
Collapse
Affiliation(s)
| | - Richard M Sharpe
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Grant Nelson
- Molecular Plant Sciences, Washington State University, Pullman, WA, United States
| | - Eliane T Bodah
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Lyndon D Porter
- USDA-ARS, Grain Legume Genetics and Physiology Research Unit, Prosser, WA, United States
| | - Amit Dhingra
- Molecular Plant Sciences, Washington State University, Pullman, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| |
Collapse
|
32
|
High-Throughput Sequencing and Expression Analysis Suggest the Involvement of Pseudomonas putida RA-Responsive microRNAs in Growth and Development of Arabidopsis. Int J Mol Sci 2020; 21:ijms21155468. [PMID: 32751751 PMCID: PMC7432263 DOI: 10.3390/ijms21155468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 01/11/2023] Open
Abstract
Beneficial soil microorganisms largely comprise of plant growth-promoting rhizobacteria (PGPR), which adhere to plant roots and facilitate their growth and development. Pseudomonas putida (RA) strain MTCC5279 is one such PGPR that exhibits several characteristics of plant growth promotion, such as P-solubilization, and siderophores and IAA production. Plant–PGPR interactions are very complex phenomena, and essentially modulate the expression of numerous genes, consequently leading to changes in the physiological, biochemical, cellular and molecular responses of plants. Therefore, in order to understand the molecular bases of plant–PGPR interactions, we carried out the identification of microRNAs from the roots of Arabidopsis upon P. putida RA-inoculation, and analyses of their expression. MicroRNAs (miRNAs) are 20- to 24-nt non-coding small RNAs known to regulate the expression of their target genes. Small RNA sequencing led to the identification of 293 known and 67 putative novel miRNAs, from the control and RA-inoculated libraries. Among these, 15 known miRNAs showed differential expression upon RA-inoculation in comparison to the control, and their expressions were corroborated by stem-loop quantitative real-time PCR. Overall, 28,746 and 6931 mRNAs were expected to be the targets of the known and putative novel miRNAs, respectively, which take part in numerous biological, cellular and molecular processes. An inverse correlation between the expression of RA-responsive miRNAs and their target genes also strengthened the crucial role of RA in developmental regulation. Our results offer insights into the understanding of the RA-mediated modulation of miRNAs and their targets in Arabidopsis, and pave the way for the further exploitation and characterization of candidate RA-responsive miRNA(s) for various crop improvement strategies directed towards plant sustainable growth and development.
Collapse
|
33
|
Huang X, Yan H, Liu Y, Yi Y. Genome-wide analysis of LATERAL ORGAN BOUNDARIES DOMAIN-in Physcomitrella patens and stress responses. Genes Genomics 2020; 42:651-662. [PMID: 32279230 DOI: 10.1007/s13258-020-00931-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/31/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND LBDs, as the plant-specific gene family, play essential roles in lateral organ development, plant regeneration, as well as abiotic stress and pathogen response. However, the number and characteristic of LBD genes in Pyscomitrella patens were still obscure. OBJECTIVE This study was performed to identify the LBD family gene in moss and to determine the expression profiles of LBDs under the abiotic and pathogen stress. METHODS Complete genome sequences and transcriptomes of P. patens were downloaded from the Ensembl plant database. The hidden Markov model-based profile of the conserved LOB domain was submitted as a query to identify all potential LOB domain sequences with HMMER software. Expression profiles of PpLBDs were obtained based on the GEO public database and qRT-PCR analysis. RESULTS In this study, a total of 31 LBDs were identified in the P. patens genome, divided into two classes based on the presence of the leucine zipper-like coiled-coil motif. A phylogenetic relationship was obtained between 31 proteins from P. patens and 43 proteins from the Arabidopsis thaliana genome, providing insights into their conserved and potential functions. Furthermore, the exon-intron organization of each PpLBD were analyzed. All PpLBD contain the conserved DNA binding motif (CX2CX6CX3C zinc finger-like motif), and were predicted to be located in cell nuclear. The 31 PpLBD genes were unevenly assigned to 18 out of 27 chromosomes based on the physical positions. Among these genes, PpLBD27 was not only remarkably highest expressed in desiccation, but also a susceptible gene to pathogens through jasmonic acid-mediated signaling pathway. Most of PpLBDs were up-regulated with the treatment of mannitol. These results showed they were differentially induced and their potential functions in the environmental stimulus of the early terrestrial colonizers. CONCLUSION Despite significant differences in the life cycle in P. patens and flowering plants, their functions involved in abiotic and biotic stress-regulated by LBDs have been identified and appear to be conserved in the two lineages. These results provided a comprehensive analysis of PpLBDs and paved insights into studies aimed at a better understanding of PpLBDs.
Collapse
Affiliation(s)
- Xiaolong Huang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang, 550001, China
- School of Life Sciences, Guizhou Normal University, Huaxi District, Guiyang, 550001, Guizhou, China
| | - Huiqing Yan
- School of Life Sciences, Guizhou Normal University, Huaxi District, Guiyang, 550001, Guizhou, China.
| | - Yanjing Liu
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang, 550001, China
- School of Life Sciences, Guizhou Normal University, Huaxi District, Guiyang, 550001, Guizhou, China
| | - Yin Yi
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang, 550001, China
| |
Collapse
|
34
|
Zhang Y, Li Z, Ma B, Hou Q, Wan X. Phylogeny and Functions of LOB Domain Proteins in Plants. Int J Mol Sci 2020; 21:ijms21072278. [PMID: 32224847 PMCID: PMC7178066 DOI: 10.3390/ijms21072278] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Lateral organ boundaries (LOB) domain (LBD) genes, a gene family encoding plant-specific transcription factors, play important roles in plant growth and development. At present, though there have been a number of genome-wide analyses on LBD gene families and functional studies on individual LBD proteins, the diverse functions of LBD family members still confuse researchers and an effective strategy is required to summarize their functional diversity. To further integrate and improve our understanding of the phylogenetic classification, functional characteristics and regulatory mechanisms of LBD proteins, we review and discuss the functional characteristics of LBD proteins according to their classifications under a phylogenetic framework. It is proved that this strategy is effective in the anatomy of diverse functions of LBD family members. Additionally, by phylogenetic analysis, one monocot-specific and one eudicot-specific subclade of LBD proteins were found and their biological significance in monocot and eudicot development were also discussed separately. The review will help us better understand the functional diversity of LBD proteins and facilitate further studies on this plant-specific transcription factor family.
Collapse
Affiliation(s)
- Yuwen Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; (Y.Z.); (Z.L.); (B.M.); (Q.H.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Ziwen Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; (Y.Z.); (Z.L.); (B.M.); (Q.H.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Biao Ma
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; (Y.Z.); (Z.L.); (B.M.); (Q.H.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; (Y.Z.); (Z.L.); (B.M.); (Q.H.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; (Y.Z.); (Z.L.); (B.M.); (Q.H.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
- Correspondence: or ; Tel.: +86-10-6299-5866
| |
Collapse
|
35
|
Yu J, Xie Q, Li C, Dong Y, Zhu S, Chen J. Comprehensive characterization and gene expression patterns of LBD gene family in Gossypium. PLANTA 2020; 251:81. [PMID: 32185507 DOI: 10.1007/s00425-020-03364-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/13/2020] [Indexed: 05/16/2023]
Abstract
A comprehensive account of the LBD gene family of Gossypium was provided in this work. Expression analysis and functional characterization revealed that LBD genes might play different roles in G. hirsutum and G. barbadense. The Lateral Organ Boundaries Domain (LBD) proteins comprise a plant-specific transcription factor family, which plays crucial roles in physiological processes of plant growth, development, and stress tolerance. In the present work, a systematical analysis of LBD gene family from two allotetraploid cotton species, G. hirsutum and G. barbadense, together with their genomic donor species, G. arboreum and G. raimondii, was conducted. There were 131, 128, 62, and 68 LBDs identified in G. hirsutum, G. barbadense, G. arboreum and G. raimondii, respectively. The LBD proteins could be classified into two main classes, class I and class II, based on the structure of their lateral organ boundaries domain and traits of phylogenetic tree, and class I was further divided into five subgroups. The gene structure and motif composition analyses conducted in both G. hirsutum and G. barbadense revealed that LBD genes kept relatively conserved within the subfamilies. Synteny analysis suggested that segmental duplication acted as an important mechanism in expansion of the cotton LBD gene family. Cis-element analysis predicated the possible functions of LBD genes. Public RNA-seq data were investigated to analyze the expression patterns of cotton LBD genes in various tissues as well as gene expression under abiotic stress treatments. Furthermore, RT-qPCR results found that GhLBDs had various expression regulation under MeJA treatments. Expression analysis indicated the differential functions of cotton LBD genes in response to abiotic stress and hormones.
Collapse
Affiliation(s)
- Jingwen Yu
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qianwen Xie
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Cheng Li
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yating Dong
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shuijin Zhu
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Jinhong Chen
- Zhejiang Key Laboratory of Crop Germplasm, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
36
|
Xie T, Zeng L, Chen X, Rong H, Wu J, Batley J, Jiang J, Wang Y. Genome-Wide Analysis of the Lateral Organ Boundaries Domain Gene Family in Brassica Napus. Genes (Basel) 2020; 11:genes11030280. [PMID: 32155746 PMCID: PMC7140802 DOI: 10.3390/genes11030280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023] Open
Abstract
The plant specific LATERAL ORGAN BOUNDARIES (LOB)-domain (LBD) proteins belong to a family of transcription factors that play important roles in plant growth and development, as well as in responses to various stresses. However, a comprehensive study of LBDs in Brassica napus has not yet been reported. In the present study, 126 BnLBD genes were identified in B. napus genome using bioinformatics analyses. The 126 BnLBDs were phylogenetically classified into two groups and nine subgroups. Evolutionary analysis indicated that whole genome duplication (WGD) and segmental duplication played important roles in the expansion of the BnLBD gene family. On the basis of the RNA-seq analyses, we identified BnLBD genes with tissue or developmental specific expression patterns. Through cis-acting element analysis and hormone treatment, we identified 19 BnLBD genes with putative functions in plant response to abscisic acid (ABA) treatment. This study provides a comprehensive understanding on the origin and evolutionary history of LBDs in B. napus, and will be helpful in further functional characterisation of BnLBDs.
Collapse
Affiliation(s)
- Tao Xie
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; (T.X.); (L.Z.); (X.C.); (H.R.); (J.W.); (Y.W.)
| | - Lei Zeng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; (T.X.); (L.Z.); (X.C.); (H.R.); (J.W.); (Y.W.)
| | - Xin Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; (T.X.); (L.Z.); (X.C.); (H.R.); (J.W.); (Y.W.)
| | - Hao Rong
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; (T.X.); (L.Z.); (X.C.); (H.R.); (J.W.); (Y.W.)
| | - Jingjing Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; (T.X.); (L.Z.); (X.C.); (H.R.); (J.W.); (Y.W.)
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia;
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; (T.X.); (L.Z.); (X.C.); (H.R.); (J.W.); (Y.W.)
- Correspondence: ; Tel.: +86-514-87997303
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; (T.X.); (L.Z.); (X.C.); (H.R.); (J.W.); (Y.W.)
| |
Collapse
|
37
|
Novel Aspects on The Interaction Between Grapevine and Plasmopara viticola: Dual-RNA-Seq Analysis Highlights Gene Expression Dynamics in The Pathogen and The Plant During The Battle For Infection. Genes (Basel) 2020; 11:genes11030261. [PMID: 32121150 PMCID: PMC7140796 DOI: 10.3390/genes11030261] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Mgaloblishvili, a Vitis vinifera cultivar, exhibits unique resistance traits against Plasmopara viticola, the downy mildew agent. This offers the unique opportunity of exploring the molecular responses in compatible and incompatible plant-pathogen interaction. In this study, whole transcriptomes of Mgaloblishvili, Pinot noir (a V. vinifera susceptible cultivar), and Bianca (a resistant hybrid) leaves, inoculated and non-inoculated with the pathogen, were used to identify P. viticola effector-encoding genes and plant susceptibility/resistance genes. Multiple effector-encoding genes were identified in P. viticola transcriptome, with remarkable expression differences in relation to the inoculated grapevine cultivar. Intriguingly, five apoplastic effectors specifically associated with resistance in V. vinifera. Gene coexpression network analysis identified specific modules and metabolic changes occurring during infection in the three grapevine cultivars. Analysis of these data allowed, for the first time, the detection in V. vinifera of a putative P. viticola susceptibility gene, encoding a LOB domain-containing protein. Finally, the de novo assembly of Mgaloblishvili, Pinot noir, and Bianca transcriptomes and their comparison highlighted novel candidate genes that might be at the basis of the resistant phenotype. These results open the way to functional analysis studies and to new perspectives in molecular breeding of grapevine for resistance to P. viticola.
Collapse
|
38
|
Yu Q, Hu S, Du J, Yang Y, Sun X. Genome-wide identification and characterization of the lateral organ boundaries domain gene family in Brassica rapa var . rapa. PLANT DIVERSITY 2020; 42:52-60. [PMID: 32140637 PMCID: PMC7046510 DOI: 10.1016/j.pld.2019.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 11/15/2019] [Accepted: 11/28/2019] [Indexed: 05/23/2023]
Abstract
The Lateral Organ Boundaries Domain (LBD) genes encode highly conserved plant-specific LOB domain proteins which regulate growth and development in various species. However, members of the LBD gene family have yet to be identified in Brassica rapa var. rapa. In the present study, fifty-nine LBD genes were identified and distributed on 10 chromosomes. The BrrLBD proteins are predicted to encode hydrophobic polypeptides between 118 and 394 amino acids in length and with molecular weights ranging from 13.31 to 44.24 kDa; the theoretical pI for these proteins varies from 4.83 to 9.68. There were 17 paralogous gene pairs in the BrrLBD family, suggesting that the amplification of the BrrLBD gene family involved large-scale gene duplication events. Members of the BrrLBD family were divided into 7 subclades (class I a to e, class II a and b). Analysis of gene structure and conserved domains revealed that most BrrLBD genes of the same subclade had similar gene structures and protein motifs. The expression profiles of 59 BrrLBD genes were determined through Quantitative Real-time fluorescent PCR (qRT-PCR). Most BrrLBD genes in the same subclade had similar gene expression profiles. However, the expression patterns of 7 genes differed from their duplicates, indicating that although the gene function of most BrrLBD genes has been conserved, some BrrLBD genes may have undergone evolutionary change.
Collapse
Affiliation(s)
- Qin Yu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- Plant Germplasm and Genomics Center, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Simin Hu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- Plant Germplasm and Genomics Center, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiancan Du
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- Plant Germplasm and Genomics Center, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- Plant Germplasm and Genomics Center, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xudong Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
- Plant Germplasm and Genomics Center, The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
39
|
Zhang X, He Y, He W, Su H, Wang Y, Hong G, Xu P. Structural and functional insights into the LBD family involved in abiotic stress and flavonoid synthases in Camellia sinensis. Sci Rep 2019; 9:15651. [PMID: 31666570 PMCID: PMC6821796 DOI: 10.1038/s41598-019-52027-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022] Open
Abstract
Lateral organ boundaries domain (LBD) proteins are plant-specific transcription factors that play a crucial role in growth and development, as well as metabolic processes. However, knowledge of the function of LBD proteins in Camellia sinensis is limited, and no systematic investigations of the LBD family have been reported. In this study, we identified 54 LBD genes in Camellia sinensis. The expression patterns of CsLBDs in different tissues and their transcription responses to exogenous hormones and abiotic stress were determined by RNA-seq, which showed that CsLBDs may have diverse functions. Analysis of the structural gene promoters revealed that the promoters of CsC4H, CsDFR and CsUGT84A, the structural genes involved in flavonoid biosynthesis, contained LBD recognition binding sites. The integrative analysis of CsLBD expression levels and metabolite accumulation also suggested that CsLBDs are involved in the regulation of flavonoid synthesis. Among them, CsLOB_3, CsLBD36_2 and CsLBD41_2, localized in the nucleus, were selected for functional characterization. Yeast two-hybrid assays revealed that CsLBD36_2 and CsLBD41_2 have self-activation activities, and CsLOB_3 and CsLBD36_2 can directly bind to the cis-element and significantly increase the activity of the CsC4H, CsDFR and CsUGT84A promoter. Our results present a comprehensive characterization of the 54 CsLBDs in Camellia sinensis and provide new insight into the important role that CsLBDs play in abiotic and flavonoid biosynthesis.
Collapse
Affiliation(s)
- Xueying Zhang
- Department of Tea Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China
| | - Wenda He
- Department of Tea Science, Zhejiang University, Hangzhou, 310058, China
| | - Hui Su
- Department of Tea Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuefei Wang
- Department of Tea Science, Zhejiang University, Hangzhou, 310058, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, 310021, China.
| | - Ping Xu
- Department of Tea Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
40
|
Li T, Wang YH, Liu JX, Feng K, Xu ZS, Xiong AS. Advances in genomic, transcriptomic, proteomic, and metabolomic approaches to study biotic stress in fruit crops. Crit Rev Biotechnol 2019; 39:680-692. [DOI: 10.1080/07388551.2019.1608153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
41
|
Heterologous Expression of the Grapevine JAZ7 Gene in Arabidopsis Confers Enhanced Resistance to Powdery Mildew but Not to Botrytis cinerea. Int J Mol Sci 2018; 19:ijms19123889. [PMID: 30563086 PMCID: PMC6321488 DOI: 10.3390/ijms19123889] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022] Open
Abstract
Jasmonate ZIM-domain (JAZ) family proteins comprise a class of transcriptional repressors that silence jasmonate-inducible genes. Although a considerable amount of research has been carried out on this gene family, there is still very little information available on the role of specific JAZ gene members in multiple pathogen resistance, especially in non-model species. In this study, we investigated the potential resistance function of the VqJAZ7 gene from a disease-resistant wild grapevine, Vitis quinquangularis cv. “Shang-24”, through heterologous expression in Arabidopsis thaliana. VqJAZ7-expressing transgenic Arabidopsis were challenged with three pathogens: the biotrophic fungus Golovinomyces cichoracearum, necrotrophic fungus Botrytis cinerea, and semi-biotrophic bacteria Pseudomonas syringae pv. tomato DC3000. We found that plants expressing VqJAZ7 showed greatly reduced disease symptoms for G. cichoracearum, but not for B. cinerea or P. syringae. In response to G cichoracearum infection, VqJAZ7-expressing transgenic lines exhibited markedly higher levels of cell death, superoxide anions (O2¯, and H2O2 accumulation, relative to nontransgenic control plants. Moreover, we also tested the relative expression of defense-related genes to comprehend the possible induced pathways. Taken together, our results suggest that VqJAZ7 in grapevine participates in molecular pathways of resistance to G. cichoracearum, but not to B. cinerea or P. syringae.
Collapse
|
42
|
Chen WF, Wei XB, Rety S, Huang LY, Liu NN, Dou SX, Xi XG. Structural analysis reveals a "molecular calipers" mechanism for a LATERAL ORGAN BOUNDARIES DOMAIN transcription factor protein from wheat. J Biol Chem 2018; 294:142-156. [PMID: 30425099 DOI: 10.1074/jbc.ra118.003956] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/10/2018] [Indexed: 01/13/2023] Open
Abstract
LATERAL ORGAN BOUNDARIES DOMAIN (LBD) proteins, a family of plant-specific transcription factors harboring a conserved Lateral Organ Boundaries (LOB) domain, are regulators of plant organ development. Recent studies have unraveled additional pivotal roles of the LBD protein family beyond defining lateral organ boundaries, such as pollen development and nitrogen metabolism. The structural basis for the molecular network of LBD-dependent processes remains to be deciphered. Here, we solved the first structure of the homodimeric LOB domain of Ramosa2 from wheat (TtRa2LD) to 1.9 Å resolution. Our crystal structure reveals structural features shared with other zinc-finger transcriptional factors, as well as some features unique to LBD proteins. Formation of the TtRa2LD homodimer relied on hydrophobic interactions of its coiled-coil motifs. Several specific motifs/domains of the LBD protein were also involved in maintaining its overall conformation. The intricate assembly within and between the monomers determined the precise spatial configuration of the two zinc fingers that recognize palindromic DNA sequences. Biochemical, molecular modeling, and small-angle X-ray scattering experiments indicated that dimerization is important for cooperative DNA binding and discrimination of palindromic DNA through a molecular calipers mechanism. Along with previously published data, this study enables us to establish an atomic-scale mechanistic model for LBD proteins as transcriptional regulators in plants.
Collapse
Affiliation(s)
- Wei-Fei Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Bin Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan, 467044, China
| | - Stephane Rety
- University Lyon, ENS de Lyon, University Claude Bernard, CNRS UMR 5239, INSERM U1210, LBMC, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France.
| | - Ling-Yun Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu-Guang Xi
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; LBPA, Ecole Normale Supérieure Paris-Saclay, CNRS, Université Paris Saclay, 61 Avenue du Président Wilson, F-94235 Cachan, France.
| |
Collapse
|
43
|
Deng Y, Zheng H, Yan Z, Liao D, Li C, Zhou J, Liao H. Full-Length Transcriptome Survey and Expression Analysis of Cassia obtusifolia to Discover Putative Genes Related to Aurantio-Obtusin Biosynthesis, Seed Formation and Development, and Stress Response. Int J Mol Sci 2018; 19:ijms19092476. [PMID: 30134624 PMCID: PMC6163539 DOI: 10.3390/ijms19092476] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/23/2022] Open
Abstract
The seed is the pharmaceutical and breeding organ of Cassia obtusifolia, a well-known medical herb containing aurantio-obtusin (a kind of anthraquinone), food, and landscape. In order to understand the molecular mechanism of the biosynthesis of aurantio-obtusin, seed formation and development, and stress response of C. obtusifolia, it is necessary to understand the genomics information. Although previous seed transcriptome of C. obtusifolia has been carried out by short-read next-generation sequencing (NGS) technology, the vast majority of the resulting unigenes did not represent full-length cDNA sequences and supply enough gene expression profile information of the various organs or tissues. In this study, fifteen cDNA libraries, which were constructed from the seed, root, stem, leaf, and flower (three repetitions with each organ) of C. obtusifolia, were sequenced using hybrid approach combining single-molecule real-time (SMRT) and NGS platform. More than 4,315,774 long reads with 9.66 Gb sequencing data and 361,427,021 short reads with 108.13 Gb sequencing data were generated by SMRT and NGS platform, respectively. 67,222 consensus isoforms were clustered from the reads and 81.73% (61,016) of which were longer than 1000 bp. Furthermore, the 67,222 consensus isoforms represented 58,106 nonredundant transcripts, 98.25% (57,092) of which were annotated and 25,573 of which were assigned to specific metabolic pathways by KEGG. CoDXS and CoDXR genes were directly used for functional characterization to validate the accuracy of sequences obtained from transcriptome. A total of 658 seed-specific transcripts indicated their special roles in physiological processes in seed. Analysis of transcripts which were involved in the early stage of anthraquinone biosynthesis suggested that the aurantio-obtusin in C. obtusifolia was mainly generated from isochorismate and Mevalonate/methylerythritol phosphate (MVA/MEP) pathway, and three reactions catalyzed by Menaquinone-specific isochorismate synthase (ICS), 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and isopentenyl diphosphate (IPPS) might be the limited steps. Several seed-specific CYPs, SAM-dependent methyltransferase, and UDP-glycosyltransferase (UDPG) supplied promising candidate genes in the late stage of anthraquinone biosynthesis. In addition, four seed-specific transcriptional factors including three MYB Transcription Factor (MYB) and one MADS-box Transcription Factor (MADS) transcriptional factors) and alternative splicing might be involved with seed formation and development. Meanwhile, most members of Hsp20 genes showed high expression level in seed and flower; seven of which might have chaperon activities under various abiotic stresses. Finally, the expressional patterns of genes with particular interests showed similar trends in both transcriptome assay and qRT-PCR. In conclusion, this is the first full-length transcriptome sequencing reported in Caesalpiniaceae family, and thus providing a more complete insight into aurantio-obtusin biosynthesis, seed formation and development, and stress response as well in C. obtusifolia.
Collapse
Affiliation(s)
- Yin Deng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hui Zheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zicheng Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dongying Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Chaolin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
44
|
Jeon BW, Kim J. Role of LBD14 during ABA-mediated control of root system architecture in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2018; 13:e1507405. [PMID: 30125143 PMCID: PMC6149438 DOI: 10.1080/15592324.2018.1507405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 05/31/2023]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) gene family encode plant-specific transcription factors that regulate various aspects of plant growth and development. Arabidopsis genome has 42 LBD genes. Several LBD genes, such as LBD16, -18, -29, and -33, have been shown to function in lateral root (LR) development via auxin signaling. Although abscisic acid (ABA) is a well-known antistress plant hormone regulating various plant developmental processes, it also plays a role in LR growth regulation. Our recent study showed that LBD14 expression is downregulated by ABA during the entire steps of LR development. The RNAi-induced downregulation and overexpression of LBD14 indicated that LBD14 promotes LR formation. LBD14RNAi enhanced the ABA-induced suppression of LR density compared with the wild type, suggesting that LBD14 is involved in the ABA-mediated control of LR formation. Our study provides an insight into the signaling mechanism of developmental plasticity whereby ABA controls LR branching via LBD14 downregulation under abiotic stress conditions.
Collapse
Affiliation(s)
- Byeong Wook Jeon
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
| |
Collapse
|
45
|
Niu Y, Hu B, Li X, Chen H, Takáč T, Šamaj J, Xu C. Comparative Digital Gene Expression Analysis of Tissue-Cultured Plantlets of Highly Resistant and Susceptible Banana Cultivarsin Response to Fusarium oxysporum. Int J Mol Sci 2018; 19:E350. [PMID: 29364855 PMCID: PMC5855572 DOI: 10.3390/ijms19020350] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/05/2023] Open
Abstract
Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the most destructive soil-borne diseases. In this study, young tissue-cultured plantlets of banana (Musa spp. AAA) cultivars differing in Foc susceptibility were used to reveal their differential responses to this pathogen using digital gene expression (DGE). Data were evaluated by various bioinformatic tools (Venn diagrams, gene ontology (GO) annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses) and immunofluorescence labelling method to support the identification of gene candidates determining the resistance of banana against Foc. Interestingly, we have identified MaWRKY50 as an important gene involved in both constitutive and induced resistance. We also identified new genes involved in the resistance of banana to Foc, including several other transcription factors (TFs), pathogenesis-related (PR) genes and some genes related to the plant cell wall biosynthesis or degradation (e.g., pectinesterases, β-glucosidases, xyloglucan endotransglucosylase/hydrolase and endoglucanase). The resistant banana cultivar shows activation of PR-3 and PR-4 genes as well as formation of different constitutive cell barriers to restrict spreading of the pathogen. These data suggest new mechanisms of banana resistance to Foc.
Collapse
Affiliation(s)
- Yuqing Niu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Bei Hu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoquan Li
- Institute of Biotechnology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Houbin Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, 783 01 Olomouc, Czech Republic.
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, 783 01 Olomouc, Czech Republic.
| | - Chunxiang Xu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
46
|
Jeon E, Young Kang N, Cho C, Joon Seo P, Chung Suh M, Kim J. LBD14/ASL17 Positively Regulates Lateral Root Formation and is Involved in ABA Response for Root Architecture in Arabidopsis. PLANT & CELL PHYSIOLOGY 2017; 58:2190-2201. [PMID: 29040694 DOI: 10.1093/pcp/pcx153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 10/03/2017] [Indexed: 05/21/2023]
Abstract
The LATERAL ORGAN BOUNDARIES (LOB) DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) gene family members play key roles in diverse aspects of plant development. Previous studies have shown that LBD16, 18, 29 and 33 are critical for integrating the plant hormone auxin to control lateral root development in Arabidopsis thaliana. In the present study, we show that LBD14 is expressed exclusively in the root where it promotes lateral root (LR) emergence. Repression of LBD14 expression by ABA correlates with the inhibitory effects of ABA on LR emergence. Transient gene expression assays with Arabidopsis protoplasts demonstrated that LBD14 is a nuclear-localized transcriptional activator. The knock-down of LBD14 expression by RNA interference (RNAi) resulted in reduced LR formation by delaying both LR primordium development and LR emergence, whereas overexpression of LBD14 in Arabidopsis enhances LR formation. We show that ABA (but not other plant hormones such as auxin, brassinosteroids and cytokinin) specifically down-regulated β-glucuronidase (GUS) expression under the control of the LBD14 promoter in transgenic Arabidopsis during LR development from initiation to emergence and endogenous LBD14 transcript levels in the root. Moreover, RNAi of LBD14 enhanced the LR suppression in response to ABA, whereas LBD14 overexpression did not alter the ABA-mediated suppression of LR formation. Taken together, these results suggest that LBD14 promoting LR formation is one of the critical factors regulated by ABA to inhibit LR growth, contributing to the regulation of the Arabidopsis root system architecture in response to ABA.
Collapse
Affiliation(s)
- Eunkyeong Jeon
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Na Young Kang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Chuloh Cho
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 500-757, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
47
|
Grimplet J, Pimentel D, Agudelo-Romero P, Martinez-Zapater JM, Fortes AM. The LATERAL ORGAN BOUNDARIES Domain gene family in grapevine: genome-wide characterization and expression analyses during developmental processes and stress responses. Sci Rep 2017; 7:15968. [PMID: 29162903 PMCID: PMC5698300 DOI: 10.1038/s41598-017-16240-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022] Open
Abstract
LATERAL ORGAN BOUNDARIES (LOB) DOMAIN (LBD) constitute a family of plant-specific transcription factors with key roles in the regulation of plant organ development, pollen development, plant regeneration, pathogen response, and anthocyanin and nitrogen metabolisms. However, the role of LBDs in fruit ripening and in grapevine (Vitis vinifera L.) development and stress responses is poorly documented. By performing a model curation of LBDs in the latest genome annotation 50 genes were identified. Phylogenetic analysis showed that LBD genes can be grouped into two classes mapping on 16 out of the 19 V. vinifera chromosomes. New gene subclasses were identified that have not been characterized in other species. Segmental and tandem duplications contributed significantly to the expansion and evolution of the LBD gene family in grapevine as noticed for other species. The analysis of cis-regulatory elements and transcription factor binding sites in the VviLBD promoter regions suggests the involvement of several hormones in the regulation of LBDs expression. Expression profiling suggest the involvement of LBD transcription factors in grapevine development, berry ripening and stress responses. Altogether this study provides valuable information and robust candidate genes for future functional analysis aiming to clarify mechanisms responsible for the onset of fruit ripening and fruit defense strategies.
Collapse
Affiliation(s)
- Jérôme Grimplet
- Instituto de Ciencias de la Vid y del Vino (CSIC-Universidad de La Rioja-Gobierno de La Rioja), 26006, Logroño, Spain
| | - Diana Pimentel
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioISI, Campo Grande, 1749-016, Lisboa, Portugal
| | - Patricia Agudelo-Romero
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioISI, Campo Grande, 1749-016, Lisboa, Portugal.,The UWA Institute of Agriculture, The University of Western Australia, M082 Perth, 6009, Australia and the ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, M316 Perth, Perth, 6009, Australia
| | - Jose Miguel Martinez-Zapater
- Instituto de Ciencias de la Vid y del Vino (CSIC-Universidad de La Rioja-Gobierno de La Rioja), 26006, Logroño, Spain
| | - Ana Margarida Fortes
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioISI, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
48
|
Di X, Gomila J, Takken FLW. Involvement of salicylic acid, ethylene and jasmonic acid signalling pathways in the susceptibility of tomato to Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2017; 18:1024-1035. [PMID: 28390170 PMCID: PMC6638294 DOI: 10.1111/mpp.12559] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 05/05/2023]
Abstract
Phytohormones, such as salicylic acid (SA), ethylene (ET) and jasmonic acid (JA), play key roles in plant defence following pathogen attack. The involvement of these hormones in susceptibility following Fusarium oxysporum (Fo) infection has mostly been studied in Arabidopsis thaliana. However, Fo causes vascular wilt disease in a broad range of crops, including tomato (Solanum lycopersicum). Surprisingly little is known about the involvement of these phytohormones in the susceptibility of tomato towards Fo f. sp. lycopersici (Fol). Here, we investigate their involvement by the analysis of the expression of ET, JA and SA marker genes following Fol infection, and by bioassays of tomato mutants affected in either hormone production or perception. Fol inoculation triggered the expression of SA and ET marker genes, showing the activation of these pathways. NahG tomato, in which SA is degraded, became hypersusceptible to Fol infection and showed stronger disease symptoms than wild-type. In contrast, ACD and Never ripe (Nr) mutants, in which ET biosynthesis and perception, respectively, are impaired, showed decreased disease symptoms and reduced fungal colonization on infection. The susceptibility of the def1 tomato mutant, and a prosystemin over-expressing line, in which JA signalling is compromised or constitutively activated, respectively, was unaltered. Our results show that SA is a negative and ET a positive regulator of Fol susceptibility. The SA and ET signalling pathways appear to act synergistically, as an intact ET pathway is required for the induction of an SA marker gene, and vice versa.
Collapse
Affiliation(s)
- Xiaotang Di
- Molecular Plant Pathology, Faculty of ScienceSwammerdam Institute for Life Sciences, University of AmsterdamPO Box 94215, 1090GEAmsterdamthe Netherlands
| | - Jo Gomila
- Molecular Plant Pathology, Faculty of ScienceSwammerdam Institute for Life Sciences, University of AmsterdamPO Box 94215, 1090GEAmsterdamthe Netherlands
| | - Frank L. W. Takken
- Molecular Plant Pathology, Faculty of ScienceSwammerdam Institute for Life Sciences, University of AmsterdamPO Box 94215, 1090GEAmsterdamthe Netherlands
| |
Collapse
|
49
|
Zhang J, Huguet ‐Tapia JC, Hu Y, Jones J, Wang N, Liu S, White FF. Homologues of CsLOB1 in citrus function as disease susceptibility genes in citrus canker. MOLECULAR PLANT PATHOLOGY 2017; 18:798-810. [PMID: 27276658 PMCID: PMC6638217 DOI: 10.1111/mpp.12441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 05/01/2016] [Accepted: 06/05/2016] [Indexed: 05/06/2023]
Abstract
The lateral organ boundary domain (LBD) genes encode a group of plant-specific proteins that function as transcription factors in the regulation of plant growth and development. Citrus sinensis lateral organ boundary 1 (CsLOB1) is a member of the LBD family and functions as a disease susceptibility gene in citrus bacterial canker (CBC). Thirty-four LBD members have been identified from the Citrus sinensis genome. We assessed the potential for additional members of LBD genes in citrus to function as surrogates for CsLOB1 in CBC, and compared host gene expression on induction of different LBD genes. Using custom-designed transcription activator-like (TAL) effectors, two members of the same clade as CsLOB1, named CsLOB2 and CsLOB3, were found to be capable of functioning similarly to CsLOB1 in CBC. RNA sequencing and quantitative reverse transcription-polymerase chain reaction analyses revealed a set of cell wall metabolic genes that are associated with CsLOB1, CsLOB2 and CsLOB3 expression and may represent downstream genes involved in CBC.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA 32611
| | | | - Yang Hu
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA 32611
- Present address:
Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina 100101
| | - Jeffrey Jones
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA 32611
| | - Nian Wang
- Citrus Research and Education Center/Department of Microbiology and Cell ScienceUniversity of FloridaLake AlfredFLUSA 33850
| | - Sanzhen Liu
- Department of Plant PathologyKansas State UniversityManhattanKSUSA 66506
| | - Frank F. White
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA 32611
| |
Collapse
|
50
|
In Silico Identification and Validation of Potential microRNAs in Kinnow Mandarin (Citrus reticulata Blanco). Interdiscip Sci 2017; 10:762-770. [PMID: 28534166 DOI: 10.1007/s12539-017-0235-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022]
Abstract
MicroRNAs (miRNAs) are a large family of 19-25 nucleotides, regulatory, non-coding RNA molecules that control gene expression by cleaving or inhibiting the translation of target gene transcripts in animals and plants. Despite the important functions of miRNAs related to regulation of plant growth and development processes, metabolism, and abiotic and biotic stresses, little is known about the disease-related miRNA. Here, we present a new pipeline for miRNA analysis using expressed sequence tags (ESTs)-based bioinformatics approach in Kinnow mandarin, a commercially important citrus fruit crop. For this, 56,041 raw EST sequences of Citrus reticulata Blanco were retrieved from EST database in NCBI through step-by-step filtering and processing methods and 130 miRNAs were predicted. Upon blast with Citrus sinensis transcriptome data, these produced potential targets related to disease resistance proteins, pectin lyase-like superfamily proteins, lateral organ boundaries (LOB) domain-containing proteins 11, and protein phosphatase 2C family proteins, protein kinases, dehydrogenases, and methyltransferases. Majority of the predicted miRNAs were of 22, 23, and 24 nucleotides in length. To validate these computationally predicted miRNA, poly(A)-tailed Reverse Transcription-PCR was applied to detect the expression of seven miRNA which showed disease-related potential targets, in citrus greening diseased leaf tissues in comparison to the healthy tissues of Kinnow mandarin. Our study provides information on regulatory roles of these potential miRNAs for the citrus greening disease development, miRNA targets, and would be helpful for future research of miRNA function in citrus.
Collapse
|