1
|
Chandler EK, Travers SE. Intraspecific variation in responses to extreme and moderate temperature stress in the wild species, Solanum carolinense (Solanaceae). AOB PLANTS 2024; 16:plae030. [PMID: 39011499 PMCID: PMC11247528 DOI: 10.1093/aobpla/plae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/20/2024] [Indexed: 07/17/2024]
Abstract
Adaptation or acclimation to local temperature regimes has often been used as a proxy for predicting how plant populations will respond to impending novel conditions driven by human-caused climate change. To understand how plants may successfully respond to increasing air temperatures (extreme and moderate) in the future, we explored how temperature tolerance traits differ in populations of Solanum carolinense from northern (MN) and southern (TX) regions of the continental USA in a two-experiment study. In the first experiment, we compared the heat and cold tolerance in vegetative (sporophyte) and reproductive (male gametophyte) traits. In the second experiment, we studied if long-term heat influences plant development by examining how development in moderate heat affected reproductive structures and reproductive success. We found that temperature sensitivity differed between southern populations, which regularly experience extreme heat, and northern populations which do not. In contrast to our expectations, northern populations appeared more heat-tolerant than southern populations for vegetative traits such as chlorophyll stability and reproductive traits such as pollen germination. Our results are consistent with a heat-avoidance, rather than tolerance mechanism to mitigate extreme heat during pollen germination. In the second experiment, plants developing under the moderate heat treatment had significantly smaller reproductive structures and reduced seed production (27% fewer seeds on average than in the control treatment). Reproductive structures that developed in moderate heat were also reduced in size, particularly in the northern populations relative to populations from the south. We conclude that rising temperatures have the potential to incur substantial negative consequences for the reproductive success of individuals in this species and that some populations already mitigate stressful temperature conditions through phenotypic plasticity.
Collapse
Affiliation(s)
- Emma K Chandler
- Department of Biological Sciences, North Dakota State University, Dept. 2715, PO Box 6050, Fargo, ND 58108-6050, USA
| | - Steven E Travers
- Department of Biological Sciences, North Dakota State University, Dept. 2715, PO Box 6050, Fargo, ND 58108-6050, USA
| |
Collapse
|
2
|
Wang Q, Wu Y, Wu W, Lyu L, Li W. A review of changes at the phenotypic, physiological, biochemical, and molecular levels of plants due to high temperatures. PLANTA 2024; 259:57. [PMID: 38307982 DOI: 10.1007/s00425-023-04320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/23/2023] [Indexed: 02/04/2024]
Abstract
MAIN CONCLUSION This review summarizes the physiological, biochemical, and molecular regulatory network changes in plants in response to high temperature. With the continuous rise in temperature, high temperature has become an important issue limiting global plant growth and development, affecting the phenotype and physiological and biochemical processes of plants and seriously restricting crop yield and tree growth speed. As sessile organisms, plants inevitably encounter high temperatures and improve their heat tolerance by activating molecular networks related to heat stress, such as signal transduction, synthesis of metabolites, and gene expression. Heat tolerance is a polygenic trait regulated by a variety of genes, transcription factors, proteins, and metabolites. Therefore, this review summarizes the changes in physiological, biochemical and molecular regulatory networks in plants under high-temperature conditions to lay a foundation for an in-depth understanding of the mechanisms involved in plant heat tolerance responses.
Collapse
Affiliation(s)
- Que Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China.
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
3
|
Qu LP, Chen J, Xiao J, De Boeck HJ, Dong G, Jiang SC, Hu YL, Wang YX, Shao CL. The complexity of heatwaves impact on terrestrial ecosystem carbon fluxes: Factors, mechanisms and a multi-stage analytical approach. ENVIRONMENTAL RESEARCH 2024; 240:117495. [PMID: 37890820 DOI: 10.1016/j.envres.2023.117495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Extreme heatwaves have become more frequent and severe in recent decades, and are expected to significantly influence carbon fluxes at regional scales across global terrestrial ecosystems. Nevertheless, accurate prediction of future heatwave impacts remains challenging due to a lack of a consistent comprehension of intrinsic and extrinsic mechanisms. We approached this knowledge gap by analyzing the complexity factors in heatwave studies, including the methodology for determining heatwave events, divergent responses of individual ecosystem components at multiple ecological and temporal scales, and vegetation status and hydrothermal environment, among other factors. We found that heatwaves essentially are continuously changing compound environmental stress that can unfold into multiple chronological stages, and plant physiology and carbon flux responses differs in each of these stages. This approach offers a holistic perspective, recognizing that the impacts of heatwaves on ecosystems can be better understood when evaluated over time. These stages include instantaneous, post-heatwave, legacy, and cumulative effects, each contributing uniquely to the overall impact on the ecosystem carbon cycle. Next, we investigated the importance of the timing of heatwaves and the possible divergent consequences caused by different annual heatwave patterns. Finally, a conceptual framework is proposed to establish a united foundation for the study and comprehension of the consequences of heatwaves on ecosystem carbon cycle. This instrumental framework will assist in guiding regional assessments of heatwave impacts, shedding light on the underlying mechanisms responsible for the varied responses of terrestrial ecosystems to specific heatwave events, which are imperative for devising efficient adaptation and mitigation approaches.
Collapse
Affiliation(s)
- Lu-Ping Qu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Jiquan Chen
- Center for Global Change & Earth Observations (CGCEO), Michigan State University, East Lansing, MI, 48823, USA.
| | - Jingfeng Xiao
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, 03824, USA.
| | - Hans J De Boeck
- Research Group of Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, 2610, Wilrijk, Belgium.
| | - Gang Dong
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; School of Life Science, Shanxi University, Taiyuan, China.
| | | | - Ya-Lin Hu
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Yi-Xuan Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chang-Liang Shao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Lei L, Gordon SP, Liu L, Sade N, Lovell JT, Rubio Wilhelmi MDM, Singan V, Sreedasyam A, Hestrin R, Phillips J, Hernandez BT, Barry K, Shu S, Jenkins J, Schmutz J, Goodstein DM, Thilmony R, Blumwald E, Vogel JP. The reference genome and abiotic stress responses of the model perennial grass Brachypodium sylvaticum. G3 (BETHESDA, MD.) 2023; 14:jkad245. [PMID: 37883711 PMCID: PMC10755203 DOI: 10.1093/g3journal/jkad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Perennial grasses are important forage crops and emerging biomass crops and have the potential to be more sustainable grain crops. However, most perennial grass crops are difficult experimental subjects due to their large size, difficult genetics, and/or their recalcitrance to transformation. Thus, a tractable model perennial grass could be used to rapidly make discoveries that can be translated to perennial grass crops. Brachypodium sylvaticum has the potential to serve as such a model because of its small size, rapid generation time, simple genetics, and transformability. Here, we provide a high-quality genome assembly and annotation for B. sylvaticum, an essential resource for a modern model system. In addition, we conducted transcriptomic studies under 4 abiotic stresses (water, heat, salt, and freezing). Our results indicate that crowns are more responsive to freezing than leaves which may help them overwinter. We observed extensive transcriptional responses with varying temporal dynamics to all abiotic stresses, including classic heat-responsive genes. These results can be used to form testable hypotheses about how perennial grasses respond to these stresses. Taken together, these results will allow B. sylvaticum to serve as a truly tractable perennial model system.
Collapse
Affiliation(s)
- Li Lei
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sean P Gordon
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lifeng Liu
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Nir Sade
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - John T Lovell
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Vasanth Singan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Rachel Hestrin
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jeremy Phillips
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bryan T Hernandez
- Crop Improvement and Genetics Research Unit, USDA-ARS Western Regional Research Center, Albany, CA 94710, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Shengqiang Shu
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jeremy Schmutz
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - David M Goodstein
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Roger Thilmony
- Crop Improvement and Genetics Research Unit, USDA-ARS Western Regional Research Center, Albany, CA 94710, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - John P Vogel
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Mihailova G, Tchorbadjieva M, Rakleova G, Georgieva K. Differential Accumulation of sHSPs Isoforms during Desiccation of the Resurrection Plant Haberlea rhodopensis Friv. under Optimal and High Temperature. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010238. [PMID: 36676187 PMCID: PMC9863180 DOI: 10.3390/life13010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Haberlea rhodopensis belongs to the small group of angiosperms that can survive desiccation to air-dry state and quickly restore their metabolism upon rehydration. In the present study, we investigated the accumulation of sHSPs and the extent of non-photochemical quenching during the downregulation of photosynthesis in H. rhodopensis leaves under desiccation at optimum (23 °C) and high temperature (38 °C). Desiccation of plants at 38 °C caused a stronger reduction in photosynthetic activity and corresponding enhancement in thermal energy dissipation. The accumulation of sHSPs was investigated by Western blot. While no expression of sHPSs was detected in the unstressed control sample, exposure of well-hydrated plants to high temperature induced an accumulation of sHSPs. Only a faint signal was observed at 50% RWC when dehydration was applied at 23 °C. Several cross-reacting polypeptide bands in the range of 16.5-19 kDa were observed in plants desiccated at high temperature. Two-dimensional electrophoresis and immunoblotting revealed the presence of several sHSPs with close molecular masses and pIs in the range of 5-8.0 that differed for each stage of treatment. At the latest stages of desiccation, fourteen different sHSPs could be distinguished, indicating that sHSPs might play a crucial role in H. rhodopensis under dehydration at high temperatures.
Collapse
Affiliation(s)
- Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-2-979-2688
| | - Magdalena Tchorbadjieva
- Department of Biochemistry, Faculty of Biology, Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Goritsa Rakleova
- Department of Biochemistry, Faculty of Biology, Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
6
|
Gao ZF, Yang X, Mei Y, Zhang J, Chao Q, Wang BC. A dynamic phosphoproteomic analysis provides insight into the C4 plant maize (Zea mays L.) response to natural diurnal changes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:291-307. [PMID: 36440987 DOI: 10.1111/tpj.16047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
As sessile organisms, plants need to respond to rapid changes in numerous environmental factors, mainly diurnal changes of light, temperature, and humidity. Maize is the world's most grown crop, and as a C4 plant it exhibits high photosynthesis capacity, reaching the highest rate of net photosynthesis at midday; that is, there is no "midday depression." Revealing the physiological responses to diurnal changes and underlying mechanisms will be of great significance for guiding maize improvement efforts. In this study, we collected maize leaf samples and analyzed the proteome and phosphoproteome at nine time points during a single day/night cycle, quantifying 7424 proteins and 5361 phosphosites. The new phosphosites identified in our study increased the total maize phosphoproteome coverage by 8.5%. Kinase-substrate network analysis indicated that 997 potential substrates were phosphorylated by 20 activated kinases. Through analysis of proteins with significant changes in abundance and phosphorylation, we found that the response to a heat stimulus involves a change in the abundance of numerous proteins. By contrast, the high light at noon and rapidly changing light conditions induced changes in the phosphorylation level of proteins involved in processes such as chloroplast movement, photosynthesis, and C4 pathways. Phosphorylation is involved in regulating the activity of large number of enzymes; for example, phosphorylation of S55 significantly enhanced the activity of maize phosphoenolpyruvate carboxykinase1 (ZmPEPCK1). Overall, the database of dynamic protein abundance and phosphorylation we have generated provides a resource for the improvement of C4 crop plants.
Collapse
Affiliation(s)
- Zhi-Fang Gao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiu Yang
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingchang Mei
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiao Zhang
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Chao
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| | - Bai-Chen Wang
- Key Laboratory of Photobiology, CAS, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
7
|
Dong X, Qu L, Dong G, Legesse TG, Akram MA, Tong Q, Jiang S, Yan Y, Xin X, Deng J, Shao C. Mowing mitigated the sensitivity of ecosystem carbon fluxes responses to heat waves in a Eurasian meadow steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158610. [PMID: 36089030 DOI: 10.1016/j.scitotenv.2022.158610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 05/28/2023]
Abstract
The heat waves (HW) will be more frequent and intense in the future with increased human activity and uncertain implications for ecosystem carbon fluxes. The semi-arid Eurasian grassland is sensitive to climate change and under frequent HWs attacks. Mowing as one of the most common human practices in this region, combining with HW can have comprehensive effects on plant communities, biomass, and nutrient cycling. Hence, a 3-year (2019-2021) field manipulation experiment was conducted to assess how mowing influenced the carbon cycling under HWs, and the interactions between HWs and mowing on carbon fluxes at the community and ecosystem levels in a Eurasian meadow steppe. Over the three years, HW significantly reduced net ecosystem CO2 exchange (NEE) and gross ecosystem production (GEP) by 28 % and 8 % (P < 0.05), respectively, whereas ecosystem respiration (Re) did not show significant changes. Moderate mowing (stubble height was set at 6-8 cm) for harvest effectively mitigated ecosystem sensitivity to HWs and significantly increased ecosystem carbon fluxes (NEE, Re, and GEP), biomass and the number of species. Mowing reduced the negative impact of HWs on ecosystem carbon fluxes by about 15 % compared to HWs alone, contributing to the invasion of species such as Thalictrum squarrosum and Vicia amoena, and increased the indirect effect of HW on NEE in the structural equation model. In addition, the higher soil water content (SWC) was another effective way to reduce the impact of HWs. Therefore, mowing and higher SWC would be effective ways to counteract the negative effects of HWs on carbon fluxes in future grassland management.
Collapse
Affiliation(s)
- Xiaobing Dong
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Luping Qu
- Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Isotope Research Center, Fujian Normal University, Fuzhou 350002, China
| | - Gang Dong
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Tsegaye Gemechu Legesse
- National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Muhammad Adnan Akram
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Qi Tong
- National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shicheng Jiang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yuchun Yan
- National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoping Xin
- National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianming Deng
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Changliang Shao
- National Hulunber Grassland Ecosystem Observation and Research Station & Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Zhang Y, Gao C, Zhang Y, Huang H, Du Y, Wu L, Wu L. FTX271: A potential gene resource for plant antiviral transgenic breeding. Front Microbiol 2022; 13:1003478. [PMID: 36246260 PMCID: PMC9558137 DOI: 10.3389/fmicb.2022.1003478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Flammutoxin (FTX), as well as its precursor TDP, is a protein from Flammulina velutipes with antiviral activity. Transgenic tobacco with the FTX271 (gene of FTX or TDP) can not only delay the onset time of symptoms but also alleviate the symptoms caused by tobacco mosaic virus (TMV), but the mechanism is still unclear. In this study, FTX271 was introduced into Nicotiana benthamiana, and the disease resistance mechanism activated by FTX271 was speculated by transcriptomic and proteomic techniques. The results showed that TDP was detected, and some genes, proteins and pathways were significant upregulated or enriched in transgenic tobacco, including the mitogen-activated protein kinase (MAPK) cascade signal transduction pathway, the expression of hypersensitive response (HR) marker genes H1N1 and HSR203J, pathogenesis-related (PR) genes, and the key genes COI1 and lipoxygenase gene LOX2 of the jasmonic acid (JA) signaling pathway, indicating FTX271 may activate the MAPK pathway and increase the content of reactive oxygen species (ROS) and JA, which promoted the HR and inducible systemic resistance (ISR). ISR caused increased expression of peroxidase (POD) and other proteins involved in pathogen defense. In addition, transgenic tobacco may use sHSP-assisted photoreparation to alleviate the symptoms of TMV. In conclusion, JA-mediated ISR and sHSP-assisted photoreparation are activated by FTX271 to protect tobacco from TMV infection and alleviate the symptoms caused by the virus. The study provided a theoretical basis for the TMV resistance mechanism of FTX271, which may represent a potential gene resource for plant antiviral transgenic breeding.
Collapse
|
9
|
Qian R, Ye Y, Hu Q, Ma X, Zheng J. Complete Chloroplast Genome of Gladiolus gandavensis ( Gladiolus) and Genetic Evolutionary Analysis. Genes (Basel) 2022; 13:1599. [PMID: 36140767 PMCID: PMC9498597 DOI: 10.3390/genes13091599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 11/25/2022] Open
Abstract
Gladiolus is an important ornamental plant that is one of the world's four most-grown cut flowers. Gladiolus gandavensis has only been found in the Cangnan County (Zhejiang Province) of China, which is recorded in the "Botanical". To explore the origin of G. gandavensis, chloroplast genome sequencing was conducted. The results indicated that a total of 151,654 bp of circular DNA was obtained. The chloroplast genome of G. gandavensis has a quadripartite structure (contains a large single-copy (LSC) region (81,547 bp), a small single-copy region (SSC) (17,895 bp), and two inverted repeats (IRs) (IRa and IRb, 52,212 bp)), similar to that of other species. In addition, a total of 84 protein-coding genes, 8 rRNA-encoding genes, and 38 tRNA-encoding genes were present in the chloroplast genome. To further study the structural characteristics of the chloroplast genome in G. gandavensis, a comparative analysis of eight species of the Iridaceae family was conducted, and the results revealed higher similarity in the IR regions than in the LSC and SSC regions. In addition, 265 simple sequence repeats (SSRs) were detected in this study. The results of the phylogenetic analysis indicated that the chloroplast genome of G. gandavensis has high homology with the Crocus cartwrightianus and Crocus sativus chloroplast genomes. Genetic analysis based on the rbcl sequence among 49 Gladiolus species showed that samples 42, 49, 50, and 54 had high homology with the three samples from China (64, 65, and 66), which might be caused by chance similarity in genotypes. These results suggest that G. gandavensis may have originated from South Africa.
Collapse
Affiliation(s)
| | | | | | | | - Jian Zheng
- Zhejiang Institute of Subtropical Crops, Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Wenzhou 325005, China
| |
Collapse
|
10
|
The Functional Interplay between Ethylene, Hydrogen Sulfide, and Sulfur in Plant Heat Stress Tolerance. Biomolecules 2022; 12:biom12050678. [PMID: 35625606 PMCID: PMC9138313 DOI: 10.3390/biom12050678] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Plants encounter several abiotic stresses, among which heat stress is gaining paramount attention because of the changing climatic conditions. Severe heat stress conspicuously reduces crop productivity through changes in metabolic processes and in growth and development. Ethylene and hydrogen sulfide (H2S) are signaling molecules involved in defense against heat stress through modulation of biomolecule synthesis, the antioxidant system, and post-translational modifications. Other compounds containing the essential mineral nutrient sulfur (S) also play pivotal roles in these defense mechanisms. As biosynthesis of ethylene and H2S is connected to the S-assimilation pathway, it is logical to consider the existence of a functional interplay between ethylene, H2S, and S in relation to heat stress tolerance. The present review focuses on the crosstalk between ethylene, H2S, and S to highlight their joint involvement in heat stress tolerance.
Collapse
|
11
|
Poór P, Nawaz K, Gupta R, Ashfaque F, Khan MIR. Ethylene involvement in the regulation of heat stress tolerance in plants. PLANT CELL REPORTS 2022; 41:675-698. [PMID: 33713206 DOI: 10.1007/s00299-021-02675-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/14/2021] [Indexed: 05/12/2023]
Abstract
Because of the rise in global temperature, heat stress has become a major concern for crop production. Heat stress deteriorates plant productivity and alters phenological and physiological responses that aid in precise monitoring and sensing of mild-to-severe transient heat stress. Plants have evolved several sophisticated mechanisms including hormone-signaling pathways to sense heat stimuli and acquire heat stress tolerance. In response to heat stress, ethylene, a gaseous hormone, is produced which is indispensable for plant growth and development and tolerance to various abiotic stresses including heat stress. The manipulation of ethylene in developing heat stress tolerance targeting ethylene biosynthesis and signaling pathways has brought promising out comes. Conversely increased ethylene biosynthesis and signaling seem to exhibit inhibitory effects in plant growth responses from primitive to maturity stages. This review mainly focuses on the recent studies of ethylene involvement in plant responses to heat stress and its functional regulation, and molecular mechanism underlying the plant responses in the mitigation of heat-induced damages. Furthermore, this review also describes the crosstalk between ethylene and other signaling molecules under heat stress and approaches to improve heat stress tolerance in plants.
Collapse
Affiliation(s)
- Peter Poór
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Kashif Nawaz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ravi Gupta
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Farha Ashfaque
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | | |
Collapse
|
12
|
Seydel C, Kitashova A, Fürtauer L, Nägele T. Temperature-induced dynamics of plant carbohydrate metabolism. PHYSIOLOGIA PLANTARUM 2022; 174:e13602. [PMID: 34802152 DOI: 10.1111/ppl.13602] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Carbohydrates are direct products of photosynthetic CO2 assimilation. Within a changing temperature regime, both photosynthesis and carbohydrate metabolism need tight regulation to prevent irreversible damage of plant tissue and to sustain energy metabolism, growth and development. Due to climate change, plants are and will be exposed to both long-term and short-term temperature changes with increasing amplitude. Particularly sudden fluctuations, which might comprise a large temperature amplitude from low to high temperature, pose a challenge for plants from the cellular to the ecosystem level. A detailed understanding of fundamental regulatory processes, which link photosynthesis and carbohydrate metabolism under such fluctuating environmental conditions, is essential for an estimate of climate change consequences. Further, understanding these processes is important for biotechnological application, breeding and engineering. Environmental light and temperature regimes are sensed by a molecular network that comprises photoreceptors and molecular components of the circadian clock. Photosynthetic efficiency and plant productivity then critically depend on enzymatic regulation and regulatory circuits connecting plant cells with their environment and re-stabilising photosynthetic efficiency and carbohydrate metabolism after temperature-induced deflection. This review summarises and integrates current knowledge about re-stabilisation of photosynthesis and carbohydrate metabolism after perturbation by changing temperature (heat and cold).
Collapse
Affiliation(s)
- Charlotte Seydel
- Faculty of Biology, Plant Development, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anastasia Kitashova
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Lisa Fürtauer
- Institute for Biology III, Unit of Plant Molecular Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Nägele
- Faculty of Biology, Plant Evolutionary Cell Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
13
|
Iqbal N, Umar S, Khan NA, Corpas FJ. Crosstalk between abscisic acid and nitric oxide under heat stress: exploring new vantage points. PLANT CELL REPORTS 2021; 40:1429-1450. [PMID: 33909122 DOI: 10.1007/s00299-021-02695-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/05/2021] [Indexed: 05/22/2023]
Abstract
Heat stress adversely affects plants growth potential. Global warming is reported to increase in the intensity, frequency, and duration of heatwaves, eventually affecting ecology, agriculture and economy. With an expected increase in average temperature by 2-3 °C over the next 30-50 years, crop production is facing a severe threat to sub-optimum growth conditions. Abscisic acid (ABA) and nitric oxide (NO) are growth regulators that are involved in the adaptation to heat stress by affecting each other and changing the adaptation process. The interaction between these molecules has been discussed in various studies in general or under stress conditions; however, regarding high temperature, their interaction has little been worked out. In the present review, the focus is shifted on the role of these molecules under heat stress emphasizing the different possible interactions between ABA and NO as both regulate stomatal closure and other molecules including hydrogen peroxide (H2O2), hydrogen sulfide (H2S), antioxidants, proline, glycine betaine, calcium (Ca2+) and heat shock protein (HSP). Exploring the crosstalk between ABA and NO with other molecules under heat stress will provide us with a comprehensive knowledge of plants mechanism of heat tolerance which could be useful to develop heat stress-resistant varieties.
Collapse
Affiliation(s)
- Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080, Granada, Spain.
| |
Collapse
|
14
|
Hayes S, Schachtschabel J, Mishkind M, Munnik T, Arisz SA. Hot topic: Thermosensing in plants. PLANT, CELL & ENVIRONMENT 2021; 44:2018-2033. [PMID: 33314270 PMCID: PMC8358962 DOI: 10.1111/pce.13979] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 05/13/2023]
Abstract
Plants alter their morphology and cellular homeostasis to promote resilience under a variety of heat regimes. Molecular processes that underlie these responses have been intensively studied and found to encompass diverse mechanisms operating across a broad range of cellular components, timescales and temperatures. This review explores recent progress throughout this landscape with a particular focus on thermosensing in the model plant Arabidopsis. Direct temperature sensors include the photosensors phytochrome B and phototropin, the clock component ELF3 and an RNA switch. In addition, there are heat-regulated processes mediated by ion channels, lipids and lipid-modifying enzymes, taking place at the plasma membrane and the chloroplast. In some cases, the mechanism of temperature perception is well understood but in others, this remains an open question. Potential novel thermosensing mechanisms are based on lipid and liquid-liquid phase separation. Finally, future research directions of high temperature perception and signalling pathways are discussed.
Collapse
Affiliation(s)
- Scott Hayes
- Laboratory of Plant PhysiologyWageningen University & ResearchWageningenThe Netherlands
| | - Joëlle Schachtschabel
- Research Cluster Green Life Sciences, Section Plant Cell BiologySwammerdam Institute for Life Sciences, University of AmsterdamAmsterdamThe Netherlands
| | - Michael Mishkind
- Research Cluster Green Life Sciences, Section Plant Cell BiologySwammerdam Institute for Life Sciences, University of AmsterdamAmsterdamThe Netherlands
- IOSNational Science FoundationAlexandriaVirginiaUSA
| | - Teun Munnik
- Research Cluster Green Life Sciences, Section Plant Cell BiologySwammerdam Institute for Life Sciences, University of AmsterdamAmsterdamThe Netherlands
| | - Steven A. Arisz
- Research Cluster Green Life Sciences, Section Plant Cell BiologySwammerdam Institute for Life Sciences, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
15
|
Choe E, Ko Y, Williams MM. Transcriptional analysis of sweet corn hybrids in response to crowding stress. PLoS One 2021; 16:e0253190. [PMID: 34138910 PMCID: PMC8211227 DOI: 10.1371/journal.pone.0253190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
Crop tolerance to crowding stress, specifically plant population density, is an important target to improve productivity in processing sweet corn. Due to limited knowledge of biological mechanisms involved in crowding stress in sweet corn, a study was conducted to 1) investigate phenotypic and transcriptional response of sweet corn hybrids under different plant densties, 2) compare the crowding stress response mechanisms between hybrids and 3) identify candidate biological mechanisms involved in crowding stress response. Yield per hectare of a tolerant hybrid (DMC21-84) increased with plant density. Yield per hectare of a sensitive hybrid (GSS2259P) declined with plant density. Transcriptional analysis found 694, 537, 359 and 483 crowding stress differentially expressed genes (DEGs) for GSS2259P at the Fruit Farm and Vegetable Farm and for DMC21-84 at the Fruit Farm and Vegetable Farm, respectively. Strong transcriptional change due to hybrid was observed. Functional analyses of DEGs involved in crowding stress also revealed that protein folding and photosynthetic processes were common response mechanisms for both hybrids. However, DEGs related to starch biosynthetic, carbohydrate metabolism, and ABA related processes were significant only for DMC21-84, suggesting the genes have closer relationship to plant productivity under stress than other processes. These results collectively provide initial insight into potential crowding stress response mechanisms in sweet corn.
Collapse
Affiliation(s)
- Eunsoo Choe
- Global Change and Photosynthesis Research Unit, USDA-ARS, Urbana, Illinois, United States of America
| | - Younhee Ko
- Division of Biomedical Engineering, Hankuk University of Foreign Studies, Kyoungki-do, South Korea
| | - Martin M. Williams
- Global Change and Photosynthesis Research Unit, USDA-ARS, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
16
|
Sun X, Huang N, Li X, Zhu J, Bian X, Li H, Wang L, Hu Q, Luo H. A chloroplast heat shock protein modulates growth and abiotic stress response in creeping bentgrass. PLANT, CELL & ENVIRONMENT 2021; 44:1769-1787. [PMID: 33583055 DOI: 10.1111/pce.14031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Small heat shock proteins (sHSPs), a family of the ubiquitous stress proteins in plants acting as molecular chaperones to protect other proteins from stress-induced damage, have been implicated in plant growth and development as well as plant response to environmental stress, especially heat stress. In this study, a chloroplast-localized sHSP, AsHSP26.8, was overexpressed in creeping bentgrass (Agrostis stolonifera L.) to study its role in regulating plant growth and stress response. Transgenic (TG) creeping bentgrass plants displayed arrested root development, slow growth rate, twisted leaf blades and are more susceptible to heat and salt but less sensitive to drought stress compared to wild-type (WT) controls. RNA-seq analysis revealed that AsHSP26.8 modulated the expression of genes in auxin signalling and stress-related genes such as those encoding HSPs, heat shock factors and other transcription factors. Our results provide new evidence demonstrating that AsHSP26.8 negatively regulates plant growth and development and plays differential roles in plant response to a plethora of diverse abiotic stresses.
Collapse
Affiliation(s)
- Xinbo Sun
- College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Ning Huang
- Human Resource Department, Hebei Agricultural University, Baoding, China
| | - Xin Li
- College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Junfei Zhu
- College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Xiuju Bian
- College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Huibin Li
- College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Lihong Wang
- College of Agronomy, Hebei Agricultural University/State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding, China
| | - Qian Hu
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
17
|
Jakubowski HV, Bock N, Busta L, Pearce M, Roston RL, Shomo ZD, Terrell CR. Introducing climate change into the biochemistry and molecular biology curriculum. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 49:167-188. [PMID: 32833339 DOI: 10.1002/bmb.21422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Our climate is changing due to anthropogenic emissions of greenhouse gases from the production and use of fossil fuels. Present atmospheric levels of CO2 were last seen 3 million years ago, when planetary temperature sustained high Arctic camels. As scientists and educators, we should feel a professional responsibility to discuss major scientific issues like climate change, and its profound consequences for humanity, with students who look up to us for knowledge and leadership, and who will be most affected in the future. We offer simple to complex backgrounds and examples to enable and encourage biochemistry educators to routinely incorporate this most important topic into their classrooms.
Collapse
Affiliation(s)
- Henry V Jakubowski
- Department of Chemistry, College of St. Benedict/St. John's University, St. Joseph, Minnesota, USA
| | - Nicholas Bock
- Lamont-Doherty Earth Observatory, Biology and Paleo Environment, Columbia University, Palisades, New York, USA
| | - Lucas Busta
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Matthew Pearce
- NASA Goddard Space Flight Center, Office of Education, NASA Goddard Institute for Space Studies, New York, New York, USA
| | - Rebecca L Roston
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Zachery D Shomo
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Cassidy R Terrell
- Center for Learning Innovation, University of Minnesota Rochester, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Guo XL, Yuan SN, Zhang HN, Zhang YY, Zhang YJ, Wang GY, Li YQ, Li GL. Heat-response patterns of the heat shock transcription factor family in advanced development stages of wheat (Triticum aestivum L.) and thermotolerance-regulation by TaHsfA2-10. BMC PLANT BIOLOGY 2020; 20:364. [PMID: 32746866 PMCID: PMC7397617 DOI: 10.1186/s12870-020-02555-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/19/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Heat shock transcription factors (Hsfs) are present in majority of plants and play central roles in thermotolerance, transgenerational thermomemory, and many other stress responses. Our previous paper identified at least 82 Hsf members in a genome-wide study on wheat (Triticum aestivum L.). In this study, we analyzed the Hsf expression profiles in the advanced development stages of wheat, isolated the markedly heat-responsive gene TaHsfA2-10 (GenBank accession number MK922287), and characterized this gene and its role in thermotolerance regulation in seedlings of Arabidopsis thaliana (L. Heynh.). RESULTS In the advanced development stages, wheat Hsf family transcription profiles exhibit different expression patterns and varying heat-responses in leaves and roots, and Hsfs are constitutively expressed to different degrees under the normal growth conditions. Overall, the majority of group A and B Hsfs are expressed in leaves while group C Hsfs are expressed at higher levels in roots. The expression of a few Hsf genes could not be detected. Heat shock (HS) caused upregulation about a quarter of genes in leaves and roots, while a number of genes were downregulated in response to HS. The highly heat-responsive gene TaHsfA2-10 was isolated through homeologous cloning. qRT-PCR revealed that TaHsfA2-10 is expressed in a wide range of tissues and organs of different development stages of wheat under the normal growth conditions. Compared to non-stress treatment, TaHsfA2-10 was highly upregulated in response to HS, H2O2, and salicylic acid (SA), and was downregulated by abscisic acid (ABA) treatment in two-leaf-old seedlings. Transient transfection of tobacco epidermal cells revealed subcellular localization of TaHsfA2-10 in the nucleus under the normal growth conditions. Phenotypic observation indicated that TaHsfA2-10 could improve both basal thermotolerance and acquired thermotolerance of transgenic Arabidopsis thaliana seedlings and rescue the thermotolerance defect of the T-DNA insertion mutant athsfa2 during HS. Compared to wild type (WT) seedlings, the TaHsfA2-10-overexpressing lines displayed both higher chlorophyll contents and higher survival rates. Yeast one-hybrid assay results revealed that TaHsfA2-10 had transactivation activity. The expression levels of thermotolerance-related AtHsps in the TaHsfA2-10 transgeinc Arabidopsis thaliana were higher than those in WT after HS. CONCLUSIONS Wheat Hsf family members exhibit diversification and specificity of transcription expression patterns in advanced development stages under the normal conditions and after HS. As a markedly responsive transcriptional factor to HS, SA and H2O2, TaHsfA2-10 involves in thermotolerance regulation of plants through binding to the HS responsive element in promoter domain of relative Hsps and upregulating the expression of Hsp genes.
Collapse
Affiliation(s)
- Xiu-lin Guo
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
| | - Sai-nan Yuan
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 PR China
| | - Hua-ning Zhang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
| | - Yuan-yuan Zhang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024 PR China
| | - Yu-jie Zhang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
| | - Gui-yan Wang
- Faculty of Agronomy, Hebei Agricultural University, No. 2596, Lekai South Street, Baoding, 071001 PR China
| | - Ya-qing Li
- Shijiazhuang Academy of Agriculture and Forestry Science, No. 479, Shengli North Street, Shijiazhuang, 050000 PR China
| | - Guo-liang Li
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences / Plant Genetic Engineering Center of Hebei Province, No. 598, Heping West Street, Shijiazhuang, 050051 PR China
| |
Collapse
|
19
|
Waters ER, Vierling E. Plant small heat shock proteins - evolutionary and functional diversity. THE NEW PHYTOLOGIST 2020; 227:24-37. [PMID: 32297991 DOI: 10.1111/nph.16536] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/21/2020] [Indexed: 05/22/2023]
Abstract
Small heat shock proteins (sHSPs) are an ubiquitous protein family found in archaea, bacteria and eukaryotes. In plants, as in other organisms, sHSPs are upregulated by stress and are proposed to act as molecular chaperones to protect other proteins from stress-induced damage. sHSPs share an 'α-crystallin domain' with a β-sandwich structure and a diverse N-terminal domain. Although sHSPs are 12-25 kDa polypeptides, most assemble into oligomers with ≥ 12 subunits. Plant sHSPs are particularly diverse and numerous; some species have as many as 40 sHSPs. In angiosperms this diversity comprises ≥ 11 sHSP classes encoding proteins targeted to the cytosol, nucleus, endoplasmic reticulum, chloroplasts, mitochondria and peroxisomes. The sHSPs underwent a lineage-specific gene expansion, diversifying early in land plant evolution, potentially in response to stress in the terrestrial environment, and expanded again in seed plants and again in angiosperms. Understanding the structure and evolution of plant sHSPs has progressed, and a model for their chaperone activity has been proposed. However, how the chaperone model applies to diverse sHSPs and what processes sHSPs protect are far from understood. As more plant genomes and transcriptomes become available, it will be possible to explore theories of the evolutionary pressures driving sHSP diversification.
Collapse
Affiliation(s)
- Elizabeth R Waters
- Biology Department, San Diego State University, San Diego, CA, 92182, USA
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
20
|
Zhu L, Cernusak LA, Song X. Dynamic responses of gas exchange and photochemistry to heat interference during drought in wheat and sorghum. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:611-627. [PMID: 32393434 DOI: 10.1071/fp19242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/14/2020] [Indexed: 06/11/2023]
Abstract
Drought and heat stress significantly affect crop growth and productivity worldwide. It is unknown how heat interference during drought affects physiological processes dynamically in crops. Here we focussed on gas exchange and photochemistry in wheat and sorghum in response to simulated heat interference via +15°C of temperature during ~2 week drought and re-watering. Results showed that drought decreased net photosynthesis (Anet), stomatal conductance (gs), maximum velocity of ribulose-1, 5-bisphosphate carboxylase/oxygenase carboxylation (Vcmax) and electron transport rate (J) in both wheat and sorghum. Heat interference did not further reduce Anet or gs. Drought increased non-photochemical quenching (Φnpq), whereas heat interference decreased Φnpq. The δ13C of leaf, stem and roots was higher in drought-treated wheat but lower in drought-treated sorghum. The results suggest that (1) even under drought conditions wheat and sorghum increased or maintained gs for transpirational cooling to alleviate negative effects by heat interference; (2) non-photochemical quenching responded differently to drought and heat stress; (3) wheat and sorghum responded in opposing patterns in δ13C. These findings point to the importance of stomatal regulation under heat crossed with drought stress and could provide useful information on development of better strategies to secure crop production for future climate change.
Collapse
Affiliation(s)
- Lingling Zhu
- Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Australia
| | - Xin Song
- Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; and Corresponding author.
| |
Collapse
|
21
|
Diverging Responses of Two Subtropical Tree Species (Schima superba and Cunninghamia lanceolata) to Heat Waves. FORESTS 2020. [DOI: 10.3390/f11050513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The frequency and intensity of heat waves (HWs) has increased in subtropical regions in recent years. The mechanism underlying the HW response of subtropical trees remains unclear. In this study, we conducted an experiment with broad-leaved Schima superba (S. superba) and coniferous Cunninghamia lanceolata (C. lanceolata) seedlings to examine HW (5-day long) effects on stem water transport, leaf water use efficiency (WUE), morphology and growth, and to elucidate differences in the responses of both species. Our results indicated that HWs can significantly reduce hydraulic conductivity in both species. C. lanceolata experienced significant xylem embolism, with the percentage loss of conductivity (PLC) increasing by 40%, while S. superba showed a non-significant increase in PLC (+25%). Furthermore, HW also caused a reduction in photosynthesis rates (An), but transpiration rates (Tr) increased on the 5th day of the HW, together leading to a significant decrease in leaf WUE. From diurnal dynamics, we observed that the HW caused significant decrease of S. superba An only in the morning, but nearly the all day for C. lanceolata. During the morning, with a high vapor pressure deficit (VPD) environment, the HW increased Tr, which contributed a lot to latently cooling the foliage. In comparing the two tree species, we found that HW effects on S. superba were mostly short-term, with leaf senescence but limited or no xylem embolism. The surviving S. superba recovered rapidly, forming new branches and leaves, aided by their extensive root systems. For C. lanceolata, continued seedling growth initially but with subsequent xylem embolism and withering of shoots, led to stunted recovery and regrowth. In conclusion, apart from the direct thermal impacts caused by HW, drought stress was the main cause of significant negative effects on plant water transport and the photosynthetic system. Furthermore, S. superba and C. lanceolata showed clearly different responses to HW, which implies that the response mechanisms of broad-leaved and coniferous tree species to climate change can differ.
Collapse
|
22
|
Sun X, Zhu J, Li X, Li Z, Han L, Luo H. AsHSP26.8a, a creeping bentgrass small heat shock protein integrates different signaling pathways to modulate plant abiotic stress response. BMC PLANT BIOLOGY 2020; 20:184. [PMID: 32345221 PMCID: PMC7189581 DOI: 10.1186/s12870-020-02369-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/29/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Small heat shock proteins (sHSPs) are critical for plant response to biotic and abiotic stresses, especially heat stress. They have also been implicated in various aspects of plant development. However, the acting mechanisms of the sHSPs in plants, especially in perennial grass species, remain largely elusive. RESULTS In this study, AsHSP26.8a, a novel chloroplast-localized sHSP gene from creeping bentgrass (Agrostis stolonifera L.) was cloned and its role in plant response to environmental stress was studied. AsHSP26.8a encodes a protein of 26.8 kDa. Its expression was strongly induced in both leaf and root tissues by heat stress. Transgenic Arabidopsis plants overexpressing AsHSP26.8a displayed reduced tolerance to heat stress. Furthermore, overexpression of AsHSP26.8a resulted in hypersensitivity to hormone ABA and salinity stress. Global gene expression analysis revealed AsHSP26.8a-modulated expression of heat-shock transcription factor gene, and the involvement of AsHSP26.8a in ABA-dependent and -independent as well as other stress signaling pathways. CONCLUSIONS Our results suggest that AsHSP26.8a may negatively regulate plant response to various abiotic stresses through modulating ABA and other stress signaling pathways.
Collapse
Affiliation(s)
- Xinbo Sun
- Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Junfei Zhu
- Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Xin Li
- Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Zhigang Li
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Liebao Han
- Turfgrass Research Institute, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA.
| |
Collapse
|
23
|
Hu S, Ding Y, Zhu C. Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:375. [PMID: 32300353 PMCID: PMC7142257 DOI: 10.3389/fpls.2020.00375] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Increased temperatures caused by global warming threaten agricultural production, as warmer conditions can inhibit plant growth and development or even destroy crops in extreme circumstances. Extensive research over the past several decades has revealed that chloroplasts, the photosynthetic organelles of plants, are highly sensitive to heat stress, which affects a variety of photosynthetic processes including chlorophyll biosynthesis, photochemical reactions, electron transport, and CO2 assimilation. Important mechanisms by which plant cells respond to heat stress to protect these photosynthetic organelles have been identified and analyzed. More recent studies have made it clear that chloroplasts play an important role in inducing the expression of nuclear heat-response genes during the heat stress response. In this review, we summarize these important advances in plant-based research and discuss how the sensitivity, responses, and signaling roles of chloroplasts contribute to plant heat sensitivity and tolerance.
Collapse
Affiliation(s)
| | | | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
24
|
Bettini PP, Lazzara L, Massi L, Fani F, Mauro ML. Effect of far-red light exposure on photosynthesis and photoprotection in tomato plants transgenic for the Agrobacterium rhizogenes rolB gene. JOURNAL OF PLANT PHYSIOLOGY 2020; 245:153095. [PMID: 31877472 DOI: 10.1016/j.jplph.2019.153095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/21/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Previous work showed in tomato plants harbouring the Agrobacterium rhizogenes rolB gene overexpression of genes involved in chloroplast function and stress response, significant increase in non-photochemical quenching and chlorophyll a and b content, and reduced chlorophyll a/b ratio. The latter condition being typical of plant shade where far-red is dominant, suggested a role for rolB in improving photosynthesis in such condition. To gain a better insight into these results, the photosynthetic performance of transgenic and control plants was compared by means of variable fluorescence kinetics with a WATER-PAM chlorophyll fluorometer, after 6 days-exposure to white light and to a far-red-enriched light source. Photosynthetic parameters analysed were quantum yield of photosystem II photochemistry Y(II); qL, corresponding to the fraction of open PSII reaction centers in a "lake" model of photosystem II; non-photochemical quenching and Y(NO), describing, respectively, regulated and non-regulated pathways for dissipation of excess energy. Chlorophyll a and b content was also analysed by HPLC. Finally, real-time PCR was performed to quantify the expression level of some of the chloroplast-related genes already shown to be overexpressed in transgenic plants. Quantum yield of photosystem II photochemistry decreased with increasing light intensity, showing no significant differences in both plant genotypes and light regimen. qL, on the other hand, was significantly higher at low PAR intensities, in particular in FR-treated transgenic plants. Fate of remaining light energy, channelled into regulated or non-regulated dissipation pathways, was different in transgenic and control plants, indicating a higher capability for protection from photodamage in rolB plants, particularly after exposure to far-red-enriched light. Chlorophyll a/b ratio was also decreased in transgenic plants under far-red-enriched light with respect to white light. Finally, qPCR showed that the expression of genes encoding small heat shock protein, chlorophyll a/b binding protein and carbonic anhydrase was significantly induced by far-red-enriched condition. Taken together, these data suggest the involvement of rolB in photosynthesis modulation under far-red-rich light in tomato.
Collapse
Affiliation(s)
- Priscilla P Bettini
- Dipartimento di Biologia, Università degli Studi di Firenze, via Madonna del Piano 6, 50019, Sesto f.no (FI), Italy.
| | - Luigi Lazzara
- Dipartimento di Biologia, Università degli Studi di Firenze, via Micheli 1, 50121, Firenze, Italy.
| | - Luca Massi
- Dipartimento di Biologia, Università degli Studi di Firenze, via Micheli 1, 50121, Firenze, Italy.
| | - Fabiola Fani
- Agenzia Regionale per la Protezione Ambientale della Toscana (ARPAT), Area Vasta Costa, Settore Mare, Sede di Piombino, via Adige 12, 57025, Piombino (LI), Italy.
| | - Maria Luisa Mauro
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, P.le A. Moro 5, 00185, Roma, Italy.
| |
Collapse
|
25
|
Wang X, Li Z, Liu B, Zhou H, Elmongy MS, Xia Y. Combined Proteome and Transcriptome Analysis of Heat-Primed Azalea Reveals New Insights Into Plant Heat Acclimation Memory. FRONTIERS IN PLANT SCIENCE 2020; 11:1278. [PMID: 32973837 PMCID: PMC7466565 DOI: 10.3389/fpls.2020.01278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/05/2020] [Indexed: 05/21/2023]
Abstract
Plants can obtain superinduction of defense against unpredictable challenges based on prior acclimation, but the mechanisms involved in the acclimation memory are little known. The objective of this study was to characterize mechanisms of heat acclimation memory in Rhododendron hainanense, a thermotolerant wild species of azalea. Pretreatment of a 2-d recovery (25/18°C, day/night) after heat acclimation (37°C, 1 h) (AR-pt) did not weaken but enhanced acquired thermotolerance in R. hainanense with less damaged phenotype, net photosynthetic rate, and membrane stability than non-acclimation pretreated (NA-pt) plants. Combined transcriptome and proteome analysis revealed that a lot of heat-responsive genes still maintained high protein abundance rather than transcript level after the 2-d recovery. Photosynthesis-related genes were highly enriched and most decreased under heat stress (HS: 42°C, 1 h) with a less degree in AR-pt plants compared to NA-pt. Sustainably accumulated chloroplast-localized heat shock proteins (HSPs), Rubisco activase 1 (RCA1), beta-subunit of chaperonin-60 (CPN60β), and plastid transcriptionally active chromosome 5 (pTAC5) in the recovery period probably provided equipped protection of AR-pt plants against the subsequent HS, with less damaged photochemical efficiency and chloroplast structure. In addition, significant higher levels of RCA1 transcripts in AR-pt compared to NA-pt plants in early stage of HS showed a more important role of RCA1 than other chaperonins in heat acclimation memory. The novel heat-induced RCA1, rather than constitutively expressed RCA2 and RCA3, showed excellent thermostability after long-term HS (LHS: 42/35°C, 7 d) and maintained balanced Rubisco activation state in photosynthetic acclimation. This study provides new insights into plant heat acclimation memory and indicates candidate genes for genetic modification and molecular breeding in thermotolerance improvement.
Collapse
Affiliation(s)
- Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zheng Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bing Liu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hong Zhou
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mohamed S. Elmongy
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Vegetable and Floriculture, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Yiping Xia,
| |
Collapse
|
26
|
Haworth M, Marino G, Riggi E, Avola G, Brunetti C, Scordia D, Testa G, Thiago Gaudio Gomes M, Loreto F, Luciano Cosentino S, Centritto M. The effect of summer drought on the yield of Arundo donax is reduced by the retention of photosynthetic capacity and leaf growth later in the growing season. ANNALS OF BOTANY 2019; 124:567-580. [PMID: 30566593 PMCID: PMC6821176 DOI: 10.1093/aob/mcy223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/22/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS The development of Arundo donax as a biomass crop for use on drought-prone marginal lands in areas with warm to hot climates is constrained by the lack of variation within this species. We investigated the effect of morphological and physiological variation on growth and tolerance to drought under field conditions in three ecotypes of A. donax collected from habitats representing a climate gradient: a pre-desert in Morocco, a semi-arid Mediterranean climate in southern Italy and a warm sub-humid region of central Italy. METHODS The three A. donax ecotypes were grown under irrigated and rain-fed conditions in a common garden field trial in a region with a semi-arid Mediterranean climate. Physiological and morphological characteristics, and carbohydrate metabolism of the ecotypes were recorded to establish which traits were associated with yield and/or drought tolerance. KEY RESULTS Variation was observed between the A. donax ecotypes. The ecotype from the most arid habitat produced the highest biomass yield. Stem height and the retention of photosynthetic capacity later in the year were key traits associated with differences in biomass yield. The downregulation of photosynthetic capacity was not associated with changes in foliar concentrations of sugars or starch. Rain-fed plants maintained photosynthesis and growth later in the year compared with irrigated plants that began to senescence earlier, thus minimizing the difference in yield. Effective stomatal control prevented excessive water loss, and the emission of isoprene stabilized photosynthetic membranes under drought and heat stress in A. donax plants grown under rain-fed conditions without supplementary irrigation. CONCLUSIONS Arundo donax is well adapted to cultivation in drought-prone areas with warm to hot climates. None of the A. donax ecotypes exhibited all of the desired traits consistent with an 'ideotype'. Breeding or genetic (identification of quantitative trait loci) improvement of A. donax should select ecotypes on the basis of stem morphology and the retention of photosynthetic capacity.
Collapse
Affiliation(s)
- Matthew Haworth
- Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano, Sesto Fiorentino, Firenze, Italy
| | - Giovanni Marino
- Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano, Sesto Fiorentino, Firenze, Italy
| | - Ezio Riggi
- Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano, Sesto Fiorentino, Firenze, Italy
| | - Giovanni Avola
- Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano, Sesto Fiorentino, Firenze, Italy
| | - Cecilia Brunetti
- Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano, Sesto Fiorentino, Firenze, Italy
- Department of Agrifood Production and Environmental Sciences (DiSPAA), University of Florence, Viale delle Idee, Sesto Fiorentino, Firenze, Italy
| | - Danilo Scordia
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di Catania, via Valdisavoia, Catania, Italy
| | - Giorgio Testa
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di Catania, via Valdisavoia, Catania, Italy
| | - Marcos Thiago Gaudio Gomes
- Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano, Sesto Fiorentino, Firenze, Italy
- Department of Biological Sciences, Center for Human and Natural Sciences, Federal University of Espírito Santo, Avenida Fernando Ferrari, Goiabeiras, CEP, Vitória, Espírito Santo, Brazil
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy (CNR-DiSBA), Rome, Italy
| | - Salvatore Luciano Cosentino
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di Catania, via Valdisavoia, Catania, Italy
| | - Mauro Centritto
- Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
27
|
Posch BC, Kariyawasam BC, Bramley H, Coast O, Richards RA, Reynolds MP, Trethowan R, Atkin OK. Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5051-5069. [PMID: 31145793 DOI: 10.1093/jxb/erz257] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
High temperatures account for major wheat yield losses annually and, as the climate continues to warm, these losses will probably increase. Both photosynthesis and respiration are the main determinants of carbon balance and growth in wheat, and both are sensitive to high temperature. Wheat is able to acclimate photosynthesis and respiration to high temperature, and thus reduce the negative affects on growth. The capacity to adjust these processes to better suit warmer conditions stands as a potential avenue toward reducing heat-induced yield losses in the future. However, much remains to be learnt about such phenomena. Here, we review what is known of high temperature tolerance in wheat, focusing predominantly on the high temperature responses of photosynthesis and respiration. We also identify the many unknowns that surround this area, particularly with respect to the high temperature response of wheat respiration and the consequences of this for growth and yield. It is concluded that further investigation into the response of photosynthesis and respiration to high temperature could present several methods of improving wheat high temperature tolerance. Extending our knowledge in this area could also lead to more immediate benefits, such as the enhancement of current crop models.
Collapse
Affiliation(s)
- Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Buddhima C Kariyawasam
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Helen Bramley
- Plant Breeding Institute, Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW, Australia
| | - Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | - Matthew P Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Richard Trethowan
- Plant Breeding Institute, Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
28
|
Li ZQ, Xing W, Luo P, Zhang FJ, Jin XL, Zhang MH. Comparative transcriptome analysis of Rosa chinensis 'Slater's crimson China' provides insights into the crucial factors and signaling pathways in heat stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:312-331. [PMID: 31352248 DOI: 10.1016/j.plaphy.2019.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Heat stress limits the growth of roses and adversely affects the yield and the quality of the rose cut-flowers. To investigate the heat stress response (HSR) mechanisms of rose, we compared the transcriptome profiling generated from Rosa chinensis 'Slater's crimson China' exposed to heat stress for five different time duration (0, 0.5, 2, 6, 12 h). Overall, 6175 differentially expressed genes (DGEs) were identified and exhibited different temporal expression patterns. Up-regulated genes related to chaperone-mediated protein folding, signal transduction and ROS scavenging were rapidly induced after 0.5-2 h of heat treatment, which provides evidence for the early adjustments of heat stress response in R. chinensis. While the down-regulated genes related to light reaction, sucrose biosynthesis, starch biosynthesis and cell wall biosynthesis were identified after as short as 6 h of heat stress, which indicated the ongoing negative effects on the physiology of R. chinensis. Using weighted gene co-expression network analysis, we found that different heat stress stages could be delineated by several modules. Based on integrating the transcription factors with upstream enriched DNA motifs of co-expressed genes in these modules, the gene regulation networks were predicted and several regulators of HSR were identified. Of particular importance was the discovery of the module associated with rapid sensing and signal transduction, in which numerous co-expressed genes related to chaperones, Ca2+ signaling pathways and transcription factors were identified. The results of this study provided an important resource for further dissecting the role of candidate genes governing the transcriptional regulatory network of HSR in Rose.
Collapse
Affiliation(s)
- Ze Qing Li
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wen Xing
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Ping Luo
- Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Fang Jing Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Xiao Ling Jin
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Min Huan Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| |
Collapse
|
29
|
Lipidomic studies of membrane glycerolipids in plant leaves under heat stress. Prog Lipid Res 2019; 75:100990. [DOI: 10.1016/j.plipres.2019.100990] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/13/2019] [Accepted: 07/14/2019] [Indexed: 12/29/2022]
|
30
|
Aspinwall MJ, Pfautsch S, Tjoelker MG, Vårhammar A, Possell M, Drake JE, Reich PB, Tissue DT, Atkin OK, Rymer PD, Dennison S, Van Sluyter SC. Range size and growth temperature influence Eucalyptus species responses to an experimental heatwave. GLOBAL CHANGE BIOLOGY 2019; 25:1665-1684. [PMID: 30746837 DOI: 10.1111/gcb.14590] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 05/24/2023]
Abstract
Understanding forest tree responses to climate warming and heatwaves is important for predicting changes in tree species diversity, forest C uptake, and vegetation-climate interactions. Yet, tree species differences in heatwave tolerance and their plasticity to growth temperature remain poorly understood. In this study, populations of four Eucalyptus species, two with large range sizes and two with comparatively small range sizes, were grown under two temperature treatments (cool and warm) before being exposed to an equivalent experimental heatwave. We tested whether the species with large and small range sizes differed in heatwave tolerance, and whether trees grown under warmer temperatures were more tolerant of heatwave conditions than trees grown under cooler temperatures. Visible heatwave damage was more common and severe in the species with small rather than large range sizes. In general, species that showed less tissue damage maintained higher stomatal conductance, lower leaf temperatures, larger increases in isoprene emissions, and less photosynthetic inhibition than species that showed more damage. Species exhibiting more severe visible damage had larger increases in heat shock proteins (HSPs) and respiratory thermotolerance (Tmax ). Thus, across species, increases in HSPs and Tmax were positively correlated, but inversely related to increases in isoprene emissions. Integration of leaf gas-exchange, isoprene emissions, proteomics, and respiratory thermotolerance measurements provided new insight into mechanisms underlying variability in tree species heatwave tolerance. Importantly, warm-grown seedlings were, surprisingly, more susceptible to heatwave damage than cool-grown seedlings, which could be associated with reduced enzyme concentrations in leaves. We conclude that species with restricted range sizes, along with trees growing under climate warming, may be more vulnerable to heatwaves of the future.
Collapse
Affiliation(s)
- Michael J Aspinwall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Sebastian Pfautsch
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Angelica Vårhammar
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Malcolm Possell
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - John E Drake
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Forest and Natural Resources Management, SUNY-ESF, Syracuse, New York
| | - Peter B Reich
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Department of Forest Resources, University of Minnesota, Minnesota
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Paul D Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Siobhan Dennison
- Department of Biological Science, Macquarie University, North Ryde, NSW, Australia
| | - Steven C Van Sluyter
- Department of Biological Science, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
31
|
Soltani A, Weraduwage SM, Sharkey TD, Lowry DB. Elevated temperatures cause loss of seed set in common bean (Phaseolus vulgaris L.) potentially through the disruption of source-sink relationships. BMC Genomics 2019; 20:312. [PMID: 31014227 PMCID: PMC6480737 DOI: 10.1186/s12864-019-5669-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/08/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Climate change models predict more frequent incidents of heat stress worldwide. This trend will contribute to food insecurity, particularly for some of the most vulnerable regions, by limiting the productivity of crops. Despite its great importance, there is a limited understanding of the underlying mechanisms of variation in heat tolerance within plant species. Common bean, Phaseolus vulgaris, is relatively susceptible to heat stress, which is of concern given its critical role in global food security. Here, we evaluated three genotypes of P. vulgaris belonging to kidney market class under heat and control conditions. The Sacramento and NY-105 genotypes were previously reported to be heat tolerant, while Redhawk is heat susceptible. RESULTS We quantified several morpho-physiological traits for leaves and found that photosynthetic rate, stomatal conductance, and leaf area all increased under elevated temperatures. Leaf area expansion under heat stress was greatest for the most susceptible genotype, Redhawk. To understand gene regulatory responses among the genotypes, total RNA was extracted from the fourth trifoliate leaves for RNA-sequencing. Several genes involved in the protection of PSII (HSP21, ABA4, and LHCB4.3) exhibited increased expression under heat stress, indicating the importance of photoprotection of PSII. Furthermore, expression of the gene SUT2 was reduced in heat. SUT2 is involved in the phloem loading of sucrose and its distal translocation to sinks. We also detected an almost four-fold reduction in the concentration of free hexoses in heat-treated beans. This reduction was more drastic in the susceptible genotype. CONCLUSIONS Overall, our data suggests that while moderate heat stress does not negatively affect photosynthesis, it likely interrupts intricate source-sink relationships. These results collectively suggest a physiological mechanism for why pollen fertility and seed set are negatively impacted by elevated temperatures. Identifying the physiological and transcriptome dynamics of bean genotypes in response to heat stress will likely facilitate the development of varieties that can better tolerate a future of elevated temperatures.
Collapse
Affiliation(s)
- Ali Soltani
- Department of Plant Biology, Michigan State University, East Lansing, MI USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI USA
| | | | - Thomas D. Sharkey
- Plant Resilience Institute, Michigan State University, East Lansing, MI USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI USA
| | - David B. Lowry
- Department of Plant Biology, Michigan State University, East Lansing, MI USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI USA
| |
Collapse
|
32
|
Goodman CM. How a fortuitous collaboration helped catalyze new insights into helper proteins. J Biol Chem 2019; 294:2208-2210. [DOI: 10.1074/jbc.cl119.007667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Haworth M, Marino G, Brunetti C, Killi D, De Carlo A, Centritto M. The Impact of Heat Stress and Water Deficit on the Photosynthetic and Stomatal Physiology of Olive ( Olea europaea L.)-A Case Study of the 2017 Heat Wave. PLANTS (BASEL, SWITZERLAND) 2018; 7:E76. [PMID: 30241389 PMCID: PMC6313851 DOI: 10.3390/plants7040076] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023]
Abstract
Heat waves are predicted to increase in frequency and duration in many regions as global temperatures rise. These transient increases in temperature above normal average values will have pronounced impacts upon the photosynthetic and stomatal physiology of plants. During the summer of 2017, much of the Mediterranean experienced a severe heat wave. Here, we report photosynthetic leaf gas exchange and chlorophyll fluorescence parameters of olive (Olea europaea cv. Leccino) grown under water deficit and full irrigation over the course of the heat wave as midday temperatures rose over 40 °C in Central Italy. Heat stress induced a decline in the photosynthetic capacity of the olives consistent with reduced ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity. Damage to photosystem II was more apparent in plants subject to water deficit. In contrast to previous studies, higher temperatures induced reductions in stomatal conductance. Heat stress adversely affected the carbon efficiency of olive. The selection of olive varieties with enhanced tolerance to heat stress and/or strategies to mitigate the impact of higher temperatures will become increasingly important in developing sustainable agriculture in the Mediterranean as global temperatures rise.
Collapse
Affiliation(s)
- Matthew Haworth
- Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano 10, 50019 Firenze, Italy.
| | - Giovanni Marino
- Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano 10, 50019 Firenze, Italy.
| | - Cecilia Brunetti
- Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano 10, 50019 Firenze, Italy.
- Department of Agrifood Production and Environmental Sciences (DiSPAA), University of Florence, Viale delle Idee 30, 50019 Firenze, Italy.
| | - Dilek Killi
- Institute of Biometeorology, National Research Council of Italy (CNR-IBIMET), Via Giovanni Caproni 8, 50145 Firenze, Italy.
| | - Anna De Carlo
- Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano 10, 50019 Firenze, Italy.
| | - Mauro Centritto
- Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano 10, 50019 Firenze, Italy.
| |
Collapse
|
34
|
Rezaee F, Lahouti M, Maleki M, Ganjeali A. Comparative proteomics analysis of whitetop (Lepidium draba L.) seedlings in response to exogenous glucose. Int J Biol Macromol 2018; 120:2458-2465. [PMID: 30193920 DOI: 10.1016/j.ijbiomac.2018.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
Abstract
In this research, a comparative proteomics approach was conducted to understand the physiological processes behind the sulforaphane formation in whitetop seedlings in response to exogenous glucose. Initially, 5-day-old whitetop seedlings were elicited by different concentrations (0, 166, 250, 277, 360 mM) of glucose for 72 h. According to the results, sulforaphane formation was influenced in a dose-dependent manner by glucose, and was maximized with the concentrations of 166 and 250 mM. Consequently, 2-dimensional gel electrophoresis was performed on the 166 mM glucose-elicited seedlings and it was shown that 25 protein spots were differentially expressed between glucose-elicited seedlings and control. Two hypothetical (were down-regulated) and 9 unique proteins (44% and 56% up- and down-regulated, respectively) were identified based on the Mass spectrometry analysis. According to the functional classification of the unique proteins, photosynthetic, chaperone, energy metabolism, signaling and sorting related proteins are marked in response to the glucose elicitation. This is the first report to successfully identify the Abscisic acid receptor PYR1-like and sorting nexin 1 isoform X1 by proteomics technique. In addition, the role of the sorting nexin 1 isoform X1 in the glucose-elicited whitetop seedling is reported for the first time.
Collapse
Affiliation(s)
- Fatemeh Rezaee
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrdad Lahouti
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahmood Maleki
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Ganjeali
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
35
|
Karadar M, Neuner G, Kranner I, Holzinger A, Buchner O. Solar irradiation levels during simulated long- and short-term heat waves significantly influence heat survival, pigment and ascorbate composition, and free radical scavenging activity in alpine Vaccinium gaultherioides. PHYSIOLOGIA PLANTARUM 2018; 163:211-230. [PMID: 29274132 PMCID: PMC6033156 DOI: 10.1111/ppl.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/18/2017] [Accepted: 12/20/2017] [Indexed: 05/12/2023]
Abstract
In the 20th century, annual mean temperatures in the European Alps rose by almost 1 K and are predicted to rise further, increasing the impact of temperature on alpine plants. The role of light in the heat hardening of plants is still not fully understood. Here, the alpine dwarf shrub Vaccinium gaultherioides was exposed in situ to controlled short-term heat spells (150 min with leaf temperatures 43-49°C) and long-term heat waves (7 days, 30°C) under different irradiation intensities. Lethal leaf temperatures (LT50 ) were calculated. Low solar irradiation [max. 250 photosynthetic photon flux density (PPFD)] during short-term heat treatments mitigated the heat stress, shown by reduced leaf tissue damage and higher Fv /Fm (potential quantum efficiency of photosystem 2) than in darkness. The increase in xanthophyll cycle activity and ascorbate concentration was more pronounced under low light, and free radical scavenging activity increased independent of light conditions. During long-term heat wave exposure, heat tolerance increased from 3.7 to 6.5°C with decreasing mean solar irradiation intensity (585-115 PPFD). Long-term exposure to heat under low light enhanced heat hardening and increased photosynthetic pigment, dehydroascorbate and violaxanthin concentration. In conclusion, V. gaultherioides is able to withstand temperatures of around 50°C, and its heat hardening can be enhanced by low light during both short- and long-term heat treatment. Data showing the specific role of light during short- and long-term heat exposure and the potential risk of lethal damage in alpine shrubs as a result of rising temperature are discussed.
Collapse
Affiliation(s)
- Matthias Karadar
- Institute of Botany, Functional Plant BiologyUniversity of Innsbruck6020InnsbruckAustria
| | - Gilbert Neuner
- Institute of Botany, Functional Plant BiologyUniversity of Innsbruck6020InnsbruckAustria
| | - Ilse Kranner
- Institute of Botany, Functional Plant BiologyUniversity of Innsbruck6020InnsbruckAustria
| | - Andreas Holzinger
- Institute of Botany, Functional Plant BiologyUniversity of Innsbruck6020InnsbruckAustria
| | - Othmar Buchner
- Institute of Botany, Functional Plant BiologyUniversity of Innsbruck6020InnsbruckAustria
| |
Collapse
|
36
|
Wang W, Teng F, Lin Y, Ji D, Xu Y, Chen C, Xie C. Transcriptomic study to understand thermal adaptation in a high temperature-tolerant strain of Pyropia haitanensis. PLoS One 2018; 13:e0195842. [PMID: 29694388 PMCID: PMC5919043 DOI: 10.1371/journal.pone.0195842] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/01/2018] [Indexed: 01/31/2023] Open
Abstract
Pyropia haitanensis, a high-yield commercial seaweed in China, is currently undergoing increasing levels of high-temperature stress due to gradual global warming. The mechanisms of plant responses to high temperature stress vary with not only plant type but also the degree and duration of high temperature. To understand the mechanism underlying thermal tolerance in P. haitanensis, gene expression and regulation in response to short- and long-term temperature stresses (SHS and LHS) was investigated by performing genome-wide high-throughput transcriptomic sequencing for a high temperature tolerant strain (HTT). A total of 14,164 differential expression genes were identified to be high temperature-responsive in at least one time point by high-temperature treatment, representing 41.10% of the total number of unigenes. The present data indicated a decrease in the photosynthetic and energy metabolic rates in HTT to reduce unnecessary energy consumption, which in turn facilitated in the rapid establishment of acclimatory homeostasis in its transcriptome during SHS. On the other hand, an increase in energy consumption and antioxidant substance activity was observed with LHS, which apparently facilitates in the development of resistance against severe oxidative stress. Meanwhile, ubiquitin-mediated proteolysis, brassinosteroids, and heat shock proteins also play a vital role in HTT. The effects of SHS and LHS on the mechanism of HTT to resist heat stress were relatively different. The findings may facilitate further studies on gene discovery and the molecular mechanisms underlying high-temperature tolerance in P. haitanensis, as well as allow improvement of breeding schemes for high temperature-tolerant macroalgae that can resist global warming.
Collapse
Affiliation(s)
- Wenlei Wang
- Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China
| | - Fei Teng
- Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China
| | - Yinghui Lin
- Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China
| | - Changsheng Chen
- Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen, China
- * E-mail:
| |
Collapse
|
37
|
Haworth M, Belcher CM, Killi D, Dewhirst RA, Materassi A, Raschi A, Centritto M. Impaired photosynthesis and increased leaf construction costs may induce floral stress during episodes of global warming over macroevolutionary timescales. Sci Rep 2018; 8:6206. [PMID: 29670149 PMCID: PMC6049339 DOI: 10.1038/s41598-018-24459-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/21/2018] [Indexed: 11/30/2022] Open
Abstract
Global warming events have coincided with turnover of plant species at intervals in Earth history. As mean global temperatures rise, the number, frequency and duration of heat-waves will increase. Ginkgo biloba was grown under controlled climatic conditions at two different day/night temperature regimes (25/20 °C and 35/30 °C) to investigate the impact of heat stress. Photosynthetic CO2-uptake and electron transport were reduced at the higher temperature, while rates of respiration were greater; suggesting that the carbon balance of the leaves was adversely affected. Stomatal conductance and the potential for evaporative cooling of the leaves was reduced at the higher temperature. Furthermore, the capacity of the leaves to dissipate excess energy was also reduced at 35/30 °C, indicating that photo-protective mechanisms were no longer functioning effectively. Leaf economics were adversely affected by heat stress, exhibiting an increase in leaf mass per area and leaf construction costs. This may be consistent with the selective pressures experienced by fossil Ginkgoales during intervals of global warming such as the Triassic - Jurassic boundary or Early Eocene Climatic Optimum. The physiological and morphological responses of the G. biloba leaves were closely interrelated; these relationships may be used to infer the leaf economics and photosynthetic/stress physiology of fossil plants.
Collapse
Affiliation(s)
- Matthew Haworth
- The Italian National Research Council - Tree and Timber Institute (CNR-IVALSA) Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy.
| | - Claire M Belcher
- University of Exeter wildFIRE Lab, Hatherly Labs Prince Wales Road Exeter, EX PS, Devon, England
| | - Dilek Killi
- Department of Agrifood Production and Environmental Sciences (DiSPAA), University of Florence Piazzale delle Cascine, 28 50144, Florence, Italy
| | - Rebecca A Dewhirst
- University of Exeter wildFIRE Lab, Hatherly Labs Prince Wales Road Exeter, EX PS, Devon, England
| | - Alessandro Materassi
- The Italian National Research Council - Institute of Biometeorology (CNR-IBIMET) Via Giovanni Caproni, 8 50145, Florence, Italy
| | - Antonio Raschi
- The Italian National Research Council - Institute of Biometeorology (CNR-IBIMET) Via Giovanni Caproni, 8 50145, Florence, Italy
| | - Mauro Centritto
- The Italian National Research Council - Tree and Timber Institute (CNR-IVALSA) Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| |
Collapse
|
38
|
Abstract
Increases in ambient temperatures have been a severe threat to crop production in many countries around the world under climate change. Chloroplasts serve as metabolic centers and play a key role in physiological adaptive processes to heat stress. In addition to expressing heat shock proteins that protect proteins from heat-induced damage, metabolic reprogramming occurs during adaptive physiological processes in chloroplasts. Heat stress leads to inhibition of plant photosynthetic activity by damaging key components functioning in a variety of metabolic processes, with concomitant reductions in biomass production and crop yield. In this review article, we will focus on events through extensive and transient metabolic reprogramming in response to heat stress, which included chlorophyll breakdown, generation of reactive oxygen species (ROS), antioxidant defense, protein turnover, and metabolic alterations with carbon assimilation. Such diverse metabolic reprogramming in chloroplasts is required for systemic acquired acclimation to heat stress in plants.
Collapse
Affiliation(s)
- Qing-Long Wang
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Juan-Hua Chen
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Ning-Yu He
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
39
|
Hu XJ, Chen D, Lynne Mclntyre C, Fernanda Dreccer M, Zhang ZB, Drenth J, Kalaipandian S, Chang H, Xue GP. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. PLANT, CELL & ENVIRONMENT 2018; 41:79-98. [PMID: 28370204 DOI: 10.1111/pce.12957] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 05/20/2023]
Abstract
High temperature at grain filling can severely reduce wheat yield. Heat shock factors (Hsfs) are central regulators in heat acclimation. This study investigated the role of TaHsfC2a, a member of the monocot-specific HsfC2 subclass, in the regulation of heat protection genes in Triticum aestivum. Three TaHsfC2a homoeologous genes were highly expressed in wheat grains during grain filling and showed only transient up-regulation in the leaves by heat stress but were markedly up-regulated by drought and abscisic acid (ABA) treatment. Overexpression of TaHsfC2a-B in transgenic wheat resulted in up-regulation of a suite of heat protection genes (e.g. TaHSP70d and TaGalSyn). Most TaHsfC2a-B target genes were heat, drought and ABA inducible. Transactivation analysis of two representative targets (TaHSP70d and TaGalSyn) showed that TaHsfC2a-B activated expression of reporters driven by these target promoters. Promoter mutagenesis analyses revealed that heat shock element is responsible for transactivation by TaHsfC2a-B and heat/drought induction. TaHsfC2a-B-overexpressing wheat showed improved thermotolerance but not dehydration tolerance. Most TaHsfC2a-B target genes were co-up-regulated in developing grains with TaHsfC2a genes. These data suggest that TaHsfC2a-B is a transcriptional activator of heat protection genes and serves as a proactive mechanism for heat protection in developing wheat grains via the ABA-mediated regulatory pathway.
Collapse
Affiliation(s)
- Xiao-Jun Hu
- Linyi University, Middle of Shuangling Road, Linyi, Shandong, 276000, China
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - Dandan Chen
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - C Lynne Mclntyre
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - M Fernanda Dreccer
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - Zheng-Bin Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Shijiazhuang, 050021, China
| | - Janneke Drenth
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | | | - Hongping Chang
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - Gang-Ping Xue
- CSIRO Agriculture and Food Flagship, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| |
Collapse
|
40
|
Niu Y, Xiang Y. An Overview of Biomembrane Functions in Plant Responses to High-Temperature Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:915. [PMID: 30018629 PMCID: PMC6037897 DOI: 10.3389/fpls.2018.00915] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/08/2018] [Indexed: 05/03/2023]
Abstract
Biological membranes are highly ordered structures consisting of mosaics of lipids and proteins. Elevated temperatures can directly and effectively change the properties of these membranes, including their fluidity and permeability, through a holistic effect that involves changes in the lipid composition and/or interactions between lipids and specific membrane proteins. Ultimately, high temperatures can alter microdomain remodeling and instantaneously relay ambient cues to downstream signaling pathways. Thus, dynamic membrane regulation not only helps cells perceive temperature changes but also participates in intracellular responses and determines a cell's fate. Moreover, due to the specific distribution of extra- and endomembrane elements, the plasma membrane (PM) and membranous organelles are individually responsible for distinct developmental events during plant adaptation to heat stress. This review describes recent studies that focused on the roles of various components that can alter the physical state of the plasma and thylakoid membranes as well as the crucial signaling pathways initiated through the membrane system, encompassing both endomembranes and membranous organelles in the context of heat stress responses.
Collapse
Affiliation(s)
- Yue Niu
- *Correspondence: Yue Niu, Yun Xiang,
| | - Yun Xiang
- *Correspondence: Yue Niu, Yun Xiang,
| |
Collapse
|
41
|
Qu M, Bunce JA, Sicher RC, Zhu X, Gao B, Chen G. An attempt to interpret a biochemical mechanism of C4 photosynthetic thermo-tolerance under sudden heat shock on detached leaf in elevated CO2 grown maize. PLoS One 2017; 12:e0187437. [PMID: 29220364 PMCID: PMC5722340 DOI: 10.1371/journal.pone.0187437] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022] Open
Abstract
Detached leaves at top canopy structures always experience higher solar irradiance and leaf temperature under natural conditions. The ability of tolerance to high temperature represents thermotolerance potential of whole-plants, but was less of concern. In this study, we used a heat-tolerant (B76) and a heat-susceptible (B106) maize inbred line to assess the possible mitigation of sudden heat shock (SHS) effects on photosynthesis (PN) and C4 assimilation pathway by elevated [CO2]. Two maize lines were grown in field-based open top chambers (OTCs) at ambient and elevated (+180 ppm) [CO2]. Top-expanded leaves for 30 days after emergence were suddenly exposed to a 45°C SHS for 2 hours in midday during measurements. Analysis on thermostability of cellular membrane showed there was 20% greater electrolyte leakage in response to the SHS in B106 compared to B76, in agreement with prior studies. Elevated [CO2] protected PN from SHS in B76 but not B106. The responses of PN to SHS among the two lines and grown CO2 treatments were closely correlated with measured decreases of NADP-ME enzyme activity and also to its reduced transcript abundance. The SHS treatments induced starch depletion, the accumulation of hexoses and also disrupted the TCA cycle as well as the C4 assimilation pathway in the both lines. Elevated [CO2] reversed SHS effects on citrate and related TCA cycle metabolites in B106 but the effects of elevated [CO2] were small in B76. These findings suggested that heat stress tolerance is a complex trait, and it is difficult to identify biochemical, physiological or molecular markers that accurately and consistently predict heat stress tolerance.
Collapse
Affiliation(s)
- Mingnan Qu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese academy of Sciences, Shanghai, China
- USDA-ARS, Crop Systems and Global Change Laboratory, Beltsville, MD, United States of America
| | - James A. Bunce
- USDA-ARS, Crop Systems and Global Change Laboratory, Beltsville, MD, United States of America
| | - Richard C. Sicher
- USDA-ARS, Crop Systems and Global Change Laboratory, Beltsville, MD, United States of America
| | - Xiaocen Zhu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese academy of Sciences, Shanghai, China
| | - Bo Gao
- Centralab Institute of Basic Medical Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Genyun Chen
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese academy of Sciences, Shanghai, China
| |
Collapse
|
42
|
Ivanov AG, Velitchkova MY, Allakhverdiev SI, Huner NPA. Heat stress-induced effects of photosystem I: an overview of structural and functional responses. PHOTOSYNTHESIS RESEARCH 2017; 133:17-30. [PMID: 28391379 DOI: 10.1007/s11120-017-0383-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/03/2017] [Indexed: 05/24/2023]
Abstract
Temperature is one of the main factors controlling the formation, development, and functional performance of the photosynthetic apparatus in all photoautotrophs (green plants, algae, and cyanobacteria) on Earth. The projected climate change scenarios predict increases in air temperature across Earth's biomes ranging from moderate (3-4 °C) to extreme (6-8 °C) by the year 2100 (IPCC in Climate change 2007: The physical science basis: summery for policymakers, IPCC WG1 Fourth Assessment Report 2007; Climate change 2014: Mitigation of Climate Change, IPCC WG3 Fifth Assessment Report 2014). In some areas, especially of the Northern hemisphere, even more extreme warm seasonal temperatures may occur, which possibly will cause significant negative effects on the development, growth, and yield of important agricultural crops. It is well documented that high temperatures can cause direct damages of the photosynthetic apparatus and photosystem II (PSII) is generally considered to be the primary target of heat-induced inactivation of photosynthesis. However, since photosystem I (PSI) is considered to determine the global amount of enthalpy in living systems (Nelson in Biochim Biophys Acta 1807:856-863, 2011; Photosynth Res 116:145-151, 2013), the effects of elevated temperatures on PSI might be of vital importance for regulating the photosynthetic response of all photoautotrophs in the changing environment. In this review, we summarize the experimental data that demonstrate the critical impact of heat-induced alterations on the structure, composition, and functional performance of PSI and their significant implications on photosynthesis under future climate change scenarios.
Collapse
Affiliation(s)
- Alexander G Ivanov
- Department of Biology, University of Western Ontario, 1151 Richmond Street N., London, ON, N6A 5B7, Canada.
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bl. 21, 1113, Sofia, Bulgaria.
| | - Maya Y Velitchkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Bl. 21, 1113, Sofia, Bulgaria
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow, 142290, Russia
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, 1073, Baku, Azerbaijan
| | - Norman P A Huner
- Department of Biology, University of Western Ontario, 1151 Richmond Street N., London, ON, N6A 5B7, Canada
| |
Collapse
|
43
|
Yang M, Jiang JP, Xie X, Chu YD, Fan Y, Cao XP, Xue S, Chi ZY. Chloroplasts Isolation from Chlamydomonas reinhardtii under Nitrogen Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:1503. [PMID: 28900438 PMCID: PMC5581827 DOI: 10.3389/fpls.2017.01503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Triacylglycerols are produced in abundance through chloroplast and endoplasmic reticulum pathways in some microalgae exposed to stress, though the relative contribution of either pathway remains elusive. Characterization of these pathways requires isolation of the organelles. In this study, an efficient and reproducible approach, including homogenous batch cultures of nitrogen-deprived algal cells in photobioreactors, gentle cell disruption using a simple custom-made disruptor with mechanical shear force, optimized differential centrifugation and Percoll density gradient centrifugation, was developed to isolate chloroplasts from Chlamydomonas reinhardtii subjected to nitrogen stress. Using this approach, the maximum limited stress duration was 4 h and the stressed cells exhibited 19 and 32% decreases in intracellular chlorophyll and nitrogen content, respectively. Chloroplasts with 48 - 300 μg chlorophyll were successfully isolated from stressed cells containing 10 mg chlorophyll. These stressed chloroplasts appeared intact, as monitored by ultrastructure observation and a novel quality control method involving the fatty acid biomarkers. This approach can provide sufficient quantities of intact stressed chloroplasts for subcellular biochemical studies in microalgae.
Collapse
Affiliation(s)
- Miao Yang
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
- University of Chinese Academy of SciencesBeijing, China
- School of Life Sciences and Biotechnology, Dalian University of TechnologyDalian, China
| | - Jun-Peng Jiang
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xi Xie
- Liaoning Ocean and Fisheries Science Research InstituteDalian, China
| | - Ya-Dong Chu
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
| | - Yan Fan
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
- University of Chinese Academy of SciencesBeijing, China
| | - Xu-Peng Cao
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
| | - Song Xue
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian, China
| | - Zhan-You Chi
- School of Life Sciences and Biotechnology, Dalian University of TechnologyDalian, China
| |
Collapse
|
44
|
Chen ST, He NY, Chen JH, Guo FQ. Identification of core subunits of photosystem II as action sites of HSP21, which is activated by the GUN5-mediated retrograde pathway in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:1106-1118. [PMID: 27943531 DOI: 10.1111/tpj.13447] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/03/2016] [Accepted: 12/06/2016] [Indexed: 05/19/2023]
Abstract
Photosystem II (PSII) is the most thermolabile photosynthetic complex. Physiological evidence suggests that the small chloroplast heat-shock protein 21 (HSP21) is involved in plant thermotolerance, but the molecular mechanism of its action remains largely unknown. Here, we have provided genetic and biochemical evidence that HSP21 is activated by the GUN5-dependent retrograde signaling pathway, and stabilizes PSII by directly binding to its core subunits such as D1 and D2 proteins under heat stress. We further demonstrate that the constitutive expression of HSP21 sufficiently rescues the thermosensitive stability of PSII and survival defects of the gun5 mutant with dramatically improving granal stacking under heat stress, indicating that HSP21 is a key chaperone protein in maintaining the integrity of the thylakoid membrane system under heat stress. In line with our interpretation based on several lines of in vitro and in vivo protein-interaction evidence that HSP21 interacts with core subunits of PSII, the kinetics of HSP21 binding to the D1 and D2 proteins was determined by performing an analysis of microscale thermophoresis. Considering the major role of HSP21 in protecting the core subunits of PSII from thermal damage, its heat-responsive activation via the heat-shock transcription factor HsfA2 is critical for the survival of plants under heat stress. Our findings reveal an auto-adaptation loop pathway that plant cells optimize particular needs of chloroplasts in stabilizing photosynthetic complexes by relaying the GUN5-dependent plastid signal(s) to activate the heat-responsive expression of HSP21 in the nucleus during adaptation to heat stress in plants.
Collapse
Affiliation(s)
- Si-Ting Chen
- The National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences and National Center of Plant Gene Research (Shanghai), Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning-Yu He
- The National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences and National Center of Plant Gene Research (Shanghai), Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan-Hua Chen
- The National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences and National Center of Plant Gene Research (Shanghai), Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences and National Center of Plant Gene Research (Shanghai), Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
45
|
Killi D, Bussotti F, Raschi A, Haworth M. Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance. PHYSIOLOGIA PLANTARUM 2017; 159:130-147. [PMID: 27535211 DOI: 10.1111/ppl.12490] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/07/2016] [Accepted: 07/01/2016] [Indexed: 05/21/2023]
Abstract
Heat and drought stress frequently occur together, however, their impact on plant growth and photosynthesis (PN ) is unclear. The frequency, duration and severity of heat and drought stress events are predicted to increase in the future, having severe implications for agricultural productivity and food security. To assess the impact on plant gas exchange, physiology and morphology we grew drought tolerant and sensitive varieties of C3 sunflower (Helianthus annuus) and C4 maize (Zea mays) under conditions of elevated temperature for 4 weeks prior to the imposition of water deficit. The negative impact of temperature on PN was most apparent in sunflower. The drought tolerant sunflower retained ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity under heat stress to a greater extent than its drought sensitive counterpart. Maize exhibited no varietal difference in response to increased temperature. In contrast to previous studies, where a sudden rise in temperature induced an increase in stomatal conductance (Gs ), we observed no change or a reduction in Gs with elevated temperature, which alongside lower leaf area mitigated the impact of drought at the higher temperature. The drought tolerant sunflower and maize varieties exhibited greater investment in root-systems, allowing greater uptake of the available soil water. Elevated temperatures associated with heat-waves will have profound negative impacts on crop growth in both sunflower and maize, but the deleterious effect on PN was less apparent in the drought tolerant sunflower and both maize varieties. As C4 plants generally exhibit water use efficiency (WUE) and resistance to heat stress, selection on the basis of tolerance to heat and drought stress would be more beneficial to the yields of C3 crops cultivated in drought prone semi-arid regions.
Collapse
Affiliation(s)
- Dilek Killi
- Department of Agri-food Production and Environmental Sciences (DiSPAA), University of Florence, Florence, Italy
| | - Filippo Bussotti
- Department of Agri-food Production and Environmental Sciences (DiSPAA), University of Florence, Florence, Italy
| | - Antonio Raschi
- Istituto di Biometeorologia (CNR - IBIMET), Florence, Italy
| | | |
Collapse
|
46
|
O'sullivan OS, Heskel MA, Reich PB, Tjoelker MG, Weerasinghe LK, Penillard A, Zhu L, Egerton JJG, Bloomfield KJ, Creek D, Bahar NHA, Griffin KL, Hurry V, Meir P, Turnbull MH, Atkin OK. Thermal limits of leaf metabolism across biomes. GLOBAL CHANGE BIOLOGY 2017; 23:209-223. [PMID: 27562605 DOI: 10.1111/gcb.13477] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/29/2016] [Accepted: 08/13/2016] [Indexed: 05/24/2023]
Abstract
High-temperature tolerance in plants is important in a warming world, with extreme heat waves predicted to increase in frequency and duration, potentially leading to lethal heating of leaves. Global patterns of high-temperature tolerance are documented in animals, but generally not in plants, limiting our ability to assess risks associated with climate warming. To assess whether there are global patterns in high-temperature tolerance of leaf metabolism, we quantified Tcrit (high temperature where minimal chlorophyll a fluorescence rises rapidly and thus photosystem II is disrupted) and Tmax (temperature where leaf respiration in darkness is maximal, beyond which respiratory function rapidly declines) in upper canopy leaves of 218 plant species spanning seven biomes. Mean site-based Tcrit values ranged from 41.5 °C in the Alaskan arctic to 50.8 °C in lowland tropical rainforests of Peruvian Amazon. For Tmax , the equivalent values were 51.0 and 60.6 °C in the Arctic and Amazon, respectively. Tcrit and Tmax followed similar biogeographic patterns, increasing linearly (˜8 °C) from polar to equatorial regions. Such increases in high-temperature tolerance are much less than expected based on the 20 °C span in high-temperature extremes across the globe. Moreover, with only modest high-temperature tolerance despite high summer temperature extremes, species in mid-latitude (~20-50°) regions have the narrowest thermal safety margins in upper canopy leaves; these regions are at the greatest risk of damage due to extreme heat-wave events, especially under conditions when leaf temperatures are further elevated by a lack of transpirational cooling. Using predicted heat-wave events for 2050 and accounting for possible thermal acclimation of Tcrit and Tmax , we also found that these safety margins could shrink in a warmer world, as rising temperatures are likely to exceed thermal tolerance limits. Thus, increasing numbers of species in many biomes may be at risk as heat-wave events become more severe with climate change.
Collapse
Affiliation(s)
- Odhran S O'sullivan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | - Mary A Heskel
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02544, USA
| | - Peter B Reich
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Department of Forest Resources, University of Minnesota, 1530 Cleveland Avenue North, St. Paul, MN, 55108, USA
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Lasantha K Weerasinghe
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Aurore Penillard
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
| | - Lingling Zhu
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - John J G Egerton
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
| | - Keith J Bloomfield
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
| | - Danielle Creek
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Nur H A Bahar
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Kevin L Griffin
- Department of Earth and Environment Sciences, Columbia University, Palisades, NY, 10964, USA
| | - Vaughan Hurry
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, SE-901 84, Sweden
| | - Patrick Meir
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Matthew H Turnbull
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Owen K Atkin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| |
Collapse
|
47
|
Lin YP, Wu MC, Charng YY. Identification of a Chlorophyll Dephytylase Involved in Chlorophyll Turnover in Arabidopsis. THE PLANT CELL 2016; 28:2974-2990. [PMID: 27920339 PMCID: PMC5240737 DOI: 10.1105/tpc.16.00478] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/20/2016] [Accepted: 12/01/2016] [Indexed: 05/17/2023]
Abstract
Chlorophyll turns over in green organs during photosystem repair and is salvaged via de- and rephytylation, but the enzyme involved in dephytylation is unknown. We have identified an Arabidopsis thaliana thylakoid protein with a putative hydrolase domain that can dephytylate chlorophyll in vitro and in vivo. The corresponding locus, CHLOROPHYLL DEPHYTYLASE1 (CLD1), was identified by mapping a semidominant, heat-sensitive, missense allele (cld1-1). CLD1 is conserved in oxygenic photosynthetic organisms, sharing structural similarity with pheophytinase, which functions in chlorophyll breakdown during leaf senescence. Unlike pheophytinase, CLD1 is predominantly expressed in green organs and can dephytylate chlorophyll in vitro. The specific activity is significantly higher for the mutant protein encoded by cld1-1 than the wild-type enzyme, consistent with the semidominant nature of the cld1-1 mutation. Supraoptimal CLD1 activities in cld1-1 mutants and transgenic seedlings led to the proportional accumulation of chlorophyllides derived from chlorophyll dephytylation after heat shock, which resulted in light-dependent cotyledon bleaching. Reducing CLD1 expression diminished thermotolerance and the photochemical efficiency of photosystem II under prolonged moderate heat stress. Taken together, our results suggest that CLD1 is the long-sought enzyme for removing the phytol chain from chlorophyll during its turnover at steady state within the chloroplast.
Collapse
Affiliation(s)
- Yao-Pin Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, Republic of China
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan, Republic of China
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan, Republic of China
| | - Meng-Chen Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, Republic of China
| | - Yee-Yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan, Republic of China
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan, Republic of China
- Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan, Republic of China
| |
Collapse
|
48
|
Obaid AY, Sabir JSM, Atef A, Liu X, Edris S, El-Domyati FM, Mutwakil MZ, Gadalla NO, Hajrah NH, Al-Kordy MA, Hall N, Bahieldin A, Jansen RK. Analysis of transcriptional response to heat stress in Rhazya stricta. BMC PLANT BIOLOGY 2016; 16:252. [PMID: 27842501 PMCID: PMC5109689 DOI: 10.1186/s12870-016-0938-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/28/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Climate change is predicted to be a serious threat to agriculture due to the need for crops to be able to tolerate increased heat stress. Desert plants have already adapted to high levels of heat stress so they make excellent systems for identifying genes involved in thermotolerance. Rhazya stricta is an evergreen shrub that is native to extremely hot regions across Western and South Asia, making it an excellent system for examining plant responses to heat stress. Transcriptomes of apical and mature leaves of R. stricta were analyzed at different temperatures during several time points of the day to detect heat response mechanisms that might confer thermotolerance and protection of the plant photosynthetic apparatus. RESULTS Biological pathways that were crosstalking during the day involved the biosynthesis of several heat stress-related compounds, including soluble sugars, polyols, secondary metabolites, phenolics and methionine. Highly downregulated leaf transcripts at the hottest time of the day (40-42.4 °C) included genes encoding cyclin, cytochrome p450/secologanin synthase and U-box containing proteins, while upregulated, abundant transcripts included genes encoding heat shock proteins (HSPs), chaperones, UDP-glycosyltransferase, aquaporins and protein transparent testa 12. The upregulation of transcripts encoding HSPs, chaperones and UDP-glucosyltransferase and downregulation of transcripts encoding U-box containing proteins likely contributed to thermotolerance in R. stricta leaf by correcting protein folding and preventing protein degradation. Transcription factors that may regulate expression of genes encoding HSPs and chaperones under heat stress included HSFA2 to 4, AP2-EREBP and WRKY27. CONCLUSION This study contributed new insights into the regulatory mechanisms of thermotolerance in the wild plant species R. stricta, an arid land, perennial evergreen shrub common in the Arabian Peninsula and Indian subcontinent. Enzymes from several pathways are interacting in the biosynthesis of soluble sugars, polyols, secondary metabolites, phenolics and methionine and are the primary contributors to thermotolerance in this species.
Collapse
Affiliation(s)
- Abdullah Y. Obaid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Jamal S. M. Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Ahmed Atef
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Xuan Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
- Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Fotouh M. El-Domyati
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohammed Z. Mutwakil
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Nour O. Gadalla
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Nahid H. Hajrah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
| | - Magdy A. Al-Kordy
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Neil Hall
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB UK
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Robert K. Jansen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589 Saudi Arabia
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
49
|
Bettini PP, Marvasi M, Fani F, Lazzara L, Cosi E, Melani L, Mauro ML. Agrobacterium rhizogenes rolB gene affects photosynthesis and chlorophyll content in transgenic tomato (Solanum lycopersicum L.) plants. JOURNAL OF PLANT PHYSIOLOGY 2016; 204:27-35. [PMID: 27497742 DOI: 10.1016/j.jplph.2016.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Insertion of Agrobacterium rhizogenes rolB gene into plant genome affects plant development, hormone balance and defence. However, beside the current research, the overall transcriptional response and gene expression of rolB as a modulator in plant is unknown. Transformed rolB tomato plant (Solanum lycopersicum L.) cultivar Tondino has been used to investigate the differential expression profile. Tomato is a well-known model organism both at the genetic and molecular level, and one of the most important commercial food crops in the world. Through the construction and characterization of a cDNA subtracted library, we have investigated the differential gene expression between transgenic clones of rolB and control tomato and have evaluated genes specifically transcribed in transgenic rolB plants. Among the selected genes, five genes encoding for chlorophyll a/b binding protein, carbonic anhydrase, cytochrome b6/f complex Fe-S subunit, potassium efflux antiporter 3, and chloroplast small heat-shock protein, all involved in chloroplast function, were identified. Measurement of photosynthesis efficiency by the level of three different photosynthetic parameters (Fv/Fm, rETR, NPQ) showed rolB significant increase in non-photochemical quenching and a, b chlorophyll content. Our results point to highlight the role of rolB on plant fitness by improving photosynthesis.
Collapse
Affiliation(s)
- Priscilla P Bettini
- Dipartimento di Biologia, Università degli Studi di Firenze, via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy.
| | - Massimiliano Marvasi
- Dipartimento di Biologia, Università degli Studi di Firenze, via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy.
| | - Fabiola Fani
- Dipartimento di Biologia, Università degli Studi di Firenze, via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy.
| | - Luigi Lazzara
- Dipartimento di Biologia, Università degli Studi di Firenze, via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy.
| | - Elena Cosi
- Dipartimento di Biologia, Università degli Studi di Firenze, via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy.
| | - Lorenzo Melani
- Dipartimento di Biologia, Università degli Studi di Firenze, via Madonna del Piano 6, 50019, Sesto Fiorentino (FI), Italy.
| | - Maria Luisa Mauro
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, P.le A. Moro 5, 00185 Roma, Italy.
| |
Collapse
|
50
|
Rungrat T, Awlia M, Brown T, Cheng R, Sirault X, Fajkus J, Trtilek M, Furbank B, Badger M, Tester M, Pogson BJ, Borevitz JO, Wilson P. Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery. THE ARABIDOPSIS BOOK 2016; 14:e0185. [PMID: 27695390 PMCID: PMC5042155 DOI: 10.1199/tab.0185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Monitoring the photosynthetic performance of plants is a major key to understanding how plants adapt to their growth conditions. Stress tolerance traits have a high genetic complexity as plants are constantly, and unavoidably, exposed to numerous stress factors, which limits their growth rates in the natural environment. Arabidopsis thaliana, with its broad genetic diversity and wide climatic range, has been shown to successfully adapt to stressful conditions to ensure the completion of its life cycle. As a result, A. thaliana has become a robust and renowned plant model system for studying natural variation and conducting gene discovery studies. Genome wide association studies (GWAS) in restructured populations combining natural and recombinant lines is a particularly effective way to identify the genetic basis of complex traits. As most abiotic stresses affect photosynthetic activity, chlorophyll fluorescence measurements are a potential phenotyping technique for monitoring plant performance under stress conditions. This review focuses on the use of chlorophyll fluorescence as a tool to study genetic variation underlying the stress tolerance responses to abiotic stress in A. thaliana.
Collapse
Affiliation(s)
- Tepsuda Rungrat
- ARC Centre of Excellence for Plant Energy Biology, Australian National University, Australia
| | - Mariam Awlia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Australia
| | - Tim Brown
- ARC Centre of Excellence for Plant Energy Biology, Australian National University, Australia
| | - Riyan Cheng
- ARC Centre of Excellence for Plant Energy Biology, Australian National University, Australia
| | - Xavier Sirault
- High Resolution Plant Phenomics Centre, CSIRO Agriculture, Australia
| | - Jiri Fajkus
- Photon Systems Instruments (PSI), Czech Republic
| | | | - Bob Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Australia
- High Resolution Plant Phenomics Centre, CSIRO Agriculture, Australia
| | - Murray Badger
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Australia
| | - Mark Tester
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Barry J Pogson
- ARC Centre of Excellence for Plant Energy Biology, Australian National University, Australia
| | - Justin O Borevitz
- ARC Centre of Excellence for Plant Energy Biology, Australian National University, Australia
| | - Pip Wilson
- ARC Centre of Excellence for Plant Energy Biology, Australian National University, Australia
| |
Collapse
|