1
|
Wang H, Zang Y, Xin J, Li X, Xue S, Liang S, Tang X, Chen J. Exploring the leaf regeneration cycles response of Zostera japonica to ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176830. [PMID: 39389131 DOI: 10.1016/j.scitotenv.2024.176830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Ocean acidification is one of the major global environmental problems facing humankind today, and it has far-reaching impacts on marine organisms and the entire marine ecosystem. Zostera japonica, an important supporting species of intertidal seagrass beds, exhibits high photosynthetic productivity and plays an important role in the carbon cycle of nearshore waters. However, little is known about the characteristics, processes, and mechanisms of its response to ocean acidification. In this study, we conducted a 120-day acidification experiment in Z. japonica; here, plants underwent four leaf regeneration cycles to reveal the response mechanism of Z. japonica to ocean acidification (OA). We found that acidification significantly affected the seedling stage of Z. japonica, impacting leaf regeneration cycles by altering physiological and molecular responses. In one leaf regeneration cycle, the short-term exposure to CO2 affected the seagrass parameters, such as the regulation of inorganic carbon uptake modes and the regulation of photosynthesis between the dark and light reactions, with the potential to affect the carbon sinks of the marine organisms. The long-term effects on the regulation of antioxidant enzymes and antioxidant metabolites, caused an improvement in the marine life adaptation to OA. In a comparison of the different leaf regeneration cycles, the response pattern of Z. japonica showed an offset of the acidification during the short cycles and an adaption to the acidification during the long cycles. This study revealed the response mechanism of Z. japonica to OA at different time scales and could provide a theoretical basis for accurately assessing the impact of OA on seagrass and the entire seagrass bed ecosystem.
Collapse
Affiliation(s)
- Hongzhen Wang
- Lab of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yu Zang
- Key Lab of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Jiayi Xin
- Lab of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xinqi Li
- Lab of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Song Xue
- Lab of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Shuo Liang
- Department of Agriculture, Forestry and Food Science, Turin University, Grugliasco 10129, Italy.
| | - Xuexi Tang
- Lab of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Lab for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| | - Jun Chen
- Lab of Marine Ecology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Yan T, Cai B, Li F, Guo D, Xia C, Lv H, Lin B, Gao H, Geng Z. Proteomic and metabolomic revealed the effect of shading treatment on cigar tobacco. FRONTIERS IN PLANT SCIENCE 2024; 15:1433575. [PMID: 39100083 PMCID: PMC11294240 DOI: 10.3389/fpls.2024.1433575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024]
Abstract
Shading or low light conditions are essential cultivation techniques for cigar wrapper tobacco leaves production, yet their impact on protein and metabolic regulatory networks is not well understood. In this study, we integrated proteomic and metabolomic analyses to uncover the potential molecular mechanisms affecting cigar tobacco leaves under shading treatment. Our findings include: (1) Identification of 780 significantly differentially expressed proteins (DEPs) in the cigar wrapper tobacco leaves, comprising 560 up-regulated and 220 down-regulated proteins, predominantly located in the chloroplast, cytoplasm, and nucleus, collectively accounting for 50.01%. (2) Discovery of 254 significantly differentially expressed metabolites (DEMs), including 148 up-regulated and 106 down-regulated metabolites. (3) KEGG pathway enrichment analysis revealed that the mevalonate (MVA) pathway within 'Terpenoid backbone biosynthesis' was inhibited, leading to a down-regulation of 'Sesquiterpenoid and triterpenoid biosynthesis'. Conversely, the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway was enhanced, resulting in an up-regulation of 'Monoterpenoid biosynthesis', 'Diterpenoid biosynthesis', and 'Carotenoid biosynthesis', thereby promoting the synthesis of terpenoids such as carotenoids and chlorophylls. Simultaneously, the Calvin cycle in 'Carbon fixation in photosynthetic organisms' was amplified, increasing photosynthetic efficiency. These results suggest that under low light conditions, cigar tobacco optimizes photosynthetic efficiency by reconfiguring its energy metabolism and terpenoid biosynthesis. This study contributes valuable insights into protein and metabolic analyses, paving the way for future functional studies on plant responses to low light.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huajun Gao
- Haikou cigar Research Institute, Hainan Provincial Branch of China National Tobacco Corporation, Haikou, China
| | - Zhaoliang Geng
- Haikou cigar Research Institute, Hainan Provincial Branch of China National Tobacco Corporation, Haikou, China
| |
Collapse
|
3
|
Dahal K, Milne MA, Gervais T. The enhancement of photosynthetic performance, water use efficiency and potato yield under elevated CO 2 is cultivar dependent. FRONTIERS IN PLANT SCIENCE 2023; 14:1287825. [PMID: 38046606 PMCID: PMC10690597 DOI: 10.3389/fpls.2023.1287825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/09/2023] [Indexed: 12/05/2023]
Abstract
As a fourth major food crop, potato could fulfill the nutritional demand of the growing population. Understanding how potato plants respond to predicted increase in atmospheric CO2 at the physiological, biochemical and molecular level is therefore important to improve potato productivity. Thus, the main objectives of the present study are to investigate the effects of elevated CO2 on the photosynthetic performance, water use efficiency and tuber yield of various commercial potato cultivars combined with biochemical and molecular analyses. We grew five potato cultivars (AC Novachip, Atlantic, Kennebec, Russet Burbank and Shepody) at either ambient CO2 (400 μmol CO2 mol-1) or elevated (750 μmol CO2 mol-1) CO2. Compared to ambient CO2-grown counterparts, elevated CO2-grown Russet Burbank and Shepody exhibited a significant increase in tuber yield of 107% and 49% respectively, whereas AC Novachip, Atlantic and Kennebec exhibited a 16%, 6% and 44% increment respectively. These differences in CO2-enhancement of tuber yield across the cultivars were mainly associated with the differences in CO2-stimulation of rates of photosynthesis. For instance, elevated CO2 significantly stimulated the rates of gross photosynthesis for AC Novachip (30%), Russet Burbank (41%) and Shepody (28%) but had minimal effects for Atlantic and Kennebec when measured at growth light. Elevated CO2 significantly increased the total tuber number for Atlantic (40%) and Shepody (83%) but had insignificant effects for other cultivars. Average tuber size increased for AC Novachip (16%), Kennebec (30%) and Russet Burbank (80%), but decreased for Atlantic (25%) and Shepody (19%) under elevated versus ambient CO2 conditions. Although elevated CO2 minimally decreased stomatal conductance (6-22%) and transpiration rates (2-36%), instantaneous water use efficiency increased by up to 79% in all cultivars suggesting that enhanced water use efficiency was mainly associated with increased photosynthesis at elevated CO2. The effects of elevated CO2 on electron transport rates, non-photochemical quenching, excitation pressure, and leaf chlorophyll and protein content varied across the cultivars. We did not observe any significant differences in plant growth and morphology in elevated versus ambient CO2-grown plants. Taken all together, we conclude that the CO2-stimulation of photosynthetic performance, water use efficiency and tuber yield of potatoes is cultivar dependent.
Collapse
Affiliation(s)
- Keshav Dahal
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | | | | |
Collapse
|
4
|
García-Calderón M, Vignane T, Filipovic MR, Ruiz MT, Romero LC, Márquez AJ, Gotor C, Aroca A. Persulfidation protects from oxidative stress under nonphotorespiratory conditions in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:1431-1445. [PMID: 36840421 DOI: 10.1111/nph.18838] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide is a signaling molecule in plants that regulates essential biological processes through protein persulfidation. However, little is known about sulfide-mediated regulation in relation to photorespiration. Here, we performed label-free quantitative proteomic analysis and observed a high impact on protein persulfidation levels when plants grown under nonphotorespiratory conditions were transferred to air, with 98.7% of the identified proteins being more persulfidated under suppressed photorespiration. Interestingly, a higher level of reactive oxygen species (ROS) was detected under nonphotorespiratory conditions. Analysis of the effect of sulfide on aspects associated with non- or photorespiratory growth conditions has demonstrated that it protects plants grown under suppressed photorespiration. Thus, sulfide amends the imbalance of carbon/nitrogen and restores ATP levels to concentrations like those of air-grown plants; balances the high level of ROS in plants under nonphotorespiratory conditions to reach a cellular redox state similar to that in air-grown plants; and regulates stomatal closure, to decrease the high guard cell ROS levels and induce stomatal aperture. In this way, sulfide signals the CO2 -dependent stomata movement, in the opposite direction of the established abscisic acid-dependent movement. Our findings suggest that the high persulfidation level under suppressed photorespiration reveals an essential role of sulfide signaling under these conditions.
Collapse
Affiliation(s)
- Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Prof. García González 1, 41012, Sevilla, Spain
| | - Thibaut Vignane
- Leibniz Institute for Analytical Sciences, ISAS e.V., 44227, Dortmund, Germany
| | - Milos R Filipovic
- Leibniz Institute for Analytical Sciences, ISAS e.V., 44227, Dortmund, Germany
| | - M Teresa Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092, Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092, Sevilla, Spain
| | - Antonio J Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Prof. García González 1, 41012, Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092, Sevilla, Spain
| | - Angeles Aroca
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Prof. García González 1, 41012, Sevilla, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
5
|
Cavanagh AP, Slattery R, Kubien DS. Temperature-induced changes in Arabidopsis Rubisco activity and isoform expression. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:651-663. [PMID: 36124740 PMCID: PMC9833042 DOI: 10.1093/jxb/erac379] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/16/2022] [Indexed: 06/06/2023]
Abstract
In many plant species, expression of the nuclear encoded Rubisco small subunit (SSu) varies with environmental changes, but the functional role of any changes in expression remains unclear. In this study, we investigated the impact of differential expression of Rubisco SSu isoforms on carbon assimilation in Arabidopsis. Using plants grown at contrasting temperatures (10 °C and 30 °C), we confirm the previously reported temperature response of the four RbcS genes and extend this to protein expression, finding that warm-grown plants produce Rubisco containing ~65% SSu-B and cold-grown plants produce Rubisco with ~65% SSu-A as a proportion of the total pool of subunits. We find that these changes in isoform concentration are associated with kinetic changes to Rubisco in vitro: warm-grown plants produce a Rubisco having greater CO2 affinity (i.e. higher SC/O and lower KC) but lower kcatCO2 at warm measurement temperatures. Although warm-grown plants produce 38% less Rubisco than cold-grown plants on a leaf area basis, warm-grown plants can maintain similar rates of photosynthesis to cold-grown plants at ambient CO2 and 30 °C, indicating that the carboxylation capacity of warm-grown Rubisco is enhanced at warmer measurement temperatures, and is able to compensate for the lower Rubisco content in warm-grown plants. This association between SSu isoform expression and maintenance of Rubisco activity at high temperature suggests that SSu isoform expression could impact the temperature response of C3 photosynthesis.
Collapse
Affiliation(s)
| | - Rebecca Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - David S Kubien
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
6
|
Mao Y, Catherall E, Díaz-Ramos A, Greiff GRL, Azinas S, Gunn L, McCormick AJ. The small subunit of Rubisco and its potential as an engineering target. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:543-561. [PMID: 35849331 PMCID: PMC9833052 DOI: 10.1093/jxb/erac309] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 05/06/2023]
Abstract
Rubisco catalyses the first rate-limiting step in CO2 fixation and is responsible for the vast majority of organic carbon present in the biosphere. The function and regulation of Rubisco remain an important research topic and a longstanding engineering target to enhance the efficiency of photosynthesis for agriculture and green biotechnology. The most abundant form of Rubisco (Form I) consists of eight large and eight small subunits, and is found in all plants, algae, cyanobacteria, and most phototrophic and chemolithoautotrophic proteobacteria. Although the active sites of Rubisco are located on the large subunits, expression of the small subunit regulates the size of the Rubisco pool in plants and can influence the overall catalytic efficiency of the Rubisco complex. The small subunit is now receiving increasing attention as a potential engineering target to improve the performance of Rubisco. Here we review our current understanding of the role of the small subunit and our growing capacity to explore its potential to modulate Rubisco catalysis using engineering biology approaches.
Collapse
Affiliation(s)
- Yuwei Mao
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - Ella Catherall
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - Aranzazú Díaz-Ramos
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| | - George R L Greiff
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stavros Azinas
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
| | - Laura Gunn
- Department of Cell and Molecular Biology, Uppsala University, S-751 24 Uppsala, Sweden
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, King’s Buildings, University of Edinburgh, Edingburgh EH9 3BF, UK
| |
Collapse
|
7
|
Ishihara H, Alseekh S, Feil R, Perera P, George GM, Niedźwiecki P, Arrivault S, Zeeman SC, Fernie AR, Lunn JE, Smith AM, Stitt M. Rising rates of starch degradation during daytime and trehalose 6-phosphate optimize carbon availability. PLANT PHYSIOLOGY 2022; 189:1976-2000. [PMID: 35486376 PMCID: PMC9342969 DOI: 10.1093/plphys/kiac162] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 05/06/2023]
Abstract
Many plants, including Arabidopsis (Arabidopsis thaliana), accumulate starch in the light and remobilize it to support maintenance and growth at night. Starch synthesis and degradation are usually viewed as temporally separate processes. Recently, we reported that starch is also degraded in the light. Degradation rates are generally low early in the day but rise with time. Here, we show that the rate of degradation in the light depends on time relative to dawn rather than dusk. We also show that degradation in the light is inhibited by trehalose 6-phosphate, a signal for sucrose availability. The observed responses of degradation in the light can be simulated by a skeletal model in which the rate of degradation is a function of starch content divided by time remaining until dawn. The fit is improved by extension to include feedback inhibition of starch degradation by trehalose 6-phosphate. We also investigate possible functions of simultaneous starch synthesis and degradation in the light, using empirically parameterized models and experimental approaches. The idea that this cycle buffers growth against falling rates of photosynthesis at twilight is supported by data showing that rates of protein and cell wall synthesis remain high during a simulated dusk twilight. Degradation of starch in the light may also counter over-accumulation of starch in long photoperiods and stabilize signaling around dusk. We conclude that starch degradation in the light is regulated by mechanisms similar to those that operate at night and is important for stabilizing carbon availability and signaling, thus optimizing growth in natural light conditions.
Collapse
Affiliation(s)
- Hirofumi Ishihara
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Saleh Alseekh
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Regina Feil
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Pumi Perera
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Gavin M George
- Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Piotr Niedźwiecki
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Stephanie Arrivault
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - John E Lunn
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Alison M Smith
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | |
Collapse
|
8
|
Webster C, Figueroa‐Corona L, Méndez‐González ID, Álvarez‐Soto L, Neale DB, Jaramillo‐Correa JP, Wegrzyn JL, Vázquez‐Lobo A. Comparative analysis of differential gene expression indicates divergence in ontogenetic strategies of leaves in two conifer genera. Ecol Evol 2022; 12:e8611. [PMID: 35222971 PMCID: PMC8848466 DOI: 10.1002/ece3.8611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/21/2021] [Accepted: 01/23/2022] [Indexed: 11/09/2022] Open
Abstract
In land plants, heteroblasty broadly refers to a drastic change in morphology during growth through ontogeny. Juniperus flaccida and Pinus cembroides are conifers of independent lineages known to exhibit leaf heteroblasty between the juvenile and adult life stage of development. Juvenile leaves of P. cembroides develop spirally on the main stem and appear decurrent, flattened, and needle-like; whereas adult photosynthetic leaves are triangular or semi-circular needle-like, and grow in whorls on secondary or tertiary compact dwarf shoots. By comparison, J. flaccida juvenile leaves are decurrent and needle-like, and adult leaves are compact, short, and scale-like. Comparative analyses were performed to evaluate differences in anatomy and gene expression patterns between developmental phases in both species. RNA from 12 samples was sequenced and analyzed with available software. They were assembled de novo from the RNA-Seq reads. Following assembly, 63,741 high-quality transcripts were functionally annotated in P. cembroides and 69,448 in J. flaccida. Evaluation of the orthologous groups yielded 4140 shared gene families among the four references (adult and juvenile from each species). Activities related to cell division and development were more abundant in juveniles than adults in P. cembroides, and more abundant in adults than juveniles in J. flaccida. Overall, there were 509 up-regulated and 81 down-regulated genes in the juvenile condition of P. cembroides and 14 up-regulated and 22 down-regulated genes in J. flaccida. Gene interaction network analysis showed evidence of co-expression and co-localization of up-regulated genes involved in cell wall and cuticle formation, development, and phenylpropanoid pathway, in juvenile P. cembroides leaves. Whereas in J. flaccida, differential expression and gene interaction patterns were detected in genes involved in photosynthesis and chloroplast biogenesis. Although J. flaccida and P. cembroides both exhibit leaf heteroblastic development, little overlap was detected, and unique genes and pathways were highlighted in this study.
Collapse
Affiliation(s)
- Cynthia Webster
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Laura Figueroa‐Corona
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Iván David Méndez‐González
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lluvia Álvarez‐Soto
- Facultad de Ciencias BiológicasUniversidad Autónoma del Estado de MorelosCuernavacaMéxico
| | - David B. Neale
- Department of Plant SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Juan Pablo Jaramillo‐Correa
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Alejandra Vázquez‐Lobo
- Centro de Investigación en Biodiversidad y ConservaciónUniversidad Autónoma del Estado de MorelosCuernavacaMéxico
| |
Collapse
|
9
|
Krämer K, Kepp G, Brock J, Stutz S, Heyer AG. Acclimation to elevated CO 2 affects the C/N balance by reducing de novo N-assimilation. PHYSIOLOGIA PLANTARUM 2022; 174:e13615. [PMID: 35014037 DOI: 10.1111/ppl.13615] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Plants exposed to elevated atmospheric CO2 concentrations show an increased photosynthetic activity. However, after prolonged exposure, the activity declines. This acclimation to elevated CO2 is accompanied by a rise in the carbon-to-nitrogen ratio of the biomass. Hence, increased sugar accumulation and sequential downregulation of photosynthetic genes, as well as nitrogen depletion and reduced protein content, have been hypothesized as the cause of low photosynthetic performance. However, the reason for reduced nitrogen content in plants at high CO2 is unclear. Here, we show that reduced photorespiration at increased CO2 -to-O2 ratio leads to reduced de novo assimilation of nitrate, thus shifting the C/N balance. Metabolic modeling of acclimated and non-acclimated plants revealed the photorespiratory pathway to function as a sink for already assimilated nitrogen during the light period, providing carbon skeletons for de novo assimilation. At high CO2 , low photorespiratory activity resulted in diminished nitrogen assimilation and eventually resulted in reduced carbon assimilation. For the hpr1-1 mutant, defective in reduction of hydroxy-pyruvate, metabolic simulations show that turnover of photorespiratory metabolites is expanded into the night. Comparison of simulations for hpr1-1 with those for the wild type allowed investigating the effect of a perturbed photorespiration on N-assimilation.
Collapse
Affiliation(s)
- Konrad Krämer
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Stuttgart, Germany
| | - Gabi Kepp
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Stuttgart, Germany
| | - Judith Brock
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Stuttgart, Germany
| | - Simon Stutz
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Stuttgart, Germany
| | - Arnd G Heyer
- Institute of Biomaterials and Biomolecular Systems, Department of Plant Biotechnology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
10
|
Dubeaux G, Hsu PK, Ceciliato PHO, Swink KJ, Rappel WJ, Schroeder JI. Deep dive into CO2-dependent molecular mechanisms driving stomatal responses in plants. PLANT PHYSIOLOGY 2021; 187:2032-2042. [PMID: 35142859 PMCID: PMC8644143 DOI: 10.1093/plphys/kiab342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/30/2021] [Indexed: 05/04/2023]
Abstract
Recent advances are revealing mechanisms mediating CO2-regulated stomatal movements in Arabidopsis, stomatal architecture and stomatal movements in grasses, and the long-term impact of CO2 on growth.
Collapse
Affiliation(s)
- Guillaume Dubeaux
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Po-Kai Hsu
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Paulo H O Ceciliato
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Kelsey J Swink
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Wouter-Jan Rappel
- Physics Department, University of California San Diego, La Jolla, California 92093-0116, USA
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California 92093-0116, USA
- Author for communication:
| |
Collapse
|
11
|
Drought and Elevated CO2 Impacts Photosynthesis and Biochemicals of Basil (Ocimum basilicum L.). STRESSES 2021. [DOI: 10.3390/stresses1040016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drought-induced reduction in crop growth and productivity can be compensated by increasing atmospheric carbon dioxide (CO2), a significant contributor to climate change. Drought stress (DS) affects crops worldwide due to dwindling water resources and irregular rainfall patterns. The experiment was set up under a randomized complete block design within a three-by-two factorial arrangement. Six SPAR chambers represent three blocks (10 replications each), where each chamber has 30 pots in three rows. Each chamber was maintained with 30/22 (day/night) °C temperature, with either ambient (aCO2; 420 ppm) or elevated CO2 (eCO2; 720 ppm) concentrations. This experiment was designed to address the impact of DS on the physiological and biochemical attributes and study how the eCO2 helps alleviate the adversity of DS in basil. The study demonstrated that DS + eCO2 application highly accelerated the decrease in all forms of carotene and xanthophylls. eCO2 positively influenced and increased anthocyanin (Antho) and chlorophyll (LChl). eCO2 supplementation increased LChl content in basil under DS. Furthermore, DS significantly impeded the photosynthetic system in plants by decreasing CO2 availability and causing stomatal closure. Although eCO2 did not increase net photosynthesis (Pn) activity, it decreased stomatal conductance (gs) and leaf transpiration rate (E) under DS, showing that eCO2 can improve plant water use efficiency by lowering E and gs. Peroxidase and ascorbate activity were higher due to the eCO2 supply to acclimate the basil under the DS condition. This study suggests that the combination of eCO2 during DS positively impacts basil’s photosynthetic parameters and biochemical traits than aCO2.
Collapse
|
12
|
Perdomo JA, Buchner P, Carmo-Silva E. The relative abundance of wheat Rubisco activase isoforms is post-transcriptionally regulated. PHOTOSYNTHESIS RESEARCH 2021; 148:47-56. [PMID: 33796933 PMCID: PMC8154801 DOI: 10.1007/s11120-021-00830-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/11/2021] [Indexed: 06/06/2023]
Abstract
Diurnal rhythms and light availability affect transcription-translation feedback loops that regulate the synthesis of photosynthetic proteins. The CO2-fixing enzyme Rubisco is the most abundant protein in the leaves of major crop species and its activity depends on interaction with the molecular chaperone Rubisco activase (Rca). In Triticum aestivum L. (wheat), three Rca isoforms are present that differ in their regulatory properties. Here, we tested the hypothesis that the relative abundance of the redox-sensitive and redox-insensitive Rca isoforms could be differentially regulated throughout light-dark diel cycle in wheat. While TaRca1-β expression was consistently negligible throughout the day, transcript levels of both TaRca2-β and TaRca2-α were higher and increased at the start of the day, with peak levels occurring at the middle of the photoperiod. Abundance of TaRca-β protein was maximal 1.5 h after the peak in TaRca2-β expression, but the abundance of TaRca-α remained constant during the entire photoperiod. The redox-sensitive TaRca-α isoform was less abundant, representing 85% of the redox-insensitive TaRca-β at the transcript level and 12.5% at the protein level. Expression of Rubisco large and small subunit genes did not show a consistent pattern throughout the diel cycle, but the abundance of Rubisco decreased by up to 20% during the dark period in fully expanded wheat leaves. These results, combined with a lack of correlation between transcript and protein abundance for both Rca isoforms and Rubisco throughout the entire diel cycle, suggest that the abundance of these photosynthetic enzymes is post-transcriptionally regulated.
Collapse
Affiliation(s)
| | - Peter Buchner
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | | |
Collapse
|
13
|
Degen GE, Orr DJ, Carmo-Silva E. Heat-induced changes in the abundance of wheat Rubisco activase isoforms. THE NEW PHYTOLOGIST 2021; 229:1298-1311. [PMID: 32964463 DOI: 10.1111/nph.16937] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/02/2020] [Indexed: 05/24/2023]
Abstract
The Triticum aestivum (wheat) genome encodes three isoforms of Rubisco activase (Rca) differing in thermostability, which could be exploited to improve the resilience of this crop to global warming. We hypothesized that elevated temperatures would cause an increase in the relative abundance of heat-stable Rca1β. Wheat plants were grown at 25° C : 18°C (day : night) and exposed to heat stress (38° C : 22°C) for up to 5 d at pre-anthesis. Carbon (C) assimilation, Rubisco activity, CA1Pase activity, transcripts of Rca1β, Rca2β, and Rca2α, and the quantities of the corresponding protein products were measured during and after heat stress. The transcript of Rca1β increased 40-fold in 4 h at elevated temperatures and returned to the original level after 4 h upon return of plants to control temperatures. Rca1β comprised up to 2% of the total Rca protein in unstressed leaves but increased three-fold in leaves exposed to elevated temperatures for 5 d and remained high at 4 h after heat stress. These results show that elevated temperatures cause rapid changes in Rca gene expression and adaptive changes in Rca isoform abundance. The improved understanding of the regulation of C assimilation under heat stress will inform efforts to improve wheat productivity and climate resilience.
Collapse
Affiliation(s)
- Gustaf E Degen
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | |
Collapse
|
14
|
Khumsupan P, Kozlowska MA, Orr DJ, Andreou AI, Nakayama N, Patron N, Carmo-Silva E, McCormick AJ. Generating and characterizing single- and multigene mutants of the Rubisco small subunit family in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5963-5975. [PMID: 32734287 DOI: 10.1093/jxb/eraa316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The primary CO2-fixing enzyme Rubisco limits the productivity of plants. The small subunit of Rubisco (SSU) can influence overall Rubisco levels and catalytic efficiency, and is now receiving increasing attention as a potential engineering target to improve the performance of Rubisco. However, SSUs are encoded by a family of nuclear rbcS genes in plants, which makes them challenging to engineer and study. Here we have used CRISPR/Cas9 [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9] and T-DNA insertion lines to generate a suite of single and multiple gene knockout mutants for the four members of the rbcS family in Arabidopsis, including two novel mutants 2b3b and 1a2b3b. 1a2b3b contained very low levels of Rubisco (~3% relative to the wild-type) and is the first example of a mutant with a homogenous Rubisco pool consisting of a single SSU isoform (1B). Growth under near-outdoor levels of light demonstrated Rubisco-limited growth phenotypes for several SSU mutants and the importance of the 1A and 3B isoforms. We also identified 1a1b as a likely lethal mutation, suggesting a key contributory role for the least expressed 1B isoform during early development. The successful use of CRISPR/Cas here suggests that this is a viable approach for exploring the functional roles of SSU isoforms in plants.
Collapse
Affiliation(s)
- Panupon Khumsupan
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Marta A Kozlowska
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Andreas I Andreou
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Naomi Nakayama
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Nicola Patron
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Ozaki H, Tokida T, Nakamura H, Sakai H, Hasegawa T, Noguchi K. Atmospheric CO 2 Concentration and N Availability Affect the Balance of the Two Photosystems in Mature Leaves of Rice Plants Grown at a Free-Air CO 2 Enrichment Site. FRONTIERS IN PLANT SCIENCE 2020; 11:786. [PMID: 32582271 PMCID: PMC7296123 DOI: 10.3389/fpls.2020.00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric CO2 concentration ([CO2]) has been substantially increasing. Responses of leaf photosynthesis to elevated [CO2] have been intensively investigated because leaf photosynthesis is one of the most important determinants of crop yield. The responses of photosynthesis to elevated [CO2] can depend on nitrogen (N) availability. Here, we aimed to investigate the significance of the appropriate balance between two photosystems [photosystem I (PSI) and photosystem II (PSII)] under various [CO2] and N levels, and thus to clarify if responses of photosynthetic electron transport rates (ETRs) of the two photosystems to elevated [CO2] are altered by N availability. Thus, we examined parameters of the two photosystems in mature leaves of rice plants grown under two [CO2] levels (ambient and 200 μmol mol-1 above ambient) and three N fertilization levels at the Tsukuba free-air CO2 enrichment experimental facility in Japan. Responses of ETR of PSII (ETRII) and ETR of PSI (ETRI) to [CO2] levels differed among N levels. When moderate levels of N were applied (MN), ETRI was higher under elevated [CO2], whereas at high levels of N were applied (HN), both ETRII and ETRI were lower under elevated [CO2] compared with ambient [CO2]. Under HN, the decreases in ETRII and ETRI under elevated [CO2] were due to increases in the non-photochemical quenching of PSII [Y(NPQ)] and the donor side limitation of PSI [Y(ND)], respectively. The relationship between the effective quantum yields of PSI [Y(I)] and PSII [Y(II)] changed under elevated [CO2] and low levels of N (LN). Under both conditions, the ratio of Y(I) to Y(II) was higher than under other conditions. The elevated [CO2] and low N changed the balance of the two photosystems. This change may be important because it can induce the cyclic electron flow around PSI, leading to induction of non-photochemical quenching to avoid photoinhibition.
Collapse
Affiliation(s)
- Hiroshi Ozaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Takeshi Tokida
- Division of Biogeochemical Cycles, Institute for Agro-Environmental Sciences, Tsukuba, Japan
| | | | - Hidemitsu Sakai
- Division of Climate Change, Institute for Agro-Environmental Sciences, Tsukuba, Japan
| | - Toshihiro Hasegawa
- Division of Agro-Environmental Research, Tohoku Agricultural Research Center, Morioka, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
16
|
Lo Piccolo E, Landi M, Massai R, Remorini D, Guidi L. Girled-induced anthocyanin accumulation in red-leafed Prunus cerasifera: Effect on photosynthesis, photoprotection and sugar metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110456. [PMID: 32234225 DOI: 10.1016/j.plantsci.2020.110456] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 05/20/2023]
Abstract
The feedback regulation of photosynthesis depends on the cooperation of multiple signals, including sugars. Herein, the effect of shoot girdling was monitored on a daily basis for three days in green- and red-leafed Prunus cerasifera plants (GLP and RLP, respectively). The effect of anthocyanin presence was investigated in terms of photosynthesis, sugar metabolism and photoprotection. Net photosynthesis (A390) and stomatal conductance were reduced on the first day at 12:00 only in the girdled GLP (29 and 33 %, respectively). Moreover, the girdled GLP displayed at 12:00 higher sucrose, glucose and fructose concentrations than control leaves. Conversely, girdled RLP showed the first reduction of A390 at 18:00, with no significant differences at 12:00 in sucrose and glucose concentrations. The increased biosynthesis of anthocyanins that was only detected in girdled RLP contributed to lowering the accumulation of hexoses. Overall, these results revealed a sugar-buffering role exerted by anthocyanins that positively influence the feedback regulation of photosynthesis. Moreover, non-photochemical quenching, namely pNPQ, revealed the ability of anthocyanins to photoprotect photosystem II from supernumerary photons reaching the chloroplast, whose function was compromised by girdling. The present study provides a starting point to understand the possible link between photosynthesis regulation through sugar signalling and anthocyanin upregulation.
Collapse
Affiliation(s)
- Ermes Lo Piccolo
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy.
| | - Rossano Massai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| | - Damiano Remorini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy; Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto, 80, 56124, Pisa, Italy
| |
Collapse
|
17
|
Elevated CO2 and temperature influence key proteins and metabolites associated with photosynthesis, antioxidant and carbon metabolism in Picrorhiza kurroa. J Proteomics 2020; 219:103755. [DOI: 10.1016/j.jprot.2020.103755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/11/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022]
|
18
|
Yadav S, Rathore MS, Mishra A. The Pyruvate-Phosphate Dikinase (C 4- SmPPDK) Gene From Suaeda monoica Enhances Photosynthesis, Carbon Assimilation, and Abiotic Stress Tolerance in a C 3 Plant Under Elevated CO 2 Conditions. FRONTIERS IN PLANT SCIENCE 2020; 11:345. [PMID: 32373137 PMCID: PMC7186359 DOI: 10.3389/fpls.2020.00345] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/09/2020] [Indexed: 05/07/2023]
Abstract
A pyruvate-phosphate dikinase (C4-PPDK) gene was cloned from Suaeda monoica, which had a single-cell C4 photosynthesis pathway without Kranz anatomy and was functionally validated in a C3 model plant under different abiotic stress conditions in an ambient and elevated CO2 environment. Overexpression of SmPPDK promoted growth of C3 transgenic plants, enhancing their photosynthesis (CO2 assimilation) by lowering photorespiration under stress conditions. Transgenic plants also showed an improved physiological status, with higher relative water content (RWC), membrane integrity, concentration of glycine betaine, total soluble sugars, free amino acids, polyphenols and antioxidant activity, and lower electrolyte leakage, lipid peroxidation, free radical accumulation, and generation of reactive oxygen species (ROS), compared to control plants. Moreover, SmPPDK transgenic plants exhibited earlier flowering and higher dry biomass compared to controls. These results suggested that the C4-PPDK gene was appropriate for improvement of carbon assimilation, and it also played an important role in adaption to salinity and severe drought-induced stress. More intriguingly, an elevated CO2 environment alleviated the adverse effects of abiotic stress, particularly caused by drought through coordination of osmoprotectants and antioxidant defense systems. The molecular, physiological, metabolic, and biochemical indicators ameliorated the overall performance of model C3 plants overexpressing the C4-PPDK gene in an elevated CO2 environment, by lowering photorespiration metabolic processes, however, further studies are needed to confirm its precise role in C3 plants as protection against future climate change.
Collapse
Affiliation(s)
| | | | - Avinash Mishra
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
| |
Collapse
|
19
|
High Nitrate or Ammonium Applications Alleviated Photosynthetic Decline of Phoebe bournei Seedlings under Elevated Carbon Dioxide. FORESTS 2020. [DOI: 10.3390/f11030293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phoebe bournei is a precioustimber species and is listed as a national secondary protection plant in China. However, seedlings show obvious photosynthetic declinewhen grown long-term under an elevated CO2 concentration (eCO2). The global CO2 concentration is predicted to reach 700 μmol·mol−1 by the end of this century; however, little is known about what causes the photosynthetic decline of P. bournei seedlings under eCO2 or whether this photosynthetic decline could be controlled by fertilization measures. To explore this problem, one-year-old P. bournei seedlings were grown in an open-top air chamber under either an ambient CO2 (aCO2) concentration (350 ± 70 μmol·mol−1) or an eCO2 concentration (700 ± 10 μmol·mol−1) from June 12th to September 8th and cultivated in soil treated with either moderate (0.8 g per seedling) or high applications (1.2 g per seedling) of nitrate or ammonium. Under eCO2, the net photosynthetic rate (Pn) of P. bournei seedlings treated with a moderate nitrate application was 27.0% lower than that of seedlings grown under an aCO2 concentration (p < 0.05), and photosynthetic declineappeared to be accompanied by a reduction of the electron transport rate (ETR), actual photochemical efficiency, chlorophyll content, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), rubisco activase (RCA) content, leaf thickness, and stomatal density. The Pn of seedlings treated with a high application of nitrate under eCO2 was 5.0% lower than that of seedlings grown under aCO2 (p > 0.05), and photosynthetic declineoccurred more slowly, accompanied by a significant increase in rubisco content, RCA content, and stomatal density. The Pn of P. bournei seedlings treated with either a moderate or a high application of ammonium and grown under eCO2 was not significantly differentto that of seedlings grown under aCO2—there was no photosynthetic decline—and the ETR, chlorophyll content, rubisco content, RCA content, and leaf thickness values were all increased. Increasing the application of nitrate or the supply of ammonium could slow down or prevent the photosynthetic declineof P. bournei seedlings under eCO2 by changing the leaf structure and photosynthetic physiological characteristics.
Collapse
|
20
|
Busch FA. Photorespiration in the context of Rubisco biochemistry, CO 2 diffusion and metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:919-939. [PMID: 31910295 DOI: 10.1111/tpj.14674] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 05/11/2023]
Abstract
Photorespiratory metabolism is essential for plants to maintain functional photosynthesis in an oxygen-containing environment. Because the oxygenation reaction of Rubisco is followed by the loss of previously fixed carbon, photorespiration is often considered a wasteful process and considerable efforts are aimed at minimizing the negative impact of photorespiration on the plant's carbon uptake. However, the photorespiratory pathway has also many positive aspects, as it is well integrated within other metabolic processes, such as nitrogen assimilation and C1 metabolism, and it is important for maintaining the redox balance of the plant. The overall effect of photorespiratory carbon loss on the net CO2 fixation of the plant is also strongly influenced by the physiology of the leaf related to CO2 diffusion. This review outlines the distinction between Rubisco oxygenation and photorespiratory CO2 release as a basis to evaluate the costs and benefits of photorespiration.
Collapse
Affiliation(s)
- Florian A Busch
- Research School of Biology and ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
21
|
Yamada K, Davydov II, Besnard G, Salamin N. Duplication history and molecular evolution of the rbcS multigene family in angiosperms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6127-6139. [PMID: 31498865 PMCID: PMC6859733 DOI: 10.1093/jxb/erz363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/12/2019] [Indexed: 05/22/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is considered to be the main enzyme determining the rate of photosynthesis. The small subunit of the protein, encoded by the rbcS gene, has been shown to influence the catalytic efficiency, CO2 specificity, assembly, activity, and stability of RuBisCO. However, the evolution of the rbcS gene remains poorly studied. We inferred the phylogenetic tree of the rbcS gene in angiosperms using the nucleotide sequences and found that it is composed of two lineages that may have existed before the divergence of land plants. Although almost all species sampled carry at least one copy of lineage 1, genes of lineage 2 were lost in most angiosperm species. We found the specific residues that have undergone positive selection during the evolution of the rbcS gene. We detected intensive coevolution between each rbcS gene copy and the rbcL gene encoding the large subunit of RuBisCO. We tested the role played by each rbcS gene copy on the stability of the RuBisCO protein through homology modelling. Our results showed that this evolutionary constraint could limit the level of divergence seen in the rbcS gene, which leads to the similarity among the rbcS gene copies of lineage 1 within species.
Collapse
Affiliation(s)
- Kana Yamada
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Iakov I Davydov
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Guillaume Besnard
- Laboratoire Evolution et Diversité Biologique (EDB UMR5174), CNRS-UPS-IRD, University of Toulouse III, Toulouse Cedex, France
| | - Nicolas Salamin
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Menezes‐Silva PE, Loram‐Lourenço L, Alves RDFB, Sousa LF, Almeida SEDS, Farnese FS. Different ways to die in a changing world: Consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecol Evol 2019; 9:11979-11999. [PMID: 31695903 PMCID: PMC6822037 DOI: 10.1002/ece3.5663] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 01/10/2023] Open
Abstract
Anthropogenic activities such as uncontrolled deforestation and increasing greenhouse gas emissions are responsible for triggering a series of environmental imbalances that affect the Earth's complex climate dynamics. As a consequence of these changes, several climate models forecast an intensification of extreme weather events over the upcoming decades, including heat waves and increasingly severe drought and flood episodes. The occurrence of such extreme weather will prompt profound changes in several plant communities, resulting in massive forest dieback events that can trigger a massive loss of biodiversity in several biomes worldwide. Despite the gravity of the situation, our knowledge regarding how extreme weather events can undermine the performance, survival, and distribution of forest species remains very fragmented. Therefore, the present review aimed to provide a broad and integrated perspective of the main biochemical, physiological, and morpho-anatomical disorders that may compromise the performance and survival of forest species exposed to climate change factors, particularly drought, flooding, and global warming. In addition, we also discuss the controversial effects of high CO2 concentrations in enhancing plant growth and reducing the deleterious effects of some extreme climatic events. We conclude with a discussion about the possible effects that the factors associated with the climate change might have on species distribution and forest composition.
Collapse
Affiliation(s)
| | - Lucas Loram‐Lourenço
- Laboratory of Plant EcophysiologyInstituto Federal Goiano – Campus Rio VerdeGoiásBrazil
| | | | | | | | | |
Collapse
|
23
|
Dahal K, Li XQ, Tai H, Creelman A, Bizimungu B. Improving Potato Stress Tolerance and Tuber Yield Under a Climate Change Scenario - A Current Overview. FRONTIERS IN PLANT SCIENCE 2019; 10:563. [PMID: 31139199 PMCID: PMC6527881 DOI: 10.3389/fpls.2019.00563] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/12/2019] [Indexed: 05/06/2023]
Abstract
Global climate change in the form of extreme heat and drought poses a major challenge to sustainable crop production by negatively affecting plant performance and crop yield. Such negative impact on crop yield is likely to be aggravated in future because continued greenhouse gas emissions will cause further rise in temperature leading to increased evapo-transpiration and drought severity, soil salinity as well as insect and disease threats. This has raised a major challenge for plant scientists on securing global food demand, which urges an immediate need to enhance the current yield of major food crops by two-fold to feed the increasing population. As a fourth major food crop, enhancing potato productivity is important for food security of an increasing population. However, potato plant is highly prone to high temperature, drought, soil salinity, as well as insect and diseases. In order to maintain a sustainable potato production, we must adapt our cultivation practices and develop stress tolerant potato cultivars that are appropriately engineered for changing environment. Yet the lack of data on the underlying mechanisms of potato plant resistance to abiotic and biotic stress and the ability to predict future outcomes constitutes a major knowledge gap. It is a challenge for plant scientists to pinpoint means of improving tuber yield under increasing CO2, high temperature and drought stress including the changing patterns of pest and pathogen infestations. Understanding stress-related physiological, biochemical and molecular processes is crucial to develop screening procedures for selecting crop cultivars that can better adapt to changing growth conditions. Elucidation of such mechanism may offer new insights into the identification of specific characteristics that may be useful in breeding new cultivars aimed at maintaining or even enhancing potato yield under changing climate. This paper discusses the recent progress on the mechanism by which potato plants initially sense the changes in their surrounding CO2, temperature, water status, soil salinity and consequently respond to these changes at the molecular, biochemical and physiological levels. We suggest that future research needs to be concentrated on the identification and characterization of signaling molecules and target genes regulating stress tolerance and crop yield potential.
Collapse
Affiliation(s)
- Keshav Dahal
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | | | | | | | | |
Collapse
|
24
|
Zhao X, Li WF, Wang Y, Ma ZH, Yang SJ, Zhou Q, Mao J, Chen BH. Elevated CO 2 concentration promotes photosynthesis of grape (Vitis vinifera L. cv. 'Pinot noir') plantlet in vitro by regulating RbcS and Rca revealed by proteomic and transcriptomic profiles. BMC PLANT BIOLOGY 2019; 19:42. [PMID: 30696402 PMCID: PMC6352424 DOI: 10.1186/s12870-019-1644-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/10/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plant photosynthesis can be improved by elevated CO2 concentration (eCO2). In vitro growth under CO2 enriched environment can lead to greater biomass accumulation than the conventional in micropropagation. However, little is know about how eCO2 promotes transformation of grape plantlets in vitro from heterotrophic to autotrophic. In addition, how photosynthesis-related genes and their proteins are expressed under eCO2 and the mechanisms of how eCO2 regulates RbcS, Rca and their proteins have not been reported. RESULTS Grape (Vitis vinifera L. cv. 'Pinot Noir') plantlets in vitro were cultured with 2% sucrose designated as control (CK), with eCO2 (1000 μmol·mol- 1) as C0, with both 2% sucrose and eCO2 as Cs. Here, transcriptomic and proteomic profiles associated with photosynthesis and growth in leaves of V. vinifera at different CO2 concentration were analyzed. A total of 1814 genes (465 up-regulated and 1349 down-regulated) and 172 proteins (80 up-regulated and 97 down-regulated) were significantly differentially expressed in eCO2 compared to CK. Photosynthesis-antenna, photosynthesis and metabolism pathways were enriched based on GO and KEGG. Simultaneously, 9, 6 and 48 proteins were involved in the three pathways, respectively. The leaf area, plantlet height, qP, ΦPSII and ETR increased under eCO2, whereas Fv/Fm and NPQ decreased. Changes of these physiological indexes are related to the function of DEPs. After combined analysis of proteomic and transcriptomic, the results make clear that eCO2 have different effects on gene transcription and translation. RbcS was not correlated with its mRNA level, suggesting that the change in the amount of RbcS is regulated at their transcript levels by eCO2. However, Rca was negatively correlated with its mRNA level, it is suggested that the change in the amount of its corresponding protein is regulated at their translation levels by eCO2. CONCLUSIONS Transcriptomic, proteomic and physiological analysis were used to evaluate eCO2 effects on photosynthesis. The eCO2 triggered the RbcS and Rca up-regulated, thus promoting photosynthesis and then advancing transformation of grape plantlets from heterotrophic to autotrophic. This research will helpful to understand the influence of eCO2 on plant growth and promote reveal the mechanism of plant transformation from heterotrophic to autotrophic.
Collapse
Affiliation(s)
- Xin Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Wen-Fang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Ying Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Zong-Huan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Shi-Jin Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Qi Zhou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
25
|
Ahmadi Lahijani MJ, Kafi M, Nezami A, Nabati J, Mehrjerdi MZ, Shahkoomahally S, Erwin J. Variations in assimilation rate, photoassimilate translocation, and cellular fine structure of potato cultivars (Solanum Tuberosum L.) exposed to elevated CO 2. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:303-313. [PMID: 30036859 DOI: 10.1016/j.plaphy.2018.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/24/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Rising atmospheric CO2 concentrations are expected to impact the productivity of plants. Cultivars demonstrate different responses to CO2 levels, hence, screening and recognizing the cultivars with a higher capacity for translocation of photoassimilates would certainly be beneficiary. To investigate the interactive impact of enhancing CO2 on physiology, cellular fine structure and photoassimilate translocation of micro-propagated potato plantlets, plantlets (cvs. Agria and Fontane) were grown under ambient (400 ppm) or elevated (800 ppm) CO2 concentrations in controlled environments. These high-yielding cultivars are widely cultivated in Iran and have a wide range of consumption as fresh marketing, French fries, and chips industry. Transmission electron micrographs showed an increase in the length, width, and area of chloroplasts. The number of chloroplasts per cell area was significantly increased in Agria at elevated CO2. Also, there was an increase in mitochondria number in Agria and Fontane. Chloroplast number and Np were increased by a similar magnitude at doubled CO2, while, mitochondria number was increased greater than the leaf Rd enhancement at elevated CO2. Elevated CO2 increased net photosynthesis, dark respiration (Rd), and starch concentration in leaves. However, there was no dramatic change in the leaf soluble carbohydrate content in the plants grown at elevated CO2, apart from at 75 days after transplant (DAT) in Agria. Net photosynthesis remained relatively unchanged for each cultivar throughout the growing season at elevated CO2, which demonstrated more efficient CO2 assimilation to ambient CO2. The greatest starch content was measured at 55 DAT that was accompanied by lower Np and higher Rd. The diminished starch content of leaves was contributed to a lower leaf dry matter as well as a greater tuber dry matter in Fontane. Our results highlighted a variation in photoassimilate translocation between these cultivars, in which Fontane demonstrated a more efficient photoassimilate translocation system at the elevated CO2.
Collapse
Affiliation(s)
| | - Mohammad Kafi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
| | - Ahmad Nezami
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
| | - Jafar Nabati
- Research Center of Plant Sciences, Ferdowsi University of Mashhad, Iran
| | | | | | - John Erwin
- Department of Horticultural Science, University of Minnesota, 305 Alderman Hall, St. Paul, MN, 55108, USA
| |
Collapse
|
26
|
dos Anjos L, Pandey PK, Moraes TA, Feil R, Lunn JE, Stitt M. Feedback regulation by trehalose 6-phosphate slows down starch mobilization below the rate that would exhaust starch reserves at dawn in Arabidopsis leaves. PLANT DIRECT 2018; 2:e00078. [PMID: 31245743 PMCID: PMC6508811 DOI: 10.1002/pld3.78] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/04/2018] [Accepted: 06/26/2018] [Indexed: 05/02/2023]
Abstract
Trehalose 6-phosphate (Tre6P), a sucrose signaling metabolite, inhibits transitory starch breakdown in Arabidopsis (Arabidopsis thaliana) leaves and potentially links starch turnover to leaf sucrose status and demand from sink organs (Plant Physiology, 163, 2013, 1142). To investigate this relationship further, we compared diel patterns of starch turnover in ethanol-inducible Tre6P synthase (iTPS) lines, which have high Tre6P and low sucrose after induction, with those in sweet11;12 sucrose export mutants, which accumulate sucrose in their leaves and were predicted to have high Tre6P. Short-term changes in irradiance were used to investigate whether the strength of inhibition by Tre6P depends on starch levels. sweet11;12 mutants had twofold higher levels of Tre6P and restricted starch mobilization. The relationship between Tre6P and starch mobilization was recapitulated in iTPS lines, pointing to a dominant role for Tre6P in feedback regulation of starch mobilization. Tre6P restricted mobilization across a wide range of conditions. However, there was no correlation between the level of Tre6P and the absolute rate of starch mobilization. Rather, Tre6P depressed the rate of mobilization below that required to exhaust starch at dawn, leading to incomplete use of starch. It is discussed how Tre6P interacts with the clock to set the rate of starch mobilization.
Collapse
Affiliation(s)
- Letícia dos Anjos
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGolmGermany
- Universidade Federal do CearáFortalezaBrazil
| | - Prashant Kumar Pandey
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGolmGermany
- Present address:
National Research Council Canada (NRC‐CNRC)110 Gymnasium PlaceSaskatoonSaskatchewanS7N 0W9Canada
| | | | - Regina Feil
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGolmGermany
| | - John E. Lunn
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGolmGermany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGolmGermany
| |
Collapse
|
27
|
Gamage D, Thompson M, Sutherland M, Hirotsu N, Makino A, Seneweera S. New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. PLANT, CELL & ENVIRONMENT 2018; 41:1233-1246. [PMID: 29611206 DOI: 10.1111/pce.13206] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 05/05/2023]
Abstract
Rising atmospheric carbon dioxide concentration ([CO2 ]) significantly influences plant growth, development, and biomass. Increased photosynthesis rate, together with lower stomatal conductance, has been identified as the key factors that stimulate plant growth at elevated [CO2 ] (e[CO2 ]). However, variations in photosynthesis and stomatal conductance alone cannot fully explain the dynamic changes in plant growth. Stimulation of photosynthesis at e[CO2 ] is always associated with post-photosynthetic secondary metabolic processes that include carbon and nitrogen metabolism, cell cycle functions, and hormonal regulation. Most studies have focused on photosynthesis and stomatal conductance in response to e[CO2 ], despite the emerging evidence of e[CO2 ]'s role in moderating secondary metabolism in plants. In this review, we briefly discuss the effects of e[CO2 ] on photosynthesis and stomatal conductance and then focus on the changes in other cellular mechanisms and growth processes at e[CO2 ] in relation to plant growth and development. Finally, knowledge gaps in understanding plant growth responses to e[CO2 ] have been identified with the aim of improving crop productivity under a CO2 rich atmosphere.
Collapse
Affiliation(s)
- Dananjali Gamage
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, 81 100, Sri Lanka
| | - Michael Thompson
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| | - Mark Sutherland
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| | - Naoki Hirotsu
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
- Faculty of Life Sciences, Toyo University, Oura-gun, Gunma, 374-0193, Japan
| | - Amane Makino
- Division of Life Sciences, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Sendai, 981-8555, Japan
| | - Saman Seneweera
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, 81 100, Sri Lanka
| |
Collapse
|
28
|
Huarancca Reyes T, Scartazza A, Pompeiano A, Ciurli A, Lu Y, Guglielminetti L, Yamaguchi J. Nitrate Reductase Modulation in Response to Changes in C/N Balance and Nitrogen Source in Arabidopsis. PLANT & CELL PHYSIOLOGY 2018; 59:1248-1254. [PMID: 29860377 DOI: 10.1093/pcp/pcy065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/18/2018] [Indexed: 05/20/2023]
Abstract
Environmental cues modulate the balance of carbon (C) and nitrogen (N) which are essential elements for plant metabolism and growth. In Arabidopsis, photochemical efficiency of PSII, phosphorylation status and localization of many enzymes, and the level of total soluble sugars were affected by an unbalanced C/N ratio. Since differences in C/N affect these parameters, here we checked whether different sources of N have different effects when a high C/N ratio is imposed. NO3- and NH4+ were separately provided in C/N medium. We investigated the effects on photochemical efficiency of PSII, the level of total soluble sugars and nitrate reductase activity under stressful C/N conditions compared with control conditions. We found that treated plants accumulated more total soluble sugars when compared with control. Photochemical efficiency of PSII did not show significant differences between the two sources of nitrogen after 24 h. The actual nitrate reductase activity was the result of a combination of activity, activation state and protein level. This activity constantly decreased starting from time zero in control conditions; in contrast, the actual nitrate reductase activity showed a peak at 2 h after treatment with NO3-, and at 30 min with NH4+. This, according to the level of total soluble sugars, can be explained by the existence of a cross-talk between the sugars in excess and low nitrate in the medium that blocks the activity of nitrate reductase in stressful sugar conditions until the plant is adapted to the stress.
Collapse
Affiliation(s)
- Thais Huarancca Reyes
- Department of Agriculture, Food and Environment, University of Pisa, Pisa 56124, Italy
| | - Andrea Scartazza
- Institute of Agro-environmental and Forest Biology, National Research Council, Monterotondo Scalo, RM 00016, Italy
| | - Antonio Pompeiano
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital, Brno 62500, Czech Republic
| | - Andrea Ciurli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa 56124, Italy
| | - Yu Lu
- Faculty of Science and Graduate School of Life Science, Hokkaido University Kita-ku N10-W8, Sapporo, 060-0810 Japan
| | | | - Junji Yamaguchi
- Faculty of Science and Graduate School of Life Science, Hokkaido University Kita-ku N10-W8, Sapporo, 060-0810 Japan
| |
Collapse
|
29
|
Mozdzer TJ, Caplan JS. Complementary responses of morphology and physiology enhance the stand‐scale production of a model invasive species under elevated
CO
2
and nitrogen. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Thomas J. Mozdzer
- Department of Biology Bryn Mawr College Bryn Mawr Pennsylvania
- Smithsonian Environmental Research Center Edgewater Maryland
| | - Joshua S. Caplan
- Department of Biology Bryn Mawr College Bryn Mawr Pennsylvania
- Smithsonian Environmental Research Center Edgewater Maryland
| |
Collapse
|
30
|
Dhami N, Tissue DT, Cazzonelli CI. Leaf-age dependent response of carotenoid accumulation to elevated CO 2 in Arabidopsis. Arch Biochem Biophys 2018; 647:67-75. [PMID: 29604257 DOI: 10.1016/j.abb.2018.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 01/06/2023]
Abstract
Carotenoids contribute to photosynthesis, photoprotection, phytohormone and apocarotenoid biosynthesis in plants. Carotenoid-derived metabolites control plant growth, development and signalling processes and their accumulation can depend upon changes in the environment. Elevated carbon dioxide (eCO2) often enhances carbon assimilation, early growth patterns and overall plant biomass, and may increase carotenoid accumulation due to higher levels of precursors from isoprenoid biosynthesis. Variable effects of eCO2 on carotenoid accumulation in leaves have been observed for different plant species. Here, we determined whether the variable response of carotenoids to eCO2 was potentially a function of leaf age and the impact of eCO2 on leaf development by growing Arabidopsis in ambient CO2 (400 ppm) and eCO2 (800 ppm). eCO2 increased plant leaf number, rosette area, biomass, seed yield and net photosynthesis. In addition, eCO2 increased carotenoid content by 10-20% in younger emerging leaves, but not in older mature leaves. Older leaves contained approximately 60% less total carotenoids compared to younger leaves. The age-dependent effect on carotenoid content was observed for cotyledon, juvenile and adult phase leaves. We conclude that younger leaves utilize additional carbon from enhanced photosynthesis in eCO2 to increase carotenoid content, yet older leaves have less capacity to store additional carbon into carotenoids.
Collapse
Affiliation(s)
- Namraj Dhami
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.
| |
Collapse
|
31
|
Schneider G, Horta PA, Calderon EN, Castro C, Bianchini A, da Silva CRA, Brandalise I, Barufi JB, Silva J, Rodrigues AC. Structural and physiological responses of Halodule wrightii to ocean acidification. PROTOPLASMA 2018; 255:629-641. [PMID: 29043573 DOI: 10.1007/s00709-017-1176-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Coastal areas face high variability of seawater pH. Ocean acidification (OA) and local stressors are enhancing this variability, which poses a threat to marine life. However, these organisms present potential phenotypic plasticity that can offer physiological and structural tools to survive in these extreme conditions. In this study, we evaluated the effects of elevated CO2 levels and consequent pH reduction on the physiology, anatomy and ultrastructure of the seagrass Halodule wrightii. A mesocosm study was conducted in an open system during a 30-day experiment, where different concentrations of CO2 were simulated following the natural variability observed in coastal reef systems. This resulted in four experimental conditions simulating the (i) environmental pH (control condition, without CO2 addition) and (ii) reduced pH by - 0.3 units, (iii) - 0.6 units and (iv) - 0.9 units, in relation to the field condition. The evaluated population only suffered reduced optimum quantum yield (Y(II)), leaf width and cross-section area under the lowest CO2 addition (- 0.3 pH units) after 30 days of experiment. This fitness commitment should be related to carbon concentration mechanisms present in the evaluated species. For the highest CO2 level, H. wrightii demonstrated a capacity to compensate any negative effect of the lowest pH. Our results suggest that the physiological behaviour of this primary producer is driven by the interactions among OA and environmental factors, like irradiance and nutrient availability. The observed behaviour highlights that high-frequency pH variability and multifactorial approaches should be applied, and when investigating the impact of OA, factors like irradiance, nutrient availability and temperature must be considered as well.
Collapse
Affiliation(s)
- Geniane Schneider
- Plant Anatomy Laboratory, Department of Botany,, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Postgraduate Program in Biology of Fungi, Algae and Plants, Department of Plant of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Paulo Antunes Horta
- Phycology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Emiliano Nicolas Calderon
- Coral Vivo Institute, Rio de Janeiro, Brazil
- Celenterology Laboratory, Department of Invertebrates, National Museum, Federal University of Rio de Janeiro (MN/UFRJ), Rio de Janeiro, RJ, Brazil
- Postgraduate Program in Environmental Science and Conservation (PPG-CiAC), Macaé Nucleus for Ecological Researches, Federal University of Rio de Janeiro (NUPEM/UFRJ), Macaé, RJ, Brazil
| | - Clovis Castro
- Coral Vivo Institute, Rio de Janeiro, Brazil
- Celenterology Laboratory, Department of Invertebrates, National Museum, Federal University of Rio de Janeiro (MN/UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Camilla Reis Augusto da Silva
- Plant Anatomy Laboratory, Department of Botany,, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Postgraduate Program in Biology of Fungi, Algae and Plants, Department of Plant of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Isabel Brandalise
- Plant Anatomy Laboratory, Department of Botany,, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - José Bonomi Barufi
- Postgraduate Program in Biology of Fungi, Algae and Plants, Department of Plant of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Phycology Laboratory, Department of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - João Silva
- Marine Plant Ecology Research Group (ALGAE), Centre of Marine Sciences (CCMAR), University of Algarve Campus of Gambelas, Faro, Portugal
| | - Ana Claudia Rodrigues
- Plant Anatomy Laboratory, Department of Botany,, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
- Postgraduate Program in Biology of Fungi, Algae and Plants, Department of Plant of Botany, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
32
|
Thompson M, Gamage D, Hirotsu N, Martin A, Seneweera S. Effects of Elevated Carbon Dioxide on Photosynthesis and Carbon Partitioning: A Perspective on Root Sugar Sensing and Hormonal Crosstalk. Front Physiol 2017; 8:578. [PMID: 28848452 PMCID: PMC5550704 DOI: 10.3389/fphys.2017.00578] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/26/2017] [Indexed: 01/14/2023] Open
Abstract
Plant responses to atmospheric carbon dioxide will be of great concern in the future, as carbon dioxide concentrations ([CO2]) are predicted to continue to rise. Elevated [CO2] causes increased photosynthesis in plants, which leads to greater production of carbohydrates and biomass. Which organ the extra carbohydrates are allocated to varies between species, but also within species. These carbohydrates are a major energy source for plant growth, but they also act as signaling molecules and have a range of uses beyond being a source of carbon and energy. Currently, there is a lack of information on how the sugar sensing and signaling pathways of plants are affected by the higher content of carbohydrates produced under elevated [CO2]. Particularly, the sugar signaling pathways of roots are not well understood, along with how they are affected by elevated [CO2]. At elevated [CO2], some plants allocate greater amounts of sugars to roots where they are likely to act on gene regulation and therefore modify nutrient uptake and transport. Glucose and sucrose also promote root growth, an effect similar to what occurs under elevated [CO2]. Sugars also crosstalk with hormones to regulate root growth, but also affect hormone biosynthesis. This review provides an update on the role of sugars as signaling molecules in plant roots and thus explores the currently known functions that may be affected by elevated [CO2].
Collapse
Affiliation(s)
- Michael Thompson
- Faculty of Health, Engineering and Sciences, Centre for Crop Health, University of Southern QueenslandToowoomba, QLD, Australia
| | - Dananjali Gamage
- Faculty of Health, Engineering and Sciences, Centre for Crop Health, University of Southern QueenslandToowoomba, QLD, Australia
| | - Naoki Hirotsu
- Faculty of Health, Engineering and Sciences, Centre for Crop Health, University of Southern QueenslandToowoomba, QLD, Australia
- Faculty of Life Sciences, Toyo UniversityItakura-machi, Japan
| | - Anke Martin
- Faculty of Health, Engineering and Sciences, Centre for Crop Health, University of Southern QueenslandToowoomba, QLD, Australia
| | - Saman Seneweera
- Faculty of Health, Engineering and Sciences, Centre for Crop Health, University of Southern QueenslandToowoomba, QLD, Australia
| |
Collapse
|
33
|
Ruocco M, Musacchia F, Olivé I, Costa MM, Barrote I, Santos R, Sanges R, Procaccini G, Silva J. Genomewide transcriptional reprogramming in the seagrass Cymodocea nodosa under experimental ocean acidification. Mol Ecol 2017; 26:4241-4259. [PMID: 28614601 DOI: 10.1111/mec.14204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/18/2017] [Accepted: 05/30/2017] [Indexed: 12/29/2022]
Abstract
Here, we report the first use of massive-scale RNA-sequencing to explore seagrass response to CO2 -driven ocean acidification (OA). Large-scale gene expression changes in the seagrass Cymodocea nodosa occurred at CO2 levels projected by the end of the century. C. nodosa transcriptome was obtained using Illumina RNA-Seq technology and de novo assembly, and differential gene expression was explored in plants exposed to short-term high CO2 /low pH conditions. At high pCO2 , there was a significant increased expression of transcripts associated with photosynthesis, including light reaction functions and CO2 fixation, and also to respiratory pathways, specifically for enzymes involved in glycolysis, in the tricarboxylic acid cycle and in the energy metabolism of the mitochondrial electron transport. The upregulation of respiratory metabolism is probably supported by the increased availability of photosynthates and increased energy demand for biosynthesis and stress-related processes under elevated CO2 and low pH. The upregulation of several chaperones resembling heat stress-induced changes in gene expression highlighted the positive role these proteins play in tolerance to intracellular acid stress in seagrasses. OA further modifies C. nodosa secondary metabolism inducing the transcription of enzymes related to biosynthesis of carbon-based secondary compounds, in particular the synthesis of polyphenols and isoprenoid compounds that have a variety of biological functions including plant defence. By demonstrating which physiological processes are most sensitive to OA, this research provides a major advance in the understanding of seagrass metabolism in the context of altered seawater chemistry from global climate change.
Collapse
Affiliation(s)
- Miriam Ruocco
- CCMar-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | | | - Irene Olivé
- CCMar-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Monya M Costa
- CCMar-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Isabel Barrote
- CCMar-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Rui Santos
- CCMar-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Remo Sanges
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | | | - João Silva
- CCMar-Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
34
|
Rubio-Asensio JS, Bloom AJ. Inorganic nitrogen form: a major player in wheat and Arabidopsis responses to elevated CO2. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2611-2625. [PMID: 28011716 DOI: 10.1093/jxb/erw465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Critical for predicting the future of primary productivity is a better understanding of plant responses to rising atmospheric carbon dioxide (CO2) concentration. This review considers recent results on the role of the inorganic nitrogen (N) forms nitrate (NO3-) and ammonium (NH4+) in determining the responses of wheat and Arabidopsis to elevated atmospheric CO2 concentration. Here, we identify four key issues: (i) the possibility that different plant species respond similarly to elevated CO2 if one accounts for the N form that they are using; (ii) the major influence that plant-soil N interactions have on plant responses to elevated CO2; (iii) the observation that elevated CO2 may favor the uptake of one N form over others; and (iv) the finding that plants receiving NH4+ nutrition respond more positively to elevated CO2 than those receiving NO3- nutrition because elevated CO2 inhibits the assimilation of NO3- in shoots of C3 plants. We conclude that the form and amount of N available to plants from the rhizosphere and plant preferences for the different N forms are essential for predicting plant responses to elevated CO2.
Collapse
Affiliation(s)
- José S Rubio-Asensio
- Department of Irrigation, Centro de Edafología y Biología Aplicada del Segura, Espinardo, Murcia, Spain
| | - Arnold J Bloom
- Department of Plant Sciences, Mailstop 3, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
35
|
Kanno K, Suzuki Y, Makino A. A Small Decrease in Rubisco Content by Individual Suppression of RBCS Genes Leads to Improvement of Photosynthesis and Greater Biomass Production in Rice Under Conditions of Elevated CO2. PLANT & CELL PHYSIOLOGY 2017; 58:635-642. [PMID: 28158810 DOI: 10.1093/pcp/pcx018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/23/2017] [Indexed: 05/08/2023]
Abstract
Rubisco limits photosynthesis at low CO2 concentrations ([CO2]), but does not limit it at elevated [CO2]. This means that the amount of Rubisco is excessive for photosynthesis at elevated [CO2]. Therefore, we examined whether a small decrease in Rubisco content by individual suppression of the RBCS multigene family leads to increases in photosynthesis and biomass production at elevated [CO2] in rice (Oryza sativa L.). Our previous studies indicated that the individual suppression of RBCS decreased Rubisco content in rice by 10-25%. Three lines of BC2F2 progeny were selected from transgenic plants with individual suppression of OsRBCS2, 3 and 5. Rubisco content in the selected lines was 71-90% that of wild-type plants. These three transgenic lines showed lower rates of CO2 assimilation at low [CO2] (28 Pa) but higher rates of CO2 assimilation at elevated [CO2] (120 Pa). Similarly, the biomass production and relative growth rate (RGR) of the two lines were also smaller at low [CO2] but greater than that of wild-type plants at elevated [CO2]. This greater RGR was caused by the higher net assimilation rate (NAR). When the nitrogen use efficiency (NUE) for the NAR was estimated by dividing the NAR by whole-plant leaf N content, the NUE for NAR at elevated [CO2] was higher in these two lines. Thus, a small decrease in Rubisco content leads to improvements of photosynthesis and greater biomass production in rice under conditions of elevated CO2.
Collapse
Affiliation(s)
- Keiichi Kanno
- Graduate School of Agricultural Science, Tohoku University, Aramaki-Aoba, Aoba-ku, Sendai 981-0845, Japan
| | - Yuji Suzuki
- Graduate School of Agricultural Science, Tohoku University, Aramaki-Aoba, Aoba-ku, Sendai 981-0845, Japan
- CREST, JST, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, Aramaki-Aoba, Aoba-ku, Sendai 981-0845, Japan
- CREST, JST, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
36
|
Moura BB, Almeida PH, Balliana AG, Cobos JYG, Erbano M, do Prado KA, Vudala SM, Wosch L, Pereira-Netto AB. Effects of changes in micro-weather conditions on structural features, total protein and carbohydrate content in leaves of the Atlantic rain forest tree golden trumpet (Tabebuia chrysotricha). BRAZ J BIOL 2016; 77:535-541. [PMID: 27783764 DOI: 10.1590/1519-6984.18815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/22/2016] [Indexed: 11/21/2022] Open
Abstract
Golden trumpet, Tabebuia chrysotricha, is a native tree from the Brazilian Atlantic rain forest, with a broad latitudinal distribution. In this study, we investigated the potential effects of short-term changes in micro-weather conditions on structural features, and total protein and carbohydrate content of golden trumpet leaves, using structural and histochemical approaches. Leaves were harvested in four different micro-weather conditions: 1. Afternoon, after a hot, sunny day; 2. at dawn, after a previously hot, sunny day; 3. at noon, of a hot, sunny day; and 4. at noon, of a cold, cloudy day. Leaflets exposed to low light irradiance showed flattened chloroplasts, uniformly distributed within the cells, throughout the palisade parenchyma. Conversely, leaflets exposed to high light irradiance presented flattened and rounded chloroplasts, in the upper and lower palisade parenchyma cells, respectively. The strongest protein staining was found for leaves harvested at the coldest period, whereas the weakest protein staining was found for leaves harvested after a hot, sunny day. The largest and most numerous starch grains were found for leaves harvested in the afternoon, after a hot, sunny day. Conversely, the smallest and less numerous starch grains were found for leaves harvested at dawn. Analysis of the data reported herein suggests that the leaflet responses to transient changes in micro-weather conditions are likely to contribute to the golden trumpet successful establishment in the broad latitudinal distribution in which the species is found.
Collapse
Affiliation(s)
- B B Moura
- Department of Botany - SCB, Universidade Federal do Paraná - UFPR, CP 19031, Curitiba, PR, Brazil
| | - P H Almeida
- Department of Botany - SCB, Universidade Federal do Paraná - UFPR, CP 19031, Curitiba, PR, Brazil
| | - A G Balliana
- Department of Botany - SCB, Universidade Federal do Paraná - UFPR, CP 19031, Curitiba, PR, Brazil
| | - J Y G Cobos
- Department of Botany - SCB, Universidade Federal do Paraná - UFPR, CP 19031, Curitiba, PR, Brazil
| | - M Erbano
- Department of Botany - SCB, Universidade Federal do Paraná - UFPR, CP 19031, Curitiba, PR, Brazil
| | - K A do Prado
- Department of Botany - SCB, Universidade Federal do Paraná - UFPR, CP 19031, Curitiba, PR, Brazil
| | - S M Vudala
- Department of Botany - SCB, Universidade Federal do Paraná - UFPR, CP 19031, Curitiba, PR, Brazil
| | - L Wosch
- Department of Botany - SCB, Universidade Federal do Paraná - UFPR, CP 19031, Curitiba, PR, Brazil
| | - A B Pereira-Netto
- Department of Botany - SCB, Universidade Federal do Paraná - UFPR, CP 19031, Curitiba, PR, Brazil
| |
Collapse
|
37
|
Huarancca Reyes T, Scartazza A, Lu Y, Yamaguchi J, Guglielminetti L. Effect of carbon/nitrogen ratio on carbohydrate metabolism and light energy dissipation mechanisms in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 105:195-202. [PMID: 27108206 DOI: 10.1016/j.plaphy.2016.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
Carbon (C) and nitrogen (N) nutrient sources are essential elements for metabolism, and their availability must be tightly coordinated for the optimal growth and development in plants. Plants are able to sense and respond to different C/N conditions via specific partitioning of C and N sources and the regulation of a complex cellular metabolic activity. We studied how the interaction between C and N signaling could affect carbohydrate metabolism, soluble sugar levels, photochemical efficiency of photosystem II (PSII) and the ability to drive the excess energy in Arabidopsis seedlings under moderated and disrupted C/N-nutrient conditions. Invertase and sucrose synthase activities were markedly affected by C/N-nutrient status depending on the phosphorylation status, suggesting that these enzymes may necessarily be modulated by their direct phosphorylation or phosphorylation of proteins that form complex with them in response to C/N stress. In addition, the enzymatic activity of these enzymes was also correlated with the amount of sugars, which not only act as substrate but also as signaling compounds. Analysis of chlorophyll fluorescence in plants under disrupted C/N condition suggested a reduction of electron transport rate at PSII level associated with a higher capacity for non-radiative energy dissipation in comparison with plants under moderated C/N condition. In conclusion, the tight coordination between C and N not only affects the carbohydrates metabolism and their concentration within plant tissues, but also the partitioning of the excitation energy at PSII level between radiative (electron transport) and non-radiative (heat) dissipation pathways.
Collapse
Affiliation(s)
- Thais Huarancca Reyes
- Department of Agriculture, Food and Environment, University of Pisa, Via Mariscoglio 34, I-56017, Pisa, Italy
| | - Andrea Scartazza
- Istituto di Biologia Agro-ambientale e Forestale (IBAF), Consiglio Nazionale delle Ricerche, Via Salaria km 29,300, 00016, Monterotondo Scalo (RM), Italy
| | - Yu Lu
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810, Japan
| | - Junji Yamaguchi
- Faculty of Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810, Japan
| | - Lorenzo Guglielminetti
- Department of Agriculture, Food and Environment, University of Pisa, Via Mariscoglio 34, I-56017, Pisa, Italy.
| |
Collapse
|
38
|
Duan W, Xu H, Liu G, Fan P, Liang Z, Li S. Genome-Wide Transcriptional Profile Analysis of Prunus persica in Response to Low Sink Demand after Fruit Removal. FRONTIERS IN PLANT SCIENCE 2016; 7:883. [PMID: 27446115 PMCID: PMC4916340 DOI: 10.3389/fpls.2016.00883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
Prunus persica fruits were removed from 1-year-old shoots to analysis photosynthesis, chlorophyll fluorescence and genes changes in leaves to low sink demand caused by fruit removal (-fruit) during the final stage of rapid fruit growth. A decline in net photosynthesis rate was observed, accompanied with a decrease in stomatal conductance. The intercellular CO2 concentrations and leaf temperature increased as compared with a normal fruit load (+fruit). Moreover, low sink demand significantly inhibited the donor side and the reaction center of photosystem II. 382 genes in leaf with an absolute fold change ≥1 change in expression level, representing 116 up- and 266 down-regulated genes except for unknown transcripts. Among these, 25 genes for photosynthesis were down-regulated, 69 stress and 19 redox related genes up-regulated under the low sink demand. These studies revealed high leaf temperature may result in a decline of net photosynthesis rate through down-regulation in photosynthetic related genes and up-regulation in redox and stress related genes, especially heat shock proteins genes. The complex changes in genes at the transcriptional level under low sink demand provided useful starting points for in-depth analyses of source-sink relationship in P. persica.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of SciencesBeijing, China
| |
Collapse
|
39
|
Xu Z, Jiang Y, Jia B, Zhou G. Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors. FRONTIERS IN PLANT SCIENCE 2016; 7:657. [PMID: 27242858 PMCID: PMC4865672 DOI: 10.3389/fpls.2016.00657] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 04/29/2016] [Indexed: 05/18/2023]
Abstract
Stomata control the flow of gases between plants and the atmosphere. This review is centered on stomatal responses to elevated CO2 concentration and considers other key environmental factors and underlying mechanisms at multiple levels. First, an outline of general responses in stomatal conductance under elevated CO2 is presented. Second, stomatal density response, its development, and the trade-off with leaf growth under elevated CO2 conditions are depicted. Third, the molecular mechanism regulating guard cell movement at elevated CO2 is suggested. Finally, the interactive effects of elevated CO2 with other factors critical to stomatal behavior are reviewed. It may be useful to better understand how stomata respond to elevated CO2 levels while considering other key environmental factors and mechanisms, including molecular mechanism, biochemical processes, and ecophysiological regulation. This understanding may provide profound new insights into how plants cope with climate change.
Collapse
Affiliation(s)
- Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yanling Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Bingrui Jia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Chinese Academy of Meteorological SciencesBeijing, China
| |
Collapse
|
40
|
Yamaoka C, Suzuki Y, Makino A. Differential Expression of Genes of the Calvin-Benson Cycle and its Related Genes During Leaf Development in Rice. PLANT & CELL PHYSIOLOGY 2016; 57:115-124. [PMID: 26615032 DOI: 10.1093/pcp/pcv183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/01/2015] [Indexed: 06/05/2023]
Abstract
To understand how the machinery for photosynthetic carbon assimilation is formed and maintained during leaf development, changes in the mRNA levels of the Calvin-Benson cycle enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase and two key enzymes for sucrose synthesis were determined in rice (Oryza sativa L.). According to the patterns of changes in the mRNA levels, these genes were categorized into three groups. Group 1 included most of the genes involved in the carboxylation and reduction phases of the Calvin-Benson cycle, as well as three genes in the regeneration phase. The mRNA levels increased and reached maxima during leaf expansion and then rapidly declined, although there were some variations in the residual mRNA levels in senescent leaves. Group 2 included a number of genes involved in the regeneration phase, one gene in the reduction phase of the Calvin-Benson cycle and one gene in sucrose synthesis. The mRNA levels increased and almost reached maxima before full expansion and then gradually declined. Group 3 included Rubisco activase, one gene involved in the regeneration phase and one gene in sucrose synthesis. The overall pattern was similar to that in group 2 genes except that the mRNA levels reached maxima after the stage of full expansion. Thus, genes of the Calvin-Benson cycle and its related genes were differentially expressed during leaf development in rice, suggesting that such differential gene expression is necessary for formation and maintenance of the machinery of photosynthetic carbon assimilation.
Collapse
Affiliation(s)
- Chihiro Yamaoka
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, 981-8555 Japan
| | - Yuji Suzuki
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, 981-8555 Japan
| | - Amane Makino
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, 981-8555 Japan CREST, JST, Gobancho, Chiyoda-ku, Tokyo, 102-0076 Japan
| |
Collapse
|
41
|
Peng H, Wei D, Chen G, Chen F. Transcriptome analysis reveals global regulation in response to CO2 supplementation in oleaginous microalga Coccomyxa subellipsoidea C-169. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:151. [PMID: 27453726 PMCID: PMC4957332 DOI: 10.1186/s13068-016-0571-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/12/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Microalgae are emerging as suitable feedstock for renewable biofuel production and providing a promising way to alleviate green house gas CO2. Characterizing the metabolic pathways involved in the biosynthesis of energy-rich compounds and their global regulation upon elevated CO2 is necessary to explore the mechanism underlying rapid growth and lipid accumulation, so as to realize the full potential of these organisms as energy resources. RESULTS In the present study, 2 and 5 % CO2 increased growth rate and lipid accumulation in autotrophically cultured green alga Coccomyxa subellipsoidea C-169. Overall biomass productivity as 222 mg L(-1) day(-1) and fatty acid content as 48.5 % dry cell weight were attained in 2 % CO2, suggesting C-169 as a great candidate for lipid production via CO2 supplementation. Transcriptomic analysis of 2 % against 0.04 % CO2-cultured C-169 unveiled the global regulation of important metabolic processes. Other than enhancing gene expression in the Calvin cycle, C-169 upregulated the expression of phosphoenolpyruvate carboxylase, pyruvate carboxylase and carbamoyl-phosphate synthetase II to enhance the anaplerotic carbon assimilation reactions upon elevated CO2. Upregulation of ferredoxin and ferredoxin-NADP(+) reductase implied that plentiful energy captured through photosynthesis was transferred through ferredoxin to sustain rapid growth and lipid accumulation. Genes involved in the glycolysis, TCA cycle and oxidative phosphorylation were predominantly upregulated presumably to provide abundant intermediates and metabolic energy for anabolism. Coordinated upregulation of nitrogen acquisition and assimilation genes, together with activation of specific carbamoyl-phosphate synthetase and ornithine pathway genes, might help C-169 to maintain carbon/nitrogen balance upon elevated CO2. Significant downregulation of fatty acid degradation genes, as well as the upregulation of fatty acid synthesis genes at the later stage might contribute to the tremendous lipid accumulation. CONCLUSION Global and collaborative regulation was employed by C-169 to assimilate more carbon and maintain carbon/nitrogen balance upon elevated CO2, which provide abundant carbon skeleton and affluent metabolic energy to sustain rapid growth and lipid accumulation. Data here for the first time bring significant insights into the regulatory profile of metabolism and acclimation to elevated CO2 in C-169, which provide important information for future metabolic engineering in the development of sustainable microalgae-based biofuels.
Collapse
Affiliation(s)
- Huifeng Peng
- />School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 People’s Republic of China
| | - Dong Wei
- />School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 People’s Republic of China
| | - Gu Chen
- />School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 People’s Republic of China
| | - Feng Chen
- />School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640 People’s Republic of China
- />Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 People’s Republic of China
| |
Collapse
|
42
|
Liu L, Shen F, Xin C, Wang Z. Multi-scale modeling of Arabidopsis thaliana response to different CO2 conditions: From gene expression to metabolic flux. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:2-11. [PMID: 26010949 DOI: 10.1111/jipb.12370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
Multi-scale investigation from gene transcript level to metabolic activity is important to uncover plant response to environment perturbation. Here we integrated a genome-scale constraint-based metabolic model with transcriptome data to explore Arabidopsis thaliana response to both elevated and low CO2 conditions. The four condition-specific models from low to high CO2 concentrations show differences in active reaction sets, enriched pathways for increased/decreased fluxes, and putative post-transcriptional regulation, which indicates that condition-specific models are necessary to reflect physiological metabolic states. The simulated CO2 fixation flux at different CO2 concentrations is consistent with the measured Assimilation-CO2intercellular curve. Interestingly, we found that reactions in primary metabolism are affected most significantly by CO2 perturbation, whereas secondary metabolic reactions are not influenced a lot. The changes predicted in key pathways are consistent with existing knowledge. Another interesting point is that Arabidopsis is required to make stronger adjustment on metabolism to adapt to the more severe low CO2 stress than elevated CO2 . The challenges of identifying post-transcriptional regulation could also be addressed by the integrative model. In conclusion, this innovative application of multi-scale modeling in plants demonstrates potential to uncover the mechanisms of metabolic response to different conditions.
Collapse
Affiliation(s)
- Lin Liu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangzhou Shen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Changpeng Xin
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Botanical Garden, Shanghai, 200231, China
| | - Zhuo Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
43
|
Zhang R, Du S. Properties of nitrogen fertilization are decisive in determining the effects of elevated atmospheric CO2 on the activity of nitrate reductase in plants. PLANT SIGNALING & BEHAVIOR 2016; 11:e1165380. [PMID: 27043473 PMCID: PMC4883851 DOI: 10.1080/15592324.2016.1165380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The concentration of atmospheric CO2 is predicted to double by the end of this century. The response of higher plants to an increase in atmospheric CO2 often includes a change in nitrate reductase (NR) activity. In a recent study, we showed that, under elevated CO2 levels, NR induction in low-nitrate plants and NR inhibition in high-nitrate plants are regulated by nitric oxide (NO) generated via nitric oxide synthases. This finding provides an explanation for the diverse responses of plants to elevated CO2 levels, and suggests that the use of nitrogen fertilizers on soil will have a major influence on the nitrogen assimilation capacity of plants in response to CO2 elevation.
Collapse
Affiliation(s)
- Ranran Zhang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Shaoting Du
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
44
|
Xu Z, Jiang Y, Jia B, Zhou G. Elevated-CO2 Response of Stomata and Its Dependence on Environmental Factors. FRONTIERS IN PLANT SCIENCE 2016. [PMID: 27242858 DOI: 10.3389/fpls.20116.00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Stomata control the flow of gases between plants and the atmosphere. This review is centered on stomatal responses to elevated CO2 concentration and considers other key environmental factors and underlying mechanisms at multiple levels. First, an outline of general responses in stomatal conductance under elevated CO2 is presented. Second, stomatal density response, its development, and the trade-off with leaf growth under elevated CO2 conditions are depicted. Third, the molecular mechanism regulating guard cell movement at elevated CO2 is suggested. Finally, the interactive effects of elevated CO2 with other factors critical to stomatal behavior are reviewed. It may be useful to better understand how stomata respond to elevated CO2 levels while considering other key environmental factors and mechanisms, including molecular mechanism, biochemical processes, and ecophysiological regulation. This understanding may provide profound new insights into how plants cope with climate change.
Collapse
Affiliation(s)
- Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences Beijing, China
| | - Yanling Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences Beijing, China
| | - Bingrui Jia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences Beijing, China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China; Chinese Academy of Meteorological SciencesBeijing, China
| |
Collapse
|
45
|
Barnaby JY, Fleisher D, Reddy V, Sicher R. Combined effects of CO2 enrichment, diurnal light levels and water stress on foliar metabolites of potato plants grown in naturally sunlit controlled environment chambers. PHYSIOLOGIA PLANTARUM 2015; 153:243-52. [PMID: 24888746 DOI: 10.1111/ppl.12238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 05/04/2023]
Abstract
Experiments were conducted in outdoor, naturally sunlit, soil-plant-atmosphere research (SPAR) chambers using plants grown in pots. Drought treatments were imposed on potato plants (Solanum tuberosum cv. Kennebec) beginning 10 days after tuber initiation. A total of 23 out of 37 foliar metabolites were affected by drought when measured 11 days after initiating water stress treatments. Compounds that accumulated in response to drought were hexoses, polyols, branched chain amino acids (BCAAs) and aromatic amino acids, such as proline. Conversely, leaf starch, alanine, aspartate and several organic acids involved in respiratory metabolism decreased with drought. Depending upon harvest date, a maximum of 12 and 17 foliar metabolites also responded to either CO2 enrichment or diurnal treatments, respectively. In addition, about 20% of the measured metabolites in potato leaflets were simultaneously affected by drought, CO2 enrichment and diurnal factors combined. This group contained BCAAs, hexoses, leaf starch and malate. Polyols and proline accumulated in response to water stress but did not vary diurnally. Water stress also amplified diurnal variations of hexoses and starch in comparison to control samples. Consequently, specific drought responsive metabolites in potato leaflets were dramatically affected by daily changes of photosynthetic carbon metabolism.
Collapse
Affiliation(s)
- Jinyoung Y Barnaby
- USDA-ARS, Crop Systems and Global Change Laboratory, Beltsville, MD, 20705, USA
| | | | | | | |
Collapse
|
46
|
Mendes de Rezende F, Pereira de Souza A, Silveira Buckeridge M, Maria Furlan C. Is guava phenolic metabolism influenced by elevated atmospheric CO2? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 196:483-488. [PMID: 25129845 DOI: 10.1016/j.envpol.2014.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 07/17/2014] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
Seedlings of Psidium guajava cv. Pedro Sato were distributed into four open-top chambers: two with ambient CO(2) (∼390 ppm) and two with elevated CO(2) (∼780 ppm). Monthly, five individuals of each chamber were collected, separated into root, stem and leaves and immediately frozen in liquid nitrogen. Chemical parameters were analyzed to investigate how guava invests the surplus carbon. For all classes of phenolic compounds analyzed only tannins showed significant increase in plants at elevated CO(2) after 90 days. There was no significant difference in dry biomass, but the leaves showed high accumulation of starch under elevated CO(2). Results suggest that elevated CO(2) seems to be favorable to seedlings of P. guajava, due to accumulation of starch and tannins, the latter being an important anti-herbivore substance.
Collapse
Affiliation(s)
- Fernanda Mendes de Rezende
- Department of Botany, Institute of Bioscience, University of São Paulo, Rua do Matão, 277, CEP 05508-090, São Paulo, SP, Brazil.
| | - Amanda Pereira de Souza
- Department of Botany, Institute of Bioscience, University of São Paulo, Rua do Matão, 277, CEP 05508-090, São Paulo, SP, Brazil
| | - Marcos Silveira Buckeridge
- Department of Botany, Institute of Bioscience, University of São Paulo, Rua do Matão, 277, CEP 05508-090, São Paulo, SP, Brazil
| | - Cláudia Maria Furlan
- Department of Botany, Institute of Bioscience, University of São Paulo, Rua do Matão, 277, CEP 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
47
|
Wu S, Huang A, Zhang B, Huan L, Zhao P, Lin A, Wang G. Enzyme activity highlights the importance of the oxidative pentose phosphate pathway in lipid accumulation and growth of Phaeodactylum tricornutum under CO2 concentration. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:78. [PMID: 26052345 PMCID: PMC4456714 DOI: 10.1186/s13068-015-0262-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 05/20/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Rising CO2 concentration was reported to increase phytoplankton growth rate as well as lipid productivity. This has raised questions regarding the NADPH supply for high lipid synthesis as well as rapid growth of algal cells. RESULTS In this study, growth, lipid content, photosynthetic performance, the activity, and expression of key enzymes in Calvin cycle and oxidative pentose phosphate pathway (OPPP) were analyzed in the marine diatom Phaeodactylum tricornutum under three different CO2 concentrations (low CO2 (0.015 %), mid CO2 (atmospheric, 0.035 %) and high CO2 (0.15 %)). Both the growth rate and lipid content of P. tricornutum increased significantly under the high CO2 concentration. Enzyme activity and mRNA expression of three Calvin cycle-related enzymes (Rubisco, 3-phosphoglyceric phosphokinase (PGK), phosphoribulokinase (PRK)) were also increased under high CO2 cultivation, which suggested the enhancement of Calvin cycle activity. This may account for the observed rapid growth rate. In addition, high activity and mRNA expression of G6PDH and 6PGDH, which produce NADPH through OPPP, were observed in high CO2 cultured cells. These results indicate OPPP was enhanced and might play an important role in lipid synthesis under high CO2 concentration. CONCLUSIONS The oxidative pentose phosphate pathway may participate in the lipid accumulation in rapid-growth P. tricornutum cells in high CO2 concentration.
Collapse
Affiliation(s)
- Songcui Wu
- />Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071 China
- />College of Earth Sciences, University of Chinese Academy of Science, Beijing, 100049 China
| | - Aiyou Huang
- />Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071 China
| | - Baoyu Zhang
- />Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071 China
| | - Li Huan
- />Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071 China
- />College of Earth Sciences, University of Chinese Academy of Science, Beijing, 100049 China
| | - Peipei Zhao
- />Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071 China
- />College of Earth Sciences, University of Chinese Academy of Science, Beijing, 100049 China
| | - Apeng Lin
- />Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071 China
| | - Guangce Wang
- />Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, 266071 China
| |
Collapse
|
48
|
Sun J, Feng Z, Leakey ADB, Zhu X, Bernacchi CJ, Ort DR. Inconsistency of mesophyll conductance estimate causes the inconsistency for the estimates of maximum rate of Rubisco carboxylation among the linear, rectangular and non-rectangular hyperbola biochemical models of leaf photosynthesis--a case study of CO₂ enrichment and leaf aging effects in soybean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 226:49-60. [PMID: 25113450 DOI: 10.1016/j.plantsci.2014.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 06/12/2014] [Accepted: 06/20/2014] [Indexed: 06/03/2023]
Abstract
The responses of CO2 assimilation to [CO2] (A/Ci) were investigated at two developmental stages (R5 and R6) and in several soybean cultivars grown under two levels of CO2, the ambient level of 370 μbar versus the elevated level of 550 μbar. The A/Ci data were analyzed and compared by either the combined iterations or the separated iterations of the Rubisco-limited photosynthesis (Ac) and/or the RuBP-limited photosynthesis (Aj) using various curve-fitting methods: the linear 2-segment model; the non-rectangular hyperbola model; the rectangular hyperbola model; the constant rate of electron transport (J) method and the variable J method. Inconsistency was found among the various methods for the estimation of the maximum rate of carboxylation (Vcmax), the mitochondrial respiration rate in the light (Rd) and mesophyll conductance (gm). The analysis showed that the inconsistency was due to inconsistent estimates of gm values that decreased with an instantaneous increase in [CO2], and varied with the transition Ci cut-off between Rubisco-limited photosynthesis and RuBP-regeneration-limited photosynthesis, and due to over-parameters for non-linear curve-fitting with gm included. We proposed an alternate solution to A/Ci curve-fitting for estimates of Vcmax, Rd, Jmax and gm with the various A/Ci curve-fitting methods. The study indicated that down-regulation of photosynthetic capacity by elevated [CO2] and leaf aging was due to partially the decrease in the maximum rates of carboxylation and partially the decrease in gm. Mesophyll conductance lowered photosynthetic capacity by 18% on average for the case of soybean plants.
Collapse
Affiliation(s)
- Jindong Sun
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Zhaozhong Feng
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew D B Leakey
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xinguang Zhu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Carl J Bernacchi
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Photosynthesis Research Unit, USDA-ARS, Urbana, IL 61801, USA
| | - Donald R Ort
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Photosynthesis Research Unit, USDA-ARS, Urbana, IL 61801, USA
| |
Collapse
|
49
|
Duan Z, Homma A, Kobayashi M, Nagata N, Kaneko Y, Fujiki Y, Nishida I. Photoassimilation, assimilate translocation and plasmodesmal biogenesis in the source leaves of Arabidopsis thaliana grown under an increased atmospheric CO2 concentration. PLANT & CELL PHYSIOLOGY 2014; 55:358-69. [PMID: 24406629 PMCID: PMC3913446 DOI: 10.1093/pcp/pcu004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/02/2014] [Indexed: 05/21/2023]
Abstract
Using 18-day-old Arabidopsis thaliana seedlings grown under increased (780 p.p.m., experimental plants) or ambient (390 p.p.m., control plants) CO2 conditions, we evaluated (14)CO2 photoassimilation in and translocation from representative source leaves. The total (14)CO2 photoassimilation amounts increased in the third leaves of the experimental plants in comparison with that found for the third leaves of the control plants, but the rates were comparable for the first leaves of the two groups. In contrast, translocation of labeled assimilates doubled in the first leaves of the experimental group, whereas translocation was, at best, passively enhanced even though photoassimilation increased in their third leaves. The transcript levels of the companion cell-specific sucrose:H(+) symporter gene SUC2 were not significantly affected in the two groups of plants, whereas those of the sucrose effluxer gene SWEET12 and the sieve element-targeted sucrose:H(+) symporter gene SUT4 were up-regulated in the experimental plants, suggesting up-regulation of SUT4-dependent apoplastic phloem loading. Compared with SUC2, SUT4 is a minor component that is expressed in companion cells but functions in sieve elements after transfer through plasmodesmata. The number of aniline blue-stained spots for plasmodesma-associated callose in the midrib wall increased in the first leaf of the experimental plants but was comparable in the third leaf between the experimental and control plants. These results suggest that A. thaliana responds to greater than normal concentrations of CO2 differentially in the first and third leaves in regards to photoassimilation, assimilate translocation and plasmodesmal biogenesis.
Collapse
Affiliation(s)
- Zhongrui Duan
- Laboratory of Plant Molecular Physiology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-Ku, Saitama, 338-8570 Japan
| | - Ayumi Homma
- Laboratory of Plant Molecular Physiology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-Ku, Saitama, 338-8570 Japan
| | - Megumi Kobayashi
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681 Japan
| | - Noriko Nagata
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681 Japan
| | - Yasuko Kaneko
- Biology Section, Faculty of Education, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, 338-8570 Japan
- Institute for Environmental Science and Technology, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, 338-8570 Japan
| | - Yuki Fujiki
- Laboratory of Plant Molecular Physiology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-Ku, Saitama, 338-8570 Japan
| | - Ikuo Nishida
- Laboratory of Plant Molecular Physiology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-Ku, Saitama, 338-8570 Japan
- *Corresponding author: E-mail, ; Fax, +81-48-858-3623
| |
Collapse
|
50
|
Cavanagh AP, Kubien DS. Can phenotypic plasticity in Rubisco performance contribute to photosynthetic acclimation? PHOTOSYNTHESIS RESEARCH 2014; 119:203-214. [PMID: 23543330 DOI: 10.1007/s11120-013-9816-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/19/2013] [Indexed: 06/02/2023]
Abstract
Photosynthetic acclimation varies among species, which likely reveals variations at the biochemical level in the pathways that constitute carbon assimilation and energy transfer. Local adaptation and phenotypic plasticity affect the environmental response of photosynthesis. Phenotypic plasticity allows for a wide array of responses from a single individual, encouraging fitness in a broad variety of environments. Rubisco catalyses the first enzymatic step of photosynthesis, and is thus central to life on Earth. The enzyme is well conserved, but there is habitat-dependent variation in kinetic parameters, indicating that local adaptation may occur. Here, we review evidence suggesting that land plants can adjust Rubisco's intrinsic biochemical characteristics during acclimation. We show that this plasticity can theoretically improve CO2 assimilation; the effect is non-trivial, but small relative to other acclimation responses. We conclude by discussing possible mechanisms that could account for biochemical plasticity in land plant Rubisco.
Collapse
Affiliation(s)
- Amanda P Cavanagh
- Department of Biology, University of New Brunswick, 10 Bailey Dr., Fredericton, NB, Canada
| | | |
Collapse
|