1
|
Chen Y, Zhang H, Chen W, Gao Y, Xu K, Sun X, Huo L. The role of ethylene in the regulation of plant response mechanisms to waterlogging stress. PLANT CELL REPORTS 2024; 43:278. [PMID: 39531178 DOI: 10.1007/s00299-024-03367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Waterlogging stands as a common environmental challenge, significantly affecting plant growth, yield, and, in severe cases, survival. In response to waterlogging stress, plants exhibit a series of intricate physiologic, metabolic, and morphologic adaptations. Notably, the gaseous phytohormone ethylene is rapidly accumulated in the plant submerged tissues, assuming an important regulatory factor in plant-waterlogging tolerance. In this review, we summarize recent advances in research on the mechanisms of ethylene in the regulation of plant responses to waterlogging stress. Recent advances found that both ethylene biosynthesis and signal transduction make indispensable contributions to modulating plant adaptation mechanisms to waterlogged condition. Ethylene was also discovered to play an important role in plant physiologic metabolic responses to waterlogging stress, including the energy mechanism, morphologic adaptation, ROS regulation and interactions with other phytohormones. The comprehensive exploration of ethylene and its associated genes provides valuable insights into the precise strategies to leverage ethylene metabolism for enhancing plant resistance to waterlogging stress.
Collapse
Affiliation(s)
- Yunyun Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Hao Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Wenxin Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yongbin Gao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Liuqing Huo
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
2
|
Thapa R, Tabien RE, Johnson CD, Septiningsih EM. Comparative transcriptomic analysis of germinating rice seedlings to individual and combined anaerobic and cold stress. BMC Genomics 2023; 24:185. [PMID: 37024819 PMCID: PMC10080786 DOI: 10.1186/s12864-023-09262-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Rice is one of the most important cereals consumed worldwide. Two major abiotic factors affecting rice plants in different growth stages are flooding stress and cold stress. These abiotic stresses can take place independently or simultaneously and significantly affect rice plants during germination and seedling growth. Fortunately, a wide array of phenotypic responses conferring flooding stress and chilling stress tolerance exist within the rice germplasm, indicating the presence of different molecular mechanisms underlying tolerance to these stresses. Understanding these differences may assist in developing improved rice cultivars having higher tolerance to both stresses. In this study, we conducted a comparative global gene expression analysis of two rice genotypes with contrasting phenotypes under cold stress, anaerobic stress, and combined cold and anaerobic stress during germination. RESULTS The differential gene expression analysis revealed that 5571 differentially expressed genes (DEGs), 7206 DEGs, and 13279 DEGs were identified under anaerobic stress, cold stress, and combined stress, respectively. Genes involved in the carbohydrate metabolic process, glucosyltransferase activity, regulation of nitrogen compound metabolic process, protein metabolic process, lipid metabolic process, cellular nitrogen compound biosynthetic process, lipid biosynthetic process, and a microtubule-based process were enriched across all stresses. Notably, the common Gene Ontology (GO) analysis identified three hub genes, namely Os08g0176800 (similar to mRNA-associated protein mrnp 41), Os11g0454200 (dehydrin), and OS10g0505900 (expressed protein). CONCLUSION A large number of differentially expressed genes were identified under anaerobic, cold conditions during germination and the combination of the two stress conditions in rice. These results will assist in the identification of promising candidate genes for possible manipulation toward rice crops that are more tolerant under flooding and cold during germination, both independently and concurrently.
Collapse
Affiliation(s)
- Ranjita Thapa
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA
- Present address: Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | - Charles D Johnson
- Genomics and Bioinformatics Service, Texas A&M AgriLife Research, College Station, TX, 77843, USA
| | - Endang M Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Pérez-Llorca M, Pollmann S, Müller M. Ethylene and Jasmonates Signaling Network Mediating Secondary Metabolites under Abiotic Stress. Int J Mol Sci 2023; 24:5990. [PMID: 36983071 PMCID: PMC10051637 DOI: 10.3390/ijms24065990] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/12/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Plants are sessile organisms that face environmental threats throughout their life cycle, but increasing global warming poses an even more existential threat. Despite these unfavorable circumstances, plants try to adapt by developing a variety of strategies coordinated by plant hormones, resulting in a stress-specific phenotype. In this context, ethylene and jasmonates (JAs) present a fascinating case of synergism and antagonism. Here, Ethylene Insensitive 3/Ethylene Insensitive-Like Protein1 (EIN3/EIL1) and Jasmonate-Zim Domain (JAZs)-MYC2 of the ethylene and JAs signaling pathways, respectively, appear to act as nodes connecting multiple networks to regulate stress responses, including secondary metabolites. Secondary metabolites are multifunctional organic compounds that play crucial roles in stress acclimation of plants. Plants that exhibit high plasticity in their secondary metabolism, which allows them to generate near-infinite chemical diversity through structural and chemical modifications, are likely to have a selective and adaptive advantage, especially in the face of climate change challenges. In contrast, domestication of crop plants has resulted in change or even loss in diversity of phytochemicals, making them significantly more vulnerable to environmental stresses over time. For this reason, there is a need to advance our understanding of the underlying mechanisms by which plant hormones and secondary metabolites respond to abiotic stress. This knowledge may help to improve the adaptability and resilience of plants to changing climatic conditions without compromising yield and productivity. Our aim in this review was to provide a detailed overview of abiotic stress responses mediated by ethylene and JAs and their impact on secondary metabolites.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Biology, Health and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Ali-Mentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Gao J, Zhuang S, Gui R. Subsurface aeration mitigates organic material mulching-induced anaerobic stress via regulating hormone signaling in Phyllostachys praecox roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1121604. [PMID: 36938059 PMCID: PMC10014838 DOI: 10.3389/fpls.2023.1121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Organic material mulching has been used extensively to allow Phyllostachys praecox to promote growth and development of shoots. However, the bamboo forest always showed a significant degradation, probably due to anaerobic damage caused by the mulching after several years. Therefore, we have innovatively proposed an improvement measure to aerate the underground pipes for the first time. We investigated the role of subsurface pipe aeration in regulating root hypoxia to reduce the stress and to identify the degradation mechanism. Results showed that aeration increased oxygen concentration, shoot yield and root growth compared with mulching, and the aeration enhanced the concentration of indole-3-acetic acid (IAA) and the expression of Aux/IAAs (Aux1, Aux2, Aux3, and Aux4). Aeration reduced gibberellin (GA), ethylene (ETH), and abscisic acid (ABA) contents as well as anaerobic enzyme activities (alanine transaminase, AlaAT; alcohol dehydrogenase, ADH; pyruvate decarboxylase, PDC; and lactate dehydrogenase, LDH), which alleviated root damage in anoxic conditions. Furthermore, correlation showed that the activities of ADH, LDH, PDC, and AlaAT showed significant linear correlations with soil oxygen levels. RDA analyses showed that ABA, IAA, and ETH were found as the key driving hormones of Aux/IAAs in the root of the forest mulched with organic material. Here we show that subsurface aeration increases soil oxygen concentration, shoot yield, root growth and regulates phytohormone concentrations and Aux/IAAs expression, which reduces anaerobic enzyme activities. Consequently, subsurface pipe aeration is an effective measure to mitigate the degradation of bamboo forests caused by soil hypoxia that results from organic material mulching.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- College of Modern Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Renyi Gui
- State Key Lab of Subtropical Silviculture, Zhejiang Agriculture & Forestry University, Hangzhou, China
| |
Collapse
|
5
|
Zhang H, Zhu X, Xu R, Yuan Y, Abugu MN, Yan C, Tieman D, Li X. Postharvest chilling diminishes melon flavor via effects on volatile acetate ester biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 13:1067680. [PMID: 36684781 PMCID: PMC9853462 DOI: 10.3389/fpls.2022.1067680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
In postharvest handling systems, refrigeration can extend fruit shelf life and delay decay via slowing ripening progress; however, it selectively alters the biosynthesis of flavor-associated volatile organic compounds (VOCs), which results in reduced flavor quality. Volatile esters are major contributors to melon fruit flavor. The more esters, the more consumers enjoy the melon fruit. However, the effects of chilling on melon flavor and volatiles associated with consumer liking are yet to be fully understood. In the present study, consumer sensory evaluation showed that chilling changed the perception of melon fruit. Total ester content was lower after chilling, particularly volatile acetate esters (VAEs). Transcriptomic analysis revealed that transcript abundance of multiple flavor-associated genes in fatty acid and amino acid pathways was reduced after chilling. Additionally, expression levels of the transcription factors (TFs), such as NOR, MYB, and AP2/ERF, also were substantially downregulated, which likely altered the transcript levels of ester-associated pathway genes during cold storage. VAE content and expression of some key genes recover after transfer to room temperature. Therefore, chilling-induced changes of VAE profiles were consistent with expression patterns of some pathway genes that encode specific fatty acid- and amino acid-mobilizing enzymes as well as TFs involved in fruit ripening, metabolic regulation, and hormone signaling.
Collapse
Affiliation(s)
- Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Xiuxiu Zhu
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Runzhe Xu
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Yushu Yuan
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Modesta N. Abugu
- Horticultural Sciences, North Carolina State University, Raleigh, NC, United States
| | - Congsheng Yan
- Horticultural Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Denise Tieman
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Xiang Li
- Horticultural Sciences, Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Fugate KK, Finger FL, Lafta AM, Dogramaci M, Khan MFR. Wounding rapidly alters transcription factor expression, hormonal signaling, and phenolic compound metabolism in harvested sugarbeet roots. FRONTIERS IN PLANT SCIENCE 2023; 13:1070247. [PMID: 36684748 PMCID: PMC9853395 DOI: 10.3389/fpls.2022.1070247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Injuries sustained by sugarbeet (Beta vulgaris L.) roots during harvest and postharvest operations seriously reduce the yield of white sugar produced from stored roots. Although wound healing is critically important to reduce losses, knowledge of these processes is limited for this crop as well as for roots in other species. To better understand the metabolic signals and changes that occur in wounded roots, dynamic changes in gene expression were determined by RNA sequencing and the activity of products from key genes identified in this analysis were determined in the 0.25 to 24 h following injury. Nearly five thousand differentially expressed genes that contribute to a wide range of cellular and molecular functions were identified in wounded roots. Highly upregulated genes included transcription factor genes, as well as genes involved in ethylene and jasmonic acid (JA) biosynthesis and signaling and phenolic compound biosynthesis and polymerization. Enzyme activities for key genes in ethylene and phenolic compound biosynthesis and polymerization also increased due to wounding. Results indicate that wounding causes a major reallocation of metabolism in sugarbeet taproots. Although both ethylene and JA are likely involved in triggering wound responses, the greater and more sustained upregulation of ethylene biosynthesis and signaling genes relative to those of JA, suggest a preeminence of ethylene signaling in wounded sugarbeet roots. Changes in gene expression and enzymes involved in phenolic compound metabolism additionally indicate that barriers synthesized to seal off wounds, such as suberin or lignin, are initiated within the first 24 h after injury.
Collapse
Affiliation(s)
- Karen K. Fugate
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Fernando L. Finger
- Departamento de Agronomia, Universidade Federal de Viҫosa, Viҫosa, Brazil
| | - Abbas M. Lafta
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Munevver Dogramaci
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Mohamed F. R. Khan
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
- University of Minnesota Extension Service, St. Paul, MN, United States
| |
Collapse
|
7
|
Feng YX, Li CZ, Lin YJ, Yu XZ. Involvement of β-cyanoalanine synthase (β-CAS) and sulfurtransferase (ST) in cyanide (CN -) assimilation in rice seedlings. CHEMOSPHERE 2022; 294:133789. [PMID: 35101430 DOI: 10.1016/j.chemosphere.2022.133789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
In spite of available information demonstrating the assimilation of cyanide (CN-) by β-cyanoalanine synthase (β-CAS) in plants, involvement of sulfurtransferase (ST) in CN- assimilation in rice plants is still undefined. In this study, a microcosmic hydroponic system was used to investigate the involvement of β-cyanoalanine synthase (β-CAS) and sulfurtransferase (ST) in the CN- assimilation in rice seedlings under the exposure of potassium cyanide (KCN) in presence or absence of 1-amino-cyclopropane-1-carboxylic acid (ACC). Our results indicated that the measurable thiocyanate (SCN-) was detected in both rice roots and shoots under KCN exposure, and the abundances of ST-related transcripts were up-regulated significantly (p < 0.05), suggesting that the ST pathway is involved in CN- assimilation in the rice plants. The application of exogenous ACC significantly (p < 0.05) decreased the accumulation of CN- and SCN- in rice tissues after KCN exposures, and also up-regulated the expression of β-CAS and ST genes and their enzymatic activities, suggesting a positive interaction between aminocyclopropane-1-carboxylate oxidase (ACO), β-CAS and ST in rice plants during the CN- assimilation. This is the first attempt to experimentally clarify the involvement of ST in CN- assimilation in rice seedlings.
Collapse
Affiliation(s)
- Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Cheng-Zhi Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yu-Juan Lin
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
8
|
Qian Z, Wu L, Tang L. Effects of Flooding and Endogenous Hormone on the Formation of Knee Roots in Taxodium ascendens. FRONTIERS IN PLANT SCIENCE 2022; 13:803619. [PMID: 35185981 PMCID: PMC8850469 DOI: 10.3389/fpls.2022.803619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Taxodium ascendens is a typical tree species with high flood tolerance, and it can generate knee roots in the wetlands. This study investigated the number and size of knee roots and the soil flooding conditions. Furthermore, we also measured physiology, biochemical responses, and the anatomical structure of knee roots and underground roots at different developmental stages. This study aimed to understand the adaptation mechanism of T. ascendens to flooding stress and the formation mechanism of the knee roots. The results showed that the formation of knee roots was significantly affected by the soil water table (P < 0.05). The middle water table was more conducive to the formation of knee roots. In the middle water table, the 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC synthase activity were significantly lower in the knee roots than in the underground roots. The knee roots at the young-aged stage showed the highest ACC oxidase activity among the development stages of the knee roots. The ethylene release rate was significantly higher in the knee roots than in the underground roots (P < 0.05). Indole-3-acetic acid (IAA) content first increased, then decreased with knee root development. The periderm cells at the apex of the knee roots were dead and had many intercellular spaces, which was beneficial for the growth of T. ascendens. In conclusion, the middle water table induced the ethylene and IAA production, which promoted the formation of knee roots, which improved roots ventilation and flooding tolerance of T. ascendens. The results obtained can provide information about mechanisms of knee roots formation and provide scientific evidence for the afforestation and management under wetland conditions.
Collapse
|
9
|
Chakraborty K, Ray S, Vijayan J, Molla KA, Nagar R, Jena P, Mondal S, Panda BB, Shaw BP, Swain P, Chattopadhyay K, Sarkar RK. Preformed aerenchyma determines the differential tolerance response under partial submergence imposed by fresh and saline water flooding in rice. PHYSIOLOGIA PLANTARUM 2021; 173:1597-1615. [PMID: 34431099 DOI: 10.1111/ppl.13536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 05/11/2023]
Abstract
Plant's response to fresh- and saline-water flooding and the resulting partial submergence, seems different due to the added complexities of element toxicity of salinity. We identified a few rice genotypes which can tolerate combined stresses of partial submergence and salinity during saline water flooding. To gain mechanistic insights, we compared two rice genotypes: Varshadhan (freshwater-flooding tolerant) and Rashpanjor (both fresh- and saline-water flooding tolerant). We found greater ethylene production and increased "respiratory burst oxidase homolog" (RBOH)-mediated reactive oxygen species (ROS) production led to well-developed constitutive aerenchyma formation in Rashpanjor, which makes it preadapted to withstand fresh- and saline-water flooding. On the contrary, an induced aerenchyma formation-dependent tolerance mechanism of Varshadhan worked well for freshwater flooding but failed to provide tolerance to saline-water flooding. Additional salt stress was found to significantly inhibit the induced aerenchyma formation process due to the dampening of ROS signaling by the action of metallothionein in Varshadhan. Besides, inconspicuous changes in ionic regulation processes in these two genotypes under saline-water flooding suggest preadapted constitutive aerenchyma formation plays a more significant role than elemental toxicity per se in tolerating combined stresses encountered during saline water flooding in rice. Overall, our study indicated that well-developed constitutive aerenchyma provide an adaptive advantage during partial submergence due to saline water flooding in rice as the key process of induced aerenchyma formation is hampered in the presence of salinity stress coupled with partial submergence.
Collapse
Affiliation(s)
| | - Soham Ray
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Joshitha Vijayan
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | - Ramawatar Nagar
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Priyanka Jena
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Binay B Panda
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | - Padmini Swain
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | | | - Ramani K Sarkar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| |
Collapse
|
10
|
Park C, Lee HY, Yoon GM. The regulation of ACC synthase protein turnover: a rapid route for modulating plant development and stress responses. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102046. [PMID: 33965697 DOI: 10.1016/j.pbi.2021.102046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The phytohormone ethylene regulates plant growth, development, and stress responses. The strict fine-tuning of the regulation of ethylene biosynthesis contributes to the diverse roles of ethylene in plants. Pyridoxal 5'-phosphate-dependent 1-aminocyclopropane-1-carboxylic acid synthase, a rate-limiting enzyme in ethylene biosynthesis, is central and often rate-limiting to regulate ethylene concentration in plants. The post-translational regulation of ACS is a major pathway controlling ethylene biosynthesis in response to various stimuli. We conclude that the regulation of ACS turnover may serve as a central hub for the rapid integration of developmental, environmental, and hormonal signals, all of which influence plant growth and stress responses.
Collapse
Affiliation(s)
- Chanung Park
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Han Yong Lee
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
11
|
Nieuwenhuizen NJ, Chen X, Pellan M, Zhang L, Guo L, Laing WA, Schaffer RJ, Atkinson RG, Allan AC. Regulation of wound ethylene biosynthesis by NAC transcription factors in kiwifruit. BMC PLANT BIOLOGY 2021; 21:411. [PMID: 34496770 PMCID: PMC8425125 DOI: 10.1186/s12870-021-03154-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 08/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The phytohormone ethylene controls many processes in plant development and acts as a key signaling molecule in response to biotic and abiotic stresses: it is rapidly induced by flooding, wounding, drought, and pathogen attack as well as during abscission and fruit ripening. In kiwifruit (Actinidia spp.), fruit ripening is characterized by two distinct phases: an early phase of system-1 ethylene biosynthesis characterized by absence of autocatalytic ethylene, followed by a late burst of autocatalytic (system-2) ethylene accompanied by aroma production and further ripening. Progress has been made in understanding the transcriptional regulation of kiwifruit fruit ripening but the regulation of system-1 ethylene biosynthesis remains largely unknown. The aim of this work is to better understand the transcriptional regulation of both systems of ethylene biosynthesis in contrasting kiwifruit organs: fruit and leaves. RESULTS A detailed molecular study in kiwifruit (A. chinensis) revealed that ethylene biosynthesis was regulated differently between leaf and fruit after mechanical wounding. In fruit, wound ethylene biosynthesis was accompanied by transcriptional increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), ACC oxidase (ACO) and members of the NAC class of transcription factors (TFs). However, in kiwifruit leaves, wound-specific transcriptional increases were largely absent, despite a more rapid induction of ethylene production compared to fruit, suggesting that post-transcriptional control mechanisms in kiwifruit leaves are more important. One ACS member, AcACS1, appears to fulfil a dominant double role; controlling both fruit wound (system-1) and autocatalytic ripening (system-2) ethylene biosynthesis. In kiwifruit, transcriptional regulation of both system-1 and -2 ethylene in fruit appears to be controlled by temporal up-regulation of four NAC (NAM, ATAF1/2, CUC2) TFs (AcNAC1-4) that induce AcACS1 expression by directly binding to the AcACS1 promoter as shown using gel-shift (EMSA) and by activation of the AcACS1 promoter in planta as shown by gene activation assays combined with promoter deletion analysis. CONCLUSIONS Our results indicate that in kiwifruit the NAC TFs AcNAC2-4 regulate both system-1 and -2 ethylene biosynthesis in fruit during wounding and ripening through control of AcACS1 expression levels but not in leaves where post-transcriptional/translational regulatory mechanisms may prevail.
Collapse
Affiliation(s)
- Niels J. Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Xiuyin Chen
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Mickaël Pellan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Lei Zhang
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Lindy Guo
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | | | - Robert J. Schaffer
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
- PFR, 55 Old Mill Road, RD 3, Motueka, 7198 New Zealand
| | - Ross G. Atkinson
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited (PFR), Private Bag 92169, Auckland, 1142 New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| |
Collapse
|
12
|
Arora K, Rai AK, Devanna BN, Dubey H, Narula A, Sharma TR. Deciphering the role of microRNAs during Pi54 gene mediated Magnaporthe oryzae resistance response in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:633-647. [PMID: 33854289 PMCID: PMC7981355 DOI: 10.1007/s12298-021-00960-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 05/08/2023]
Abstract
The broad-spectrum resistance gene Pi54 confers resistance to multiple isolates of Magnaporthe oryzae in rice. In order to decipher the molecular mechanism underlying the Pi54 mediated resistance in rice line Taipei309 Pi54 (carrying Pi54), miRNAome study was performed at 24 h post-inoculation (hpi) with M. oryzae. A total of 222 known miRNAs representing 101 miRNA families were found in this study. Of these, 29 and 24 miRNAs were respectively up- and down-regulated in the resistant Taipei309 Pi54 . Defence response (DR) genes, like, NBSGO35, and OsWAK129b, and genes related to transcription factors were up-regulated in Taipei309 Pi54 line. The vast array of miRNA candidates identified here are miR159c, miR167c, miR2100, miR2118o, miR2118l, miR319a, miR393, miR395l, miR397a, miR397b, miR398, miR439g, miR531b, miR812f, and miR815c, and they manifest their role in balancing the interplay between various DR genes during Pi54 mediated resistance. We also validated miRNA/target gene pairs involved in hormone signalling, and cross-talk among hormone pathways regulating the rice immunity. This study suggests that the Pi54 gene mediated blast resistance is influenced by several microRNAs through PTI and ETI components in the rice line Taipei309 Pi54 , leading to incompatible host-pathogen interaction.
Collapse
Affiliation(s)
- Kirti Arora
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062 India
| | - Amit Kumar Rai
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - B. N. Devanna
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- ICAR-National Rice Research Institute, Cuttack, 753006 India
| | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - Alka Narula
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062 India
| | - Tilak Raj Sharma
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110 001 India
| |
Collapse
|
13
|
Ye X, Chen XF, Cai LY, Lai NW, Deng CL, Guo JX, Yang LT, Chen LS. Molecular and physiological mechanisms underlying magnesium-deficiency-induced enlargement, cracking and lignification of Citrus sinensis leaf veins. TREE PHYSIOLOGY 2020; 40:1277-1291. [PMID: 32348504 DOI: 10.1093/treephys/tpaa059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Little is known about the physiological and molecular mechanisms underlying magnesium (Mg)-deficiency-induced enlargement, cracking and lignification of midribs and main lateral veins of Citrus leaves. Citrus sinensis (L.) Osbeck seedlings were irrigated with nutrient solution at a concentration of 0 (Mg-deficiency) or 2 (Mg-sufficiency) mM Mg(NO3)2 for 16 weeks. Enlargement, cracking and lignification of veins occurred only in lower leaves, but not in upper leaves. Total soluble sugars (glucose + fructose + sucrose), starch and cellulose concentrations were less in Mg-deficiency veins of lower leaves (MDVLL) than those in Mg-sufficiency veins of lower leaves (MSVLL), but lignin concentration was higher in MDVLL than that in MSVLL. However, all four parameters were similar between Mg-deficiency veins of upper leaves (MDVUL) and Mg-sufficiency veins of upper leaves (MSVUL). Using label-free, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, we identified 1229 and 492 differentially abundant proteins (DAPs) in MDVLL vs MSVLL and MDVUL vs MSVUL, respectively. Magnesium-deficiency-induced alterations of Mg, nonstructural carbohydrates, cell wall components, and protein profiles were greater in veins of lower leaves than those in veins of upper leaves. The increased concentration of lignin in MDVLL vs MSVLL might be caused by the following factors: (i) repression of cellulose and starch accumulation promoted lignin biosynthesis; (ii) abundances of proteins involved in phenylpropanoid biosynthesis pathway, hormone biosynthesis and glutathione metabolism were increased; and (iii) the abundances of the other DAPs [viz., copper/zinc-superoxide dismutase, ascorbate oxidase (AO) and ABC transporters] involved in lignin biosynthesis were elevated. Also, the abundances of several proteins involved in cell wall metabolism (viz., expansins, Rho GTPase-activating protein gacA, AO, monocopper oxidase-like protein and xyloglucan endotransglucosylase/hydrolase) were increased in MDVLL vs MSVLL, which might be responsible for the enlargement and cracking of leaf veins.
Collapse
Affiliation(s)
- Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Xu-Feng Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Li-Ya Cai
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Ning-Wei Lai
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Chong-Ling Deng
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, 40 Putuo Road, Qixing District, Guilin 541004, China
| | - Jiu-Xin Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
- The Higher Education Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, College of Resources and Environment, FAFU, 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|
14
|
Iacopino S, Licausi F. The Contribution of Plant Dioxygenases to Hypoxia Signaling. FRONTIERS IN PLANT SCIENCE 2020; 11:1008. [PMID: 32733514 PMCID: PMC7360844 DOI: 10.3389/fpls.2020.01008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 05/08/2023]
Abstract
Dioxygenases catalyze the incorporation of one or two oxygen atoms into target organic substrates. Besides their metabolic role, these enzymes are involved in plant signaling pathways as this reaction is in several instances required for hormone metabolism, to control proteostasis and regulate chromatin accessibility. For these reasons, alteration of dioxygenase expression or activity can affect plant growth, development, and adaptation to abiotic and biotic stresses. Moreover, the requirement of co-substrates and co-factors, such as oxygen, 2-oxoglutarate, and iron (Fe2+), invests dioxygenases with a potential role as cellular sensors for these molecules. For example, inhibition of cysteine deoxygenation under hypoxia elicits adaptive responses to cope with oxygen shortage. However, biochemical and molecular evidence regarding the role of other dioxygenases under low oxygen stresses is still limited, and thus further investigation is needed to identify additional sensing roles for oxygen or other co-substrates and co-factors. Here, we summarize the main signaling roles of dioxygenases in plants and discuss how they control plant growth, development and metabolism, with a focus on the adaptive responses to low oxygen conditions.
Collapse
Affiliation(s)
- Sergio Iacopino
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Francesco Licausi
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy
- *Correspondence: Francesco Licausi,
| |
Collapse
|
15
|
Houben M, Van de Poel B. 1-Aminocyclopropane-1-Carboxylic Acid Oxidase (ACO): The Enzyme That Makes the Plant Hormone Ethylene. FRONTIERS IN PLANT SCIENCE 2019; 10:695. [PMID: 31191592 PMCID: PMC6549523 DOI: 10.3389/fpls.2019.00695] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
The volatile plant hormone ethylene regulates many plant developmental processes and stress responses. It is therefore crucial that plants can precisely control their ethylene production levels in space and time. The ethylene biosynthesis pathway consists of two dedicated steps. In a first reaction, S-adenosyl-L-methionine (SAM) is converted into 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC-synthase (ACS). In a second reaction, ACC is converted into ethylene by ACC-oxidase (ACO). Initially, it was postulated that ACS is the rate-limiting enzyme of this pathway, directing many studies to unravel the regulation of ACS protein activity, and stability. However, an increasing amount of evidence has been gathered over the years, which shows that ACO is the rate-limiting step in ethylene production during certain dedicated processes. This implies that also the ACO protein family is subjected to a stringent regulation. In this review, we give an overview about the state-of-the-art regarding ACO evolution, functionality and regulation, with an emphasis on the transcriptional, post-transcriptional, and post-translational control. We also highlight the importance of ACO being a prime target for genetic engineering and precision breeding, in order to control plant ethylene production levels.
Collapse
Affiliation(s)
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Polko JK, Kieber JJ. 1-Aminocyclopropane 1-Carboxylic Acid and Its Emerging Role as an Ethylene-Independent Growth Regulator. FRONTIERS IN PLANT SCIENCE 2019; 10:1602. [PMID: 31921251 PMCID: PMC6915048 DOI: 10.3389/fpls.2019.01602] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/14/2019] [Indexed: 05/10/2023]
Abstract
1-Aminocyclopropane 1-carboxylic acid (ACC) is the direct precursor of the plant hormone ethylene. ACC is synthesized from S-adenosyl-L-methionine (SAM) by ACC synthases (ACSs) and subsequently oxidized to ethylene by ACC oxidases (ACOs). Exogenous ACC application has been used as a proxy for ethylene in numerous studies as it is readily converted by nearly all plant tissues to ethylene. However, in recent years, a growing body of evidence suggests that ACC plays a signaling role independent of the biosynthesis. In this review, we briefly summarize our current knowledge of ACC as an ethylene precursor, and present new findings with regards to the post-translational modifications of ACS proteins and to ACC transport. We also summarize the role of ACC in regulating plant development, and its involvement in cell wall signaling, guard mother cell division, and pathogen virulence.
Collapse
|
17
|
Park CH, Roh J, Youn JH, Son SH, Park JH, Kim SY, Kim TW, Kim SK. Arabidopsis ACC Oxidase 1 Coordinated by Multiple Signals Mediates Ethylene Biosynthesis and Is Involved in Root Development. Mol Cells 2018; 41:923-932. [PMID: 30352493 PMCID: PMC6199567 DOI: 10.14348/molcells.2018.0092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/14/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
Ethylene regulates numerous aspects of plant growth and development. Multiple external and internal factors coordinate ethylene production in plant tissues. Transcriptional and post-translational regulations of ACC synthases (ACSs), which are key enzymes mediating a rate-limiting step in ethylene biosynthesis have been well characterized. However, the regulation and physiological roles of ACC oxidases (ACOs) that catalyze the final step of ethylene biosynthesis are largely unknown in Arabidopsis. Here, we show that Arabidopsis ACO1 exhibits a tissue-specific expression pattern that is regulated by multiple signals, and plays roles in the lateral root development in Arabidopsis. Histochemical analysis of the ACO1 promoter indicated that ACO1 expression was largely modulated by light and plant hormones in a tissue-specific manner. We demonstrated that point mutations in two E-box motifs on the ACO1 promoter reduce the light-regulated expression patterns of ACO1. The aco1-1 mutant showed reduced ethylene production in root tips compared to wild-type. In addition, aco1-1 displayed altered lateral root formation. Our results suggest that Arabidopsis ACO1 integrates various signals into the ethylene biosynthesis that is required for ACO1's intrinsic roles in root physiology.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305-4150,
USA
| | - Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
| | - Ji-Hyun Youn
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
| | - Seung-Hyun Son
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
| | - Ji Hye Park
- Department of Biological Science, Andong National University, Andong 36729,
Korea
| | - Soon Young Kim
- Department of Biological Science, Andong National University, Andong 36729,
Korea
| | - Tae-Wuk Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763,
Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763,
Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
| |
Collapse
|
18
|
Koç I, Yuksel I, Caetano-Anollés G. Metabolite-Centric Reporter Pathway and Tripartite Network Analysis of Arabidopsis Under Cold Stress. Front Bioeng Biotechnol 2018; 6:121. [PMID: 30258841 PMCID: PMC6143811 DOI: 10.3389/fbioe.2018.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022] Open
Abstract
The study of plant resistance to cold stress and the metabolic processes underlying its molecular mechanisms benefit crop improvement programs. Here we investigate the effects of cold stress on the metabolic pathways of Arabidopsis when directly inferred at system level from transcriptome data. A metabolite-centric reporter pathway analysis approach enabled the computation of metabolites associated with transcripts at four time points of cold treatment. Tripartite networks of gene-metabolite-pathway connectivity outlined the response of metabolites and pathways to cold stress. Our metabolome-independent analysis revealed stress-associated metabolites in pathway routes of the cold stress response, including amino acid, carbohydrate, lipid, hormone, energy, photosynthesis, and signaling pathways. Cold stress first triggered the mobilization of energy from glycolysis and ethanol degradation to enhance TCA cycle activity via acetyl-CoA. Interestingly, tripartite networks lacked power law behavior and scale free connectivity, favoring modularity. Network rewiring explicitly involved energetics, signal, carbon and redox metabolisms and membrane remodeling.
Collapse
Affiliation(s)
- Ibrahim Koç
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze, Turkey
| | - Isa Yuksel
- Department of Bioengineering, Gebze Technical University, Gebze, Turkey
| | | |
Collapse
|
19
|
Ramadoss N, Gupta D, Vaidya BN, Joshee N, Basu C. Functional characterization of 1-aminocyclopropane-1-carboxylic acid oxidase gene in Arabidopsis thaliana and its potential in providing flood tolerance. Biochem Biophys Res Commun 2018; 503:365-370. [PMID: 29894687 DOI: 10.1016/j.bbrc.2018.06.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 11/15/2022]
Abstract
Ethylene is a phytohormone that has gained importance through its role in stress tolerance and fruit ripening. In our study we evaluated the functional potential of the enzyme involved in ethylene biosynthesis of plants called ACC (aminocyclopropane-1-carboxylic acid) oxidase which converts precursor ACC to ethylene. Studies on ethylene have proven that it is effective in improving the flood tolerance in plants. Thus our goal was to understand the potential of ACC oxidase gene overexpression in providing flood tolerance in transgenic plants. ACC oxidase gene was PCR amplified and inserted into the pBINmgfp5-er vector, under the control of a constitutive Cauliflower Mosaic Virus promoter. GV101 strain of Agrobacterium tumefaciens containing recombinant pBINmgfp5-er vector (referred herein as pBIN-ACC) was used for plant transformation by the 'floral dip' method. The transformants were identified through kanamycin selection and grown till T3 (third transgenic) generation. The flood tolerance was assessed by placing both control and transgenic plants on deep plastic trays filled with tap water that covered the soil surface. Our result shows that wild-type Arabidopsis could not survive more than 20 days under flooding while the transgenic lines survived 35 days, suggesting development of flood tolerance with overexpression of ACC oxidase. Further molecular studies should be done to elucidate the role and pathways of ACC oxidase and other phytohormones involved in the development of flood adaptation.
Collapse
Affiliation(s)
- Niveditha Ramadoss
- Department of Biology, California State University, Northridge, CA, 91330, USA
| | - Dinesh Gupta
- Department of Biology, California State University, Northridge, CA, 91330, USA
| | - Brajesh N Vaidya
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA, 31030, USA
| | - Nirmal Joshee
- Agricultural Research Station, Fort Valley State University, Fort Valley, GA, 31030, USA
| | - Chhandak Basu
- Department of Biology, California State University, Northridge, CA, 91330, USA.
| |
Collapse
|
20
|
Characterization of the Transcriptome and Gene Expression of Tetraploid Black Locust Cuttings in Response to Etiolation. Genes (Basel) 2017; 8:genes8120345. [PMID: 29186815 PMCID: PMC5748663 DOI: 10.3390/genes8120345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/02/2017] [Accepted: 11/11/2017] [Indexed: 11/17/2022] Open
Abstract
Etiolation (a process of growing plants in partial or complete absence of light) promotes adventitious root formation in tetraploid black locust (Robinia pseudoacacia L.) cuttings. We investigated the mechanism underlying how etiolation treatment promotes adventitious root formation in tetraploid black locust and assessed global transcriptional changes after etiolation treatment. Solexa paired-end sequencing of complementary DNAs (cDNAs) from control (non-etiolated, NE) and etiolated (E) samples resulted in 107,564 unigenes. In total, 52,590 transcripts were annotated and 474 transcripts (211 upregulated and 263 downregulated) potentially involved in etiolation were differentially regulated. These genes were associated with hormone metabolism and response, photosynthesis, signaling pathways, and starch and sucrose metabolism. In addition, we also found significant differences of phytohormone contents, activity of following enzymes i.e., peroxidase, polyphenol oxidase and indole acetic acid oxidase between NE and E tissues during some cottage periods. The genes responsive to etiolation stimulus identified in this study will provide the base for further understanding how etiolation triggers adventitious roots formation in tetraploid black locus.
Collapse
|
21
|
Asins MJ, Albacete A, Martinez-Andujar C, Pérez-Alfocea F, Dodd IC, Carbonell EA, Dieleman JA. Genetic analysis of rootstock-mediated nitrogen (N) uptake and root-to-shoot signalling at contrasting N availabilities in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:94-106. [PMID: 28818388 DOI: 10.1016/j.plantsci.2017.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 05/16/2023]
Abstract
Selecting rootstocks for high nitrogen acquisition ability may allow decreased N fertilizer application without reducing tomato yields, minimizing environmental nitrate pollution. A commercial hybrid tomato variety was grafted on a genotyped population of 130 recombinant inbred lines (RILs) derived from Solanum pimpinellifolium, and compared with self- and non-grafted controls under contrasting nitrate availabilities (13.8 vs 1.0mM) in the nutrient solution. Grafting itself altered xylem sap composition under N-sufficient conditions, particularly Na+ (8.75-fold increase) concentration. N deprivation decreased shoot dry weight by 72.7% across the grafted RIL population, and one RIL rootstock allowed higher total leaf N content than the best of controls, suggesting more effective N uptake. Sixty-two significant QTLs were detected by multiple QTL mapping procedure for leaf N concentration (LNC), vegetative growth, and the xylem sap concentrations of Mn and four phytohormone groups (cytokinins, gibberellins, salicylic acid and jasmonic acid). Only three LNC QTLs could be common between nitrogen treatments. Clustering of rootstock QTLs controlling LNC, leaf dry weight and xylem sap salicylic acid concentration in chromosome 9 suggests a genetic relationship between this rootstock phytohormone and N uptake efficiency. Some functional candidate genes found within 2 Mbp intervals of LNC and hormone QTLs are discussed.
Collapse
Affiliation(s)
- M J Asins
- Instituto Valenciano de Investigaciones Agrarias, Carretera de Moncada a Náquera Km 4.5, Apartado Oficial, 46113 Moncada, Valencia, Spain.
| | - A Albacete
- CEBAS, CSIC, Campus de Espinardo, 30100 Espinardo, Murcia, Spain
| | | | - F Pérez-Alfocea
- CEBAS, CSIC, Campus de Espinardo, 30100 Espinardo, Murcia, Spain
| | - I C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - E A Carbonell
- Instituto Valenciano de Investigaciones Agrarias, Carretera de Moncada a Náquera Km 4.5, Apartado Oficial, 46113 Moncada, Valencia, Spain
| | - J A Dieleman
- Wageningen University & Research, Business Unit Greenhouse Horticulture, P.O. Box 644, 6700 AP Wageningen, The Netherlands
| |
Collapse
|
22
|
Wang X, Jiang Y, Zhao X, Song X, Xiao X, Pei Z, Liu H. Association of Candidate Genes With Submergence Response in Perennial Ryegrass. FRONTIERS IN PLANT SCIENCE 2017; 8:791. [PMID: 28559908 PMCID: PMC5432546 DOI: 10.3389/fpls.2017.00791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Perennial ryegrass is a popular cool-season grass species due to its high quality for forage and turf. The objective of this study was to identify associations of candidate genes with growth and physiological traits to submergence stress and recovery after de-submergence in a global collection of 94 perennial ryegrass accessions. Accessions varied largely in leaf color, plant height (HT), leaf fresh weight (LFW), leaf dry weight (LDW), and chlorophyll fluorescence (Fv/Fm) at 7 days of submergence and in HT, LFW and LDW at 7 days of recovery in two experiments. Among 26 candidate genes tested by various models, single nucleotide polymorphisms (SNPs) in 10 genes showed significant associations with traits including 16 associations for control, 10 for submergence, and 8 for recovery. Under submergence, Lp1-SST encoding sucrose:sucrose 1-fructosyltransferase and LpGA20ox encoding gibberellin 20-oxidase were associated with LFW and LDW, and LpACO1 encoding 1-aminocyclopropane-1-carboxylic acid oxidase was associated with LFW. Associations between Lp1-SST and HT, Lp6G-FFT encoding fructan:fructan 6G-fructosyltransferase and Fv/Fm, LpCAT encoding catalase and HT were also detected under submergence stress. Upon de-submergence, Lp1-SST, Lp6G-FFT, and LpPIP1 encoding plasma membrane intrinsic protein type 1 were associated with LFW or LDW, while LpCBF1b encoding C-repeat binding factor were associated with HT. Nine significant SNPs in Lp1-SST, Lp6G-FFT, LpCAT, and LpACO1 resulted in amino acid changes with five substitutions found in Lp1-SST under submergence or recovery. The results indicated that allelic diversity in genes involved in carbohydrate and antioxidant metabolism, ethylene and gibberellin biosynthesis, and transcript factor could contribute to growth variations in perennial ryegrass under submergence stress and recovery after de-submergence.
Collapse
Affiliation(s)
- Xicheng Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences and Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing, China
| | - Yiwei Jiang
- College of Agronomy and Resources and Environment, Tianjin Agricultural UniversityTianjin, China
- Department of Agronomy, Purdue University, West LafayetteIN, USA
| | - Xiongwei Zhao
- Department of Agronomy, Purdue University, West LafayetteIN, USA
- Department of Crop Genetics and Breeding, Sichuan Agricultural UniversityChengdu, China
| | - Xin Song
- College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Xiangye Xiao
- Department of Agronomy, Purdue University, West LafayetteIN, USA
| | - Zhongyou Pei
- College of Agronomy and Resources and Environment, Tianjin Agricultural UniversityTianjin, China
| | - Huifen Liu
- College of Agronomy and Resources and Environment, Tianjin Agricultural UniversityTianjin, China
| |
Collapse
|
23
|
Yamauchi T, Tanaka A, Mori H, Takamure I, Kato K, Nakazono M. Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize. PLANT, CELL & ENVIRONMENT 2016; 39:2145-57. [PMID: 27169562 DOI: 10.1111/pce.12766] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/30/2016] [Accepted: 05/06/2016] [Indexed: 05/25/2023]
Abstract
In roots of gramineous plants, lysigenous aerenchyma is created by the death and lysis of cortical cells. Rice (Oryza sativa) constitutively forms aerenchyma under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. However, maize (Zea mays) develops aerenchyma only under oxygen-deficient conditions. Ethylene is involved in lysigenous aerenchyma formation. Here, we investigated how ethylene-dependent aerenchyma formation is differently regulated between rice and maize. For this purpose, in rice, we used the reduced culm number1 (rcn1) mutant, in which ethylene biosynthesis is suppressed. Ethylene is converted from 1-aminocyclopropane-1-carboxylic acid (ACC) by the action of ACC oxidase (ACO). We found that OsACO5 was highly expressed in the wild type, but not in rcn1, under aerobic conditions, suggesting that OsACO5 contributes to aerenchyma formation in aerated rice roots. By contrast, the ACO genes in maize roots were weakly expressed under aerobic conditions, and thus ACC treatment did not effectively induce ethylene production or aerenchyma formation, unlike in rice. Aerenchyma formation in rice roots after the initiation of oxygen-deficient conditions was faster and greater than that in maize. These results suggest that the difference in aerenchyma formation in rice and maize is due to their different mechanisms for regulating ethylene biosynthesis.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan.
| | - Akihiro Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Itsuro Takamure
- Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan
| | - Kiyoaki Kato
- Department of Crop Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada, Obihiro, Hokkaido, 080-8555, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
24
|
Panda BB, Badoghar AK, Sekhar S, Shaw BP, Mohapatra PK. 1-MCP treatment enhanced expression of genes controlling endosperm cell division and starch biosynthesis for improvement of grain filling in a dense-panicle rice cultivar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:11-25. [PMID: 26993232 DOI: 10.1016/j.plantsci.2016.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/29/2015] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
High ethylene production in dense-panicle rice cultivars impacts grain filling. 1-MCP (ethylene action inhibitor) treatment increased assimilates partitioning, cell number and size and expression of starch synthesizing enzyme genes of developing caryopses mostly in the basal spikelets of panicle at early post-anthesis stage. The gain in cell number was less compared to the increase of size. High ethylene production in spikelets matched with greater expression of ethylene receptor and signal transducer genes. Genes encoding cell cycle regulators CDK, CYC and CKI expressed poorly on 9 DAA. 1-MCP treatment enhanced their expression; the increase of expression was higher for CDKs and lower for CKIs in basal compared to apical spikelets. Greater expression of CDKB2:1 might have lifted cytokinesis of nascent peripheral cells of endosperm, while promotion of CDKAs, CYCD2:2 and inhibition of CYCB2:2 expression contributed to endoreduplication of central cells increasing cell size and DNA ploidy level. It is concluded that the process of endoreduplication, which begins at mid-grain filling stage, is crucially linked with the final caryopsis size of rice grain. The enhanced endosperm growth brought about by repressed ethylene action during the first few days after anthesis seems to be associated with the overall increased cell cycle activity and sink strength.
Collapse
Affiliation(s)
- B B Panda
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar 751023, India
| | - A K Badoghar
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar 751023, India
| | - S Sekhar
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar 751023, India
| | - B P Shaw
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar 751023, India
| | - P K Mohapatra
- School of Life Science, Sambalpur University, Jyoti Vihar, Sambalpur 768019, India.
| |
Collapse
|
25
|
Melo NKG, Bianchetti RE, Lira BS, Oliveira PMR, Zuccarelli R, Dias DLO, Demarco D, Peres LEP, Rossi M, Freschi L. Nitric Oxide, Ethylene, and Auxin Cross Talk Mediates Greening and Plastid Development in Deetiolating Tomato Seedlings. PLANT PHYSIOLOGY 2016; 170:2278-94. [PMID: 26829981 PMCID: PMC4825133 DOI: 10.1104/pp.16.00023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/29/2016] [Indexed: 05/19/2023]
Abstract
The transition from etiolated to green seedlings involves the conversion of etioplasts into mature chloroplasts via a multifaceted, light-driven process comprising multiple, tightly coordinated signaling networks. Here, we demonstrate that light-induced greening and chloroplast differentiation in tomato (Solanum lycopersicum) seedlings are mediated by an intricate cross talk among phytochromes, nitric oxide (NO), ethylene, and auxins. Genetic and pharmacological evidence indicated that either endogenously produced or exogenously applied NO promotes seedling greening by repressing ethylene biosynthesis and inducing auxin accumulation in tomato cotyledons. Analysis performed in hormonal tomato mutants also demonstrated that NO production itself is negatively and positively regulated by ethylene and auxins, respectively. Representing a major biosynthetic source of NO in tomato cotyledons, nitrate reductase was shown to be under strict control of both phytochrome and hormonal signals. A close NO-phytochrome interaction was revealed by the almost complete recovery of the etiolated phenotype of red light-grown seedlings of the tomato phytochrome-deficient aurea mutant upon NO fumigation. In this mutant, NO supplementation induced cotyledon greening, chloroplast differentiation, and hormonal and gene expression alterations similar to those detected in light-exposed wild-type seedlings. NO negatively impacted the transcript accumulation of genes encoding phytochromes, photomorphogenesis-repressor factors, and plastid division proteins, revealing that this free radical can mimic transcriptional changes typically triggered by phytochrome-dependent light perception. Therefore, our data indicate that negative and positive regulatory feedback loops orchestrate ethylene-NO and auxin-NO interactions, respectively, during the conversion of colorless etiolated seedlings into green, photosynthetically competent young plants.
Collapse
Affiliation(s)
- Nielda K G Melo
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Ricardo E Bianchetti
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Bruno S Lira
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Paulo M R Oliveira
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Rafael Zuccarelli
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Devisson L O Dias
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Diego Demarco
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Lazaro E P Peres
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Magdalena Rossi
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| | - Luciano Freschi
- Department of Botany, University of São Paulo, Sao Paulo 05508-090, Brazil (N.K.G.M., R.E.B., B.S.L., P.M.R.O., R.Z., D.L.O.D., D.D., M.R., L.F.); andDepartment of Biological Sciences, Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, Piracicaba 13418-900, Brazil (L.E.P.P.)
| |
Collapse
|
26
|
Voesenek LACJ, Pierik R, Sasidharan R. Plant Life without Ethylene. TRENDS IN PLANT SCIENCE 2015; 20:783-786. [PMID: 26547812 DOI: 10.1016/j.tplants.2015.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 05/03/2023]
Abstract
We propose that the ability to synthesize ethylene was selectively lost in evolution when the ancestors of fully aquatic higher plants lost their terrestrial lifestyle. We suggest that there has been negative selection on ethylene in these submerged species because it might interfere with growth in permanently deluged environments.
Collapse
Affiliation(s)
- Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
27
|
Yoon GM. New Insights into the Protein Turnover Regulation in Ethylene Biosynthesis. Mol Cells 2015; 38:597-603. [PMID: 26095506 PMCID: PMC4507024 DOI: 10.14348/molcells.2015.0152] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/08/2015] [Indexed: 11/30/2022] Open
Abstract
Biosynthesis of the phytohormone ethylene is under tight regulation to satisfy the need for appropriate levels of ethylene in plants in response to exogenous and endogenous stimuli. The enzyme 1-aminocyclopropane-1-carboxylic acid synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis, plays a central role to regulate ethylene production through changes in ACS gene expression levels and the activity of the enzyme. Together with molecular genetic studies suggesting the roles of post-translational modification of the ACS, newly emerging evidence strongly suggests that the regulation of ACS protein stability is an alternative mechanism that controls ethylene production, in addition to the transcriptional regulation of ACS genes. In this review, recent new insight into the regulation of ACS protein turnover is highlighted, with a special focus on the roles of phosphorylation, ubiquitination, and novel components that regulate the turnover of ACS proteins. The prospect of cross-talk between ethylene biosynthesis and other signaling pathways to control turnover of the ACS protein is also considered.
Collapse
Affiliation(s)
- Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907,
USA
| |
Collapse
|
28
|
Valliyodan B, Van Toai TT, Alves JD, de Fátima P Goulart P, Lee JD, Fritschi FB, Rahman MA, Islam R, Shannon JG, Nguyen HT. Expression of root-related transcription factors associated with flooding tolerance of soybean (Glycine max). Int J Mol Sci 2014; 15:17622-43. [PMID: 25268626 PMCID: PMC4227181 DOI: 10.3390/ijms151017622] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/06/2014] [Accepted: 09/19/2014] [Indexed: 11/17/2022] Open
Abstract
Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be necessary to reveal their potential to enhance flooding tolerance of soybean cultivars.
Collapse
Affiliation(s)
- Babu Valliyodan
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Tara T Van Toai
- United States Department of Agriculture-Agricultural Research Service, Soil Drainage Research Unit, Columbus, OH 43210, USA.
| | - Jose Donizeti Alves
- Departamento de Biologia, Universidade Federal de Lavras, Lavras, MG 37200-000, Brazil.
| | | | - Jeong Dong Lee
- Division of Plant Sciences, University of Missouri, Delta Center, Portageville, MO 68373, USA.
| | - Felix B Fritschi
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Mohammed Atiqur Rahman
- Office of Information Technology, Ohio State University South Centers at Piketon, Columbus, OH 43210, USA.
| | - Rafiq Islam
- Office of Information Technology, Ohio State University South Centers at Piketon, Columbus, OH 43210, USA.
| | - J Grover Shannon
- Division of Plant Sciences, University of Missouri, Delta Center, Portageville, MO 68373, USA.
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
29
|
Yu C, Chen H, Tian F, Leach JE, He C. Differentially-expressed genes in rice infected by Xanthomonas oryzae pv. oryzae relative to a flagellin-deficient mutant reveal potential functions of flagellin in host-pathogen interactions. RICE (NEW YORK, N.Y.) 2014; 7:20. [PMID: 25187853 PMCID: PMC4152760 DOI: 10.1186/s12284-014-0020-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/02/2014] [Indexed: 05/29/2023]
Abstract
BACKGROUND Plants have evolved a sensitive defense response system that detects and recognizes various pathogen-associated molecular patterns (PAMPs) (e.g. flagellin) and induces immune responses to protect against invasion. Transcriptional responses in rice to PAMPs produced by Xanthomonas oryzae pv. oryzae (Xoo), the bacterial blight pathogen, have not yet been defined. RESULTS We characterized transcriptomic responses in rice inoculated with the wildtype (WT) Xoo and flagellin-deficient mutant ∆fliC through RNA-seq analysis. Digital gene expression (DGE) analysis based on Solexa/Illumina sequencing was used to investigate transcriptomic responses in 30 day-old seedlings of rice (Oryza sativa L. cv. Nipponbare). 1,680 genes were differentially-expressed (DEGs) in rice inoculated with WT relative to ∆fliC; among which 1,159 genes were up-regulated and 521 were down-regulated. Expression patterns of 12 randomly-selected DEGs assayed by quantitative real time PCR (qRT-PCR) were similar to those detected by DGE analyses, confirming reliability of the DGE data. Functional annotations revealed the up-regulated DEGs are involved in the cell wall, lipid and secondary metabolism, defense response and hormone signaling, whereas the down-regulated ones are associated with photosynthesis. Moreover, 57 and 21 specifically expressed genes were found after WT and ∆fliC treatments, respectively. CONCLUSIONS DEGs were identified in rice inoculated with WT Xoo relative to ∆fliC. These genes were predicted to function in multiple biological processes, including the defense response and photosynthesis in rice. This study provided additional insights into molecular basis of rice response to bacterial infection and revealed potential functions of bacterial flagellin in the rice-Xoo interactions.
Collapse
Affiliation(s)
- Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jan E Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Ft. Collins 80523-1177, CO, USA
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
30
|
Vu HTT, Manangkil OE, Mori N, Yoshida S, Nakamura C. Induction and Repression of Gene Expression Mediating Ethylene Biosynthesis and Sodium/Proton Exchange in Rice Seedlings Under Submergence Stress. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
31
|
Juntawong P, Sirikhachornkit A, Pimjan R, Sonthirod C, Sangsrakru D, Yoocha T, Tangphatsornruang S, Srinives P. Elucidation of the molecular responses to waterlogging in Jatropha roots by transcriptome profiling. FRONTIERS IN PLANT SCIENCE 2014; 5:658. [PMID: 25520726 PMCID: PMC4251292 DOI: 10.3389/fpls.2014.00658] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 11/04/2014] [Indexed: 05/06/2023]
Abstract
Jatropha (Jatropha curcas) is a promising oil-seed crop for biodiesel production. However, the species is highly sensitive to waterlogging, which can result in stunted growth and yield loss. To date, the molecular mechanisms underlying the responses to waterlogging in Jatropha remain elusive. Here, the transcriptome adjustment of Jatropha roots to waterlogging was examined by high-throughput RNA-sequencing (RNA-seq). The results indicated that 24 h of waterlogging caused significant changes in mRNA abundance of 1968 genes. Comprehensive gene ontology and functional enrichment analysis of root transcriptome revealed that waterlogging promoted responses to hypoxia and anaerobic respiration. On the other hand, the stress inhibited carbohydrate synthesis, cell wall biogenesis, and growth. The results also highlighted the roles of ethylene, nitrate, and nitric oxide in waterlogging acclimation. In addition, transcriptome profiling identified 85 waterlogging-induced transcription factors including members of AP2/ERF, MYB, and WRKY families implying that reprogramming of gene expression is a vital mechanism for waterlogging acclimation. Comparative analysis of differentially regulated transcripts in response to waterlogging among Arabidopsis, gray poplar, Jatropha, and rice further revealed not only conserved but species-specific regulation. Our findings unraveled the molecular responses to waterlogging in Jatropha and provided new perspectives for developing a waterlogging tolerant cultivar in the future.
Collapse
Affiliation(s)
- Piyada Juntawong
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics, Department of Genetics, Faculty of Science, Kasetsart UniversityBangkok, Thailand
| | - Anchalee Sirikhachornkit
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics, Department of Genetics, Faculty of Science, Kasetsart UniversityBangkok, Thailand
| | - Rachaneeporn Pimjan
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics, Department of Genetics, Faculty of Science, Kasetsart UniversityBangkok, Thailand
| | - Chutima Sonthirod
- National Center for Genetic Engineering and BiotechnologyPathumthani, Thailand
| | - Duangjai Sangsrakru
- National Center for Genetic Engineering and BiotechnologyPathumthani, Thailand
| | - Thippawan Yoocha
- National Center for Genetic Engineering and BiotechnologyPathumthani, Thailand
| | | | - Peerasak Srinives
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart UniversityNakhon Pathom, Thailand
- *Correspondence: Peerasak Srinives, Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand e-mail:
| |
Collapse
|
32
|
Rauf M, Arif M, Fisahn J, Xue GP, Balazadeh S, Mueller-Roeber B. NAC transcription factor speedy hyponastic growth regulates flooding-induced leaf movement in Arabidopsis. THE PLANT CELL 2013; 25:4941-55. [PMID: 24363315 PMCID: PMC3903997 DOI: 10.1105/tpc.113.117861] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/09/2013] [Accepted: 11/30/2013] [Indexed: 05/18/2023]
Abstract
In rosette plants, root flooding (waterlogging) triggers rapid upward (hyponastic) leaf movement representing an important architectural stress response that critically determines plant performance in natural habitats. The directional growth is based on localized longitudinal cell expansion at the lower (abaxial) side of the leaf petiole and involves the volatile phytohormone ethylene (ET). We report the existence of a transcriptional core unit underlying directional petiole growth in Arabidopsis thaliana, governed by the NAC transcription factor speedy hyponastic growth (SHYG). Overexpression of SHYG in transgenic Arabidopsis thaliana enhances waterlogging-triggered hyponastic leaf movement and cell expansion in abaxial cells of the basal petiole region, while both responses are largely diminished in shyg knockout mutants. Expression of several expansin and xyloglucan endotransglycosylase/hydrolase genes encoding cell wall-loosening proteins was enhanced in SHYG overexpressors but lowered in shyg. We identified ACC oxidase5 (ACO5), encoding a key enzyme of ET biosynthesis, as a direct transcriptional output gene of SHYG and found a significantly reduced leaf movement in response to root flooding in aco5 T-DNA insertion mutants. Expression of SHYG in shoot tissue is triggered by root flooding and treatment with ET, constituting an intrinsic ET-SHYG-ACO5 activator loop for rapid petiole cell expansion upon waterlogging.
Collapse
Affiliation(s)
- Mamoona Rauf
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Muhammad Arif
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Joachim Fisahn
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Gang-Ping Xue
- Commonwealth Scientific and Industrial Research Organization Plant Industry, St. Lucia, Queensland 4067, Australia
| | - Salma Balazadeh
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam, Germany
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| |
Collapse
|
33
|
van Veen H, Mustroph A, Barding GA, Vergeer-van Eijk M, Welschen-Evertman RA, Pedersen O, Visser EJ, Larive CK, Pierik R, Bailey-Serres J, Voesenek LA, Sasidharan R. Two Rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms. THE PLANT CELL 2013; 25:4691-707. [PMID: 24285788 PMCID: PMC3875744 DOI: 10.1105/tpc.113.119016] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 09/24/2013] [Accepted: 11/05/2013] [Indexed: 05/17/2023]
Abstract
Global climate change has increased flooding events, which affect both natural vegetation dynamics and crop productivity. The flooded environment is lethal for most plant species because it restricts gas exchange and induces an energy and carbon crisis. Flooding survival strategies have been studied in Oryza sativa, a cultivated monocot. However, our understanding of plant adaptation to natural flood-prone environments remains scant, even though wild plants represent a valuable resource of tolerance mechanisms that could be used to generate stress-tolerant crops. Here we identify mechanisms that mediate the distinct flooding survival strategies of two related wild dicot species: Rumex palustris and Rumex acetosa. Whole transcriptome sequencing and metabolite profiling reveal flooding-induced metabolic reprogramming specific to R. acetosa. By contrast, R. palustris uses the early flooding signal ethylene to increase survival by regulating shade avoidance and photomorphogenesis genes to outgrow submergence and by priming submerged plants for future low oxygen stress. These results provide molecular resolution of flooding survival strategies of two species occupying distinct hydrological niches. Learning how these contrasting flood adaptive strategies evolved in nature will be instrumental for the development of stress-tolerant crop varieties that deliver enhanced yields in a changing climate.
Collapse
Affiliation(s)
- Hans van Veen
- Department of Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Angelika Mustroph
- Department of Plant Physiology, Bayreuth University, 95440 Bayreuth, Germany
| | - Gregory A. Barding
- Department of Chemistry and Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Marleen Vergeer-van Eijk
- Department of Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Rob A.M. Welschen-Evertman
- Department of Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ole Pedersen
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, DK-3400 Hillerød, Denmark
| | - Eric J.W. Visser
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525 AJ, Nijmegen, the Netherlands
| | - Cynthia K. Larive
- Department of Chemistry and Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Ronald Pierik
- Department of Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521
| | - Laurentius A.C.J. Voesenek
- Department of Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
- Centre for Biosystems Genomics, 6708 PD Wageningen, The Netherlands
| | - Rashmi Sasidharan
- Department of Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
- Centre for Biosystems Genomics, 6708 PD Wageningen, The Netherlands
| |
Collapse
|
34
|
Komatsu S, Nanjo Y, Nishimura M. Proteomic analysis of the flooding tolerance mechanism in mutant soybean. J Proteomics 2013; 79:231-50. [PMID: 23313221 DOI: 10.1016/j.jprot.2012.12.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 12/27/2012] [Accepted: 12/29/2012] [Indexed: 12/12/2022]
Abstract
Flooding stress of soybean is a serious problem because it reduces growth; however, flooding-tolerant cultivars have not been identified. To analyze the flooding tolerance mechanism of soybean, the flooding-tolerant mutant was isolated and analyzed using a proteomic technique. Flooding-tolerance tests were repeated five times using gamma-ray irradiated soybeans, whose root growth (M6 stage) was not suppressed even under flooding stress. Two-day-old wild-type and mutant plants were subjected to flooding stress for 2days, and proteins were identified using a gel-based proteomic technique. In wild-type under flooding stress, levels of proteins related to development, protein synthesis/degradation, secondary metabolism, and the cell wall changed; however, these proteins did not markedly differ in the mutant. In contrast, an increased number of fermentation-related proteins were identified in the mutant under flooding stress. The root tips of mutant plants were not affected by flooding stress, even though the wild-type plants had damaged root. Alcohol dehydrogenase activity in the mutant increased at an early stage of flooding stress compared with that of the wild-type. Taken together, these results suggest that activation of the fermentation system in the early stages of flooding may be an important factor for the acquisition of flooding tolerance in soybean.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| | | | | |
Collapse
|
35
|
Kravchik M, Bernstein N. Effects of salinity on the transcriptome of growing maize leaf cells point at cell-age specificity in the involvement of the antioxidative response in cell growth restriction. BMC Genomics 2013; 14:24. [PMID: 23324477 PMCID: PMC3599246 DOI: 10.1186/1471-2164-14-24] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 12/18/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Salinity inhibits growth and development of most plants. The response to salinity is complex and varies between plant organs and stages of development. It involves challenges of ion toxicities and deficiencies as well as osmotic and oxidative stresses. The range of functions affected by the stress is reflected in elaborate changes to the transcriptome. The mechanisms involved in the developmental-stage specificity of the inhibitory responses are not fully understood. The present study took advantage of the well characterized developmental progression that exists along the maize leaf, for identification of salinity induced, developmentally-associated changes to the transcriptome. Differential subtraction screening was conducted for cells of two developmental stages: from the center of the growth zone where the expansion rate is highest, and from older cells at a more distal location of the growing zone where the expansion rate is lower and the salinity restrictive effects are more pronounced. Real-Time PCR analysis was used for validation of the expression of selected genes. RESULTS The salinity-induced changes demonstrated an age-related response of the growing tissue, with elevation of salinity-damages with increased age. Growth reduction, similar to the elevation of percentage dry matter (%DM), and Na and Cl concentrations were more pronounced in the older cells. The differential subtraction screening identified genes encoding to proteins involved in antioxidant defense, electron transfer and energy, structural proteins, transcription factors and photosynthesis proteins. Of special interest is the higher induced expression of genes involved in antioxidant protection in the young compared to older cells, which was accompanied by suppressed levels of reactive oxygen species (H2O2 and O2-). This was coupled with heightened expression in the older cells of genes that enhance cell-wall rigidity, which points at reduced potential for cell expansion. CONCLUSIONS The results demonstrate a cell-age specificity in the salinity response of growing cells, and point at involvement of the antioxidative response in cell growth restriction. Processes involved in reactive oxygen species (ROS) scavenging are more pronounced in the young cells, while the higher growth sensitivity of older cells is suggested to involve effects on cell-wall rigidity and lower protein protection.
Collapse
Affiliation(s)
- Michael Kravchik
- Institute of Soil Water and Environmental Sciences, Volcani Center, POB 6, 50-250, Bet-Dagan, Israel
| | - Nirit Bernstein
- Institute of Soil Water and Environmental Sciences, Volcani Center, POB 6, 50-250, Bet-Dagan, Israel
| |
Collapse
|
36
|
Pistelli L, Iacona C, Miano D, Cirilli M, Colao MC, Mensuali-Sodi A, Muleo R. Novel Prunus rootstock somaclonal variants with divergent ability to tolerate waterlogging. TREE PHYSIOLOGY 2012; 32:355-368. [PMID: 22391010 DOI: 10.1093/treephys/tpr135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plants require access to free water for nutrient uptake, but excess water surrounding the roots can be injurious or even lethal because it blocks the transfer of free oxygen between the soil and the atmosphere. Genetic improvement efforts in this study were focused on the increased tolerance in roots to waterlogging. Among a pool of clones generated in vitro from leaf explants of rootstock Mr.S.2/5 of Prunus cerasifera L., the S.4 clone was flood tolerant whereas the S.1 clone was sensitive. The S.4 clone formed adventitious roots on exposure to flooding. Moreover, the chlorophyll content and mitochondrial activity in the leaf and root, soluble sugar content, alcohol dehydrogenase activity and ethylene content were different between the clones. The sorbitol transporter gene (SOT1) was up-regulated during hypoxia, the alcohol dehydrogenase genes (ADH1 and ADH3) were up-regulated in the leaves and down-regulated in the roots of the S.4 clone during hypoxia, and the 1-aminocyclopropane-1-oxidase gene (ACO1) was up-regulated in the leaves and roots of the S.4 clone during hypoxia and down-regulated in the wild-type roots. In addition, in the S.4 root, hypoxia induced significant down-regulation of a glycosyltransferase-like gene (GTL), which has a yet-undefined role. Although the relevant variation in the S.4 genome has yet to be determined, genetic alteration clearly conferred a flooding-tolerant phenotype. The isolation of novel somaclonals with the same genomic background but with divergent tolerance to flooding may offer new insights in the elucidation of the genetic machinery of resistance to flooding and aid in the selection of new Prunus rootstocks to be used in various adverse environments.
Collapse
Affiliation(s)
- Laura Pistelli
- Dipartimento di Biologia, Università di Pisa, I-56124 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Le Provost G, Sulmon C, Frigerio JM, Bodénès C, Kremer A, Plomion C. Role of waterlogging-responsive genes in shaping interspecific differentiation between two sympatric oak species. TREE PHYSIOLOGY 2012; 32:119-34. [PMID: 22170438 DOI: 10.1093/treephys/tpr123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pedunculate (Quercus robur L.) and sessile oak (Quercus petreae Matt. Liebl.) are closely related species with a widely sympatric distribution in Europe. These two oak species are also known to display different ecological features, particularly related to their adaptation to soil waterlogging. Pedunculate oak grows in humid areas and can withstand high moisture content of the soil, whereas sessile oak requires drier soil with better drainage. The main goal of this study was to explore the role of gene expression contributing to differences in terms of waterlogging tolerance between these two species. We implemented a series of experiments aimed at evaluating whether differentially expressed genes between species are associated with their ecological preferences and underlie adaptive genetic divergence. Rooted cuttings of both species were grown in hydroponic conditions and subjected to gradual root hypoxia. White roots were sampled after 6, 12, 24 and 48 h. Real-time polymerase chain reaction (qPCR) was first used to monitor the expression of 10 known waterlogging-responsive genes, to identify discriminating sampling time points along the kinetics of hypoxia. Secondly, four subtractive suppressive hybridization libraries (sessile vs. pedunculate, pedunculate vs. sessile for early and late responses) were generated to isolate differentially expressed genes between species. A total of 2160 high-quality expressed sequence tags were obtained and annotated, and a subset of 45 genes were selected for qPCR analysis in a second independent factorial experimental design applying two stress durations per two species. Significant differences of gene expression between pedunculate and sessile oaks were detected, suggesting species-specific molecular strategies to respond to hypoxia. This study revealed that the ability of pedunculate oak to maintain glycolysis and fermentation under hypoxic conditions may help explain its tolerance to waterlogging.
Collapse
|
38
|
Feng BH, Wu B, Zhang CR, Huang X, Chen YF, Huang XL. Cloning and expression of 1-aminocyclopropane-1-carboxylate oxidase cDNA induced by thidiazuron during somatic embryogenesis of alfalfa (Medicago sativa). JOURNAL OF PLANT PHYSIOLOGY 2012; 169:176-82. [PMID: 22118816 DOI: 10.1016/j.jplph.2011.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 08/22/2011] [Accepted: 08/25/2011] [Indexed: 05/13/2023]
Abstract
Embryogenic callus (EC) induced from petioles of alfalfa (Medicago sativa L. cv. Jinnan) on B5h medium turned green, compact and non-embryogenic when the kinetin (KN) in the medium was replaced partially or completely by thidiazuron (TDZ). The application of CoCl₂, which is an inhibitor of 1-aminocyclopropane-1-carboxylate oxidase (ACO), counteracted the effect of TDZ. Ethylene has been shown to be involved in the modulation of TDZ-induced morphogenesis responses. However, very little is known about the genes involved in ethylene formation during somatic embryogenesis (SE). To investigate whether ethylene mediated by ACO is involved in the effect of TDZ on inhibition of embryogenic competence of the alfalfa callus. In this study we cloned full-length ACO cDNA from the alfalfa callus, named MsACO, and observed changes in this gene expression during callus formation and induction of SE under treatment with TDZ or TDZ plus CoCl₂. RNA blot analysis showed that during the EC subcultural period, the expression level of MsACO in EC was significantly increased on the 2nd day, rose to the highest level on the 8th day and remained at this high level until the 21st day. However, the ACO expression in the TDZ (0.93 μM)-treated callus was higher than in the EC especially on the 8th day. Moreover the ACO expression level increased with increasing TDZ concentration during the subcultural/maintenance period of the callus. It is worth noting that comparing the treatment with TDZ alone, the treatment with 0.93 μM TDZ plus 50 μM CoCl₂ reduced both of the ACO gene expressions and ACO activity in the treated callus. These results indicate that the effect of TDZ could be counteracted by CoCl₂ either on the ACO gene expression level or ACO activity. Thus, a TDZ inhibitory effect on embryogenic competence of alfalfa callus could be mediated by ACO gene expression.
Collapse
Affiliation(s)
- Bi-Hong Feng
- The Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Zhongshan (Sun Yat-sen) University, Guangzhou 510275, China
| | | | | | | | | | | |
Collapse
|
39
|
Komatsu S, Deschamps T, Thibaut D, Hiraga S, Kato M, Chiba M, Hashiguchi A, Tougou M, Shimamura S, Yasue H. Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots. PLANT MOLECULAR BIOLOGY 2011; 77:309-22. [PMID: 21811849 DOI: 10.1007/s11103-011-9812-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 07/16/2011] [Indexed: 05/22/2023]
Abstract
Alcohol dehydrogenase (Adh) is the key enzyme in alcohol fermentation. We analyzed Adh expression in order to clarify the role of Adh of soybeans (Glycine max) to flooding stress. Proteome analysis confirmed that expression of Adh is significantly upregulated in 4-day-old soybean seedlings subjected to 2 days of flooding. Southern hybridization analysis and soybean genome database search revealed that soybean has at least 6 Adh genes. The GmAdh2 gene that responded to flooding was isolated from soybean cultivar Enrei. Adh2 expression was markedly increased 6 h after flooding and decreased 24 h after floodwater drainage. In situ hybridization and Western blot indicated that flooding strongly induces Adh2 expression in RNA and protein levels in the root apical meristem. Osmotic, cold, or drought stress did not induce expression of Adh2. These results indicate that Adh2 is a flooding-response specific soybean gene expressed in root tissue.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, Kannondai 2-1-18, Tsukuba, 305-8518, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Peng T, Lv Q, Zhang J, Li J, Du Y, Zhao Q. Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza sativa). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4943-54. [PMID: 21791435 DOI: 10.1093/jxb/err205] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
MicroRNAs (miRNAs) play a critical role in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. This work investigated miRNAs in rice (Oryza sativa), an important food crop. High-throughput sequencing technology was used to reveal expression differences in miRNAs between superior and inferior spikelets in rice (japonica cultivar Xinfeng 2) at 18 d after fertilization. Totals of 351 and 312 known miRNAs were obtained from the superior and inferior spikelets, respectively. Analysis of the expression profiles of these miRNAs showed that 189 miRNAs were differentially expressed between superior spikelets and inferior spikelets. In addition, 43 novel miRNAs were identified mostly by the accumulation of miRNA*s expressed differentially between the superior and inferior spikelets. Further analysis with bioinformatics software and comparison with existing databases showed that these differentially expressed miRNAs may individually participate in regulating hormone metabolism, carbohydrate metabolic pathways, and cell division during rice grain development. The results indicate that the slow grain-filling and low grain weight of rice inferior spikelets are attributed partly to differences in expression and function between superior and inferior spikelet miRNAs.
Collapse
Affiliation(s)
- Ting Peng
- Research Center for Rice Engineering and Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450002, China
| | | | | | | | | | | |
Collapse
|
41
|
Dorling SJ, Leung S, Anderson CWN, Albert NW, McManus MT. Changes in 1-aminocyclopropane-1-carboxlate (ACC) oxidase expression and enzyme activity in response to excess manganese in white clover (Trifolium repens L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:1013-9. [PMID: 21530288 DOI: 10.1016/j.plaphy.2011.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 04/07/2011] [Indexed: 05/09/2023]
Abstract
To examine the effect on Mn treatment on the ACO gene family of white clover [Trifolium repens (L.) cv. Grasslands Challenge], rooted stolon cuttings were maintained in modified Hoaglands medium, at pH 5.4, containing either 5.2 μM Mn or 100 μM Mn over a 9-day time course. A significant uptake of Mn was observed in leaf tissue of plants grown in the 100 μM Mn treatment after 24 h and the content increased in these plants to reach 334 mg/kg DW at the conclusion of the time course. The growth of plants, measured as the petiole extension rate (PER), was significantly less in the 100 μM Mn treatment by day 9, while significantly less accumulation of leaf biomass was observed by day 7. The activity of a cell wall-associated H(2)O(2)-generating NADH peroxidase was shown to be higher in the 100 μM Mn treatment after day 5 of the time course while no significant difference in a H(2)O(2)-consuming guaiacol peroxidase activity was observed between the two Mn treatments. The expression of two leaf-associated ACC oxidase (ACO) genes, TR-ACO2 and TR-ACO3 was examined over the 9-day course but no difference between the two treatments was observed. In contrast, TR-ACO2 enzyme activity was measured and shown to decrease in the 100 μM Mn treatment after day 5 of the time course, with a concomitant decrease in TR-ACO2 accumulation, as determined by western analysis. Using 2DE and western analysis, evidence for post-translational modification of TR-ACO2 was observed.
Collapse
Affiliation(s)
- Sarah J Dorling
- Institute of Molecular Biosciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | | | | | | | | |
Collapse
|
42
|
Parent C, Crèvecoeur M, Capelli N, Dat JF. Contrasting growth and adaptive responses of two oak species to flooding stress: role of non-symbiotic haemoglobin. PLANT, CELL & ENVIRONMENT 2011; 34:1113-1126. [PMID: 21410709 DOI: 10.1111/j.1365-3040.2011.02309.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Soil flooding is an environmental constraint that is increasingly important for forest ecosystems, affecting tree growth and regeneration. As a result, selection pressure will alter forest diversity and distribution by favouring tree species tolerant of soil oxygen deprivation. Sessile and pedunculate oaks are the most abundant oak species and they exhibit a strong differential tolerance to waterlogging. In order to gain some understanding of the mechanisms of tolerance of both species to hypoxia, we undertook the characterization of the physiological, morphological, cellular and molecular responses of both species to flooding stress. Our results indicate that pedunculate oak, the more tolerant species, succeeded in maintaining its growth, water status and photosynthetic activity at a higher level than sessile oak. Furthermore, pedunculate oak developed aerenchyma in its root cortex as well as adventitious roots. The later exhibited a strong accumulation of class1 non-symbiotic haemoglobin localized by in situ hybridization in the protoderm and in some cortical cells. In conclusion, the higher tolerance of pedunculate oak to flooding was associated with an enhanced capacity to maintain photosynthesis and water homeostasis, coupled with the development of adaptive features (aerenchyma, adventitious roots) and with a higher expression of non-symbiotic haemoglobin in the roots.
Collapse
Affiliation(s)
- Claire Parent
- Laboratoire de Chrono-Environnement,,Université de Franche-Comté, Besançon Cedex, France
| | | | | | | |
Collapse
|
43
|
Pesquet E, Tuominen H. Ethylene stimulates tracheary element differentiation in Zinnia elegans cell cultures. THE NEW PHYTOLOGIST 2011; 190:138-149. [PMID: 21219334 DOI: 10.1111/j.1469-8137.2010.03600.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The exact role of ethylene in xylogenesis remains unclear, but the Zinnia elegans cell culture system provides an excellent model with which to study its role during the differentiation of tracheary elements (TEs) in vitro. Here, we analysed ethylene homeostasis and function during Z. elegans TE differentiation using biochemical, molecular and pharmacological methods. Ethylene evolution was confined to specific stages of TE differentiation. It was found to peak at the time of TE maturation and to correlate with the activity of the ethylene biosynthetic 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase. The ethylene precursor ACC was exported and accumulated to high concentrations in the extracellular medium, which also displayed a high capacity to convert ACC into ethylene. The effects of adding inhibitors of the ethylene biosynthetic ACC synthase and ACC oxidase enzymes to the TE cultures demonstrated for the first time strict dependence of TE differentiation on ethylene biosynthesis and a stimulatory effect of ethylene on the rate of TE differentiation. In a whole-plant context, our results suggest that ethylene synthesis occurs in the apoplast of the xylem elements and that ethylene participates, in a paracrine manner, in the control of the cambial stem cell pool size during secondary xylem formation.
Collapse
Affiliation(s)
- Edouard Pesquet
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden
| | - Hannele Tuominen
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden
| |
Collapse
|
44
|
Hattori Y, Nagai K, Ashikari M. Rice growth adapting to deepwater. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:100-5. [PMID: 20934370 DOI: 10.1016/j.pbi.2010.09.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/02/2010] [Accepted: 09/10/2010] [Indexed: 05/24/2023]
Abstract
Flooding is one of the most hazardous natural disasters, and there are several levels of flooding. Recently, research on flood-tolerant rice plants revealed that some rice varieties have evolved to overcome two different flood types, 'flash flood' and 'deepwater flood', using two different mechanisms, and their molecular mechanisms were determined. During flash flooding, the tolerant plants that are fully submerged for a few weeks stop elongating and thus avoid energy consumption that will be needed to restart growth when the water recedes. On the contrary, during deepwater flooding, with water depth up to several meters for several months, the deepwater-flood-tolerant rice plants promote elongation of internodes to keep the foliage above the water surface and thus allow respiration and photosynthesis.
Collapse
Affiliation(s)
- Yoko Hattori
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | | | | |
Collapse
|
45
|
Li T, Li H, Zhang YX, Liu JY. Identification and analysis of seven H₂O₂-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res 2010; 39:2821-33. [PMID: 21113019 PMCID: PMC3074118 DOI: 10.1093/nar/gkq1047] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Plant microRNAs (miRNAs) have been shown to play critical roles in regulating gene expression at the post-transcriptional level. In this study, we employed high throughput sequencing combined with computational analysis to survey miRNAomes from the seedlings of rice under normal conditions and treatments of H2O2 that result in oxidative stress. Comparison of the miRNAomes and subsequent northern blot analysis identified seven miRNA families differentially expressed under H2O2 stress. Predicted and experimentally validated targets of these H2O2-responsive miRNAs are involved in different cellular responses and metabolic processes including transcriptional regulation, nutrient transport, auxin homeostasis, cell proliferation and programmed cell death. This indicates that diverse miRNAs form a complex regulatory network to coordinate plants’ responses under oxidative stress. In addition, we also discovered 32 new miRNAs in the seedlings of rice. Interestingly, of these new miRNAs, miR3981 was originally found to be a putative exonic miRNA located in the exon of AK106348, suggesting that plants may also use some exons as an miRNA source. This study is the first genome-wide investigation of H2O2-regulated miRNAs in plants and broadens our perspectives on the important regulatory roles of miRNAs in plant oxidative stress and physiological adaption.
Collapse
Affiliation(s)
- Tian Li
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, P. R. China
| | | | | | | |
Collapse
|
46
|
Hashiguchi A, Ahsan N, Komatsu S. Proteomics application of crops in the context of climatic changes. Food Res Int 2010. [DOI: 10.1016/j.foodres.2009.07.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Nagai K, Hattori Y, Ashikari M. Stunt or elongate? Two opposite strategies by which rice adapts to floods. JOURNAL OF PLANT RESEARCH 2010; 123:303-9. [PMID: 20354754 DOI: 10.1007/s10265-010-0332-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 03/05/2010] [Indexed: 05/20/2023]
Abstract
Expansion of habitat is important for the perpetuation of species. In particular, plants which are sedentary must evolve specialized functions to adapt itself to new environment. Deepwater rice is cultivated mainly in the lowland areas of South and Southeast Asia that are flooded during the rainy season. The internodes of deepwater rice elongates in response to increasing water level to keep its leaves above the water surface and avoid anoxia. This elongation is stimulated by ethylene-regulated genes, Snorkel1 and Snorkel2. In contrast, when a flash flood occurs at the seedling stage, submergence-tolerant rice, which carries Submergence-1A, remains stunted and survives in water for a few weeks to avoid the energy consumption associated with plant elongation, and restarts its growth using its conserved energy after the water recedes. Interestingly, both Snorkel genes and Submergence-1A encode ethylene-responsive factor-type transcription factor and are connected to gibberellin biosynthesis or signal transduction. However, deepwater and submergence-tolerant rice seem to have opposite flooding response; namely, escape by elongation or remain stunted under water until flood recedes.
Collapse
Affiliation(s)
- Keisuke Nagai
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Aichi 464-8601, Japan
| | | | | |
Collapse
|
48
|
van Zanten M, Voesenek LA, Peeters AJ, Millenaar FF. Hormone- and light-mediated regulation of heat-induced differential petiole growth in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:1446-58. [PMID: 19741046 PMCID: PMC2773053 DOI: 10.1104/pp.109.144386] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/07/2009] [Indexed: 05/18/2023]
Abstract
Plants react quickly and profoundly to changes in their environment. A sudden increase in temperature, for example, induces differential petiole growth-driven upward leaf movement (hyponastic growth) in Arabidopsis (Arabidopsis thaliana). We show that accessions that face the strongest fluctuations in diurnal temperature in their natural habitat are least sensitive for heat-induced hyponastic growth. This indicates that heat-induced hyponastic growth is a trait subject to natural selection. The response is induced with kinetics remarkably similar to ethylene- and low light-induced hyponasty in several accessions. Using pharmacological assays, transcript analysis, and mutant analyses, we demonstrate that ethylene and the photoreceptor protein phytochrome B are negative regulators of heat-induced hyponastic growth and that low light, phytochrome A, auxin, polar auxin transport, and abscisic acid are positive regulators of heat-induced hyponastic growth. Furthermore, auxin, auxin polar transport, phytochrome A, phytochrome B, and cryptochromes are required for a fast induction of heat-induced hyponastic growth.
Collapse
Affiliation(s)
| | | | - Anton J.M. Peeters
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
49
|
Komatsu S, Wada T, Abaléa Y, Nouri MZ, Nanjo Y, Nakayama N, Shimamura S, Yamamoto R, Nakamura T, Furukawa K. Analysis of plasma membrane proteome in soybean and application to flooding stress response. J Proteome Res 2009; 8:4487-99. [PMID: 19658398 DOI: 10.1021/pr9002883] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The plasma membrane acts as the primary interface between the cellular cytoplasm and the extracellular environment. To investigate the function of the plasma membrane in response to flooding stress, plasma membrane was purified from root and hypocotyl of soybean seedlings using an aqueous two-phase partitioning method. Purified plasma membrane proteins with 81% purity were analyzed using either two-dimensional polyacrylamide gel electrophoresis followed by mass spectrometry and protein sequencing (2-DE MS/sequencer)-based proteomics or nanoliquid chromatography followed by mass spectrometry (nanoLC-MS/MS)-based proteomics. The number of hydrophobic proteins identified by nanoLC-MS/MS-based proteomics was compared with those identified by 2-DE MS/sequencer-based proteomics. These techniques were applied to identify the proteins in soybean that are responsive to flooding stress. Results indicate insights of plasma membrane into the response of soybean to flooding stress: (i) the proteins located in the cell wall are up-regulated in plasma membrane; (ii) the proteins related to antioxidative system play a crucial role in protecting cells from oxidative damage; (iii) the heat shock cognate protein plays a role in protecting proteins from denaturation and degradation during flooding stress; and (iv) the signaling related proteins might regulate ion homeostasis.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, Tsukuba 305-8518, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Komatsu S, Yamamoto R, Nanjo Y, Mikami Y, Yunokawa H, Sakata K. A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. J Proteome Res 2009; 8:4766-78. [PMID: 19658438 DOI: 10.1021/pr900460x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The inducible genes and proteins were analyzed using transcriptome and proteome techniques to explore the mechanisms underlying soybean response to flooding stress. Soybean seedlings were germinated for 2 days and subjected to flooding for 12 h, and the total RNAs and proteins were extracted from the root and hypocotyl. High-coverage gene expression profiling analysis as transcriptome technique was performed. Ninety-seven out of the 29,388 peaks observed demonstrated a greater than 25-fold change following 12 h of flood-induced stress. Furthermore, 34 proteins out of 799 proteins were changed by 12 h stress. Genes associated with alcohol fermentation, ethylene biosynthesis, pathogen defense, and cell wall loosening were significantly up-regulated. Hemoglobin, acid phosphatase, and Kunitz trypsin protease inhibitor were altered at both transcriptional and translational levels. Reactive oxygen species scavengers and chaperons were changed only at the translational level. It is suggested that the early response of soybean under flooding might be important stress adaptation to ensure survival against not only hypoxia but also the direct damage of cell by water.
Collapse
Affiliation(s)
- Setsuko Komatsu
- National Institute of Crop Science, Tsukuba 305-8518, Japan.
| | | | | | | | | | | |
Collapse
|