1
|
Harris FM, Mou Z. Damage-Associated Molecular Patterns and Systemic Signaling. PHYTOPATHOLOGY 2024; 114:308-327. [PMID: 37665354 DOI: 10.1094/phyto-03-23-0104-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cellular damage inflicted by wounding, pathogen infection, and herbivory releases a variety of host-derived metabolites, degraded structural components, and peptides into the extracellular space that act as alarm signals when perceived by adjacent cells. These so-called damage-associated molecular patterns (DAMPs) function through plasma membrane localized pattern recognition receptors to regulate wound and immune responses. In plants, DAMPs act as elicitors themselves, often inducing immune outputs such as calcium influx, reactive oxygen species generation, defense gene expression, and phytohormone signaling. Consequently, DAMP perception results in a priming effect that enhances resistance against subsequent pathogen infections. Alongside their established function in local tissues, recent evidence supports a critical role of DAMP signaling in generation and/or amplification of mobile signals that induce systemic immune priming. Here, we summarize the identity, signaling, and synergy of proposed and established plant DAMPs, with a focus on those with published roles in systemic signaling.
Collapse
Affiliation(s)
- Fiona M Harris
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| |
Collapse
|
2
|
Lemieszek MK, Komaniecka I, Chojnacki M, Choma A, Rzeski W. Immunomodulatory Properties of Polysaccharide-Rich Young Green Barley ( Hordeum vulgare) Extract and Its Structural Characterization. Molecules 2022; 27:1742. [PMID: 35268844 PMCID: PMC8911554 DOI: 10.3390/molecules27051742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
Young green barley (YGB) water extract has revealed a beneficial impact on natural killer (NK) cells' ability to recognize and eliminate human colon cancer cells, without any side effects for normal colon epithelial cells. The direct anticancer effect of the tested compounds has been also shown. The mixture of oligosaccharides found in this extract was characterized by chemical analyses and via FT-IR spectroscopy and MALDI-TOF MS techniques. The YGB preparation contained 26.9% of proteins and 64.2% of sugars, mostly glucose (54.7%) and fructose (42.7%), with a small amount of mannose (2.6%) and galactose (less than 0.5%). Mass spectrometry analysis of YGB has shown that fructose oligomers contained from 3 to 19 sugar units. The number of fructans was estimated to be about 10.2% of the dry weight basis of YGB. The presented results suggest the beneficial effect of the consumption of preparations based on young barley on the human body, in the field of colon cancer prevention.
Collapse
Affiliation(s)
- Marta Kinga Lemieszek
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
| | - Iwona Komaniecka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Michał Chojnacki
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
| | - Adam Choma
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Wojciech Rzeski
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
3
|
D-Tagatose-Based Product Triggers Sweet Immunity and Resistance of Grapevine to Downy Mildew, but Not to Gray Mold Disease. PLANTS 2022; 11:plants11030296. [PMID: 35161277 PMCID: PMC8839929 DOI: 10.3390/plants11030296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/02/2022]
Abstract
The use of natural bio-based compounds becomes an eco-friendly strategy to control plant diseases. Rare sugars would be promising compounds as inducers of plant “sweet immunity”. The present study aimed to investigate the induced resistance of grapevine leaves against Plasmopara viticola and Botrytis cinerea by a rare sugar-based product (IFP48) and its active ingredient D-tagatose (TAG), in order to elucidate molecular mechanism involved in defense-related metabolic regulations before and after pathogen challenge. Data showed that spraying leaves with IFP48 and TAG lead to a significant reduction of downy mildew, but not of gray mold disease. The induced protection against P. viticola relies on IFP48’s and to a lesser extent TAG’s ability to potentiate the activation of salicylic acid- and jasmonic acid/ethylene-responsive genes and stilbene phytoalexin accumulation. Most of defense responses remained upregulated in IFP48-treated plants after infection with P. viticola, but inconsistent following challenge with B. cinerea. The beneficial effects of IFP48 were associated with an enhanced accumulation of tagatose inside leaf tissues compared to TAG treatment. Meanwhile, the amounts of sugars, glucose, fructose, maltose, galactose and trehalose remained unchanged or decreased in IFP48-treated leaves after P. viticola infection, although only a few genes involved in sugar transport and metabolism showed transcriptional regulation. This suggests a contribution of sugar homeostasis to the IFP48-induced sweet immune response and priming plants for enhanced resistance to P. viticola, but not to B. cinerea.
Collapse
|
4
|
Mijailovic N, Nesler A, Perazzolli M, Aït Barka E, Aziz A. Rare Sugars: Recent Advances and Their Potential Role in Sustainable Crop Protection. Molecules 2021; 26:molecules26061720. [PMID: 33808719 PMCID: PMC8003523 DOI: 10.3390/molecules26061720] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Rare sugars are monosaccharides with a limited availability in the nature and almost unknown biological functions. The use of industrial enzymatic and microbial processes greatly reduced their production costs, making research on these molecules more accessible. Since then, the number of studies on their medical/clinical applications grew and rare sugars emerged as potential candidates to replace conventional sugars in human nutrition thanks to their beneficial health effects. More recently, the potential use of rare sugars in agriculture was also highlighted. However, overviews and critical evaluations on this topic are missing. This review aims to provide the current knowledge about the effects of rare sugars on the organisms of the farming ecosystem, with an emphasis on their mode of action and practical use as an innovative tool for sustainable agriculture. Some rare sugars can impact the plant growth and immune responses by affecting metabolic homeostasis and the hormonal signaling pathways. These properties could be used for the development of new herbicides, plant growth regulators and resistance inducers. Other rare sugars also showed antinutritional properties on some phytopathogens and biocidal activity against some plant pests, highlighting their promising potential for the development of new sustainable pesticides. Their low risk for human health also makes them safe and ecofriendly alternatives to agrochemicals.
Collapse
Affiliation(s)
- Nikola Mijailovic
- Induced Resistance and Plant Bioprotection, USC RIBP 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France; (N.M.); (E.A.B.)
- Bi-PA nv, Londerzee l1840, Belgium;
| | | | - Michele Perazzolli
- Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy;
- Center Agriculture Food Environment (C3A), University of Trento, 38098 San Michele all’Adige, Italy
| | - Essaid Aït Barka
- Induced Resistance and Plant Bioprotection, USC RIBP 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France; (N.M.); (E.A.B.)
| | - Aziz Aziz
- Induced Resistance and Plant Bioprotection, USC RIBP 1488, University of Reims, UFR Sciences, CEDEX 02, 51687 Reims, France; (N.M.); (E.A.B.)
- Correspondence: ; Tel.: +33-326-918-525
| |
Collapse
|
5
|
Meuriot F, Morvan-Bertrand A, Noiraud-Romy N, Decau ML, Escobar-Gutiérrez AJ, Gastal F, Prud’homme MP. Short-term effects of defoliation intensity on sugar remobilization and N fluxes in ryegrass. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3975-3986. [PMID: 29931373 PMCID: PMC6054246 DOI: 10.1093/jxb/ery211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/15/2018] [Indexed: 05/14/2023]
Abstract
In grassland plant communities, the ability of individual plants to regrow after defoliation is of crucial importance since it allows the restoration of active photosynthesis and plant growth. The aim of this study was to evaluate the effects of increasing defoliation intensity (0, 25, 65, 84, and 100% of removed leaf area) on sugar remobilization and N uptake, remobilization, and allocation in roots, adult leaves, and growing leaves of ryegrass over 2 days, using a 15N tracer technique. Increasing defoliation intensity decreased plant N uptake in a correlative way and increased plant N remobilization, but independently. The relative contribution of N stored before defoliation to leaf growth increased when defoliation intensity was severe. In most conditions, root N reserves also contributed to leaf regrowth, but much less than adult leaves and irrespective of defoliation intensity. A threshold of defoliation intensity (65% leaf area removal) was identified below which C (glucose, fructose, sucrose, fructans), and N (amino acids, soluble proteins) storage compounds were not recruited for regrowth. By contrast, nitrate content increased in elongating leaf bases above this threshold. Wounding associated with defoliation is thus not the predominant signal that triggers storage remobilization and controls the priority of resource allocation to leaf meristems. A framework integrating the sequential events leading to the refoliation of grasses is proposed on the basis of current knowledge and on the findings of the present work.
Collapse
Affiliation(s)
- Frédéric Meuriot
- Université de Caen Normandie, INRA, UMR 950, Ecophysiologie Végétale, Agronomie et Nutritions NCS, Caen, France
| | - Annette Morvan-Bertrand
- Université de Caen Normandie, INRA, UMR 950, Ecophysiologie Végétale, Agronomie et Nutritions NCS, Caen, France
| | - Nathalie Noiraud-Romy
- Université de Caen Normandie, INRA, UMR 950, Ecophysiologie Végétale, Agronomie et Nutritions NCS, Caen, France
| | - Marie-Laure Decau
- Université de Caen Normandie, INRA, UMR 950, Ecophysiologie Végétale, Agronomie et Nutritions NCS, Caen, France
| | | | | | - Marie-Pascale Prud’homme
- Université de Caen Normandie, INRA, UMR 950, Ecophysiologie Végétale, Agronomie et Nutritions NCS, Caen, France
| |
Collapse
|
6
|
Heyduk K, Ray JN, Ayyampalayam S, Leebens-Mack J. Shifts in gene expression profiles are associated with weak and strong Crassulacean acid metabolism. AMERICAN JOURNAL OF BOTANY 2018; 105:587-601. [PMID: 29746718 DOI: 10.1002/ajb2.1017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/19/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY The relative ease of high throughput sequencing is facilitating comprehensive phylogenomic and gene expression studies, even for nonmodel groups. To date, however, these two approaches have not been merged; while phylogenomic methods might use transcriptome sequences to resolve relationships, assessment of gene expression patterns in a phylogenetic context is less common. Here we analyzed both carbon assimilation and gene expression patterns of closely related species within the Agavoideae (Asparagaceae) to elucidate changes in gene expression across weak and strong phenotypes for Crassulacean acid metabolism (CAM). METHODS Gene expression patterns were compared across four genera: Agave (CAM), which is paraphyletic with Polianthes (weak CAM) and Manfreda (CAM), and Beschorneria (weak CAM). RNA-sequencing was paired with measures of gas exchange and titratable acidity. Climate niche space was compared across the four lineages to examine abiotic factors and their correlation to CAM. KEY RESULTS Expression of homologous genes showed both shared and variable patterns in weak and strong CAM species. Network analysis highlights that despite shared expression patterns, highly connected genes differ between weak and strong CAM, implicating shifts in regulatory gene function as key for the evolution of CAM. Variation in carbohydrate metabolism between weak and strong CAM supports the importance of sugar turnovers for CAM physiology. CONCLUSIONS Integration of phylogenetics and RNA-sequencing provides a powerful tool to study the evolution of CAM photosynthesis across closely related but photosynthetically variable species. Our findings regarding shared or shifted gene expression and regulation of CAM via carbohydrate metabolism have important implications for efforts to engineer the CAM pathway into C3 food and biofuel crops.
Collapse
Affiliation(s)
- Karolina Heyduk
- Miller Plant Sciences, University of Georgia, 120 Carlton Street, 2502, Athens, Georgia, 30602, USA
| | - Jeremy N Ray
- Miller Plant Sciences, University of Georgia, 120 Carlton Street, 2502, Athens, Georgia, 30602, USA
| | | | - James Leebens-Mack
- Miller Plant Sciences, University of Georgia, 120 Carlton Street, 2502, Athens, Georgia, 30602, USA
| |
Collapse
|
7
|
Dong Y, Zhang Y, Xiao Y, Yan J, Liu J, Wen W, Zhang Y, Jing R, Xia X, He Z. Cloning of TaSST genes associated with water soluble carbohydrate content in bread wheat stems and development of a functional marker. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1061-70. [PMID: 26883047 DOI: 10.1007/s00122-016-2683-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/23/2016] [Indexed: 05/21/2023]
Abstract
We cloned TaSST genes, developed a gene-specific marker for TaSST-D1, and identified three QTL in the Doumai/Shi 4185 RIL population. TaSST-D1 is within one of the three QTL. Sucrose:sucrose-1-fructosyltransferase (1-SST), a critical enzyme in the fructan biosynthetic pathway, is significantly and positively associated with water soluble carbohydrate (WSC) content in bread wheat stems. In the present study, wheat 1-SST genes (TaSST) were isolated and located on chromosomes 4A, 7A and 7D. Sequence analysis of TaSST-D1 revealed 15 single nucleotide polymorphisms (SNP) in the third exon between cultivars with higher and lower WSC content. A cleaved amplified polymorphism sequence (CAPS) marker, WSC7D, based on the polymorphism at position 1216 (C-G) was developed to discriminate the two alleles. WSC7D was located on chromosome 7DS using a recombinant inbred line (RIL) population from a Doumai/Shi 4185 cross, and a set of Chinese Spring nullisomic-tetrasomic lines. TaSST-D1 co-segregated with the CAPS marker WSC7D and was linked to SNP marker BS00108793_51 on chromosome 7DS at a genetic distance of 6.1 cM. It explained 8.8, 10.9, and 11.3% of the phenotypic variances in trials at Beijing and Shijiazhuang as well as the averaged data from those environments, respectively. Two additional QTL (QWSC.caas-4BS and QWSC.caas-7AS) besides TaSST-D1 were mapped in the RIL population. One hundred and forty-nine Chinese wheat cultivars and advanced lines tested in four environments were used to validate a highly significant (P < 0.01) association between WSC7D and WSC content in wheat stems. WSC7D can be used as a gene-specific marker for improvement of stem WSC content in wheat breeding programs.
Collapse
Affiliation(s)
- Yan Dong
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, 100081, Beijing, China
| | - Yan Zhang
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, 100081, Beijing, China
| | - Yonggui Xiao
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, 100081, Beijing, China
| | - Jun Yan
- Cotton Research Institute, CAAS, Huanghedadao, Anyang, Henan, China
| | - Jindong Liu
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, 100081, Beijing, China
| | - Weie Wen
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, 830052, Urumqi, Xinjiang, China
| | - Yong Zhang
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, 100081, Beijing, China
| | - Ruilian Jing
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, 100081, Beijing, China
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, 100081, Beijing, China.
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, 100081, Beijing, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, 100081, Beijing, China
| |
Collapse
|
8
|
Trevisan F, Oliveira VF, Carvalho MAM, Gaspar M. Effects of different carbohydrate sources on fructan metabolism in plants of Chrysolaena obovata grown in vitro. FRONTIERS IN PLANT SCIENCE 2015; 6:681. [PMID: 26442003 PMCID: PMC4561353 DOI: 10.3389/fpls.2015.00681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/17/2015] [Indexed: 06/05/2023]
Abstract
Chrysolaena obovata (Less.) Dematt., previously named Vernonia herbacea, is an Asteraceae native to the Cerrado which accumulates about 80% of the rhizophore dry mass as inulin-type fructans. Considering its high inulin production and the wide application of fructans, a protocol for C. obovata in vitro culture was recently established. Carbohydrates are essential for in vitro growth and development of plants and can also act as signaling molecules involved in cellular adjustments and metabolic regulation. This work aimed to evaluate the effect of different sources of carbohydrate on fructan metabolism in plants grown in vitro. For this purpose, C. obovata plants cultivated in vitro were submitted to carbon deprivation and transferred to MS medium supplemented with sucrose, glucose or fructose. Following, their fructan composition and activity and expression of genes encoding enzymes for fructan synthesis (1-SST and 1-FFT) and degradation (1-FEH) were evaluated. For qRT-PCR analysis partial cDNA sequences corresponding to two different C. obovata genes, 1-SST and 1-FFT, were isolated. As expected, C. obovata sequences showed highest sequence identity to other Asteraceae 1-SST and 1-FFT, than to Poaceae related proteins. A carbon deficit treatment stimulated the transcription of the gene 1-FEH and inhibited 1-SST and 1-FFT and carbohydrate supplementation promoted reversal of the expression profile of these genes. With the exception of 1-FFT, a positive correlation between enzyme activity and gene expression was observed. The overall results indicate that sucrose, fructose and glucose act similarly on fructan metabolism and that 1-FEH and 1-SST are transcriptionally regulated by sugar in this species. Cultivation of plants in increasing sucrose concentrations stimulated synthesis and inhibited fructan mobilization, and induced a distinct pattern of enzyme activity for 1-SST and 1-FFT, indicating the existence of a mechanism for differential regulation between them.
Collapse
Affiliation(s)
- Flavio Trevisan
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de BotânicaSão Paulo, Brazil
- Instituto Federal de São Paulo, Campus São RoqueSão Roque, Brazil
| | - Vanessa F. Oliveira
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de BotânicaSão Paulo, Brazil
- Núcleo de Ciências da Saúde, Universidade de Mogi das CruzesSão Paulo, Brazil
| | - Maria A. M. Carvalho
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de BotânicaSão Paulo, Brazil
| | - Marília Gaspar
- Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de BotânicaSão Paulo, Brazil
| |
Collapse
|
9
|
Navarro S, Vazquez-Hernandez M, Rosales R, Sanchez-Ballesta MT, Merodio C, Escribano MI. Differential regulation of dehydrin expression and trehalose levels in Cardinal table grape skin by low temperature and high CO2. JOURNAL OF PLANT PHYSIOLOGY 2015; 179:1-11. [PMID: 25817412 DOI: 10.1016/j.jplph.2015.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 05/07/2023]
Abstract
Dehydrins and trehalose are multifunctional protective biomolecules that play a role in counteracting cellular damage during dehydrative stresses. In this paper, we studied dehydrin isoform patterns, dehydrin gene expression and trehalose levels in the skin of Cardinal (Vitis vinifera L.) table grapes, along with their regulation by different cold postharvest storage conditions. Immunoanalysis with K-segment antibody recognizes four constitutive dehydrins (from 17 to 44 kDa) that are tightly regulated by low temperature and high CO2. Phosphatase treatment showed that DHN44 and DHN22 isoforms are phosphorylated polypeptides, while MALDI-TOF MS and MS/MS analysis suggested that 44 kDa polypeptide may be a dehydrin homodimer. At the transcriptional level, dehydrins are also regulated by low temperature and high CO2, showing a fairly good correlation with their mRNA levels. Trehalose was quantified by high performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), revealing a progressive increase of this metabolite throughout storage at 0 °C and the sudden transitory increases in short-term high CO2-treated fruit. We propose that the constitutive presence and up-regulation of dehydrins and trehalose during low temperature postharvest storage could be positively correlated with the relative chilling tolerance of table grapes and the adaptive responses activated by high CO2 levels to preserve cell water status and to counteract the disruption of physiological processes during cold storage.
Collapse
Affiliation(s)
- Sara Navarro
- Grupo Biotecnología y Fisiología Posrecolección, Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, José Antonio Novais 10, Ciudad Universitaria, E-28040 Madrid, Spain
| | - María Vazquez-Hernandez
- Grupo Biotecnología y Fisiología Posrecolección, Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, José Antonio Novais 10, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Raquel Rosales
- Grupo Biotecnología y Fisiología Posrecolección, Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, José Antonio Novais 10, Ciudad Universitaria, E-28040 Madrid, Spain
| | - María Teresa Sanchez-Ballesta
- Grupo Biotecnología y Fisiología Posrecolección, Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, José Antonio Novais 10, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Carmen Merodio
- Grupo Biotecnología y Fisiología Posrecolección, Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, José Antonio Novais 10, Ciudad Universitaria, E-28040 Madrid, Spain
| | - María Isabel Escribano
- Grupo Biotecnología y Fisiología Posrecolección, Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, José Antonio Novais 10, Ciudad Universitaria, E-28040 Madrid, Spain.
| |
Collapse
|
10
|
Ould-Ahmed M, Decau ML, Morvan-Bertrand A, Prud'homme MP, Lafrenière C, Drouin P. Plant maturity and nitrogen fertilization affected fructan metabolism in harvestable tissues of timothy (Phleum pratense L.). JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1479-1490. [PMID: 25105233 DOI: 10.1016/j.jplph.2014.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 06/03/2023]
Abstract
Timothy (Phleum pratense L.) is an important grass forage used for pasture, hay, and silage in regions with cool and humid growth seasons. One of the factors affecting the nutritive value of this grass is the concentration of non-structural carbohydrates (NSC), mainly represented by fructans. NSC concentration depends on multiple factors, making it hardly predictable. To provide a better understanding of NSC metabolism in timothy, the effects of maturity stage and nitrogen (N) fertilization level on biomass, NSC and N-compound concentrations were investigated in the tissues used for forage (leaf blades and stems surrounded by leaf sheaths) of hydroponically grown plants. Moreover, activities and relative expression level of enzymes involved in fructan metabolism were measured in the same tissues. Forage biomass was not altered by the fertilization level but was strongly modified by the stage of development. It increased from vegetative to heading stages while leaf-to-stem biomass ratio decreased. Total NSC concentration, which was not altered by N fertilization level, increased between heading and anthesis due to an accumulation of fructans in leaf blades. Fructan metabolizing enzyme activities (fructosyltransferase-FT and fructan exohydrolase-FEH) were not or only slightly altered by both maturity stage and N fertilization level. Conversely, the relative transcript levels of genes coding for enzymes involved in fructan metabolism were modified by N supply (PpFT1 and Pp6-FEH1) or maturity stage (PpFT2). The relative transcript level of PpFT1 was the highest in low N plants while that of Pp6-FEH1 was the highest in high N plants. Morevoer, transcript level of PpFT1 was negatively correlated with nitrate concentration while that of PpFT2 was positively correlated with sucrose concentration. This distinct regulation of the two genes coding for 6-sucrose:fructan fructosyltransferase (6-SFT) may allow a fine adequation of C allocation towards fructan synthesis in response to carbon and N availability. Contrary to fructans, starch content increased in low N plants, suggesting different regulatory mechanisms and/or sensitivity of starch and fructan metabolism in relation to the N status.
Collapse
Affiliation(s)
- Marouf Ould-Ahmed
- Normandie Univ, Caen Cedex, France; UCBN, UMR 950 Ecophysiologie Végétale & Agronomie, nutritions NCS, F-14032 Caen, France; INRA, UMR 950 EVA, F-14032 Caen, France; Station de recherche en agroalimentaire de l'Université du Québec en Abitibi-Témiscamingue, 79, rue Côté, Notre-Dame-du-Nord, QC, Canada J0Z 3B0
| | - Marie-Laure Decau
- Normandie Univ, Caen Cedex, France; UCBN, UMR 950 Ecophysiologie Végétale & Agronomie, nutritions NCS, F-14032 Caen, France; INRA, UMR 950 EVA, F-14032 Caen, France
| | - Annette Morvan-Bertrand
- Normandie Univ, Caen Cedex, France; UCBN, UMR 950 Ecophysiologie Végétale & Agronomie, nutritions NCS, F-14032 Caen, France; INRA, UMR 950 EVA, F-14032 Caen, France.
| | - Marie-Pascale Prud'homme
- Normandie Univ, Caen Cedex, France; UCBN, UMR 950 Ecophysiologie Végétale & Agronomie, nutritions NCS, F-14032 Caen, France; INRA, UMR 950 EVA, F-14032 Caen, France
| | - Carole Lafrenière
- Station de recherche en agroalimentaire de l'Université du Québec en Abitibi-Témiscamingue, 79, rue Côté, Notre-Dame-du-Nord, QC, Canada J0Z 3B0
| | - Pascal Drouin
- Station de recherche en agroalimentaire de l'Université du Québec en Abitibi-Témiscamingue, 79, rue Côté, Notre-Dame-du-Nord, QC, Canada J0Z 3B0
| |
Collapse
|
11
|
Plant prebiotics and human health: Biotechnology to breed prebiotic-rich nutritious food crops. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2014.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
12
|
van Arkel J, Sévenier R, Hakkert J, Bouwmeester H, Koops A, van der Meer I. Fructan Biosynthesis Regulation and the Production of Tailor-Made Fructan in Plants. POLYSACCHARIDES 2014. [DOI: 10.1201/b17121-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
13
|
Wingler A. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature. FRONTIERS IN PLANT SCIENCE 2014; 5:794. [PMID: 25628637 PMCID: PMC4290479 DOI: 10.3389/fpls.2014.00794] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/20/2014] [Indexed: 05/18/2023]
Abstract
Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g., via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellin (GA) and jasmonate (JA) play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants.
Collapse
Affiliation(s)
- Astrid Wingler
- *Correspondence: Astrid Wingler, Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK e-mail:
| |
Collapse
|
14
|
Cabello S, Lorenz C, Crespo S, Cabrera J, Ludwig R, Escobar C, Hofmann J. Altered sucrose synthase and invertase expression affects the local and systemic sugar metabolism of nematode-infected Arabidopsis thaliana plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:201-12. [PMID: 24187419 PMCID: PMC3883288 DOI: 10.1093/jxb/ert359] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sedentary endoparasitic nematodes of plants induce highly specific feeding cells in the root central cylinder. From these, the obligate parasites withdraw all required nutrients. The feeding cells were described as sink tissues in the plant's circulation system that are supplied with phloem-derived solutes such as sugars. Currently, there are several publications describing mechanisms of sugar import into the feeding cells. However, sugar processing has not been studied so far. Thus, in the present work, the roles of the sucrose-cleaving enzymes sucrose synthases (SUS) and invertases (INV) in the development of Heterodera schachtii were studied. Gene expression analyses indicate that both enzymes are regulated transcriptionally. Nematode development was enhanced on multiple INV and SUS mutants. Syncytia of these mutants were characterized by altered enzyme activity and changing sugar pool sizes. Further, the analyses revealed systemically affected sugar levels and enzyme activities in the shoots of the tested mutants, suggesting changes in the source-sink relationship. Finally, the development of the root-knot nematode Meloidogyne javanica was studied in different INV and SUS mutants and wild-type Arabidopsis plants. Similar effects on the development of both sedentary endoparasitic nematode species (root-knot and cyst nematode) were observed, suggesting a more general role of sucrose-degrading enzymes during plant-nematode interactions.
Collapse
Affiliation(s)
- Susana Cabello
- University of Natural Resources and Applied Life Sciences, Department of Crop Sciences, Konrad Lorenz Str. 24, Tulln a. d. Donau A-3430, Austria
| | - Cindy Lorenz
- University of Natural Resources and Applied Life Sciences, Department of Food Sciences and Technology, Vienna, Austria
| | - Sara Crespo
- University of Natural Resources and Applied Life Sciences, Department of Crop Sciences, Konrad Lorenz Str. 24, Tulln a. d. Donau A-3430, Austria
| | - Javier Cabrera
- Universidad de Castilla-La Mancha, Facultad de Ciencias del Medio Ambiente, Avenida de Carlos III s/n, 45071 Toledo, Spain
| | - Roland Ludwig
- University of Natural Resources and Applied Life Sciences, Department of Food Sciences and Technology, Vienna, Austria
| | - Carolina Escobar
- Universidad de Castilla-La Mancha, Facultad de Ciencias del Medio Ambiente, Avenida de Carlos III s/n, 45071 Toledo, Spain
| | - Julia Hofmann
- University of Natural Resources and Applied Life Sciences, Department of Crop Sciences, Konrad Lorenz Str. 24, Tulln a. d. Donau A-3430, Austria
| |
Collapse
|
15
|
Kooiker M, Drenth J, Glassop D, McIntyre CL, Xue GP. TaMYB13-1, a R2R3 MYB transcription factor, regulates the fructan synthetic pathway and contributes to enhanced fructan accumulation in bread wheat. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3681-96. [PMID: 23873993 PMCID: PMC3745729 DOI: 10.1093/jxb/ert205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fructans are the major component of temporary carbon reserve in the stem of temperate cereals, which is used for grain filling. Three families of fructosyltransferases are directly involved in fructan synthesis in the vacuole of Triticum aestivum. The regulatory network of the fructan synthetic pathway is largely unknown. Recently, a sucrose-upregulated wheat MYB transcription factor (TaMYB13-1) was shown to be capable of activating the promoter activities of sucrose:sucrose 1-fructosyltransferase (1-SST) and sucrose:fructan 6-fructosyltransferase (6-SFT) in transient transactivation assays. This work investigated TaMYB13-1 target genes and their influence on fructan synthesis in transgenic wheat. TaMYB13-1 overexpression resulted in upregulation of all three families of fructosyltransferases including fructan:fructan 1-fructosyltransferase (1-FFT). A γ-vacuolar processing enzyme (γ-VPE1), potentially involved in processing the maturation of fructosyltransferases in the vacuole, was also upregulated by TaMYB13-1 overexpression. Multiple TaMYB13 DNA-binding motifs were identified in the Ta1-FFT1 and Taγ-VPE1 promoters and were bound strongly by TaMYB13-1. The expression profiles of these target genes and TaMYB13-1 were highly correlated in recombinant inbred lines and during stem development as well as the transgenic and non-transgenic wheat dataset, further supporting a direct regulation of these genes by TaMYB13-1. TaMYB13-1 overexpression in wheat led to enhanced fructan accumulation in the leaves and stems and also increased spike weight and grain weight per spike in transgenic plants under water-limited conditions. These data suggest that TaMYB13-1 plays an important role in coordinated upregulation of genes necessary for fructan synthesis and can be used as a molecular tool to improve the high fructan trait.
Collapse
Affiliation(s)
- Maarten Kooiker
- CSIRO Plant Industry, 306 Carmody Rd., St Lucia, Brisbane, Qld 4067, Australia
| | - Janneke Drenth
- CSIRO Plant Industry, 306 Carmody Rd., St Lucia, Brisbane, Qld 4067, Australia
| | - Donna Glassop
- CSIRO Plant Industry, 306 Carmody Rd., St Lucia, Brisbane, Qld 4067, Australia
| | - C. Lynne McIntyre
- CSIRO Plant Industry, 306 Carmody Rd., St Lucia, Brisbane, Qld 4067, Australia
| | - Gang-Ping Xue
- CSIRO Plant Industry, 306 Carmody Rd., St Lucia, Brisbane, Qld 4067, Australia
| |
Collapse
|
16
|
Suzuki T, Maeda T, Grant S, Grant G, Sporns P. Confirmation of Fructans biosynthesized in vitro from [1-13C]glucose in asparagus tissues using MALDI-TOF MS and ESI-MS. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:715-722. [PMID: 23369447 DOI: 10.1016/j.jplph.2012.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/27/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
Accumulation of Fructans was confirmed in asparagus tissues that had been cultured for 2 days on media supplemented with glucose. It is very common that Fructans are biosynthesized from sucrose. We hypothesized however that Fructans could also be biosynthesized from glucose. Stem tissues of in vitro-cultured asparagus were subcultured for 72 h on a medium containing 0.5M of [1-(13)C]glucose. A medium containing 0.5M of normal ((12)C) glucose was used as control. Carbohydrates were extracted from the tissues and analyzed using HPLC, MALDI-TOF MS and ESI-MS. HPLC results indicated that the accumulation of short-chain Fructans was similar in both (13)C-labelled and control samples. Short-chain Fructans of DP=3-7 were detected using MALDI-TOF MS. The molecular mass of each oligomer in the (13)C-labelled sample was higher than the mass of the natural sample by 1 m/z unit per sugar moiety. The results of ESI-MS on the HPLC fractions of neokestose and 1-kestose showed that these oligomers (DP=3) were biosynthesized from exogenous glucose added to the medium. We conclude that not only exogenous sucrose but glucose can induce Fructan biosynthesis; fructans of both inulin type and inulin neoseries are also biosynthesized from glucose accumulated in asparagus tissues; the glucose molecules (or its metabolic products) were incorporated into Fructans as structural monomers.
Collapse
Affiliation(s)
- Takashi Suzuki
- Research Faculty and Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan.
| | | | | | | | | |
Collapse
|
17
|
Xue GP, Drenth J, Glassop D, Kooiker M, McIntyre CL. Dissecting the molecular basis of the contribution of source strength to high fructan accumulation in wheat. PLANT MOLECULAR BIOLOGY 2013; 81:71-92. [PMID: 23114999 DOI: 10.1007/s11103-012-9983-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 10/24/2012] [Indexed: 05/07/2023]
Abstract
Fructans represent the major component of water soluble carbohydrates (WSCs) in the maturing stem of temperate cereals and are an important temporary carbon reserve for grain filling. To investigate the importance of source carbon availability in fructan accumulation and its molecular basis, we performed comparative analyses of WSC components and the expression profiles of genes involved in major carbohydrate metabolism and photosynthesis in the flag leaves of recombinant inbred lines from wheat cultivars Seri M82 and Babax (SB lines). High sucrose levels in the mature flag leaf (source organ) were found to be positively associated with WSC and fructan concentrations in both the leaf and stem of SB lines in several field trials. Analysis of Affymetrix expression array data revealed that high leaf sucrose lines grown in abiotic-stress-prone environments had high expression levels of a number of genes in the leaf involved in the sucrose synthetic pathway and photosynthesis, such as Calvin cycle genes, antioxidant genes involved in chloroplast H(2)O(2) removal and genes involved in energy dissipation. The expression of the majority of genes involved in fructan and starch synthetic pathways were positively correlated with sucrose levels in the leaves of SB lines. The high level of leaf fructans in high leaf sucrose lines is likely attributed to the elevated expression levels of fructan synthetic enzymes, as the mRNA levels of three fructosyltransferase families were consistently correlated with leaf sucrose levels among SB lines. These data suggest that high source strength is one of the important genetic factors determining high levels of WSC in wheat.
Collapse
Affiliation(s)
- Gang-Ping Xue
- CSIRO Plant Industry, St Lucia, QLD 4067, Australia.
| | | | | | | | | |
Collapse
|
18
|
Bolouri Moghaddam MR, Van den Ende W. Sugars and plant innate immunity. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3989-98. [PMID: 22553288 DOI: 10.1093/jxb/ers129] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sugars are involved in many metabolic and signalling pathways in plants. Sugar signals may also contribute to immune responses against pathogens and probably function as priming molecules leading to pathogen-associated molecular patterns (PAMP)-triggered immunity and effector-triggered immunity in plants. These putative roles also depend greatly on coordinated relationships with hormones and the light status in an intricate network. Although evidence in favour of sugar-mediated plant immunity is accumulating, more in-depth fundamental research is required to unravel the sugar signalling pathways involved. This might pave the way for the use of biodegradable sugar-(like) compounds to counteract plant diseases as cheaper and safer alternatives for toxic agrochemicals.
Collapse
|
19
|
Xue GP, Kooiker M, Drenth J, McIntyre CL. TaMYB13 is a transcriptional activator of fructosyltransferase genes involved in β-2,6-linked fructan synthesis in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:857-70. [PMID: 21838777 DOI: 10.1111/j.1365-313x.2011.04737.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fructans are soluble fructosyl-oligosaccharides deposited in many cool-season grass species as a carbon reserve; they are synthesised by fructosyltransferases. In wheat and barley fructans can accumulate in mature stems at a very high level and serve as an important carbon source for grain filling. Fructan synthesis in temperate cereals is regulated by sucrose level and developmental signals, and functions as a metabolic adjustment for carbon balance between carbon supply and sink demand. In this study the expression levels of a highly homologous group of Triticum aestivumMYB genes (TaMYB13-1, TaMYB13-2 and TaMYB13-3) were found to be positively correlated with the mRNA levels of sucrose:sucrose 1-fructosyltransferase (1-SST) and sucrose:fructan 6-fructosyltransferase (6-SFT) in wheat stems among recombinant inbred lines with a wide range of fructan concentrations through Affymetrix array expression analysis. This expression correction extended to expression profiles during stem development. TaMYB13 contains an R2R3-type MYB domain. In vitro random DNA-binding site selection followed by base substitution mutagenesis revealed that TaMYB13 bound to a (A/G/T)TT(A/T/C)GGT core sequence, which was present in the promoters of wheat Ta1-SST and Ta6-SFT genes as well as a barley Hv6-SFT gene. Transactivation analysis showed that TaMYB13 was a transcriptional activator and could markedly enhance the expression of 1-SST and 6-SFT promoter-driven reporter genes in wheat. Elimination of TaMYB13-binding sites in Ta6-SFT and Ta1-SST promoters markedly reduced TaMYB13-mediated reporter gene transactivation. These data suggest that TaMYB13 and its orthologues are positive regulators for controlling the expression of major fructosyltransferases involved in the fructan synthetic pathway in temperate cereals.
Collapse
Affiliation(s)
- Gang-Ping Xue
- CSIRO Plant Industry, 306 Carmody Road, St Lucia, Qld 4067, Australia.
| | | | | | | |
Collapse
|
20
|
Waxy endosperm accompanies increased fat and saccharide contents in bread wheat (Triticum aestivum L.) grain. J Cereal Sci 2011. [DOI: 10.1016/j.jcs.2010.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Janská A, Marsík P, Zelenková S, Ovesná J. Cold stress and acclimation - what is important for metabolic adjustment? PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:395-405. [PMID: 20522175 DOI: 10.1111/j.1438-8677.2009.00299.x] [Citation(s) in RCA: 233] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants are unable to escape from the many abiotic and biotic factors that cause a departure from optimal conditions of growth and development. Low temperature represents one of the most harmful abiotic stresses affecting temperate plants. These species have adapted to seasonal variations in temperature by adjusting their metabolism during autumn, increasing their content of a range of cryo-protective compounds to maximise their cold tolerance. Some of these molecules are synthesised de novo. The down-regulation of some gene products represents an additional important regulatory mechanism. Ways in which plants cope with cold stress are described, and the current state of the art with respect to both the model plant Arabidopsis thaliana and crop plants in the area of gene expression and metabolic pathways during low-temperature stress are discussed.
Collapse
Affiliation(s)
- A Janská
- Crop Research Institute, v.v.i., Prague, Czech Republic.
| | | | | | | |
Collapse
|
22
|
Ritsema T, Brodmann D, Diks SH, Bos CL, Nagaraj V, Pieterse CM, Boller T, Wiemken A, Peppelenbosch MP. Are small GTPases signal hubs in sugar-mediated induction of fructan biosynthesis? PLoS One 2009; 4:e6605. [PMID: 19672308 PMCID: PMC2720452 DOI: 10.1371/journal.pone.0006605] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 06/20/2009] [Indexed: 11/19/2022] Open
Abstract
External sugar initiates biosynthesis of the reserve carbohydrate fructan, but the molecular processes mediating this response remain obscure. Previously it was shown that a phosphatase and a general kinase inhibitor hamper fructan accumulation. We use various phosphorylation inhibitors both in barley and in Arabidopsis and show that the expression of fructan biosynthetic genes is dependent on PP2A and different kinases such as Tyr-kinases and PI3-kinases. To further characterize the phosphorylation events involved, comprehensive analysis of kinase activities in the cell was performed using a PepChip, an array of >1000 kinase consensus substrate peptide substrates spotted on a chip. Comparison of kinase activities in sugar-stimulated and mock(sorbitol)-treated Arabidopsis demonstrates the altered phosphorylation of many consensus substrates and documents the differences in plant kinase activity upon sucrose feeding. The different phosphorylation profiles obtained are consistent with sugar-mediated alterations in Tyr phosphorylation, cell cycling, and phosphoinositide signaling, and indicate cytoskeletal rearrangements. The results lead us to infer a central role for small GTPases in sugar signaling.
Collapse
Affiliation(s)
- Tita Ritsema
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
- Plant-Microbe interactions, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - David Brodmann
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Sander H. Diks
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Carina L. Bos
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vinay Nagaraj
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Corné M.J. Pieterse
- Plant-Microbe interactions, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Thomas Boller
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Andres Wiemken
- Botanisches Institut der Universität Basel, Zurich Basel Plant Science Center, Basel, Switzerland
| | - Maikel P. Peppelenbosch
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
23
|
Yaguchi S, Hang TTM, Tsukazaki H, Hoa VQ, Masuzaki SI, Wako T, Masamura N, Onodera S, Shiomi N, Yamauchi N, Shigyo M. Molecular and biochemical identification of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of bunching onion (A. fistulosum L.). Genes Genet Syst 2009; 84:43-55. [PMID: 19420800 DOI: 10.1266/ggs.84.43] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To develop the bunching onion (Allium fistulosum L.; genomes, FF) chromosome-specific genetic markers for identifying extra chromosomes, eight shallot (A. cepa L. Aggregatum group; genomes, AA)--A. fistulosum monosomic addition plants (AA+nF) and 62 shallot--A. fistulosum single-alien deletion plants (AAF-nF) were analyzed by 23 different chromosome-specific genetic markers of shallot. The eight monosomic addition plants consisted of one AA+2F, two AA+6F, and five AA+8F. Of the 62 single-alien deletion plants, 60 could be identified as six different single-alien deletion lines (AAF-1F, -3F, -4F, -6F, -7F, and -8F) out of the eight possible types. Several single-alien deletion lines were classified on the basis of leaf and bulb characteristics. AAF-8F had the largest number of expanded leaves of five deletion plants. AAF-7F grew most vigorously, as expressed by its long leaf blade and biggest bulb size. AAF-4F had very small bulbs. AAF-7F and AAF-8F had different bulbs from those of shallot as well as other types of single-alien deletion lines in skin and outer scale color. Regarding the sugar content of the bulb tissues, the single-alien deletion lines showed higher fructan content than shallot. Moreover, shallot could not produce fructan with degree of polymerization (DP) 12 or higher, although the single-alien deletion lines showed DP 20 or higher. The content of S-alk(en)yl-L-cysteine sulfoxide (ACSO) in the single-alien deletion lines was significantly lower than that in shallot. These results indicated that chromosomes from A. fistulosum might carry anonymous factors to increase the highly polymerized fructan production and inhibit the synthesis of ACSO in shallot bulbs. Accordingly, alien chromosomes from A. fistulosum in shallot would contribute to modify the quality of shallot bulbs.
Collapse
Affiliation(s)
- Shigenori Yaguchi
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kusch U, Greiner S, Steininger H, Meyer AD, Corbière-Divialle H, Harms K, Rausch T. Dissecting the regulation of fructan metabolism in chicory (Cichorium intybus) hairy roots. THE NEW PHYTOLOGIST 2009; 184:127-140. [PMID: 19563442 DOI: 10.1111/j.1469-8137.2009.02924.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fifteen per cent of higher plants accumulate fructans. Plant development, nutritional status and stress exposure all affect fructan metabolism, and while fructan biochemistry is well understood, knowledge of its regulation has remained fragmentary. Here, we have explored chicory (Cichorium intybus) hairy root cultures (HRCs) to study the regulation of fructan metabolism in sink tissues in response to environmental cues. In standard medium (SM), HRCs did not accumulate inulin. However, upon transfer to high-carbon (C)/low-nitrogen (N) medium, expression of sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan:fructan 1-fructosyltransferase (1-FFT) was strongly induced and inulin accumulated. Upon return to SM, inulin was degraded, together with a coordinate decline of 1-SST and 1-FFT expression. In HRCs, cold-induced expression of fructan 1-exohydrolases (1-FEH I and IIa) was similar to cold induction in taproots, even in the absence of accumulated inulin. For high-C/low-N induction of 1-SST and 1-FFT, and cold induction of 1-FEH I and IIa, the signaling pathways were addressed. While 1-SST and 1-FFT induction was similarly prevented by inhibitors of Ca(2+) signaling, protein kinases and phosphatases, cold induction of 1-FEH I and IIa revealed distinct signaling pathways. In summary, this study has established chicory HRCs as a convenient experimental system with which to study the regulation of fructan active enzyme (FAZY) expression in heterotrophic cells.
Collapse
Affiliation(s)
- Ute Kusch
- HIP, Heidelberg University, INF 360, Heidelberg D-69120, Germany
| | - Steffen Greiner
- HIP, Heidelberg University, INF 360, Heidelberg D-69120, Germany
| | - Heike Steininger
- HIP, Heidelberg University, INF 360, Heidelberg D-69120, Germany
| | | | | | - Karsten Harms
- ZAFES, Südzucker AG Mannheim-Ochsenfurt, Obrigheim D-67283, Germany
| | - Thomas Rausch
- HIP, Heidelberg University, INF 360, Heidelberg D-69120, Germany
| |
Collapse
|
25
|
Tamura KI, Kawakami A, Sanada Y, Tase K, Komatsu T, Yoshida M. Cloning and functional analysis of a fructosyltransferase cDNA for synthesis of highly polymerized levans in timothy (Phleum pratense L.). JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:893-905. [PMID: 19269996 PMCID: PMC2652063 DOI: 10.1093/jxb/ern337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Variation in the structures of plant fructans and their degree of polymerization (DP) can be explained as the result of diverse combinations of fructosyltransferases (FTs) with different properties. Although FT genes have been isolated in a range of plant species, sucrose:fructan 6-fructosyltransferase (6-SFT) cDNAs have only been functionally characterized in a few species such as wheat. A novel FT cDNA possessing 6-SFT activity has been identified and characterized from the temperate forage grass, timothy (Phleum pratense L.). The cDNA of an FT homolog, PpFT1, was isolated from cold-acclimated timothy. A recombinant PpFT1 protein expressed in Pichia pastoris showed 6-SFT/sucrose:sucrose 1-fructosyltransferase (1-SST) activity and produced linear beta(2,6)-linked levans from sucrose with higher DPs than present in graminans formed in vitro by wheat 6-SFT (Wft1). PpFT1 and Wft1 showed remarkably different acceptor substrate specificities: PpFT1 had high affinity for 6-kestotriose to produce levans and low affinity for 1-kestotriose, whereas Wft1 preferentially used 1-kestotriose as an acceptor. The affinity of the PpFT1 recombinant enzyme for sucrose as a substrate was lower than that of the Wft1 recombinant enzyme. It is also confirmed that timothy seedlings had elevated levels of PpFT1 transcripts during the accumulation of fructans under high sucrose and cold conditions. Our results suggest that PpFT1 is a novel cDNA with unique enzymatic properties that differ from those of previously cloned plant 6-SFTs, and is involved in the synthesis of highly polymerized levans in timothy.
Collapse
Affiliation(s)
- Ken-ichi Tamura
- National Agricultural Research Center for Hokkaido Region, Hitsujigaoka 1, Toyohira, Sapporo 062-8555, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Lee SK, Jeon JS, Börnke F, Voll L, Cho JI, Goh CH, Jeong SW, Park YI, Kim SJ, Choi SB, Miyao A, Hirochika H, An G, Cho MH, Bhoo SH, Sonnewald U, Hahn TR. Loss of cytosolic fructose-1,6-bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice (Oryza sativa). PLANT, CELL & ENVIRONMENT 2008; 31:1851-63. [PMID: 18811733 DOI: 10.1111/j.1365-3040.2008.01890.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
During photosynthesis, triose-phosphates (trioseP) exported from the chloroplast to the cytosol are converted to sucrose via cytosolic fructose-1,6-bisphosphatase (cFBPase). Expression analysis in rice suggests that OscFBP1 plays a major role in the cytosolic conversion of trioseP to sucrose in leaves during the day. The isolated OscFBP1 mutants exhibited markedly decreased photosynthetic rates and severe growth retardation with reduced chlorophyll content, which results in plant death. Analysis of primary carbon metabolites revealed both significantly reduced levels of sucrose, glucose, fructose and starch in leaves of these mutants, and a high accumulation of sucrose to starch in leaves of rice plants. In the oscfbp1 mutants, products of glycolysis and the TCA cycle were significantly increased. A partitioning experiment of (14)C-labelled photoassimilates revealed altered carbon distributions including a slight increase in the insoluble fraction representing transitory starch, a significant decrease in the neutral fraction corresponding to soluble sugars and a high accumulation of phosphorylated intermediates and carboxylic acid fractions in the oscfbp1 mutants. These results indicate that the impaired synthesis of sucrose in rice cannot be sufficiently compensated for by the transitory starch-mediated pathways that have been found to facilitate plant growth in the equivalent Arabidopsis mutants.
Collapse
Affiliation(s)
- Sang-Kyu Lee
- Plant Metabolism Research Center & Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kusch U, Harms K, Rausch T, Greiner S. Inhibitors of plant invertases do not affect the structurally related enzymes of fructan metabolism. THE NEW PHYTOLOGIST 2008; 181:601-12. [PMID: 19037899 DOI: 10.1111/j.1469-8137.2008.02688.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant fructan active enzymes (FAZYs), including the enzymes involved in inulin metabolism, namely sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100) and fructan 1-exohydrolase (1-FEH; EC 3.2.1.153), are evolutionarily related to acid invertases (AIs), that is, plant cell wall invertase (CWI) and vacuolar invertase (VI). Acid invertases are post-translationally controlled by proteinaceous inhibitors. Whether FAZYs are subject to similar controls is not known. To probe their possible interactions with invertase inhibitors, we transiently expressed chicory (Cichorium intybus) FAZYs, as well as several previously characterized invertase inhibitors from nonfructan species, and the C. intybus cell wall/vacuolar inhibitor of fructosidase (CiC/VIF), a putative invertase inhibitor of a fructan-accumulating plant, in leaves of Nicotiana benthamiana. Leaf extracts containing recombinant, enzymatically active FAZYs were used to explore the interaction with invertase inhibitors. Neither heterologous inhibitors nor CiC/VIF affected FAZY activities. CiC/VIF was confirmed as an AI inhibitor with a stronger effect on CWI than on VI. Its expression in planta was developmentally regulated (high in taproots, and undetectable in leaves and flowers). In agreement with its target specificities, CiC/VIF was associated with the cell wall. It is concluded that subtle structural differences between AIs and FAZYs result in pronounced selectivity of inhibitor action.
Collapse
Affiliation(s)
- Ute Kusch
- HIP, Heidelberg University, INF 360, D-69120-Heidelberg, Germany
| | | | | | | |
Collapse
|
28
|
Iordachescu M, Imai R. Trehalose biosynthesis in response to abiotic stresses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1223-9. [PMID: 19017109 DOI: 10.1111/j.1744-7909.2008.00736.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Trehalose is a non-reducing disaccharide that is present in diverse organisms ranging from bacteria and fungi to invertebrates, in which it serves as an energy source, osmolyte or protein/membrane protectant. The occurrence of trehalose and trehalose biosynthesis pathway in plants has been discovered recently. Multiple studies have revealed regulatory roles of trehalose-6-phosphate, a precursor of trehalose, in sugar metabolism, growth and development in plants. Trehalose levels are generally quite low in plants but may alter in response to environmental stresses. Transgenic plants overexpressing microbial trehalose biosynthesis genes have been shown to contain increased levels of trehalose and display drought, salt and cold tolerance. In-silico expression profiling of all Arabidopsis trehalose-6-phosphate synthases (TPSs) and trehalose-6-phosphate phosphatases (TPPs) revealed that certain classes of TPS and TPP genes are differentially regulated in response to a variety of abiotic stresses. These studies point to the importance of trehalose biosynthesis in stress responses.
Collapse
Affiliation(s)
- Mihaela Iordachescu
- Crop Cold Tolerance Research Team, National Agricultural Research Center for Hokkaido Region, National Agriculture and Food Research Organization, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| | | |
Collapse
|
29
|
Xue GP, McIntyre CL, Jenkins CLD, Glassop D, van Herwaarden AF, Shorter R. Molecular dissection of variation in carbohydrate metabolism related to water-soluble carbohydrate accumulation in stems of wheat. PLANT PHYSIOLOGY 2008; 146:441-54. [PMID: 18083795 PMCID: PMC2245852 DOI: 10.1104/pp.107.113076] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2007] [Accepted: 12/08/2007] [Indexed: 05/17/2023]
Abstract
Water-soluble carbohydrates (WSCs; composed of mainly fructans, sucrose [Suc], glucose [Glc], and fructose) deposited in wheat (Triticum aestivum) stems are important carbon sources for grain filling. Variation in stem WSC concentrations among wheat genotypes is one of the genetic factors influencing grain weight and yield under water-limited environments. Here, we describe the molecular dissection of carbohydrate metabolism in stems, at the WSC accumulation phase, of recombinant inbred Seri/Babax lines of wheat differing in stem WSC concentrations. Affymetrix GeneChip analysis of carbohydrate metabolic enzymes revealed that the mRNA levels of two fructan synthetic enzyme families (Suc:Suc 1-fructosyltransferase and Suc:fructan 6-fructosyltransferase) in the stem were positively correlated with stem WSC and fructan concentrations, whereas the mRNA levels of enzyme families involved in Suc hydrolysis (Suc synthase and soluble acid invertase) were inversely correlated with WSC concentrations. Differential regulation of the mRNA levels of these Suc hydrolytic enzymes in Seri/Babax lines resulted in genotypic differences in these enzyme activities. Down-regulation of Suc synthase and soluble acid invertase in high WSC lines was accompanied by significant decreases in the mRNA levels of enzyme families related to sugar catabolic pathways (fructokinase and mitochondrion pyruvate dehydrogenase complex) and enzyme families involved in diverting UDP-Glc to cell wall synthesis (UDP-Glc 6-dehydrogenase, UDP-glucuronate decarboxylase, and cellulose synthase), resulting in a reduction in cell wall polysaccharide contents (mainly hemicellulose) in the stem of high WSC lines. These data suggest that differential carbon partitioning in the wheat stem is one mechanism that contributes to genotypic variation in WSC accumulation.
Collapse
Affiliation(s)
- Gang-Ping Xue
- CSIRO Plant Industry, St Lucia, Brisbane, Queensland 4067, Australia.
| | | | | | | | | | | |
Collapse
|
30
|
Ruuska SA, Lewis DC, Kennedy G, Furbank RT, Jenkins CLD, Tabe LM. Large scale transcriptome analysis of the effects of nitrogen nutrition on accumulation of stem carbohydrate reserves in reproductive stage wheat. PLANT MOLECULAR BIOLOGY 2008; 66:15-32. [PMID: 17934784 DOI: 10.1007/s11103-007-9249-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 09/28/2007] [Indexed: 05/04/2023]
Abstract
We investigated the molecular basis of the long-term adaptation to nitrogen (N) limitation of wheat plants grown in a simulated crop canopy, with a focus on the stage when carbon (C) reserves are accumulated in stems for later remobilization to grain. A cDNA microarray representing approximately 36,000 unique sequences was used to compare gene expression in a number of above-ground organs at anthesis. Fructan accumulation in stems was accompanied by elevated transcripts for a suite of fructosyltransferases (FTs) and for a fructan 6-exohydrolase (6-FEH) in the low N compared to high N stems. Clustering analysis identified a grouping that included several FTs and a number of genes thought to be involved in regulation of storage C metabolism or senescence in other systems. Transcripts for three FTs and for 6-FEH increased, while transcripts for 1-FEH decreased, in sucrose-fed wheat stems compared to controls. The opposite trends were seen for these transcripts in wheat stems fed ABA. Of the putative regulators, only transcripts for the WPK4 kinase increased in response to sucrose, suggesting a role for this kinase in C storage metabolism in the reproductive wheat stems grown in low N. This work represents the first large-scale transcriptome study of responses to the most common nutrient limitation in one of the world's most economically important crops.
Collapse
Affiliation(s)
- Sari A Ruuska
- Graingene, CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Lasseur B, Lothier J, Morvan-Bertrand A, Escobar-Guttiérez A, Humphreys MO, Prud'homme MP. Impact of defoliation frequency on regrowth and carbohydrate metabolism in contrasting varieties of Lolium perenne. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:418-430. [PMID: 32689369 DOI: 10.1071/fp06286] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 03/01/2007] [Indexed: 06/11/2023]
Abstract
The aims of the study were to gain a better understanding of fructan metabolism regulation during regrowth of Lolium perenne, and to evaluate the role of fructans of remaining tissues as well as carbon assimilation of new leaf tissues in refoliation. Two varieties that contrast for carbohydrate metabolism, Aurora and Perma, were subject to severe and frequent or infrequent defoliations before regrowth. Aurora, which had a greater content of fructans in leaf sheaths than Perma before defoliation, produced more leaf biomass within the 4 days following the first cut. At the end of the regrowth period, Aurora produced more leaf biomass than Perma. Photosynthetic parameters, which were barely affected by defoliation frequency, could not explain these differences. Fructan synthesising activities [sucrose:sucrose 1-fructosyltransferase (1-SST) and fructan:fructan 6G-fructosyltransferase (6G-FFT)], declined after defoliation. In elongating leaf bases, corresponding transcript levels did not decline concomitantly, suggesting a post-transcriptional regulation of expression, while in leaf sheaths the gene expression pattern mostly followed the time-course of the enzyme activities. Regulation of Lp1-SST and Lp6G-FFT gene expression depends, therefore, on the sink-source status of the tissue after defoliation. During the phase of reserve accumulation, fructosyltransferase activities together with corresponding transcripts increased more in frequently defoliated plants than in infrequently defoliated plants.
Collapse
Affiliation(s)
- Bertrand Lasseur
- UMR INRA-UCN 950 EVA Ecophysiologie Végétale, Agronomie & Nutritions NCS, Université de Caen, Esplanade de la Paix, F-14032 Caen cedex, France
| | - Jérémy Lothier
- UMR INRA-UCN 950 EVA Ecophysiologie Végétale, Agronomie & Nutritions NCS, Université de Caen, Esplanade de la Paix, F-14032 Caen cedex, France
| | - Annette Morvan-Bertrand
- UMR INRA-UCN 950 EVA Ecophysiologie Végétale, Agronomie & Nutritions NCS, Université de Caen, Esplanade de la Paix, F-14032 Caen cedex, France
| | | | - Mervyn O Humphreys
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth SY23 3EB, UK
| | - Marie-Pascale Prud'homme
- UMR INRA-UCN 950 EVA Ecophysiologie Végétale, Agronomie & Nutritions NCS, Université de Caen, Esplanade de la Paix, F-14032 Caen cedex, France
| |
Collapse
|
32
|
Martínez-Noël G, Nagaraj VJ, Caló G, Wiemken A, Pontis HG. Sucrose regulated expression of a Ca2+-dependent protein kinase (TaCDPK1) gene in excised leaves of wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:410-9. [PMID: 17482472 DOI: 10.1016/j.plaphy.2007.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 03/05/2007] [Indexed: 05/15/2023]
Abstract
Sucrose (Suc) can influence the expression of a large number of genes and thereby regulates many metabolic and developmental processes. However, the Suc sensing and the components of the ensuing signaling transduction pathway leading to the regulation of gene expression are not fully understood. We have shown that protein kinases and phosphatases are involved in the Suc induced expression of fructosyltransferase (FT) genes and fructan accumulation by an hexokinase independent pathway in wheat (Triticum aestivum). In the present study, using an RT-PCR based strategy, we have cloned a calcium-dependent protein kinase (TaCDPK1) cDNA that is upregulated during Suc treatment of excised wheat leaves. The deduced amino-acid sequence of CDPK1 has high sequence similarity (>70%) to known CDPKs from both monocots and dicots. Based on sequence homology, TaCDPK1 sequence shows a variable domain preceding a catalytic domain, an autoinhibitory function domain, and a C-terminal calmodulin-domain containing 4 EF-hand calcium-binding motifs, along with a N-myristoylation motif in the N-terminal variable domain. The recombinant Escherichia coli expressed TaCDPK1 was able to phosphorylate histone III-S in a calcium dependent manner in in vitro assays. The TaCDPK1 gene expression, as determined by quantitative RT-PCR, is induced by Suc and this effect is repressed by the inhibitors of the putative components of the Suc signal transduction pathway (calcium, Ser/Thr protein kinases and protein phosphatases). We propose that TaCDPK1 is involved in the Suc induced signaling pathway in wheat leaves.
Collapse
Affiliation(s)
- Giselle Martínez-Noël
- Centro de Investigaciones Biológicas, Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, 7600 Mar del Plata, Argentina.
| | | | | | | | | |
Collapse
|
33
|
Martínez-Noël G, Tognetti J, Nagaraj V, Wiemken A, Pontis H. Calcium is essential for fructan synthesis induction mediated by sucrose in wheat. PLANTA 2006; 225:183-91. [PMID: 16835761 DOI: 10.1007/s00425-006-0339-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 06/02/2006] [Indexed: 05/04/2023]
Abstract
The role of Ca(2+) in the induction of enzymes involved in fructan synthesis (FSS) mediated by sucrose was studied in wheat (Triticum aestivum). Increase of FSS enzyme activity and induction of the expression of their coding genes by sucrose were inhibited in leaf blades treated with chelating agents (EDTA, EGTA and BAPTA). Ca(2+) channel blockers (lanthanum chloride and ruthenium red) also inhibited the FSS response to sucrose, suggesting the participation of Ca(2+) from both extra- and intra- cellular stores. Sucrose induced a rapid Ca(2+) influx into the cytosol in wheat leaf and root tissues, shown with the Ca(2+ )sensitive fluorescent probe Fluo-3/AM ester. Our results support the hypothesis that calcium is a component of the sucrose signaling pathway that leads to the induction of fructan synthesis.
Collapse
Affiliation(s)
- Giselle Martínez-Noël
- Centro de Investigaciones Biológicas, Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, 7600 Mar del Plata, Argentina.
| | | | | | | | | |
Collapse
|
34
|
Harthill JE, Meek SEM, Morrice N, Peggie MW, Borch J, Wong BHC, Mackintosh C. Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:211-23. [PMID: 16771775 DOI: 10.1111/j.1365-313x.2006.02780.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Trehalose-6-phosphate is a 'sugar signal' that regulates plant metabolism and development. The Arabidopsis genome encodes trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphatase (TPP) enzymes. It also encodes class II proteins (TPS isoforms 5-11) that contain both TPS-like and TPP-like domains, although whether these have enzymatic activity is unknown. In this paper, we show that TPS5, 6 and 7 are phosphoproteins that bind to 14-3-3 proteins, by using 14-3-3 affinity chromatography, 14-3-3 overlay assays, and by co-immunoprecipitating TPS5 and 14-3-3 isoforms from cell extracts. GST-TPS5 bound to 14-3-3s after in vitro phosphorylation at Ser22 and Thr49 by either mammalian AMP-activated protein kinase (AMPK) or partially purified plant Snf1-related protein kinase 1 (SnRK1s). Dephosphorylation of TPS5, or mutation of either Ser22 or Thr49, abolished binding to 14-3-3s. Ser22 and Thr49 are both conserved in TPS5, 7, 9 and 10. When GST-TPS5 was expressed in human HEK293 cells, Thr49 was phosphorylated in response to 2-deoxyglucose or phenformin, stimuli that activate the AMPK via the upstream kinase LKB1. 2-deoxyglucose stimulated Thr49 phosphorylation of endogenous TPS5 in Arabidopsis cells, whereas phenformin did not. Moreover, extractable SnRK1 activity was increased in Arabidopsis cells in response to 2-deoxyglucose. The plant kinase was inactivated by dephosphorylation and reactivated by phosphorylation with human LKB1, indicating that elements of the SnRK1/AMPK pathway are conserved in Arabidopsis and human cells. We hypothesize that coordinated phosphorylation and 14-3-3 binding of nitrate reductase (NR), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (F2KP) and class II TPS isoforms mediate responses to signals that activate SnRK1.
Collapse
Affiliation(s)
- Jean E Harthill
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Kosmas SA, Argyrokastritis A, Loukas MG, Eliopoulos E, Tsakas S, Kaltsikes PJ. Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.). PLANTA 2006; 223:329-39. [PMID: 16086175 DOI: 10.1007/s00425-005-0071-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 06/29/2005] [Indexed: 05/03/2023]
Abstract
Due to the important role of cotton drought-tolerant varieties and the reported involvement in this trait of trehalose-6-phosphate-synthase, the respective gene (TPS) was isolated and characterized from cultivated cotton, Gossypium hirsutum (ZETA 2 cultivar), using a chromosome-walking technique. TPS has three exons comprising the coding region. Southern blot analysis indicated that the Gossypium genomes (A and D) contain a single copy of TPS per genome. In addition, the expression of this gene was studied in different plant tissues. Plants of the Australian cotton variety Siokra L23, known for its drought tolerance, were subjected to drought stress (using PEG 6,000 solution, for 4 h during the dark period of the day and for four consecutive days); leaves, stems and roots were collected after the end of the stress period. Total extracted RNA was examined for the presence of transcripts, in the above-mentioned tissues of stressed and well-watered plants, by reverse transcription-polymerase chain reaction (RT-PCR). The expression levels, determined semi-quantitatively, indicated that the gene was expressed in all plant tissues under both water availability conditions. However, increased expression levels of TPS were observed mainly in stressed leaves and roots compared to those of the well-watered control. This finding is in agreement with the fact that TPS participates in trehalose biosynthesis, known for its participation in stress signal transduction in higher plants.
Collapse
Affiliation(s)
- Sotirios A Kosmas
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos, Athens 11855, Greece.
| | | | | | | | | | | |
Collapse
|
36
|
Chalmers J, Lidgett A, Cummings N, Cao Y, Forster J, Spangenberg G. Molecular genetics of fructan metabolism in perennial ryegrass. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:459-74. [PMID: 17173633 DOI: 10.1111/j.1467-7652.2005.00148.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Fructans are the main storage carbohydrates of temperate grasses, sustaining regrowth immediately after defoliation, as well as contributing to the nutritive value of feed. Fructan metabolism is based on the substrate sucrose and involves fructosyltransferases (FTs) for biosynthesis and fructan exohydrolases (FEHs) for degradation. Sucrose is also utilized by invertases (INVs), which hydrolyse it into its constituent monosaccharides for use in metabolism. The isolation, molecular characterization, functional analysis, and phylogenetic relationships of genes encoding FTs, FEHs, and INVs from temperate grasses are reviewed, with an emphasis on perennial ryegrass (Lolium perenne L.). The roles these enzymes play in fructan accumulation and remobilization, and future biotechnological applications in molecular plant breeding are discussed.
Collapse
Affiliation(s)
- Jaye Chalmers
- Plant Biotechnology Centre, Primary Industries Research Victoria, Department of Primary Industries and Molecular Plant Breeding CRC, La Trobe University, Victoria 3086, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Habibur Rahman Pramanik M, Imai R. Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. PLANT MOLECULAR BIOLOGY 2005; 58:751-762. [PMID: 16240171 DOI: 10.1007/s11103-005-7404-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 05/17/2005] [Indexed: 05/03/2023]
Abstract
Trehalose serves as a stress protectant and/or reserve carbohydrate in a variety of organisms including bacteria, yeast, and invertebrates. Recently, trace amounts of trehalose have been detected in higher plants, although the function of trehalose in plants remains unknown. A cDNA clone (OsTPP1) encoding a putative trehalose-6-phosphate phosphatase (TPP) for trehalose biosynthesis was isolated from rice. Functionality of the clone was demonstrated by complementation of a yeast mutant and enzymatic activity of the recombinant protein. Northern blots revealed that the OsTPP1 transcript levels were fairly low or under detectable limits in most of the tissues under ambient conditions but were highly induced within 1-2 h of chilling stress (12 degrees C) in both root and shoot tissues of seedlings. This induction was transient and disappeared after 6 h of the chilling stress. Transient expression of OsTPP1 was also induced under severe chilling stress (4 degrees C) as well as salinity and drought stresses at ambient temperatures. Application of exogenous ABA (50 microM) resulted in a transient increase of OsTPP1 expression within 20 min of the treatment, thereby suggesting involvement of ABA in OsTPP1 gene regulation. Measurements of total cellular TPP activity and trehalose content in roots indicated that both TPP activity and trehalose levels were transiently increased after chilling (12 degrees C) stress. Collectively, the data indicate that transient activation of trehalose biosynthesis is involved in early chilling stress response in rice. Possible functions of trehalose in the early stages of chilling stress response are discussed.
Collapse
Affiliation(s)
- M Habibur Rahman Pramanik
- Winter Stress Laboratory, National Agricultural Research Center for Hokkaido Region, National Agricultural and Bio-oriented Research Organization, Hitsujigaoka 1, 062-8555, Toyohira-ku, Sapporo, Japan
- Department of Crop Botany, Bangladesh Agricultural University, Mymensing, Bangladesh
| | - Ryozo Imai
- Winter Stress Laboratory, National Agricultural Research Center for Hokkaido Region, National Agricultural and Bio-oriented Research Organization, Hitsujigaoka 1, 062-8555, Toyohira-ku, Sapporo, Japan.
| |
Collapse
|
38
|
Wiese A, Elzinga N, Wobbes B, Smeekens S. Sucrose-induced translational repression of plant bZIP-type transcription factors. Biochem Soc Trans 2005; 33:272-5. [PMID: 15667324 DOI: 10.1042/bst0330272] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sugars as signalling molecules exert control on the transcription of many plant genes. Sugar signals also alter mRNA and protein stability. Increased sucrose concentrations specifically repress translation of the S-class basic region leucine zipper (bZIP) type transcription factor AtbZIP11/ATB2. This sucrose-induced repression of translation (SIRT) depends on translation of a highly conserved upstream open reading frame (uORF) in the 5' UTR of the gene. This conserved uORF is exclusively encoded in 5' UTRs of several plant S-class bZIP transcription factors. Arabidopsis homologues of ATB2/AtbZIP11, which harbour the conserved uORF, also show SIRT. Therefore, SIRT emerges as a general sucrose translational control mechanism of a group of transcription factors. SIRT might be part of a sucrose-specific signalling pathway, controlling expression of plant bZIP transcription factor genes.
Collapse
Affiliation(s)
- A Wiese
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
39
|
Astua-Monge G, Freitas-Astua J, Bacocina G, Roncoletta J, Carvalho SA, Machado MA. Expression profiling of virulence and pathogenicity genes of Xanthomonas axonopodis pv. citri. J Bacteriol 2005; 187:1201-5. [PMID: 15659697 PMCID: PMC545697 DOI: 10.1128/jb.187.3.1201-1205.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA macroarrays of 279 genes of Xanthomonas axonopodis pv. citri potentially associated with pathogenicity and virulence were used to compare the transcriptional alterations of this bacterium in response to two synthetic media. Data analysis indicated that 31 genes were up-regulated by synthetic medium XVM2, while only 7 genes were repressed. The results suggest that XVM2 could be used as an in vitro system to identify candidate genes involved in pathogenesis of X. axonopodis pv. citri.
Collapse
Affiliation(s)
- Gustavo Astua-Monge
- Laboratório de Biotecnologia, Centro APTA Citros Sylvio Moreira, Cordeirópolis, São Paulo 13490-970, Brazil.
| | | | | | | | | | | |
Collapse
|
40
|
Morcuende R, Kostadinova S, Pérez P, Del Molino IMM, Martínez-Carrasco R. Nitrate is a negative signal for fructan synthesis, and the fructosyltransferase-inducing trehalose inhibits nitrogen and carbon assimilation in excised barley leaves. THE NEW PHYTOLOGIST 2004; 161:749-759. [PMID: 33873721 DOI: 10.1046/j.1469-8137.2004.00990.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
• Fructan biosynthesis in barley (Hordeum vulgare) has been shown to be upregulated by sugar signalling and downregulated by nitrogen. The relationship between these two regulations is investigated. • Excised third-leaves of barley were fed nitrate or glutamine under two light intensities. Other leaf blades were supplied in the dark for 24 h with nitrate and trehalose in the presence of validamycin A, a trehalase inhibitor. • In the light, nitrate, but not glutamine, decreased fructan contents and sucrose:fructan 6-fructosyltransferase protein without affecting the levels of sucrose and other carbohydrates. In darkened leaves, trehalose increased and nitrate decreased the fructan contents and total sucrose:fructosyltransferase activity without altering the concentration of sucrose. The effect on fructan contents of trehalose disappeared, whereas that of nitrate remained in subsequent incubations in water under light. Trehalose decreased and nitrate increased the light- and CO2 -saturated rate of photosynthesis without significantly affecting the initial Rubisco (ribulose-1,5-bisphosphate carboxylase oxygenase) activity. Trehalose feeding decreased the activation of nitrate reductase and amino acid levels, and blocked the positive effect of nitrate on the maximal activity of this enzyme. • The results indicate that nitrate, and not a downstream metabolite, is a negative signal for fructan synthesis, independent from the positive sugar signalling and overriding it. Trehalose signalling inhibits nitrogen and carbon assimilation, at the same time, inducing fructosyltransferase activity.
Collapse
Affiliation(s)
- R Morcuende
- Instituto de Recursos Naturales y Agrobiología de Salamanca, CSIC, Apartado 257, 37071 Salamanca, Spain
| | - S Kostadinova
- Instituto de Recursos Naturales y Agrobiología de Salamanca, CSIC, Apartado 257, 37071 Salamanca, Spain
- Present address: Department of Agrochemistry and Soil Science, Agricultural University, 12 Mendeleev Street, 4000 Plovdiv, Bulgaria
| | - P Pérez
- Instituto de Recursos Naturales y Agrobiología de Salamanca, CSIC, Apartado 257, 37071 Salamanca, Spain
| | - I M Martín Del Molino
- Instituto de Recursos Naturales y Agrobiología de Salamanca, CSIC, Apartado 257, 37071 Salamanca, Spain
| | - R Martínez-Carrasco
- Instituto de Recursos Naturales y Agrobiología de Salamanca, CSIC, Apartado 257, 37071 Salamanca, Spain
| |
Collapse
|
41
|
Nagaraj VJ, Altenbach D, Galati V, Lüscher M, Meyer AD, Boller T, Wiemken A. Distinct regulation of sucrose: sucrose-1-fructosyltransferase (1-SST) and sucrose: fructan-6-fructosyltransferase (6-SFT), the key enzymes of fructan synthesis in barley leaves: 1-SST as the pacemaker. THE NEW PHYTOLOGIST 2004; 161:735-748. [PMID: 33873712 DOI: 10.1111/j.1469-8137.2004.00995.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• Previously we have cloned sucrose: fructan-6-fructosyltransferase (6-SFT) from barley (Hordeum vulgare) and proposed that synthesis of fructans in grasses depends on the concerted action of two main enzymes: sucrose: sucrose-1-fructosyltransferase (1-SST), as in other fructan producing plants, and 6-SFT, found only in grasses. • Here we report the cloning of barley 1-SST, verifying the activity of the encoded protein by expression in Pichia pastoris. As expected, the barley 1-SST is homologous to invertases and fructosyltransferases, and in particular to barley 6-SFT. • The gene expression pattern of 1-SST and 6-SFT, along with the corresponding enzyme activities and fructan levels, were investigated in excised barley leaves subjected to a light-dark regime known to sequentially induce fructan accumulation and mobilization. The turnover of transcripts and enzyme activities of 1-SST and 6-SFT was compared, using appropriate inhibitors. • We found the 1-SST transcripts and enzymatic activity respond quickly, being subject to a rapid turnover. By contrast, the 6-SFT transcripts and enzymatic activity were found to be much more stable. The much higher responsiveness of 1-SST to regulatory processes, as compared with 6-SFT, clearly indicates that 1-SST plays the role of the pacemaker enzyme of fructan synthesis in barley leaves.
Collapse
Affiliation(s)
- Vinay J Nagaraj
- Zurich-Basel Plant Science Center, Botanisches Institut der Universität Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | - Denise Altenbach
- Zurich-Basel Plant Science Center, Botanisches Institut der Universität Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | - Virginie Galati
- Zurich-Basel Plant Science Center, Botanisches Institut der Universität Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | - Marcel Lüscher
- Zurich-Basel Plant Science Center, Botanisches Institut der Universität Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
- Present address: Marcel Lüscher, Hauptstrasse 74, CH-4450 Sissach, Switzerland
| | - Alain D Meyer
- Zurich-Basel Plant Science Center, Botanisches Institut der Universität Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
- Present address: Alain Denis Meyer, Thiersteinerrain 118, CH-4059 Basel, Switzerland
| | - Thomas Boller
- Zurich-Basel Plant Science Center, Botanisches Institut der Universität Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| | - Andres Wiemken
- Zurich-Basel Plant Science Center, Botanisches Institut der Universität Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland
| |
Collapse
|
42
|
Amiard V, Morvan-Bertrand A, Billard JP, Huault C, Keller F, Prud'homme MP. Fructans, but not the sucrosyl-galactosides, raffinose and loliose, are affected by drought stress in perennial ryegrass. PLANT PHYSIOLOGY 2003; 132:2218-29. [PMID: 12913176 PMCID: PMC181305 DOI: 10.1104/pp.103.022335] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2003] [Revised: 03/17/2003] [Accepted: 04/22/2003] [Indexed: 05/17/2023]
Abstract
The aim of this study was to evaluate the putative role of the sucrosyl-galactosides, loliose [alpha-D-Gal (1,3) alpha-D-Glc (1,2) beta-D-Fru] and raffinose [alpha-D-Gal (1,6) alpha-D-Glc (1,2) beta-D-Fru], in drought tolerance of perennial ryegrass and to compare it with that of fructans. To that end, the loliose biosynthetic pathway was first established and shown to operate by a UDP-Gal: sucrose (Suc) 3-galactosyltransferase, tentatively termed loliose synthase. Drought stress increased neither the concentrations of loliose and raffinose nor the activities of loliose synthase and raffinose synthase (EC 2.4.1.82). Moreover, the concentrations of the raffinose precursors, myoinositol and galactinol, as well as the gene expressions of myoinositol 1-phosphate synthase (EC 5.5.1.4) and galactinol synthase (EC 2.4.1.123) were either decreased or unaffected by drought stress. Taken together, these data are not in favor of an obvious role of sucrosyl-galactosides in drought tolerance of perennial ryegrass at the vegetative stage. By contrast, drought stress caused fructans to accumulate in leaf tissues, mainly in leaf sheaths and elongating leaf bases. This increase was mainly due to the accumulation of long-chain fructans (degree of polymerization > 8) and was not accompanied by a Suc increase. Interestingly, Suc but not fructan concentrations greatly increased in drought-stressed roots. Putative roles of fructans and sucrosyl-galactosides are discussed in relation to the acquisition of stress tolerance.
Collapse
Affiliation(s)
- Véronique Amiard
- Unité Mixte de Recherche Institut National de la Recherche Agronomique-Université de Caen-Basse Normandie, Laboratoire de Physiologie et Biochimie végétales, Institut de Recherche en Biologie Appliquée, Université, 14032 Caen cedex, France
| | | | | | | | | | | |
Collapse
|
43
|
Ritsema T, Smeekens SCM. Engineering fructan metabolism in plants. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:811-820. [PMID: 12940548 DOI: 10.1078/0176-1617-01029] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fructans, or polyfructosylsucroses, are storage carbohydrates present in many higher plants. They are also considered healthy food ingredients. Engineering crops into high level production of specific fructan molecules is one of the mayor strategic research goals. Understanding the properties of fructosyltransferases is important, in order to direct the synthesis of fructans. In plants at least two fructosyltransferases are needed to synthesise fructans. One enzyme synthesises the fructan trisaccharide 1-kestose, the next enzyme uses 1-kestose for elongation and/or modification, producing longer fructans. The specificity of fructosyltransferases determines the type of glycosidic bond formed and the donor and acceptor substrates used. This enables the synthesis of many structurally diverse fructans. The production of these molecules in crops such as sugar beet and potato makes the commercial use of fructans feasible.
Collapse
Affiliation(s)
- Tita Ritsema
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
44
|
Gebbing T. The enclosed and exposed part of the peduncle of wheat (Triticum aestivum) - spatial separation of fructan storage. THE NEW PHYTOLOGIST 2003; 159:245-252. [PMID: 33873665 DOI: 10.1046/j.1469-8137.2003.00799.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• Although fructan accumulation is reported in photosynthetically active organs, the long-term storage of fructan mainly occurs in more heterotrophic tissues. Significant amounts of fructan are stored in the internodes during grain filling of wheat (Triticum aestivum). The uppermost internode (peduncle) of wheat consists of a lower unexposed (i.e. enclosed by the flag leaf sheath and thus heterotrophic part, Pl ) and an upper exposed autotrophic part (Pu ). • Diurnal and long-term changes of fructan and sucrose (the precursor of fructan synthesis) contents were studied in Pl and Pu of potted wheat plants. • At mid grain-filling the sucrose concentration in Pu increased almost threefold during the light period and decreased in the following night. Diurnal changes in sucrose concentration were much less expressed in Pl . Fructan concentration was significantly higher in Pl than in Pu and did not change during the light period. • In another experiment, field grown wheat plants were sampled at regular intervals between 5 d before anthesis and grain maturity. At the time of maximum fructan content, 88% of the fructans in the total peduncle were stored in the heterotrophic Pl . Within Pl , fructan accumulation started in the older segments. The reason for the sharp separation of fructan storage between Pl and Pu remains unclear.
Collapse
Affiliation(s)
- Thomas Gebbing
- Grassland Science, Technische Universität München, 85350 Freising, Germany; Present address: Institute for Plant Production, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
45
|
Abstract
The recent cloning of genes encoding fructosyltransferases and fructan exohydrolases has been a major breakthrough in fructan research. Now, fructan metabolism and fructosyltransferase enzymes can be studied at the molecular level. In addition, fructan synthesis and breakdown can be adapted in such a way that tailor-made fructans are produced in plants for use as healthy food ingredients.
Collapse
Affiliation(s)
- Tita Ritsema
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
46
|
Cao D, Froehlich JE, Zhang H, Cheng CL. The chlorate-resistant and photomorphogenesis-defective mutant cr88 encodes a chloroplast-targeted HSP90. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:107-118. [PMID: 12943545 DOI: 10.1046/j.1365-313x.2003.016011.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The cr88 mutant of Arabidopsis is a novel chlorate-resistant mutant that displays long hypocotyls in red light, but not in far red or blue light, and is delayed in the greening process. In cotyledons and young leaves, plastids are less developed compared with those of the wild type. In addition, a subset of light-regulated genes are under-expressed in this mutant. To understand the pleiotropic phenotypes of cr88, we isolated the CR88 gene through map-based cloning. We found that CR88 encodes a chloroplast-targeted 90-kDa heat shock protein (HSP90). The CR88 gene is expressed at highest levels during early post-germination stages and in leaves and reproductive organs. It is constitutively expressed but is also light and heat shock inducible. Chloroplast import experiments showed that the protein is localized to the stroma compartment of the chloroplast. The possible function of an HSP90 in the chloroplast and a plausible explanation of the pleiotropic phenotypes observed in cr88 are discussed.
Collapse
Affiliation(s)
- Dongsun Cao
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
47
|
Pollock C, Farrar J, Tomos D, Gallagher J, Lu C, Koroleva O. Balancing supply and demand: the spatial regulation of carbon metabolism in grass and cereal leaves. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:489-94. [PMID: 12508059 DOI: 10.1093/jxb/erg037] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Leaf primary metabolism responds to changes in both supply of inputs and demand for products. Metabolic control in leaves changes both spatially and temporally. Using leaves of C(3) temperate Gramineae, the spatial control of carbohydrate metabolism has been studied using a range of approaches. Single-cell sampling and subsequent analysis of metabolites, proteins and transcripts has indicated significant differences between epidermal, mesophyll and parenchymatous bundle sheath cells. These differences correlate with differentiated function as heterotrophic, autotrophic and transport pathway components of the leaf. The review emphasizes the key role of sucrose and discusses its catabolism to hexoses and its anabolism to fructans as mechanisms for the preservation of sucrose gradients within the leaf.
Collapse
Affiliation(s)
- Chris Pollock
- Institute of Grassland and Environmental Research, Aberystwyth SY23 3EB, Wales, UK.
| | | | | | | | | | | |
Collapse
|
48
|
Lu C, Koroleva OA, Farrar JF, Gallagher J, Pollock CJ, Tomos AD. Rubisco small subunit, chlorophyll a/b-binding protein and sucrose:fructan-6-fructosyl transferase gene expression and sugar status in single barley leaf cells in situ. Cell type specificity and induction by light. PLANT PHYSIOLOGY 2002; 130:1335-48. [PMID: 12427999 PMCID: PMC166653 DOI: 10.1104/pp.008979] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2002] [Accepted: 06/12/2002] [Indexed: 05/20/2023]
Abstract
We describe a highly efficient two-step single-cell reverse transcriptase-polymerase chain reaction technique for analyzing gene expression at the single-cell level. Good reproducibility and a linear dose response indicated that the technique has high specificity and sensitivity for detection and quantification of rare RNA. Actin could be used as an internal standard. The expression of message for Rubisco small subunit (RbcS), chlorophyll a/b-binding protein (Cab), sucrose (Suc):fructan-6-fructosyl transferase (6-SFT), and Actin were measured in individual photosynthetic cells of the barley (Hordeum vulgare) leaf. Only Actin was found in the non-photosynthetic epidermal cells. Cab, RbcS, and 6-SFT genes were expressed at a low level in mesophyll and parenchymatous bundle sheath (BS) cells when sampled from plants held in dark for 40 h. Expression increased considerably after illumination. The amount of 6-SFT, Cab, and RbcS transcript increased more in mesophyll cells than in the parenchymatous BS cells. The difference may be caused by different chloroplast structure and posttranscriptional control in mesophyll and BS cells. When similar single-cell samples were assayed for Suc, glucose, and fructan, there was high correlation between 6-SFT gene expression and Suc and glucose concentrations. This is consistent with Suc concentration being the trigger for transcription. Together with earlier demonstrations that the mesophyll cells have a higher sugar threshold for fructan polymerization, our data may indicate separate control of transcription and enzyme activity. Values for the sugar concentrations of the individual cell types are reported.
Collapse
Affiliation(s)
- Chungui Lu
- School of Biological Sciences, University of Wales Bangor, Bangor, Gwynedd LL57 2UW, Wales, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Brodmann A, Schuller A, Ludwig-Müller J, Aeschbacher RA, Wiemken A, Boller T, Wingler A. Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:693-700. [PMID: 12118885 DOI: 10.1094/mpmi.2002.15.7.693] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Various microorganisms produce the disaccharide trehalose during their symbiotic and pathogenic interactions with plants. Trehalose has strong effects on plant metabolism and growth; therefore, we became interested to study its possible role in the interaction of Arabidopsis thaliana with Plasmodiophora brassicae, the causal agent of clubroot disease. We found that trehalose accumulated strongly in the infected organs (i.e., the roots and hypocotyls) and, to a lesser extent, in the leaves and stems of infected plants. This accumulation pattern of trehalose correlated with the expression of a putative trehalose-6-phosphate synthase (EC 2.4.1.15) gene from P. brassicae, PbTPS1. Clubroot formation also resulted in an induction of the Arabidopsis trehalase gene, ATTRE1, and in a concomitant increase in trehalase (EC 3.2.1.28) activity in the roots and hypocotyls, but not in the leaves and stems of infected plants. Thus, induction of ATTRE1 expression was probably responsible for the increased trehalase activity. Trehalase activity increased before trehalose accumulated; therefore, it is unlikely that trehalase was induced by its substrate. The induction of trehalase may be part of the plant's defense response and may prevent excess accumulation of trehalose in the plant cells, where it could interfere with the regulation of carbon metabolism.
Collapse
Affiliation(s)
- Avid Brodmann
- Botanisches Institut, Universität Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
50
|
Finkelstein RR, Gibson SI. ABA and sugar interactions regulating development: cross-talk or voices in a crowd? CURRENT OPINION IN PLANT BIOLOGY 2002; 5:26-32. [PMID: 11788304 DOI: 10.1016/s1369-5266(01)00225-4] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant growth and development are controlled by the concerted action of many signaling pathways that integrate information from environmental signals with that from developmental and metabolic cues. Physiological studies have demonstrated that abscisic acid and sugars have both similar and antagonistic effects on diverse processes, including seed development, germination, and seedling growth. Recent genetic studies have identified several loci that are involved in both sugar and hormonal responses. It is rarely clear whether these apparent linkages reflect direct or indirect interactions between sugar and hormone signaling pathways, but the identification of gene products that are encoded at these loci is allowing these possibilities to be tested.
Collapse
Affiliation(s)
- Ruth R Finkelstein
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106, USA.
| | | |
Collapse
|