1
|
Jian SF, Huang YF, Chen DL, Zhong C. Dihydroporphyrin iron (III) enhances low temperature tolerance by increasing carbon and nitrogen metabolism in Andrographis paniculata. FRONTIERS IN PLANT SCIENCE 2025; 15:1522481. [PMID: 39830946 PMCID: PMC11739077 DOI: 10.3389/fpls.2024.1522481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
Dihydroporphyrin iron (DH-Fe) is a novel plant growth regulator that plays significant roles in plant stress resistance. We found that Andrographis paniculata is extremely sensitive to low temperature (LT) with a threshold of 25°C. To evaluate whether and how DH-Fe alleviates LT stress in A. paniculata, different DH-Fe concentrations (0, 10, 20, and 40 μg·L-1) were applied to estimate its effects on C and N metabolism and antioxidative capacity in A. paniculata grown under 20°C. Pre-treatment of DH-Fe alleviated LT-induced anthocyanin accumulation. Additionally, it relieved LT-induced oxidative stress by increasing the activity of catalase (CAT). DH-Fe reduced the contents of sucrose, soluble sugar and starch and the activities of sucrose synthase (SS) and hexokinase (HXK), but stimulated the activities of sucrose phosphate synthase (SPS), glucose-6-phosphate dehydrogenase (G6PDH), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), phosphoenolpyruvate carboxylase (PEPC), isocitrate dehydrogenase (ICDH), and malic enzyme (ME). Soluble protein and proline contents were decreased by DH-Fe, while total N and free amino acids contents were increased, accompanying by the enhancement of the activities of glutamine synthase (GS), glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GTP). Simultaneously, the content of andrographolide, the bioactive ingredient of A. paniculata, was remarkably declined. These results indicated that DH-Fe alleviates LT-induced oxidation by increasing sugar catabolism and allocating C metabolic flow to N assimilation. A concentration of 20 μg·L-1 DH-Fe is recommended to be used to enhance LT tolerance in A. paniculata. Our results update the understanding of the mechanism of plant cold tolerance and provide new ideas for relieving plant cold damage.
Collapse
Affiliation(s)
- Shao-Fen Jian
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Centre of Traditional Chinese Medicine (TCM) Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yan-Fen Huang
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Centre of Traditional Chinese Medicine (TCM) Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Dong-Liang Chen
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chu Zhong
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Centre of Traditional Chinese Medicine (TCM) Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
2
|
Nascimento CP, da Fonseca-Pereira P, Ferreira-Silva M, Rosado-Souza L, Linka N, Fernie AR, Araújo WL, Nunes-Nesi A. Functional analysis of the extraplastidial TRX system in germination and early stages of development of Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112310. [PMID: 39477093 DOI: 10.1016/j.plantsci.2024.112310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
A series of processes occur during seed formation, including remarkable metabolic changes that extend from early seed development to seedling establishment. The changes associated with processes initiated mainly after seed imbibition are usually characterized by extensive modification in the redox state of seed storage proteins and of pivotal enzymes for reserve mobilization and usage. Such changes in the redox state are often mediated by thioredoxins (TRXs), oxidoreductase capable of catalyzing the reduction of disulfide bonds in target proteins to regulate its structure and function. Here, we analyzed the previously characterized Arabidopsis mutants of NADPH-dependent TRX reductase types A and B (ntra ntrb), two independent mutant lines of mitochondrial thioredoxin o1 (trxo1) and two thioredoxin h2 (trxh2) mutant lines. Our results indicate that plants deficient in the NADPH dependent thioredoxin system are able to mobilize their reserves, but, at least partly, fail to use these reserves during germination. TRX mutants also show decreased activity of regulatory systems required to maintain redox homeostasis. Moreover, we observed reduced respiration in mutant seeds and seedlings, which in parallel with an impaired energy metabolism affects core biological processes responsible for germination and early development of TRX mutants. Together, these findings suggest that the lack of TRX system induces significant change in the respiration of seeds and seedlings, which undergo metabolic reprogramming to adapt to the new redox state.
Collapse
Affiliation(s)
- Carolina Pereira Nascimento
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil
| | - Paula da Fonseca-Pereira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil
| | - Marcelle Ferreira-Silva
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil
| | - Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Nicole Linka
- Department of Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570- 900, Brazil.
| |
Collapse
|
3
|
Hani U, Naranjo B, Shimakawa G, Espinasse C, Vanacker H, Sétif P, Rintamäki E, Issakidis-Bourguet E, Krieger-Liszkay A. A complex and dynamic redox network regulates oxygen reduction at photosystem I in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae501. [PMID: 39324622 DOI: 10.1093/plphys/kiae501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 09/27/2024]
Abstract
Thiol-dependent redox regulation of enzyme activities plays a central role in regulating photosynthesis. Besides the regulation of metabolic pathways, alternative electron transport is subjected to thiol-dependent regulation. We investigated the regulation of O2 reduction at photosystem I. The level of O2 reduction in leaves and isolated thylakoid membranes depends on the photoperiod in which plants are grown. We used a set of Arabidopsis (Arabidopsis thaliana) mutant plants affected in the stromal, membrane, and lumenal thiol network to study the redox protein partners involved in regulating O2 reduction. Light-dependent O2 reduction was determined in leaves and thylakoids of plants grown in short-day and long-day conditions using a spin-trapping electron paramagnetic resonance assay. In wild-type samples from short-day conditions, reactive oxygen species generation was double that of samples from long-day conditions, while this difference was abolished in several redoxin mutants. An in vitro reconstitution assay showed that thioredoxin m, NADPH-thioredoxin reductase C, and NADPH are required for high O2-reduction levels in thylakoids from plants grown in long-day conditions. Using isolated photosystem I, we also showed that reduction of a photosystem I protein is responsible for the increase in O2 reduction. Furthermore, differences in the membrane localization of m-type thioredoxins and 2-Cys peroxiredoxin were detected between thylakoids of short-day and long-day plants. Overall, we propose a model of redox regulation of O2 reduction according to the reduction power of the stroma and the ability of different thiol-containing proteins to form a network of redox interactions.
Collapse
Affiliation(s)
- Umama Hani
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Belen Naranjo
- Departamento de Bioquímica Vegetal y Biología Molecular, Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, 41092 Sevilla, Spain
| | - Ginga Shimakawa
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Christophe Espinasse
- CNRS, INRAE, Université Paris-Saclay, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Hélène Vanacker
- CNRS, INRAE, Université Paris-Saclay, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Pierre Sétif
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Eevi Rintamäki
- Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Emmanuelle Issakidis-Bourguet
- CNRS, INRAE, Université Paris-Saclay, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Anja Krieger-Liszkay
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Zuo X, Yang C, Yan Y, Huang G, Li R. Systematic analysis of the thioredoxin gene family in Citrus sinensis: identification, phylogenetic analysis, and gene expression patterns. PLANT SIGNALING & BEHAVIOR 2023; 18:2294426. [PMID: 38104280 PMCID: PMC10730155 DOI: 10.1080/15592324.2023.2294426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Thioredoxin (TRX) proteins play essential roles in reactive oxygen species scavenging in plants. We executed an exhaustive analysis of the TRX gene family in Citrus sinensis (CsTRXs), encompassing identification, phylogenetic analysis, detection of conserved motifs and domains, gene structure, cis-acting elements, gene expression trends, and subcellular localization analysis. Our findings established that a total of 22 CsTRXs with thioredoxin domains were identified in the genome of C. sinensis. Phylogenetic analysis indicated that CsTRXs were divided into six subclusters. Conserved motifs analysis of CsTRXs indicated a wide range of conserved motifs. A significant number of cis-acting elements associated with both abiotic and biotic stress responses, inclusive of numerous phytohormone-related elements, were detected in the promoter regions of CsTRXs. The expression levels of CsTRXs including CsTRXf1, CsTRXh1, CsTRXm1, CsTRXo3, CsTRXx2 and CsTRXy1 were observed to be reduced upon pathogen infection. Subcellular localization analysis found that CsTRXf1, CsTRXm1, CsTRXo3, CsTRXx2 and CsTRXy1 were predominantly localized in chloroplasts, whereas CsTRXh1 was distributed indiscriminately. This research yields integral data on CsTRXs, facilitating future efforts to decipher the gene functions of CsTRXs.
Collapse
Affiliation(s)
| | | | - Yana Yan
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
5
|
Zinzius K, Marchetti GM, Fischer R, Milrad Y, Oltmanns A, Kelterborn S, Yacoby I, Hegemann P, Scholz M, Hippler M. Calredoxin regulates the chloroplast NADPH-dependent thioredoxin reductase in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2023; 193:2122-2140. [PMID: 37474113 PMCID: PMC10602609 DOI: 10.1093/plphys/kiad426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 07/22/2023]
Abstract
Calredoxin (CRX) is a calcium (Ca2+)-dependent thioredoxin (TRX) in the chloroplast of Chlamydomonas (Chlamydomonas reinhardtii) with a largely unclear physiological role. We elucidated the CRX functionality by performing in-depth quantitative proteomics of wild-type cells compared with a crx insertional mutant (IMcrx), two CRISPR/Cas9 KO mutants, and CRX rescues. These analyses revealed that the chloroplast NADPH-dependent TRX reductase (NTRC) is co-regulated with CRX. Electron transfer measurements revealed that CRX inhibits NADPH-dependent reduction of oxidized chloroplast 2-Cys peroxiredoxin (PRX1) via NTRC and that the function of the NADPH-NTRC complex is under strict control of CRX. Via non-reducing SDS-PAGE assays and mass spectrometry, our data also demonstrated that PRX1 is more oxidized under high light (HL) conditions in the absence of CRX. The redox tuning of PRX1 and control of the NADPH-NTRC complex via CRX interconnect redox control with active photosynthetic electron transport and metabolism, as well as Ca2+ signaling. In this way, an economic use of NADPH for PRX1 reduction is ensured. The finding that the absence of CRX under HL conditions severely inhibited light-driven CO2 fixation underpins the importance of CRX for redox tuning, as well as for efficient photosynthesis.
Collapse
Affiliation(s)
- Karen Zinzius
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Giulia Maria Marchetti
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Ronja Fischer
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Yuval Milrad
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anne Oltmanns
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Simon Kelterborn
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Iftach Yacoby
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt University of Berlin, 10099 Berlin, Germany
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
6
|
Teh JT, Leitz V, Holzer VJC, Neusius D, Marino G, Meitzel T, García-Cerdán JG, Dent RM, Niyogi KK, Geigenberger P, Nickelsen J. NTRC regulates CP12 to activate Calvin-Benson cycle during cold acclimation. Proc Natl Acad Sci U S A 2023; 120:e2306338120. [PMID: 37549282 PMCID: PMC10433458 DOI: 10.1073/pnas.2306338120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023] Open
Abstract
NADPH-dependent thioredoxin reductase C (NTRC) is a chloroplast redox regulator in algae and plants. Here, we used site-specific mutation analyses of the thioredoxin domain active site of NTRC in the green alga Chlamydomonas reinhardtii to show that NTRC mediates cold tolerance in a redox-dependent manner. By means of coimmunoprecipitation and mass spectrometry, a redox- and cold-dependent binding of the Calvin-Benson Cycle Protein 12 (CP12) to NTRC was identified. NTRC was subsequently demonstrated to directly reduce CP12 of C. reinhardtii as well as that of the vascular plant Arabidopsis thaliana in vitro. As a scaffold protein, CP12 joins the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to form an autoinhibitory supracomplex. Using size-exclusion chromatography, NTRC from both organisms was shown to control the integrity of this complex in vitro and thereby PRK and GAPDH activities in the cold. Thus, NTRC apparently reduces CP12, hence triggering the dissociation of the PRK/CP12/GAPDH complex in the cold. Like the ntrc::aphVIII mutant, CRISPR-based cp12::emx1 mutants also exhibited a redox-dependent cold phenotype. In addition, CP12 deletion resulted in robust decreases in both PRK and GAPDH protein levels implying a protein protection effect of CP12. Both CP12 functions are critical for preparing a repertoire of enzymes for rapid activation in response to environmental changes. This provides a crucial mechanism for cold acclimation.
Collapse
Affiliation(s)
- Jing Tsong Teh
- Department of Molecular Plant Science, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg82152, Germany
| | - Verena Leitz
- Department of Plant Metabolism, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg82152, Germany
| | - Victoria J. C. Holzer
- Department of Molecular Plant Science, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg82152, Germany
| | - Daniel Neusius
- Department of Molecular Plant Science, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg82152, Germany
| | - Giada Marino
- Department of Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg82152, Germany
| | - Tobias Meitzel
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben06466, Germany
| | - José G. García-Cerdán
- HHMI, University of California, Berkeley, CA94720-3102
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720-3102
| | - Rachel M. Dent
- HHMI, University of California, Berkeley, CA94720-3102
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720-3102
| | - Krishna K. Niyogi
- HHMI, University of California, Berkeley, CA94720-3102
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720-3102
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Peter Geigenberger
- Department of Plant Metabolism, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg82152, Germany
| | - Jörg Nickelsen
- Department of Molecular Plant Science, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Planegg82152, Germany
| |
Collapse
|
7
|
Zhou J, Song T, Zhou H, Zhang M, Li N, Xiang J, Zhang X. Genome-wide identification, characterization, evolution, and expression pattern analyses of the typical thioredoxin gene family in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1020584. [PMID: 36618641 PMCID: PMC9813791 DOI: 10.3389/fpls.2022.1020584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Typical thioredoxin (TRX) plays an important role in maintaining redox balance in plants. However, the typical TRX genes in wheat still need to be comprehensively and deeply studied. In this research, a total of 48 typical TaTRX genes belonging to eight subtypes were identified via a genome-wide search in wheat, and the gene structures, protein conserved motifs, and protein 3D structures of the same subtype were very similar. Evolutionary analysis showed that there are two pairs of tandem duplication genes and 14 clusters of segmental duplication genes in typical TaTRX family members; TaTRX15, TaTRX36, and TaTRX42 had positive selection compared with the orthologs of their ancestral species; rice and maize have 11 and 13 orthologous typical TRXs with wheat, respectively. Gene Ontology (GO) analysis indicated that typical TaTRXs were involved in maintaining redox homeostasis in wheat cells. Estimation of ROS content, determination of antioxidant enzyme activity, and gene expression analysis in a line overexpressing one typical TaTRX confirmed that TRX plays an important role in maintaining redox balance in wheat. A predictive analysis of cis-acting elements in the promoter region showed that typical TaTRXs were extensively involved in various hormone metabolism and response processes to stress. The results predicted using public databases or verified using RT-qPCR show that typical TaTRXs were able to respond to biotic and abiotic stresses, and their expression in wheat was spatiotemporal. A total of 16 wheat proteins belonging to four different families interacting with typical TaTRXs were predicted. The above comprehensive analysis of typical TaTRX genes can enrich our understanding of this gene family in wheat and provide valuable insights for further gene function research.
Collapse
Affiliation(s)
- Jianfei Zhou
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Tianqi Song
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongwei Zhou
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingfei Zhang
- Academy of Agricultural Sciences/Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources, ChiFeng University, Chifeng, Inner Mongolia, China
| | - Nan Li
- Academy of Agricultural Sciences/Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources, ChiFeng University, Chifeng, Inner Mongolia, China
| | - Jishan Xiang
- Academy of Agricultural Sciences/Key Laboratory of Agro-Ecological Protection & Exploitation and Utilization of Animal and Plant Resources, ChiFeng University, Chifeng, Inner Mongolia, China
| | - Xiaoke Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
The ferredoxin/thioredoxin pathway constitutes an indispensable redox-signaling cascade for light-dependent reduction of chloroplast stromal proteins. J Biol Chem 2022; 298:102650. [PMID: 36448836 PMCID: PMC9712825 DOI: 10.1016/j.jbc.2022.102650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
To ensure efficient photosynthesis, chloroplast proteins need to be flexibly regulated under fluctuating light conditions. Thiol-based redox regulation plays a key role in reductively activating several chloroplast proteins in a light-dependent manner. The ferredoxin (Fd)/thioredoxin (Trx) pathway has long been recognized as the machinery that transfers reducing power generated by photosynthetic electron transport reactions to redox-sensitive target proteins; however, its biological importance remains unclear, because the complete disruption of the Fd/Trx pathway in plants has been unsuccessful to date. Especially, recent identifications of multiple redox-related factors in chloroplasts, as represented by the NADPH-Trx reductase C, have raised a controversial proposal that other redox pathways work redundantly with the Fd/Trx pathway. To address these issues directly, we used CRISPR/Cas9 gene editing to create Arabidopsis mutant plants in which the activity of the Fd/Trx pathway was completely defective. The mutants generated showed severe growth inhibition. Importantly, these mutants almost entirely lost the ability to reduce several redox-sensitive proteins in chloroplast stroma, including four Calvin-Benson cycle enzymes, NADP-malate dehydrogenase, and Rubisco activase, under light conditions. These striking phenotypes were further accompanied by abnormally developed chloroplasts and a drastic decline in photosynthetic efficiency. These results indicate that the Fd/Trx pathway is indispensable for the light-responsive activation of diverse stromal proteins and photoautotrophic growth of plants. Our data also suggest that the ATP synthase is exceptionally reduced by other pathways in a redundant manner. This study provides an important insight into how the chloroplast redox-regulatory system operates in vivo.
Collapse
|
9
|
Riaz A, Deng F, Chen G, Jiang W, Zheng Q, Riaz B, Mak M, Zeng F, Chen ZH. Molecular Regulation and Evolution of Redox Homeostasis in Photosynthetic Machinery. Antioxidants (Basel) 2022; 11:antiox11112085. [PMID: 36358456 PMCID: PMC9686623 DOI: 10.3390/antiox11112085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/14/2023] Open
Abstract
The recent advances in plant biology have significantly improved our understanding of reactive oxygen species (ROS) as signaling molecules in the redox regulation of complex cellular processes. In plants, free radicals and non-radicals are prevalent intra- and inter-cellular ROS, catalyzing complex metabolic processes such as photosynthesis. Photosynthesis homeostasis is maintained by thiol-based systems and antioxidative enzymes, which belong to some of the evolutionarily conserved protein families. The molecular and biological functions of redox regulation in photosynthesis are usually to balance the electron transport chain, photosystem II, photosystem I, mesophyll and bundle sheath signaling, and photo-protection regulating plant growth and productivity. Here, we review the recent progress of ROS signaling in photosynthesis. We present a comprehensive comparative bioinformatic analysis of redox regulation in evolutionary distinct photosynthetic cells. Gene expression, phylogenies, sequence alignments, and 3D protein structures in representative algal and plant species revealed conserved key features including functional domains catalyzing oxidation and reduction reactions. We then discuss the antioxidant-related ROS signaling and important pathways for achieving homeostasis of photosynthesis. Finally, we highlight the importance of plant responses to stress cues and genetic manipulation of disturbed redox status for balanced and enhanced photosynthetic efficiency and plant productivity.
Collapse
Affiliation(s)
- Adeel Riaz
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Guang Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Qingfeng Zheng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Bisma Riaz
- Department of Biotechnology, University of Okara, Okara, Punjab 56300, Pakistan
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
- Correspondence: (F.Z.); (Z.-H.C.)
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
- Correspondence: (F.Z.); (Z.-H.C.)
| |
Collapse
|
10
|
Oxidative regulation of chloroplast enzymes by thioredoxin and thioredoxin-like proteins in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2021; 118:2114952118. [PMID: 34907017 PMCID: PMC8713810 DOI: 10.1073/pnas.2114952118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Plants modulate photosynthesis activity in response to the surrounding environment. It is well known that the redox-responsive protein thioredoxin (Trx) activates photosynthesis-related enzymes in the light. However, the factors involved in deactivating them are not well understood. Recent in vitro experiments suggest that several Trx and Trx-like proteins serve as oxidation factors for Trx-targeted proteins; thus, we examined their functions in vivo. Consequently, we found that f-type Trx and two types of Trx-like proteins, Trx-like 2 and atypical Cys His-rich Trx, were involved in oxidative deactivation of photosynthesis-related enzymes (e.g., fructose-1,6-bisphosphatase, Rubisco activase, and the ATP synthase γ-subunit). Thus, this study reveals the functions of oxidation factors in vivo and elucidates the regulation system for photosynthesis in the dark. Thioredoxin (Trx) is a protein that mediates the reducing power transfer from the photosynthetic electron transport system to target enzymes in chloroplasts and regulates their activities. Redox regulation governed by Trx is a system that is central to the adaptation of various chloroplast functions to the ever-changing light environment. However, the factors involved in the opposite reaction (i.e., the oxidation of various enzymes) have yet to be revealed. Recently, it has been suggested that Trx and Trx-like proteins could oxidize Trx-targeted proteins in vitro. To elucidate the in vivo function of these proteins as oxidation factors, we generated mutant plant lines deficient in Trx or Trx-like proteins and studied how the proteins are involved in oxidative regulation in chloroplasts. We found that f-type Trx and two types of Trx-like proteins, Trx-like 2 and atypical Cys His-rich Trx (ACHT), seemed to serve as oxidation factors for Trx-targeted proteins, such as fructose-1,6-bisphosphatase, Rubisco activase, and the γ-subunit of ATP synthase. In addition, ACHT was found to be involved in regulating nonphotochemical quenching, which is the mechanism underlying the thermal dissipation of excess light energy. Overall, these results indicate that Trx and Trx-like proteins regulate chloroplast functions in concert by controlling the redox state of various photosynthesis-related proteins in vivo.
Collapse
|
11
|
Colon R, Wheater M, Joyce EJ, Ste Marie EJ, Hondal RJ, Rein KS. The Marine Neurotoxin Brevetoxin (PbTx-2) Inhibits Karenia brevis and Mammalian Thioredoxin Reductases by Targeting Different Residues. JOURNAL OF NATURAL PRODUCTS 2021; 84:2961-2970. [PMID: 34752085 DOI: 10.1021/acs.jnatprod.1c00795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The brevetoxins, neurotoxins produced by Karenia brevis, the Florida red tide dinoflagellate, effect fish and wildlife mortalities and adverse public health and economic impacts during recurrent blooms. Knowledge of the biochemical consequences of toxin production for K. brevis could provide insights into an endogenous role of the toxins, yet this aspect has not been thoroughly explored. In addition to neurotoxicity, the most abundant of the brevetoxins, PbTx-2, inhibits mammalian thioredoxin reductase (TrxR). The thioredoxin system, composed of the enzymes TrxR and thioredoxin (Trx), is present in all living organisms and is responsible in part for maintaining cellular redox homeostasis. Herein, we describe the cloning, expression, and semisynthesis of the selenoprotein TrxR from K. brevis (KbTrxR) and reductase activity toward a variety of substrates. Unlike mammalian TrxR, KbTrxR reduces oxidized glutathione (GSSG). We further demonstrate that PbTx-2 is an inhibitor of KbTrxR. Covalent adducts between KbTrxR and rat TrxR were detected by mass spectrometry. While both enzymes are adducted at or near the catalytic centers, the specific residues are distinct. Biochemical differences reported for high and low toxin producing strains of K. brevis are consistent with the inhibition of KbTrxR and suggest that PbTx-2 is an endogenous regulator of this critical enzyme.
Collapse
Affiliation(s)
- Ricardo Colon
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, United States
| | - Michelle Wheater
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Given Building Room 413B, Burlington, Vermont 05405, United States
| | - Emily J Joyce
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Given Building Room 413B, Burlington, Vermont 05405, United States
| | - Emma J Ste Marie
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Given Building Room 413B, Burlington, Vermont 05405, United States
| | - Robert J Hondal
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Given Building Room 413B, Burlington, Vermont 05405, United States
| | - Kathleen S Rein
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, United States
| |
Collapse
|
12
|
Ojeda V, Jiménez-López J, Romero-Campero FJ, Cejudo FJ, Pérez-Ruiz JM. A chloroplast redox relay adapts plastid metabolism to light and affects cytosolic protein quality control. PLANT PHYSIOLOGY 2021; 187:88-102. [PMID: 34618130 PMCID: PMC8418392 DOI: 10.1093/plphys/kiab246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/04/2021] [Indexed: 06/01/2023]
Abstract
In chloroplasts, thiol-dependent redox regulation is linked to light since the disulfide reductase activity of thioredoxins (Trxs) relies on photo-reduced ferredoxin (Fdx). Furthermore, chloroplasts harbor an NADPH-dependent Trx reductase (NTR) with a joint Trx domain, termed NTRC. The activity of these two redox systems is integrated by the redox balance of 2-Cys peroxiredoxin (Prx), which is controlled by NTRC. However, NTRC was proposed to participate in redox regulation of additional targets, prompting inquiry into whether the function of NTRC depends on its capacity to maintain the redox balance of 2-Cys Prxs or by direct redox interaction with chloroplast enzymes. To answer this, we studied the functional relationship of NTRC and 2-Cys Prxs by a comparative analysis of the triple Arabidopsis (Arabidopsis thaliana) mutant, ntrc-2cpab, which lacks NTRC and 2-Cys Prxs, and the double mutant 2cpab, which lacks 2-Cys Prxs. These mutants exhibit almost indistinguishable phenotypes: in growth rate, photosynthesis performance, and redox regulation of chloroplast enzymes in response to light and darkness. These results suggest that the most relevant function of NTRC is in controlling the redox balance of 2-Cys Prxs. A comparative transcriptomics analysis confirmed the phenotypic similarity of the two mutants and suggested that the NTRC-2-Cys Prxs system participates in cytosolic protein quality control. We propose that NTRC and 2-Cys Prxs constitute a redox relay, exclusive to photosynthetic organisms that fine-tunes the redox state of chloroplast enzymes in response to light and affects transduction pathways towards the cytosol.
Collapse
Affiliation(s)
- Valle Ojeda
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Julia Jiménez-López
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Francisco José Romero-Campero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| |
Collapse
|
13
|
Zhao W, Zhou Y, Zhou X, Wang X, Ji Y. Host GRXC6 restricts Tomato yellow leaf curl virus infection by inhibiting the nuclear export of the V2 protein. PLoS Pathog 2021; 17:e1009844. [PMID: 34398921 PMCID: PMC8389846 DOI: 10.1371/journal.ppat.1009844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/26/2021] [Accepted: 07/27/2021] [Indexed: 11/27/2022] Open
Abstract
Geminiviruses cause serious symptoms and devastating losses in crop plants. With a circular, single-stranded DNA genome, geminiviruses multiply their genomic DNA in the nucleus, requiring the nuclear shuttling of viral proteins and viral genomic DNAs. Many host factors, acting as proviral or antiviral factors, play key roles in geminivirus infections. Here, we report the roles of a tomato glutaredoxin (GRX), SlGRXC6, in the infection of Tomato yellow leaf curl virus (TYLCV), a single-component geminivirus. The V2 protein of TYLCV specifically and preferentially interacts with SlGRXC6 among the 55-member tomato GRX family that are broadly involved in oxidative stress responses, plant development, and pathogen responses. We show that overexpressed SlGRXC6 increases the nuclear accumulation of V2 by inhibiting its nuclear export and, in turn, inhibits trafficking of the V1 protein and viral genomic DNA. Conversely, the silenced expression of SlGRXC6 leads to an enhanced susceptibility to TYLCV. SlGRXC6 is also involved in symptom development as we observed a positive correlation where overexpression of SlGRXC6 promotes while knockdown of SlGRXC6 expression inhibits plant growth. We further showed that SlGRXC6 works with SlNTRC80, a tomato NADPH-dependent thioredoxin reductase, to regulate plant growth. V2 didn’t interact with SlNTRC80 but competed with SlNTR80 for binding to SlGRXC6, suggesting that the V2-disrupted SlGRXC6-SlNTRC80 interaction is partially responsible for the virus-caused symptoms. These results suggest that SlGRXC6 functions as a host restriction factor that inhibits the nuclear trafficking of viral components and point out a new way to control TYLCV infection by targeting the V2-SlGRXC6 interaction. Geminiviruses infect numerous crops, induce a wide range of symptoms, and cause tremendous crop losses annually. Tomato yellow leaf curl virus (TYLCV), a single-component geminivirus, is a causative agent leading to one of the most devastating tomato diseases in the world. As a single-stranded DNA virus, genomic replication occurs in the nucleus and therefore, the nuclear shuttling is a critical step of viral infection. The V2 protein of TYLCV is involved in symptom development and viral trafficking, among other steps, and hijacks host proteins for executing its functions. Nevertheless, host factors involved in the V2-mediated functions are not well addressed. We show that tomato GRXC6 (SlGRXC6) functions as a restriction factor of TYLCV infection by interacting with and preventing V2 from moving out of the nucleus, leading to the inhibited V2-mediated nuclear export of V1 and the V1-viral DNA complex. SlGRXC6 also contributes to symptom development via its interaction with SINTRC80. V2 sequesters SlGRXC6 from forming the SlGRXC6-SlNTRC80 complex and regulates plant growth. Our work, therefore, identified a new host partner of V2 and revealed the mechanisms whereby V2 functions as a pathogenicity determinant and can be targeted for virus control.
Collapse
Affiliation(s)
- Wenhao Zhao
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Yijun Zhou
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- * E-mail: (XZ); (XW); (YJ)
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail: (XZ); (XW); (YJ)
| | - Yinghua Ji
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail: (XZ); (XW); (YJ)
| |
Collapse
|
14
|
Hernández ML, Cejudo FJ. Chloroplast Lipids Metabolism and Function. A Redox Perspective. FRONTIERS IN PLANT SCIENCE 2021; 12:712022. [PMID: 34421962 PMCID: PMC8375268 DOI: 10.3389/fpls.2021.712022] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/14/2021] [Indexed: 05/27/2023]
Abstract
Plant productivity is determined by the conversion of solar energy into biomass through oxygenic photosynthesis, a process performed by protein-cofactor complexes including photosystems (PS) II and I, and ATP synthase. These complexes are embedded in chloroplast thylakoid membrane lipids, which thus function as structural support of the photosynthetic machinery and provide the lipid matrix to avoid free ion diffusion. The lipid and fatty acid composition of thylakoid membranes are unique in chloroplasts and cyanobacteria, which implies that these molecules are specifically required in oxygenic photosynthesis. Indeed, there is extensive evidence supporting a relevant function of glycerolipids in chloroplast biogenesis and photosynthetic efficiency in response to environmental stimuli, such as light and temperature. The rapid acclimation of higher plants to environmental changes is largely based on thiol-based redox regulation and the disulphide reductase activity thioredoxins (Trxs), which are reduced by ferredoxin (Fdx) via an Fdx-dependent Trx reductase. In addition, chloroplasts harbour an NADPH-dependent Trx reductase C, which allows the use of NADPH to maintain the redox homeostasis of the organelle. Here, we summarise the current knowledge of chloroplast lipid metabolism and the function of these molecules as structural basis of the complex membrane network of the organelle. Furthermore, we discuss evidence supporting the relevant role of lipids in chloroplast biogenesis and photosynthetic performance in response to environmental cues in which the redox state of the organelle plays a relevant role.
Collapse
|
15
|
NTRC Effects on Non-Photochemical Quenching Depends on PGR5. Antioxidants (Basel) 2021; 10:antiox10060900. [PMID: 34204867 PMCID: PMC8229092 DOI: 10.3390/antiox10060900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/14/2023] Open
Abstract
Non-photochemical quenching (NPQ) protects plants from the detrimental effects of excess light. NPQ is rapidly induced by the trans-thylakoid proton gradient during photosynthesis, which in turn requires PGR5/PGRL1-dependent cyclic electron flow (CEF). Thus, Arabidopsis thaliana plants lacking either protein cannot induce transient NPQ and die under fluctuating light conditions. Conversely, the NADPH-dependent thioredoxin reductase C (NTRC) is required for efficient energy utilization and plant growth, and in its absence, transient and steady-state NPQ is drastically increased. How NTRC influences NPQ and functionally interacts with CEF is unclear. Therefore, we generated the A. thaliana line pgr5 ntrc, and found that the inactivation of PGR5 suppresses the high transient and steady-state NPQ and impaired growth phenotypes observed in the ntrc mutant under short-day conditions. This implies that NTRC negatively influences PGR5 activity and, accordingly, the lack of NTRC is associated with decreased levels of PGR5, possibly pointing to a mechanism to restrict upregulation of PGR5 activity in the absence of NTRC. When exposed to high light intensities, pgr5 ntrc plants display extremely impaired photosynthesis and growth, indicating additive effects of lack of both proteins. Taken together, these findings suggest that the interplay between NTRC and PGR5 is relevant for photoprotection and that NTRC might regulate PGR5 activity.
Collapse
|
16
|
Cejudo FJ, González MC, Pérez-Ruiz JM. Redox regulation of chloroplast metabolism. PLANT PHYSIOLOGY 2021; 186:9-21. [PMID: 33793865 PMCID: PMC8154093 DOI: 10.1093/plphys/kiaa062] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/16/2020] [Indexed: 05/08/2023]
Abstract
Regulation of enzyme activity based on thiol-disulfide exchange is a regulatory mechanism in which the protein disulfide reductase activity of thioredoxins (TRXs) plays a central role. Plant chloroplasts are equipped with a complex set of up to 20 TRXs and TRX-like proteins, the activity of which is supported by reducing power provided by photosynthetically reduced ferredoxin (FDX) with the participation of a FDX-dependent TRX reductase (FTR). Therefore, the FDX-FTR-TRXs pathway allows the regulation of redox-sensitive chloroplast enzymes in response to light. In addition, chloroplasts contain an NADPH-dependent redox system, termed NTRC, which allows the use of NADPH in the redox network of these organelles. Genetic approaches using mutants of Arabidopsis (Arabidopsis thaliana) in combination with biochemical and physiological studies have shown that both redox systems, NTRC and FDX-FTR-TRXs, participate in fine-tuning chloroplast performance in response to changes in light intensity. Moreover, these studies revealed the participation of 2-Cys peroxiredoxin (2-Cys PRX), a thiol-dependent peroxidase, in the control of the reducing activity of chloroplast TRXs as well as in the rapid oxidation of stromal enzymes upon darkness. In this review, we provide an update on recent findings regarding the redox regulatory network of plant chloroplasts, focusing on the functional relationship of 2-Cys PRXs with NTRC and the FDX-FTR-TRXs redox systems for fine-tuning chloroplast performance in response to changes in light intensity and darkness. Finally, we consider redox regulation as an additional layer of control of the signaling function of the chloroplast.
Collapse
Affiliation(s)
- Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
- Author for communication:
| | - María-Cruz González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
17
|
Okegawa Y, Basso L, Shikanai T, Motohashi K. Cyclic Electron Transport around PSI Contributes to Photosynthetic Induction with Thioredoxin f. PLANT PHYSIOLOGY 2020; 184:1291-1302. [PMID: 32917772 PMCID: PMC7608166 DOI: 10.1104/pp.20.00741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/02/2020] [Indexed: 05/04/2023]
Abstract
In response to light, plants efficiently induce photosynthesis. Light activation of thiol enzymes by the thioredoxin (Trx) systems and cyclic electron transport by the PROTON GRADIENT REGULATION5 (PGR5)-dependent pathway contribute substantially to regulation of photosynthesis. Arabidopsis (Arabidopsis thaliana) mutants lacking f-type Trxs (trx f1f2) show delayed activation of carbon assimilation due to impaired photoreduction of Calvin-Benson cycle enzymes. To further study regulatory mechanisms that contribute to efficiency during the induction of photosynthesis, we analyzed the contributions of PSI donor- and acceptor-side regulation in the trx f1f2 mutant background. The cytochrome b 6 f complex is involved in PSI donor-side regulation, whereas PGR5-dependent PSI cyclic electron transport is required for both donor and acceptor functions. Introduction of the pgr1 mutation, which is conditionally defective in cytochrome b 6 f complex activity, into the trx f1f2 mutant background did not further affect the induction of photosynthesis, but the combined deficiency of Trx f and PGR5 severely impaired photosynthesis and suppressed plant growth under long-day conditions. In the pgr5 trx f1f2 mutant, the acceptor-side of PSI was almost completely reduced, and quantum yields of PSII and PSI hardly increased during the induction of photosynthesis. We also compared the photoreduction of thiol enzymes between the trx f1f2 and pgr5 trxf1f2 mutants. The pgr5 mutation did not result in further impaired photoreduction of Calvin-Benson cycle enzymes or ATP synthase in the trx f1f2 mutant background. These results indicated that acceptor-side limitations in the pgr5 trx f1f2 mutant suppress photosynthesis initiation, suggesting that PGR5 is required for efficient photosynthesis induction.
Collapse
Affiliation(s)
- Yuki Okegawa
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Leonardo Basso
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ken Motohashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
18
|
Guinea Diaz M, Nikkanen L, Himanen K, Toivola J, Rintamäki E. Two chloroplast thioredoxin systems differentially modulate photosynthesis in Arabidopsis depending on light intensity and leaf age. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:718-734. [PMID: 32772439 PMCID: PMC7693050 DOI: 10.1111/tpj.14959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 05/10/2023]
Abstract
Various regulatory mechanisms have evolved in plants to optimize photosynthetic activity under fluctuating light. Thioredoxins (TRX) are members of the regulatory network balancing activities of light and carbon fixation reactions in chloroplasts. We have studied the impact of two chloroplast TRX systems, the ferredoxin-dependent TRX reductase (FTR) and the NADPH-dependent TRX reductase C (NTRC) on regulation of photosynthesis by mutants lacking or overexpressing a component of either system. Plants were subjected to image-based phenotyping and chlorophyll fluorescence measurements that allow long-term monitoring of the development and photosynthetic activity of the rosettes, respectively. Our experiments demonstrate that NTRC and FTR systems respond differently to variation of light intensity. NTRC was an indispensable regulator of photosynthesis in young leaves, at light-intensity transitions and under low light intensities limiting photosynthesis, whereas steady-state exposure of plants to growth or higher light intensities diminished the need of NTRC in regulation of photosynthesis. In fluctuating light, overexpression of NTRC increased the quantum yield of Photosystem II (YII) at low light and stimulated the relaxation of non-photochemical quenching (NPQ) after high light exposure, indicating that overexpression of NTRC improves leaf capacity to convert light energy to chemical energy under these conditions. Overexpression of chimeric protein (NTR-TRXf) containing both the thioredoxin reductase and TRXf activity on an ntrc mutant background, did not completely recover either growth or steady-state photosynthetic activity, whereas OE-NTR-TRXf plants exposed to fluctuating light regained the wild-type level of Y(II) and NPQ.
Collapse
Affiliation(s)
- Manuel Guinea Diaz
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurku20520Finland
| | - Lauri Nikkanen
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurku20520Finland
| | - Kristiina Himanen
- National Plant Phenotyping InfrastructureUniversity of HelsinkiHelsinki00790Finland
| | - Jouni Toivola
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurku20520Finland
| | - Eevi Rintamäki
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurku20520Finland
| |
Collapse
|
19
|
Exploring the Functional Relationship between y-Type Thioredoxins and 2-Cys Peroxiredoxins in Arabidopsis Chloroplasts. Antioxidants (Basel) 2020; 9:antiox9111072. [PMID: 33142810 PMCID: PMC7694023 DOI: 10.3390/antiox9111072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/17/2022] Open
Abstract
Thioredoxins (Trxs) are small, ubiquitous enzymes that catalyze disulphide–dithiol interchange in target enzymes. The large set of chloroplast Trxs, including f, m, x and y subtypes, use reducing equivalents fueled by photoreduced ferredoxin (Fdx) for fine-tuning photosynthetic performance and metabolism through the control of the activity of redox-sensitive proteins. Although biochemical analyses suggested functional diversity of chloroplast Trxs, genetic studies have established that deficiency in a particular Trx subtype has subtle phenotypic effects, leading to the proposal that the Trx isoforms are functionally redundant. In addition, chloroplasts contain an NADPH-dependent Trx reductase with a joint Trx domain, termed NTRC. Interestingly, Arabidopsis mutants combining the deficiencies of x- or f-type Trxs and NTRC display very severe growth inhibition phenotypes, which are partially rescued by decreased levels of 2-Cys peroxiredoxins (Prxs). These findings indicate that the reducing capacity of Trxs f and x is modulated by the redox balance of 2-Cys Prxs, which is controlled by NTRC. In this study, we explored whether NTRC acts as a master regulator of the pool of chloroplast Trxs by analyzing its functional relationship with Trxs y. While Trx y interacts with 2-Cys Prxs in vitro and in planta, the analysis of Arabidopsis mutants devoid of NTRC and Trxs y suggests that Trxs y have only a minor effect, if any, on the redox state of 2-Cys Prxs.
Collapse
|
20
|
Wittmann D, Sinha N, Grimm B. Thioredoxin-dependent control balances the metabolic activities of tetrapyrrole biosynthesis. Biol Chem 2020; 402:379-397. [PMID: 33068374 DOI: 10.1515/hsz-2020-0308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/13/2020] [Indexed: 11/15/2022]
Abstract
Plastids are specialized organelles found in plants, which are endowed with their own genomes, and differ in many respects from the intracellular compartments of organisms belonging to other kingdoms of life. They differentiate into diverse, plant organ-specific variants, and are perhaps the most versatile organelles known. Chloroplasts are the green plastids in the leaves and stems of plants, whose primary function is photosynthesis. In response to environmental changes, chloroplasts use several mechanisms to coordinate their photosynthetic activities with nuclear gene expression and other metabolic pathways. Here, we focus on a redox-based regulatory network composed of thioredoxins (TRX) and TRX-like proteins. Among multiple redox-controlled metabolic activities in chloroplasts, tetrapyrrole biosynthesis is particularly rich in TRX-dependent enzymes. This review summarizes the effects of plastid-localized reductants on several enzymes of this pathway, which have been shown to undergo dithiol-disulfide transitions. We describe the impact of TRX-dependent control on the activity, stability and interactions of these enzymes, and assess its contribution to the provision of adequate supplies of metabolic intermediates in the face of diurnal and more rapid and transient changes in light levels and other environmental factors.
Collapse
Affiliation(s)
- Daniel Wittmann
- Humboldt-Universität zu Berlin, Faculty of Life Science, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), 10115Berlin, Germany
| | - Neha Sinha
- Humboldt-Universität zu Berlin, Faculty of Life Science, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), 10115Berlin, Germany
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Faculty of Life Science, Institute of Biology/Plant Physiology, Philippstraße 13 (Building 12), 10115Berlin, Germany
| |
Collapse
|
21
|
Elasad M, Ahmad A, Wang H, Ma L, Yu S, Wei H. Overexpression of CDSP32 ( GhTRX134) Cotton Gene Enhances Drought, Salt, and Oxidative Stress Tolerance in Arabidopsis. PLANTS 2020; 9:plants9101388. [PMID: 33086523 PMCID: PMC7650641 DOI: 10.3390/plants9101388] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 01/09/2023]
Abstract
Upland cotton (Gossypium hirsutum L.) is the main natural fiber crop worldwide and is an essential source of seed oil and biofuel products. Many abiotic stresses, such as drought and salinity, constrain cotton production. Thioredoxins (TRXs) are a group of small ubiquitous proteins that are widely distributed among organisms. TRXs play a crucial role in regulating diverse functions during plant growth and development. In the present study, a novel GhTRX134 gene was characterized and overexpressed in Arabidopsis and silenced in cotton under drought stress. Furthermore, the proline content and enzyme activity levels were measured in transgenic plants and wild-type (Wt) plants under drought and salt stress. The results revealed that the overexpression of GhTRX134 enhanced abiotic stress tolerance. When GhTRX134 was silenced, cotton plants become more sensitive to drought. Taken together, these findings confirmed that the overexpression of GhTRX134 improved drought and salt tolerance in Arabidopsis plants. Therefore, the GhTRX134 gene can be transformed into cotton plants to obtain transgenic lines for more functional details.
Collapse
Affiliation(s)
- Mohammed Elasad
- Agricultural Research Corporation, Wad Medani P.O. Box 126, Sudan;
| | - Adeel Ahmad
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; (A.A.); (H.W.); (L.M.); (S.Y.)
| | - Hantao Wang
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; (A.A.); (H.W.); (L.M.); (S.Y.)
| | - Liang Ma
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; (A.A.); (H.W.); (L.M.); (S.Y.)
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; (A.A.); (H.W.); (L.M.); (S.Y.)
| | - Hengling Wei
- State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; (A.A.); (H.W.); (L.M.); (S.Y.)
- Correspondence:
| |
Collapse
|
22
|
Sytykiewicz H, Łukasik I, Goławska S, Sprawka I, Goławski A, Sławianowska J, Kmieć K. Expression of Thioredoxin/Thioredoxin Reductase System Genes in Aphid-Challenged Maize Seedlings. Int J Mol Sci 2020; 21:ijms21176296. [PMID: 32878074 PMCID: PMC7503728 DOI: 10.3390/ijms21176296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 11/16/2022] Open
Abstract
Thioredoxins (Trxs) and thioredoxin reductases (TrxRs) encompass a highly complex network involved in sustaining thiol-based redox homeostasis in plant tissues. The purpose of the study was to gain a new insight into transcriptional reprogramming of the several genes involved in functioning of Trx/TrxR system in maize (Zea mays L.) seedlings, exposed to the bird cherry-oat aphid (Rhopalosiphum padi L.) or the rose-grass aphid (Metopolophium dirhodum Walk.) infestation. The biotests were performed on two maize genotypes (susceptible Złota Karłowa and relatively resistant Waza). The application of real-time qRT-PCR technique allowed to identify a molecular mechanism triggered in more resistant maize plants, linked to upregulation of thioredoxins-encoding genes (Trx-f, Trx-h, Trx-m, Trx-x) and thioredoxin reductase genes (Ftr1, Trxr2). Significant enhancement of TrxR activity in aphid-infested Waza seedlings was also demonstrated. Furthermore, we used an electrical penetration graph (EPG) recordings of M. dirhodum stylet activities in seedlings of the two studied maize varieties. Duration of phloem phase (E1 and E2 models) of rose-grass aphids was about three times longer while feeding in Waza plants, compared to Złota Karłowa cv. The role of activation of Trx/TrxR system in maintaining redox balance and counteracting oxidative-induced damages of macromolecules in aphid-stressed maize plants is discussed.
Collapse
Affiliation(s)
- Hubert Sytykiewicz
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
- Correspondence: ; Tel.: +48-25-643-12-98
| | - Iwona Łukasik
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
| | - Sylwia Goławska
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
| | - Iwona Sprawka
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
| | - Artur Goławski
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
| | - Julia Sławianowska
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 14 Prusa St., 08-110 Siedlce, Poland; (I.Ł.); (S.G.); (I.S.); (A.G.); (J.S.)
| | - Katarzyna Kmieć
- Department of Plant Protection, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, 7 Leszczyńskiego St., 20-069 Lublin, Poland;
| |
Collapse
|
23
|
Gerken M, Kakorin S, Chibani K, Dietz KJ. Computational simulation of the reactive oxygen species and redox network in the regulation of chloroplast metabolism. PLoS Comput Biol 2020; 16:e1007102. [PMID: 31951606 PMCID: PMC6992225 DOI: 10.1371/journal.pcbi.1007102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 01/30/2020] [Accepted: 08/15/2019] [Indexed: 02/07/2023] Open
Abstract
Cells contain a thiol redox regulatory network to coordinate metabolic and developmental activities with exogenous and endogenous cues. This network controls the redox state and activity of many target proteins. Electrons are fed into the network from metabolism and reach the target proteins via redox transmitters such as thioredoxin (TRX) and NADPH-dependent thioredoxin reductases (NTR). Electrons are drained from the network by reactive oxygen species (ROS) through thiol peroxidases, e.g., peroxiredoxins (PRX). Mathematical modeling promises access to quantitative understanding of the network function and was implemented by using published kinetic parameters combined with fitting to known biochemical data. Two networks were assembled, namely the ferredoxin (FDX), FDX-dependent TRX reductase (FTR), TRX, fructose-1,6-bisphosphatase (FBPase) pathway with 2-cysteine PRX/ROS as oxidant, and separately the FDX, FDX-dependent NADP reductase (FNR), NADPH, NTRC-pathway for 2-CysPRX reduction. Combining both modules allowed drawing several important conclusions of network performance. The resting H2O2 concentration was estimated to be about 30 nM in the chloroplast stroma. The electron flow to metabolism exceeds that into thiol regulation of FBPase more than 7000-fold under physiological conditions. The electron flow from NTRC to 2-CysPRX is about 5.32-times more efficient than that from TRX-f1 to 2-CysPRX. Under severe stress (30 μM H2O2) the ratio of electron flow to the thiol network relative to metabolism sinks to 1:251 whereas the ratio of e- flow from NTRC to 2-CysPRX and TRX-f1 to 2-CysPRX rises up to 1:67. Thus, the simulation provides clues on experimentally inaccessible parameters and describes the functional state of the chloroplast thiol regulatory network.
Collapse
Affiliation(s)
- Melanie Gerken
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Sergej Kakorin
- Physikalische Chemie III, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Kamel Chibani
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
24
|
Ancín M, Larraya L, Fernández-San Millán A, Veramendi J, Burch-Smith T, Farran I. NTRC and Thioredoxin f Overexpression Differentially Induces Starch Accumulation in Tobacco Leaves. PLANTS 2019; 8:plants8120543. [PMID: 31779140 PMCID: PMC6963466 DOI: 10.3390/plants8120543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
Abstract
Thioredoxin (Trx) f and NADPH-dependent Trx reductase C (NTRC) have both been proposed as major redox regulators of starch metabolism in chloroplasts. However, little is known regarding the specific role of each protein in this complex mechanism. To shed light on this point, tobacco plants that were genetically engineered to overexpress the NTRC protein from the chloroplast genome were obtained and compared to previously generated Trx f-overexpressing transplastomic plants. Likewise, we investigated the impact of NTRC and Trx f deficiency on starch metabolism by generating Nicotiana benthamiana plants that were silenced for each gene. Our results demonstrated that NTRC overexpression induced enhanced starch accumulation in tobacco leaves, as occurred with Trx f. However, only Trx f silencing leads to a significant decrease in the leaf starch content. Quantitative analysis of enzyme activities related to starch synthesis and degradation were determined in all of the genotypes. Zymographic analyses were additionally performed to compare the amylolytic enzyme profiles of both transplastomic tobacco plants. Our findings indicated that NTRC overexpression promotes the accumulation of transitory leaf starch as a consequence of a diminished starch turnover during the dark period, which seems to be related to a significant reductive activation of ADP-glucose pyrophosphorylase and/or a deactivation of a putative debranching enzyme. On the other hand, increased starch content in Trx f-overexpressing plants was connected to an increase in the capacity of soluble starch synthases during the light period. Taken together, these results suggest that NTRC and the ferredoxin/Trx system play distinct roles in starch turnover.
Collapse
Affiliation(s)
- María Ancín
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (L.L.); (A.F.-S.M.); (J.V.)
| | - Luis Larraya
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (L.L.); (A.F.-S.M.); (J.V.)
| | - Alicia Fernández-San Millán
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (L.L.); (A.F.-S.M.); (J.V.)
| | - Jon Veramendi
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (L.L.); (A.F.-S.M.); (J.V.)
| | - Tessa Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Inmaculada Farran
- Institute for Multidisciplinary Research in Applied Biology, UPNA, 31006 Pamplona, Spain; (M.A.); (L.L.); (A.F.-S.M.); (J.V.)
- Correspondence: ; Tel.: +34-948-168-034
| |
Collapse
|
25
|
Hou LY, Ehrlich M, Thormählen I, Lehmann M, Krahnert I, Obata T, Cejudo FJ, Fernie AR, Geigenberger P. NTRC Plays a Crucial Role in Starch Metabolism, Redox Balance, and Tomato Fruit Growth. PLANT PHYSIOLOGY 2019; 181:976-992. [PMID: 31527089 PMCID: PMC6836810 DOI: 10.1104/pp.19.00911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/05/2019] [Indexed: 05/21/2023]
Abstract
NADPH-thioredoxin reductase C (NTRC) forms a separate thiol-reduction cascade in plastids, combining both NADPH-thioredoxin reductase and thioredoxin activities on a single polypeptide. While NTRC is an important regulator of photosynthetic processes in leaves, its function in heterotrophic tissues remains unclear. Here, we focus on the role of NTRC in developing tomato (Solanum lycopersicum) fruits representing heterotrophic storage organs important for agriculture and human diet. We used a fruit-specific promoter to decrease NTRC expression by RNA interference in developing tomato fruits by 60% to 80% compared to the wild type. This led to a decrease in fruit growth, resulting in smaller and lighter fully ripe fruits containing less dry matter and more water. In immature fruits, NTRC downregulation decreased transient starch accumulation, which led to a subsequent decrease in soluble sugars in ripe fruits. The inhibition of starch synthesis was associated with a decrease in the redox-activation state of ADP-Glc pyrophosphorylase and soluble starch synthase, which catalyze the first committed and final polymerizing steps, respectively, of starch biosynthesis. This was accompanied by a decrease in the level of ADP-Glc. NTRC downregulation also led to a strong increase in the reductive states of NAD(H) and NADP(H) redox systems. Metabolite profiling of NTRC-RNA interference lines revealed increased organic and amino acid levels, but reduced sugar levels, implying that NTRC regulates the osmotic balance of developing fruits. These results indicate that NTRC acts as a central hub in regulating carbon metabolism and redox balance in heterotrophic tomato fruits, affecting fruit development as well as final fruit size and quality.
Collapse
Affiliation(s)
- Liang-Yu Hou
- Ludwig-Maximilians-University Munich, Department Biology I, 82152 Planegg-Martinsried, Germany
| | - Matthias Ehrlich
- Ludwig-Maximilians-University Munich, Department Biology I, 82152 Planegg-Martinsried, Germany
| | - Ina Thormählen
- Ludwig-Maximilians-University Munich, Department Biology I, 82152 Planegg-Martinsried, Germany
| | - Martin Lehmann
- Ludwig-Maximilians-University Munich, Department Biology I, 82152 Planegg-Martinsried, Germany
| | - Ina Krahnert
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Francisco J Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Peter Geigenberger
- Ludwig-Maximilians-University Munich, Department Biology I, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
26
|
Annunziata MG. NTRC: A Key Regulatory Hub in Carbon Metabolism and Redox Balance in Developing Tomato Fruits. PLANT PHYSIOLOGY 2019; 181:851-852. [PMID: 31685688 PMCID: PMC6836822 DOI: 10.1104/pp.19.01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
27
|
González M, Delgado-Requerey V, Ferrández J, Serna A, Cejudo FJ. Insights into the function of NADPH thioredoxin reductase C (NTRC) based on identification of NTRC-interacting proteins in vivo. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5787-5798. [PMID: 31294455 PMCID: PMC6812714 DOI: 10.1093/jxb/erz326] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/04/2019] [Indexed: 05/18/2023]
Abstract
Redox regulation in heterotrophic organisms relies on NADPH, thioredoxins (TRXs), and an NADPH-dependent TRX reductase (NTR). In contrast, chloroplasts harbor two redox systems, one that uses photoreduced ferredoxin (Fd), an Fd-dependent TRX reductase (FTR), and TRXs, which links redox regulation to light, and NTRC, which allows the use of NADPH for redox regulation. It has been shown that NTRC-dependent regulation of 2-Cys peroxiredoxin (PRX) is critical for optimal function of the photosynthetic apparatus. Thus, the objective of the present study was the analysis of the interaction of NTRC and 2-Cys PRX in vivo and the identification of proteins interacting with them with the aim of identifying chloroplast processes regulated by this redox system. To assess this objective, we generated Arabidopsis thaliana plants expressing either an NTRC-tandem affinity purification (TAP)-Tag or a green fluorescent protein (GFP)-TAP-Tag, which served as a negative control. The presence of 2-Cys PRX and NTRC in complexes isolated from NTRC-TAP-Tag-expressing plants confirmed the interaction of these proteins in vivo. The identification of proteins co-purified in these complexes by MS revealed the relevance of the NTRC-2-Cys PRX system in the redox regulation of multiple chloroplast processes. The interaction of NTRC with selected targets was confirmed in vivo by bimolecular fluorescence complementation (BiFC) assays.
Collapse
Affiliation(s)
- Maricruz González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Víctor Delgado-Requerey
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Julia Ferrández
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | | | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
- Correspondence:
| |
Collapse
|
28
|
Yoshida K, Hisabori T. Simple Method to Determine Protein Redox State in Arabidopsis thaliana. Bio Protoc 2019; 9:e3250. [PMID: 33654775 DOI: 10.21769/bioprotoc.3250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/27/2019] [Accepted: 04/29/2019] [Indexed: 11/02/2022] Open
Abstract
Thiol-based redox regulation is a posttranslational protein modification that plays a key role in many biological aspects. To understand its regulatory functions, we need a method to directly assess protein redox state in vivo. Here we present a simple procedure to determine protein redox state in a model plant Arabidopsis thaliana. Our method consists of three key steps: (i) redox fixation by rapidly freezing plant tissues in the liquid nitrogen, (ii) labeling of thiol groups with the maleimide reagent, and (iii) protein detection by Western blotting. The redox state of a specific or given protein can be discriminated by the mobility change on SDS-PAGE with high sensitivity. This method provides a novel strategy to dissect the working dynamics of the redox-regulatory system in plants.
Collapse
Affiliation(s)
- Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
29
|
Nikkanen L, Guinea Diaz M, Toivola J, Tiwari A, Rintamäki E. Multilevel regulation of non-photochemical quenching and state transitions by chloroplast NADPH-dependent thioredoxin reductase. PHYSIOLOGIA PLANTARUM 2019; 166:211-225. [PMID: 30578537 PMCID: PMC6850073 DOI: 10.1111/ppl.12914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 05/07/2023]
Abstract
In natural growth habitats, plants face constant, unpredictable changes in light conditions. To avoid damage to the photosynthetic apparatus on thylakoid membranes in chloroplasts, and to avoid wasteful reactions, it is crucial to maintain a redox balance both within the components of photosynthetic electron transfer chain and between the light reactions and stromal carbon metabolism under fluctuating light conditions. This requires coordinated function of the photoprotective and regulatory mechanisms, such as non-photochemical quenching (NPQ) and reversible redistribution of excitation energy between photosystem II (PSII) and photosystem I (PSI). In this paper, we show that the NADPH-dependent chloroplast thioredoxin system (NTRC) is involved in the control of the activation of these mechanisms. In plants with altered NTRC content, the strict correlation between lumenal pH and NPQ is partially lost. We propose that NTRC contributes to downregulation of a slow-relaxing constituent of NPQ, whose induction is independent of lumenal acidification. Additionally, overexpression of NTRC enhances the ability to adjust the excitation balance between PSII and PSI, and improves the ability to oxidize the electron transfer chain during changes in light conditions. Thiol regulation allows coupling of the electron transfer chain to the stromal redox state during these changes.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Manuel Guinea Diaz
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Jouni Toivola
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Arjun Tiwari
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| | - Eevi Rintamäki
- Molecular Plant Biology, Department of BiochemistryUniversity of TurkuTurkuFinland
| |
Collapse
|
30
|
Nikkanen L, Rintamäki E. Chloroplast thioredoxin systems dynamically regulate photosynthesis in plants. Biochem J 2019; 476:1159-1172. [PMID: 30988137 PMCID: PMC6463390 DOI: 10.1042/bcj20180707] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/18/2022]
Abstract
Photosynthesis is a highly regulated process in photoautotrophic cells. The main goal of the regulation is to keep the basic photosynthetic reactions, i.e. capturing light energy, conversion into chemical energy and production of carbohydrates, in balance. The rationale behind the evolution of strong regulation mechanisms is to keep photosynthesis functional under all conditions encountered by sessile plants during their lifetimes. The regulatory mechanisms may, however, also impair photosynthetic efficiency by overriding the photosynthetic reactions in controlled environments like crop fields or bioreactors, where light energy could be used for production of sugars instead of dissipation as heat and down-regulation of carbon fixation. The plant chloroplast has a high number of regulatory proteins called thioredoxins (TRX), which control the function of chloroplasts from biogenesis and assembly of chloroplast machinery to light and carbon fixation reactions as well as photoprotective mechanisms. Here, we review the current knowledge of regulation of photosynthesis by chloroplast TRXs and assess the prospect of improving plant photosynthetic efficiency by modification of chloroplast thioredoxin systems.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Eevi Rintamäki
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
31
|
Da Fonseca-Pereira P, Daloso DM, Gago J, Nunes-Nesi A, Araújo WL. On the role of the plant mitochondrial thioredoxin system during abiotic stress. PLANT SIGNALING & BEHAVIOR 2019; 14:1592536. [PMID: 30885041 PMCID: PMC6546141 DOI: 10.1080/15592324.2019.1592536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 05/26/2023]
Abstract
Thiol-disulfide redox exchanges are widely distributed modifications of great importance for metabolic regulation in living cells. In general, the formation of disulfide bonds is controlled by thioredoxins (TRXs), ubiquitous proteins with two redox-active cysteine residues separated by a pair of amino acids. While the function of plastidial TRXs has been extensively studied, the role of the mitochondrial TRX system is much less well understood. Recent studies have demonstrated that the mitochondrial TRXs are required for the proper functioning of the major metabolic pathways, including stomatal function and antioxidant metabolism under sub-optimal conditions including drought and salinity. Furthermore, inactivation of mitochondrial TRX system leads to metabolite adjustments of both primary and secondary metabolism following drought episodes in arabidopsis, and makes the plants more resistant to salt stress. Here we discuss the implications of these findings, which clearly open up several research avenues to achieve a full understanding of the redox control of metabolism under environmental constraining conditions.
Collapse
Affiliation(s)
- Paula Da Fonseca-Pereira
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Danilo M. Daloso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brasil
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, University of the Balearic Islands, Universitat de les Illes Balears/Institute of Agro-Environmental and Water Economy Research – INAGEA Carretera de Valldemossa, Palma de Mallorca, Spain
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L. Araújo
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
32
|
Simkin AJ, López-Calcagno PE, Raines CA. Feeding the world: improving photosynthetic efficiency for sustainable crop production. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1119-1140. [PMID: 30772919 PMCID: PMC6395887 DOI: 10.1093/jxb/ery445] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/27/2018] [Indexed: 05/18/2023]
Abstract
A number of recent studies have provided strong support demonstrating that improving the photosynthetic processes through genetic engineering can provide an avenue to improve yield potential. The major focus of this review is on improvement of the Calvin-Benson cycle and electron transport. Consideration is also given to how altering regulatory process may provide an additional route to increase photosynthetic efficiency. Here we summarize some of the recent successes that have been observed through genetic manipulation of photosynthesis, showing that, in both the glasshouse and the field, yield can be increased by >40%. These results provide a clear demonstration of the potential for increasing yield through improvements in photosynthesis. In the final section, we consider the need to stack improvement in photosynthetic traits with traits that target the yield gap in order to provide robust germplasm for different crops across the globe.
Collapse
Affiliation(s)
- Andrew J Simkin
- NIAB EMR, New Road, East Malling, Kent, UK
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| | | | - Christine A Raines
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| |
Collapse
|
33
|
The increase of photosynthetic carbon assimilation as a mechanism of adaptation to low temperature in Lotus japonicus. Sci Rep 2019; 9:863. [PMID: 30696867 PMCID: PMC6351645 DOI: 10.1038/s41598-018-37165-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/25/2018] [Indexed: 11/15/2022] Open
Abstract
Low temperature is one of the most important factors affecting plant growth, it causes an stress that directly alters the photosynthetic process and leads to photoinhibition when severe enough. In order to address the photosynthetic acclimation response of Lotus japonicus to cold stress, two ecotypes with contrasting tolerance (MG-1 and MG-20) were studied. Their chloroplast responses were addressed after 7 days under low temperature through different strategies. Proteomic analysis showed changes in photosynthetic and carbon metabolism proteins due to stress, but differentially between ecotypes. In the sensitive MG-1 ecotype acclimation seems to be related to energy dissipation in photosystems, while an increase in photosynthetic carbon assimilation as an electron sink, seems to be preponderant in the tolerant MG-20 ecotype. Chloroplast ROS generation was higher under low temperature conditions only in the MG-1 ecotype. These data are consistent with alterations in the thylakoid membranes in the sensitive ecotype. However, the accumulation of starch granules observed in the tolerant MG-20 ecotype indicates the maintenance of sugar metabolism under cold conditions. Altogether, our data suggest that different acclimation strategies and contrasting chloroplast redox imbalance could account for the differential cold stress response of both L. japonicus ecotypes.
Collapse
|
34
|
Cejudo FJ, Ojeda V, Delgado-Requerey V, González M, Pérez-Ruiz JM. Chloroplast Redox Regulatory Mechanisms in Plant Adaptation to Light and Darkness. FRONTIERS IN PLANT SCIENCE 2019; 10:380. [PMID: 31019520 PMCID: PMC6458286 DOI: 10.3389/fpls.2019.00380] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/12/2019] [Indexed: 05/18/2023]
Abstract
Light is probably the most important environmental stimulus for plant development. As sessile organisms, plants have developed regulatory mechanisms that allow the rapid adaptation of their metabolism to changes in light availability. Redox regulation based on disulfide-dithiol exchange constitutes a rapid and reversible post-translational modification, which affects protein conformation and activity. This regulatory mechanism was initially discovered in chloroplasts when it was identified that enzymes of the Calvin-Benson cycle (CBC) are reduced and active during the day and become rapidly inactivated by oxidation in the dark. At present, the large number of redox-sensitive proteins identified in chloroplasts extend redox regulation far beyond the CBC. The classic pathway of redox regulation in chloroplasts establishes that ferredoxin (Fdx) reduced by the photosynthetic electron transport chain fuels reducing equivalents to the large set of thioredoxins (Trxs) of this organelle via the activity of a Fdx-dependent Trx reductase (FTR), hence linking redox regulation to light. In addition, chloroplasts harbor an NADPH-dependent Trx reductase with a joint Trx domain, termed NTRC. The presence in chloroplasts of this NADPH-dependent redox system raises the question of the functional relationship between NTRC and the Fdx-FTR-Trx pathways. Here, we update the current knowledge of these two redox systems focusing on recent evidence showing their functional interrelationship through the action of the thiol-dependent peroxidase, 2-Cys peroxiredoxin (2-Cys Prx). The relevant role of 2-Cys Prxs in chloroplast redox homeostasis suggests that hydrogen peroxide may exert a key function to control the redox state of stromal enzymes. Indeed, recent reports have shown the participation of 2-Cys Prxs in enzyme oxidation in the dark, thus providing an explanation for the long-lasting question of photosynthesis deactivation during the light-dark transition.
Collapse
|
35
|
Chen X, Yang B, Huang W, Wang T, Li Y, Zhong Z, Yang L, Li S, Tian J. Comparative Proteomic Analysis Reveals Elevated Capacity for Photosynthesis in Polyphenol Oxidase Expression-Silenced Clematis terniflora DC. Leaves. Int J Mol Sci 2018; 19:E3897. [PMID: 30563128 PMCID: PMC6321541 DOI: 10.3390/ijms19123897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 12/15/2022] Open
Abstract
Polyphenol oxidase (PPO) catalyzes the o-hydroxylation of monophenols and oxidation of o-diphenols to quinones. Although the effects of PPO on plant physiology were recently proposed, little has been done to explore the inherent molecular mechanisms. To explore the in vivo physiological functions of PPO, a model with decreased PPO expression and enzymatic activity was constructed on Clematis terniflora DC. using virus-induced gene silencing (VIGS) technology. Proteomics was performed to identify the differentially expressed proteins (DEPs) in the model (VC) and empty vector-carrying plants (VV) untreated or exposed to high levels of UV-B and dark (HUV-B+D). Following integration, it was concluded that the DEPs mainly functioned in photosynthesis, glycolysis, and redox in the PPO silence plants. Mapman analysis showed that the DEPs were mainly involved in light reaction and Calvin cycle in photosynthesis. Further analysis illustrated that the expression level of adenosine triphosphate (ATP) synthase, the content of chlorophyll, and the photosynthesis rate were increased in VC plants compared to VV plants pre- and post HUV-B+D. These results indicate that the silence of PPO elevated the plant photosynthesis by activating the glycolysis process, regulating Calvin cycle and providing ATP for energy metabolism. This study provides a prospective approach for increasing crop yield in agricultural production.
Collapse
Affiliation(s)
- Xi Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Bingxian Yang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Wei Huang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Tantan Wang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Yaohan Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Zhuoheng Zhong
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
| | - Lin Yang
- Zhuhai Weilan Pharmaceutical Co., Ltd., Zhuhai 519030, China.
| | - Shouxin Li
- Changshu Qiushi Technology Co., Ltd., Suzhou 215500, China.
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Zheda Road 38, Hangzhou 310027, China.
- Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
36
|
Wang P, Chen X, Xu X, Lu C, Zhang W, Zhao FJ. ARSENATE INDUCED CHLOROSIS 1/ TRANSLOCON AT THE OUTER ENVOLOPE MEMBRANE OF CHLOROPLASTS 132 Protects Chloroplasts from Arsenic Toxicity. PLANT PHYSIOLOGY 2018; 178:1568-1583. [PMID: 30309965 PMCID: PMC6288752 DOI: 10.1104/pp.18.01042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/03/2018] [Indexed: 05/14/2023]
Abstract
Arsenic (As) is highly toxic to plants and detoxified primarily through complexation with phytochelatins (PCs) and other thiol compounds. To understand the mechanisms of As toxicity and detoxification beyond PCs, we isolated an arsenate-sensitive mutant of Arabidopsis (Arabidopsis thaliana), arsenate induced chlorosis1 (aic1), in the background of the PC synthase-defective mutant cadmium-sensitive1-3 (cad1-3). Under arsenate stress, aic1 cad1-3 showed larger decreases in chlorophyll content and the number and size of chloroplasts than cad1-3 and a severely distorted chloroplast structure. The aic1 single mutant also was more sensitive to arsenate than the wild type (Columbia-0). As concentrations in the roots, shoots, and chloroplasts were similar between aic1 cad1-3 and cad1-3 Using genome resequencing and complementation, TRANSLOCON AT THE OUTER ENVOLOPE MEMBRANE OF CHLOROPLAST132 (TOC132) was identified as the mutant gene, which encodes a translocon protein involved in the import of preproteins from the cytoplasm into the chloroplasts. Proteomic analysis showed that the proteome of aic1 cad1-3 chloroplasts was more affected by arsenate stress than that of cad1-3 A number of proteins related to chloroplast ribosomes, photosynthesis, compound synthesis, and thioredoxin systems were less abundant in aic1 cad1-3 than in cad1-3 under arsenate stress. Our results indicate that chloroplasts are a sensitive target of As toxicity and that AIC1/Toc132 plays an important role in protecting chloroplasts from As toxicity.
Collapse
Affiliation(s)
- Peitong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenni Lu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
37
|
Nikkanen L, Toivola J, Trotta A, Diaz MG, Tikkanen M, Aro E, Rintamäki E. Regulation of cyclic electron flow by chloroplast NADPH-dependent thioredoxin system. PLANT DIRECT 2018; 2:e00093. [PMID: 31245694 PMCID: PMC6508795 DOI: 10.1002/pld3.93] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/12/2018] [Accepted: 10/15/2018] [Indexed: 05/18/2023]
Abstract
Linear electron transport in the thylakoid membrane drives photosynthetic NADPH and ATP production, while cyclic electron flow (CEF) around photosystem I only promotes the translocation of protons from stroma to thylakoid lumen. The chloroplast NADH dehydrogenase-like complex (NDH) participates in one CEF route transferring electrons from ferredoxin back to the plastoquinone pool with concomitant proton pumping to the lumen. CEF has been proposed to balance the ratio of ATP/NADPH production and to control the redox poise particularly in fluctuating light conditions, but the mechanisms regulating the NDH complex remain unknown. We have investigated potential regulation of the CEF pathways by the chloroplast NADPH-thioredoxin reductase (NTRC) in vivo by using an Arabidopsis knockout line of NTRC as well as lines overexpressing NTRC. Here, we present biochemical and biophysical evidence showing that NTRC stimulates the activity of NDH-dependent CEF and is involved in the regulation of generation of proton motive force, thylakoid conductivity to protons, and redox balance between the thylakoid electron transfer chain and the stroma during changes in light conditions. Furthermore, protein-protein interaction assays suggest a putative thioredoxin-target site in close proximity to the ferredoxin-binding domain of NDH, thus providing a plausible mechanism for redox regulation of the NDH ferredoxin:plastoquinone oxidoreductase activity.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Jouni Toivola
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Andrea Trotta
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Manuel Guinea Diaz
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Mikko Tikkanen
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Eva‐Mari Aro
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| | - Eevi Rintamäki
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFinland
| |
Collapse
|
38
|
Towards Initial Indications for a Thiol-Based Redox Control of Arabidopsis 5-Aminolevulinic Acid Dehydratase. Antioxidants (Basel) 2018; 7:antiox7110152. [PMID: 30384439 PMCID: PMC6262466 DOI: 10.3390/antiox7110152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 12/15/2022] Open
Abstract
Thiol-based redox control is one of the important posttranslational mechanisms of the tetrapyrrole biosynthesis pathway. Many enzymes of the pathway have been shown to interact with thioredoxin (TRX) and Nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductase C (NTRC). We examined the redox-dependency of 5-aminolevulinic acid dehydratase (ALAD), which catalyzed the conjugation of two 5-aminolevulinic acid (ALA) molecules to porphobilinogen. ALAD interacted with TRX f, TRX m and NTRC in chloroplasts. Consequently, less ALAD protein accumulated in the trx f1, ntrc and trx f1/ntrc mutants compared to wild-type control resulting in decreased ALAD activity. In a polyacrylamide gel under non-reducing conditions, ALAD monomers turned out to be present in reduced and two oxidized forms. The reduced and oxidized forms of ALAD differed in their catalytic activity. The addition of TRX stimulated ALAD activity. From our results it was concluded that (i) deficiency of the reducing power mainly affected the in planta stability of ALAD; and (ii) the reduced form of ALAD displayed increased enzymatic activity.
Collapse
|
39
|
Wu W, Liu LL, Yang T, Wang JH, Wang JY, Lv P, Yan YC. Gene expression analysis reveals function of TERF1 in plastid-nucleus retrograde signaling under drought stress conditions. BIOLOGIA PLANTARUM 2018. [PMID: 0 DOI: 10.1007/s10535-018-0771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
40
|
Rajaraman J, Douchkov D, Lück S, Hensel G, Nowara D, Pogoda M, Rutten T, Meitzel T, Brassac J, Höfle C, Hückelhoven R, Klinkenberg J, Trujillo M, Bauer E, Schmutzer T, Himmelbach A, Mascher M, Lazzari B, Stein N, Kumlehn J, Schweizer P. Evolutionarily conserved partial gene duplication in the Triticeae tribe of grasses confers pathogen resistance. Genome Biol 2018; 19:116. [PMID: 30111359 PMCID: PMC6092874 DOI: 10.1186/s13059-018-1472-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/04/2018] [Indexed: 11/11/2022] Open
Abstract
Background The large and highly repetitive genomes of the cultivated species Hordeum vulgare (barley), Triticum aestivum (wheat), and Secale cereale (rye) belonging to the Triticeae tribe of grasses appear to be particularly rich in gene-like sequences including partial duplicates. Most of them have been classified as putative pseudogenes. In this study we employ transient and stable gene silencing- and over-expression systems in barley to study the function of HvARM1 (for H. vulgare Armadillo 1), a partial gene duplicate of the U-box/armadillo-repeat E3 ligase HvPUB15 (for H. vulgare Plant U-Box 15). Results The partial ARM1 gene is derived from a gene-duplication event in a common ancestor of the Triticeae and contributes to quantitative host as well as nonhost resistance to the biotrophic powdery mildew fungus Blumeria graminis. In barley, allelic variants of HvARM1 but not of HvPUB15 are significantly associated with levels of powdery mildew infection. Both HvPUB15 and HvARM1 proteins interact in yeast and plant cells with the susceptibility-related, plastid-localized barley homologs of THF1 (for Thylakoid formation 1) and of ClpS1 (for Clp-protease adaptor S1) of Arabidopsis thaliana. A genome-wide scan for partial gene duplicates reveals further events in barley resulting in stress-regulated, potentially neo-functionalized, genes. Conclusion The results suggest neo-functionalization of the partial gene copy HvARM1 increases resistance against powdery mildew infection. It further links plastid function with susceptibility to biotrophic pathogen attack. These findings shed new light on a novel mechanism to employ partial duplication of protein-protein interaction domains to facilitate the expansion of immune signaling networks. Electronic supplementary material The online version of this article (10.1186/s13059-018-1472-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeyaraman Rajaraman
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany.
| | - Dimitar Douchkov
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany.
| | - Stefanie Lück
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Götz Hensel
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Daniela Nowara
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Maria Pogoda
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Twan Rutten
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Tobias Meitzel
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Jonathan Brassac
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Caroline Höfle
- Technische Universität München, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Ralph Hückelhoven
- Technische Universität München, Emil-Ramann-Straße 2, D-85354, Freising, Germany
| | - Jörn Klinkenberg
- Leibniz Institut für Pflanzenbiochemie, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Marco Trujillo
- Leibniz Institut für Pflanzenbiochemie, Weinberg 3, D-06120, Halle (Saale), Germany.,Albert-Ludwigs-Universität Freiburg, Institut für Biologie II, Zellbiologie, D-79104, Freiburg, Germany
| | - Eva Bauer
- Technische Universität München, Liesel-Beckmann-Straße 2, D-85354, Freising, Germany
| | - Thomas Schmutzer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Martin Mascher
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Barbara Lazzari
- Parco Technologico Padano, Via Einstein, Loc. Cascina Codazza, 26900, Lodi, Italy
| | - Nils Stein
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| | - Patrick Schweizer
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK Gatersleben), Corrensstrasse 3, D-06466, Stadt Seeland, Germany
| |
Collapse
|
41
|
Nikkanen L, Toivola J, Diaz MG, Rintamäki E. Chloroplast thioredoxin systems: prospects for improving photosynthesis. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0474. [PMID: 28808108 PMCID: PMC5566889 DOI: 10.1098/rstb.2016.0474] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 01/07/2023] Open
Abstract
Thioredoxins (TRXs) are protein oxidoreductases that control the structure and function of cellular proteins by cleavage of a disulphide bond between the side chains of two cysteine residues. Oxidized thioredoxins are reactivated by thioredoxin reductases (TR) and a TR-dependent reduction of TRXs is called a thioredoxin system. Thiol-based redox regulation is an especially important mechanism to control chloroplast proteins involved in biogenesis, in regulation of light harvesting and distribution of light energy between photosystems, in photosynthetic carbon fixation and other biosynthetic pathways, and in stress responses of plants. Of the two plant plastid thioredoxin systems, the ferredoxin-dependent system relays reducing equivalents from photosystem I via ferredoxin and ferredoxin-thioredoxin reductase (FTR) to chloroplast proteins, while NADPH-dependent thioredoxin reductase (NTRC) forms a complete thioredoxin system including both reductase and thioredoxin domains in a single polypeptide. Chloroplast thioredoxins transmit environmental light signals to biochemical reactions, which allows fine tuning of photosynthetic processes in response to changing environmental conditions. In this paper we focus on the recent reports on specificity and networking of chloroplast thioredoxin systems and evaluate the prospect of improving photosynthetic performance by modifying the activity of thiol regulators in plants. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Jouni Toivola
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Manuel Guinea Diaz
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| | - Eevi Rintamäki
- Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
42
|
Da Q, Sun T, Wang M, Jin H, Li M, Feng D, Wang J, Wang HB, Liu B. M-type thioredoxins are involved in the xanthophyll cycle and proton motive force to alter NPQ under low-light conditions in Arabidopsis. PLANT CELL REPORTS 2018; 37:279-291. [PMID: 29080907 DOI: 10.1007/s00299-017-2229-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
M-type thioredoxins are required to regulate zeaxanthin epoxidase activity and to maintain the steady-state level of the proton motive force, thereby influencing NPQ properties under low-light conditions in Arabidopsis. Non-photochemical quenching (NPQ) helps protect photosynthetic organisms from photooxidative damage via the non-radiative dissipation of energy as heat. Energy-dependent quenching (qE) is a major constituent of NPQ. However, the mechanism underlying the regulation of qE is not well understood. In this study, we demonstrate that the m-type thioredoxins TRX-m1, TRX-m2, and TRX-m4 (TRX-ms) interact with the xanthophyll cycle enzyme zeaxanthin epoxidase (ZE) and are required for maintaining the redox-dependent stabilization of ZE by regulating its intermolecular disulfide bridges. Reduced ZE activity and accumulated zeaxanthin levels were observed under TRX-ms deficiency. Furthermore, concurrent deficiency of TRX-ms resulted in a significant increase in proton motive force (pmf) and acidification of the thylakoid lumen under low irradiance, perhaps due to the significantly reduced ATP synthase activity under TRX-ms deficiency. The increased pmf, combined with acidification of the thylakoid lumen and the accumulation of zeaxanthin, ultimately contribute to the elevated stable qE in VIGS-TRX-m2m4/m1 plants under low-light conditions. Taken together, these results indicate that TRX-ms are involved in regulating NPQ-dependent photoprotection in Arabidopsis.
Collapse
Affiliation(s)
- Qingen Da
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Ting Sun
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Menglong Wang
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Honglei Jin
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Mengshu Li
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Dongru Feng
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Jinfa Wang
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Hong-Bin Wang
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Bing Liu
- State Key Laboratory of Biocontrol and Collaborative Innovation Center of Genetics and Development, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China.
| |
Collapse
|
43
|
NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Proc Natl Acad Sci U S A 2017; 114:12069-12074. [PMID: 29078290 PMCID: PMC5692536 DOI: 10.1073/pnas.1706003114] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Chloroplasts harbor a complex redox network formed by two systems, the FTR- thioredoxins (Trxs), which relies on photoreduced ferredoxin (Fd), and the NADPH-dependent Trx reductase C NTRC. Thus, an important issue in chloroplast biology is to establish the relationship between these redox pathways. Here we propose that the Fd-FTR-Trxs and NTRC redox systems are integrated via the redox balance of 2-Cys peroxiredoxins (Prxs), which therefore has a key role in chloroplast function. NTRC controls the redox balance of 2-Cys Prxs, which maintains the reducing capacity of the pool of chloroplast Trxs and, consequently, proper regulation of photosynthetic carbon assimilation enzymes. Therefore, redox regulation of chloroplast enzymes and hydrogen peroxide reduction are linked by the action of the NTRC-2-Cys Prxs system. Thiol-dependent redox regulation allows the rapid adaptation of chloroplast function to unpredictable changes in light intensity. Traditionally, it has been considered that chloroplast redox regulation relies on photosynthetically reduced ferredoxin (Fd), thioredoxins (Trxs), and an Fd-dependent Trx reductase (FTR), the Fd-FTR-Trxs system, which links redox regulation to light. More recently, a plastid-localized NADPH-dependent Trx reductase (NTR) with a joint Trx domain, termed NTRC, was identified. NTRC efficiently reduces 2-Cys peroxiredoxins (Prxs), thus having antioxidant function, but also participates in redox regulation of metabolic pathways previously established to be regulated by Trxs. Thus, the NTRC, 2-Cys Prxs, and Fd-FTR-Trxs redox systems may act concertedly, but the nature of the relationship between them is unknown. Here we show that decreased levels of 2-Cys Prxs suppress the phenotype of the Arabidopsis thaliana ntrc KO mutant. The excess of oxidized 2-Cys Prxs in NTRC-deficient plants drains reducing power from chloroplast Trxs, which results in low efficiency of light energy utilization and impaired redox regulation of Calvin–Benson cycle enzymes. Moreover, the dramatic phenotype of the ntrc-trxf1f2 triple mutant, lacking NTRC and f-type Trxs, was also suppressed by decreased 2-Cys Prxs contents, as the ntrc-trxf1f2-Δ2cp mutant partially recovered the efficiency of light energy utilization and exhibited WT rate of CO2 fixation and growth phenotype. The suppressor phenotype was not caused by compensatory effects of additional chloroplast antioxidant systems. It is proposed that the Fd-FTR-Trx and NTRC redox systems are linked by the redox balance of 2-Cys Prxs, which is crucial for chloroplast function.
Collapse
|
44
|
Da Q, Wang P, Wang M, Sun T, Jin H, Liu B, Wang J, Grimm B, Wang HB. Thioredoxin and NADPH-Dependent Thioredoxin Reductase C Regulation of Tetrapyrrole Biosynthesis. PLANT PHYSIOLOGY 2017; 175:652-666. [PMID: 28827456 PMCID: PMC5619880 DOI: 10.1104/pp.16.01500] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/18/2017] [Indexed: 05/23/2023]
Abstract
In chloroplasts, thioredoxin (TRX) isoforms and NADPH-dependent thioredoxin reductase C (NTRC) act as redox regulatory factors involved in multiple plastid biogenesis and metabolic processes. To date, less is known about the functional coordination between TRXs and NTRC in chlorophyll biosynthesis. In this study, we aimed to explore the potential functions of TRX m and NTRC in the regulation of the tetrapyrrole biosynthesis (TBS) pathway. Silencing of three genes, TRX m1, TRX m2, and TRX m4 (TRX ms), led to pale-green leaves, a significantly reduced 5-aminolevulinic acid (ALA)-synthesizing capacity, and reduced accumulation of chlorophyll and its metabolic intermediates in Arabidopsis (Arabidopsis thaliana). The contents of ALA dehydratase, protoporphyrinogen IX oxidase, the I subunit of Mg-chelatase, Mg-protoporphyrin IX methyltransferase (CHLM), and NADPH-protochlorophyllide oxidoreductase were decreased in triple TRX m-silenced seedlings compared with the wild type, although the transcript levels of the corresponding genes were not altered significantly. Protein-protein interaction analyses revealed a physical interaction between the TRX m isoforms and CHLM. 4-Acetoamido-4-maleimidylstilbene-2,2-disulfonate labeling showed the regulatory impact of TRX ms on the CHLM redox status. Since CHLM also is regulated by NTRC (Richter et al., 2013), we assessed the concurrent functions of TRX m and NTRC in the control of CHLM. Combined deficiencies of three TRX m isoforms and NTRC led to a cumulative decrease in leaf pigmentation, TBS intermediate contents, ALA synthesis rate, and CHLM activity. We discuss the coordinated roles of TRX m and NTRC in the redox control of CHLM stability with its corollary activity in the TBS pathway.
Collapse
Affiliation(s)
- Qingen Da
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Peng Wang
- Humboldt-University Berlin, Institute of Biology, Plant Physiology, 10115 Berlin, Germany
| | - Menglong Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Ting Sun
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Honglei Jin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Bing Liu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Jinfa Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | - Bernhard Grimm
- Humboldt-University Berlin, Institute of Biology, Plant Physiology, 10115 Berlin, Germany
| | - Hong-Bin Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| |
Collapse
|
45
|
Ojeda V, Nájera VA, González M, Pérez-Ruiz JM, Cejudo FJ. Photosynthetic activity of cotyledons is critical during post-germinative growth and seedling establishment. PLANT SIGNALING & BEHAVIOR 2017; 12:e1347244. [PMID: 28692378 PMCID: PMC5640197 DOI: 10.1080/15592324.2017.1347244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 05/18/2023]
Abstract
Thioredoxins (Trxs) play a relevant role in thiol-dependent redox regulation, which allows the rapid adaptation of chloroplast metabolism to unpredictable environmental conditions. In chloroplasts, Trxs use reducing equivalents provided by photoreduced ferredoxin (Fdx) via the action of a ferredoxin-thioredoxin reductase (FTR), thus linking redox regulation to light. In addition, these organelles contain an NADPH-thioredoxin reductase, NTRC, with a Trx domain at the C-terminus. NTRC efficiently reduces 2-Cys peroxiredoxins (Prxs), hence having antioxidant function. However, NTRC also participates in the redox regulation of processes, such as starch and chlorophyll biosynthesis, which are known to be regulated by Trxs. Thus, the question arising is whether there is a cross-talk between the 2 redox systems. Arabidopsis mutants simultaneously devoid of NTRC and Trx x or Trxs f show a dramatic growth inhibition phenotype, indicating that NTRC is required for the function of these unrelated Trxs. Remarkably, both the ntrc-trxx double mutant and, to a higher extent, the ntrc-trxf1f2 triple mutant show high mortality at the seedling stage, which is rescued by sucrose. These findings show the relevant role of redox regulation for chloroplast performance and uncover the key function of cotyledons chloroplasts at the transition to autotrophic metabolism during seedling establishment.
Collapse
Affiliation(s)
- Valle Ojeda
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio, Spain
| | - Victoria A. Nájera
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio, Spain
| | - Maricruz González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio, Spain
| | - Juan M. Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio, Spain
| | - Francisco J. Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio, Spain
- CONTACT Francisco J. Cejudo Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio, 49, 41092-Sevilla, Spain
| |
Collapse
|
46
|
Ojeda V, Pérez-Ruiz JM, González M, Nájera VA, Sahrawy M, Serrato AJ, Geigenberger P, Cejudo FJ. NADPH Thioredoxin Reductase C and Thioredoxins Act Concertedly in Seedling Development. PLANT PHYSIOLOGY 2017; 174:1436-1448. [PMID: 28500266 PMCID: PMC5490916 DOI: 10.1104/pp.17.00481] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/10/2017] [Indexed: 05/07/2023]
Abstract
Thiol-dependent redox regulation of enzyme activity plays a central role in the rapid acclimation of chloroplast metabolism to ever-fluctuating light availability. This regulatory mechanism relies on ferredoxin reduced by the photosynthetic electron transport chain, which fuels reducing power to thioredoxins (Trxs) via a ferredoxin-dependent Trx reductase. In addition, chloroplasts harbor an NADPH-dependent Trx reductase, which has a joint Trx domain at the carboxyl terminus, termed NTRC. Thus, a relevant issue concerning chloroplast function is to establish the relationship between these two redox systems and its impact on plant development. To address this issue, we generated Arabidopsis (Arabidopsis thaliana) mutants combining the deficiency of NTRC with those of Trxs f, which participate in metabolic redox regulation, and that of Trx x, which has antioxidant function. The ntrc-trxf1f2 and, to a lower extent, ntrc-trxx mutants showed severe growth-retarded phenotypes, decreased photosynthesis performance, and almost abolished light-dependent reduction of fructose-1,6-bisphosphatase. Moreover, the combined deficiency of both redox systems provokes aberrant chloroplast ultrastructure. Remarkably, both the ntrc-trxf1f2 and ntrc-trxx mutants showed high mortality at the seedling stage, which was overcome by the addition of an exogenous carbon source. Based on these results, we propose that NTRC plays a pivotal role in chloroplast redox regulation, being necessary for the activity of diverse Trxs with unrelated functions. The interaction between the two thiol redox systems is indispensable to sustain photosynthesis performed by cotyledons chloroplasts, which is essential for early plant development.
Collapse
Affiliation(s)
- Valle Ojeda
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
| | - Maricruz González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
| | - Victoria A Nájera
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
| | - Mariam Sahrawy
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18160 Granada, Spain
| | - Antonio J Serrato
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18160 Granada, Spain
| | - Peter Geigenberger
- Ludwig-Maximilians-Universität München, Department Biologie I, 82152 Martinsried, Germany
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain
| |
Collapse
|
47
|
Griffiths CA, Paul MJ, Foyer CH. Metabolite transport and associated sugar signalling systems underpinning source/sink interactions. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:1715-25. [PMID: 27487250 PMCID: PMC5001786 DOI: 10.1016/j.bbabio.2016.07.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/06/2016] [Accepted: 07/23/2016] [Indexed: 11/19/2022]
Abstract
Metabolite transport between organelles, cells and source and sink tissues not only enables pathway co-ordination but it also facilitates whole plant communication, particularly in the transmission of information concerning resource availability. Carbon assimilation is co-ordinated with nitrogen assimilation to ensure that the building blocks of biomass production, amino acids and carbon skeletons, are available at the required amounts and stoichiometry, with associated transport processes making certain that these essential resources are transported from their sites of synthesis to those of utilisation. Of the many possible posttranslational mechanisms that might participate in efficient co-ordination of metabolism and transport only reversible thiol-disulphide exchange mechanisms have been described in detail. Sucrose and trehalose metabolism are intertwined in the signalling hub that ensures appropriate resource allocation to drive growth and development under optimal and stress conditions, with trehalose-6-phosphate acting as an important signal for sucrose availability. The formidable suite of plant metabolite transporters provides enormous flexibility and adaptability in inter-pathway coordination and source-sink interactions. Focussing on the carbon metabolism network, we highlight the functions of different transporter families, and the important of thioredoxins in the metabolic dialogue between source and sink tissues. In addition, we address how these systems can be tailored for crop improvement.
Collapse
Affiliation(s)
- Cara A Griffiths
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Matthew J Paul
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
48
|
Characteristics of Three Thioredoxin Genes and Their Role in Chilling Tolerance of Harvested Banana Fruit. Int J Mol Sci 2016; 17:ijms17091526. [PMID: 27618038 PMCID: PMC5037801 DOI: 10.3390/ijms17091526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/20/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022] Open
Abstract
Thioredoxins (Trxs) are small proteins with a conserved redox active site WCGPC and are involved in a wide range of cellular redox processes. However, little information on the role of Trx in regulating low-temperature stress of harvested fruit is available. In this study, three full-length Trx cDNAs, designated MaTrx6, MaTrx9 and MaTrx12, were cloned from banana (Musa acuminata) fruit. Phylogenetic analysis and protein sequence alignments showed that MaTrx6 was grouped to h2 type with a typical active site of WCGPC, whereas MaTrx9 and MaTrx12 were assigned to atypical cys his-rich Trxs (ACHT) and h3 type with atypical active sites of GCAGC and WCSPC, respectively. Subcellular localization indicated that MaTrx6 and MaTrx12 were located in the plasma membrane and cytoplasm, respectively, whereas MaTrx9 showed a dual cytoplasmic and chloroplast localization. Application of ethylene induced chilling tolerance of harvested banana fruit, whereas 1-MCP, an inhibitor of ethylene perception, aggravated the development of chilling injury. RT-qPCR analysis showed that expression of MaTrx12 was up-regulated and down-regulated in ethylene- and 1-MCP-treated banana fruit at low temperature, respectively. Furthermore, heterologous expression of MaTrx12 in cytoplasmic Trx-deficient Saccharomyces cerevisiae strain increased the viability of the strain under H₂O₂. These results suggest that MaTrx12 plays an important role in the chilling tolerance of harvested banana fruit, possibly by regulating redox homeostasis.
Collapse
|
49
|
Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability. Proc Natl Acad Sci U S A 2016; 113:E3967-76. [PMID: 27335455 DOI: 10.1073/pnas.1604101113] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The thiol-based redox regulation system is believed to adjust chloroplast functions in response to changes in light environments. A redox cascade via the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway has been traditionally considered to serve as a transmitter of light signals to target enzymes. However, emerging data indicate that chloroplasts have a complex redox network composed of diverse redox-mediator proteins and target enzymes. Despite extensive research addressing this system, two fundamental questions are still unresolved: How are redox pathways orchestrated within chloroplasts, and why are chloroplasts endowed with a complicated redox network? In this report, we show that NADPH-Trx reductase C (NTRC) is a key redox-mediator protein responsible for regulatory functions distinct from those of the classically known FTR/Trx system. Target screening and subsequent biochemical assays indicated that NTRC and the Trx family differentially recognize their target proteins. In addition, we found that NTRC is an electron donor to Trx-z, which is a key regulator of gene expression in chloroplasts. We further demonstrate that cooperative control of chloroplast functions via the FTR/Trx and NTRC pathways is essential for plant viability. Arabidopsis double mutants impaired in FTR and NTRC expression displayed lethal phenotypes under autotrophic growth conditions. This severe growth phenotype was related to a drastic loss of photosynthetic performance. These combined results provide an expanded map of the chloroplast redox network and its biological functions.
Collapse
|
50
|
Naranjo B, Diaz-Espejo A, Lindahl M, Cejudo FJ. Type-f thioredoxins have a role in the short-term activation of carbon metabolism and their loss affects growth under short-day conditions in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1951-64. [PMID: 26842981 PMCID: PMC4783373 DOI: 10.1093/jxb/erw017] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Redox regulation plays a central role in the adaptation of chloroplast metabolism to light. Extensive biochemical analyses in vitro have identified f-type thioredoxins (Trxs) as the most important catalysts for light-dependent reduction and activation of the enzymes of the Calvin-Benson cycle. However, the precise function of type f Trxs in vivo and their impact on plant growth are still poorly known. To address this issue we have generated an Arabidopsis thaliana double knock-out mutant, termed trxf1f2, devoid of both f1 and f2 Trxs. Despite the essential function previously proposed for f-type Trxs, the visible phenotype of the trxf1f2 double mutant was virtually indistinguishable from the wild type when grown under a long-day photoperiod. However, the Trx f-deficient plants showed growth inhibition under a short-day photoperiod which was not rescued at high light intensity. The absence of f-type Trxs led to significantly lower photosynthetic electron transport rates and higher levels of non-photochemical energy quenching. Notably, the Trx f null mutant suffered from a shortage of photosystem I electron acceptors and delayed activation of carbon dioxide fixation following a dark-light transition. Two redox-regulated Calvin-Benson cycle enzymes, fructose 1,6-bisphosphatase (FBPase) and Rubisco activase, showed retarded and incomplete reduction in the double mutant upon illumination, compared with wild-type plants. These results show that the function of f-type Trxs in the rapid activation of carbon metabolism in response to light is not entirely compensated for by additional plastid redox systems, and suggest that these Trxs have an important role in the light adjustment of photosynthetic metabolism.
Collapse
Affiliation(s)
- Belén Naranjo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio, 49, 41092-Sevilla, Spain
| | - Antonio Diaz-Espejo
- Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Avda Reina Mercedes, 10, 41012-Sevilla, Spain
| | - Marika Lindahl
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio, 49, 41092-Sevilla, Spain
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio, 49, 41092-Sevilla, Spain
| |
Collapse
|