1
|
Li M, Wang M, Yang T, Xu M, Li Y, Pei Y, Tang J, Zheng Z, Sun Z, Cheng G, Li X, Li H, Wang L, Chen F. Optimized emamectin benzoate trunk injection: addressing temperature limitations for pine wilt disease control. PEST MANAGEMENT SCIENCE 2024. [PMID: 39425489 DOI: 10.1002/ps.8493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Pine wilt disease (PWD), caused by the pinewood nematode Bursaphelenchus xylophilus, poses a significant threat to global forestry, resulting in extensive economic and ecological damage. Traditional trunk injection agents (TIAs) are limited by environmental factors, such as high winter temperatures and vigorous resin flow, particularly in southern China. This study aimed to develop an ordinary temperature trunk injection agent (OTTIA) for year-round application and to evaluate its performance under high-temperature conditions in comparison to commercial TIAs. RESULTS Extensive laboratory and field tests identified N,N-Dimethylformamide (DMF) and benzyl acetate as optimal solvents and Tween-40 as an effective emulsifier for the OTTIA formulation. The new agent was fully absorbed by Pinus massoniana within 3 h at temperatures exceeding 30 °C, outperforming existing commercial agents. Treated trees maintained comparable emamectin benzoate (EB) levels but achieved lower LC90 lethal concentration values (27.65 mg L-1), indicating greater efficacy. The OTTIA provided protection against PWD for ≤360 days postinjection. CONCLUSION The development of OTTIA marks a significant advancement in PWD management, offering an effective solution for high-temperature regions and potentially transforming year-round treatment strategies. The results highlight the critical role of optimizing solvent and emulsifier combinations to enhance the efficacy and application of trunk injection agents, contributing to sustainable forest management and improved protection against PWD. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Li
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, China
- Key Laboratory of National Forestry and Grassland Administration on Prevention and Control Technology of Pine Wilt Disease, Anhui Academy of Forestry, Hefei, China
| | - Mengyao Wang
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, China
| | - Ting Yang
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, China
| | - Ming Xu
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, China
| | - Yue Li
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, China
| | - Ying Pei
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, China
| | - Jingen Tang
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, China
| | - Zhe Zheng
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, China
| | - Zhaonan Sun
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, China
| | - Guanyi Cheng
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, China
| | - Xiaojuan Li
- Key Laboratory of National Forestry and Grassland Administration on Prevention and Control Technology of Pine Wilt Disease, Anhui Academy of Forestry, Hefei, China
| | - Huan Li
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, China
- Key Laboratory of National Forestry and Grassland Administration on Prevention and Control Technology of Pine Wilt Disease, Anhui Academy of Forestry, Hefei, China
| | - Lichao Wang
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, China
| | - Fengmao Chen
- Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Lombardero LR, Truchet DM, Medici SK, Mendieta JR, Pérez DJ, Menone ML. Assessment of the Potential Phytotoxicity of Chlorpyrifos in the Wetland Macrophyte Bidens laevis (L.). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:45. [PMID: 39362965 DOI: 10.1007/s00128-024-03957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Chlorpyrifos (CPF) has been used worldwide, but its possible negative effects on macrophytes have been scarcely studied. The main goal of the present work was to assess the potential phytotoxic effects of CPF on different stages (seed and seedling) of the wetland macrophyte Bidens laevis. During the germination of seeds, stimulation of radicle growth at low concentrations of CPF (10 µg/L) and inhibition of its elongation at 80 µg/L CPF were observed. In seedlings, concentrations ≤ 160 µg/L CPF did not exhibit adverse effects on growth after 7 days of exposure, despite the decrease of photosynthetic pigments and carotenoids observed at 40 µg/L CPF compared to the control. Environmentally relevant concentrations of CPF altered neither oxidative stress biomarkers nor pigment contents in seedlings exposed for 48 h, suggesting CPF would be non-toxic to B. laevis in natural scenarios.
Collapse
Affiliation(s)
- Lucas R Lombardero
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Daniela M Truchet
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Sandra K Medici
- Fares Taie Instituto de Análisis Magallanes, 3019, Mar del Plata, Buenos Aires, 7600, Argentina
| | - Julieta R Mendieta
- Instituto de Investigaciones Biológicas (IIB, CONICET), Universidad Nacional de Mar del Plata, Dean Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina
- Comisión de Investigaciones Científica (CIC-BA), Calle 526 entre 10 y 11, La Plata, Buenos Aires, 1900, Argentina
| | - Débora J Pérez
- Instituto de Innovación Para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS), Consejo Nacional de Investigaciones Científicas y Técnicas, INTA Balcarce, Ruta Nacional 226 Km 73,5, Balcarce, Buenos Aires, 7620, Argentina
| | - Mirta L Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata (CONICET- UNMdP), Dean Funes 3350, Mar del Plata, Buenos Aires, 7600, Argentina.
| |
Collapse
|
3
|
Wang C, Ding W, Chen F, Zhang K, Hou Y, Wang G, Xu W, Wang Y, Qu S. Mapping and transcriptomic profiling reveal that the KNAT6 gene is involved in the dark green peel colour of mature pumpkin fruit (Cucurbita maxima L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:225. [PMID: 39287784 DOI: 10.1007/s00122-024-04741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
KEY MESSAGE We identified a 580 bp deletion of CmaKNAT6 coding region influences peel colour of mature Cucurbita maxima fruit. Peel colour is an important agronomic characteristic affecting commodity quality in Cucurbit plants. Genetic mapping of fruit peel colour promotes molecular breeding and provides an important basis for understanding the regulatory mechanism in Cucurbit plants. In the present study, the Cucurbita maxima inbred line '9-6' which has a grey peel colour and 'U3-3-44' which has a dark green peel colour in the mature fruit stage, were used as plant materials. At 5-40 days after pollination (DAP), the contents of chlorophyll a, chlorophyll b, total chlorophyll and carotenoids in the 'U3-3-44' peels were significantly greater than those in the '9-6' peels. In the epicarp of the '9-6' mature fruit, the presence of nonpigmented cell layers and few chloroplasts in each cell in the pigmented layers were observed. Six generations derived by crossing '9-6' and 'U3-3-44' were constructed, and the dark green peel was found to be controlled by a single dominant locus, which was named CmaMg (mature green peel). Through bulked-segregant analysis sequencing (BSA-seq) and insertion-deletion (InDel) markers, CmaMg was mapped to a region of approximately 449.51 kb on chromosome 11 using 177 F2 individuals. Additionally, 1703 F2 plants were used for fine mapping to compress the candidate interval to a region of 32.34 kb. Five coding genes were in this region, and CmaCh11G000900 was identified as a promising candidate gene according to the reported function, sequence alignment, and expression analyses. CmaCh11G000900 (CmaKNAT6) encodes the homeobox protein knotted-1-like 6 and contains 4 conserved domains. CmaKNAT6 of '9-6' had a 580 bp deletion, leading to premature transcriptional termination. The expression of CmaKNAT6 tended to increase sharply during the early fruit development stage but decrease gradually during the late period of fruit development. Allelic diversity analysis of pumpkin germplasm resources indicated that the 580 bp deletion in the of CmaKNAT6 coding region was associated with peel colour. Subcellular localization analysis indicated that CmaKNAT6 is a nuclear protein. Transcriptomic analysis of the inbred lines '9-6' and 'U3-3-44' indicated that genes involved in chlorophyll biosynthesis were more enriched in 'U3-3-44' than in '9-6'. Additionally, the expression of transcription factor genes that positively regulate chlorophyll synthesis and light signal transduction pathways was upregulated in 'U3-3-44'. These results lay a foundation for further studies on the genetic mechanism underlying peel colour and for optimizing peel colour-based breeding strategies for C. maxima.
Collapse
Affiliation(s)
- ChaoJie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wenqi Ding
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Fangyuan Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Ke Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yuetong Hou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Guichao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast, Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Li Q, Wang S, Wang J, Chen L, Liu W, Li Z, Xu J, Deng Z, Zhou Y. Mechanism of Phloretin Accumulation in Malus hupehensis Grown at High Altitudes: Evidence from Quantitative 4D Proteomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19526-19536. [PMID: 39166542 DOI: 10.1021/acs.jafc.4c04487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Phloretin is a natural dihydrochalcone (DHC) that exhibits various pharmacological and therapeutic activities. Malus hupehensis Rehd. (M. hupehensis) is widely planted in the middle of China and its leaves contain an extremely high content of phloridzin, a glycosylated derivative of phloretin. In the present study, we observed a significant increase in phloretin content in the leaves of M. hupehensis planted at high altitudes. To investigate the mechanisms of phloretin accumulation, we explored changes in the proteome profiles of M. hupehensis plants grown at various altitudes. The results showed that at high altitudes, photosynthesis- and DHC biosynthesis-related proteins were downregulated and upregulated, respectively, leading to reduced chlorophyll content and DHC accumulation in the leaves. Moreover, we identified a novel phloridzin-catalyzing glucosidase whose expression level was significantly increased in high-altitude-cultivated plants. This work provided a better understanding of the mechanism of phloretin accumulation and effective and economic strategies for phloretin production.
Collapse
Affiliation(s)
- Qing Li
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Shanshan Wang
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junzhi Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Lijun Chen
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Wenrui Liu
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ziyan Li
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Jingyuan Xu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Agarwal P, Chittora A, Baraiya BM, Fatnani D, Patel K, Akhyani DD, Parida AK, Agarwal PK. Rab7 GTPase-Mediated stress signaling enhances salinity tolerance in AlRabring7 tobacco transgenics by modulating physio-biochemical parameters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108928. [PMID: 39033652 DOI: 10.1016/j.plaphy.2024.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
The RING-type E3 ligases play a significant role in stress signaling, primarily through post-translational regulation. Ubiquitination is a crucial post-translational modification that regulates the turnover and activity of proteins. The overexpression of AlRabring7, RING-HC E3 Ub ligase in tobacco provides insights into the regulation of salinity and ABA signaling in transgenic tobacco. The seed germination potential of AlRabring7 transgenics was higher than WT, with NaCl and ABA treatments. The transgenics showed improved morpho-physio-biochemical parameters in response to salinity and ABA treatments. The photosynthetic pigments, soluble sugars, reducing sugars and proline increased in transgenics in response to NaCl and ABA treatments. The decreased ROS accumulation in transgenics on NaCl and ABA treatments can be co-related to improved activity of enzymatic and non-enzymatic antioxidants. The potential of transgenics to maintain ABA levels with ABA treatment, highlights the active participation of ABA feedback loop mechanism. Interestingly, the ability of AlRabring7 transgenics to upregulate Rab7 protein, suggests its role in facilitating vacuolar transport. Furthermore, the improved potassium accumulation and reduced sodium content indicate an efficient ion regulation mechanism in transgenic plants facilitating higher stomatal opening. The expression of downstream ion transporter (NbNHX1 and NbVHA1), ABA signaling (NbABI2 and NbABI5) and vesicle trafficking (NbMON1) responsive genes were upregulated with stress. The present study, reports that AlRabring7 participates in maintaining vacuolar transport, ion balance, ROS homeostasis, stomatal regulation through activation of Rab7 protein and regulation of downstream stress-responsive during stress. This emphasizes the potential of AlRabring7 gene for improved performance and resilience in challenging environments.
Collapse
Affiliation(s)
- Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India.
| | - Anjali Chittora
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhagirath M Baraiya
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Dhara Fatnani
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khantika Patel
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Dhanvi D Akhyani
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India
| | - Asish K Parida
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradeep K Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Truax K, Dulai H, Misra A, Kuhne W, Smith C, Bongolan-Aquino C. Applications of LIF to Document Natural Variability of Chlorophyll Content and Cu Uptake in Moss. PLANTS (BASEL, SWITZERLAND) 2024; 13:2031. [PMID: 39124149 PMCID: PMC11314132 DOI: 10.3390/plants13152031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Chlorophyll has long been used as a natural indicator of plant health and photosynthetic efficiency. Laser-induced fluorescence (LIF) is an emerging technique for understanding broad spectrum organic processes and has more recently been used to monitor chlorophyll response in plants. Previous work has focused on developing a LIF technique for imaging moss mats to identify metal contamination with the current focus shifting toward application to moss fronds and aiding sample collection for chemical analysis. Two laser systems (CoCoBi a Nd:YGa pulsed laser system and Chl-SL with two blue continuous semiconductor diodes) were used to collect images of moss fronds exposed to increasing levels of Cu (1, 10, and 100 nmol/cm2) using a CMOS camera. The best methods for the preprocessing of images were conducted before the analysis of fluorescence signatures were compared to a control. The Chl-SL system performed better than the CoCoBi, with dynamic time warping (DTW) proving the most effective for image analysis. Manual thresholding to remove lower decimal code values improved the data distributions and proved whether using one or two fronds in an image was more advantageous. A higher DTW difference from the control correlated to lower chlorophyll a/b ratios and a higher metal content, indicating that LIF, with the aid of image processing, can be an effective technique for identifying Cu contamination shortly after an event.
Collapse
Affiliation(s)
- Kelly Truax
- Department of Earth Sciences, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA; (H.D.); (A.M.); (C.B.-A.)
| | - Henrietta Dulai
- Department of Earth Sciences, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA; (H.D.); (A.M.); (C.B.-A.)
| | - Anupam Misra
- Department of Earth Sciences, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA; (H.D.); (A.M.); (C.B.-A.)
| | - Wendy Kuhne
- Savannah River National Laboratory, Aiken, SC 29831, USA;
| | - Celia Smith
- School of Life Science, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA;
| | - Ciara Bongolan-Aquino
- Department of Earth Sciences, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA; (H.D.); (A.M.); (C.B.-A.)
| |
Collapse
|
7
|
Palomar VM, Cho Y, Fujii S, Rothi MH, Jaksich S, Min JH, Schlachter AN, Wang J, Liu Z, Wierzbicki AT. Membrane association of active genes organizes the chloroplast nucleoid structure. Proc Natl Acad Sci U S A 2024; 121:e2309244121. [PMID: 38968115 PMCID: PMC11252823 DOI: 10.1073/pnas.2309244121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 05/24/2024] [Indexed: 07/07/2024] Open
Abstract
DNA is organized into chromatin-like structures that support the maintenance and regulation of genomes. A unique and poorly understood form of DNA organization exists in chloroplasts, which are organelles of endosymbiotic origin responsible for photosynthesis. Chloroplast genomes, together with associated proteins, form membrane-less structures known as nucleoids. The internal arrangement of the nucleoid, molecular mechanisms of DNA organization, and connections between nucleoid structure and gene expression remain mostly unknown. We show that Arabidopsis thaliana chloroplast nucleoids have a unique sequence-specific organization driven by DNA binding to the thylakoid membranes. DNA associated with the membranes has high protein occupancy, has reduced DNA accessibility, and is highly transcribed. In contrast, genes with low levels of transcription are further away from the membranes, have lower protein occupancy, and have higher DNA accessibility. Membrane association of active genes relies on the pattern of transcription and proper chloroplast development. We propose a speculative model that transcription organizes the chloroplast nucleoid into a transcriptionally active membrane-associated core and a less active periphery.
Collapse
Affiliation(s)
- V. Miguel Palomar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México04510, México
| | - Yoonjin Cho
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Sho Fujii
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto606-8502, Japan
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori036-8561, Japan
| | - M. Hafiz Rothi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Sarah Jaksich
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Ji-Hee Min
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Adriana N. Schlachter
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Joyful Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Zhengde Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Andrzej T. Wierzbicki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
8
|
Fatnani D, Parida AK. Unravelling the halophyte Suaeda maritima as an efficient candidate for phytostabilization of cadmium and lead: Implications from physiological, ionomic, and metabolomic responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108770. [PMID: 38823092 DOI: 10.1016/j.plaphy.2024.108770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Cadmium (Cd) and lead (Pb) are among the most toxic heavy metals affecting human health and crop yield. Suaeda maritima (L.) Dumort is an obligate halophyte that is well adapted to saline soil. The inbuilt salinity tolerance mechanisms of halophytes help them to survive in heavy metal-contaminated rhizospheric soil. In the present study, growth and ionomic responses, reactive oxygen species (ROS) accumulation, modulations of phytochelatins, antioxidative defense, and metabolomic responses were studied in S. maritima imposed to Cd and Pb stresses with an aim to elucidate Cd and Pb tolerance mechanisms and phytoremediation potential of this halophyte. Our results showed a reduction of biomass in S. maritima, which may serve as an energy conservation strategy for survival under heavy metal stress. The increased accumulation of ROS with concomitant higher expression of various antioxidative enzymes suggests the efficient scavenging of ROS. The metabolite profiling revealed significant up-regulation of sugars, sugar alcohols, amino acids, polyphenols, and organic acids under Cd and Pb stresses suggesting their possible role in osmotic balance, ionic homeostasis, ROS scavenging, and signal transduction for stress tolerance. In S. maritima, the translocation factors (Tf) are <1 in both Cd and Pb treatments, which indicates that this halophyte has high phytostabilization potential for Cd and Pb in roots and through restricted translocation of heavy metal ions to the aboveground part. The findings of this study offer comprehensive information on Cd and Pb tolerance mechanisms in S. maritima and suggest that this halophyte can detoxify the HMs through physiological, ionic, antioxidative, and metabolic regulations.
Collapse
Affiliation(s)
- Dhara Fatnani
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Ding W, Luo Y, Li W, Chen F, Wang C, Xu W, Wang Y, Qu S. Fine mapping and transcriptome profiling reveal CpAPRR2 to modulate immature fruit rind color formation in zucchini (Cucurbita pepo). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:167. [PMID: 38909110 DOI: 10.1007/s00122-024-04676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
KEY MESSAGE A large fragment deletion of CpAPRR2, encoding a two-component response regulator-like protein, which influences immature white rind color formation in zucchini (Cucurbita pepo). Fruit rind color is an important agronomic trait that affects commodity quality and consumer choice in zucchini (Cucurbita pepo). However, the molecular mechanism controlling rind color is unclear. We characterized two zucchini inbred lines: '19' (dark green rind) and '113' (white rind). Genetic analysis revealed white immature fruit rind color to be controlled by a dominant locus (CpW). Combining bulked segregant analysis sequencing (BSA-seq) and Kompetitive Allele-Specific PCR (KASP) markers, we mapped the CpW locus to a 100.4 kb region on chromosome 5 and then narrow down the candidate region to 37.5 kb using linkage analysis of 532 BC1 and 1613 F2 individuals, including 6 coding genes. Among them, Cp4.1LG05g02070 (CpAPRR2), encoding a two-component response regulator-like protein, was regarded to be a promising candidate gene. The expression level of CpAPRR2 in dark green rind was significantly higher than that in white rind and was induced by light. A deletion of 2227 bp at the 5' end of CpAPRR2 in '113' might explain the white phenotype. Further analysis of allelic diversity in zucchini germplasm resources revealed rind color to be associated with the deletion of CpAPRR2. Subcellular localization analysis indicated that CpAPRR2 was a nuclear protein. Transcriptome analysis using near-isogenic lines with dark green (DG) and white (W) rind indicated that genes involved in photosynthesis and porphyrin metabolism pathways were enriched in DG compared with W. Additionally, chlorophyll synthesis-related genes were upregulated in DG. These results identify mechanisms of zucchini rind color and provide genetic resources for breeding.
Collapse
Affiliation(s)
- Wenqi Ding
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yusong Luo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wenling Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Fangyuan Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Chaojie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
10
|
Bulle M, Venkatapuram AK, Rahman MM, Attia KA, Mohammed AA, Abbagani S, Kirti PB. Enhancing drought tolerance in chilli pepper through AdDjSKI-mediated modulation of ABA sensitivity, photosynthetic preservation, and ROS scavenging. PHYSIOLOGIA PLANTARUM 2024; 176:e14379. [PMID: 38853306 DOI: 10.1111/ppl.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/21/2024] [Accepted: 05/12/2024] [Indexed: 06/11/2024]
Abstract
Drought stress threatens the productivity of numerous crops, including chilli pepper (Capsicum annuum). DnaJ proteins are known to play a protective role against a wide range of abiotic stresses. This study investigates the regulatory mechanism of the chloroplast-targeted chaperone protein AdDjSKI, derived from wild peanut (Arachis diogoi), in enhancing drought tolerance in chilli peppers. Overexpressing AdDjSKI in chilli plants increased chlorophyll content, reflected in the maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) compared with untransformed control (UC) plants. This enhancement coincided with the upregulated expression of PSII-related genes. Our subsequent investigations revealed that transgenic chilli pepper plants expressing AdDjSKI showed reduced accumulation of superoxide and hydrogen peroxide and, consequently, lower malondialdehyde levels and decreased relative electrolyte leakage percentage compared with UC plants. The mitigation of ROS-mediated oxidative damage was facilitated by heightened activities of antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase, coinciding with the upregulation of the expression of associated antioxidant genes. Additionally, our observations revealed that the ectopic expression of the AdDjSKI protein in chilli pepper plants resulted in diminished ABA sensitivity, consequently promoting seed germination in comparison with UC plants under different concentrations of ABA. All of these collectively contributed to enhancing drought tolerance in transgenic chilli plants with improved root systems when compared with UC plants. Overall, our study highlights AdDjSKI as a promising biotechnological solution for enhancing drought tolerance in chilli peppers, addressing the growing global demand for this economically valuable crop.
Collapse
Affiliation(s)
- Mallesham Bulle
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- Plant Biotechnology Research Unit, Department of Biotechnology, Kakatiya University, Warangal, Telangana, India
| | - Ajay Kumar Venkatapuram
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Md Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Kotab A Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Riyadh, Saudi Arabia
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Riyadh, Saudi Arabia
| | - Sadanandam Abbagani
- Plant Biotechnology Research Unit, Department of Biotechnology, Kakatiya University, Warangal, Telangana, India
| | - P B Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
11
|
Luo H, Win CS, Lee DH, He L, Yu JM. Microbacterium azadirachtae CNUC13 Enhances Salt Tolerance in Maize by Modulating Osmotic and Oxidative Stress. BIOLOGY 2024; 13:244. [PMID: 38666856 PMCID: PMC11048422 DOI: 10.3390/biology13040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
Soil salinization is one of the leading threats to global ecosystems, food security, and crop production. Plant growth-promoting rhizobacteria (PGPRs) are potential bioinoculants that offer an alternative eco-friendly agricultural approach to enhance crop productivity from salt-deteriorating lands. The current work presents bacterial strain CNUC13 from maize rhizosphere soil that exerted several PGPR traits and abiotic stress tolerance. The strain tolerated up to 1000 mM NaCl and 30% polyethylene glycol (PEG) 6000 and showed plant growth-promoting (PGP) traits, including the production of indole-3-acetic acid (IAA) and siderophore as well as phosphate solubilization. Phylogenetic analysis revealed that strain CNUC13 was Microbacterium azadirachtae. Maize plants exposed to high salinity exhibited osmotic and oxidative stresses, inhibition of seed germination, plant growth, and reduction in photosynthetic pigments. However, maize seedlings inoculated with strain CNUC13 resulted in significantly improved germination rates and seedling growth under the salt-stressed condition. Specifically, compared with the untreated control group, CNUC13-treated seedlings exhibited increased biomass, including fresh weight and root system proliferation. CNUC13 treatment also enhanced photosynthetic pigments (chlorophyll and carotenoids), reduced the accumulation of osmotic (proline) and oxidative (hydrogen peroxide and malondialdehyde) stress indicators, and positively influenced the activities of antioxidant enzymes (catalase, superoxide dismutase, and peroxidase). As a result, CNUC13 treatment alleviated oxidative stress and promoted salt tolerance in maize. Overall, this study demonstrates that M. azadirachtae CNUC13 significantly enhances the growth of salt-stressed maize seedlings by improving photosynthetic efficiency, osmotic regulators, oxidative stress resilience, and antioxidant enzyme activity. These findings emphasize the potential of utilizing M. azadirachtae CNUC13 as a bioinoculant to enhance salt stress tolerance in maize, providing an environmentally friendly approach to mitigate the negative effects of salinity and promote sustainable agriculture.
Collapse
Affiliation(s)
- Huan Luo
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea; (H.L.); (C.S.W.); (D.H.L.); (L.H.)
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Chaw Su Win
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea; (H.L.); (C.S.W.); (D.H.L.); (L.H.)
| | - Dong Hoon Lee
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea; (H.L.); (C.S.W.); (D.H.L.); (L.H.)
| | - Lin He
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea; (H.L.); (C.S.W.); (D.H.L.); (L.H.)
| | - Jun Myoung Yu
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Republic of Korea; (H.L.); (C.S.W.); (D.H.L.); (L.H.)
| |
Collapse
|
12
|
Lee TCH, Lam W, Tam NFY, Xu SJL, Chung WL, Lee FWF. Revealing the algicidal characteristics of Maribacter dokdonensis: An investigation into bacterial strain P4 isolated from Karenia mikimotoi bloom water. JOURNAL OF PHYCOLOGY 2024; 60:541-553. [PMID: 38517088 DOI: 10.1111/jpy.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 03/23/2024]
Abstract
Harmful algal blooms (HABs) are a global environmental concern, causing significant economic losses in fisheries and posing risks to human health. Algicidal bacteria have been suggested as a potential solution to control HABs, but their algicidal efficacy is influenced by various factors. This study aimed to characterize a novel algicidal bacterium, Maribacter dokdonensis (P4), isolated from a Karenia mikimotoi (Hong Kong strain, KMHK) HAB and assess the impact of P4 and KMHK's doses, growth phase, and algicidal mode and the axenicity of KMHK on P4's algicidal effect. Our results demonstrated that the algicidal effect of P4 was dose-dependent, with the highest efficacy at a dose of 25% v/v. The study also determined that P4's algicidal effect was indirect, with the P4 culture and the supernatant, but not the bacterial cells, showing significant effects. The algicidal efficacy was higher when both P4 and KMHK were in the stationary phase. Furthermore, the P4 culture at the log phase could effectively kill KMHK cells at the stationary phase, with higher algicidal efficacy in the bacterial culture than that of the supernatant alone. Interestingly, P4's algicidal efficacy was significantly higher when co-culturing with xenic KMHK (~90% efficacy at day 1) than that with the axenic KMHK (~50% efficacy at day 1), suggesting the presence of other bacteria could regulate P4's algicidal effect. The bacterial strain P4 also exhibited remarkable algicidal efficacy on four other dinoflagellate species, particularly the armored species. These results provide valuable insights into the algicidal effect of M. dokdonensis on K. mikimotoi and on their interactions.
Collapse
Affiliation(s)
- Thomas Chun-Hung Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Winnie Lam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Nora Fung-Yee Tam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Steven Jing-Liang Xu
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Wing Lam Chung
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
| | - Fred Wang-Fat Lee
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
13
|
Kumari A, Sutariya JA, Rathore AP, Rathore MS. The novel chaperonin 10 like protein (SbCPN10L) from Salicornia brachiata (Roxb.) augment the heat stress tolerance in transgenic tobacco. Gene 2024; 900:148139. [PMID: 38185292 DOI: 10.1016/j.gene.2024.148139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
The heat stress is a significant environmental challenge and impede the plant growth, development and productivity. The characterization and utilization of novel genes for improving stress tolerance represents a paramount approach in crop breeding. In the present study, we report on cloning of a novel heat-induced chaperonin 10-like gene (SbCPN10L) from Salicornia brachiata and elucidation of its in-planta role in conferring the heat stress endurance. The transgenic tobacco over-expressing SbCPN10L gene exhibited enhanced growth attributes such as higher rate of seed germination, germination and vigor index at elevated (35 ± 1 °C) temperature (eT). The SbCPN10L tobacco exhibited greenish and healthy seedling growth under stress. Compared with control tobacco at eT, the transgenic tobacco had higher water contents, membrane stability index, stress tolerance index and photosynthetic pigments. Lower electrolyte leakage and less accumulation of malondialdehyde, hydrogen peroxide and reactive oxygen species indicated better heat stress tolerance in transgenic tobacco over-expressing SbCPN10L gene. Transgenic tobacco accumulated higher contents of sugars, starch, amino acids and polyphenols at eT. The negative solute potential observed in transgenic tobacco contributed to maintain water content and support improved growth under stress. The up-regulation of NtAPX, NtPOX and NtSOD in transgenic tobacco under stress indicated higher ROS scavenging ability and better physiological conditioning. The results recommend the SbCPN10L gene as a potential candidate gene with an ability to confer heat stress tolerance for climate resilient crops.
Collapse
Affiliation(s)
- Anupam Kumari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, INDIA; Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364002, INDIA.
| | - Jigar A Sutariya
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364002, INDIA.
| | - Aditya P Rathore
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, INDIA; Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364002, INDIA.
| | - Mangal S Rathore
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, INDIA; Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, Gujarat 364002, INDIA.
| |
Collapse
|
14
|
Navarro JM, Imbernón-Mulero A, Robles JM, Hernández-Ballester FM, Antolinos V, Gallego-Elvira B, Maestre-Valero JF. Physiological Responses of a Grapefruit Orchard to Irrigation with Desalinated Seawater. PLANTS (BASEL, SWITZERLAND) 2024; 13:781. [PMID: 38592800 PMCID: PMC10975856 DOI: 10.3390/plants13060781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Desalinated seawater (DSW) has emerged as a promising solution for irrigation in regions facing water scarcity. However, adopting DSW may impact the existing cultivation model, given the presence of potentially harmful elements, among other factors. A three-year experiment was carried out to assess the short-term effects of four irrigation waters-freshwater (FW), DSW, a mix 1:1 of FW and DSW (MW), and DSW with low boron (B) concentration (DSW-B)-on a 'Rio Red' grapefruit orchard. These irrigation waters exhibited varying levels of phytotoxic elements, some potentially harmful to citrus trees. Sodium (Na+) and chloride (Cl-) concentrations exceeded citrus thresholds in all treatments, except in DSW-B, whilst B exceeded toxicity levels in DSW and MW treatments. Leaf concentrations of Cl- and Na+ remained low in all treatments, whereas B approached toxic levels only in DSW and MW-irrigated trees. The rapid growth of the trees, preventing excessive accumulation through a dilution effect, protected the plants from significant impacts on nutrition and physiology, such as gas exchange and chlorophyll levels, due to phytotoxic elements accumulation. Minor reductions in photosynthesis in DSW-irrigated trees were attributed to high B in leaves, since Cl- and Na+ remained below toxic levels. The accelerated tree growth effectively prevented the substantial accumulation of phytotoxic elements, thereby limiting adverse effects on tree development and yield. When the maturation of trees reaches maximal growth, the potential accumulation of phytotoxic elements is expected to increase, potentially influencing tree behavior differently. Further study until the trees reach maturity is imperative for comprehensive understanding of the long-term effects of desalinated seawater irrigation.
Collapse
Affiliation(s)
- Josefa M. Navarro
- Irrigation and Stress Physiology Group, Department of Bioeconomy, Water and Environment, Murcia Institute of Agri-Food Research and Development (IMIDA), c/Mayor s/n, 30150 Murcia, Spain; (J.M.N.); (J.M.R.); (F.M.H.-B.); (V.A.)
| | - Alberto Imbernón-Mulero
- Agricultural Engineering Center, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain; (B.G.-E.); (J.F.M.-V.)
| | - Juan M. Robles
- Irrigation and Stress Physiology Group, Department of Bioeconomy, Water and Environment, Murcia Institute of Agri-Food Research and Development (IMIDA), c/Mayor s/n, 30150 Murcia, Spain; (J.M.N.); (J.M.R.); (F.M.H.-B.); (V.A.)
| | - Francisco M. Hernández-Ballester
- Irrigation and Stress Physiology Group, Department of Bioeconomy, Water and Environment, Murcia Institute of Agri-Food Research and Development (IMIDA), c/Mayor s/n, 30150 Murcia, Spain; (J.M.N.); (J.M.R.); (F.M.H.-B.); (V.A.)
| | - Vera Antolinos
- Irrigation and Stress Physiology Group, Department of Bioeconomy, Water and Environment, Murcia Institute of Agri-Food Research and Development (IMIDA), c/Mayor s/n, 30150 Murcia, Spain; (J.M.N.); (J.M.R.); (F.M.H.-B.); (V.A.)
| | - Belén Gallego-Elvira
- Agricultural Engineering Center, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain; (B.G.-E.); (J.F.M.-V.)
| | - José F. Maestre-Valero
- Agricultural Engineering Center, Technical University of Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain; (B.G.-E.); (J.F.M.-V.)
| |
Collapse
|
15
|
Heise CM, Hagemann M, Schubert H. Photosynthetic response of Chara braunii towards different bicarbonate concentrations. PHYSIOLOGIA PLANTARUM 2024; 176:e14234. [PMID: 38439180 DOI: 10.1111/ppl.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
A variety of inorganic carbon acquisition modes have been proposed in Characean algae, however, a broadly applicable inorganic carbon uptake mechanism is unknown for the genus Chara. In the present study, we analyzed if C. braunii can efficiently use HCO3 - as a carbon source for photosynthesis. For this purpose, C. braunii was exposed to different concentrations of NaHCO3 - at different time scales. The photosynthetic electron transport through photosystem I (PSI) and II (PSII), the maximum electron transport rate (ETRmax ), the efficiency of the electron transport rate (α, the initial slope of the ETR), and the light saturation point of photosynthesis (Ek ) were evaluated. Additionally, pigment contents (chlorophyll a, chlorophyll b, and carotenoids) were determined. Bicarbonate addition positively affected ETRmax , after direct HCO3 - application, of both PSII and PSI, but this effect seems to decrease after 1 h and 24 h. Similar trends were seen for Ek , but no significant effect was observed for α. Pigment contents showed no significant changes in relation to different HCO3 - concentrations. To evaluate if cyclic electron flow around PSI was involved in active HCO3 - uptake, the ratio of PSI ETRmax /PSII ETRmax was calculated but did not show a distinctive trend. These results suggest that C. braunii can utilize NaHCO3 - in short-term periods as a carbon source but could rely on other carbon acquisition mechanisms over prolonged time periods. These observations suggest that the minor role of HCO3 - as a carbon source for photosynthesis in this alga might differentiate C. braunii from other examined Chara spp.
Collapse
Affiliation(s)
- Carolin Magdalene Heise
- Institute of Biosciences, Department of Aquatic Ecology, University of Rostock, Rostock, Germany
- Institute of Biosciences, Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Martin Hagemann
- Institute of Biosciences, Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Hendrik Schubert
- Institute of Biosciences, Department of Aquatic Ecology, University of Rostock, Rostock, Germany
| |
Collapse
|
16
|
Qiu X, Wang J, Xin F, Wang Y, Liu Z, Wei J, Sun X, Li P, Cao X, Zheng X. Compensatory growth of Microcystis aeruginosa after copper stress and the characteristics of algal extracellular organic matter (EOM). CHEMOSPHERE 2024; 352:141422. [PMID: 38341000 DOI: 10.1016/j.chemosphere.2024.141422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/24/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Cyanobacterial blooms can impair drinking water quality due to the concomitant extracellular organic matter (EOM). As copper is often applied as an algicide, cyanobacteria may experience copper stress. However, it remains uncertain whether algal growth compensation occurs and how EOM characteristics change in response to copper stress. This study investigated the changes in growth conditions, photosynthetic capacity, and EOM characteristics of M. aeruginosa under copper stress. In all copper treatments, M. aeruginosa experienced a growth inhibition stage followed by a growth compensation stage. Notably, although chlorophyll-a fluorescence parameters dropped to zero immediately following high-intensity copper stress (0.2 and 0.5 mg/L), they later recovered to levels exceeding those of the control, indicating that photosystem II was not destroyed by copper stress. Copper stress influenced the dissolved organic carbon (DOC) content, polysaccharides, proteins, excitation-emission matrix spectra, hydrophobicity, and molecular weight (MW) distribution of EOM, with the effects varying based on stress intensity and growth stage. Principal component analysis revealed a correlation between the chlorophyll-a fluorescence parameters and EOM characteristics. These results imply that copper may not be an ideal algicide. Further research is needed to explore the dynamic response of EOM characteristics to environmental stress.
Collapse
Affiliation(s)
- Xiaopeng Qiu
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China.
| | - Jiaqi Wang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Fengdan Xin
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Yangtao Wang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Zijun Liu
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Jinli Wei
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Xin Sun
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Pengfei Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Xin Cao
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Xing Zheng
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China.
| |
Collapse
|
17
|
Wang C, Yu X, Wu L, Feng C, Ye J, Wu F. A contrast of emerging contaminants rac- and l-menthol toxicities to Microcystis aeruginosa through biochemical, physiological, and morphological investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169508. [PMID: 38154634 DOI: 10.1016/j.scitotenv.2023.169508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Fragrances rac- and l-menthol extracted from peppermint are widely used and considered as emerging contaminants recently, which are persistent in the environment. Menthol has always been considered as a safe chemical for humans, but its potential adverse ecological effects on aquatic organisms and the toxic mechanisms have not yet been fully understood. The present study aims to investigate the physiological response of Microcystis aeruginosa after exposure to the two menthol isomers, and to explore the toxic mechanisms and ecological risks of these two chemicals. Results showed that rac-menthol exhibited a hormesis effect on the cell growth, chlorophyll a and protein contents; while l-menthol showed an inhibition effect. Adenosine triphosphate (ATP) content increased significantly at day 3 and then decreased markedly at day 6 after exposure to the two chemicals. Compared with rac-menthol, l-menthol can cause damage to the antioxidant system and plasmalemma more severely, promote the production and release of microcystins-LR (MC-LR) more dramatically, upregulate the expression of MC-transportation-related gene mcyH, and induce higher apoptosis rates. Overall results revealed that the toxic effects of l-menthol on cyanobacteria were significantly greater than those of rac-menthol. The significant increase in the malondialdehyde (MDA) content and the ultrastructural characteristics of the cells indicated that the plasma membranes were damaged. Thus, further attention should be paid to the scientific use, ecological and environmental risk assessment of chiral menthol. This study will also provide a scientific basis for future water quality criteria establishment on emerging contaminants such as fragrances.
Collapse
Affiliation(s)
- Chen Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xinyue Yu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Liang Wu
- Los Angeles Regional Water Quality Control Board, Los Angeles, CA 90013, United States
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
18
|
Raspor M, Mrvaljević M, Savić J, Ćosić T, Kaleri AR, Pokimica N, Cingel A, Ghalawnji N, Motyka V, Ninković S. Cytokinin deficiency confers enhanced tolerance to mild, but decreased tolerance to severe salinity stress in in vitro grown potato. FRONTIERS IN PLANT SCIENCE 2024; 14:1296520. [PMID: 38362121 PMCID: PMC10867153 DOI: 10.3389/fpls.2023.1296520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024]
Abstract
Cytokinin (CK) is a plant hormone that plays crucial roles in regulating plant growth and development. CK-deficient plants are widely used as model systems for investigating the numerous physiological roles of CK. Since it was previously shown that transgenic or mutant CK-deficient Arabidopsis and Centaurium plants show superior tolerance to salinity, we examined the tolerance of three CK-deficient potato lines overexpressing the Arabidopsis thaliana CYTOKININ OXIDASE/DEHYDROGENASE2 (AtCKX2) gene to 50 mM, 100 mM, 150 mM, and 200 mM NaCl applied in vitro. Quantification of visible salinity injury, rooting and acclimatization efficiency, shoot growth, water saturation deficit, and chlorophyll content confirmed that the CK-deficient potato plants were more tolerant to low (50 mM) and moderate (100 mM) NaCl concentrations, but exhibited increased sensitivity to severe salinity stress (150 and 200 mM NaCl) compared to non-transformed control plants. These findings were corroborated by the data distribution patterns according to principal component analysis. Quantification of the activity of superoxide dismutases, peroxidases, and catalases revealed an impaired ability of AtCKX2-transgenic lines to upregulate the activity of antioxidant enzymes in response to salinity, which might contribute to the enhanced sensitivity of these potato lines to severe salt stress. Our results add complexity to the existing knowledge on the regulation of salinity tolerance by CK, as we show for the first time that CK-deficient plants can exhibit reduced rather than increased tolerance to severe salt stress.
Collapse
Affiliation(s)
- Martin Raspor
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Miloš Mrvaljević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Savić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tatjana Ćosić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Abdul Rasheed Kaleri
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Nina Pokimica
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Cingel
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nabil Ghalawnji
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Václav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Slavica Ninković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Xu E, Zou Y, Yang G, Zhang P, Ha MN, Mai Le Q, Zhang W, Chen X. The Golgi-localized transporter OsPML4 contributes to manganese homeostasis in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111935. [PMID: 38049038 DOI: 10.1016/j.plantsci.2023.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Manganese (Mn), an indispensable plant micronutrient, functions as a vital enzyme co-factor in numerous biochemical reactions. In rice, the Golgi-localized PHOTOSYNTHESIS-AFFECTED MUTANT 71-LIKE 3 (OsPML3), a member of the UNCHARACTERIZED PROTEIN FAMILY (UPF0016), plays a pivotal role in Mn homeostasis, particularly in rapidly developing tissues. This study focused on the functional characterization of another UPF0016 family member in rice, OsPML4, to elucidate its involvement in Mn homeostasis. OsPML4 had a 73% sequence identity with OsPML3 and exhibited expression in both shoots and roots, albeit at a lower transcriptional level than OsPML3. Furthermore, subcellular localization studies confirmed that OsPML4 localizes in the Golgi apparatus. Notably, heterologous expression of OsPML4 restored growth in the Mn uptake-deficient yeast strain Δsmf1 under Mn-limited conditions. Under Mn-deficient conditions, OsPML4 knockout exacerbated the decline in shoot dry weight and intensified necrosis in young leaves of OsPML3 knockout lines, which displayed stunted growth. The Mn concentration in OsPML3PML4 double knockout lines was lower than in wild-type (WT) and OsPML3 knockout lines. At the reproductive phase, OsPML3PML4 double knockout lines exhibited reduced fertility and grain yield compared to WT and OsPML3 knockout lines. Notably, reductions were observed in the deposition of cell wall polysaccharides and the content of Lea (Lewis A structure)-containing N-glycans in the young leaves of OsPML3PML4 double knockout lines, surpassing the reductions in WT and OsPML3 knockout lines. These findings underscore the significance of OsPML4 in Mn homeostasis in the Golgi apparatus, where it co-functions with OsPML3 to regulate cell wall polysaccharide deposition and late-stage Golgi N-glycosylation.
Collapse
Affiliation(s)
- Ending Xu
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China; Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Yu Zou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Guang Yang
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Peijiang Zhang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Minh Ngoc Ha
- VNU Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Quynh Mai Le
- Department of Plant Science, Faculty of Biology, University of Science, Vietnam National University, Hanoi 100000, Vietnam
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
20
|
Zhang S, Ye H, Kong L, Li X, Chen Y, Wang S, Liu B. Multivariate Analysis Compares and Evaluates Heat Tolerance of Potato Germplasm. PLANTS (BASEL, SWITZERLAND) 2024; 13:142. [PMID: 38202450 PMCID: PMC10781149 DOI: 10.3390/plants13010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
High temperature is the most important environmental factor limiting potato (Solanum tuberosum L.) yield. The tuber yield has been used to evaluate the heat tolerance of some potato cultivars, but potato yield was closely correlated with the maturation period. Therefore, it is necessary to employ different parameters to comprehensively analyze and evaluate potato tolerance to heat stress. This study aimed to investigate physiologic changes during growth and development, and develop accurate heat tolerance evaluation methods of potato cultivars under heat stress. About 93 cultivars (including foreign elite lines, local landraces and cultivars) were screened using an in vitro tuber-inducing system (continuous darkness and 8% sucrose in the culture medium) under heat stress (30 °C) and normal (22 °C) conditions for 30 days. The tuber yield and number decreased significantly under heat stress compared to the control. A total of 42 cultivars were initially selected depending on tuber formation, after in vitro screening, further testing of selected cultivars was conducted in ex vitro conditions. The screened cultivars were further exposed to heat stress (35 °C/28 °C, day/night) for 60 days. Heat stress led to an increase in the plant height growth rate, fourth internode growth rate, and membrane damage, and due to heat-induced damage to chloroplasts, decrease in chlorophyll biosynthesis and photosynthetic efficiency. Three principal components were extracted by principal component analysis. Correlation and regression analysis showed that heat tolerance is positively correlated with the plant height growth rate, fourth internode growth rate, the content of chlorophyll b, photosynthetic rate, stomatal conductance, transpiration rate, tuber number, and tuber yield, and negatively correlated with the cell membrane injury level. The nine traits are accurate and representative indicators for evaluating potato tolerance to heat stress and could determine a relatively high mean forecast accuracy of 100.0% for the comprehensive evaluation value. Through cluster analysis and screening, cultivar FA, D73, and C132 had the highest heat comprehensive evaluation value, which could be further selected as heat-resistant varieties. This study provides insights into the different physiological mechanisms and accurate evaluation methods of potato cultivars under heat stress, which could be valuable for further research and breeding.
Collapse
Affiliation(s)
- Sujie Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Han Ye
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China
| | - Lingshuang Kong
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xiaoyu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yeqing Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shipeng Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Bailin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen 518000, China
| |
Collapse
|
21
|
Díaz-López M, Galera L, Bastida F, Nicolás E. Tomato growth and physiology as well as soil physicochemical and biological properties affected by ozonated water in a saline agroecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167472. [PMID: 37778555 DOI: 10.1016/j.scitotenv.2023.167472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Current trends in agriculture are focused on implementing sustainable practices that avoid the use of chemical compounds. It is important to propose environmentally friendly methods, which may enhance plant growth physiology and yield without affecting soil microbial community as much. In this context, irrigation with ozonated water could be a potential strategy to reduce some chemical compounds in soils due to the degradative power of ozone. Here, we studied the impact of irrigation with ozonated water on the microbial community of a Mediterranean soil, and on Solanum lycopersicum L. agro-physiology and productivity in a greenhouse experiment. To this end, we evaluated: i) soil physicochemical properties, soil enzyme activities, microbial biomass via fatty acid analysis, microbial diversity (via amplicon sequencing), and ii) the nutrient content, physiology, phytohormone content, yield, and fruit quality of tomato plants. Our results indicate that soil physicochemical properties were significantly affected by the irrigation with ozonated water (OZ). We observed an increase in the content of total organic carbon (TOC), water-soluble nitrogen (WSN) and ammonium, and a decrease in soil pH due to the OZ treatment. In addition, a significant increase in alkaline phosphatase and fungal and bacterial biomass was also observed in the OZ treatment. It was observed that the prokaryotic community structure was affected by the OZ treatment, while that of fungi was undisturbed. The OZ treatment increased the photosynthetic rates of tomato plants and maintained water conditions when compared to control plants. The increased trans-Zeatin riboside (tZ-Rib) could provide rapid apical and root growth allowing adaptation to the new growing conditions. However, a more in-depth study on the physiological response of the plant to this treatment would be of interest, as it would help with the implementation of this strategy in agricultural fields in a safe manner, and with obtaining higher plant yields.
Collapse
Affiliation(s)
- Marta Díaz-López
- Department of Irrigation, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia 30100, Spain; Department of Soil and Water Conservation and Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia 30100, Spain.
| | - Lucas Galera
- Novagric (Novedades Agrícolas, S.A.), Bulevar de Vicar 743, 04738 Vicar, Almería, Spain
| | - Felipe Bastida
- Department of Soil and Water Conservation and Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia 30100, Spain
| | - Emilio Nicolás
- Department of Irrigation, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia 30100, Spain
| |
Collapse
|
22
|
Vaccarella E, Piacentini D, Falasca G, Canepari S, Massimi L. In-vivo exposure of a plant model organism for the assessment of the ability of PM samples to induce oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165694. [PMID: 37516174 DOI: 10.1016/j.scitotenv.2023.165694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
This study aims to propose an innovative, simple, rapid, and cost-effective method to study oxidative stress induced by PM through in-vivo exposure of the plant model organism Arabidopsis thaliana. A. thaliana seedlings were exposed to urban dust certified for its elemental content and to PM2.5 samples collected in an urban-industrial area of Northern Italy. An innovative technique for the detachment and suspension in water of the whole intact dust from membrane filters was applied to expose the model organism to both the soluble and insoluble fractions of PM2.5, which were analyzed for 34 elements by ICP-MS. Oxidative stress induced by PM on A. thaliana was assessed by light microscopic localization and UV-Vis spectrophotometric determination of superoxide anion (O2-) content on the exposed seedlings by using the nitro blue tetrazole (NBT) assay. The results showed a good efficiency and sensitivity of the method for PM mass concentrations >20 μg m-3 and an increase in O2- content in all exposed seedlings, which mainly depends on the concentration, chemical composition, and sources of the PM administered to the model organism. Particles released by biomass burning appeared to contribute more to the overall toxicity of PM. This method was found to be cost-effective and easy to apply to PM collected on membrane filters in intensive monitoring campaigns in order to obtain valuable information on the ability of PM to generate oxidative stress in living organisms.
Collapse
Affiliation(s)
- Emanuele Vaccarella
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy
| | - Diego Piacentini
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy
| | - Giuseppina Falasca
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St., Rome 00015, Italy
| | - Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St., Rome 00015, Italy.
| |
Collapse
|
23
|
Zhong Y, Zheng W, Shi X, Guo Y, Wang Q, Lv P, Chen J. Pilot-Scale Fermentation of Pseudoalteromonas sp. Strain FDHY-MZ2: An Effective Strategy for Increasing Algicidal Activity. BIOLOGY 2023; 12:1447. [PMID: 37998046 PMCID: PMC10669318 DOI: 10.3390/biology12111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
The role of microorganisms in effectively terminating harmful algal blooms (HABs) is crucial for maintaining environmental stability. Recent studies have placed increased emphasis on bio-agents capable of inhibiting HABs. The bacterium Pseudoalteromonas sp. strain FDHY-MZ2 has exhibited impressive algicidal abilities against Karenia mikimotoi, a notorious global HAB-forming species. To augment this capability, cultures were progressively scaled from shake flask conditions to small-scale (5 L) and pilot-scale (50 L) fermentation. By employing a specifically tailored culture medium (2216E basal medium with 1.5% soluble starch and 0.5% peptone), under precise conditions (66 h, 20 °C, 450 rpm, 30 L/min ventilation, 3% seeding, and constant starch flow), a notable increase in algicidal bacterial biomass was observed; the bacterial dosage required to entirely wipe out K. mikimotoi within a day decreased from 1% to 0.025%. Compared to an unoptimized shake flask group, the optimized fermentation culture caused significant reductions in algal chlorophyll and protein levels (21.85% and 78.3%, respectively). Co-culturing induced increases in algal malondialdehyde and H2O2 by 5.98 and 5.38 times, respectively, leading to further disruption of algal photosynthesis. This study underscores the unexplored potential of systematically utilized microbial agents in mitigating HABs, providing a pathway for their wider application.
Collapse
Affiliation(s)
- Yuying Zhong
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (W.Z.); (Y.G.); (Q.W.); (P.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
- College of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Wenhuang Zheng
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (W.Z.); (Y.G.); (Q.W.); (P.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Xinguo Shi
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (W.Z.); (Y.G.); (Q.W.); (P.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Yisong Guo
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (W.Z.); (Y.G.); (Q.W.); (P.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| | - Qianqian Wang
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (W.Z.); (Y.G.); (Q.W.); (P.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
- College of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Pin Lv
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (W.Z.); (Y.G.); (Q.W.); (P.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
- College of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
| | - Jianfeng Chen
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (W.Z.); (Y.G.); (Q.W.); (P.L.)
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
24
|
Sławski J, Maciejewski J, Szukiewicz R, Gieczewska K, Grzyb J. Quantum Dots Assembled with Photosynthetic Antennae on a Carbon Nanotube Platform: A Nanohybrid for the Enhancement of Light Energy Harvesting. ACS OMEGA 2023; 8:41991-42003. [PMID: 37969970 PMCID: PMC10633852 DOI: 10.1021/acsomega.3c07673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/17/2023]
Abstract
The construction of artificial systems for solar energy harvesting is still a challenge. There needs to be a light-harvesting antenna with a broad absorption spectrum and then the possibility to transfer harvested energy to the reaction center, converting photons into a storable form of energy. Bioinspired and bioderivative elements may help in achieving this aim. Here, we present an option for light harvesting: a nanobiohybrid of colloidal, semiconductor quantum dots (QDs) and natural photosynthetic antennae assembled on the surface of a carbon nanotube. For that, we used QDs of cadmium telluride and cyanobacterial phycobilisome rods (PBSr) or light-harvesting complex II (LHCII) of higher plants. For this nanobiohybrid, we confirmed composition and organization using infrared spectroscopy, X-ray photoelectron spectroscopy, and high-resolution confocal microscopy. Then, we proved that within such an assembly, there is a resonance energy transfer from QD to PBSr or LHCII. When such a nanobiohybrid was further combined with thylakoids, the energy was transferred to photosynthetic reaction centers and efficiently powered the photosystem I reaction center. The presented construct is proof of a general concept, combining interacting elements on a platform of a nanotube, allowing further variation within assembled elements.
Collapse
Affiliation(s)
- Jakub Sławski
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Jan Maciejewski
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Rafał Szukiewicz
- Faculty
of Physics and Astronomy, University of
Wrocław, Maxa Borna
9, 50-204 Wrocław, Poland
| | - Katarzyna Gieczewska
- Department
of Plant Anatomy and Cytology, Institute of Experimental Plant Biology
and Biotechnology, Faculty of Biology, University
of Warsaw, I. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Joanna Grzyb
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
25
|
Liu Y, Kang M, Weng Y, Ding Y, Bai X. Toxicity and tolerance mechanism of binary zinc oxide nanoparticles and tetrabromobisphenol A regulated by humic acid in Chlorella vulgaris. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1615-1625. [PMID: 37581509 DOI: 10.1039/d3em00230f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Recent studies have reported that nanoparticles (NPs) released into the aquatic environment may interact with persistent organic pollutants such as brominated flame retardants, whereas the environmental processes and toxicological impacts induced by such binary NPs require further specification. This study investigated the ultrastructural damage of Chlorella vulgaris triggered by exposure to zinc oxide (ZnO) NPs, tetrabromobisphenol A (TBBPA), ZnO-TBBPA, and ZnO-TBBPA-humic acid (HA), clarified the uptake and distribution of ZnO NPs in cells, and explored the physiological toxicity and tolerance mechanism. The results demonstrated that ZnO NPs induced irregular morphology in algal cells, and the disruption of the cellular ultrastructure by binary ZnO-TBBPA was also extremely severe due to the excessive uptake of ZnO NPs, which resulted in strong oxidative stress responses. In particular, the accumulation of reactive oxygen species further exacerbated the reduction of total chlorophyll content and algal density. Moreover, the cluster heat map and correlation analysis revealed that superoxide dismutase activity played a critical role in alleviating lipid peroxidation damage and enhancing the tolerance of algal cells to the stress of binary ZnO NPs. More notably, the existence of HA intensified the dispersion stability of NP suspensions and significantly mitigated the synergistic toxicity of binary ZnO-TBBPA. This study provides new insights into the environmental behavior and biological impacts of binary NPs in the natural environment.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing 210098, China.
| | - Mengen Kang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing 210098, China.
| | - Yuzhu Weng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing 210098, China.
| | - Yuanyuan Ding
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing 210098, China.
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing 210098, China.
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China
| |
Collapse
|
26
|
Zou Y, Xu E, Fan Y, Zhang P, Zhang W, Chen X. OsPML2, a chloroplast envelope localized transporter is involved in manganese homeostasis in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108054. [PMID: 37757723 DOI: 10.1016/j.plaphy.2023.108054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Manganese (Mn), a vital element, plays crucial roles in various biochemical and physiological processes by serving as an essential cofactor for numerous enzymes and acting as a catalytically active metal within biological clusters. In this study, we investigate the role of PHOTOSYNTHESIS-AFFECTED MUTANT 71-LIKE 2 (OsPML2), a member of the UNCHARACTERIZED PROTEIN FAMILY 0016 (UPF0016) family, in regulating Mn homeostasis in rice. OsPML2 was highly expressed in young leaves, ovaries, and stigmas. Cross sections from young leaves revealed that OsPML2 was mainly expressed in the phloem region and mesophyll cells. Furthermore, heterologous expression of OsPML2 restored the growth of Mn uptake-defective yeast strain Δsmf1 under Mn-limited conditions. Subcellular localization analysis demonstrated that OsPML2 was specifically localized in the chloroplast envelope. Knockdown of OsPML2 resulted in reduced chloroplast Mn content, significantly affecting plant growth under Mn deficiency. Furthermore, analysis of isolated thylakoid membranes using blue native gels indicated a compromised accumulation of photosystem II (PSII) complexes in OsPML2 knockdown lines. Additionally, grain yield, grain length, and width were significantly reduced in OsPML2 knockdown plants. Collectively, our findings provide insights into the transport function of OsPML2, which facilitates Mn transport from the cytosol to chloroplast stroma and influences the accumulation of PSII complexes in rice.
Collapse
Affiliation(s)
- Yu Zou
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Ending Xu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China; Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Ye Fan
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China
| | - Peijiang Zhang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, 230031, China
| | - Wei Zhang
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China.
| | - Xi Chen
- Department of Biochemistry & Molecular Biology, College of Life Science, Nanjing Agriculture University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
27
|
Uddin MM, Chen Z, Xu F, Huang L. Physiological and Cellular Ultrastructural Responses of Sesuvium portulacastrum under Cd Stress Grown Hydroponically. PLANTS (BASEL, SWITZERLAND) 2023; 12:3381. [PMID: 37836122 PMCID: PMC10574335 DOI: 10.3390/plants12193381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 10/15/2023]
Abstract
This study aimed to investigate the physiological and cellular mechanisms of Sesuvium portulacastrum under heavy metal stress to evaluate possible tolerance and adaptation mechanisms in a metal-polluted environment. The physiological and cellular ultrastructural responses of S. portulacastrum were studied hydroponically under exposure to a range of cadmium (Cd) concentrations (50 µM to 600 µM) for 28 days. The activity of antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), changes in chlorophyll, and cellular ultrastructural content were examined. There was no significant difference in chlorophyll content in the leaf under the stress of 300 μM, but 400 μM and 600 μM Cd stress showed significantly decreased chlorophyll content. The SOD activity indicates an increase under the Cd stress of 100 μM for leaves, 300 μM for stems, and 50 μM for roots; after that, the SOD activity gradually decreased with increasing Cd concentrations. But POD activity was considerably increased with increasing Cd stress. CAT activity showed a gradual increase in concentrations until 300 μM of Cd stress and then decreased sharply in roots, stems, and leaf tissues. Cd stress had a considerable impact on the structure of the roots, stems, and leaves cells, such as distorted and thinner cell walls and the deformation of chloroplasts, mitochondria, and other organelles. Therefore, the increased number of nucleolus in the cell nucleus suggests that cells may be able to maintain their protein synthesis in a stressful environment. This study concludes that SOD is the dominant antioxidant enzyme activity during low Cd toxicity (<100 μM), while POD is the dominant enzyme activity during higher Cd toxicity (>100 μM).
Collapse
Affiliation(s)
- Mohammad Mazbah Uddin
- Key Laboratory of the Ministry of Education for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China;
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China;
| | - Zhenfang Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China;
| | - Fuliu Xu
- Key Laboratory of the Ministry of Education for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China;
| | - Lingfeng Huang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China;
| |
Collapse
|
28
|
Li Q, Liu X, Sun X, Zhao M, Liu L, Wang N, Gao Q, Fan P, Du N, Wang H, Wang R. Effects of drought hardening on the carbohydrate dynamics of Quercus acutissima seedlings under successional drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1184584. [PMID: 37692418 PMCID: PMC10485557 DOI: 10.3389/fpls.2023.1184584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
Introduction As precipitation patterns are predicted to become increasingly erratic, the functional maintenance of warm-temperate forests constitutes a key challenge for forest managers. In this study, 2-year-old Quercus acutissima seedlings were selected to elucidate the mechanisms whereby they respond to soil water fluctuations and the drought hardening effects on plant carbohydrate dynamics. Methods Seedlings were trained under different soil water conditions for 2 months: drought (D), well-watered (W), 1-month drought and then 1-month well-watered (D-W), and 1-month well-watered and then 1-month drought (W-D). The functional traits involved in water- and carbon-use strategies were explored at the end of the hardening period. Compared with seedlings in group W, seedlings in groups D, D-W, and W-D had increased potential for carbon uptake (i.e., light saturated point, maximum ribulose-1,5-bisphosphate (RuBP) saturated rate, and electron transport rate) and water uptake (i.e., fine root-to-coarse root ratio) and downregulated growth and mitochondrial respiration to decrease carbon consumption. After water fluctuation hardening, we performed a successional dry-down experiment for 1 month to detect carbohydrate dynamics and explore the acclimation caused by prior hardening. Results and discussion Our results revealed that there were more soluble sugars allocated in the leaves and more starch allocated in the stems and roots of seedlings hardened in the D, W-D, and D-W treatments than that of seedlings hardened in the W treatment. No significant changes in total non-structural carbohydrates were found. In addition, we found near-zero (seedlings trained by D and D-W treatments) or negative (seedlings trained by W-D treatment) growth of structural biomass at the end of the dry-down experiment, which was significantly lower than that of W-hardened seedlings. This suggests that there was a shift in allocation patterns between carbon storage and growth under recurrent soil drought, which can be strengthened by drought memory. We conclude that Q. acutissima seedlings adjusted water- and carbon-use strategies in response to water fluctuations, whereas stress memory can enhance their overall performance in reoccurring drought. Therefore, taking advantage of stress memory is a promising management strategy in forest nurseries, and drought-trained seedlings might be more suitable for afforestation practices in sites characterized by fluctuating soil water content, considering the ongoing global climatic changes.
Collapse
Affiliation(s)
- Qiang Li
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- School of Tropical Medicine, Hainan Medical University, Haikou, China
| | - Xiao Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
| | - Xinke Sun
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
| | - Mingming Zhao
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
| | - Lele Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
| | - Ning Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
| | - Qun Gao
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao, China
| | - Peixian Fan
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao, China
| | - Ning Du
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- Qingdao Key Laboratory of Forest and Wetland Ecology, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
| |
Collapse
|
29
|
Muhammad D, Alameldin HF, Oh S, Montgomery BL, Warpeha KM. Arogenate dehydratases: unique roles in light-directed development during the seed-to-seedling transition in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1220732. [PMID: 37600200 PMCID: PMC10433759 DOI: 10.3389/fpls.2023.1220732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023]
Abstract
The seed-to-seedling transition is impacted by changes in nutrient availability and light profiles, but is still poorly understood. Phenylalanine affects early seedling development; thus, the roles of arogenate dehydratases (ADTs), which catalyze phenylalanine formation, were studied in germination and during the seed-to-seedling transition by exploring the impact of light conditions and specific hormone responses in adt mutants of Arabidopsis thaliana. ADT gene expression was assessed in distinct tissues and for light-quality dependence in seedlings for each of the six-member ADT gene family. Mutant adt seedlings were evaluated relative to wild type for germination, photomorphogenesis (blue, red, far red, white light, and dark conditions), anthocyanin accumulation, and plastid development-related phenotypes. ADT proteins are expressed in a light- and tissue-specific manner in transgenic seedlings. Among the analyzed adt mutants, adt3, adt5, and adt6 exhibit significant defects in germination, hypocotyl elongation, and root development responses during the seed-to-seedling transition. Interestingly, adt5 exhibits a light-dependent disruption in plastid development, similar to a phyA mutant. These data indicate interactions between photoreceptors, hormones, and regulation of phenylalanine pools in the process of seedling establishment. ADT5 and ADT6 may play important roles in coordinating hormone and light signals for normal early seedling development.
Collapse
Affiliation(s)
- DurreShahwar Muhammad
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Hussien F. Alameldin
- MSU-DOE Plant Research Lab, Plant Biology Laboratories, East Lansing, MI, United States
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Sookyung Oh
- MSU-DOE Plant Research Lab, Plant Biology Laboratories, East Lansing, MI, United States
| | - Beronda L. Montgomery
- MSU-DOE Plant Research Lab, Plant Biology Laboratories, East Lansing, MI, United States
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Department of Biology, Grinnell College, Grinnell, IA, United States
| | - Katherine M. Warpeha
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
30
|
Ye J, Ni J, Tian F, Ji X, Hou M, Li Y, Yang L, Wang R, Xu W, Meng L. Toxicity effects of disinfection byproduct chloroacetic acid to Microcystis aeruginosa: Cytotoxicity and mechanisms. J Environ Sci (China) 2023; 129:229-239. [PMID: 36804238 DOI: 10.1016/j.jes.2022.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/11/2022] [Accepted: 09/17/2022] [Indexed: 06/18/2023]
Abstract
Chlorine-based disinfectants are widely used for disinfection in wastewater treatment. The mechanism of the effects of chlorinated disinfection by-products on cyanobacteria was unclear. Herein, the physiological effects of chloroacetic acid (CAA) on Microcystis aeruginosa (M. aeruginosa), including acute toxicity, oxidative stress, apoptosis, production of microcystin-LR (MC-LR), and the microcystin transportation-related gene mcyH transcript abundance have been investigated. CAA exposure resulted in a significant change in the cell ultrastructure, including thylakoid damage, disappearance of nucleoid, production of gas vacuoles, increase in starch granule, accumulation of lipid droplets, and disruption of cytoplasm membranes. Meanwhile, the apoptosis rate of M. aeruginosa increased with CAA concentration. The production of MC-LR was affected by CAA, and the transcript abundance of mcyH decreased. Our results suggested that CAA poses acute toxicity to M. aeruginosa, and it could cause oxidative damage, stimulate MC-LR production, and damage cell ultrastructure. This study may provide information about the minimum concentration of CAA in the water environment, which is safe for aquatic organisms, especially during the global coronavirus disease 2019 pandemic period.
Collapse
Affiliation(s)
- Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Jiawei Ni
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Fuxiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiyan Ji
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yuanting Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lei Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Runxiang Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wenwu Xu
- School of Railway Transportation, Shanghai Institute of Technology, Shanghai 201418, China
| | - Liang Meng
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
31
|
Navarro JM, Antolinos V, Botía P, Robles JM. Deficit Irrigation Applied to Lemon Trees Grafted on Two Rootstocks and Irrigated with Desalinated Seawater. PLANTS (BASEL, SWITZERLAND) 2023; 12:2300. [PMID: 37375925 DOI: 10.3390/plants12122300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
The use of desalinated seawater (DSW) for irrigation in semi-arid regions is taking hold. Citrus tolerance to ions that predominate in DSW and water stress depends on the rootstock. Deficit irrigation was applied to DSW-irrigated lemon trees and grafted on rootstocks with different tolerance (Citrus macrophylla (CM) and sour orange (SO)). Plants were irrigated with DSW or Control treatment (distilled water), and, 140 days later, irrigation treatments were started: full irrigation (FI) or DI (50% of the volume applied to FI). After 75 days, differences between CM and SO plants irrigated with DSW and under DI were found. The higher concentrations of Cl- and Na+ in CM and B in SO were the main causes of shoot growth reduction. The osmotic adjustment of CM plants was made possible by the accumulation of Na+, Cl-, and proline, but SO failed to adjust osmotically. In CM and SO plants, photosynthesis reduction was due to lower chlorophyll levels, but also to stomatal factors (CM plants) or alterations of the photochemical machinery (SO plants). Finally, unlike CM, SO had a good antioxidant system. In the future, knowing the different responses of CM and SO under these stressful conditions could be useful in citrus-growing areas.
Collapse
Affiliation(s)
- Josefa M Navarro
- Equipo de Riego y Fisiología del Estrés, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental, 30150 Murcia, Spain
| | - Vera Antolinos
- Equipo de Riego y Fisiología del Estrés, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental, 30150 Murcia, Spain
| | - Pablo Botía
- Equipo de Riego y Fisiología del Estrés, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental, 30150 Murcia, Spain
| | - Juan M Robles
- Equipo de Riego y Fisiología del Estrés, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental, 30150 Murcia, Spain
| |
Collapse
|
32
|
Choudhary B, Khandwal D, Gupta NK, Patel J, Mishra A. Nutrient Composition, Physicobiochemical Analyses, Oxidative Stability and Antinutritional Assessment of Abundant Tropical Seaweeds from the Arabian Sea. PLANTS (BASEL, SWITZERLAND) 2023; 12:2302. [PMID: 37375927 DOI: 10.3390/plants12122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Foods enriched with nutritional compounds and biological activities, especially antioxidants, are considered healthier for human and/or animal consumption. Seaweeds are rich sources of biologically active metabolites and are used as functional foods. In this study, proximate compositions, physicobiochemical characteristics and oil oxidative stability were analyzed for 15 abundant tropical seaweeds (four green-Acrosiphonia orientalis, Caulerpa scalpelliformis, Ulva fasciata, Ulva lactuca; six brown-Iyengaria stellata, Lobophora variegate, Padina boergesenii, Sargassum linearifolium, Spatoglossum asperum, Stoechospermum marginatum; and five red-Amphiroa anceps, Grateloupia indica, Halymenia porphyriformis, Scinaia carnosa, Solieria chordalis). All seaweeds were analyzed for the proximate composition, including moisture content, ash content, total sugar content, total proteins, total lipids, crude fiber, carotenoid content, total chlorophyll content, proline, iodine content, nitrogen-free extract, total phenolic content and total flavonoid content. Green seaweeds showed higher nutritional proximate composition, followed by brown and red seaweeds. Among the different seaweeds, Ulva, Caulerpa, Sargassum, Spatoglossum and Amphiroa showed high nutritional proximate composition compared to other seaweeds. High cation scavenging, free radical scavenging and total reducing activities were observed for Acrosiphonia, Caulerpa, Ulva, Sargassum, Spatoglossum and Iyengaria. It was also observed that 15 tropical seaweeds contained negligible amounts of antinutritional compounds, including tannic acid, phytic acid, saponins, alkaloids and terpenoids. Nutritionally, green and brown seaweeds provided higher sources of energy (150-300 calories per 100 g) compared to red seaweeds (80-165 calories per 100 g). Additionally, this study also confirmed that tropical seaweeds improved the oxidative stability of food oils and, therefore, might be recommended as natural antioxidant additives. The overall results confirm that tropical seaweeds are potential sources of nutrition and antioxidants and may be explored as functional food, dietary supplementation or animal feed. Additionally, they may also be explored as food supplements for fortifying food products, as food toppings or for garnishing and seasoning foods. However, a human or animal toxicity analysis is required before any conclusive recommendation for daily food or feed intake can be made.
Collapse
Affiliation(s)
- Babita Choudhary
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Deepesh Khandwal
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nirmala Kumari Gupta
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jaykumar Patel
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avinash Mishra
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
33
|
Kim DH, Lim SH, Lee JY. Expression of RsPORB Is Associated with Radish Root Color. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112214. [PMID: 37299194 DOI: 10.3390/plants12112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Radish (Raphanus sativus) plants exhibit varied root colors due to the accumulation of chlorophylls and anthocyanins compounds that are beneficial for both human health and visual quality. The mechanisms of chlorophyll biosynthesis have been extensively studied in foliar tissues but remain largely unknown in other tissues. In this study, we examined the role of NADPH:protochlorophyllide oxidoreductases (PORs), which are key enzymes in chlorophyll biosynthesis, in radish roots. The transcript level of RsPORB was abundantly expressed in green roots and positively correlated with chlorophyll content in radish roots. Sequences of the RsPORB coding region were identical between white (948) and green (847) radish breeding lines. Additionally, virus-induced gene silencing assay with RsPORB exhibited reduced chlorophyll contents, verifying that RsPORB is a functional enzyme for chlorophyll biosynthesis. Sequence comparison of RsPORB promoters from white and green radishes showed several insertions and deletions (InDels) and single-nucleotide polymorphisms. Promoter activation assays using radish root protoplasts verified that InDels of the RsPORB promoter contribute to its expression level. These results suggested that RsPORB is one of the key genes underlying chlorophyll biosynthesis and green coloration in non-foliar tissues, such as roots.
Collapse
Affiliation(s)
- Da-Hye Kim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Republic of Korea
| | - Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Research Institute of International Technology and Information, Hankyong National University, Anseong 17579, Republic of Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
34
|
Zhao L, Wang HJ, Martins PD, van Dongen JT, Bolger AM, Schmidt RR, Jing HC, Mueller-Roeber B, Schippers JHM. The Arabidopsis thaliana onset of leaf death 12 mutation in the lectin receptor kinase P2K2 results in an autoimmune phenotype. BMC PLANT BIOLOGY 2023; 23:294. [PMID: 37264342 DOI: 10.1186/s12870-023-04300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Plant immunity relies on the perception of immunogenic signals by cell-surface and intracellular receptors and subsequent activation of defense responses like programmed cell death. Under certain circumstances, the fine-tuned innate immune system of plants results in the activation of autoimmune responses that cause constitutive defense responses and spontaneous cell death in the absence of pathogens. RESULTS Here, we characterized the onset of leaf death 12 (old12) mutant that was identified in the Arabidopsis accession Landsberg erecta. The old12 mutant is characterized by a growth defect, spontaneous cell death, plant-defense gene activation, and early senescence. In addition, the old12 phenotype is temperature reversible, thereby exhibiting all characteristics of an autoimmune mutant. Mapping the mutated locus revealed that the old12 phenotype is caused by a mutation in the Lectin Receptor Kinase P2-TYPE PURINERGIC RECEPTOR 2 (P2K2) gene. Interestingly, the P2K2 allele from Landsberg erecta is conserved among Brassicaceae. P2K2 has been implicated in pathogen tolerance and sensing extracellular ATP. The constitutive activation of defense responses in old12 results in improved resistance against Pseudomonas syringae pv. tomato DC3000. CONCLUSION We demonstrate that old12 is an auto-immune mutant and that allelic variation of P2K2 contributes to diversity in Arabidopsis immune responses.
Collapse
Affiliation(s)
- Liming Zhao
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
- Beijng Academy, Beijing, 100028, China
| | - Hao-Jie Wang
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074, Aachen, Germany
| | - Patricia Dalcin Martins
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074, Aachen, Germany
| | - Joost T van Dongen
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074, Aachen, Germany
| | - Anthony M Bolger
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074, Aachen, Germany
- IBG-4: Bioinformatik,Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Romy R Schmidt
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074, Aachen, Germany
- Plant Biotechnology Group, Faculty of Biology, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Ruski 139 Blvd, Plovdiv, 4000, Bulgaria
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany.
| |
Collapse
|
35
|
Franke K, Matthes LC, Graiff A, Karsten U, Bartsch I. The challenge of estimating kelp production in a turbid marine environment. JOURNAL OF PHYCOLOGY 2023; 59:518-537. [PMID: 36905243 DOI: 10.1111/jpy.13327] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 06/15/2023]
Abstract
Coastal kelp forests produce substantial marine carbon due to high annual net primary production (NPP) rates, but upscaling of NPP estimates over time and space remains difficult. We investigated the impact of variable underwater photosynthetically active radiation (PAR) and photosynthetic parameters on photosynthetic oxygen production of Laminaria hyperborea, the dominant NE-Atlantic kelp species, throughout summer 2014. Collection depth of kelp had no effect on chlorophyll a content, pointing to a high photoacclimation potential of L. hyperborea towards incident light. However, chlorophyll a and photosynthesis versus irradiance parameters differed significantly along the blade gradient when normalized to fresh mass, potentially introducing large uncertainties in NPP upscaling to whole thalli. Therefore, we recommend a normalization to kelp tissue area, which is stable over the blade gradient. Continuous PAR measurements revealed a highly variable underwater light climate at our study site (Helgoland, North Sea) in summer 2014, reflected by PAR attenuation coefficients (Kd ) between 0.28 and 0.87 m-1 . Our data highlight the importance of continuous underwater light measurements or representative average values using a weighted Kd to account for large PAR variability in NPP calculations. Strong winds in August increased turbidity, resulting in a negative carbon balance at depths >3-4 m over several weeks, considerably impacting kelp productivity. Estimated daily summer NPP over all four depths was 1.48 ± 0.97 g C · m-2 seafloor · d-1 for the Helgolandic kelp forest, which is in the range of other kelp forests along European coastlines.
Collapse
Affiliation(s)
- Kiara Franke
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), 27570, Bremerhaven, Germany
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059, Rostock, Germany
| | - Lisa C Matthes
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059, Rostock, Germany
- Takuvik International Research Laboratory, Université Laval and CNRS, G1V0A6, Québec, Canada
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, 27570, Bremerhaven, Germany
| | - Angelika Graiff
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059, Rostock, Germany
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059, Rostock, Germany
| | - Inka Bartsch
- Alfred Wegener Institute, Helmholtz-Centre for Polar and Marine Research, 27570, Bremerhaven, Germany
| |
Collapse
|
36
|
Ivanauskaite A, Rantala M, Laihonen L, Konert MM, Schwenner N, Mühlenbeck JS, Finkemeier I, Mulo P. Loss of Chloroplast GNAT Acetyltransferases Results in Distinct Metabolic Phenotypes in Arabidopsis. PLANT & CELL PHYSIOLOGY 2023; 64:549-563. [PMID: 37026998 DOI: 10.1093/pcp/pcad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/16/2023] [Indexed: 05/17/2023]
Abstract
Acetylation is one of the most common chemical modifications found on a variety of molecules ranging from metabolites to proteins. Although numerous chloroplast proteins have been shown to be acetylated, the role of acetylation in the regulation of chloroplast functions has remained mainly enigmatic. The chloroplast acetylation machinery in Arabidopsis thaliana consists of eight General control non-repressible 5 (GCN5)-related N-acetyltransferase (GNAT)-family enzymes that catalyze both N-terminal and lysine acetylation of proteins. Additionally, two plastid GNATs have also been reported to be involved in the biosynthesis of melatonin. Here, we have characterized six plastid GNATs (GNAT1, GNAT2, GNAT4, GNAT6, GNAT7 and GNAT10) using a reverse genetics approach with an emphasis on the metabolomes and photosynthesis of the knock-out plants. Our results reveal the impact of GNAT enzymes on the accumulation of chloroplast-related compounds, such as oxylipins and ascorbate, and the GNAT enzymes also affect the accumulation of amino acids and their derivatives. Specifically, the amount of acetylated arginine and proline was significantly decreased in the gnat2 and gnat7 mutants, respectively, as compared to the wild-type Col-0 plants. Additionally, our results show that the loss of the GNAT enzymes results in increased accumulation of Rubisco and Rubisco activase (RCA) at the thylakoids. Nevertheless, the reallocation of Rubisco and RCA did not have consequent effects on carbon assimilation under the studied conditions. Taken together, our results show that chloroplast GNATs affect diverse aspects of plant metabolism and pave way for future research into the role of protein acetylation.
Collapse
Affiliation(s)
- Aiste Ivanauskaite
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Marjaana Rantala
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Laura Laihonen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Minna M Konert
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Naike Schwenner
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Jens S Mühlenbeck
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Paula Mulo
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
37
|
Zheng Y, Li Z, Cui X, Yang Z, Bao C, Pan L, Liu X, Chatel-Innocenti G, Vanacker H, Noctor G, Dard A, Reichheld JP, Issakidis-Bourguet E, Zhou DX. S-Nitrosylation of the histone deacetylase HDA19 stimulates its activity to enhance plant stress tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:836-854. [PMID: 36883867 DOI: 10.1111/tpj.16174] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/06/2023] [Accepted: 02/26/2023] [Indexed: 05/27/2023]
Abstract
Arabidopsis histone deacetylase HDA19 is required for gene expression programs of a large spectrum of plant developmental and stress-responsive pathways. How this enzyme senses cellular environment to control its activity remains unclear. In this work, we show that HDA19 is post-translationally modified by S-nitrosylation at 4 Cysteine (Cys) residues. HDA19 S-nitrosylation depends on the cellular nitric oxide level, which is enhanced under oxidative stress. We find that HDA19 is required for cellular redox homeostasis and plant tolerance to oxidative stress, which in turn stimulates its nuclear enrichment, S-nitrosylation and epigenetic functions including binding to genomic targets, histone deacetylation and gene repression. The Cys137 of the protein is involved in basal and stress-induced S-nitrosylation, and is required for HDA19 functions in developmental, stress-responsive and epigenetic controls. Together, these results indicate that S-nitrosylation regulates HDA19 activity and is a mechanism of redox-sensing for chromatin regulation of plant tolerance to stress.
Collapse
Affiliation(s)
- Yu Zheng
- Hubei Province Research Center of Legume Plants, School of Life Science and Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405, Orsay, France
| | - Zhenting Li
- Hubei Province Research Center of Legume Plants, School of Life Science and Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Xiaoyun Cui
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405, Orsay, France
| | - Zheng Yang
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405, Orsay, France
| | - Chun Bao
- Hubei Province Research Center of Legume Plants, School of Life Science and Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Lei Pan
- Hubei Province Research Center of Legume Plants, School of Life Science and Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Xiaoyun Liu
- Hubei Province Research Center of Legume Plants, School of Life Science and Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Gilles Chatel-Innocenti
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405, Orsay, France
| | - Hélène Vanacker
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405, Orsay, France
| | - Graham Noctor
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405, Orsay, France
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, 66860, Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, CNRS, Université Perpignan Via Domitia, 66860, Perpignan, France
| | | | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay, CNRS, INRA, Université Paris-Saclay, 91405, Orsay, France
| |
Collapse
|
38
|
Fatnani D, Patel M, Parida AK. Regulation of chromium translocation to shoot and physiological, metabolomic, and ionomic adjustments confer chromium stress tolerance in the halophyte Suaeda maritima. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121046. [PMID: 36627045 DOI: 10.1016/j.envpol.2023.121046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Chromium (Cr) is a highly toxic element adversely affecting the environment, cultivable lands, and human populations. The present study investigated the effects of Cr (VI) (100-400 μM) on plant morphology and growth, photosynthetic pigments, organic osmolytes, ionomics, and metabolomic dynamics of the halophyte Suaeda maritima to decipher the Cr tolerance mechanisms. Cr exposure reduced the growth and biomass in S. maritima. The photosynthetic pigments content significantly declined at higher Cr concentrations (400 μM). However, at lower Cr concentrations (100-300 μM), the photosynthetic pigments remained unaffected or increased. The results suggest that a high concentration of Cr exposure might have adverse effects on PS II in S. maritima. The enhanced uptake of Na+ in S. maritima imposed to Cr stress indicates that Na+ might have a pivotal role in osmotic adjustment, thereby maintaining water status under Cr stress. The proline content was significantly upregulated in Cr-treated plants suggesting its role in maintaining osmotic balance and scavenging ROS. The metabolomic analysis of control and 400 μM Cr treated plants led to the identification of 62 metabolites. The fold chain analysis indicated the upregulation of several metabolites, including phytohormones (SA and GA3), polyphenols (cinnamic acid, sinapic acid, coumaric acid, vanillic acid, and syringic acid), and amino acids (alanine, leucine, proline, methionine, and cysteine) under Cr stress. The upregulation of these metabolites suggests the enhanced metal chelation and sequestration in vacuoles, reducing oxidative stress by scavenging ROS and promoting photosynthesis by maintaining the chloroplast membrane structure and photosynthetic pigments. Furthermore, in S. maritima, Cr tolerance index (Ti) was more than 60% in all the treatments, and Cr bio-concentration factor (BCF) and translocation factor (Tf) values were all greater than 1.0, which clearly indicates the Cr-hyperaccumulator characteristics of this halophyte.
Collapse
Affiliation(s)
- Dhara Fatnani
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Monika Patel
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
39
|
Deslandes-Hérold G, Zanella M, Solhaug E, Fischer-Stettler M, Sharma M, Buergy L, Herrfurth C, Colinas M, Feussner I, Abt MR, Zeeman SC. The PRK/Rubisco shunt strongly influences Arabidopsis seed metabolism and oil accumulation, affecting more than carbon recycling. THE PLANT CELL 2023; 35:808-826. [PMID: 36454674 PMCID: PMC9940875 DOI: 10.1093/plcell/koac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The carbon efficiency of storage lipid biosynthesis from imported sucrose in green Brassicaceae seeds is proposed to be enhanced by the PRK/Rubisco shunt, in which ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) acts outside the context of the Calvin-Benson-Bassham cycle to recycle CO2 molecules released during fatty acid synthesis. This pathway utilizes metabolites generated by the nonoxidative steps of the pentose phosphate pathway. Photosynthesis provides energy for reactions such as the phosphorylation of ribulose 5-phosphate by phosphoribulokinase (PRK). Here, we show that loss of PRK in Arabidopsis thaliana (Arabidopsis) blocks photoautotrophic growth and is seedling-lethal. However, seeds containing prk embryos develop normally, allowing us to use genetics to assess the importance of the PRK/Rubisco shunt. Compared with nonmutant siblings, prk embryos produce one-third less lipids-a greater reduction than expected from simply blocking the proposed PRK/Rubisco shunt. However, developing prk seeds are also chlorotic and have elevated starch contents compared with their siblings, indicative of secondary effects. Overexpressing PRK did not increase embryo lipid content, but metabolite profiling suggested that Rubisco activity becomes limiting. Overall, our findings show that the PRK/Rubisco shunt is tightly integrated into the carbon metabolism of green Arabidopsis seeds, and that its manipulation affects seed glycolysis, starch metabolism, and photosynthesis.
Collapse
Affiliation(s)
- Gabriel Deslandes-Hérold
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Martina Zanella
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Erik Solhaug
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Michaela Fischer-Stettler
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Mayank Sharma
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Léo Buergy
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Cornelia Herrfurth
- Department for Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
| | - Maite Colinas
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Ivo Feussner
- Department for Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, D-37077 Göttingen, Germany
| | - Melanie R Abt
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Samuel C Zeeman
- Department of Biology, Institute of Molecular Plant Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
40
|
Cao Z, Li P, Ru J, Cao X, Wang X, Liu B, Li ZH. Physiological responses of marine Chlorella sp. exposed to environmental levels of triphenyltin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26387-26396. [PMID: 36367644 DOI: 10.1007/s11356-022-23992-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Triphenyltin (TPT) is a herbicide and antifouling agent that has been widely used. After TPT flows into water bodies, it will cause toxic effects on marine life. We evaluated the effect of environmental concentration level (0, 10, 100, and 200 ng/L) on the cell density, antioxidant capability, and photosynthesis-related genes in the marine Chlorella sp. The results showed that 10 and 100 ng/L TPT can promote the growth of marine Chlorella sp., 200 ng/L TPT can inhibit the growth of marine Chlorella sp., and the TPT toxicity was accumulative. The chlorophyll composition changed. The content of chlorophyll a in 100 ng/L and 200 ng/L groups was significantly higher than that in the control group (p < 0.05) in 13 days. The content of chlorophyll b in the 100 ng/L and 200 ng/L groups in 1 day and 13 days was significantly different from that in the control group (p < 0.05). The content of total chlorophyll in the 100 ng/L and 200 ng/L groups in 13 days was higher than that in the control group (p < 0.05). The 200 ng/L group began to suffer oxidative damage on the 12th day, and the pigment protein complex responded to oxidative damage through self-feedback regulation. On the 18th day, chld, cao, psy, rbcS, and rbcL genes were downregulated, and psbA gene was upregulated in the 10 ng/L and 100 ng/L groups, which may be a feedback regulation of self-oxidative damage. This paper analyzed toxicity of environmental levels of TPT to marine Chlorella sp., which provided new data support for the comprehensive evaluation of its marine ecological toxicity.
Collapse
Affiliation(s)
- Zhihan Cao
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ping Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Jinchuang Ru
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Xu Wang
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| |
Collapse
|
41
|
Meng F, Zhang T, Yin D. The effects of soil drought stress on growth characteristics, root system, and tissue anatomy of Pinus sylvestris var. mongolica. PeerJ 2023; 11:e14578. [PMID: 36643639 PMCID: PMC9835711 DOI: 10.7717/peerj.14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
The main purpose of this study was to study the changes in growth, root system, and tissue anatomical structure of Pinus sylvestris var. mongolica under soil drought conditions. In this study, the growth indexes and photosynthesis of P. sylvestris var. mongolica seedlings under soil drought stress were studied by pot cultivation. Continuous pot water control experiment of the indoor culture of P. sylvestris var. mongolica was carried out, ensuring that the soil water content of each treatment reached 80%, 40%, and 20% of the field moisture capacity as control, moderate drought and severe drought, respectively. The submicroscopic structures of the needles and roots were observed using a scanning electron microscope and a transmission electron microscope. The response of soil roots to drought stress was studied by root scanning. Moderate drought stress increased needle stomatal density, while under severe drought stress, stomatal density decreased. At the same time, the total number of root tips, total root length, root surface area, and root volume of seedlings decreased with the deepening of the drought. Furthermore, moderate drought and severe drought stress significantly reduced the chlorophyll a and chlorophyll b content in P. sylvestris var. mongolica seedlings compared to the control group. The needle cells were deformed and damaged, and chloroplasts and mitochondria were damaged, gradually disintegrated, and the number of osmiophiles increased. There was also an increase in nuclear vacuolation.
Collapse
|
42
|
Bai WP, Li HJ, Hepworth SR, Liu HS, Liu LB, Wang GN, Ma Q, Bao AK, Wang SM. Physiological and transcriptomic analyses provide insight into thermotolerance in desert plant Zygophyllum xanthoxylum. BMC PLANT BIOLOGY 2023; 23:7. [PMID: 36600201 PMCID: PMC9814312 DOI: 10.1186/s12870-022-04024-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Heat stress has adverse effects on the growth and reproduction of plants. Zygophyllum xanthoxylum, a typical xerophyte, is a dominant species in the desert where summer temperatures are around 40 °C. However, the mechanism underlying the thermotolerance of Z. xanthoxylum remained unclear. RESULTS Here, we characterized the acclimation of Z. xanthoxylum to heat using a combination of physiological measurements and transcriptional profiles under treatments at 40 °C and 45 °C, respectively. Strikingly, moderate high temperature (40 °C) led to an increase in photosynthetic capacity and superior plant performance, whereas severe high temperature (45 °C) was accompanied by reduced photosynthetic capacity and inhibited growth. Transcriptome profiling indicated that the differentially expressed genes (DEGs) were related to transcription factor activity, protein folding and photosynthesis under heat conditions. Furthermore, numerous genes encoding heat transcription shock factors (HSFs) and heat shock proteins (HSPs) were significantly up-regulated under heat treatments, which were correlated with thermotolerance of Z. xanthoxylum. Interestingly, the up-regulation of PSI and PSII genes and the down-regulation of chlorophyll catabolism genes likely contribute to improving plant performance of Z. xanthoxylum under moderate high temperature. CONCLUSIONS We identified key genes associated with of thermotolerance and growth in Z. xanthoxylum, which provide significant insights into the regulatory mechanisms of thermotolerance and growth regulation in Z. xanthoxylum under high temperature conditions.
Collapse
Affiliation(s)
- Wan-Peng Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Hu-Jun Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Shelley R Hepworth
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Hai-Shuang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Lin-Bo Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Gai-Ni Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Qing Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Suo-Min Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China.
| |
Collapse
|
43
|
Hyuk Lim S, La SW, Thuy Hang Hoang T, Trung Le Q, Jang S, Choo J, Vasseghian Y, Jun Son S, Joo SW. Carbon capture and biocatalytic oxygen production of photosystem II from thylakoids and microalgae on nanobiomaterials. BIORESOURCE TECHNOLOGY 2023; 368:128279. [PMID: 36351532 DOI: 10.1016/j.biortech.2022.128279] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Enhanced carbon capture and oxygen production via water splitting was observed by controlling the plasmon-induced resonance energy transfer (PIRET) for photosystem II (PSII) in thylakoid extracts and spirulina assembled on gold nanoparticle (AuNP) dimer arrays. The two types of vertical (V) and horizontal (H) AuNP dimer arrays were uniformly inserted inside pore diameter-controlled templates. Based on the theoretical calculations, the longitudinal mode of the H AuNP dimer array was found to be sensitive to the nanogap distances between the two AuNPs in resonance with the absorption at P680 of the PSII. The longitudinal modes that interacted with P680 of PSII increased from the V to the H conformer. The optical properties from the H AuNP dimer array caused overlapping absorbance and photoluminescence with PSII, and the H AuNP dimer arrays exhibited a significant increase in carbon capture and oxygen generation rates in comparison with those of the bare PSII protein complex under light irradiation via the controlled PIRET process.
Collapse
Affiliation(s)
- Soon Hyuk Lim
- Department of Chemistry, Gachon University, Seongnam 13120, South Korea
| | - Se-Woong La
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
| | | | - Quang Trung Le
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul 05006, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Sang Jun Son
- Department of Chemistry, Gachon University, Seongnam 13120, South Korea.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul 06978, South Korea.
| |
Collapse
|
44
|
Ye J, Hua S, Liu S, Tian F, Ji X, Li Y, Hou M, Xu W, Meng L, Sun L. Enantioselective effects of chiral fragrance carvone (L- and D-carvone) on the physiology, oxidative damage, synthesis, and release of microcystin-LR in Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158631. [PMID: 36084777 DOI: 10.1016/j.scitotenv.2022.158631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Carvone is a widely used chiral fragrance with two isomers (L-carvone and D-carvone). D-carvone smells like a caraway, whereas L-carvone smells like mint. Carvone imposes a potential burden on the aquatic ecosystem. However, the enantioselective toxic effect of carvone enantiomers on cyanobacteria remains unknown. This study aims to investigate the effects of L- and D-carvone on the physiological processes and related gene transcription (phoU, rbcL, and mcyH) in M. aeruginosa. Results showed that in the presence of L- and D-carvone, the oxidative damage and inhibitory effects on growth occurred in a concentration-dependent manner. The contents of chlorophyll a and protein and the rbcL transcription level were inhibited in M. aeruginosa. In addition, intracellular adenosine triphosphate (ATP) was heavily depleted because of various biological processes, including growth, oxidation reactions, and gene regulation. Meanwhile, L- and D-carvone stimulated the production and release of MC-LR and upregulated the expression level of the MC-LR-related gene mcyH. Intracellular MC-LR likely leaked to the water body under L-carvone exposure, posing a potential threat to the water environment. This study indicated that L- and D-carvone can regulate the physiological and metabolic activity of M. aeruginosa and show enantioselective toxic effects. The findings will also provide important insights into the influence of chiral fragrance on cyanobacterial blooms. Furthermore, this study will guide the safe application of chiral fragrance as personal care products.
Collapse
Affiliation(s)
- Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Sijia Hua
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Sijia Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Fuxiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiyan Ji
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yuanting Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wenwu Xu
- School of Railway Transportation, Shanghai Institute of Technology, Shanghai 201418, China
| | - Liang Meng
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lijuan Sun
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| |
Collapse
|
45
|
Zhu L, Wang Y, Zhang Z, Hu D, Wang Z, Hu J, Ma C, Yang L, Sun S, Li Y. Chromosomal fragment deletion in APRR2-repeated locus modulates the dark stem color in Cucurbita pepo. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4277-4288. [PMID: 36098750 DOI: 10.1007/s00122-022-04217-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Cp4.1LG15g03420 (CpDsc-1), which encodes a two-component response regulator-like protein (APRR2) in the nucleus, influences dark green stem formation in Cucurbita pepo by regulating the chlorophyll content. Stem color is an important agronomic trait in zucchini (Cucurbita pepo) for robust seeding and high yield. However, the gene controlling the stem color has not been characterized. In this study, we identified a single locus accounting for the dark green stem color of C. pepo (CpDsc-1). Genetic analysis of this trait in segregated populations derived from two parental lines (line 296 with dark green stems and line 274 with light green stems) revealed that stem color was controlled by a single dominant gene (dark green vs. light green). In bulked segregant analysis, CpDsc-1 was mapped to a 2.09-Mb interval on chromosome 15. This region was further narrowed to 65.2 kb using linkage analysis of the F2 population. Sequencing analysis revealed a 14 kb deletion between Cp4.1LG15g03420 and Cp4.1LG15g03360; these two genes both encoded a two-component response regulator-like protein (APRR2). The incomplete structures of the two APRR2 genes and abnormal chloroplasts in line 274 might be the main cause of the light green phenotype. Gene expression pattern analysis showed that only Cp4.1LG15g03420 was upregulated in line 296. Subcellular localization analysis indicated that Cp4.1LG15g03420 was a nuclear gene. Furthermore, a co-dominant marker, G4563 (93% accuracy rate), and a co-segregation marker, Fra3, were established in 111 diverse germplasms; both of these markers were tightly linked with the color trait. This study provided insights into chlorophyll regulation mechanisms and revealed the markers valuable for marker-assisted selection in future zucchini breeding.
Collapse
Affiliation(s)
- Lei Zhu
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Yong Wang
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China
| | - Zhenli Zhang
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Deju Hu
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Zanlin Wang
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Jianbin Hu
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Changsheng Ma
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Luming Yang
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Shouru Sun
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China.
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China.
| | - Yanman Li
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
46
|
Luo H, Riu M, Ryu CM, Yu JM. Volatile organic compounds emitted by Burkholderia pyrrocinia CNUC9 trigger induced systemic salt tolerance in Arabidopsis thaliana. Front Microbiol 2022; 13:1050901. [PMID: 36466674 PMCID: PMC9713481 DOI: 10.3389/fmicb.2022.1050901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/02/2022] [Indexed: 08/01/2023] Open
Abstract
Salinity is among the most significant abiotic stresses that negatively affects plant growth and agricultural productivity worldwide. One ecofriendly tool for broadly improving plant tolerance to salt stress is the use of bio-inoculum with plant growth-promoting rhizobacteria (PGPR). In this study, a bacterium strain CNUC9, which was isolated from maize rhizosphere, showed several plant growth-promoting characteristics including the production of 1-aminocyclopropane-1-carboxylate deaminase, indole acetic acid, siderophore, and phosphate solubilization. Based on 16S rRNA and recA gene sequence analysis, we identified strain CNUC9 as Burkholderia pyrrocinia. Out of bacterial determinants to elicit plant physiological changes, we investigated the effects of volatile organic compounds (VOCs) produced by B. pyrrocinia CNUC9 on growth promotion and salinity tolerance in Arabidopsis thaliana. Higher germination and survival rates were observed after CNUC9 VOCs exposure under 100 mM NaCl stress. CNUC9 VOCs altered the root system architecture and total leaf area of A. thaliana compared to the control. A. thaliana exposed to VOCs induced salt tolerance by increasing its total soluble sugar and chlorophyll content. In addition, lower levels of reactive oxygen species, proline, and malondialdehyde were detected in CNUC9 VOCs-treated A. thaliana seedlings under stress conditions, indicating that VOCs emitted by CNUC9 protected the plant from oxidative damage induced by salt stress. VOC profiles were obtained through solid-phase microextraction and analyzed by gas chromatography coupled with mass spectrometry. Dimethyl disulfide (DMDS), methyl thioacetate, and 2-undecanone were identified as products of CNUC9. Our results indicate that optimal concentrations of DMDS and 2-undecanone promoted growth in A. thaliana seedlings. Our findings provide greater insight into the salt stress alleviation of VOCs produced by B. pyrrocinia CNUC9, as well as potential sustainable agriculture applications.
Collapse
Affiliation(s)
- Huan Luo
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Myoungjoo Riu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon, South Korea
| | - Jun Myoung Yu
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
47
|
Lempiäinen T, Rintamäki E, Aro E, Tikkanen M. Plants acclimate to Photosystem I photoinhibition by readjusting the photosynthetic machinery. PLANT, CELL & ENVIRONMENT 2022; 45:2954-2971. [PMID: 35916195 PMCID: PMC9546127 DOI: 10.1111/pce.14400] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 05/12/2023]
Abstract
Photosynthetic light reactions require strict regulation under dynamic environmental conditions. Still, depending on environmental constraints, photoinhibition of Photosystem (PSII) or PSI occurs frequently. Repair of photodamaged PSI, in sharp contrast to that of PSII, is extremely slow and leads to a functional imbalance between the photosystems. Slow PSI recovery prompted us to take advantage of the PSI-specific photoinhibition treatment and investigate whether the imbalance between functional PSII and PSI leads to acclimation of photosynthesis to PSI-limited conditions, either by short-term or long-term acclimation mechanisms as tested immediately after the photoinhibition treatment or after 24 h recovery in growth conditions, respectively. Short-term acclimation mechanisms were induced directly upon inhibition, including thylakoid protein phosphorylation that redirects excitation energy to PSI as well as changes in the feedback regulation of photosynthesis, which relaxed photosynthetic control and excitation energy quenching. Longer-term acclimation comprised reprogramming of the stromal redox system and an increase in ATP synthase and Cytochrome b6 f abundance. Acclimation to PSI-limited conditions restored the CO2 assimilation capacity of plants without major PSI repair. Response to PSI inhibition demonstrates that plants efficiently acclimate to changes occurring in the photosynthetic apparatus, which is likely a crucial component in plant acclimation to adverse environmental conditions.
Collapse
Affiliation(s)
- Tapio Lempiäinen
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Eevi Rintamäki
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Eva‐Mari Aro
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Mikko Tikkanen
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFinland
| |
Collapse
|
48
|
Chatterjee P, Schafran P, Li FW, Meeks JC. Nostoc Talks Back: Temporal Patterns of Differential Gene Expression During Establishment of Anthoceros-Nostoc Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:917-932. [PMID: 35802132 DOI: 10.1094/mpmi-05-22-0101-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endosymbiotic associations between hornworts and nitrogen-fixing cyanobacteria form when the plant is limited for combined nitrogen (N). We generated RNA-seq data to examine temporal gene expression patterns during the culturing of N-starved Anthoceros punctatus in the absence and the presence of symbiotic cyanobacterium Nostoc punctiforme. In symbiont-free A. punctatus gametophytes, N starvation caused downregulation of chlorophyll content and chlorophyll fluorescence characteristics as well as transcription of photosynthesis-related genes. This downregulation was reversed in A. punctatus cocultured with N. punctiforme, corresponding to the provision by the symbiont of N2-derived NH4+, which commenced within 5 days of coculture and reached a maximum by 14 days. We also observed transient increases in transcription of ammonium and nitrate transporters in a N. punctiforme-dependent manner as well as that of a SWEET transporter that was initially independent of N2-derived NH4+. The temporal patterns of differential gene expression indicated that N. punctiforme transmits signals that impact gene expression to A. punctatus both prior to and after its provision of fixed N. This study is the first illustrating the temporal patterns of gene expression during establishment of an endosymbiotic nitrogen-fixing association in this monophyletic evolutionary lineage of land plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, U.S.A
| | - Peter Schafran
- Boyce Thompson Institute, Ithaca, NY 14853, U.S.A
- Plant Biology Section, Cornell University, Ithaca, NY 14953, U.S.A
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY 14853, U.S.A
- Plant Biology Section, Cornell University, Ithaca, NY 14953, U.S.A
| | - John C Meeks
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, U.S.A
| |
Collapse
|
49
|
Halotolerant rhizobacteria isolated from a mangrove forest alleviate saline stress in Musa acuminata cv. Berangan. Microbiol Res 2022; 265:127176. [PMID: 36088726 DOI: 10.1016/j.micres.2022.127176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Saline soils resulting from anthropogenic activity and climate change present a challenge to future food security. Towards addressing this, we isolated and characterized halotolerant bacteria from a Malaysian mangrove forest, and explored their effect on morpho-physiological and biochemical parameters of banana plantlets under salt stress. A total of 88 rhizobacterial and 16 endophytic bacterial isolates collected from the roots and rhizosphere of Rhizophora apiculata, Avicennia alba and Sonneratia alba, were found to tolerate up to 400 mM of sea salt. Based on best performance in multiple plant growth traits, three rhizobacterial strains RB1, RB3 and RB4 and three endophytic bacterial strains EB1, EB2 and EB3 were used for further analysis. The rhizobacterial strains were identified as Bacillus sp. and endophytic bacteria as Pseudomonas sp. based on 16 S rRNA gene sequence. SEM observation confirmed colonization of each strain on banana plantlet roots. When colonized plantlets were subjected to 90 mM salt and compared to uninoculated (control) and mock inoculated plants, improved plant growth was observed with each of the strains, especially with bacterial strains EB3 and RB3. Biochemical analysis of plantlets revealed that root colonization with EB3 and RB3 enhanced levels of plant chlorophyll (> 5-fold), carotenoid (> 2.85-fold) and proline (2.6-fold and 2.3-fold), while plantlets also showed reduced MDA content (0.45-fold and 0.51-fold), significantly reduced generation of ROS (0.23-fold and 0.47-fold) and lower levels of electrolyte leakage (0.77 and 0.51-fold). Antioxidant enzymes also showed enhanced activity with EB3 and RB3. Our results indicate that these halotolerant Bacillus and Pseudomonas strains from the mangrove have multifunctional plant growth promoting activity and can reduce salt stress in bananas. This data provides a reference for exploring halotolerant microbes from hypersaline environments to overcome salt stress in plants.
Collapse
|
50
|
Zhang J, Zhang Q, Zhang Z, Zhou Z, Lu T, Sun L, Qian H. Evaluation of phoxim toxicity on aquatic and zebrafish intestinal microbiota by metagenomics and 16S rRNA gene sequencing analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63017-63027. [PMID: 35449330 DOI: 10.1007/s11356-022-20325-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Phoxim is one of the main organophosphorus pesticides used in agricultural production. However, little information is known about how it affects the aquatic microbial community and the intestinal microbiota of fish. Herein, we utilized shotgun metagenomics and 16S rRNA gene sequencing to reveal the aquatic eco-risk of phoxim. Seven days of phoxim exposure significantly changed the composition of aquatic microbial community, obliterated the interactions between microorganisms, and thus reduced the complexity and stability of the microbial community. During long-time exposure (i.e., 14 days), most of the ecological functions were restored due to the redundancy of the microbial community. However, phoxim exposure promoted the dissemination of elfamycin resistance gene. The zebrafish gut microbial community also recovered from a temporary ecological disorder of aquatic microbiota, but phoxim continually affected zebrafish growth and swimming behavior. Overall, our results demonstrated that phoxim exposure significantly changed the structure and function of the microbial community and displayed a negative impact on freshwater ecosystems in a short exposure time.
Collapse
Affiliation(s)
- Jinfeng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Zhigao Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China.
| |
Collapse
|