1
|
Xia J, Siffert A, Torres O, Iacobini F, Banasiak J, Pakuła K, Ziegler J, Rosahl S, Ferro N, Jasiński M, Hegedűs T, Geisler MM. A key residue of the extracellular gate provides quality control contributing to ABCG substrate specificity. Nat Commun 2025; 16:4177. [PMID: 40324983 PMCID: PMC12052975 DOI: 10.1038/s41467-025-59518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/21/2025] [Indexed: 05/07/2025] Open
Abstract
For G-type ATP-binding cassette (ABC) transporters, a hydrophobic "di-leucine motif" as part of a hydrophobic extracellular gate has been described to separate a large substrate-binding cavity from a smaller upper cavity and proposed to act as a valve controlling drug extrusion. Here, we show that an L704F mutation in the hydrophobic extracellular gate of Arabidopsis ABCG36/PDR8/PEN3 uncouples the export of the auxin precursor indole-3-butyric acid (IBA) from that of the defense compound camalexin (CLX). Molecular dynamics simulations reveal increased free energy for CLX translocation in ABCG36L704F and reduced CLX contacts within the binding pocket proximal to the extracellular gate region. Mutation L704Y enables export of structurally related non-ABCG36 substrates, IAA, and indole, indicating allosteric communication between the extracellular gate and distant transport pathway regions. An evolutionary analysis identifies L704 as a Brassicaceae family-specific key residue of the extracellular gate that controls the identity of chemically similar substrates. In summary, our work supports the conclusion that L704 is a key residue of the extracellular gate that provides a final quality control contributing to ABCG substrate specificity, allowing for balance of growth-defense trade-offs.
Collapse
Affiliation(s)
- Jian Xia
- University of Fribourg, Department of Biology, Fribourg, Switzerland
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexandra Siffert
- University of Fribourg, Department of Biology, Fribourg, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Odalys Torres
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | | | - Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Konrad Pakuła
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Jörg Ziegler
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Sabine Rosahl
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Noel Ferro
- Ferro CBM, Friedrich-Vorwerk-Straße 13-15, Tostedt, Germany
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznań, Poland
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
- Biophysical Virology Research Group, HUN-REN-SU, Budapest, Hungary.
| | - Markus M Geisler
- University of Fribourg, Department of Biology, Fribourg, Switzerland.
- Biophysical Virology Research Group, HUN-REN-SU, Budapest, Hungary.
| |
Collapse
|
2
|
Gan CM, Tang T, Zhang ZY, Li M, Zhao XQ, Li SY, Yan YW, Chen MX, Zhou X. Unraveling the Intricacies of Powdery Mildew: Insights into Colonization, Plant Defense Mechanisms, and Future Strategies. Int J Mol Sci 2025; 26:3513. [PMID: 40331988 PMCID: PMC12027038 DOI: 10.3390/ijms26083513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Powdery mildew, a debilitating phytopathogen caused by biotrophic fungi within the order Erysiphales, endangers crop yields and global food security. Although traditional approaches have largely emphasized resistant cultivar development and chemical control, novel strategies are necessary to counter the advent of challenges, such as pathogen adaptation and climate change. This review fully discusses three principal areas of pathogen effector functions, e.g., the reactive oxygen species (ROS)-suppressive activity of CSEP087, and host susceptibility factors, like vesicle trafficking regulated by Mildew Locus O (MLO). It also briefly mentions the transcriptional regulation of resistance genes mediated by factors, like WRKY75 and NAC transcription factors, and post-transcriptional regulation via alternative splicing (As). In addition, this discussion discusses the intricate interactions among powdery mildew, host plants, and symbiotic microbiomes thereof, highlighting the mechanism through which powdery mildew infections disrupt the foliar microbiota balance. Lastly, we present a new biocontrol approach that entails synergistic microbial consortia, such as combinations of Bacillus and Trichoderma, to induce plant immunity while minimizing fungicide dependency. Through the study of combining knowledge of molecular pathogenesis with ecological resilience, this research offers useful insights towards climate-smart crop development and sustainable disease-management strategies in the context of microbiome engineering.
Collapse
Affiliation(s)
- Chun-Mei Gan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (C.-M.G.); (X.-Q.Z.)
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| | - Ting Tang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| | - Zi-Yu Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| | - Mei Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| | - Xiao-Qiong Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (C.-M.G.); (X.-Q.Z.)
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| | - Shuang-Yu Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| | - Ya-Wen Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| | - Mo-Xian Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (C.-M.G.); (X.-Q.Z.)
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| | - Xiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China; (T.T.); (Z.-Y.Z.); (M.L.); (S.-Y.L.); (Y.-W.Y.)
| |
Collapse
|
3
|
Carfora A, Lucibelli F, Di Lillo P, Mazzucchiello SM, Saccone G, Salvemini M, Varone M, Volpe G, Aceto S. Genetic responses of plants to urban environmental challenges. PLANTA 2025; 261:102. [PMID: 40183929 PMCID: PMC11971160 DOI: 10.1007/s00425-025-04678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
MAIN CONCLUSION This review aims to describe the main genetic adaptations of plants to abiotic and biotic stressors in urban landscapes through modulation of gene expression and genotypic changes. Urbanization deeply impacts biodiversity through ecosystem alteration and habitat fragmentation, creating novel environmental challenges for plant species. Plants have evolved cellular, molecular, and biochemical strategies to cope with the diverse biotic and abiotic stresses associated with urbanization. However, many of these defense and resistance mechanisms remain poorly understood. Addressing these knowledge gaps is crucial for advancing our understanding of urban biodiversity and elucidating the ecological and evolutionary dynamics of species in urban landscapes. As sessile organisms, plants depend heavily on modifications in gene expression as a rapid and efficient strategy to survive urban stressors. At the same time, the urban environment pressures induced plant species to evolve genotypic adaptations that enhance their survival and growth in these contexts. This review explores the different genetic responses of plants to urbanization. We focus on key abiotic challenges, such as air pollution, elevated CO2 levels, heavy metal contamination, heat and drought stress, salinity, and biotic stresses caused by herbivorous insects. By examining these genetic mechanisms induced by urban stressors, we aim to analyze the molecular pathways and genetic patterns underlying the adaptation of plant species to urban environments. This knowledge is a valuable tool for enhancing the selection and propagation of adaptive traits in plant populations, supporting species conservation efforts, and promoting urban biodiversity.
Collapse
Grants
- Project code CN_00000033 National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- Concession Decree No. 1034 of 17 June 2022 adopted by the Italian Ministry of University National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- Research National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- CUP H43C22000530001 National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- Project title "National Biodiversity Future Center - NBFC" National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union –
- Università degli Studi di Napoli Federico II
Collapse
Affiliation(s)
- Angela Carfora
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy.
| | - Francesca Lucibelli
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy.
| | - Paola Di Lillo
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | | | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Marianna Varone
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Gennaro Volpe
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy.
| |
Collapse
|
4
|
Mittendorf J, Haslam TM, Herrfurth C, Esnay N, Boutté Y, Feussner I, Lipka V. Identification of INOSITOL PHOSPHORYLCERAMIDE SYNTHASE 2 (IPCS2) as a new rate-limiting component in Arabidopsis pathogen entry control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70159. [PMID: 40298354 PMCID: PMC12039476 DOI: 10.1111/tpj.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
INOSITOL PHOSPHORYLCERAMIDE SYNTHASE 2 (IPCS2) is involved in the biosynthesis of complex sphingolipids at the trans-Golgi network (TGN). Here, we demonstrate a role of IPCS2 in penetration resistance against non-adapted powdery mildew fungi. A novel ipcs2W205* mutant was recovered from a forward genetic screen for Arabidopsis plants with enhanced epidermal cell entry success of the non-adapted barley fungus Blumeria graminis f. sp. hordei (Bgh). A yeast complementation assay and a sphingolipidomic approach revealed that the ipcs2W205* mutant represents a knock-out and lacks IPCS2-specific enzymatic activity. Further mutant analyses suggested that IPCS2-derived glycosyl inositol phosphorylceramides (GIPCs) are required for cell entry control of non-adapted fungal intruders. Confocal laser scanning microscopy (CLSM) studies indicated that upon pathogen attack, IPCS2 remains at the TGN to produce GIPCs, while focal accumulation of the defense cargo PENETRATION 3 (PEN3) at Bgh penetration sites was reduced in the ipcs2W205* mutant background. Thus, we propose a model in which sorting events at the TGN are facilitated by complex sphingolipids, regulating polar secretion of PEN3 to host-pathogen contact sites to terminate fungal ingress.
Collapse
Affiliation(s)
- Josephine Mittendorf
- Department of Plant Cell Biology, Albrecht‐von‐Haller‐Institute for Plant SciencesGeorg‐August‐University GoettingenGoettingenD‐37077Germany
| | - Tegan M. Haslam
- Department of Plant Biochemistry, Albrecht‐von‐Haller‐Institute for Plant SciencesUniversity of GoettingenGoettingenD‐37077Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht‐von‐Haller‐Institute for Plant SciencesUniversity of GoettingenGoettingenD‐37077Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB)University of GoettingenGoettingenD‐37077Germany
| | - Nicolas Esnay
- Laboratoire de Biogenèse MembranaireUniversité de Bordeaux, UMR5200 CNRSVillenave d'OrnonFrance
| | - Yohann Boutté
- Laboratoire de Biogenèse MembranaireUniversité de Bordeaux, UMR5200 CNRSVillenave d'OrnonFrance
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht‐von‐Haller‐Institute for Plant SciencesUniversity of GoettingenGoettingenD‐37077Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB)University of GoettingenGoettingenD‐37077Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht‐von‐Haller‐Institute for Plant SciencesGeorg‐August‐University GoettingenGoettingenD‐37077Germany
- Central Microscopy Facility of the Faculty of Biology & PsychologyGeorg‐August‐University GoettingenGoettingen37077Germany
| |
Collapse
|
5
|
Sultan E, Pati D, Kumar S, Sahu BB. Arabidopsis METHYLENETETRAHYDROFOLATE REDUCTASE 2 functions independently of PENETRATION 2 during primary immunity against rice blast. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1032-1048. [PMID: 39450434 DOI: 10.1093/jxb/erae435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Non-host resistance (NHR) is the most durable and robust form of innate immunity, with a surge of interest in its role in crop improvement. Of the NHR genes identified against rice blast, a devastating disease caused by Magnaporthe oryzae, Arabidopsis PEN2 is indispensable for pre-penetration resistance to M. oryzae, while a consortium of genes orchestrates post-penetration resistance via lesser known mechanisms. We identified M. oryzae-susceptible mosA (mthfr2 pen2-3) from a randomly mutagenized Arabidopsis pen2-3 population using forward genetics. Analysis of T-DNA-inserted mthfr2 lines and pen2-3-complemented mosA lines revealed that MTHFR2-dependent resistance to M. oryzae is independent of PEN2. MTHFR2-defective plants exhibited higher accumulation of reactive oxygen species and expression of salicylic acid-dependent defense markers. MTHFR2-ligand docking revealed that A55V non-synonymous substitution in mosA altered ligand binding efficiency. This further affected the metabolomic profile of mosA, effectively allowing in vitro germination and development of M. oryzae conidia. Moreover, the loss-of-function mutation in mthfr2 (involved in the 1C metabolic pathway) potentiated mosA immunity against Pst DC3000. In conclusion, our findings showed that MTHFR2 is a positive modulator of NHR against M. oryzae. This work documents another layer of conserved yet divergent metabolomic defense in Arabidopsis regulated by folate-mediated 1C metabolism that has the potential to revolutionize crop improvement.
Collapse
Affiliation(s)
- Eram Sultan
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Debasish Pati
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Sanjeev Kumar
- Indian Agricultural Statistics Research Institute (ICAR-IASRI), Library Avenue, Pusa, New Delhi 110012, India
| | - Binod Bihari Sahu
- Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
6
|
Zhang B, Jia W, Lin K, Lv S, Guo Z, Xie W, He Y, Li Y. Integrative analysis of the ABC gene family in sorghum revealed SbABCB11 participating in translocation of cadmium from roots to shoots. PLANTA 2025; 261:62. [PMID: 39979492 DOI: 10.1007/s00425-025-04644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
MAIN CONCLUSION This study identified a SbABCB11 gene in sorghum that could enhance Cd translocation from roots to shoots, thus increasing Cd accumulation in shoots. Cadmium (Cd) is a widespread soil contaminant threatening human health. As an energy plant, sorghum (Sorghum bicolor (L.) Moench) has great potential in phytoremediation of Cd-polluted soils. ATP-binding cassette (ABC) transporters perform critical roles in transport of Cd. However, there has not yet been a comprehensive analysis of the ABC gene family in sorghum. In this study, 142 ABC genes in sorghum were identified. Transcriptome study showed 41 SbABCs with differential expression patterns under Cd treatment. Candidate gene-based association study for Cd translocation factors identified five significant SNPs inside the annotated gene SbABCB11. Sequence analysis in different haplotypes demonstrated there were multiple long indel variations in the coding region of SbABCB11. Expression study indicated that SbABCB11-Hap3 was upregulated in roots after Cd treatment. Yeast complementary assay proved that SbABCB11 participated in the efflux of Cd, which was further supported by the localization of SbABCB11 on the plasma membrane. Transient suppression of SbABCB11 via antisense oligodeoxyribonucleotide (asODN) method reduced Cd accumulation in the shoots of sorghum by decreasing the release of Cd into the xylem. Our results provide new insights into the potential roles of SbABCs in sorghum. We revealed that SbABCB11 participated in translocation of Cd from roots to shoots, and there were significant variations in the translocation ability among different haplotypes of SbABCB11. These findings will be of help for the molecular breeding of sorghum germplasms suitable for the phytoremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Forage Breeding-by-Design and Utilization; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- China National Botanical Garden, Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Weitao Jia
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 401122, People's Republic of China
| | - Kangqi Lin
- State Key Laboratory of Forage Breeding-by-Design and Utilization; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- China National Botanical Garden, Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Sulian Lv
- State Key Laboratory of Forage Breeding-by-Design and Utilization; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- China National Botanical Garden, Beijing, People's Republic of China
| | - Zijing Guo
- State Key Laboratory of Forage Breeding-by-Design and Utilization; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- China National Botanical Garden, Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wenzhu Xie
- State Key Laboratory of Forage Breeding-by-Design and Utilization; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- China National Botanical Garden, Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yingjiao He
- State Key Laboratory of Forage Breeding-by-Design and Utilization; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China
- China National Botanical Garden, Beijing, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yinxin Li
- State Key Laboratory of Forage Breeding-by-Design and Utilization; Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, People's Republic of China.
- China National Botanical Garden, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Zhang Y, Chen G, Zang Y, Bhavani S, Bai B, Liu W, Zhao M, Cheng Y, Li S, Chen W, Yan W, Mao H, Su H, Singh RP, Lagudah E, Li Q, Lan C. Lr34/Yr18/Sr57/Pm38 confers broad-spectrum resistance to fungal diseases via sinapyl alcohol transport for cell wall lignification in wheat. PLANT COMMUNICATIONS 2024; 5:101077. [PMID: 39233441 PMCID: PMC11671766 DOI: 10.1016/j.xplc.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/26/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
The widely recognized pleiotropic adult plant resistance gene Lr34 encodes an ATP-binding cassette transporter and plays an important role in breeding wheat for enhanced resistance to multiple fungal diseases. Despite its significance, the mechanisms underlying Lr34-mediated pathogen defense remain largely unknown. Our study demonstrates that wheat lines carrying the Lr34res allele exhibit thicker cell walls and enhanced resistance to fungal penetration compared to those without Lr34res. Transcriptome and metabolite profiling revealed that the lignin biosynthetic pathway is suppressed in lr34 mutants, indicating a disruption in cell wall lignification. Additionally, we discovered that lr34 mutant lines are hypersensitive to sinapyl alcohol, a major monolignol crucial for cell wall lignification. Yeast accumulation and efflux assays confirmed that the LR34 protein functions as a sinapyl alcohol transporter. Both genetic and virus-induced gene silencing experiments demonstrated that the disease resistance conferred by Lr34 can be enhanced by incorporating the TaCOMT-3B gene, which is responsible for the biosynthesis of sinapyl alcohol. Collectively, our findings provide novel insights into the role of Lr34 in disease resistance through mediating sinapyl alcohol transport and cell wall deposition, and highlight the synergistic effect of TaCOMT-3B and Lr34 against multiple fungal pathogens by mediating cell wall lignification in adult wheat plants.
Collapse
Affiliation(s)
- Yichen Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Guang Chen
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Yiming Zang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco CP 56237E do, de México, Mexico
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou City, Gansu Province 730070, China
| | - Wei Liu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Miaomiao Zhao
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Yikeng Cheng
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Shunda Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Wei Chen
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Wenhao Yan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Hailiang Mao
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Handong Su
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China
| | - Ravi P Singh
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China; International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera, México-Veracruz, El Batán, Texcoco CP 56237E do, de México, Mexico
| | - Evans Lagudah
- CSIRO Agriculture & Food, Canberra, ACT 2601, Australia
| | - Qiang Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China.
| | - Caixia Lan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan City, Hubei Province 430070, China.
| |
Collapse
|
8
|
Liu Y, Zhang S, Sun M, Hao X, Jin P, Luo S, Chen J, Zhang T, Ge S, Zhang H. Glycosyltransferase-Mediated Modulation of Reactive Oxygen Species Enhances Non-host Resistance to Pst DC3000 in Nicotiana benthamiana. PHYSIOLOGIA PLANTARUM 2024; 176:e70019. [PMID: 39703073 DOI: 10.1111/ppl.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
Non-host resistance (NHR) governs defense responses against a broad range of potential pathogen species in contrast with host resistance. To identify specific genes involved in disease resistance, we used a virus-induced gene-silencing screen in Nicotiana benthamiana and identified glycosyltransferase (NbGT) as an essential component of NHR. NbGT silencing enhanced the hypersensitivity response, reactive oxygen species response, and callose deposition in N. benthamiana, improving its NHR to Pseudomonas syringae pv. tomato (Pst) DC3000. NbGT participated in reactive oxygen species accumulation caused by flg22 rather than coronatine and HrcC of Pst DC3000. Analyses of gene expression and enzyme activity demonstrated that NbGT-silenced plants exhibited enhanced expression and elevated levels of superoxide dismutase, resulting in heightened accumulation of H2O2. In conclusion, NbGT-silencing increases H2O2 accumulation by regulating superoxide dismutase activity during the immune response to flg22, enhancing resistance to Pst DC3000 in N. benthamiana. This research provides novel insights into the role of glycosyltransferases in NHR.
Collapse
Affiliation(s)
- Yingjun Liu
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| | - Siyi Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| | - Min Sun
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| | - Xingqian Hao
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| | - Pinyuan Jin
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| | - Sheng Luo
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| | - Jiao Chen
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| | - Ting Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| | - Shating Ge
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| | - Huajian Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Anhui Province Key Laboratory of Crop Integrated Pest Management, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Hefei, Anhui, China
| |
Collapse
|
9
|
He L, Chen T, Zhao C, Zhao L, Zhao Q, Yao S, Zhu Z, Lu K, Wang C, Zhang Y. RST31 controls salt tolerance in rice (Oryza sativa) by regulating the cytokinin pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109075. [PMID: 39241632 DOI: 10.1016/j.plaphy.2024.109075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
Salt stress affects the growth of rice, which reduces grain yield. However, the mechanism of the rice response to salt stress is not fully understood. The rice salt tolerance 31 (rst31) mutant exhibits longer shoots and greater dry weight than wild type (WT) plants under salt stress conditions. Through map-based cloning and genetic complementation methods, we determined that RST31 encodes a half-size ABCG transporter protein, ABCG18. We showed that mutation of RST31 reduces DNA damage under salt stress, with less accumulation of reactive oxygen species (ROS). The deficiency of RST31 suppressed the root-to-shoot transport of cytokinin, which resulted in a decrease in cytokinin content in the shoot and an increase in cytokinin content in the root. ROS accumulated abundantly in WT and rst31 mutant plants after exogenous treatment with trans-zeatin, reducing rst31 tolerance of salt stress. Collectively, our results suggest that high cytokinin level in shoots leads to an increase in ROS content and severe DNA damage under salt stress, which lead to sensitivity to salt stress. These findings enhance our understanding of plant responses to salt stress through cytokinin pathways.
Collapse
Affiliation(s)
- Lei He
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Tao Chen
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Chunfang Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Ling Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Qingyong Zhao
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Shu Yao
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Zhen Zhu
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Kai Lu
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Cailin Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China.
| | - Yadong Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Science, Key laboratory of Jiangsu Province for Agrobiology, East China Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Nanjing, 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China.
| |
Collapse
|
10
|
Kusch S, Frantzeskakis L, Lassen BD, Kümmel F, Pesch L, Barsoum M, Walden KD, Panstruga R. A fungal plant pathogen overcomes mlo-mediated broad-spectrum disease resistance by rapid gene loss. THE NEW PHYTOLOGIST 2024; 244:962-979. [PMID: 39155769 DOI: 10.1111/nph.20063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024]
Abstract
Hosts and pathogens typically engage in a coevolutionary arms race. This also applies to phytopathogenic powdery mildew fungi, which can rapidly overcome plant resistance and perform host jumps. Using experimental evolution, we show that the powdery mildew pathogen Blumeria hordei is capable of breaking the agriculturally important broad-spectrum resistance conditioned by barley loss-of-function mlo mutants. Partial mlo virulence of evolved B. hordei isolates is correlated with a distinctive pattern of adaptive mutations, including small-sized (c. 8-40 kb) deletions, of which one is linked to the de novo insertion of a transposable element. Occurrence of the mutations is associated with a transcriptional induction of effector protein-encoding genes that is absent in mlo-avirulent isolates on mlo mutant plants. The detected mutational spectrum comprises the same loci in at least two independently isolated mlo-virulent isolates, indicating convergent multigenic evolution. The mutational events emerged in part early (within the first five asexual generations) during experimental evolution, likely generating a founder population in which incipient mlo virulence was later stabilized by additional events. This work highlights the rapid dynamic genome evolution of an obligate biotrophic plant pathogen with a transposon-enriched genome.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Lamprinos Frantzeskakis
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Birthe D Lassen
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Florian Kümmel
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Lina Pesch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Mirna Barsoum
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Kim D Walden
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| |
Collapse
|
11
|
Kankaanpää S, Väisänen E, Goeminne G, Soliymani R, Desmet S, Samoylenko A, Vainio S, Wingsle G, Boerjan W, Vanholme R, Kärkönen A. Extracellular vesicles of Norway spruce contain precursors and enzymes for lignin formation and salicylic acid. PLANT PHYSIOLOGY 2024; 196:788-809. [PMID: 38771246 PMCID: PMC11444294 DOI: 10.1093/plphys/kiae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Lignin is a phenolic polymer in plants that rigidifies the cell walls of water-conducting tracheary elements and support-providing fibers and stone cells. Different mechanisms have been suggested for the transport of lignin precursors to the site of lignification in the cell wall. Extracellular vesicle (EV)-enriched samples isolated from a lignin-forming cell suspension culture of Norway spruce (Picea abies L. Karst.) contained both phenolic metabolites and enzymes related to lignin biosynthesis. Metabolomic analysis revealed mono-, di-, and oligolignols in the EV isolates, as well as carbohydrates and amino acids. In addition, salicylic acid (SA) and some proteins involved in SA signaling were detected in the EV-enriched samples. A proteomic analysis detected several laccases, peroxidases, β-glucosidases, putative dirigent proteins, and cell wall-modifying enzymes, such as glycosyl hydrolases, transglucosylase/hydrolases, and expansins in EVs. Our findings suggest that EVs are involved in transporting enzymes required for lignin polymerization in Norway spruce, and radical coupling of monolignols can occur in these vesicles.
Collapse
Affiliation(s)
- Santeri Kankaanpää
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Enni Väisänen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Geert Goeminne
- VIB Metabolomics Core Ghent, VIB-UGent Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Biochemistry & Developmental Biology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Sandrien Desmet
- VIB Metabolomics Core Ghent, VIB-UGent Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Anatoliy Samoylenko
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, Kvantum Institute, Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, Kvantum Institute, Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Wout Boerjan
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Ruben Vanholme
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Anna Kärkönen
- Production Systems, Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
12
|
Zimmerman JA, Verboonen B, Harrison Hanson AP, Arballo LR, Brusslan JA. Arabidopsis apoplast TET8 positively correlates to leaf senescence, and tet3tet8 double mutants are delayed in leaf senescence. PLANT DIRECT 2024; 8:e70006. [PMID: 39323734 PMCID: PMC11422175 DOI: 10.1002/pld3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
Extracellular vesicles (EVs) are membrane-bound exosomes secreted into the apoplast. Two distinct populations of EVs have been described in Arabidopsis: PEN1-associated and TET8-associated. We previously noted early leaf senescence in the pen1 single and pen1pen3 double mutant. Both PEN1 and PEN3 are abundant in EV proteomes suggesting that EVs might regulate leaf senescence in soil-grown plants. We observed that TET8 is more abundant in the apoplast of early senescing pen1 and pen1pen3 mutant rosettes and in older wild-type (WT) rosettes. The increase in apoplast TET8 in the pen1 mutant did not correspond to increased TET8 mRNA levels. In addition, apoplast TET8 was more abundant in the early leaf senescence myb59 mutant, meaning the increase in apoplast TET8 protein during leaf senescence is not dependent on pen1 or pen3. Genetic analysis showed a significant delay in leaf senescence in tet3tet8 double mutants after 6 weeks of growth suggesting that these two tetraspanin paralogs operate additively and are positive regulators of leaf senescence. This is opposite of the effect of pen1 and pen1pen3 mutants that show early senescence and suggest PEN1 to be a negative regulator of leaf senescence. Our work provides initial support that apoplast-localized TET8 in combination with TET3 positively regulates age-related leaf senescence in soil-grown Arabidopsis plants.
Collapse
Affiliation(s)
- Jayde A. Zimmerman
- Southern California Coastal Water Research ProjectCosta MesaCaliforniaUSA
| | | | | | - Luis R. Arballo
- California State University, Long BeachLong BeachCaliforniaUSA
| | - Judy A. Brusslan
- Department of Biological SciencesCalifornia State University, Long BeachLong BeachCaliforniaUSA
| |
Collapse
|
13
|
Brauer EK, Bosnich W, Holy K, Thapa I, Krishnan S, Moatter Syed, Bredow M, Sproule A, Power M, Johnston A, Cloutier M, Haribabu N, Izhar U H Khan, Diallo JS, Monaghan J, Chabot D, Overy DP, Subramaniam R, Piñeros M, Blackwell B, Harris LJ. A cyclic lipopeptide from Fusarium graminearum targets plant membranes to promote virulence. Cell Rep 2024; 43:114384. [PMID: 38970790 DOI: 10.1016/j.celrep.2024.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/01/2024] [Accepted: 06/04/2024] [Indexed: 07/08/2024] Open
Abstract
Microbial plant pathogens deploy amphipathic cyclic lipopeptides to reduce surface tension in their environment. While plants can detect these molecules to activate cellular stress responses, the role of these lipopeptides or associated host responses in pathogenesis are not fully clear. The gramillin cyclic lipopeptide is produced by the Fusarium graminearum fungus and is a virulence factor and toxin in maize. Here, we show that gramillin promotes virulence and necrosis in both monocots and dicots by disrupting ion balance across membranes. Gramillin is a cation-conducting ionophore and causes plasma membrane depolarization. This disruption triggers cellular signaling, including a burst of reactive oxygen species (ROS), transcriptional reprogramming, and callose production. Gramillin-induced ROS depends on expression of host ILK1 and RBOHD genes, which promote fungal induction of virulence genes during infection and host susceptibility. We conclude that gramillin's ionophore activity targets plant membranes to coordinate attack by the F. graminearum fungus.
Collapse
Affiliation(s)
- Elizabeth K Brauer
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; Department of Biology, University of Ottawa, Ottawa, ON K1N 9A7, Canada.
| | - Whynn Bosnich
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Kirsten Holy
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Indira Thapa
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Srinivasan Krishnan
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
| | - Moatter Syed
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; Department of Biology, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| | - Melissa Bredow
- Biology Department, Queen's University, Biological Sciences Complex, 116 Barrie St., Kingston, ON K7L 3N6, Canada
| | - Amanda Sproule
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Monique Power
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; Department of Biology, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| | - Anne Johnston
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Michel Cloutier
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Naveen Haribabu
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Jean-Simon Diallo
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Jacqueline Monaghan
- Biology Department, Queen's University, Biological Sciences Complex, 116 Barrie St., Kingston, ON K7L 3N6, Canada
| | - Denise Chabot
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - David P Overy
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Rajagopal Subramaniam
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Miguel Piñeros
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA; Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, NY 14853, USA
| | - Barbara Blackwell
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Linda J Harris
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
14
|
Han J, Liu CX, Liu J, Wang CR, Wang SC, Miao G. AGC kinases OXI1 and AGC2-2 regulate camalexin secretion and disease resistance by phosphorylating transporter PDR6. PLANT PHYSIOLOGY 2024; 195:1835-1850. [PMID: 38535832 DOI: 10.1093/plphys/kiae186] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/28/2024] [Indexed: 06/30/2024]
Abstract
Plant transporters regulating the distribution of secondary metabolites play critical roles in defending against pathogens, insects, and interacting with beneficial microbes. The phosphorylation of these transporters can alter their activity, stability, and intracellular protein trafficking. However, the regulatory mechanism underlying this modification remains elusive. In this study, we discovered two orthologs of mammalian PKA, PKG, and PKC (AGC) kinases, oxidative signal-inducible 1 (OXI1) and its closest homologue, AGC subclass 2 member 2 (AGC2-2; 75% amino acid sequence identity with OXI1), associated with the extracellular secretion of camalexin and Arabidopsis (Arabidopsis thaliana) resistance to Pseudomonas syringae, and Botrytis cinerea. These kinases can undergo in vitro kinase reactions with three pleiotropic drug resistance (PDR) transporters: PDR6, PDR8, and PDR12. Moreover, our investigation confirmed PDR6 interaction with OXI1 and AGC2-2. By performing LC-MS/MS and parallel reaction monitoring, we identified the phosphorylation sites on PDR6 targeted by these kinases. Notably, chitin-induced PDR6 phosphorylation at specific residues, namely S31, S33, S827, and T832. Additional insights emerged by expressing dephosphorylated PDR6 variants in a pdr6 mutant background, revealing that the target residues S31, S33, and S827 promote PDR6 efflux activity, while T832 potentially contributes to PDR6 stability within the plasma membrane. The findings of this study elucidate partial mechanisms involved in the activity regulation of PDR-type transporters, providing valuable insights for their potential application in future plant breeding endeavors.
Collapse
Affiliation(s)
- Juan Han
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Institute of Digital Ecology and Health, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Chang-Xin Liu
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Jian Liu
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Cheng-Run Wang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Shun-Chang Wang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| |
Collapse
|
15
|
Nielsen ME. Vesicle trafficking pathways in defence-related cell wall modifications: papillae and encasements. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3700-3712. [PMID: 38606692 DOI: 10.1093/jxb/erae155] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Filamentous pathogens that cause plant diseases such as powdery mildew, rust, anthracnose, and late blight continue to represent an enormous challenge for farmers worldwide. Interestingly, these pathogens, although phylogenetically distant, initiate pathogenesis in a very similar way by penetrating the cell wall and establishing a feeding structure inside the plant host cell. To prevent pathogen ingress, the host cell responds by forming defence structures known as papillae and encasements that are thought to mediate pre- and post-invasive immunity, respectively. This form of defence is evolutionarily conserved in land plants and is highly effective and durable against a broad selection of non-adapted filamentous pathogens. As most pathogens have evolved strategies to overcome the defences of only a limited range of host plants, the papilla/encasement response could hold the potential to become an optimal transfer of resistance from one plant species to another. In this review I lay out current knowledge of the involvement of membrane trafficking that forms these important defence structures and highlight some of the questions that still need to be resolved.
Collapse
Affiliation(s)
- Mads Eggert Nielsen
- University of Copenhagen, Faculty of Science, CPSC, Department of Plant and Environmental Sciences, 1871 Frederiksberg C, Denmark
| |
Collapse
|
16
|
Sun N, Wang Y, Kang J, Hao H, Liu X, Yang Y, Jiang X, Gai Y. Exploring the role of the LkABCG36 transporter in lignin accumulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112059. [PMID: 38458573 DOI: 10.1016/j.plantsci.2024.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Lignin is a complex biopolymer formed through the condensation of three monomeric precursors known as monolignols. However, the mechanism underlying lignin precursor transport remains elusive, with uncertainty over whether it occurs through passive diffusion or an active energized process. ATP-binding cassette 36 (ABCG36) plays important roles in abiotic stress resistance. In this study, we investigated the transport functions of LkABCG36 (Larix kaempferi) for lignin precursors and the potential effects of LkABCG36 overexpression in plants. LkABCG36 enhanced the ability of tobacco (Nicotiana tabacum) bright yellow-2 (BY-2) cells to resist monolignol alcohol stress. Furthermore, LkABCG36 overexpression promoted lignin deposition in tobacco plant stem tissue. To understand the underlying mechanism, we measured the BY-2 cell ability to export lignin monomers and the uptake of monolignol precursors in inside-out (inverted) plasma membrane vesicles. We found that the transport of coniferyl and sinapyl alcohols is an ATP-dependent process. Our data suggest that LkABCG36 contributes to lignin accumulation in tobacco stem tissues through a mechanism involving the active transport of lignin precursors to the cell wall. These findings shed light on the lignin biosynthesis process, with important implications for enhancing lignin deposition in plants, potentially leading to improved stress tolerance and biomass production.
Collapse
Affiliation(s)
- Nan Sun
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuqian Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jiaqi Kang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haifei Hao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangning Jiang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China
| | - Ying Gai
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of Chinese Forestry Administration, Beijing 100083, China.
| |
Collapse
|
17
|
Zimmerman JA, Verboonen B, Harrison Hanson AP, Brusslan JA. Arabidopsis Apoplast TET8 Positively Correlates to Leaf Senescence and tet3tet8 Double Mutants are Delayed in Leaf Senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593620. [PMID: 38798530 PMCID: PMC11118556 DOI: 10.1101/2024.05.10.593620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Extracellular vesicles (EVs) are membrane-bound exosomes secreted into the apoplast. Two distinct populations of EVs have been described in Arabidopsis: PEN1-associated and TET8-associated. We previously noted early leaf senescence in the pen1 single and pen1pen3 double mutant. Both PEN1 and PEN3 are abundant in EV proteomes suggesting EVs might regulate leaf senescence in soil-grown plants. We observed that TET8 is more abundant in the apoplast of early senescing pen1 and pen1pen3 mutant rosettes and in older WT rosettes. The increase in apoplast TET8 in the pen1 mutant did not correspond to increased TET8 mRNA levels. In addition, apoplast TET8 was more abundant in the early leaf senescence myb59 mutant, meaning the increase in apoplast TET8 protein during leaf senescence is not dependent on pen1 or pen3 . Genetic analysis showed a significant delay in leaf senescence in tet3tet8 double mutants after six weeks of growth suggesting that these two tetraspanin paralogs operate additively and are positive regulators of leaf senescence. This is opposite of the effect of pen1 and pen1pen3 mutants that show early senescence and suggest PEN1 to be a negative regulator of leaf senescence. Our work provides initial support that PEN1-associated EVs and TET8-associated EVs may have opposite effects on soil-grown plants undergoing age-related leaf senescence.
Collapse
|
18
|
Cohen JD, Strader LC. An auxin research odyssey: 1989-2023. THE PLANT CELL 2024; 36:1410-1428. [PMID: 38382088 PMCID: PMC11062468 DOI: 10.1093/plcell/koae054] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The phytohormone auxin is at times called the master regulator of plant processes and has been shown to be a central player in embryo development, the establishment of the polar axis, early aspects of seedling growth, as well as growth and organ formation during later stages of plant development. The Plant Cell has been key, since the inception of the journal, to developing an understanding of auxin biology. Auxin-regulated plant growth control is accomplished by both changes in the levels of active hormones and the sensitivity of plant tissues to these concentration changes. In this historical review, we chart auxin research as it has progressed in key areas and highlight the role The Plant Cell played in these scientific developments. We focus on understanding auxin-responsive genes, transcription factors, reporter constructs, perception, and signal transduction processes. Auxin metabolism is discussed from the development of tryptophan auxotrophic mutants, the molecular biology of conjugate formation and hydrolysis, indole-3-butyric acid metabolism and transport, and key steps in indole-3-acetic acid biosynthesis, catabolism, and transport. This progress leads to an expectation of a more comprehensive understanding of the systems biology of auxin and the spatial and temporal regulation of cellular growth and development.
Collapse
Affiliation(s)
- Jerry D Cohen
- Department of Horticultural Science and the Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
19
|
Wang H, Chen Q, Feng W. The Emerging Role of 2OGDs as Candidate Targets for Engineering Crops with Broad-Spectrum Disease Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1129. [PMID: 38674537 PMCID: PMC11054871 DOI: 10.3390/plants13081129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Plant diseases caused by pathogens result in a marked decrease in crop yield and quality annually, greatly threatening food production and security worldwide. The creation and cultivation of disease-resistant cultivars is one of the most effective strategies to control plant diseases. Broad-spectrum resistance (BSR) is highly preferred by breeders because it confers plant resistance to diverse pathogen species or to multiple races or strains of one species. Recently, accumulating evidence has revealed the roles of 2-oxoglutarate (2OG)-dependent oxygenases (2OGDs) as essential regulators of plant disease resistance. Indeed, 2OGDs catalyze a large number of oxidative reactions, participating in the plant-specialized metabolism or biosynthesis of the major phytohormones and various secondary metabolites. Moreover, several 2OGD genes are characterized as negative regulators of plant defense responses, and the disruption of these genes via genome editing tools leads to enhanced BSR against pathogens in crops. Here, the recent advances in the isolation and identification of defense-related 2OGD genes in plants and their exploitation in crop improvement are comprehensively reviewed. Also, the strategies for the utilization of 2OGD genes as targets for engineering BSR crops are discussed.
Collapse
Affiliation(s)
- Han Wang
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qinghe Chen
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| | - Wanzhen Feng
- School of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| |
Collapse
|
20
|
Huebbers JW, Caldarescu GA, Kubátová Z, Sabol P, Levecque SCJ, Kuhn H, Kulich I, Reinstädler A, Büttgen K, Manga-Robles A, Mélida H, Pauly M, Panstruga R, Žárský V. Interplay of EXO70 and MLO proteins modulates trichome cell wall composition and susceptibility to powdery mildew. THE PLANT CELL 2024; 36:1007-1035. [PMID: 38124479 PMCID: PMC10980356 DOI: 10.1093/plcell/koad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Exocyst component of 70-kDa (EXO70) proteins are constituents of the exocyst complex implicated in vesicle tethering during exocytosis. MILDEW RESISTANCE LOCUS O (MLO) proteins are plant-specific calcium channels and some MLO isoforms enable fungal powdery mildew pathogenesis. We here detected an unexpected phenotypic overlap of Arabidopsis thaliana exo70H4 and mlo2 mlo6 mlo12 triple mutant plants regarding the biogenesis of leaf trichome secondary cell walls. Biochemical and Fourier transform infrared spectroscopic analyses corroborated deficiencies in the composition of trichome cell walls in these mutants. Transgenic lines expressing fluorophore-tagged EXO70H4 and MLO exhibited extensive colocalization of these proteins. Furthermore, mCherry-EXO70H4 mislocalized in trichomes of the mlo triple mutant and, vice versa, MLO6-GFP mislocalized in trichomes of the exo70H4 mutant. Expression of GFP-marked PMR4 callose synthase, a known cargo of EXO70H4-dependent exocytosis, revealed reduced cell wall delivery of GFP-PMR4 in trichomes of mlo triple mutant plants. In vivo protein-protein interaction assays in plant and yeast cells uncovered isoform-preferential interactions between EXO70.2 subfamily members and MLO proteins. Finally, exo70H4 and mlo6 mutants, when combined, showed synergistically enhanced resistance to powdery mildew attack. Taken together, our data point to an isoform-specific interplay of EXO70 and MLO proteins in the modulation of trichome cell wall biogenesis and powdery mildew susceptibility.
Collapse
Affiliation(s)
- Jan W Huebbers
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - George A Caldarescu
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Zdeňka Kubátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Peter Sabol
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Sophie C J Levecque
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Hannah Kuhn
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Kim Büttgen
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Alba Manga-Robles
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, 24071 León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, 24071 León, Spain
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
- Institute of Experimental Botany of the Czech Academy of Sciences, Laboratory of Cell Biology, Rozvojová 263, 165 02 Prague 6 Lysolaje, Czech Republic
| |
Collapse
|
21
|
Devi R, Goyal P, Verma B, Hussain S, Chowdhary F, Arora P, Gupta S. A transcriptome-wide identification of ATP-binding cassette (ABC) transporters revealed participation of ABCB subfamily in abiotic stress management of Glycyrrhiza glabra L. BMC Genomics 2024; 25:315. [PMID: 38532362 DOI: 10.1186/s12864-024-10227-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Transcriptome-wide survey divulged a total of 181 ABC transporters in G. glabra which were phylogenetically classified into six subfamilies. Protein-Protein interactions revealed nine putative GgABCBs (-B6, -B14, -B15, -B25, -B26, -B31, -B40, -B42 &-B44) corresponding to five AtABCs orthologs (-B1, -B4, -B11, -B19, &-B21). Significant transcript accumulation of ABCB6 (31.8 folds), -B14 (147.5 folds), -B15 (17 folds), -B25 (19.7 folds), -B26 (18.31 folds), -B31 (61.89 folds), -B40 (1273 folds) and -B42 (51 folds) was observed under the influence of auxin. Auxin transport-specific inhibitor, N-1-naphthylphthalamic acid, showed its effectiveness only at higher (10 µM) concentration where it down regulated the expression of ABCBs, PINs (PIN FORMED) and TWD1 (TWISTED DWARF 1) genes in shoot tissues, while their expression was seen to enhance in the root tissues. Further, qRT-PCR analysis under various growth conditions (in-vitro, field and growth chamber), and subjected to abiotic stresses revealed differential expression implicating role of ABCBs in stress management. Seven of the nine genes were shown to be involved in the stress physiology of the plant. GgABCB6, 15, 25 and ABCB31 were induced in multiple stresses, while GgABCB26, 40 & 42 were exclusively triggered under drought stress. No study pertaining to the ABC transporters from G. glabra is available till date. The present investigation will give an insight to auxin transportation which has been found to be associated with plant growth architecture; the knowledge will help to understand the association between auxin transportation and plant responses under the influence of various conditions.
Collapse
Affiliation(s)
- Ritu Devi
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Goyal
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Registered from Guru Nanak Dev University, Amritsar, India
| | - Bhawna Verma
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Fariha Chowdhary
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Suphla Gupta
- Plant Biotechnology Division, Jammu, India.
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
22
|
Sun J, Nie J, Xiao T, Guo C, Lv D, Zhang K, He HL, Pan J, Cai R, Wang G. CsPM5.2, a phosphate transporter protein-like gene, promotes powdery mildew resistance in cucumber. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1487-1502. [PMID: 38048475 DOI: 10.1111/tpj.16576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
Powdery mildew (PM) is one of the most serious fungal diseases affecting cucumbers (Cucumis sativus L.). The mechanism of PM resistance in cucumber is intricate and remains fragmentary as it is controlled by several genes. In this study, we detected the major-effect Quantitative Trait Locus (QTL), PM5.2, involved in PM resistance by QTL mapping. Through fine mapping, the dominant PM resistance gene, CsPM5.2, was cloned and its function was confirmed by transgenic complementation and natural variation identification. In cultivar 9930, a dysfunctional CsPM5.2 mutant resulted from a single nucleotide polymorphism in the coding region and endowed susceptibility to PM. CsPM5.2 encodes a phosphate transporter-like protein PHO1; H3. The expression of CsPM5.2 is ubiquitous and induced by the PM pathogen. In cucumber, both CsPM5.2 and Cspm5.1 (Csmlo1) are required for PM resistance. Transcriptome analysis suggested that the salicylic acid (SA) pathway may play an important role in CsPM5.2-mediated PM resistance. Our findings help parse the mechanisms of PM resistance and provide strategies for breeding PM-resistant cucumber cultivars.
Collapse
Affiliation(s)
- Jingxian Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Jingtao Nie
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Tingting Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Chunli Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Duo Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Keyan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Huan-Le He
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, 200240, China
| | - Junsong Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, 200240, China
| | - Run Cai
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, 200240, China
| | - Gang Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University/Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, 200240, China
| |
Collapse
|
23
|
Xu D, Yang L. Spatial regulation of immunity: unmasking the secrets of abaxial immunity to powdery mildew. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1213-1216. [PMID: 38416207 PMCID: PMC10901199 DOI: 10.1093/jxb/erae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
This article comments on: Wu Y, Sexton WK, Zhang Q, Bloodgood D, Wu Y, Hooks C, Coker F, Vasquez A, Wei C-I, Xiao S. 2024. Leaf abaxial immunity to powdery mildew in Arabidopsis is conferred by multiple defense mechanisms. Journal of Experimental Botany 75, 1465-1478.
Collapse
Affiliation(s)
- Dawei Xu
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Li Yang
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
24
|
Wu Y, Sexton WK, Zhang Q, Bloodgood D, Wu Y, Hooks C, Coker F, Vasquez A, Wei CI, Xiao S. Leaf abaxial immunity to powdery mildew in Arabidopsis is conferred by multiple defense mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1465-1478. [PMID: 37952108 DOI: 10.1093/jxb/erad450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Powdery mildew fungi are obligate biotrophic pathogens that only invade plant epidermal cells. There are two epidermal surfaces in every plant leaf: the adaxial (upper) side and the abaxial (lower) side. While both leaf surfaces can be susceptible to adapted powdery mildew fungi in many plant species, there have been observations of leaf abaxial immunity in some plant species including Arabidopsis. The genetic basis of such leaf abaxial immunity remains unknown. In this study, we tested a series of Arabidopsis mutants defective in one or more known defense pathways with the adapted powdery mildew isolate Golovinomyces cichoracearum UCSC1. We found that leaf abaxial immunity was significantly compromised in mutants impaired for both the EDS1/PAD4- and PEN2/PEN3-dependent defenses. Consistently, expression of EDS1-yellow fluorescent protein and PEN2-green fluorescent protein fusions from their respective native promoters in the respective eds1-2 and pen2-1 mutant backgrounds was higher in the abaxial epidermal cells than in the adaxial epidermal cells. Altogether, our results indicate that leaf abaxial immunity against powdery mildew in Arabidopsis is at least partially due to enhanced EDS1/PAD4- and PEN2/PEN3-dependent defenses. Such transcriptionally pre-programmed defense mechanisms may underlie leaf abaxial immunity in other plant species such as hemp and may be exploited for engineering adaxial immunity against powdery mildew fungi in crop plants.
Collapse
Affiliation(s)
- Ying Wu
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - W Kyle Sexton
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Qiong Zhang
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - David Bloodgood
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Yan Wu
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Caroline Hooks
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Frank Coker
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Andrea Vasquez
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Cheng-I Wei
- Department of Nutrition and Food Science, University of Maryland College Park, MD 20742, USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
- Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, MD 20742, USA
| |
Collapse
|
25
|
Kliebenstein DJ. Specificity and breadth of plant specialized metabolite-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102459. [PMID: 37743122 DOI: 10.1016/j.pbi.2023.102459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023]
Abstract
Plant specialized metabolites shape plant interactions with the environment including plant-microbe interactions. While we often group compounds into generic classes, it is the precise structure of a compound that creates a specific role in plant-microbe or-pathogen interactions. Critically, the structure guides definitive targets in individual interactions, yet single compounds are not limited to singular mechanistic targets allowing them to influence interactions across broad ranges of attackers, from bacteria to fungi to animals. Further, the direction of the effect can be altered by counter evolution within the interacting organism leading to single compounds being both beneficial and detrimental. Thus, the benefit of a single compound to a host needs to be assessed by measuring the net benefit across all interactions while in each specific interaction. Factoring this complexity for single compounds in plant-microbe interactions with the massive expansion in our identification of specialized metabolite pathways means that we need systematic studies to classify the full breadth of activities. Only with this full biological knowledge we can develop mechanistic, ecological, and evolutionary models to understand how plant specialized metabolites fully influence plant-microbe and plant-biotic interactions more broadly.
Collapse
|
26
|
Li ZJ, Tang SY, Gao HS, Ren JY, Xu PL, Dong WP, Zheng Y, Yang W, Yu YY, Guo JH, Luo YM, Niu DD, Jiang CH. Plant growth-promoting rhizobacterium Bacillus cereus AR156 induced systemic resistance against multiple pathogens by priming of camalexin synthesis. PLANT, CELL & ENVIRONMENT 2024; 47:337-353. [PMID: 37775913 DOI: 10.1111/pce.14729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/04/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Phytoalexins play a crucial role in plant immunity. However, the mechanism of how phytoalexin is primed by beneficial microorganisms against broad-spectrum pathogens remains elusive. This study showed that Bacillus cereus AR156 could trigger ISR against broad-spectrum disease. RNA-sequencing and camalexin content assays showed that AR156-triggered ISR can prime the accumulation of camalexin synthesis and secretion-related genes. Moreover, it was found that AR156-triggered ISR elevates camalexin accumulation by increasing the expression of camalexin synthesis genes upon pathogen infection. We observed that the priming of camalexin accumulation by AR156 was abolished in cyp71a13 and pad3 mutants. Further investigations reveal that in the wrky33 mutant, the ability of AR156 to prime camalexin accumulation is abolished, and the mediated ISR against the three pathogens is significantly compromised. Furthermore, PEN3 and PDR12, acting as camalexin transporters, participate in AR156-induced ISR against broad-spectrum pathogens differently. In addition, salicylic acid and JA/ET signalling pathways participate in AR156-primed camalexin synthesis to resist pathogens in different forms depending on the pathogen. In summary, B. cereus AR156 triggers ISR against Botrytis cinerea, Pst DC3000 and Phytophthora capsici by priming camalexin synthesis. Our study provides deeper insights into the significant role of camalexin for AR156-induced ISR against broad-spectrum pathogens.
Collapse
Affiliation(s)
- Zi-Jie Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Shu-Ya Tang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Hong-Shan Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Jin-Yao Ren
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Pei-Ling Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Wen-Pan Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Ying Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Wei Yang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai'an, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, China
| | - Yi-Yang Yu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Jian-Hua Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
| | - Yu-Ming Luo
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai'an, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, China
| | - Dong-Dong Niu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai'an, China
| | - Chun-Hao Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing, China
- Key Laboratory of Integrated Management of Crop Disease and Pests, Nanjing Agricultural University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huai'an, China
| |
Collapse
|
27
|
Zeng H, Zhu Q, Yuan P, Yan Y, Yi K, Du L. Calmodulin and calmodulin-like protein-mediated plant responses to biotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:3680-3703. [PMID: 37575022 DOI: 10.1111/pce.14686] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
Plants have evolved a set of finely regulated mechanisms to respond to various biotic stresses. Transient changes in intracellular calcium (Ca2+ ) concentration have been well documented to act as cellular signals in coupling environmental stimuli to appropriate physiological responses with astonishing accuracy and specificity in plants. Calmodulins (CaMs) and calmodulin-like proteins (CMLs) are extensively characterized as important classes of Ca2+ sensors. The spatial-temporal coordination between Ca2+ transients, CaMs/CMLs and their target proteins is critical for plant responses to environmental stresses. Ca2+ -loaded CaMs/CMLs interact with and regulate a broad spectrum of target proteins, such as ion transporters (including channels, pumps, and antiporters), transcription factors, protein kinases, protein phosphatases, metabolic enzymes and proteins with unknown biological functions. This review focuses on mechanisms underlying how CaMs/CMLs are involved in the regulation of plant responses to diverse biotic stresses including pathogen infections and herbivore attacks. Recent discoveries of crucial functions of CaMs/CMLs and their target proteins in biotic stress resistance revealed through physiological, molecular, biochemical, and genetic analyses have been described, and intriguing insights into the CaM/CML-mediated regulatory network are proposed. Perspectives for future directions in understanding CaM/CML-mediated signalling pathways in plant responses to biotic stresses are discussed. The application of accumulated knowledge of CaM/CML-mediated signalling in biotic stress responses into crop cultivation would improve crop resistance to various biotic stresses and safeguard our food production in the future.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qiuqing Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Yan Yan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Keke Yi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liqun Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
28
|
Mall MS, Shah S, Singh S, Singh N, Singh N, Vaish S, Gupta D. Genome-wide identification and characterization of ABC transporter superfamily in the legume Cajanus cajan. J Appl Genet 2023; 64:615-644. [PMID: 37624461 DOI: 10.1007/s13353-023-00774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/17/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Plant ATP-binding cassette (ABC) protein family is the largest multifunctional highly conserved protein superfamily that transports diverse substrates across biological membranes by the hydrolysis of ATP and is also the part of the several other biological processes like cellular detoxification, growth and development, stress biology, and signaling processes. In the agriculturally important legume crop Cajanus cajan, a genome-wide identification and characterization of the ABC gene family was carried out. A total of 159 ABC genes were identified that belong to eight canonical classes CcABCA to CcABCG and CcABCI based on the phylogenetic analysis. The number of genes was highest in CcABCG followed by CcABCC and CcABCB class. A total of 85 CcABC genes were found on 11 chromosomes and 74 were found on scaffold. Tandem duplication was the major driver of CcABC gene family expansion. The dN/dS ratio revealed the purifying selection. The phylogenetic analysis revealed class-specific eight superclades which reflect their functional importance. The largest clade was found to be CcABCG which reflects their functional significance. CcABC proteins were mainly basic in nature and found to be localized in the plasma membrane. The secondary structure prediction revealed the dominance of α-helix. The canonical transmembrane and nucleotide binding domain, signature motif LSSGQ, Walker A, Walker B region, and Q loop were also identified. A class-specific exon-intron pattern was also observed. In addition to core elements, different cis-acting regulatory elements like stress, hormone, and cellular responsive were also identified. Expression profiling of CcABC genes at various developmental stages of different anatomical tissues was performed and it was noticed that CcABCF3, CcABCF4, CcABCF5, CcABCG66, and CcABCI3 had the highest expression. The results of the current study endow us with the further functional analysis of Cajanus ABC in the future.
Collapse
Affiliation(s)
- Mridula Sanjana Mall
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, -Deva Road, Barabanki, Lucknow, Uttar Pradesh, 225003, India
| | - Shreya Shah
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, -Deva Road, Barabanki, Lucknow, Uttar Pradesh, 225003, India
| | - Shivani Singh
- Experiome Biotech Private Limited, B1-517, Vijaypur Colony, DLF MyPAD, Vibhutikhand, Gomtinagar, Lucknow, Uttar Pradesh, 226010, India
| | - Namita Singh
- Experiome Biotech Private Limited, B1-517, Vijaypur Colony, DLF MyPAD, Vibhutikhand, Gomtinagar, Lucknow, Uttar Pradesh, 226010, India
| | - Nootan Singh
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, -Deva Road, Barabanki, Lucknow, Uttar Pradesh, 225003, India
| | - Swati Vaish
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, -Deva Road, Barabanki, Lucknow, Uttar Pradesh, 225003, India
| | - Divya Gupta
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, -Deva Road, Barabanki, Lucknow, Uttar Pradesh, 225003, India.
| |
Collapse
|
29
|
Subha D, AnuKiruthika R, Sreeraj H, Tamilselvi KS. Plant exosomes: nano conveyors of pathogen resistance. DISCOVER NANO 2023; 18:146. [PMID: 38032422 PMCID: PMC10689327 DOI: 10.1186/s11671-023-03931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
The entry of a pathogen into a plant host is a complex process involving multiple steps. Survival techniques from the pathogen and the defense mechanisms of the plant lead to a plethora of molecular interactions during the operation. Plant extracellular vesicles, especially the exosomes in the size range of 50-150 nm play a crucial role in plant defense. They act as signalosomes capable of transporting bioactive lipids, proteins, RNA and metabolites between the host and the pathogen. Recent research works have revealed that anti-microbial compounds, stress response proteins and small RNA are among the contents of these extracellular vesicles. The current review article analyses the cruciality of the cross-talk between the host and the pathogen organized through trafficking of small RNA via exosomes towards RNA induced gene silencing in the pathogenic organisms. Recent studies have shown that extracellular vesicles released by both plants and the pathogens, play a crucial role in cross-kingdom communication, thereby regulating the host response and contributing to plant immunity. An in-depth understanding of the mechanism by which the EVs mediate this inter-species and cross-kingdom regulation is currently needed to develop sustainable plant-protection strategies. The review highlights on the latest advances in understanding the role of EVs in establishing host-pathogen relationship, modulating plant immunity and approaches for how these findings can be developed into innovative strategies for crop protection.
Collapse
Affiliation(s)
- D Subha
- Department of Biotechnology, PSGR Krishnammal College for Women, Coimbatore, India.
| | - R AnuKiruthika
- Department of Botany, PSGR Krishnammal College for Women, Coimbatore, India
| | - Harsha Sreeraj
- Department of Botany, PSGR Krishnammal College for Women, Coimbatore, India
| | - K S Tamilselvi
- Department of Botany, PSGR Krishnammal College for Women, Coimbatore, India.
| |
Collapse
|
30
|
López-Bucio J, Ortiz-Castro R, Magaña-Dueñas V, García-Cárdenas E, Jiménez-Vázquez KR, Raya-González J, Pelagio-Flores R, Ibarra-Laclette E, Herrera-Estrella L. Pseudomonas aeruginosa LasI-dependent plant growth promotion requires the host nitrate transceptor AtNRT1.1/CHL1 and the nitrate reductases NIA1 and NIA2. PLANTA 2023; 258:80. [PMID: 37715847 DOI: 10.1007/s00425-023-04236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
MAIN CONCLUSION In P. aeruginosa, mutation of the gene encoding N-acyl-L-homoserine lactone synthase LasI drives defense and plant growth promotion, and this latter trait requires adequate nitrate nutrition. Cross-kingdom communication with bacteria is crucial for plant growth and productivity. Here, we show a strong induction of genes for nitrate uptake and assimilation in Arabidopsis seedlings co-cultivated with P. aeruginosa WT (PAO1) or ΔlasI mutants defective on the synthesis of the quorum-sensing signaling molecule N-(3-oxododecanoyl)-L-homoserine lactone. Along with differential induction of defense-related genes, the change from plant growth repression to growth promotion upon bacterial QS disruption, correlated with upregulation of the dual-affinity nitrate transceptor CHL1/AtNRT1/NPF6.3 and the nitrate reductases NIA1 and NIA2. CHL1-GUS was induced in Arabidopsis primary root tips after transfer onto P. aeruginosa ΔlasI streaks at low and high N availability, whereas this bacterium required high concentrations of nitrogen to potentiate root and shoot biomass production and to improve root branching. Arabidopsis chl1-5 and chl1-12 mutants and double mutants in NIA1 and NIA2 nitrate reductases showed compromised growth under low nitrogen availability and failed to mount an effective growth promotion and root branching response even at high NH4NO3. WT P. aeruginosa PAO1 and P. aeruginosa ΔlasI mutant promoted the accumulation of nitric oxide (NO) in roots of both the WT and nia1nia2 double mutants, whereas NO donors SNP or SNAP did not improve growth or root branching in nia1nia2 double mutants with or without bacterial cocultivation. Thus, inoculation of Arabidopsis roots with P. aeruginosa drives gene expression for improved nitrogen acquisition and this macronutrient is critical for the plant growth-promoting effects upon disruption of the LasI quorum-sensing system.
Collapse
Affiliation(s)
- José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico.
| | - Randy Ortiz-Castro
- Red de estudios moleculares avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, Veracruz, Mexico
| | - Viridiana Magaña-Dueñas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Elizabeth García-Cárdenas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Kirán Rubí Jiménez-Vázquez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
| | - Javier Raya-González
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Tzintzunzan 173, Col. Matamoros, 58240, Morelia, Michoacán, Mexico
| | - Ramón Pelagio-Flores
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Tzintzunzan 173, Col. Matamoros, 58240, Morelia, Michoacán, Mexico
| | - Enrique Ibarra-Laclette
- Red de estudios moleculares avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, 91070, Xalapa, Veracruz, Mexico
| | - Luis Herrera-Estrella
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Campus Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| |
Collapse
|
31
|
Yuen ELH, Shepherd S, Bozkurt TO. Traffic Control: Subversion of Plant Membrane Trafficking by Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:325-350. [PMID: 37186899 DOI: 10.1146/annurev-phyto-021622-123232] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Membrane trafficking pathways play a prominent role in plant immunity. The endomembrane transport system coordinates membrane-bound cellular organelles to ensure that immunological components are utilized effectively during pathogen resistance. Adapted pathogens and pests have evolved to interfere with aspects of membrane transport systems to subvert plant immunity. To do this, they secrete virulence factors known as effectors, many of which converge on host membrane trafficking routes. The emerging paradigm is that effectors redundantly target every step of membrane trafficking from vesicle budding to trafficking and membrane fusion. In this review, we focus on the mechanisms adopted by plant pathogens to reprogram host plant vesicle trafficking, providing examples of effector-targeted transport pathways and highlighting key questions for the field to answer moving forward.
Collapse
Affiliation(s)
- Enoch Lok Him Yuen
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| | - Samuel Shepherd
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| |
Collapse
|
32
|
Shen C, Li X. Genome-wide identification and expression pattern profiling of the ATP-binding cassette gene family in tea plant (Camelliasinensis). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107930. [PMID: 37552927 DOI: 10.1016/j.plaphy.2023.107930] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The ATP-binding cassette (ABC) gene family is one of the largest and oldest protein families, consisting of ATP-driven transporters facilitating substrate transportation across cell membranes. However, little is known about the evolution and biological function of the ABC gene family in tea plants. In this study, we performed a genome-wide identification and expression analysis of genes encoding ABC transporter proteins in Camellia sinensis. Our analysis of 170 ABC genes revealed that CsABCs were unevenly distributed across 15 chromosomes, with an amino acid length ranging from 188 to 2489 aa, molecular weight ranging from 20.29 to 277.34 kDa, and an isoelectric point ranging from 4.89 to 10.63. Phylogenetic analysis showed that CsABCs were divided into eight subfamilies, among which the ABCG subfamily was the most abundant. Furthermore, the subcellular localization of CsABCs indicated that they were present in various organelles. Collinearity analysis between the tea plant and Arabidopsis thaliana genomes revealed that the CsABC genes were homologous to the AtABC genes. Large gene fragment duplication analysis identified ten gene pairs as tandem repeats, and interaction network analysis demonstrated that CsABCs interacted with various types of target genes, with protein interactions also occurring within the family. Tissue expression analysis indicated that CsABCs were highly expressed in roots, stems, and leaves and were easily induced by drought and cold stress. Moreover, qRT-PCR analysis of the relative expression level of the gene under drought and cold stress correlated with the sequencing results. Identifying ABC genes in tea plants lays a foundation for the classification and functional analysis of ABC family genes, which can facilitate molecular breeding and the development of new tea varieties.
Collapse
Affiliation(s)
- Chuan Shen
- Shaannan Eco-economy Research Center, Ankang University, 725000, Ankang, China.
| | - Xia Li
- Department of Electronic and Information Engineering, Ankang University, 725000, Ankang, China
| |
Collapse
|
33
|
Naaz S, Ahmad N, Jameel MR, Al-Huqail AA, Khan F, Qureshi MI. Impact of Some Toxic Metals on Important ABC Transporters in Soybean ( Glycine max L.). ACS OMEGA 2023; 8:27597-27611. [PMID: 37546587 PMCID: PMC10399161 DOI: 10.1021/acsomega.3c03325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
In plants, ATP-binding cassette (ABC) transporters facilitate the movement of substrates across membranes using ATP for growth, development, and defense. Soils contaminated with toxic metals such as cadmium (Cd) and mercury (Hg) might adversely affect the metabolism of plants and humans. In this study, a phylogenetic relationship among soybeans' (Glycine max) ATP binding cassette (GmABCs) and other plant ABCs was analyzed using sequence information, gene structure, chromosomal distribution, and conserved motif-domain. The ontology of GmABCs indicated their active involvement in trans-membrane transport and ATPase activity. Thirty-day-old soybean plants were exposed to 100 μM CdCl2 and 100 μM HgCl2 for 10 days. Physiological and biochemical traits were altered under stress conditions. Compared to Control, GmABC transporter genes were differentially expressed in response to Cd and Hg. The qRT-PCR data showed upregulation of seven ABC transporter genes in response to Cd stress and three were downregulated. On the other hand, Hg stress upregulated four GmABC genes and downregulated six. It could be concluded that most of the ABCB and ABCG subfamily members were actively involved in heavy metal responses. Real-time expression studies suggest the function of specific ABC transporters in Cd and Hg stress response and are helpful in future research to develop stress-tolerant varieties of soybean.
Collapse
Affiliation(s)
- Sheeba Naaz
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- Department
of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Nadeem Ahmad
- Department
of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - M. Rizwan Jameel
- Centre
for Interdisciplinary Research in Basic Sciences, Faculty of Natural
Sciences, Jamia Millia Islamia (A Central
University), New Delhi 110025, India
| | - Asma A. Al-Huqail
- Chair
of Climate Change, Environmental Development and Vegetation Cover,
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faheema Khan
- Chair
of Climate Change, Environmental Development and Vegetation Cover,
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - M. Irfan Qureshi
- Department
of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
34
|
Lu Y, Peng F, Wang Y, Yang Z, Li H. Transcriptomic analysis reveals the molecular mechanisms of Boehmeria nivea L. in response to antimonite and antimonate stresses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118195. [PMID: 37229860 DOI: 10.1016/j.jenvman.2023.118195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Soil antimony (Sb) pollution is a global concern that threatens food security and human health. Boehmeria nivea L. (ramie) is a promising phytoremediation plant exhibiting high tolerance and enrichment capacity for Sb. To reveal the molecular mechanisms and thus enhance the ramie uptake, transport, and detoxification of Sb with practical strategies, a hydroponic experiment was conducted to compare the physiological and transcriptomic responses of ramie towards antimonite (Sb(Ⅲ)) and antimonate (Sb(Ⅴ)). Phenotypic results showed that Sb(Ⅲ) had a stronger inhibitory effect on the growth of ramie. Root Sb content under Sb(Ⅲ) was 2.43 times higher than that in Sb(Ⅴ) treatment. Based on the ribonucleic acid sequencing (RNA-Seq) technique, 3915 and 999 significant differentially expressed genes (DEGs) were identified under Sb(Ⅲ) and Sb(Ⅴ), respectively. Transcriptomic analysis revealed that ramie showed different adaptation strategies to Sb(Ⅲ) and Sb(V). Key DEGs and their involved pathways such as catalytic activity, carbohydrate metabolisms, phenylpropanoid biosynthesis, and cell wall modification were identified to perform crucial roles in Sb tolerance and detoxification. Two heavy metal-associated domain-type genes, six heavy metal-associated isoprenylated plant proteins, and nine ABC transporters showed possible roles in the transport and detoxification of Sb. The significant upregulation of NRAMP5 and three NIPs suggested their roles in the transport of Sb(V). This study is the basis for future research to identify the exact genes and biological processes that can effectively enhance Sb accumulation or improve plant tolerance to Sb, thereby promoting the phytoremediation of Sb-polluted soils.
Collapse
Affiliation(s)
- Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Yingyang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China.
| |
Collapse
|
35
|
Yuan Q, Zhang J, Zhang W, Nie J. Genome-wide characterization, phylogenetic and expression analysis of ABCG gene subfamily in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1178710. [PMID: 37251762 PMCID: PMC10211247 DOI: 10.3389/fpls.2023.1178710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023]
Abstract
The ABCG is the largest subfamily of the ABC family with extensive functions, and only a few members have been identified in detail. However, more and more studies have shown that the members of this family are very important and are involved in many life processes such as plant development and response to various stresses. Cucumber is an important vegetable crops around the world. The cucumber development is essential for its production and quality. Meanwhile, various stresses have caused serious losses of cucumber. However, the ABCG genes were not well characterized and functioned in cucumber. In this study, the cucumber CsABCG gene family were identified and characterized, and their evolutionary relationship and functions were analyzed. The cis-acting elements and expression analysis showed that they played important role in development and responding to various biotic and abiotic stresses in cucumber. Phylogenetic analysis, sequence alignment and MEME (Multiple Em for Motif Elicitation) analysis indicated that the functions of ABCG proteins in different plants are evolutionarily conserved. Collinear analysis revealed that the ABCG gene family was highly conserved during the evolution. In addition, the potential binding sites of the CsABCG genes targeted by miRNA were predicted. These results will lay a foundation for further research on the function of the CsABCG genes in cucumber.
Collapse
Affiliation(s)
- Qi Yuan
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jing Zhang
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Wanlu Zhang
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jingtao Nie
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
36
|
Aryal B, Xia J, Hu Z, Stumpe M, Tsering T, Liu J, Huynh J, Fukao Y, Glöckner N, Huang HY, Sáncho-Andrés G, Pakula K, Ziegler J, Gorzolka K, Zwiewka M, Nodzynski T, Harter K, Sánchez-Rodríguez C, Jasiński M, Rosahl S, Geisler MM. An LRR receptor kinase controls ABC transporter substrate preferences during plant growth-defense decisions. Curr Biol 2023; 33:2008-2023.e8. [PMID: 37146609 DOI: 10.1016/j.cub.2023.04.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/27/2023] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
The exporter of the auxin precursor indole-3-butyric acid (IBA), ABCG36/PDR8/PEN3, from the model plant Arabidopsis has recently been proposed to also function in the transport of the phytoalexin camalexin. Based on these bonafide substrates, it has been suggested that ABCG36 functions at the interface between growth and defense. Here, we provide evidence that ABCG36 catalyzes the direct, ATP-dependent export of camalexin across the plasma membrane. We identify the leucine-rich repeat receptor kinase, QIAN SHOU KINASE1 (QSK1), as a functional kinase that physically interacts with and phosphorylates ABCG36. Phosphorylation of ABCG36 by QSK1 unilaterally represses IBA export, allowing camalexin export by ABCG36 conferring pathogen resistance. As a consequence, phospho-dead mutants of ABCG36, as well as qsk1 and abcg36 alleles, are hypersensitive to infection with the root pathogen Fusarium oxysporum, caused by elevated fungal progression. Our findings indicate a direct regulatory circuit between a receptor kinase and an ABC transporter that functions to control transporter substrate preference during plant growth and defense balance decisions.
Collapse
Affiliation(s)
- Bibek Aryal
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jian Xia
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Zehan Hu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Tashi Tsering
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jie Liu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - John Huynh
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Yoichiro Fukao
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Nina Glöckner
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Hsin-Yao Huang
- Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Gloria Sáncho-Andrés
- Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Konrad Pakula
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland; NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Joerg Ziegler
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Karin Gorzolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics Masaryk University, CEITEC MU Kamenice 5, Building A26, 625 00 Brno, Czech Republic
| | - Tomasz Nodzynski
- Mendel Centre for Plant Genomics and Proteomics Masaryk University, CEITEC MU Kamenice 5, Building A26, 625 00 Brno, Czech Republic
| | - Klaus Harter
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | | | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland; Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Sabine Rosahl
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Markus M Geisler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
37
|
Pakuła K, Sequeiros-Borja C, Biała-Leonhard W, Pawela A, Banasiak J, Bailly A, Radom M, Geisler M, Brezovsky J, Jasiński M. Restriction of access to the central cavity is a major contributor to substrate selectivity in plant ABCG transporters. Cell Mol Life Sci 2023; 80:105. [PMID: 36952129 PMCID: PMC10036432 DOI: 10.1007/s00018-023-04751-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
ABCG46 of the legume Medicago truncatula is an ABC-type transporter responsible for highly selective translocation of the phenylpropanoids, 4-coumarate, and liquiritigenin, over the plasma membrane. To investigate molecular determinants of the observed substrate selectivity, we applied a combination of phylogenetic and biochemical analyses, AlphaFold2 structure prediction, molecular dynamics simulations, and mutagenesis. We discovered an unusually narrow transient access path to the central cavity of MtABCG46 that constitutes an initial filter responsible for the selective translocation of phenylpropanoids through a lipid bilayer. Furthermore, we identified remote residue F562 as pivotal for maintaining the stability of this filter. The determination of individual amino acids that impact the selective transport of specialized metabolites may provide new opportunities associated with ABCGs being of interest, in many biological scenarios.
Collapse
Affiliation(s)
- Konrad Pakuła
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznan, Poland
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614, Poznan, Poland
| | - Carlos Sequeiros-Borja
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Wanda Biała-Leonhard
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Aleksandra Pawela
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Marcin Radom
- Department of Structural Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z.Noskowskiego12/14, 61-704, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965, Poznan, Poland
| | - Markus Geisler
- Department of Biology, University of Fribourg, Chem. du Musée 10, 1700, Fribourg, Switzerland
| | - Jan Brezovsky
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
- International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland.
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznan, Poland.
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632, Poznan, Poland.
| |
Collapse
|
38
|
Fell H, Muthayil Ali A, Wells R, Mitrousia GK, Woolfenden H, Schoonbeek HJ, Fitt BDL, Ridout CJ, Stotz HU. Novel gene loci associated with susceptibility or cryptic quantitative resistance to Pyrenopeziza brassicae in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:71. [PMID: 36952022 PMCID: PMC10036280 DOI: 10.1007/s00122-023-04243-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Quantitative disease resistance (QDR) controls the association of the light leaf spot pathogen with Brassica napus; four QDR loci that were in linkage disequilibrium and eight gene expression markers were identified. Quantitative disease resistance (QDR) can provide durable control of pathogens in crops in contrast to resistance (R) gene-mediated resistance which can break down due to pathogen evolution. QDR is therefore a desirable trait in crop improvement, but little is known about the causative genes, and so it is difficult to incorporate into breeding programmes. Light leaf spot, caused by Pyrenopeziza brassicae, is an important disease of oilseed rape (canola, Brassica napus). To identify new QDR gene loci, we used a high-throughput screening pathosystem with P. brassicae on 195 lines of B. napus combined with an association transcriptomics platform. We show that all resistance against P. brassicae was associated with QDR and not R gene-mediated. We used genome-wide association analysis with an improved B. napus population structure to reveal four gene loci significantly (P = 0.0001) associated with QDR in regions showing linkage disequilibrium. On chromosome A09, enhanced resistance was associated with heterozygosity for a cytochrome P450 gene co-localising with a previously described locus for seed glucosinolate content. In addition, eight significant gene expression markers with a false discovery rate of 0.001 were associated with QDR against P. brassicae. For seven of these, expression was positively correlated with resistance, whereas for one, a HXXXD-type acyl-transferase, negative correlation indicated a potential susceptibility gene. The study identifies novel QDR loci for susceptibility and resistance, including novel cryptic QDR genes associated with heterozygosity, that will inform future crop improvement.
Collapse
Affiliation(s)
- Heather Fell
- Centre for Agriculture, Food and Environmental Management, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Ajisa Muthayil Ali
- Centre for Agriculture, Food and Environmental Management, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Rachel Wells
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Georgia K Mitrousia
- Centre for Agriculture, Food and Environmental Management, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Communication and Engagement Office, Science Innovation Engagement Partnerships, Rothamsted Research Ltd, West Common, Harpenden, AL5 2JQ, UK
| | - Hugh Woolfenden
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Henk-Jan Schoonbeek
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Bruce D L Fitt
- Centre for Agriculture, Food and Environmental Management, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Christopher J Ridout
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Henrik U Stotz
- Centre for Agriculture, Food and Environmental Management, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK.
| |
Collapse
|
39
|
Wu Y, Sexton W, Yang B, Xiao S. Genetic approaches to dissect plant nonhost resistance mechanisms. MOLECULAR PLANT PATHOLOGY 2023; 24:272-283. [PMID: 36617319 PMCID: PMC9923397 DOI: 10.1111/mpp.13290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/17/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Nonhost resistance (NHR) refers to the immunity of most tested genotypes of a plant species to most tested variants of a pathogen species. Thus, NHR is broad spectrum and durable in nature and constitutes a major safety barrier against invasion of a myriad of potentially pathogenic microbes in any plants including domesticated crops. Genetic study of NHR is generally more difficult compared to host resistance mainly because NHR is genetically more complicated and often lacks intraspecific polymorphisms. Nevertheless, substantial progress has been made towards the understanding of the molecular basis of NHR in the past two decades using various approaches. Not surprisingly, molecular mechanisms of NHR revealed so far encompasses pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity. In this review, we briefly discuss the inherent difficulty in genetic studies of NHR and summarize the main approaches that have been taken to identify genes contributing to NHR. We also discuss new enabling strategies for dissecting multilayered NHR in model plants with a focus on NHR against filamentous pathogens, especially biotrophic pathogens such as powdery mildew and rust fungi.
Collapse
Affiliation(s)
- Ying Wu
- Institute for Bioscience and Biotechnology ResearchUniversity of Maryland College ParkRockvilleMarylandUSA
| | - William Sexton
- Institute for Bioscience and Biotechnology ResearchUniversity of Maryland College ParkRockvilleMarylandUSA
| | - Bing Yang
- Division of Plant Science and Technology, Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology ResearchUniversity of Maryland College ParkRockvilleMarylandUSA
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
40
|
Zhang T, Xu N, Amanullah S, Gao P. Genome-wide identification, evolution, and expression analysis of MLO gene family in melon ( Cucumis melo L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1144317. [PMID: 36909404 PMCID: PMC9998560 DOI: 10.3389/fpls.2023.1144317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Powdery mildew (PM) is one of the main fungal diseases that appear during the cultivation of the melon fruit crop. Mildew Resistance Locus "O" (MLO) is known as a gene family and has seven conserved transmembrane domains. An induced functional loss of a specific MLO gene could mainly confer PM resistance to melons. However, the genomic structure of MLO genes and its main role in PM resistance still remain unclear in melon. In this study, bioinformatic analysis identified a total of 14 MLO gene family members in the melon genome sequence, and these genes were distributed in an uneven manner on eight chromosomes. The phylogenetic analysis divided the CmMLO genes into five different clades, and gene structural analysis showed that genes in the same clade had similar intron and exon distribution patterns. In addition, by cloning the CmMLO gene sequence in four melon lines, analyzing the CmMLO gene expression pattern after infection, and making microscopic observations of the infection pattern of PM, we concluded that the CmMLO5 (MELO3C012438) gene plays a negative role in regulating PM-resistance in the susceptible melon line (Topmark), and the critical time point for gene function was noticed at 24 and 72 hours after PM infection. The mutational analysis exhibited a single base mutation at 572 bp, which further results in loss of protein function, thus conferring PM resistance in melon. In summary, our research evidence provides a thorough understanding of the CmMLO gene family and demonstrates their potential role in disease resistance, as well as a theoretical foundation for melon disease resistance breeding.
Collapse
Affiliation(s)
- Taifeng Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Nan Xu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Sikandar Amanullah
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Peng Gao
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
41
|
Cloutier S, Reimer E, Khadka B, McCallum BD. Variations in exons 11 and 12 of the multi-pest resistance wheat gene Lr34 are independently additive for leaf rust resistance. FRONTIERS IN PLANT SCIENCE 2023; 13:1061490. [PMID: 36910459 PMCID: PMC9995823 DOI: 10.3389/fpls.2022.1061490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Characterization of germplasm collections for the wheat leaf rust gene Lr34 previously defined five haplotypes in spring wheat. All resistant lines had a 3-bp TTC deletion (null) in exon 11, resulting in the absence of a phenylalanine residue in the ABC transporter, as well as a single nucleotide C (Tyrosine in Lr34+) to T (Histidine in Lr34-) transition in exon 12. A rare haplotype present in Odesskaja 13 and Koktunkulskaja 332, both of intermediate rust resistance, had the 3-bp deletion typical of Lr34+ in exon 11 but the T nucleotide of Lr34- in exon 12. METHODS To quantify the role of each mutation in leaf rust resistance, Odesskaja 13 and Koktunkulskaja 332 were crossed to Thatcher and its near-isogenic line Thatcher-Lr34 (RL6058). Single seed descent populations were generated and evaluated for rust resistance in six different rust nurseries. RESULTS The Odesskaja 13 progeny with the TTC/T haplotype were susceptible with an average severity rating of 62.3%, the null/T haplotype progeny averaged 39.7% and the null/C haplotype was highly resistant, averaging 13.3% severity. The numbers for the Koktunkulskaja 332 crosses were similar with 63.5%, 43.5% and 23.7% severity ratings, respectively. Differences between all classes in all crosses were statistically significant, indicating that both mutations are independently additive for leaf rust resistance. The three-dimensional structural models of LR34 were used to analyze the locations and putative interference of both amino acids with the transport channel. Koktunkulskaja 332 also segregated for marker csLV46 which is linked to Lr46. Rust severity in lines with Lr34+ and csLV46+ had significantly lower rust severity ratings than those without, indicating the additivity of the two loci. DISCUSSION This has implications for the deployment of Lr34 in wheat cultivars and for the basic understanding of this important wheat multi-pest durable resistance gene.
Collapse
Affiliation(s)
- Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Elsa Reimer
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Bijendra Khadka
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Brent D. McCallum
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| |
Collapse
|
42
|
Semi-Targeted Profiling of the Lipidome Changes Induced by Erysiphe Necator in Disease-Resistant and Vitis vinifera L. Varieties. Int J Mol Sci 2023; 24:ijms24044072. [PMID: 36835477 PMCID: PMC9958630 DOI: 10.3390/ijms24044072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The ascomycete Erysiphe necator is a serious pathogen in viticulture. Despite the fact that some grapevine genotypes exhibit mono-locus or pyramided resistance to this fungus, the lipidomics basis of these genotypes' defense mechanisms remains unknown. Lipid molecules have critical functions in plant defenses, acting as structural barriers in the cell wall that limit pathogen access or as signaling molecules after stress responses that may regulate innate plant immunity. To unravel and better understand their involvement in plant defense, we used a novel approach of ultra-high performance liquid chromatography (UHPLC)-MS/MS to study how E. necator infection changes the lipid profile of genotypes with different sources of resistance, including BC4 (Run1), "Kishmish vatkhana" (Ren1), F26P92 (Ren3; Ren9), and "Teroldego" (a susceptible genotype), at 0, 24, and 48 hpi. The lipidome alterations were most visible at 24 hpi for BC4 and F26P92, and at 48 hpi for "Kishmish vatkhana". Among the most abundant lipids in grapevine leaves were the extra-plastidial lipids: glycerophosphocholine (PCs), glycerophosphoethanolamine (PEs) and the signaling lipids: glycerophosphates (Pas) and glycerophosphoinositols (PIs), followed by the plastid lipids: glycerophosphoglycerols (PGs), monogalactosyldiacylglycerols (MGDGs), and digalactosyldiacylglycerols (DGDGs) and, in lower amounts lyso-glycerophosphocholines (LPCs), lyso-glycerophosphoglycerols (LPGs), lyso-glycerophosphoinositols (LPIs), and lyso-glycerophosphoethanolamine (LPEs). Furthermore, the three resistant genotypes had the most prevalent down-accumulated lipid classes, while the susceptible genotype had the most prevalent up-accumulated lipid classes.
Collapse
|
43
|
Liu L, Qin L, Safdar LB, Zhao C, Cheng X, Xie M, Zhang Y, Gao F, Bai Z, Huang J, Bhalerao RP, Liu S, Wei Y. The plant trans-Golgi network component ECHIDNA regulates defense, cell death, and endoplasmic reticulum stress. PLANT PHYSIOLOGY 2023; 191:558-574. [PMID: 36018261 PMCID: PMC9806577 DOI: 10.1093/plphys/kiac400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The trans-Golgi network (TGN) acts as a central platform for sorting and secreting various cargoes to the cell surface, thus being essential for the full execution of plant immunity. However, the fine-tuned regulation of TGN components in plant defense and stress response has been not fully elucidated. Our study revealed that despite largely compromising penetration resistance, the loss-of-function mutation of the TGN component protein ECHIDNA (ECH) induced enhanced postinvasion resistance to powdery mildew in Arabidopsis thaliana. Genetic and transcriptome analyses and hormone profiling demonstrated that ECH loss resulted in salicylic acid (SA) hyperaccumulation via the ISOCHORISMATE SYNTHASE 1 biosynthesis pathway, thereby constitutively activating SA-dependent innate immunity that was largely responsible for the enhanced postinvasion resistance. Furthermore, the ech mutant displayed accelerated SA-independent spontaneous cell death and constitutive POWDERY MILDEW RESISTANCE 4-mediated callose depositions. In addition, ECH loss led to a chronically prolonged endoplasmic reticulum stress in the ech mutant. These results provide insights into understanding the role of TGN components in the regulation of plant immunity and stress responses.
Collapse
Affiliation(s)
- Lijiang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada
| | - Li Qin
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2, Canada
| | - Luqman Bin Safdar
- School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond 5064, Australia
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xiaohui Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Meili Xie
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Feng Gao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Zetao Bai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Junyan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, S-901 83, Sweden
| | | | | |
Collapse
|
44
|
Singh G, Agrawal H, Bednarek P. Specialized metabolites as versatile tools in shaping plant-microbe associations. MOLECULAR PLANT 2023; 16:122-144. [PMID: 36503863 DOI: 10.1016/j.molp.2022.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Plants are rich repository of a large number of chemical compounds collectively referred to as specialized metabolites. These compounds are of importance for adaptive processes including responses against changing abiotic conditions and interactions with various co-existing organisms. One of the strikingly affirmed functions of these specialized metabolites is their involvement in plants' life-long interactions with complex multi-kingdom microbiomes including both beneficial and harmful microorganisms. Recent developments in genomic and molecular biology tools not only help to generate well-curated information about regulatory and structural components of biosynthetic pathways of plant specialized metabolites but also to create and screen mutant lines defective in their synthesis. In this review, we have comprehensively surveyed the function of these specialized metabolites and discussed recent research findings demonstrating the responses of various microbes on tested mutant lines having defective biosynthesis of particular metabolites. In addition, we attempt to provide key clues about the impact of these metabolites on the assembly of the plant microbiome by summarizing the major findings of recent comparative metagenomic analyses of available mutant lines under customized and natural microbial niches. Subsequently, we delineate benchmark initiatives that aim to engineer or manipulate the biosynthetic pathways to produce specialized metabolites in heterologous systems but also to diversify their immune function. While denoting the function of these metabolites, we also discuss the critical bottlenecks associated with understanding and exploiting their function in improving plant adaptation to the environment.
Collapse
Affiliation(s)
- Gopal Singh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Himani Agrawal
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
45
|
Irieda H. Preinvasive nonhost resistance of Arabidopsis against melanized appressorium-mediated entry of multiple nonadapted Colletotrichum fungi. PLANT SIGNALING & BEHAVIOR 2022; 17:2018218. [PMID: 34978264 PMCID: PMC9176223 DOI: 10.1080/15592324.2021.2018218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Nonhost plants effectively block a vast number of nonadapted fungal pathogens at the preinvasive stage. On the host plants, adapted fungal pathogens such as Colletotrichum species invade into plant epidermal cell by penetration peg developed from melanized appressorium, followed by invasive hyphal extension. I reported nonadapted Colletotrichum fungi that showed an increased rate of melanized appressorium-mediated entry (MAE) into the pen2 mutant of nonhost Arabidopsis thaliana (hereafter Arabidopsis). It was also found that other MAE-type nonadapted Colletotrichum fungi with no penetration into the pen2 mutant invaded Arabidopsis in the presence of additional mutations such as edr1, gsh1, eds5, cas, and chup1 in the pen2 background. Thus, many immune components contribute to the preinvasive nonhost resistance (NHR) of Arabidopsis against Colletotrichum MAE, and PEN2-related defense takes priority over other defense pathways. Here, I show that among the above nonadapted fungi, Colletotrichum nymphaeae PL1-1-b exhibited relatively lower incompatibility with the nonhost Arabidopsis with increased MAE in each single mutant of edr1, gsh1, eds5, and cas, although other nonadapted fungi almost never invaded these single mutants. Based on the relationships between Colletotrichum MAE and the Arabidopsis immune-related components, Colletotrichum-Arabidopsis incompatibility and multilayered immunity in the preinvasive NHR of Arabidopsis are discussed in this study.
Collapse
Affiliation(s)
- Hiroki Irieda
- Academic Assembly, Institute of Agriculture, Shinshu University, Nagano, Japan
| |
Collapse
|
46
|
Walker PL, Girard IJ, Becker MG, Giesbrecht S, Whyard S, Fernando WGD, de Kievit TR, Belmonte MF. Tissue-specific mRNA profiling of the Brassica napus-Sclerotinia sclerotiorum interaction uncovers novel regulators of plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6697-6710. [PMID: 35961003 DOI: 10.1093/jxb/erac333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/10/2022] [Indexed: 05/05/2023]
Abstract
White mold is caused by the fungal pathogen Sclerotinia sclerotiorum and leads to rapid and significant loss in plant yield. Among its many brassicaceous hosts, including Brassica napus (canola) and Arabidopsis, the response of individual tissue layers directly at the site of infection has yet to be explored. Using laser microdissection coupled with RNA sequencing, we profiled the epidermis, mesophyll, and vascular leaf tissue layers of B. napus in response to S. sclerotiorum. High-throughput tissue-specific mRNA sequencing increased the total number of detected transcripts compared with whole-leaf assessments and provided novel insight into the conserved and specific roles of ontogenetically distinct leaf tissue layers in response to infection. When subjected to pathogen infection, the epidermis, mesophyll, and vasculature activate both specific and shared gene sets. Putative defense genes identified through transcription factor network analysis were then screened for susceptibility against necrotrophic, hemi-biotrophic, and biotrophic pathogens. Arabidopsis deficient in PR5-like RECEPTOR KINASE (PR5K) mRNA levels were universally susceptible to all pathogens tested and were further characterized to identify putative interacting partners involved in the PR5K signaling pathway. Together, these data provide insight into the complexity of the plant defense response directly at the site of infection.
Collapse
Affiliation(s)
- Philip L Walker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ian J Girard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Michael G Becker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shayna Giesbrecht
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Steve Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Teresa R de Kievit
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
47
|
Gao P, Qin L, Nguyen H, Sheng H, Quilichini TD, Xiang D, Kochian LV, Wei Y, Datla R. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9-generated diallelic mutants reveal Arabidopsis actin-related protein 2 function in the trafficking of syntaxin PEN1. FRONTIERS IN PLANT SCIENCE 2022; 13:934002. [PMID: 36204067 PMCID: PMC9531028 DOI: 10.3389/fpls.2022.934002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
In plants, the actin cytoskeleton plays a critical role in defense against diverse pathogens. The formation of actin patches is essential for the intracellular transport of organelles and molecules toward pathogen penetration sites and the formation of papillae for an early cellular response to powdery mildew attack in Arabidopsis thaliana. This response process is regulated by the actin-related protein (ARP)2/3 complex and its activator, the WAVE/SCAR complex (W/SRC). The ARP2/3 complex is also required for maintaining steady-state levels of the defense-associated protein, PENETRATION 1 (PEN1), at the plasma membrane and for its deposition into papillae. However, specific ARP2 functionalities in this context remain unresolved, as knockout mutants expressing GFP-PEN1 reporter constructs could not be obtained by conventional crossing approaches. In this study, employing a CRISPR/Cas9 multiplexing-mediated genome editing approach, we produced an ARP2 knockout expressing the GFP-PEN1 marker in Arabidopsis. This study successfully identified diallelic somatic mutations with both ARP2 alleles edited among the primary T1 transgenic plants, and also obtained independent lines with stable arp2/arp2 mutations in the T2 generation. Further analyses on these arp2/arp2 mutants showed similar biological functions of ARP2 to ARP3 in the accumulation of PEN1 against fungal invasion. Together, this CRISPR/Cas9-based approach offers highly efficient simultaneous disruption of the two ARP2 alleles in GFP-PEN1-expressing lines, and a rapid method for performing live-cell imaging to facilitate the investigation of important plant-pathogen interactions using a well-established and widely applied GFP marker system, thus gaining insights and elucidating the contributions of ARP2 upon fungal attack.
Collapse
Affiliation(s)
- Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK, Canada
| | - Li Qin
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hanh Nguyen
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Huajin Sheng
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Teagen D. Quilichini
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Daoquan Xiang
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, SK, Canada
| | - Leon V. Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yangdou Wei
- College of Arts and Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
48
|
Wang Y, Li T, Sun Z, Huang X, Yu N, Tai H, Yang Q. Comparative transcriptome meta-analysis reveals a set of genes involved in the responses to multiple pathogens in maize. FRONTIERS IN PLANT SCIENCE 2022; 13:971371. [PMID: 36186003 PMCID: PMC9521429 DOI: 10.3389/fpls.2022.971371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Maize production is constantly threatened by the presence of different fungal pathogens worldwide. Genetic resistance is the most favorable approach to reducing yield losses resulted from fungal diseases. The molecular mechanism underlying disease resistance in maize remains largely unknown. The objective of this study was to identify key genes/pathways that are consistently associated with multiple fungal pathogen infections in maize. Here, we conducted a meta-analysis of gene expression profiles from seven publicly available RNA-seq datasets of different fungal pathogen infections in maize. We identified 267 common differentially expressed genes (co-DEGs) in the four maize leaf infection experiments and 115 co-DEGs in all the seven experiments. Functional enrichment analysis showed that the co-DEGs were mainly involved in the biosynthesis of diterpenoid and phenylpropanoid. Further investigation revealed a set of genes associated with terpenoid phytoalexin and lignin biosynthesis, as well as potential pattern recognition receptors and nutrient transporter genes, which were consistently up-regulated after inoculation with different pathogens. In addition, we constructed a weighted gene co-expression network and identified several hub genes encoding transcription factors and protein kinases. Our results provide valuable insights into the pathways and genes influenced by different fungal pathogens, which might facilitate mining multiple disease resistance genes in maize.
Collapse
Affiliation(s)
- Yapeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Zedan Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Xiaojian Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Naibing Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Huanhuan Tai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Qin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
49
|
ATP-Binding Cassette G Transporters and Their Multiple Roles Especially for Male Fertility in Arabidopsis, Rice and Maize. Int J Mol Sci 2022; 23:ijms23169304. [PMID: 36012571 PMCID: PMC9409143 DOI: 10.3390/ijms23169304] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette subfamily G (ABCG) transporters are extensive in plants and play essential roles in various processes influencing plant fitness, but the research progress varies greatly among Arabidopsis, rice and maize. In this review, we present a consolidated nomenclature and characterization of the whole 51 ABCG transporters in maize, perform a phylogenetic analysis and classification of the ABCG subfamily members in maize, and summarize the latest research advances in ABCG transporters for these three plant species. ABCG transporters are involved in diverse processes in Arabidopsis and rice, such as anther and pollen development, vegetative and female organ development, abiotic and biotic stress response, and phytohormone transport, which provide useful clues for the functional investigation of ABCG transporters in maize. Finally, we discuss the current challenges and future perspectives for the identification and mechanism analysis of substrates for plant ABCG transporters. This review provides a basic framework for functional research and the potential application of ABCG transporters in multiple plants, including maize.
Collapse
|
50
|
Harnessing adult-plant resistance genes to deploy durable disease resistance in crops. Essays Biochem 2022; 66:571-580. [PMID: 35912968 PMCID: PMC9528086 DOI: 10.1042/ebc20210096] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Adult-plant resistance (APR) is a type of genetic resistance in cereals that is effective during the later growth stages and can protect plants from a range of disease-causing pathogens. Our understanding of the functions of APR-associated genes stems from the well-studied wheat-rust pathosystem. Genes conferring APR can offer pathogen-specific resistance or multi-pathogen resistance, whereby resistance is activated following a molecular recognition event. The breeding community prefers APR to other types of resistance because it offers broad-spectrum protection that has proven to be more durable. In practice, however, deployment of new cultivars incorporating APR is challenging because there is a lack of well-characterised APRs in elite germplasm and multiple loci must be combined to achieve high levels of resistance. Genebanks provide an excellent source of genetic diversity that can be used to diversify resistance factors, but introgression of novel alleles into elite germplasm is a lengthy and challenging process. To overcome this bottleneck, new tools in breeding for resistance must be integrated to fast-track the discovery, introgression and pyramiding of APR genes. This review highlights recent advances in understanding the functions of APR genes in the well-studied wheat-rust pathosystem, the opportunities to adopt APR genes in other crops and the technology that can speed up the utilisation of new sources of APR in genebank accessions.
Collapse
|