1
|
Multhoff J, Niemeier JO, Zheng K, Lim MSS, Barreto P, Niebisch JM, Ischebeck T, Schwarzländer M. In vivo biosensing of subcellular pyruvate pools reveals photosynthesis-dependent metabolite dynamics in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7254-7266. [PMID: 39301927 DOI: 10.1093/jxb/erae398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Pyruvate is central to metabolism across biology. It acts as a metabolic hub linking major pathways including glycolysis, the Krebs cycle, fermentation, and synthesis of amino acids, fatty acids, isoprenoids, and nucleotides. Even though the central role of pyruvate is well established biochemically, there is a remarkable gap in our understanding of how pyruvate levels behave within cells, where pyruvate is distributed across different compartments. Moreover, differential changes in pyruvate pools may occur rapidly upon changes in metabolic fluxes. Recently, this problem has been addressed by the development of a genetically encoded pyruvate biosensor to provide first insights into the pyruvate dynamics in animal cells. Here, we established in vivo biosensing of pyruvate in plants. We provided advanced characterization of the biosensor properties and demonstrated the functionality of the sensor in the cytosol, the mitochondria, and the chloroplasts of Nicotiana benthamiana epidermal cells. Finally, we harnessed the tool to investigate the impact of photosynthesis on pyruvate with unprecedented spatial and temporal resolution, revealing pronounced changes in subcellular pyruvate pools. While highlighting the current limitations of the biosensor, this study provides proof-of-concept for how the dynamics and regulation of central carbon metabolites can be revealed in living plant tissues.
Collapse
Affiliation(s)
- Jan Multhoff
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Jan-Ole Niemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Ke Zheng
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Magdiel Sheng Satha Lim
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Pedro Barreto
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Jule Meret Niebisch
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Till Ischebeck
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| |
Collapse
|
2
|
Alam NB, Pelzang S, Jain A, Mustafiz A. Cytoprotective role of pyruvate in mitigating abiotic stress response in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 352:112325. [PMID: 39608574 DOI: 10.1016/j.plantsci.2024.112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Pyruvate is a central metabolite in cellular respiration and metabolism. It can neutralize reactive oxygen species (ROS), safeguard mitochondrial membrane potential, and regulate gene expression under oxidative stress. However, its role in abiotic stress tolerance in plants needs to be explored. Therefore, the current study investigated the role of pyruvate and its metabolism in response to different abiotic stresses in the model plant Arabidopsis thaliana. We retrieved transcript profiling data for pyruvate metabolism and transportation genes (D-LDH, AlaAT, PK, MPC, PDC, PDH, NAD-ME) from public databases. The study's findings indicate that these genes' expression is regulated in response to different abiotic stresses. Moreover, the promoter region of these genes contained multiple cis-acting elements like ABRE, ARE, P-box, and MBS, which are associated with plants' abiotic stress response. Furthermore, colorimetric analysis showed higher pyruvate content under different abiotic stresses. Therefore, exogenous pyruvate treatment was given before and after different abiotic stresses, which could combat the toxicity of pro-oxidant molecules by pyruvate intake. The semiquantitative RT-PCR analysis revealed that exogenous pyruvate treatment enhances the expression of important transcription factors WRKY2, GH3.3, DREB2A, and bZIP1, and stress-responsive genes e.g., APX1, ERD5, ADC2, and HSP70 in addition to abiotic stresses. Moreover, Arabidopsis plants pre-treated with pyruvate before oxidative stress showed less RBOHD expression. Additionally, pyruvate's cytoprotective role was compared to other well-known antioxidants such as NAC, Trolox, and GSH. Finally, untargeted GC-MS/MS analysis of abiotic stress-treated Arabidopsis plants showed a higher metabolite level of β-hydroxy-pyruvic acid, indicating the crucial role of pyruvate during abiotic stress.
Collapse
Affiliation(s)
- Nazmir Binta Alam
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| | - Sangay Pelzang
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| | - Arushi Jain
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India.
| |
Collapse
|
3
|
Hu P, Xu Y, Su Y, Wang Y, Xiong Y, Ding Y. Nuclear-localized pyruvate kinases control phosphorylation of histone H3 on threonine 11. NATURE PLANTS 2024; 10:1682-1697. [PMID: 39367257 DOI: 10.1038/s41477-024-01821-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/13/2024] [Indexed: 10/06/2024]
Abstract
Phosphorylation of histone H3 at threonine 11 (H3T11ph) affects transcription and chromosome stability. However, the enzymes responsible for depositing H3T11ph and the functions of H3T11ph in plants remain unknown. Here we report that in Arabidopsis thaliana, PYRUVATE KINASE 6 (PK6), PK7 and PK8 enter the nucleus under conditions of sufficient glucose and light exposure, where they interact with SWI2/SNF2-RELATED 1 COMPLEX 4 (SWC4) and phosphorylate H3 at threonine 11. Mutations in these kinases or knockdown of SWC4 resulted in FLC-dependent early flowering, short hypocotyls and short pedicels. Genome-wide, H3T11ph is highly enriched at transcription start sites and transcription termination sites, and positively correlated with gene transcript levels. PK6 and SWC4 targeted FLC, MYB73, PRE1, TCP4 and TCP10, depositing H3T11ph at these loci and promoting their transcription, and PK6 occupancy at these loci requires SWC4. Together, our results reveal that nuclear-localized PK6, PK7 and PK8 modulate H3T11ph and plant growth.
Collapse
Affiliation(s)
- Pengcheng Hu
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanmei Xu
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanhua Su
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuxin Wang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Xiong
- Haixia Institute of Science and Technology, Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yong Ding
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
| |
Collapse
|
4
|
Weselake RJ, Fell DA, Wang X, Scofield S, Chen G, Harwood JL. Increasing oil content in Brassica oilseed species. Prog Lipid Res 2024; 96:101306. [PMID: 39566857 DOI: 10.1016/j.plipres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Brassica oilseed species are the third most important in the world, providing approximately 15 % of the total vegetable oils. Three species (Brassica rapa, B. juncea, B. napus) dominate with B. napus being the most common in Canada, China and Europe. Originally, B. napus was a crop producing seed with high erucic acid content, which still persists today, to some extent, and is used for industrial purposes. In contrast, cultivars which produce seed used for food and feed are low erucic acid cultivars which also have reduced glucosinolate content. Because of the limit to agricultural land, recent efforts have been made to increase productivity of oil crops, including Brassica oilseed species. In this article, we have detailed research in this regard. We have covered modern genetic, genomic and metabolic control analysis approaches to identifying potential targets for the manipulation of seed oil content. Details of work on the use of quantitative trait loci, genome-wide association and comparative functional genomics to highlight factors influencing seed oil accumulation are given and functional proteins which can affect this process are discussed. In summary, a wide variety of inputs are proving useful for the improvement of Brassica oilseed species, as major sources of global vegetable oil.
Collapse
Affiliation(s)
- Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - David A Fell
- Department of Biological and Molecular Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Xiaoyu Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
5
|
Han Q, Zhu G, Qiu H, Li M, Zhang J, Wu X, Xiao R, Zhang Y, Yang W, Tian B, Xu L, Zhou J, Li Y, Wang Y, Bai Y, Li X. Quality traits drive the enrichment of Massilia in the rhizosphere to improve soybean oil content. MICROBIOME 2024; 12:224. [PMID: 39478571 PMCID: PMC11526559 DOI: 10.1186/s40168-024-01933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 09/13/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Soybean seeds are rich in protein and oil. The selection of varieties that produce high-quality seeds has been one of the priorities of soybean breeding programs. However, the influence of improved seed quality on the rhizosphere microbiota and whether the microbiota is involved in determining seed quality are still unclear. Here, we analyzed the structures of the rhizospheric bacterial communities of 100 soybean varieties, including 53 landraces and 47 modern cultivars, and evaluated the interactions between seed quality traits and rhizospheric bacteria. RESULTS We found that rhizospheric bacterial structures differed between landraces and cultivars and that this difference was directly related to their oil content. Seven bacterial families (Sphingomonadaceae, Gemmatimonadaceae, Nocardioidaceae, Xanthobacteraceae, Chitinophagaceae, Oxalobacteraceae, and Streptomycetaceae) were obviously enriched in the rhizospheres of the high-oil cultivars. Among them, Oxalobacteraceae (Massilia) was assembled specifically by the root exudates of high-oil cultivars and was associated with the phenolic acids and flavonoids in plant phenylpropanoid biosynthetic pathways. Furthermore, we showed that Massilia affected auxin signaling or interfered with active oxygen-related metabolism. In addition, Massilia activated glycolysis pathway, thereby promoting seed oil accumulation. CONCLUSIONS These results provide a solid theoretical basis for the breeding of revolutionary soybean cultivars with desired seed quality and optimal microbiomes and the development of new cultivation strategies for increasing the oil content of seeds. Video Abstract.
Collapse
Affiliation(s)
- Qin Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430061, People's Republic of China
| | - Guanghui Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Hongmei Qiu
- Jilin Academy of Agricultural Sciences / National Engineering Research Center for Soybean, Changchun, Jilin, 130033, People's Republic of China
| | - Mingbo Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Jiaming Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Xinying Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Renhao Xiao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Yan Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Wei Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Bing Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Lanxi Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Jiayang Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Yutong Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Yueqiang Wang
- Jilin Academy of Agricultural Sciences / National Engineering Research Center for Soybean, Changchun, Jilin, 130033, People's Republic of China.
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
- Jilin Academy of Agricultural Sciences / National Engineering Research Center for Soybean, Changchun, Jilin, 130033, People's Republic of China.
| |
Collapse
|
6
|
Evans SE, Xu Y, Bergman ME, Ford SA, Liu Y, Sharkey TD, Phillips MA. Rubisco supplies pyruvate for the 2-C-methyl-D-erythritol-4-phosphate pathway. NATURE PLANTS 2024; 10:1453-1463. [PMID: 39367254 DOI: 10.1038/s41477-024-01791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/15/2024] [Indexed: 10/06/2024]
Abstract
RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (Rubisco) produces pyruvate in the chloroplast through β-elimination of the aci-carbanion intermediate1. Here we show that this side reaction supplies pyruvate for isoprenoid, fatty acid and branched-chain amino acid biosynthesis in photosynthetically active tissue. 13C labelling studies of intact Arabidopsis plants demonstrate that the total carbon commitment to pyruvate is too large for phosphoenolpyruvate to serve as a precursor. Low oxygen stimulates Rubisco carboxylase activity and increases pyruvate production and flux through the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway, which supplies the precursors for plastidic isoprenoid biosynthesis2,3. Metabolome analysis of mutants defective in phosphoenolpyruvate or pyruvate import and biochemical characterization of isolated chloroplasts further support Rubisco as the main source of pyruvate in chloroplasts. Seedlings incorporated exogenous,13C-labelled pyruvate into MEP pathway intermediates, while adult plants did not, underscoring the developmental transition in pyruvate sourcing. Rubisco β-elimination leading to pyruvate constituted 0.7% of the product profile in in vitro assays, which translates to 2% of the total carbon leaving the Calvin-Benson-Bassham cycle. These insights solve the "pyruvate paradox"4, improve the fit of metabolic models for central metabolism and connect the MEP pathway directly to carbon assimilation.
Collapse
Affiliation(s)
- Sonia E Evans
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Yuan Xu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Matthew E Bergman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Scott A Ford
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Yingxia Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Michael A Phillips
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
7
|
Xia L, Li M, Chen Y, Dai Y, Li H, Zhang S. Sexually dimorphic acetyl-CoA biosynthesis and utilization in response to drought and exogenous acetic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1967-1985. [PMID: 38944754 DOI: 10.1111/tpj.16901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/19/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Female willows exhibit greater drought tolerance and benefit more from exogenous acetic acid (AA)-improved drought tolerance than males. However, the potential mechanisms driving these sex-specific responses remain unclear. To comprehensively investigate the sexually dimorphic responsive mechanisms of willows to drought and exogenous AA, here, we performed physiological, proteomic, Lys-acetylproteomic, and transgenic analyses in female and male Salix myrtillacea exposed to drought and AA-applicated drought treatments, focusing on protein abundance and lysine acetylation (LysAc) changes. Drought-tolerant females suffered less drought-induced photosynthetic and oxidative damage, did not activate AA and acetyl-CoA biosynthesis, TCA cycle, fatty acid metabolism, and jasmonic acid signaling as strongly as drought-sensitive males. Exogenous AA caused overaccumulation of endogenous AA and inhibition of acetyl-CoA biosynthesis and utilization in males. However, exogenous AA greatly enhanced acetyl-CoA biosynthesis and utilization and further enhanced drought performance of females, possibly determining that AA improved drought tolerance more in females than in males. Interestingly, overexpression of acetyl-CoA synthetase (ACS) could reprogram fatty acids, increase LysAc levels, and improve drought tolerance, highlighting the involvement of ACS-derived acetyl-CoA in drought responses. In addition, drought and exogenous AA induced sexually dimorphic LysAc associated with histones, transcription factors, and metabolic enzymes in willows. Especially, exogenous AA may greatly improve the photosynthetic capacity of S. myrtillacea males by decreasing LysAc levels and increasing the abundances of photosynthetic proteins. While hyperacetylation in glycolysis, TCA cycle, and fatty acid biosynthesis potentially possibly serve as negative feedback to acclimate acetyl-CoA biosynthesis and utilization in drought-stressed males and AA-applicated females. Thus, acetyl-CoA biosynthesis and utilization determine the sexually dimorphic responses of S. myrtillacea to drought and exogenous AA.
Collapse
Affiliation(s)
- Linchao Xia
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Menghan Li
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yao Chen
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yujie Dai
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Huanhuan Li
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Sheng Zhang
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
Bergman ME, Kortbeek RWJ, Gutensohn M, Dudareva N. Plant terpenoid biosynthetic network and its multiple layers of regulation. Prog Lipid Res 2024; 95:101287. [PMID: 38906423 DOI: 10.1016/j.plipres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Terpenoids constitute one of the largest and most chemically diverse classes of primary and secondary metabolites in nature with an exceptional breadth of functional roles in plants. Biosynthesis of all terpenoids begins with the universal five‑carbon building blocks, isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), which in plants are derived from two compartmentally separated but metabolically crosstalking routes, the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways. Here, we review the current knowledge on the terpenoid precursor pathways and highlight the critical hidden constraints as well as multiple regulatory mechanisms that coordinate and homeostatically govern carbon flux through the terpenoid biosynthetic network in plants.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ruy W J Kortbeek
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
9
|
Chen J, Hu Y, Zhao T, Huang C, Chen J, He L, Dai F, Chen S, Wang L, Jin S, Zhang T. Comparative transcriptomic analysis provides insights into the genetic networks regulating oil differential production in oil crops. BMC Biol 2024; 22:110. [PMID: 38735918 PMCID: PMC11089805 DOI: 10.1186/s12915-024-01909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Plants differ more than threefold in seed oil contents (SOCs). Soybean (Glycine max), cotton (Gossypium hirsutum), rapeseed (Brassica napus), and sesame (Sesamum indicum) are four important oil crops with markedly different SOCs and fatty acid compositions. RESULTS Compared to grain crops like maize and rice, expanded acyl-lipid metabolism genes and relatively higher expression levels of genes involved in seed oil synthesis (SOS) in the oil crops contributed to the oil accumulation in seeds. Here, we conducted comparative transcriptomics on oil crops with two different SOC materials. In common, DIHYDROLIPOAMIDE DEHYDROGENASE, STEAROYL-ACYL CARRIER PROTEIN DESATURASE, PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE, and oil-body protein genes were both differentially expressed between the high- and low-oil materials of each crop. By comparing functional components of SOS networks, we found that the strong correlations between genes in "glycolysis/gluconeogenesis" and "fatty acid synthesis" were conserved in both grain and oil crops, with PYRUVATE KINASE being the common factor affecting starch and lipid accumulation. Network alignment also found a conserved clique among oil crops affecting seed oil accumulation, which has been validated in Arabidopsis. Differently, secondary and protein metabolism affected oil synthesis to different degrees in different crops, and high SOC was due to less competition of the same precursors. The comparison of Arabidopsis mutants and wild type showed that CINNAMYL ALCOHOL DEHYDROGENASE 9, the conserved regulator we identified, was a factor resulting in different relative contents of lignins to oil in seeds. The interconnection of lipids and proteins was common but in different ways among crops, which partly led to differential oil production. CONCLUSIONS This study goes beyond the observations made in studies of individual species to provide new insights into which genes and networks may be fundamental to seed oil accumulation from a multispecies perspective.
Collapse
Affiliation(s)
- Jinwen Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Yan Hu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, 572025, Hainan, China
| | - Ting Zhao
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Chujun Huang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Jiani Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Lu He
- Hainan Institute of Zhejiang University, Sanya, 572025, Hainan, China
| | - Fan Dai
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Shuqi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Luyao Wang
- Hainan Institute of Zhejiang University, Sanya, 572025, Hainan, China
| | - Shangkun Jin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China
| | - Tianzhen Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310029, Zhejiang, China.
- Hainan Institute of Zhejiang University, Sanya, 572025, Hainan, China.
| |
Collapse
|
10
|
Yang J, Wang Y, Sun J, Li Y, Zhu R, Yin Y, Wang C, Yin X, Qin L. Metabolome and Transcriptome Association Analysis Reveals Mechanism of Synthesis of Nutrient Composition in Quinoa ( Chenopodium quinoa Willd.) Seeds. Foods 2024; 13:1325. [PMID: 38731698 PMCID: PMC11082971 DOI: 10.3390/foods13091325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) seeds are rich in nutrition, superior to other grains, and have a high market value. However, the biosynthesis mechanisms of protein, starch, and lipid in quinoa grain are still unclear. The objective of this study was to ascertain the nutritional constituents of white, yellow, red, and black quinoa seeds and to employ a multi-omics approach to analyze the synthesis mechanisms of these nutrients. The findings are intended to furnish a theoretical foundation and technical support for the biological breeding of quinoa in China. In this study, the nutritional analysis of white, yellow, red, and black quinoa seeds from the same area showed that the nutritional contents of the quinoa seeds were significantly different, and the protein content increased with the deepening of color. The protein content of black quinoa was the highest (16.1 g/100 g) and the lipid content was the lowest (2.7 g/100 g), among which, linoleic acid was the main fatty acid. A combined transcriptome and metabolome analysis exhibited that differentially expressed genes were enriched in "linoleic acid metabolism", "unsaturated fatty acid biosynthesis", and "amino acid biosynthesis". We mainly identified seven genes involved in starch synthesis (LOC110716805, LOC110722789, LOC110738785, LOC110720405, LOC110730081, LOC110692055, and LOC110732328); five genes involved in lipid synthesis (LOC110701563, LOC110699636, LOC110709273, LOC110715590, and LOC110728838); and nine genes involved in protein synthesis (LOC110710842, LOC110720003, LOC110687170, LOC110716004, LOC110702086, LOC110724454 LOC110724577, LOC110704171, and LOC110686607). The data presented in this study based on nutrient, transcriptome, and metabolome analyses contribute to an enhanced understanding of the genetic regulation of seed quality traits in quinoa, and provide candidate genes for further genetic improvements to improve the nutritional value of quinoa seeds.
Collapse
Affiliation(s)
- Jindan Yang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Yiyun Wang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Jiayi Sun
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Yuzhe Li
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Renbin Zhu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230036, China;
| | - Yongjie Yin
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Chuangyun Wang
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
| | - Xuebin Yin
- Suzhou Selenium Valley Technology Co., Ltd., Suzhou 215100, China;
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou 239000, China
| | - Lixia Qin
- College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (J.Y.); (Y.W.); (J.S.); (Y.L.); (Y.Y.); (C.W.)
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230036, China;
- Suzhou Selenium Valley Technology Co., Ltd., Suzhou 215100, China;
| |
Collapse
|
11
|
Li H, Yu K, Zhang Z, Yu Y, Wan J, He H, Fan C. Targeted mutagenesis of flavonoid biosynthesis pathway genes reveals functional divergence in seed coat colour, oil content and fatty acid composition in Brassica napus L. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:445-459. [PMID: 37856327 PMCID: PMC10826991 DOI: 10.1111/pbi.14197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/08/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Yellow-seed is widely accepted as a good-quality trait in Brassica crops. Previous studies have shown that the flavonoid biosynthesis pathway is essential for the development of seed colour, but its function in Brassica napus, an important oil crop, is poorly understood. To systematically explore the gene functions of the flavonoid biosynthesis pathway in rapeseed, several representative TRANSPARENT TESTA (TT) genes, including three structural genes (BnaTT7, BnaTT18, BnaTT10), two regulatory genes (BnaTT1, BnaTT2) and a transporter (BnaTT12), were selected for targeted mutation by CRISPR/Cas9 in the present study. Seed coat colour, lignin content, seed quality and yield-related traits were investigated in these Bnatt mutants together with Bnatt8 generated previously. These Bnatt mutants produced seeds with an elevated seed oil content and decreased pigment and lignin accumulation in the seed coat without any serious defects in the yield-related traits. In addition, the fatty acid (FA) composition was also altered to different degrees, i.e., decreased oleic acid and increased linoleic acid and α-linolenic acid, in all Bnatt mutants except Bnatt18. Furthermore, gene expression analysis revealed that most of BnaTT mutations resulted in the down-regulation of key genes related to flavonoid and lignin synthesis, and the up-regulation of key genes related to lipid synthesis and oil body formation, which may contribute to the phenotype. Collectively, our study generated valuable resources for breeding programs, and more importantly demonstrated the functional divergence and overlap of flavonoid biosynthesis pathway genes in seed coat colour, oil content and FA composition of rapeseed.
Collapse
Affiliation(s)
- Huailin Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Kaidi Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Zilu Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Yalun Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Jiakai Wan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Hanzi He
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| |
Collapse
|
12
|
Liu W, Wang Y, Zhang Y, Li W, Wang C, Xu R, Dai H, Zhang L. Characterization of the pyruvate kinase gene family in soybean and identification of a putative salt responsive gene GmPK21. BMC Genomics 2024; 25:88. [PMID: 38254018 PMCID: PMC10802038 DOI: 10.1186/s12864-023-09929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND As a key regulatory enzyme in the glycolysis pathway, pyruvate kinase (PK) plays crucial roles in multiple physiological processes during plant growth and is also involved in the abiotic stress response. However, little information is known about PKs in soybean. RESULTS In this study, we identified 27 PK family genes against the genome of soybean cultivar Zhonghuang13. They were classified into 2 subfamilies including PKc and PKp. 22 segmental duplicated gene pairs and 1 tandem duplicated gene pair were identified and all of them experienced a strong purifying selective pressure during evolution. Furthermore, the abiotic stresses (especially salt stress) and hormone responsive cis-elements were present in the promoters of GmPK genes, suggesting their potential roles in abiotic stress tolerance. By performing the qRT-PCR, 6 GmPK genes that continuously respond to both NaCl and ABA were identified. Subsequently, GmPK21, which represented the most significant change under NaCl treatment was chosen for further study. Its encoded protein GmPK21 was localized in the cytoplasm and plasma membrane. The transgenic Arabidopsis overexpressing GmPK21 exhibited weakened salinity tolerance. CONCLUSIONS This study provides genomic information of soybean PK genes and a molecular basis for mining salt tolerance function of PKs in the future.
Collapse
Affiliation(s)
- Wei Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Yubin Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Yanwei Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Wei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Caijie Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Ran Xu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Haiying Dai
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China
- Shandong Engineering Laboratory of Featured Crops, 202 Gongye North Road, Jinan, 250100, Shandong, China
| | - Lifeng Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, Shandong, China.
- Shandong Engineering Laboratory of Featured Crops, 202 Gongye North Road, Jinan, 250100, Shandong, China.
| |
Collapse
|
13
|
Li Y, Xu Y, Han R, Liu L, Pei X, Zhao X. Widely Targeted Metabolomic Profiling Combined with Transcriptome Analysis Provides New Insights into Lipid Biosynthesis in Seed Kernels of Pinus koraiensis. Int J Mol Sci 2023; 24:12887. [PMID: 37629067 PMCID: PMC10454069 DOI: 10.3390/ijms241612887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Lipid-rich Pinus koraiensis seed kernels are highly regarded for their nutritional and health benefits. To ascertain the molecular mechanism of lipid synthesis, we conducted widely targeted metabolomic profiling together with a transcriptome analysis of the kernels in P. koraiensis cones at various developmental stages. The findings reveal that 148 different types of lipid metabolites, or 29.6% of total metabolites, are present in kernels. Among those metabolites, the concentrations of linoleic acid, palmitic acid, and α-linolenic acid were higher, and they steadily rose as the kernels developed. An additional 10 hub genes implicated in kernel lipid synthesis were discovered using weighted gene co-expression network analysis (WGCNA), gene interaction network analysis, oil body biosynthesis, and transcriptome analysis. This study used lipid metabolome and transcriptome analyses to investigate the mechanisms of key regulatory genes and lipid synthesis molecules during kernel development, which served as a solid foundation for future research on lipid metabolism and the creation of P. koraiensis kernel food.
Collapse
Affiliation(s)
- Yan Li
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (Y.X.); (R.H.); (L.L.)
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yujin Xu
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (Y.X.); (R.H.); (L.L.)
| | - Rui Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (Y.X.); (R.H.); (L.L.)
| | - Lin Liu
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (Y.X.); (R.H.); (L.L.)
| | - Xiaona Pei
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; (Y.L.); (Y.X.); (R.H.); (L.L.)
| |
Collapse
|
14
|
Stasnik P, Vollmann J, Großkinsky DK, Jonak C. Carbohydrate metabolism enzymes and phenotypic characterization of diverse lines of the climate-resilient food, feed, and bioenergy crop Camelina sativa. Food Energy Secur 2023; 12:e459. [PMID: 38440098 PMCID: PMC10909413 DOI: 10.1002/fes3.459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 03/06/2024] Open
Abstract
Climate change poses tremendous pressure on agriculture. Camelina sativa is an ancient, low-input, high-quality oilseed crop for food, feed and industrial applications that has retained its natural stress tolerance. Its climate resilience, adaptability to different growth conditions, and the qualities of its seed oil and cake have spurred the interest in camelina. However, due to a period of neglect it has not yet undergone intensive breeding and knowledge about this multi-purpose crop is still limited. Metabolism is strongly associated with plant growth and development and little information is available on camelina primary carbohydrate metabolism. Here, eight camelina lines from different geographic and climatic regions were characterized for important growth parameters and agricultural traits. Furthermore, the activities of key enzymes of the carbohydrate metabolism were analysed in leaves, seedpods, capsules, and developing seeds. The lines differed in shoot and leaf morphology, plant height, biomass formation as well as in seed yield and seed oil and protein content. Key carbohydrate metabolism enzymes showed specific activity signatures in leaves and reproductive organs during seed development, and different lines exhibited distinct enzyme activity patterns, providing a valuable basis for developing new physiological markers for camelina breeding programs.
Collapse
Affiliation(s)
- Peter Stasnik
- Center for Health and Bioresources, Bioresources UnitAIT Austrian Institute of TechnologyKonrad‐Lorenz‐Straße 243430Tulln an der DonauAustria
| | - Johann Vollmann
- Department of Crop SciencesUniversity of Natural Resources and Life Sciences ViennaKonrad‐Lorenz‐Straße 243430Tulln an der DonauAustria
| | - Dominik K. Großkinsky
- Center for Health and Bioresources, Bioresources UnitAIT Austrian Institute of TechnologyKonrad‐Lorenz‐Straße 243430Tulln an der DonauAustria
| | - Claudia Jonak
- Center for Health and Bioresources, Bioresources UnitAIT Austrian Institute of TechnologyKonrad‐Lorenz‐Straße 243430Tulln an der DonauAustria
| |
Collapse
|
15
|
Zhao X, Wang J, Xia N, Liu Y, Qu Y, Ming M, Zhan Y, Han Y, Zhao X, Li Y. Combined analysis of the metabolome and transcriptome provides insight into seed oil accumulation in soybean. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:70. [PMID: 37098528 PMCID: PMC10131312 DOI: 10.1186/s13068-023-02321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/16/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Soybean (Glycine max (L.) Merr) is an important source of human food, animal feed, and bio-energy. Although the genetic network of lipid metabolism is clear in Arabidopsis, the understanding of lipid metabolism in soybean is limited. RESULTS In this study, 30 soybean varieties were subjected to transcriptome and metabolome analysis. In total, 98 lipid-related metabolites were identified, including glycerophospholipid, alpha-linolenic acid, linoleic acid, glycolysis, pyruvate, and the sphingolipid pathway. Of these, glycerophospholipid pathway metabolites accounted for the majority of total lipids. Combining the transcriptomic and metabolomic analyses, we found that 33 lipid-related metabolites and 83 lipid-related genes, 14 lipid-related metabolites and 17 lipid-related genes, and 12 lipid-related metabolites and 25 lipid-related genes were significantly correlated in FHO (five high-oil varieties) vs. FLO (five low-oil varieties), THO (10 high-oil varieties) vs. TLO (10 low-oil varieties), and HO (15 high-oil varieties) vs. LO (15 low-oil varieties), respectively. CONCLUSIONS The GmGAPDH and GmGPAT genes were significantly correlated with lipid metabolism genes, and the result revealed the regulatory relationship between glycolysis and oil synthesis. These results improve our understanding of the regulatory mechanism of soybean seed oil improvement.
Collapse
Affiliation(s)
- Xunchao Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Jie Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Ning Xia
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Yuanyuan Liu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Yuewen Qu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Meng Ming
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Yongguang Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
16
|
Zhang Y, Chen X, Feng J, Shen Y, Huang Y. The proteome and phosphoproteome uncovers candidate proteins associated with vacuolar phosphate signal multipled by Vacuolar phosphate transporter1 (VPT1) in Arabidopsis. Mol Cell Proteomics 2023; 22:100549. [PMID: 37076046 DOI: 10.1016/j.mcpro.2023.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/15/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
Plant vacuoles serve as the primary intracellular compartments for inorganic phosphate (Pi) storage. Passage of Pi across vacuolar membranes plays a critical role in buffering the cytoplasmic Pi level against fluctuations of external Pi and metabolic activities. To gain new insights into the proteins and processes vacuolar Pi level regulated by Vacuolar phosphate transporter1 (VPT1) in Arabidopsis, we carried out TMT labeling proteome and phosphoproteome profiling of Arabidopsis wild-type (WT) and vpt1 loss-of-function mutant plants. The vpt1 mutant had a marked reduced vacuolar Pi level, and an slight increased cytosol Pi level. The mutant was stunted as reflected in the reduction of the fresh weight compared with WT plants, and bolting earlier under normal growth conditions in soil. Over 5566 proteins and 7965 phosphopeptides were quantified. About 146 and 83 proteins were significantly changed at protein abundance or site-specific phosphorylation levels, but only 6 proteins were shared between them. Functional enrichment analysis revealed that the changes of Pi states in vpt1 is associated with photosynthesis, translation, RNA splicing, and defense response, consistent with similar studies in Arabidopsis. Except for PAP26, EIN2, and KIN10, which were reported to be associated with phosphate starvation signal, we also found many differential proteins involved in abscisic acid (ABA) signaling, such as CARK1, SnRK1, and AREB3, were significantly changed in vpt1. Our study illuminates several new aspects of the phosphate response and identifies important targets for further investigation and potential crop improvement.
Collapse
Affiliation(s)
- Yanjun Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xuexue Chen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jinjing Feng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yuanyue Shen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yun Huang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
17
|
Yang M, Hou G, Peng Y, Wang L, Liu X, Jiang Y, He C, She M, Zhao M, Chen Q, Li M, Zhang Y, Lin Y, Zhang Y, Wang Y, He W, Wang X, Tang H, Luo Y. FaGAPC2/FaPKc2.2 and FaPEPCK reveal differential citric acid metabolism regulation in late development of strawberry fruit. FRONTIERS IN PLANT SCIENCE 2023; 14:1138865. [PMID: 37082348 PMCID: PMC10110876 DOI: 10.3389/fpls.2023.1138865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/28/2023] [Indexed: 05/03/2023]
Abstract
Citric acid is the primary organic acid that affects the taste of strawberry fruit. Glycolysis supplies key substrates for the tricarboxylic acid cycle (TCA cycle). However, little is known about the regulatory mechanisms of glycolytic genes on citric acid metabolism in strawberry fruits. In this study, the citric acid content of strawberry fruit displayed a trend of rising and decreasing from the initial red stage to the full red stage and then dark red stage. Thus, a difference in citric acid metabolic regulation was suspected during strawberry fruit development. In addition, overexpression of either cytoplasm glyceraldehyde-3-phosphate dehydrogenase (FxaC_14g13400, namely FaGAPC2) or pyruvate kinase (FxaC_15g00080, namely FaPKc2.2) inhibited strawberry fruit ripening and the accumulation of citric acid, leading to a range of maturity stages from partial red to full red stage. The combined transcriptome and metabolome analysis revealed that overexpression of FaGAPC2 and FaPKc2.2 significantly suppressed the expression of phosphoenolpyruvate carboxykinase (FxaC_1g21491, namely FaPEPCK) but enhanced the content of glutamine and aspartic acid. Meanwhile, the activities of PEPCK and glutamate decarboxylase (GAD) were inhibited, but the activities of glutamine synthase (GS) were increased in FaGAPC2/FaPKc2.2-overexpressed fruit. Further, functional verification demonstrated that overexpression of FaPEPCK can promote strawberry fruit ripening, resulting in a range of maturity stage from full red to dark red stage, while the citric acid synthase (CS) activities and citric acid content were significantly decreased. Overall, this study revealed that FaGAPC2/FaPKc2.2 and FaPEPCK perform an important role in reducing citric acid content in strawberry fruit, and FaGAPC2/FaPKc2.2 mainly by promoting the GS degradation pathway and FaPEPCK mainly by inhibiting the CS synthesis pathway.
Collapse
Affiliation(s)
- Min Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - GouYan Hou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - YuTing Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - LiangXin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - XiaoYang Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - YuYan Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - CaiXia He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - MuSha She
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - ManTong Zhao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- Institute of Olericulture and Pomology, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- Institute of Olericulture and Pomology, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Institute of Olericulture and Pomology, Sichuan Agricultural University, Chengdu, China
| | - Wen He
- Institute of Olericulture and Pomology, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- Institute of Olericulture and Pomology, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- Institute of Olericulture and Pomology, Sichuan Agricultural University, Chengdu, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
18
|
Li Y, Hu W, Zou J, He J, Zhu H, Zhao W, Wang Y, Chen B, Meng Y, Wang S, Zhou Z. Effects of soil drought on cottonseed kernel carbohydrate metabolism and kernel biomass accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:170-181. [PMID: 36640684 DOI: 10.1016/j.plaphy.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Cottonseed is the main coproduct of cotton production. The carbohydrate metabolism provides carbon substrate for the accumulation of cottonseed kernel biomass which was the basis of cottonseed kernel development. However, the responses of drought stress on carbohydrate metabolism in kernels are still unclear. To address this, two cotton cultivars (Dexiamian 1 and Yuzaomian 9110) were cultivated under three water treatments including soil relative water content (SRWC) at (75 ± 5)% (control), (60 ± 5)% (mild drought) and (45 ± 5)% (severe drought) to investigate the effects of soil drought on cottonseed kernel carbohydrate metabolism and kernel biomass accumulation. Results suggested that drought restrained the accumulation of cottonseed kernel biomass which eventually decreased cottonseed kernel biomass at maturity. In detail, the down-regulation of sucrose phosphate synthase (SPS) activity led to the inhibition of sucrose synthesis, while the up-regulation of invertase (INV) promoted the sucrose decomposite, which reduced the sucrose content eventually under drought. Though hexose content was increased, phosphoenolpyruvic acid (PEP) content was decreased under drought by downregulating 6-phosphofructokinase (PFK) and pyruvate kinase (PK) activities, which hindered the conversion of hexose to PEP. The large decrease of sucrose and PEP contents hindered the accumulation of kernel biomass. The related substances contents and enzyme activities in carbohydrate metabolism of Yuzaomian 9110 were more susceptible to drought stress than Dexiamian 1.
Collapse
Affiliation(s)
- Yuxia Li
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Hu
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jie Zou
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiaqi He
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Honghai Zhu
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenqing Zhao
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Youhua Wang
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Binglin Chen
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yali Meng
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shanshan Wang
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhiguo Zhou
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
19
|
Analysis of Akkermansia muciniphila in Mulberry Galacto-Oligosaccharide Medium via Comparative Transcriptomics. Foods 2023; 12:foods12030440. [PMID: 36765969 PMCID: PMC9914603 DOI: 10.3390/foods12030440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Akkermansia muciniphila is a common member of the human gut microbiota and belongs to the phylum Verrucomicrobia. Decreased levels of A. muciniphila are associated with many diseases, so it is thought to be a beneficial resident of the intestinal mucosal layer. In this study, we found that different prebiotics promoted the proliferation of A. muciniphila, and mulberry galacto-oligosaccharide (MGO) had the greatest effect. We cultured A. muciniphila in a brian heart infusion (BHI) medium containing 5% galactooligosaccharides (GOS), mulberry polysaccharide solution (MPS), and MGO, and transcriptomic analyses were performed. The results revealed that, after 6 days of cultivation, the numbers of upregulated functional genes (based on Gene Ontology) were approximately 0.7 and 19% higher with MPS and MGO, respectively, than with GOS. Analysis using the Kyoto Encyclopedia of Genes and Genomes showed that, when A. muciniphila was cultured with MGO, genes that were upregulated were enriched in the carbohydrate metabolism, the metabolism of cofactors and vitamins, the energy metabolism, the amino acid metabolism, and the lipid metabolism. Upregulated genes included galM and pfkA in the galactose metabolism, and pgi, pfk, fbaA, tpiA, gapA, pgk, gpml, eno, pyk, and lpd in the glycolysis/gluconeogenesis pathway. Real-time quantitative PCR results were consistent with the RNA-Seq data. This work provides valuable knowledge which can be available for the functional application of A. muciniphila and MGO.
Collapse
|
20
|
Chen X, Ji Y, Zhao W, Niu H, Yang X, Jiang X, Zhang Y, Lei J, Yang H, Chen R, Gu C, Xu H, Dong H, Duan E, Teng X, Wang Y, Zhang Y, Zhang W, Wang Y, Wan J. Fructose-6-phosphate-2-kinase/fructose-2,6-bisphosphatase regulates energy metabolism and synthesis of storage products in developing rice endosperm. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111503. [PMID: 36270512 DOI: 10.1016/j.plantsci.2022.111503] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/02/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Starch accounts for about 80-85 % of the dry weight of grains and determines yield by impact on grain weight. And, the content and composition of starch also determine appearance, eating, cooking and nutritional quality of rice. By coordinating crucial reactions of the primary carbohydrate metabolism in all eukaryotes, fructose-2,6-bisphosphate (Fru-2,6-P2) is a traffic signal in metabolism. However, the metabolic regulation of starch in plant sink tissues by Fru-2,6-P2 remains unclear. Here we isolated rice mutant floury endosperm23 (flo23) which has opaque endosperm and anomalous compound starch grains (SGs). flo23 mutant grains had reduced contents of starch, lipids and proteins. Map-based cloning and genetic complementation experiments showed that FLO23 encodes a cytoplasmic Fructose-6-phosphate-2-kinase/Fructose-2,6-bisphosphatase (F2KP). Mutation of OsF2KP2 decreased Fru-2,6-P2 content in endosperm cells, leading to drastically reduced phosphoenolpyruvate (PEP) and pyruvate contents and disordered glycolysis and energy metabolism. The results imply that OsF2KP2 participates in the glycolytic pathway by providing precursors and energy for synthesis of grain storage compounds.
Collapse
Affiliation(s)
- Xiaoli Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yi Ji
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Weiying Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huanying Niu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xue Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaokang Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yipeng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jie Lei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hang Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Rongbo Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Chuanwei Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hongyi Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hui Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Erchao Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuan Teng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanyan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, PR China; National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
21
|
Feng Y, Zhu Y, Bao Z, Wang B, Liu T, Wang H, Yu T, Yang Y, Yu L. Construction of Glucose-6-Phosphate Dehydrogenase Overexpression Strain of Schizochytrium sp. H016 to Improve Docosahexaenoic Acid Production. Mar Drugs 2022; 21:md21010017. [PMID: 36662190 PMCID: PMC9866257 DOI: 10.3390/md21010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Docosahexaenoic acid (DHA) is an important omega-3 polyunsaturated fatty acid (PUFA) that plays a critical physiological role in human health. Schizochytrium sp. is considered an excellent strain for DHA production, but the synthesis of DHA is limited by the availability of nicotinamide adenine dinucleotide phosphate (NADPH). In this study, the endogenous glucose-6-phosphate dehydrogenase (G6PD) gene was overexpressed in Schizochytrium sp. H016. Results demonstrated that G6PD overexpression increased the availability of NADPH, which ultimately altered the fatty acid profile, resulting in a 1.91-fold increase in DHA yield (8.81 g/L) and increased carbon flux by shifting it from carbohydrate and protein synthesis to lipid production. Thus, G6PD played a vital role in primary metabolism. In addition, G6PD significantly increased DHA content and lipid accumulation by 31.47% and 40.29%, respectively. The fed-batch fermentation experiment results showed that DHA production reached 17.01 g/L in the overexpressing G6PD strain. These results elucidated the beneficial effects of NADPH on the synthesis of PUFA in Schizochytrium sp. H016, which may be a potential target for metabolic engineering. Furthermore, this study provides a promising regulatory strategy for the large-scale production of DHA in Schizochytrium sp.
Collapse
Affiliation(s)
- Yumei Feng
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Yuanmin Zhu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Zhendong Bao
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Bohan Wang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Tingting Liu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Huihui Wang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Tianyi Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Ying Yang
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
| | - Longjiang Yu
- Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan 430074, China
- Hubei Engineering Research Center for both Edible and Medicinal Resources, Wuhan 430074, China
- Correspondence: ; Tel.: +86-2-787-792-264
| |
Collapse
|
22
|
Dong N, Chen L, Ahmad S, Cai Y, Duan Y, Li X, Liu Y, Jiao G, Xie L, Hu S, Sheng Z, Shao G, Wang L, Tang S, Wei X, Hu P. Genome-Wide Analysis and Functional Characterization of Pyruvate Kinase (PK) Gene Family Modulating Rice Yield and Quality. Int J Mol Sci 2022; 23:ijms232315357. [PMID: 36499684 PMCID: PMC9739881 DOI: 10.3390/ijms232315357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Pyruvate kinase (PK) is one of the three rate-limiting enzymes of glycolysis, and it plays a pivotal role in energy metabolism. In this study, we have identified 10 PK genes from the rice genome. Initially, these genes were divided into two categories: cytoplasmic pyruvate kinase (PKc) and plastid pyruvate kinase (PKp). Then, an expression analysis revealed that OsPK1, OsPK3, OsPK4, OsPK6, and OsPK9 were highly expressed in grains. Moreover, PKs can form heteropolymers. In addition, it was found that ABA significantly regulates the expression of PK genes (OsPK1, OsPK4, OsPK9, and OsPK10) in rice. Intriguingly, all the genes were found to be substantially involved in the regulation of rice grain quality and yield. For example, the disruption of OsPK3, OsPK5, OsPK7, OsPK8, and OsPK10 and OsPK4, OsPK5, OsPK6, and OsPK10 decreased the 1000-grain weight and the seed setting rate, respectively. Further, the disruption of OsPK4, OsPK6, OsPK8, and OsPK10 through the CRISPR/Cas9 system showed an increase in the content of total starch and a decrease in protein content compared to the WT. Similarly, manipulations of the OsPK4, OsPK8, and OsPK10 genes increased the amylose content. Meanwhile, the grains of all CRISPR mutants and RNAi lines, except ospk6, showed a significant increase in the chalkiness rate compared to the wild type. Overall, this study characterizes the functions of all the genes of the PK gene family and shows their untapped potential to improve rice yield and quality traits.
Collapse
|
23
|
Tang S, Guo N, Tang Q, Peng F, Liu Y, Xia H, Lu S, Guo L. Pyruvate transporter BnaBASS2 impacts seed oil accumulation in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2406-2417. [PMID: 36056567 PMCID: PMC9674310 DOI: 10.1111/pbi.13922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 05/11/2023]
Abstract
Bile acid: sodium symporter family protein 2 (BASS2) is a sodium-dependent pyruvate transporter, which transports pyruvate from cytosol into plastid in plants. In this study, we investigated the function of chloroplast envelope membrane-localized BnaBASS2 in seed metabolism and seed oil accumulation of Brassica napus (B. napus). Four BASS2 genes were identified in the genome of B. napus. BnaA05.BASS2 was overexpressed while BnaA05.BASS2 and BnaC04.BASS2-1 were mutated by CRISPR in B. napus. Metabolite analysis revealed that the manipulation of BnaBASS2 caused significant changes in glycolysis-, fatty acid synthesis-, and energy-related metabolites in the chloroplasts of 31 day-after-flowering (DAF) seeds. The analysis of fatty acids and lipids in developing seeds showed that BnaBASS2 could affect lipid metabolism and oil accumulation in developing seeds. Moreover, the overexpression (OE) of BnaA05.BASS2 could promote the expression level of multiple genes involved in the synthesis of oil and the formation of oil body during seed development. Disruption of BnaA05.BASS2 and BnaC04.BASS2-1 resulted in decreasing the seed oil content (SOC) by 2.8%-5.0%, while OE of BnaA05.BASS2 significantly promoted the SOC by 1.4%-3.4%. Together, our results suggest that BnaBASS2 is a potential target gene for breeding B. napus with high SOC.
Collapse
Affiliation(s)
- Shan Tang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Ning Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Qingqing Tang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Fei Peng
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Yunhao Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Hui Xia
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
24
|
Han X, Zhang YW, Liu JY, Zuo JF, Zhang ZC, Guo L, Zhang YM. 4D genetic networks reveal the genetic basis of metabolites and seed oil-related traits in 398 soybean RILs. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:92. [PMID: 36076247 PMCID: PMC9461130 DOI: 10.1186/s13068-022-02191-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022]
Abstract
Background The yield and quality of soybean oil are determined by seed oil-related traits, and metabolites/lipids act as bridges between genes and traits. Although there are many studies on the mode of inheritance of metabolites or traits, studies on multi-dimensional genetic network (MDGN) are limited. Results In this study, six seed oil-related traits, 59 metabolites, and 107 lipids in 398 recombinant inbred lines, along with their candidate genes and miRNAs, were used to construct an MDGN in soybean. Around 175 quantitative trait loci (QTLs), 36 QTL-by-environment interactions, and 302 metabolic QTL clusters, 70 and 181 candidate genes, including 46 and 70 known homologs, were previously reported to be associated with the traits and metabolites, respectively. Gene regulatory networks were constructed using co-expression, protein–protein interaction, and transcription factor binding site and miRNA target predictions between candidate genes and 26 key miRNAs. Using modern statistical methods, 463 metabolite–lipid, 62 trait–metabolite, and 89 trait–lipid associations were found to be significant. Integrating these associations into the above networks, an MDGN was constructed, and 128 sub-networks were extracted. Among these sub-networks, the gene–trait or gene–metabolite relationships in 38 sub-networks were in agreement with previous studies, e.g., oleic acid (trait)–GmSEI–GmDGAT1a–triacylglycerol (16:0/18:2/18:3), gene and metabolite in each of 64 sub-networks were predicted to be in the same pathway, e.g., oleic acid (trait)–GmPHS–d-glucose, and others were new, e.g., triacylglycerol (16:0/18:1/18:2)–GmbZIP123–GmHD-ZIPIII-10–miR166s–oil content. Conclusions This study showed the advantages of MGDN in dissecting the genetic relationships between complex traits and metabolites. Using sub-networks in MGDN, 3D genetic sub-networks including pyruvate/threonine/citric acid revealed genetic relationships between carbohydrates, oil, and protein content, and 4D genetic sub-networks including PLDs revealed the relationships between oil-related traits and phospholipid metabolism likely influenced by the environment. This study will be helpful in soybean quality improvement and molecular biological research. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02191-1.
Collapse
|
25
|
Zhang K, He J, Yin Y, Chen K, Deng X, Yu P, Li H, Zhao W, Yan S, Li M. Lysophosphatidic acid acyltransferase 2 and 5 commonly, but differently, promote seed oil accumulation in Brassica napus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:83. [PMID: 35962411 PMCID: PMC9375321 DOI: 10.1186/s13068-022-02182-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
Abstract
Background Increasing seed oil content (SOC) of Brassica napus has become one of the main plant breeding goals over the past decades. Lysophosphatidic acid acyltransferase (LPAT) performs an important molecular function by regulating the production of phosphatidic acid (PA), a key intermediate in the synthesis of membrane and storage lipids. However, the mechanism underlying the effect of LPAT on the SOC of B. napus remains unclear. Results In the present study, significant elevation of SOC was achieved by overexpressing BnLPAT2 and BnLPAT5 in B. napus. RNAi and CRISPR–Cas9 were also successfully used to knock down and knock out these two genes in B. napus where SOC significantly decreased. Meanwhile, we found an accumulation of lipid droplets and oil bodies in seeds of BnLPAT2 and BnLPAT5 overexpression lines, whereas an increase of sugar and protein in Bnlpat2 and Bnlpat5 mutant seeds. Sequential transcriptome analysis was further performed on the developing seeds of the BnLPAT2 and BnLPAT5 overexpression, knockdown, and knockout rapeseed lines. Most differentially expressed genes (DEGs) that were expressed in the middle and late stages of seed development were enriched in photosynthesis and lipid metabolism, respectively. The DEGs involved in fatty acid and lipid biosynthesis were active in the overexpression lines but were relatively inactive in the knockdown and knockout lines. Further analysis revealed that the biological pathways related to fatty acid/lipid anabolism and carbohydrate metabolism were specifically enriched in the BnLPAT2 overexpression lines. Conclusions BnLPAT2 and BnLPAT5 are essential for seed oil accumulation. BnLPAT2 preferentially promoted diacylglycerol synthesis to increase SOC, whereas BnLPAT5 tended to boost PA synthesis for membrane lipid generation. Taken together, BnLPAT2 and BnLPAT5 can jointly but differently promote seed oil accumulation in B. napus. This study provides new insights into the potential mechanisms governing the promotion of SOC by BnLPAT2 and BnLPAT5 in the seeds of B. napus. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02182-2.
Collapse
|
26
|
Kuczynski C, McCorkle S, Keereetaweep J, Shanklin J, Schwender J. An expanded role for the transcription factor WRINKLED1 in the biosynthesis of triacylglycerols during seed development. FRONTIERS IN PLANT SCIENCE 2022; 13:955589. [PMID: 35991420 PMCID: PMC9389262 DOI: 10.3389/fpls.2022.955589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/28/2022] [Indexed: 06/12/2023]
Abstract
The transcription factor WRINKLED1 (WRI1) is known as a master regulator of fatty acid synthesis in developing oilseeds of Arabidopsis thaliana and other species. WRI1 is known to directly stimulate the expression of many fatty acid biosynthetic enzymes and a few targets in the lower part of the glycolytic pathway. However, it remains unclear to what extent and how the conversion of sugars into fatty acid biosynthetic precursors is controlled by WRI1. To shortlist possible gene targets for future in-planta experimental validation, here we present a strategy that combines phylogenetic foot printing of cis-regulatory elements with additional layers of evidence. Upstream regions of protein-encoding genes in A. thaliana were searched for the previously described DNA-binding consensus for WRI1, the ASML1/WRI1 (AW)-box. For about 900 genes, AW-box sites were found to be conserved across orthologous upstream regions in 11 related species of the crucifer family. For 145 select potential target genes identified this way, affinity of upstream AW-box sequences to WRI1 was assayed by Microscale Thermophoresis. This allowed definition of a refined WRI1 DNA-binding consensus. We find that known WRI1 gene targets are predictable with good confidence when upstream AW-sites are phylogenetically conserved, specifically binding WRI1 in the in vitro assay, positioned in proximity to the transcriptional start site, and if the gene is co-expressed with WRI1 during seed development. When targets predicted in this way are mapped to central metabolism, a conserved regulatory blueprint emerges that infers concerted control of contiguous pathway sections in glycolysis and fatty acid biosynthesis by WRI1. Several of the newly predicted targets are in the upper glycolysis pathway and the pentose phosphate pathway. Of these, plastidic isoforms of fructokinase (FRK3) and of phosphoglucose isomerase (PGI1) are particularly corroborated by previously reported seed phenotypes of respective null mutations.
Collapse
|
27
|
Song L, Meng X, Yang L, Ma Z, Zhou M, Yu C, Zhang Z, Yu W, Wu J, Lou H. Identification of key genes and enzymes contributing to nutrition conversion of Torreya grandis nuts during post-ripening process. Food Chem 2022; 384:132454. [DOI: 10.1016/j.foodchem.2022.132454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/29/2022]
|
28
|
Tang S, Peng F, Tang Q, Liu Y, Xia H, Yao X, Lu S, Guo L. BnaPPT1 is essential for chloroplast development and seed oil accumulation in Brassica napus. J Adv Res 2022; 42:29-40. [PMID: 35907629 PMCID: PMC9788935 DOI: 10.1016/j.jare.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/05/2022] [Accepted: 07/23/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Phosphoenolpyruvate/phosphate translocator (PPT) transports phosphoenolpyruvate from the cytosol into the plastid for fatty acid (FA) and other metabolites biosynthesis. OBJECTIVES This study investigated PPTs' functions in plant growth and seed oil biosynthesis in oilseed crop Brassica napus. METHODS We created over-expression and mutant material of BnaPPT1. The plant development, oil content, lipids, metabolites and ultrastructure of seeds were compared to evaluate the gene function. RESULTS The plastid membrane localized BnaPPT1 was found to be required for normal growth of B. napus. The plants grew slower with yellowish leaves in BnaA08.PPT1 and BnaC08.PPT1 double mutant plants. The results of chloroplast ultrastructural observation and lipid analysis show that BnaPPT1 plays an essential role in membrane lipid synthesis and chloroplast development in leaves, thereby affecting photosynthesis. Moreover, the analysis of primary metabolites and lipids in developing seeds showed that BnaPPT1 could impact seed glycolytic metabolism and lipid level. Knockout of BnaA08.PPT1 and BnaC08.PPT1 resulted in decreasing of the seed oil content by 2.2 to 9.1%, while overexpression of BnaC08.PPT1 significantly promoted the seed oil content by 2.1 to 3.3%. CONCLUSION Our results suggest that BnaPPT1 is necessary for plant chloroplast development, and it plays an important role in maintaining plant growth and promoting seed oil accumulation in B. napus.
Collapse
Affiliation(s)
- Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Fei Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qingqing Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yunhao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hui Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China,Hubei Hongshan Laboratory, Wuhan 430070, China,Corresponding author at: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
29
|
Wan J, Wang Q, Zhao J, Zhang X, Guo Z, Hu D, Meng S, Lin Y, Qiu X, Mu L, Ding D, Tang J. Gene expression variation explains maize seed germination heterosis. BMC PLANT BIOLOGY 2022; 22:301. [PMID: 35718761 PMCID: PMC9208091 DOI: 10.1186/s12870-022-03690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Heterosis has been extensively utilized in plant breeding, however, the underlying molecular mechanism remains largely elusive. Maize (Zea mays), which exhibits strong heterosis, is an ideal material for studying heterosis. RESULTS In this study, there is faster imbibition and development in reciprocal crossing Zhengdan958 hybrids than in their parent lines during seed germination. To investigate the mechanism of heterosis of maize germination, comparative transcriptomic analyses were conducted. The gene expression patterns showed that 1324 (47.27%) and 1592 (66.44%) of the differential expression genes between hybrids and either parental line display parental dominance up or higher levels in the reciprocal cross of Zhengdan958, respectively. Notably, these genes were mainly enriched in metabolic pathways, including carbon metabolism, glycolysis/gluconeogenesis, protein processing in endoplasmic reticulum, etc. CONCLUSION: Our results provide evidence for the higher expression level genes in hybrid involved in metabolic pathways acting as main contributors to maize seed germinating heterosis. These findings provide new insights into the gene expression variation of maize embryos and improve the understanding of maize seed germination heterosis.
Collapse
Affiliation(s)
- Jiong Wan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiyue Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiawen Zhao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhanyong Guo
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Desheng Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shujun Meng
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuan Lin
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoqian Qiu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Liqin Mu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
- The Shennong Laboratory, Zhengzhou, 450002, China.
| |
Collapse
|
30
|
Wei Y, Liu X, Ge S, Zhang H, Che X, Liu S, Liu D, Li H, Gu X, He L, Li Z, Xu J. Involvement of Phospholipase C in Photosynthesis and Growth of Maize Seedlings. Genes (Basel) 2022; 13:genes13061011. [PMID: 35741773 PMCID: PMC9222606 DOI: 10.3390/genes13061011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
Phospholipase C is an enzyme that catalyzes the hydrolysis of glycerophospholipids and can be classified as phosphoinositide-specific PLC (PI-PLC) and non-specific PLC (NPC), depending on its hydrolytic substrate. In maize, the function of phospholipase C has not been well characterized. In this study, the phospholipase C inhibitor neomycin sulfate (NS, 100 mM) was applied to maize seedlings to investigate the function of maize PLC. Under the treatment of neomycin sulfate, the growth and development of maize seedlings were impaired, and the leaves were gradually etiolated and wilted. The analysis of physiological and biochemical parameters revealed that inhibition of phospholipase C affected photosynthesis, photosynthetic pigment accumulation, carbon metabolism and the stability of the cell membrane. High-throughput RNA-seq was conducted, and differentially expressed genes (DEGS) were found significantly enriched in photosynthesis and carbon metabolism pathways. When phospholipase C activity was inhibited, the expression of genes related to photosynthetic pigment accumulation was decreased, which led to lowered chlorophyll. Most of the genes related to PSI, PSII and TCA cycles were down-regulated and the net photosynthesis was decreased. Meanwhile, genes related to starch and sucrose metabolism, the pentose phosphate pathway and the glycolysis/gluconeogenesis pathway were up-regulated, which explained the reduction of starch and total soluble sugar content in the leaves of maize seedlings. These findings suggest that phospholipase C plays a key role in photosynthesis and the growth and development of maize seedlings.
Collapse
Affiliation(s)
- Yulei Wei
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Xinyu Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Shengnan Ge
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Haiyang Zhang
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Xinyang Che
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Shiyuan Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Debin Liu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Huixin Li
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Xinru Gu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Lin He
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
| | - Zuotong Li
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
- Correspondence: (Z.L.); (J.X.)
| | - Jingyu Xu
- Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement of Heilongjiang Province, College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China; (Y.W.); (X.L.); (S.G.); (H.Z.); (X.C.); (S.L.); (D.L.); (H.L.); (X.G.); (L.H.)
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319, China
- Correspondence: (Z.L.); (J.X.)
| |
Collapse
|
31
|
Yang B, Chen M, Zhan C, Liu K, Cheng Y, Xie T, Zhu P, He Y, Zeng P, Tang H, Tsugama D, Chen S, Zhang H, Cheng J. Identification of OsPK5 involved in rice glycolytic metabolism and GA/ABA balance for improving seed germination via genome-wide association study. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3446-3461. [PMID: 35191960 PMCID: PMC9162179 DOI: 10.1093/jxb/erac071] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/19/2022] [Indexed: 06/12/2023]
Abstract
Seed germination plays a pivotal role in the plant life cycle, and its precise regulatory mechanisms are not clear. In this study, 19 quantitative trait loci (QTLs) associated with rice seed germination were identified through genome-wide association studies (GWAS) of the following traits in 2016 and 2017: germination rate (GR) at 3, 5, and 7 days after imbibition (DAI) and germination index (GI). Two major stable QTLs, qSG4 and qSG11.1, were found to be associated with GR and GI over 2 continuous years. Furthermore, OsPK5, encoding a pyruvate kinase, was shown to be a crucial regulator of seed germination in rice, and might be a causal gene of the key QTL qSG11.1, on chromosome 11. Natural variation in OsPK5 function altered the activity of pyruvate kinase. The disruption of OsPK5 function resulted in slow germination and seedling growth during seed germination, blocked glycolytic metabolism, caused glucose accumulation, decreased energy levels, and affected the GA/ABA balance. Taken together, our results provide novel insights into the roles of OsPK5 in seed germination, and facilitate its application in rice breeding to improve seed vigour.
Collapse
Affiliation(s)
| | | | | | - Kexin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanhao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Peiwen Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Zeng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Haijuan Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Daisuke Tsugama
- Asian Natural Environmental Science Center (ANESC), The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo 188-0002, Japan
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing 210095, China
| | | | | |
Collapse
|
32
|
Liu N, Liu J, Fan S, Liu H, Zhou XR, Hua W, Zheng M. An integrated omics analysis reveals the gene expression profiles of maize, castor bean, and rapeseed for seed oil biosynthesis. BMC PLANT BIOLOGY 2022; 22:153. [PMID: 35350998 PMCID: PMC8966334 DOI: 10.1186/s12870-022-03495-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/25/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Seed storage lipids are valuable for human diet and for the sustainable development of mankind. In recent decades, many lipid metabolism genes and pathways have been identified, but the molecular mechanisms that underlie differences in seed oil biosynthesis in species with developed embryo and endosperm are not fully understood. RESULTS We performed comparative genome and transcriptome analyses of castor bean and rapeseed, which have high seed oil contents, and maize, which has a low seed oil content. These results revealed the molecular underpinnings of the low seed oil content in maize. First of all, transcriptome analyses showed that more than 61% of the lipid- and carbohydrate-related genes were regulated in castor bean and rapeseed, but only 20.1% of the lipid-related genes and 22.5% of the carbohydrate-related genes were regulated in maize. Then, compared to castor bean and rapeseed, fewer lipid biosynthesis genes but more lipid metabolism genes were regulated in the maize embryo. More importantly, most maize genes encoding lipid-related transcription factors, triacylglycerol (TAG) biosynthetic enzymes, pentose phosphate pathway (PPP) and Calvin Cycle proteins were not regulated during seed oil synthesis, despite the presence of many homologs in the maize genome. Additionally, we observed differential regulation of vital oil biosynthetic enzymes and extremely high expression levels of oil biosynthetic genes in castor bean, which were consistent with the rapid accumulation of oil in castor bean developing seeds. CONCLUSIONS Compared to high-oil seeds (castor bean and rapeseed), less oil biosynthetic genes were regulated during the seed development in low-oil seed (maize). These results shed light on molecular mechanisms of lipid biosynthesis in maize, castor bean, and rapeseed. They can provide information on key target genes that may be useful for future experimental manipulation of oil production in oil plants.
Collapse
Affiliation(s)
- Nian Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jing Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Shihang Fan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Hongfang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | | | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China.
| | - Ming Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China.
| |
Collapse
|
33
|
Matiolli CC, Soares RC, Alves HLS, Abreu IA. Turning the Knobs: The Impact of Post-translational Modifications on Carbon Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 12:781508. [PMID: 35087551 PMCID: PMC8787203 DOI: 10.3389/fpls.2021.781508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Plants rely on the carbon fixed by photosynthesis into sugars to grow and reproduce. However, plants often face non-ideal conditions caused by biotic and abiotic stresses. These constraints impose challenges to managing sugars, the most valuable plant asset. Hence, the precise management of sugars is crucial to avoid starvation under adverse conditions and sustain growth. This review explores the role of post-translational modifications (PTMs) in the modulation of carbon metabolism. PTMs consist of chemical modifications of proteins that change protein properties, including protein-protein interaction preferences, enzymatic activity, stability, and subcellular localization. We provide a holistic view of how PTMs tune resource distribution among different physiological processes to optimize plant fitness.
Collapse
|
34
|
Shi R, Bai H, Li B, Liu C, Ying Z, Xiong Z, Wang W. Combined Transcriptome and Lipidomic Analyses of Lipid Biosynthesis in Macadamia ternifolia Nuts. Life (Basel) 2021; 11:1431. [PMID: 34947962 PMCID: PMC8707767 DOI: 10.3390/life11121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Macadamia nuts are considered a high-quality oil crop worldwide. To date, the lipid diversity and the genetic factors that mediate storage lipid biosynthesis in Macadamia ternifolia are poorly known. Here, we performed a comprehensive transcriptomic and lipidomic data analysis to understand the mechanism of lipid biosynthesis by using young, medium-aged, and mature fruit kernels. Our lipidomic analysis showed that the M. ternifolia kernel was a rich source of unsaturated fatty acids. Moreover, different species of triacylglycerols, diacylglycerol, ceramides, phosphatidylethanolamine, and phosphatidic acid had altered accumulations during the developmental stages. The transcriptome analysis revealed a large percentage of differently expressed genes during the different stages of macadamia growth. Most of the genes with significant differential expression performed functional activity of oxidoreductase and were enriched in the secondary metabolite pathway. The integration of lipidomic and transcriptomic data allowed for the identification of glycerol-3-phosphate acyltransferase, diacylglycerol kinase, phosphatidylinositols, nonspecific phospholipase C, pyruvate kinase 2, 3-ketoacyl-acyl carrier protein reductase, and linoleate 9S-lipoxygenase as putative candidate genes involved in lipid biosynthesis, storage, and oil quality. Our study found comprehensive datasets of lipidomic and transcriptomic changes in the developing kernel of M. ternifolia. In addition, the identification of candidate genes provides essential prerequisites to understand the molecular mechanism of lipid biosynthesis in the kernel of M. ternifolia.
Collapse
Affiliation(s)
- Rui Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (R.S.); (C.L.); (Z.Y.)
| | - Haidong Bai
- Lincang Academy of Forestry, Lincang 677009, China;
| | - Biao Li
- Yuxi Sannong Plateau Characteristic Modern Agriculture Co., Ltd., Chengjiang 652599, China;
| | - Can Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (R.S.); (C.L.); (Z.Y.)
| | - Zhiping Ying
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (R.S.); (C.L.); (Z.Y.)
| | - Zhi Xiong
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (R.S.); (C.L.); (Z.Y.)
| | - Wenlin Wang
- Guangxi South Subtropical Agricultural Science Research Institute, Longzhou 532415, China
| |
Collapse
|
35
|
Lee Y, Okita TW, Szymanski DB. A co-fractionation mass spectrometry-based prediction of protein complex assemblies in the developing rice aleurone-subaleurone. THE PLANT CELL 2021; 33:2965-2980. [PMID: 34270775 PMCID: PMC8462808 DOI: 10.1093/plcell/koab182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Multiprotein complexes execute and coordinate diverse cellular processes such as organelle biogenesis, vesicle trafficking, cell signaling, and metabolism. Knowledge about their composition and localization provides useful clues about the mechanisms of cellular homeostasis and system-level control. This is of great biological importance and practical significance in heterotrophic rice (Oryza sativa) endosperm and aleurone-subaleurone tissues, which are a primary source of seed vitamins and stored energy. Dozens of protein complexes have been implicated in the synthesis, transport, and storage of seed proteins, lipids, vitamins, and minerals. Mutations in protein complexes that control RNA transport result in aberrant endosperm with shrunken and floury phenotypes, significantly reducing seed yield and quality. The purpose of this study was to broadly predict protein complex composition in the aleurone-subaleurone layers of developing rice seeds using co-fractionation mass spectrometry. Following orthogonal chromatographic separations of biological replicates, thousands of protein elution profiles were subjected to distance-based clustering to enable large-scale multimerization state measurements and protein complex predictions. The predicted complexes had predicted functions across diverse functional categories, including novel heteromeric RNA binding protein complexes that may influence seed quality. This effective and open-ended proteomics pipeline provides useful clues about system-level posttranslational control during the early stages of rice seed development.
Collapse
Affiliation(s)
- Youngwoo Lee
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Daniel B. Szymanski
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
36
|
Prokaryotic Expression of Phospho enolpyruvate Carboxylase Fragments from Peanut and Analysis of Osmotic Stress Tolerance of Recombinant Strains. PLANTS 2021; 10:plants10020365. [PMID: 33672856 PMCID: PMC7917721 DOI: 10.3390/plants10020365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a ubiquitous cytosolic enzyme that catalyzes the irreversible β-carboxylation of phosphoenolpyruvate (PEP) in presence of HCO3− to produce oxaloacetate (OAA) during carbon fixation and photosynthesis. It is well accepted that PEPC genes are expressed in plants upon stress. PEPC also supports the biosynthesis of biocompatible osmolytes in many plant species under osmotic stress. There are five isoforms of PEPC found in peanut (Arachis hypogaea L.), namely, AhPEPC1, AhPEPC2, AhPEPC3, AhPEPC4, and AhPEPC5. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that the gene expression patterns of these AhPEPC genes were different in mature seeds, stems, roots, flowers, and leaves. The expression of all the plant type PEPC (PTPCs) (AhPEPC1, AhPEPC2, AhPEPC3, and AhPEPC4) was relatively high in roots, while the bacterial type PEPC (BTPC) (AhPEPC5) showed a remarkable expression level in flowers. Principal component analysis (PCA) result showed that AhPEPC3 and AhPEPC4 are correlated with each other, indicating comparatively associations with roots, and AhPEPC5 have a very close relationship with flowers. In order to investigate the function of these AhPEPCs, the fragments of these five AhPEPC cDNA were cloned and expressed in Escherichia coli (E. coli). The recombinant proteins contained a conserved domain with a histidine site, which is important for enzyme catalysis. Results showed that protein fragments of AhPEPC1, AhPEPC2, and AhPEPC5 had remarkable expression levels in E. coli. These three recombinant strains were more sensitive at pH 9.0, and recombinant strains carrying AhPEPC2 and AhPEPC5 fragments exhibited more growth than the control strain with the presence of PEG6000. Our findings showed that the expression of the AhPEPC fragments may enhance the resistance of transformed E. coli to osmotic stress.
Collapse
|
37
|
Liu YL, Zheng HL. Physiological and Proteomic Analyses of Two Acanthus Species to Tidal Flooding Stress. Int J Mol Sci 2021; 22:ijms22031055. [PMID: 33494455 PMCID: PMC7865619 DOI: 10.3390/ijms22031055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
The mangrove plant Acanthus ilicifolius and its relative, Acanthus mollis, have been previously proved to possess diverse pharmacological effects. Therefore, evaluating the differentially expressed proteins of these species under tidal flooding stress is essential to fully exploit and benefit from their medicinal values. The roots of A. ilicifolius and A. mollis were exposed to 6 h of flooding stress per day for 10 days. The dry weight, hydrogen peroxide (H2O2) content, anatomical characteristics, carbon and energy levels, and two-dimensional electrophoresis coupled with MALDI-TOF/TOF MS technology were used to reveal the divergent flooding resistant strategies. A. ilicifolius performed better under tidal flooding stress, which was reflected in the integrity of the morphological structure, more efficient use of carbon and energy, and a higher percentage of up-regulated proteins associated with carbon and energy metabolism. A. mollis could not survive in flooding conditions for a long time, as revealed by disrupting cell structures of the roots, less efficient use of carbon and energy, and a higher percentage of down-regulated proteins associated with carbon and energy metabolism. Energy provision and flux balance played a role in the flooding tolerance of A. ilicifolius and A. mollis.
Collapse
|
38
|
Wang H, Wang Q, Pak H, Yan T, Chen M, Chen X, Wu D, Jiang L. Genome-wide association study reveals a patatin-like lipase relating to the reduction of seed oil content in Brassica napus. BMC PLANT BIOLOGY 2021; 21:6. [PMID: 33407143 PMCID: PMC7788869 DOI: 10.1186/s12870-020-02774-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/02/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Rapeseed (Brassica napus L.) is an important oil crop world-widely cultivated, and seed oil content (SOC) is one of the most important traits for rapeseed. To increase SOC, many efforts for promoting the function of genes on lipid biosynthesis pathway have been previously made. However, seed oil formation is a dynamic balance between lipid synthesis and breakdown. It is, therefore, also reasonable to weaken or eliminate the function of genes involved in lipid degradation for a higher final SOC. RESULTS We applied a genome-wide association study (GWAS) on SOC in a collection of 290 core germplasm accessions. A total of 2,705,480 high-quality SNPs were used in the GWAS, and we identified BnaC07g30920D, a patatin-like lipase (PTL) gene, that was associated with SOC. In particular, six single-nucleotide-polymorphisms (SNPs) in the promoter region of BnaC07g30920D were associated with the significant reduction of SOC, leading to a 4.7-6.2% reduction of SOCs. We performed in silico analysis to show a total of 40 PTLs, which were divided into four clades, evenly distributed on the A and C subgenomes of Brassica napus. RNA-seq analysis unveiled that BnPTLs were preferentially expressed in reproductive tissues especially maturing seeds. CONCLUSIONS We identified BnaC07g30920D, a BnPTL gene, that was associated with SOC using GWAS and performed in silico analysis of 40 PTLs in Brassica napus. The results enrich our knowledge about the SOC formation in rapeseed and facilitate the future study in functional characterization of BnPTL genes.
Collapse
Affiliation(s)
- Haoyi Wang
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou, 310058, China
| | - Qian Wang
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou, 310058, China
| | - Haksong Pak
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou, 310058, China
| | - Tao Yan
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou, 310058, China
| | - Mingxun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoyang Chen
- Institute of Crop Science, Jinhua Academy of Agricultural Sciences, 828 Shuanglong Nan, Jinhua, 321017, China
| | - Dezhi Wu
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou, 310058, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Yu-Hang-Tang Road 866, Hangzhou, 310058, China.
| |
Collapse
|
39
|
Yamamoto N, Takano T, Masumura T, Sasou A, Morita S, Sugimoto T, Yano K. Rapidly evolving phosphoenolpyruvate carboxylase Gmppc1 and Gmppc7 are highly expressed in the external seed coat of immature soybean seeds. Gene 2020; 762:145015. [PMID: 32783994 DOI: 10.1016/j.gene.2020.145015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 01/31/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a carbon fixation enzyme which probably plays crucial roles in seed development. A greater number of PEPC isoforms are encoded in the soybean genome, while most of the PEPC isoforms are functionally unknown. In this study, we investigated on soybean PEPC expressed in the external layer of seed coat (ELSC) during seed formation. PEPC activity in ELSC ranged from 0.24 to 1.0 U/g F.W., which could be comparable to those in whole seeds at U per dry matter. Public RNA-Seq data in separated soybean seed tissues revealed that six plant-type PEPC isogenes were substantially expressed in ELSC, and Gmppc1 and Gmppc7 were highly expressed in hourglass cells of ELSC. Gene Ontology enrichment of co-expressed genes with Gmppc1 and Gmppc7 implicated a role of these isogenes in assisting energy production and cellulose biosynthesis. Comparison of PEPC sequences from 16 leguminous species hypothesized adaptive evolution of the Gmppc1 and Gmppc7 lineage after divergence from the other plant-type PEPC lineages. Molecular diversification of these plant-type PEPC was possibly accomplished by adaptation to the functions of the soybean seed tissues. This study indicates that energy demand in immature seeds may be a driving force for the molecular evolution of PEPC.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Laboratory of Bioinformatics, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Kawasaki 214-8571, Japan; Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan
| | - Tomoyuki Takano
- Laboratory of Bioinformatics, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Kawasaki 214-8571, Japan
| | - Takehiro Masumura
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan; Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Research Center, Kitainayazuma, Seika-cho, Soraku-gun, Kyoto 619-0244, Japan
| | - Ai Sasou
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan
| | - Shigeto Morita
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan; Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Research Center, Kitainayazuma, Seika-cho, Soraku-gun, Kyoto 619-0244, Japan
| | - Toshio Sugimoto
- Plant Nutrition Laboratory, Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kentaro Yano
- Laboratory of Bioinformatics, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Kawasaki 214-8571, Japan.
| |
Collapse
|
40
|
Adhikari ND, Eriksen RL, Shi A, Mou B. Proteomics Analysis Indicates Greater Abundance of Proteins Involved in Major Metabolic Pathways in Lactuca sativa cv. Salinas than Lactuca serriola Accession US96UC23. Proteomics 2020; 20:e1900420. [PMID: 32672417 DOI: 10.1002/pmic.201900420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/20/2020] [Indexed: 12/17/2022]
Abstract
Lettuce (Lactuca sativa), cultivated mainly for its edible leaves and stems, is an important vegetable crop worldwide. Genomes of cultivated lettuce (L. sativa cv. Salinas) and its wild relative L. serriola accession US96UC23 are sequenced, but a clear understanding of the genetic basis for divergence in phenotypes of the two species is lacking. Tandem mass tag (TMT) based mass spectrometry is used to quantitatively compare protein levels between these two species. Four-day old seedlings is transplanted into 500 mL pots filled with soil. Plants are grown for 8 weeks under 250 µmol m-2 sec-1 continuous light, 20 °C and relative humidity between 50-70%. Leaf discs (1 cm diameter) from three individuals per biological replicate are analyzed. A total of 3000 proteins are identified, of which the levels of 650 are significantly different between 'Salinas' and US96UC23. Pathway analysis indicated a higher flux of carbon in 'Salinas' than US96UC23. Many essential metabolic pathways such as tetrapyrrole metabolism and fatty acid biosynthesis are upregulated in 'Salinas' compared with US96UC23. This study provides a reference proteome for researchers interested in understanding lettuce biology and improving traits for cultivation.
Collapse
Affiliation(s)
- Neil D Adhikari
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA, 93905, USA
- California Department of Public Health, Sacramento, CA, 95814, USA
| | - Renée L Eriksen
- Forage Seed and Cereal Research Unit, United States Department of Agriculture, Agricultural Research Service, 3450 SW Campus Way, Corvallis, OR, 97331, USA
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Beiquan Mou
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA, 93905, USA
| |
Collapse
|
41
|
Subedi U, Jayawardhane KN, Pan X, Ozga J, Chen G, Foroud NA, Singer SD. The Potential of Genome Editing for Improving Seed Oil Content and Fatty Acid Composition in Oilseed Crops. Lipids 2020; 55:495-512. [PMID: 32856292 DOI: 10.1002/lipd.12249] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 12/16/2022]
Abstract
A continuous rise in demand for vegetable oils, which comprise mainly the storage lipid triacylglycerol, is fueling a surge in research efforts to increase seed oil content and improve fatty acid composition in oilseed crops. Progress in this area has been achieved using both conventional breeding and transgenic approaches to date. However, further advancements using traditional breeding methods will be complicated by the polyploid nature of many oilseed crops and associated time constraints, while public perception and the prohibitive cost of regulatory processes hinders the commercialization of transgenic oilseed crops. As such, genome editing using CRISPR/Cas is emerging as a breakthrough breeding tool that could provide a platform to keep pace with escalating demand while potentially minimizing regulatory burden. In this review, we discuss the technology itself and progress that has been made thus far with respect to its use in oilseed crops to improve seed oil content and quality. Furthermore, we examine a number of genes that may provide ideal targets for genome editing in this context, as well as new CRISPR-related tools that have the potential to be applied to oilseed plants and may allow additional gains to be made in the future.
Collapse
Affiliation(s)
- Udaya Subedi
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, T1J 4B1, AB, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, AB, Canada
| | - Kethmi N Jayawardhane
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, AB, Canada
| | - Xue Pan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, AB, Canada
| | - Jocelyn Ozga
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, AB, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, AB, Canada
| | - Nora A Foroud
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, T1J 4B1, AB, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, T1J 4B1, AB, Canada
| |
Collapse
|
42
|
Hu L, Tu B, Yang W, Yuan H, Li J, Guo L, Zheng L, Chen W, Zhu X, Wang Y, Qin P, Ma B, Li S. Mitochondria-Associated Pyruvate Kinase Complexes Regulate Grain Filling in Rice. PLANT PHYSIOLOGY 2020; 183:1073-1087. [PMID: 32376763 PMCID: PMC7333716 DOI: 10.1104/pp.20.00279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Grain filling is a complex agronomic trait that directly determines grain weight and quality in rice (Oryza sativa). Nevertheless, key factors affecting grain filling remain poorly understood. Here, we identified a grain filling gene, OsPK3, encoding a pyruvate kinase (PK). The loss of function of OsPK3 caused reduced PK activity and Suc translocation defects from source to sink in rice, which led to compromised grain filling. OsPK3 was constitutively expressed but had relatively higher expression levels in leaf and developing caryopsis and specific expression signals in tissues involved in Suc transport and unloading, supporting its biological function in regulation of grain filling by affecting Suc translocation. Subcellular localization analysis of OsPK3 revealed its association with mitochondria, and OsPK3 physically interacted and formed heterodimers in vivo with two other PK isozymes, OsPK1 and OsPK4. Both OsPK1 and OsPK4 localized to the mitochondria and cytosol and were recruited to the mitochondria by OsPK3. Despite their high sequence similarity, OsPK1 and OsPK4 had distinct expression patterns. As observed for ospk3, disruption of OsPK1 caused pleiotropic defects, while OsPK4 loss of function led to severely chalky grains without other obvious defects. Collectively, we revealed that two mitochondria-associated pyruvate kinase complexes, OsPK3-OsPK1/OsPK4, are involved in regulation of grain filling by stage-specific fine-tuning of Suc translocation.
Collapse
Affiliation(s)
- Li Hu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Bin Tu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Wen Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Hua Yuan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Jialian Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Lianan Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Ling Zheng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
- Hybrid Rice Research Center of Neijiang Academy of Agricultural Sciences, Neijiang, Sichuan 641000, People's Republic of China
| | - Weilan Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Yuping Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Peng Qin
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Bingtian Ma
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Shigui Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| |
Collapse
|
43
|
Wulfert S, Schilasky S, Krueger S. Transcriptional and Biochemical Characterization of Cytosolic Pyruvate Kinases in Arabidopsis thaliana. PLANTS 2020; 9:plants9030353. [PMID: 32168758 PMCID: PMC7154858 DOI: 10.3390/plants9030353] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Glycolysis is a central catabolic pathway in every living organism with an essential role in carbohydrate breakdown and ATP synthesis, thereby providing pyruvate to the tricarboxylic acid cycle (TCA cycle). The cytosolic pyruvate kinase (cPK) represents a key glycolytic enzyme by catalyzing phosphate transfer from phosphoenolpyruvate (PEP) to ADP for the synthesis of ATP. Besides its important functions in cellular energy homeostasis, the activity of cytosolic pyruvate kinase underlies tight regulation, for instance by allosteric effectors, that impact stability of its quaternary structure. We determined five cytosol-localized pyruvate kinases, out of the fourteen putative pyruvate kinase genes encoded by the Arabidopsis thaliana genome, by investigation of phylogeny and localization of yellow fluorescent protein (YFP) fusion proteins. Analysis of promoter β-glucuronidase (GUS) reporter lines revealed an isoform-specific expression pattern for the five enzymes, subject to plant tissue and developmental stage. Investigation of the heterologously expressed and purified cytosolic pyruvate kinases revealed that these enzymes are differentially regulated by metabolites, such as citrate, fructose-1,6-bisphosphate (FBP) and ATP. In addition, measured in vitro enzyme activities suggest that pyruvate kinase subunit complexes consisting of cPK2/3 and cPK4/5 isoforms, respectively, bear regulatory properties. In summary, our study indicates that the five identified cytosolic pyruvate kinase isoforms adjust the carbohydrate flux through the glycolytic pathway in Arabidopsis thaliana, by distinct regulatory qualities, such as individual expression pattern as well as dissimilar responsiveness to allosteric effectors and enzyme subgroup association.
Collapse
|
44
|
Yamamoto N, Sugimoto T, Takano T, Sasou A, Morita S, Yano K, Masumura T. The plant-type phospho enolpyruvate carboxylase Gmppc2 is developmentally induced in immature soy seeds at the late maturation stage: a potential protein biomarker for seed chemical composition. Biosci Biotechnol Biochem 2020; 84:552-562. [PMID: 31771419 DOI: 10.1080/09168451.2019.1696179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) is a carbon-fixing enzyme with critical roles in seed development. Previously we observed a positive correlation between PEPC activity and protein content in mature seeds among soybean cultivars and varietal differences of PEPC activity in immature seeds, which is concordant with seed protein accumulation. Here, we report a PEPC isoform (Gmppc2) which is preferentially expressed in immature soybean seeds at the late maturation stage. Gmppc2 was co-expressed with enzyme genes involved in starch degradation: α-amylase, hexokinase, and α-glucan phosphorylase. Gmppc2 was developmentally induced in the external seed coats, internal seed coats, hypocotyls, and cotyledons at the late maturation stage. The expression of Gmppc2 protein was negatively regulated by the application of a nitrogen fertilizer, which suppressed nodule formation. These results imply that Gmppc2 is involved in the metabolism of nitrogen originated from nodules into seeds, and Gmppc2 might be applicable as a biomarker of seed protein content.Abbreviations: PEP: phosphoenolpyruvate; PEPC: phosphoenolpyruvate carboxylase; RNA-Seq: RNA sequencing; PCA: principal component analysis; SE: standard error.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- Laboratory of Bioinformatics, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Toshio Sugimoto
- Plant Nutrition Laboratory, Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Tomoyuki Takano
- Laboratory of Bioinformatics, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Ai Sasou
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Shigeto Morita
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Research Center, Kyoto, Japan
| | - Kentaro Yano
- Laboratory of Bioinformatics, Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Takehiro Masumura
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Research Center, Kyoto, Japan
| |
Collapse
|
45
|
Yao Y, You Q, Duan G, Ren J, Chu S, Zhao J, Li X, Zhou X, Jiao Y. Quantitative trait loci analysis of seed oil content and composition of wild and cultivated soybean. BMC PLANT BIOLOGY 2020; 20:51. [PMID: 32005156 PMCID: PMC6995124 DOI: 10.1186/s12870-019-2199-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/12/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Soybean oil is a major source of edible oil, and the domestication of wild soybean has resulted in significant changes in oil content and composition. Extensive efforts have been made to identify genetic loci that are related to soybean oil traits. The objective of this study was to identify quantitative trait loci (QTLs) related to soybean seed oil and compare the fatty acid composition between wild and cultivated soybean. RESULTS Using the specific-locus amplified fragment sequencing (SLAF-seq) method, a total of 181 recombinant inbred lines (RILs) derived from a cross between wild soybean ZYD00463 (Glycine soja) and cultivated soybean WDD01514 (Glycine max) were genotyped. Finally, a high-density genetic linkage map comprising 11,398 single-nucleotide polymorphism (SNP) markers on 20 linkage groups (LGs) was constructed. Twenty-four stable QTLs for seed oil content and composition were identified by model-based composite interval mapping (CIM) across multiple environments. Among these QTLs, 23 overlapped with or were adjacent to previously reported QTLs. One QTL, qPA10_1 (5.94-9.98 Mb) on Chr. Ten is a novel locus for palmitic acid. In the intervals of stable QTLs, some interesting genes involved in lipid metabolism were detected. CONCLUSIONS We developed 181 RILs from a cross between wild soybean ZYD00463 and cultivated soybean WDD01514 and constructed a high-density genetic map using the SLAF-seq method. We identified 24 stable QTLs for seed oil content and compositions, which includes qPA10_1 on Chr. 10, a novel locus for palmitic acid. Some interesting genes in the QTL regions were also detected. Our study will provide useful information for scientists to learn about genetic variations in lipid metabolism between wild and cultivated soybean.
Collapse
Affiliation(s)
- Yanjie Yao
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qingbo You
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Guozhan Duan
- Soybean Research Laboratory, Xuchang Research Institute of Agricultural Sciences, Xuchang, 461000, China
| | - Jianjun Ren
- Soybean Research Laboratory, Xuchang Research Institute of Agricultural Sciences, Xuchang, 461000, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops /College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Junqing Zhao
- Soybean Research Laboratory, Xuchang Research Institute of Agricultural Sciences, Xuchang, 461000, China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Xinan Zhou
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Yongqing Jiao
- Key laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
- Collaborative Innovation Center of Henan Grain Crops /College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
46
|
Guan C, Wang M, Zhang Y, Ruan X, Zhang Q, Luo Z, Yang Y. DkWRKY interacts with pyruvate kinase gene DkPK1 and promotes natural deastringency in C-PCNA persimmon. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110285. [PMID: 31779905 DOI: 10.1016/j.plantsci.2019.110285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/04/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
PAs, also known as condensed tannins, cause the astringency sensation in the persimmon fruit. The astringency of Chinese pollination-constant non-astringent (C-PCNA) persimmon (Diospyros kaki Thunb.) can be naturally removed on the tree, but the regulatory mechanisms of deastringency remain to be elucidated. In our previous research, DkPK1 was shown to be involved in the natural loss of astringency of C-PCNA persimmon fruit. In the present study, yeast one-hybrid (Y1H) library screening using the DkPK1 promoter as baits identified two DkWRKY transcription factor genes (DkWRKY3 and -15). The transcript levels of both DkWRKY3 and -15 exhibited a positive correlation with the decrease in soluble proanthocyanidin (PA) content during the last developmental stage in C-PCNA persimmon. Multiple sequence analysis and subcellular localization confirmed that DkWRKY3 and -15 belonging to the group II and I families, respectively, were both located in the nucleus. Dual-luciferase and Y1H assays demonstrated that DkWRKY3 and -15 can transactivate the DkPK1 promoters. The combination of DkWRKY3 and -15 most likely produced an additive activation effect compared to a single activator on DkPK1, although the two transcriptional activators were not capable of interacting. Notably, DkWRKY3 and -15 showed ubiquitous expression in various organs and abundant upregulation in seeds. Furthermore, transient overexpression of both DkWRKY3 and -15 in persimmon leaves led to a significant decrease in the content of soluble PAs but a significant increase in the expression levels of the acetaldehyde metabolism-related DkPK, DkPDC and DkADH genes. Thus, we suggest that DkWRKY3 and -15 are the upstream regulators of DkPK1 and positively regulate the natural deastringency in C-PCNA persimmon.
Collapse
Affiliation(s)
- Changfei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yangfan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaofeng Ruan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qinglin Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology (MOE), Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yong Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
47
|
Yamamoto N, Masumura T, Yano K, Sugimoto T. Pattern analysis suggests that phospho enolpyruvate carboxylase in maturing soybean seeds promotes the accumulation of protein. Biosci Biotechnol Biochem 2019; 83:2238-2243. [PMID: 31362593 DOI: 10.1080/09168451.2019.1648205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/13/2019] [Indexed: 12/29/2022]
Abstract
The protein and oil contents in soybean seeds are major factors in seed quality. Seed proteins and oils are synthesized from sucrose and nitrogenous compounds transported into maturing seeds. In this study, we compared changes in the activity of phosphoenolpyruvate carboxylase (PEPC) and the accumulation profiles of protein and oil in maturing seeds of two soybean cultivars, which exhibit different protein and oil contents in seeds, to determine the interrelationships of them. A principal component analysis indicated a concordance of seed PEPC activity with the protein content, but did not with the oil content. PEPC activity per seed was highest in the late maturation stage, when the physiological status of the vegetative organs drastically changed. The high-protein cultivar had higher PEPC activity compared to the low-protein cultivar. These results highlight the biological role of PEPC in the synthesis of protein, therefore it was implied that PEPC could be a biomarker in soybean breeding.Abbreviations: ANOVA: analysis of variance; DS: developmental stage; DW: dry weight; FW: fresh weight; NIR: near infrared; PEP(C): phosphoenolpyruvate (carboxylase); PC(A): principal component (analysis); S.E.: standard error; WC: water content.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- Bioinformatics Laboratory, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Takehiro Masumura
- Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Research Center, Kyoto, Japan
| | - Kentaro Yano
- Bioinformatics Laboratory, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Toshio Sugimoto
- Plant Nutrition Laboratory, Faculty of Agriculture, Kobe University, Kobe, Japan
- Research Center for Food and Agriculture, Wakayama University, Wakayama, Japan
| |
Collapse
|
48
|
González M, Delgado-Requerey V, Ferrández J, Serna A, Cejudo FJ. Insights into the function of NADPH thioredoxin reductase C (NTRC) based on identification of NTRC-interacting proteins in vivo. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5787-5798. [PMID: 31294455 PMCID: PMC6812714 DOI: 10.1093/jxb/erz326] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/04/2019] [Indexed: 05/18/2023]
Abstract
Redox regulation in heterotrophic organisms relies on NADPH, thioredoxins (TRXs), and an NADPH-dependent TRX reductase (NTR). In contrast, chloroplasts harbor two redox systems, one that uses photoreduced ferredoxin (Fd), an Fd-dependent TRX reductase (FTR), and TRXs, which links redox regulation to light, and NTRC, which allows the use of NADPH for redox regulation. It has been shown that NTRC-dependent regulation of 2-Cys peroxiredoxin (PRX) is critical for optimal function of the photosynthetic apparatus. Thus, the objective of the present study was the analysis of the interaction of NTRC and 2-Cys PRX in vivo and the identification of proteins interacting with them with the aim of identifying chloroplast processes regulated by this redox system. To assess this objective, we generated Arabidopsis thaliana plants expressing either an NTRC-tandem affinity purification (TAP)-Tag or a green fluorescent protein (GFP)-TAP-Tag, which served as a negative control. The presence of 2-Cys PRX and NTRC in complexes isolated from NTRC-TAP-Tag-expressing plants confirmed the interaction of these proteins in vivo. The identification of proteins co-purified in these complexes by MS revealed the relevance of the NTRC-2-Cys PRX system in the redox regulation of multiple chloroplast processes. The interaction of NTRC with selected targets was confirmed in vivo by bimolecular fluorescence complementation (BiFC) assays.
Collapse
Affiliation(s)
- Maricruz González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Víctor Delgado-Requerey
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Julia Ferrández
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | | | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
- Correspondence:
| |
Collapse
|
49
|
Tian Y, Lv X, Xie G, Wang L, Dai T, Qin X, Chen F, Xu Y. FAX2 Mediates Fatty Acid Export from Plastids in Developing Arabidopsis Seeds. PLANT & CELL PHYSIOLOGY 2019; 60:2231-2242. [PMID: 31198959 DOI: 10.1093/pcp/pcz117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/01/2019] [Indexed: 05/25/2023]
Abstract
Vegetable oils are mainly stored in the form of triacylglycerol (TAG) in oilseeds. Fatty acids (FAs), one of the building blocks for TAG assembly, are synthesized in plastids and then exported to the endoplasmic reticulum for storage oil synthesis. A recent study demonstrated that the export of FAs from plastids was mediated by a FAX (FA export) family protein. However, the significance of FAs export from plastid during seed oil accumulation has not been investigated. In this study, we found that FAX2 was highly expressed in developing Arabidopsis seeds and the expression level was consistent with FAs synthesis activity. FAX2 mutant seeds showed an approximately 18% reduction of lipid levels compared with wild-type seeds. By contrast, overexpression of FAX2 enhanced seed lipid accumulation by up to 30%. The FAs export activity of FAX2 was confirmed by yeast mutant cell complementation analysis. Our results showed that FAX2 could interact with other proteins to facilitate FAs transport. Taken together, these results indicate that FAX2-mediated FA export from plastids is important for seed oil accumulation, and that FAX2 can be used as a target gene for increasing lipid production in oilseeds.
Collapse
Affiliation(s)
- Yinshuai Tian
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Wuhou District, Chengdu, China
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, China
| | - Xueyan Lv
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Wuhou District, Chengdu, China
| | - Guilan Xie
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Wuhou District, Chengdu, China
| | - Linghui Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Wuhou District, Chengdu, China
| | - Tingwei Dai
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Wuhou District, Chengdu, China
| | - Xiaobo Qin
- Sichuan Natural Resource Institute, Chengdu, China
| | - Fang Chen
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Wuhou District, Chengdu, China
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, China
| | - Ying Xu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Wuhou District, Chengdu, China
| |
Collapse
|
50
|
Yang J, Tian R, Gao Z, Yang H. Characterization of AtWRI1 in fatty acids and starch synthesis in rice. Biosci Biotechnol Biochem 2019; 83:1807-1814. [PMID: 31179846 DOI: 10.1080/09168451.2019.1621150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
WRINKLED1 (WRI1) belongs to AP2/EREBP transcription factor. Its function in dicots for fatty acids synthesis has been deeply studied, but its role in monocot, especially in rice, is still poorly understood. Here, with the overexpression of AtWRI1 in rice, we found its overexpression increased fatty acids content in vegetative organs and seed coat including aleurone layer (SCAL) but decreased fatty acids content in endosperm. Meanwhile, the overexpression of AtWRI1 increased starch content in endosperm. These results provide a new insight into the function of AtWRI1in monocot and make a previous basement for the study of the connection of fatty acids and starch synthesis in rice.
Collapse
Affiliation(s)
- Junxing Yang
- College of Agronomy, Hunan Agricultural University , Changsha , China
| | - Rongcai Tian
- College of Agronomy, Hunan Agricultural University , Changsha , China
| | - Zhiqiang Gao
- College of Agronomy, Hunan Agricultural University , Changsha , China
| | - Huibing Yang
- College of Agronomy, Hunan Agricultural University , Changsha , China
| |
Collapse
|