1
|
Wu Y, Liu Y, Zhang Y, Dong G, Yan J, Zhang H. Functional analysis of TkWRKY33: A key regulator in drought-induced natural rubber synthesis in Taraxacum kok-saghyz. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109232. [PMID: 39467495 DOI: 10.1016/j.plaphy.2024.109232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
WRKY proteins, which form a transcription factor superfamily that responds to jasmonic acid (JA) signals, regulate various developmental processes and stress responses in plants, including Taraxacum kok-saghyz (TKS). TKS serves as an ideal model plant for studying rubber production and lays the foundation for a comprehensive understanding of JA-mediated regulation of natural rubber synthesis. In the present study, we screened and identified a valuable transcription factor, TkWRKY33, based on transcriptome data from TKS in response to JA. We investigated its role in the regulation of natural rubber synthesis within the JA signaling pathway and its function in response to drought stress. Through protein-protein interactions and transcriptional regulation analysis, we found that TkWRKY33 may regulate natural rubber synthesis through the JA-TkMPK3-TkWRKY33-(TkGGPS5/TkACAT8) cascade pathway, possibly by participating in JA-activated mitogen-activated protein kinase (MAPK) signaling. Overexpression of TkWRKY33 in tobacco, along with functional analysis of drought resistance and comparative analysis of natural rubber content after drought stress, revealed that TkWRKY33 not only enhances plant drought resistance by regulating the expression of genes related to reactive oxygen species (ROS) scavenging through the JA signaling pathway, but also has a close relationship with the signal transduction pathway mediated by the JA hormone in regulating natural rubber synthesis. The TkWRKY33 is recognized as a valuable transcription factor, which likely plays a role in regulating natural rubber biosynthesis through the JA-activated MAPK cascade signaling pathway JA-TkMPK3-TkWRKY33-(TkGGPS5/TkACAT8).
Collapse
Affiliation(s)
- Yulin Wu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Yaxin Liu
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Yunchuan Zhang
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Gaoquan Dong
- College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Jie Yan
- College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Hao Zhang
- Institute of Gardening and Greening, Xinjiang Academy of Forestry Sciences, Urumqi, 830000, China.
| |
Collapse
|
2
|
Wang JX, Li Y, Wang XW, Cao K, Chen CW, Wu JL, Fang WC, Zhu GR, Chen XJ, Guo DD, Wang J, Zhao YL, Fan JQ, Liu SN, Li WQ, Bie HL, Xu Q, Wang LR. Haplotype-resolved genome of a heterozygous wild peach reveals the PdaWRKY4-PdaCYP716A1 module mediates resistance to aphids by regulating betulin biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39451079 DOI: 10.1111/jipb.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024]
Abstract
Wild species of domesticated crops provide valuable genetic resources for resistance breeding. Prunus davidiana, a wild relative of peach with high heterozygosity and diverse stress tolerance, exhibits high resistance against aphids. However, the highly heterozygous genome of P. davidiana makes determining the underlying factors influencing resistance traits challenging. Here, we present the 501.7 Mb haplotype-resolved genome assembly of P. davidiana. Genomic comparisons of the two haplotypes revealed 18,152 structural variations, 2,699 Pda_hap1-specific and 2,702 Pda_hap2-specific genes, and 1,118 allele-specific expressed genes. Genome composition indicated 4.1% of the P. davidiana genome was non-peach origin, out of which 94.5% was derived from almond. Based on the haplotype genome, the aphid resistance quantitative trait locus (QTL) was mapped at the end of Pda03. From the aphid resistance QTL, PdaWRKY4 was identified as the major dominant gene, with a 9-bp deletion in its promoter of the resistant phenotype. Specifically, PdaWRKY4 regulates aphid resistance by promoting PdaCYP716A1-mediated anti-aphid metabolite betulin biosynthesis. Moreover, we employed a genome design to develop a breeding workflow for rapidly and precisely producing aphid-resistant peaches. In conclusion, this study identifies a novel aphid resistance gene and provides insights into genome design for the development of resistant fruit cultivars.
Collapse
Affiliation(s)
- Jun-Xiu Wang
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Beibei, 400715, Chongqing, China
| | - Yong Li
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Xin-Wei Wang
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Chang-Wen Chen
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Jin-Long Wu
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Wei-Chao Fang
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Geng-Rui Zhu
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xue-Jia Chen
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Dan-Dan Guo
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Jiao Wang
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Ya-Lin Zhao
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Jia-Qi Fan
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Su-Ning Liu
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Wen-Qing Li
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Hang-Ling Bie
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| | - Qiang Xu
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Rong Wang
- Zhengzhou Fruit Research Institute, National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
- Western Research Institute, Chinese Academy of Agricultural Sciences, Changji, 831100, China
- National Horticulture Germplasm Resources Center of China (NPGRC), Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 451100, China
| |
Collapse
|
3
|
Wei Y, Tan X, Tian T, Luo X, Ren M. Ribosomal S6 kinases 2 mediates potato resistance to late blight, through WRKY59 transcription factor. Int J Biol Macromol 2024; 277:134581. [PMID: 39122078 DOI: 10.1016/j.ijbiomac.2024.134581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Potato late blight is the most devastating pre- and post-harvest crop disease in the world, which is widespread and difficult to control, causing serious economic losses. Cultivating resistant varieties is a major way to prevent and control late blight in a green way. However, due to the rapid evolution of pathogens, the plant resistance is losing. Therefore, mining effective and durable genes involved in disease resistance is crucial for breeding resistant varieties against late blight. In this study, we took "potato-Phytophthora infestans" as the "host-pathogen" model system to discover the potential disease resistance-related genes and elucidate their molecular functional mechanism. Through yeast two-hybridization, bimolecular fluorescence complementation, Co-immunoprecipitation assays, and gene function validation etc., we found that ribosomal protein S6 kinase 2 (StS6K2) is a key resistant protein, which is interacted with StWRKY59 transcription factor. Overexpression of StS6K2 and StWRKY59 both enhanced the plants resistance to P. infestans, and promoted the host immune response, such as ROS burst and callose deposition. In OEStWRKY59 lines, DEGs involved in secondary metabolites synthesis, plant hormone signaling transduction and plant-pathogen interaction were significantly enriched. These findings provide novel genetic resources for the breeding of resistant varieties.
Collapse
Affiliation(s)
- Yunmin Wei
- College of Life Sciences and Oceanography, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xue Tan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Tingting Tian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China.
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; School of Agricultural Science of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
4
|
Wang Z, Zhang J, Gao M, Deng Q, Zhang Y, Pei M, Zhao Y, Guo YD, Zhang H. SlWRKY37 targets SlLEA2 and SlABI5-like7 to regulate seed germination vigor in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108881. [PMID: 38968842 DOI: 10.1016/j.plaphy.2024.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/29/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
Seed germination is a critical phase for the life cycle and propagation of higher plants. This study explores the role of SlWRKY37, a WRKY transcription factor in tomato, in modulating seed germination. We discovered that SlWRKY37 expression is markedly downregulated during tomato seed germination. Through CRISPR/Cas9-mediated editing, we demonstrate that SlWRKY37 knockout enhances germination, while its overexpression results in a delay compared to the wild type. Transcriptome analysis revealed 679 up-regulated and 627 down-regulated genes in Slwrky37-CRISPR deletion mutants relative to the wild type. Gene ontology (GO) enrichment analysis indicated these differentially expressed genes are linked to seed dormancy, abscisic acid homeostasis, and protein phosphorylation pathways. Bioinformatics and biochemical assays identified SlABI5-like7 and SlLEA2 as key transcriptional targets of SlWRKY37, integral to tomato seed dormancy regulation. Additionally, SlWRKY37 was found to be post-translationally phosphorylated at Ser65, a modification crucial for its transcriptional activation. Our findings elucidate the regulatory role of SlWRKY37 in seed dormancy, suggesting its potential as a target for gene editing to reduce seed dormancy in tomato breeding programs.
Collapse
Affiliation(s)
- Zhirong Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jialong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China; Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Ming Gao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qilin Deng
- College of Horticulture, China Agricultural University, Beijing, 100193, China; Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Yumeng Zhang
- Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Manying Pei
- Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Yinling Zhao
- Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Haijun Zhang
- Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing, 100097, China; State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, 100097, China; National Engineering Research Center for Vegetables, Beijing, 100097, China.
| |
Collapse
|
5
|
Hino Y, Inada T, Yoshioka M, Yoshioka H. NADPH oxidase-mediated sulfenylation of cysteine derivatives regulates plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4641-4654. [PMID: 38577861 DOI: 10.1093/jxb/erae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Reactive oxygen species (ROS) are rapidly generated during plant immune responses by respiratory burst oxidase homolog (RBOH), which is a plasma membrane-localized NADPH oxidase. Although regulatory mechanisms of RBOH activity have been well documented, the ROS-mediated downstream signaling is unclear. We here demonstrated that ROS sensor proteins play a central role in ROS signaling via oxidative post-translational modification of cysteine residues, sulfenylation. To detect protein sulfenylation, we used dimedone, which specifically and irreversibly binds to sulfenylated proteins. The sulfenylated proteins were labeled by dimedone in Nicotiana benthamiana leaves, and the conjugates were detected by immunoblot analyses. In addition, a reductant dissociated H2O2-induced conjugates, suggesting that cysteine persulfide and/or polysulfides are involved in sulfenylation. These sulfenylated proteins were continuously increased during both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) in a RBOH-dependent manner. Pharmacological inhibition of ROS sensor proteins by dimedone perturbated cell death, ROS accumulation induced by INF1 and MEK2DD, and defense against fungal pathogens. On the other hand, Rpi-blb2-mediated ETI responses were enhanced by dimedone. These results suggest that the sulfenylation of cysteine and its derivatives in various ROS sensor proteins are important events downstream of the RBOH-dependent ROS burst to regulate plant immune responses.
Collapse
Affiliation(s)
- Yuta Hino
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Taichi Inada
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Miki Yoshioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hirofumi Yoshioka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
6
|
Zhou X, Lei Z, An P. Post-Translational Modification of WRKY Transcription Factors. PLANTS (BASEL, SWITZERLAND) 2024; 13:2040. [PMID: 39124158 PMCID: PMC11314200 DOI: 10.3390/plants13152040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Post-translational modifications (PTMs) of proteins are involved in numerous biological processes, including signal transduction, cell cycle regulation, growth and development, and stress responses. WRKY transcription factors (TFs) play significant roles in plant growth, development, and responses to both biotic and abiotic stresses, making them one of the largest and most vital TF families in plants. Recent studies have increasingly highlighted the importance of PTMs of WRKY TFs in various life processes. This review focuses on the recent advancements in understanding the phosphorylation and ubiquitination of WRKY TFs, particularly their roles in resistance to biotic and abiotic stresses and in plant growth and development. Future research directions and prospects in this field are also discussed.
Collapse
Affiliation(s)
- Xiangui Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zaojuan Lei
- Huanghua Port Business Department, Technical Center of Shijiazhuang Customs District, Cangzhou 061113, China; (Z.L.); (P.A.)
| | - Pengtian An
- Huanghua Port Business Department, Technical Center of Shijiazhuang Customs District, Cangzhou 061113, China; (Z.L.); (P.A.)
| |
Collapse
|
7
|
Pei T, Zhan M, Niu D, Liu Y, Deng J, Jing Y, Li P, Liu C, Ma F. CERK1 compromises Fusarium solani resistance by reducing jasmonate level and undergoes a negative feedback regulation via the MMK2-WRKY71 module in apple. PLANT, CELL & ENVIRONMENT 2024; 47:2491-2509. [PMID: 38515330 DOI: 10.1111/pce.14896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Fusarium spp., a necrotrophic soil-borne pathogen, causes root rot disease on many crops. CERK1, as a typical pattern recognition receptor, has been widely studied. However, the function of CERK1 during plant-Fusarium interaction has not been well described. We determined that MdCERK1 is a susceptibility gene in the apple-Fusarium solani (Fs) interaction, and jasmonic acid (JA) plays a crucial role in this process. MdCERK1 directly targets and phosphorylates the lipoxygenase MdLOX2.1, an enzyme initiating the JA biosynthesis, at positions Ser326 and Thr327. These phosphorylations inhibit its translocation from the cytosol to the chloroplasts, leading to a compromised JA biosynthesis. Fs upregulates MdCERK1 expression during infection. In turn, when the JA level is low, the apple MdWRKY71, a transcriptional repressor of MdCERK1, is markedly upregulated and phosphorylated at Thr99 and Thr102 residues by the MAP kinase MdMMK2. The phosphorylation of MdWRKY71 enhances its transcription inhibition on MdCERK1. Taken together, MdCERK1 plays a novel role in limiting JA biosynthesis. There seems to be an arms race between apple and Fs, in which Fs activates MdCERK1 expression to reduce the JA level, while apple senses the low JA level and activates the MdMMK2-MdWRKY71 module to elevate JA level by inhibiting MdCERK1 expression.
Collapse
Affiliation(s)
- Tingting Pei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Minghui Zhan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Dongshan Niu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuerong Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanyuan Jing
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengmin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Guo Y, Jiang Y, Wu M, Tu A, Yin J, Yang J. TaWRKY50-TaSARK7 module-mediated cysteine-rich protein phosphorylation suppresses the programmed cell death response to Chinese wheat mosaic virus infection. Virology 2024; 595:110071. [PMID: 38593594 DOI: 10.1016/j.virol.2024.110071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
WRKY transcription factors are widely involved in plant responses to biotic and abiotic stresses. However, there is currently a limited understanding of the regulation of viral infection by WRKY transcription factors in wheat (Triticum aestivum). The WRKY transcription factor TaWRKY50 in group IIb wheat exhibited a significant response to Chinese wheat mosaic virus infection. TaWRKY50 is localized in the nucleus and is an activating transcription factor. Interestingly, we found that silencing TaWRKY50 induces cell death following inoculation with CWMV. The protein kinase TaSAPK7 is specific to plants, whereas NbSRK is a closely related kinase with high homology to TaSAPK7. The transcriptional activities of both TaSAPK7 and NbSRK can be enhanced by TaWRKY50 binding to their promoters. CRP is an RNA silencing suppressor. Furthermore, TaWRKY50 may regulate CWMV infection by regulating the expression of TaSAPK7 and NbSRK to increase CRP phosphorylation and reduce the amount of programmed cell death (PCD).
Collapse
Affiliation(s)
- Yunfei Guo
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Mila Wu
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Aizhu Tu
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jingliang Yin
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
9
|
Luo D, Cai J, Sun W, Yang Q, Hu G, Wang T. Tomato SlWRKY3 Negatively Regulates Botrytis cinerea Resistance via TPK1b. PLANTS (BASEL, SWITZERLAND) 2024; 13:1597. [PMID: 38931029 PMCID: PMC11207927 DOI: 10.3390/plants13121597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Botrytis cinerea is considered the second most important fungal plant pathogen, and can cause serious disease, especially on tomato. The TPK1b gene encodes a receptor-like kinase that can positively regulate plant resistance to B. cinerea. Here, we identified a tomato WRKY transcription factor SlWRKY3 that binds to the W-box on the TPK1b promoter. It can negatively regulate TPK1b transcription, then regulate downstream signaling pathways, and ultimately negatively regulate tomato resistance to B. cinerea. SlWRKY3 interference can enhance resistance to B. cinerea, and SlWRKY3 overexpression leads to susceptibility to B. cinerea. Additionally, we found that B. cinerea can significantly, and rapidly, induce the upregulation of SlWRKY3 expression. In SlWRKY3 transgenic plants, the TPK1b expression level was negatively correlated with SlWRKY3 expression. Compared with the control, the expression of the SA pathway marker gene PR1 was downregulated in W3-OE plants and upregulated in W3-Ri plants when inoculated with B. cinerea for 48 h. Moreover, SlWRKY3 positively regulated ROS production. Overall, SlWRKY3 can inhibit TPK1b transcription in tomato, and negatively regulate resistance to B. cinerea by modulating the downstream SA and ROS pathways.
Collapse
Affiliation(s)
- Dan Luo
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jun Cai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan 430070, China
| | - Wenhui Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan 430070, China
| | - Qihong Yang
- Guangxi Academy of Agricultural Science, Nanning 530007, China
| | - Guoyu Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan 430070, China
| | - Taotao Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agriculture University, Wuhan 430070, China
| |
Collapse
|
10
|
Song Z, Wang R, Zhang H, Tong Z, Yuan C, Li Y, Huang C, Zhao L, Wang Y, Di Y, Sui X. Comparative transcriptome analysis reveals nicotine metabolism is a critical component for enhancing stress response intensity of innate immunity system in tobacco. FRONTIERS IN PLANT SCIENCE 2024; 15:1338169. [PMID: 38595766 PMCID: PMC11003474 DOI: 10.3389/fpls.2024.1338169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
The pyridine alkaloid nicotine acts as one of best-studied plant resistant traits in tobacco. Previous research has shown that NtERF199 and NtERF189, acting as master regulators within the NIC1 and NIC2 locus, quantitatively contribute to nicotine accumulation levels in N. tabacum. Genome editing-created Nic1(Nterf199) and Nic2 (Nterf189) double mutant provides an ideal platform for precisely dissecting the defensive role of nicotine and the connection between the nicotine biosynthetic pathway with other putative metabolic networks. Taking this advantage, we performed a comparative transcriptomic analysis to reevaluate the potential physiological and metabolic changes in response to nicotine synthesis defect by comparing the nic1nic2 and NIC1NIC2 plants. Our findings revealed that nicotine reduction could systematically diminishes the expression intensities of genes associated with stimulus perception, signal transduction and regulation, as well as secondary metabolic flux. Consequently, this global expression reduction might compromise tobacco adaptions to environmental fitness, herbivore resistances, and plant growth and development. The up-regulation of a novel set of stress-responsive and metabolic pathway genes might signify a newly established metabolic reprogramming to tradeoff the detrimental effect of nicotine loss. These results offer additional compelling evidence regarding nicotine's critical defensive role in nature and highlights the tight link between nicotine biosynthesis and gene expression levels of quantitative resistance-related genes for better environmental adaptation.
Collapse
Affiliation(s)
- Zhongbang Song
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Ruixue Wang
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hongbo Zhang
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Zhijun Tong
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Cheng Yuan
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Yong Li
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Changjun Huang
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Lu Zhao
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Yuehu Wang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yingtong Di
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xueyi Sui
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
11
|
Xue P, Zhang L, Fan R, Li Y, Han X, Qi T, Zhao L, Yu D, Shen QH. HvMPK4 phosphorylates HvWRKY1 to enhance its suppression of barley immunity to powdery mildew fungus. J Genet Genomics 2024; 51:313-325. [PMID: 37225086 DOI: 10.1016/j.jgg.2023.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in disease resistance in model plant species. However, the functions of MAPK signaling pathways in crop disease resistance are largely unknown. Here we report the function of HvMKK1-HvMPK4-HvWRKY1 module in barley immune system. HvMPK4 is identified to play a negative role in barley immune response against Bgh, as virus-induced gene silencing of HvMPK4 results in enhanced disease resistance whilst stably overexpressing HvMPK4 leads to super-susceptibility to Bgh infection. Furthermore, the barley MAPK kinase HvMKK1 is found to specifically interact with HvMPK4, and the activated HvMKK1DD variant specifically phosphorylates HvMPK4 in vitro. Moreover, the transcription factor HvWRKY1 is identified to be a downstream target of HvMPK4 and phosphorylated by HvMPK4 in vitro in the presence of HvMKK1DD. Phosphorylation assay coupled with mutagenesis analyses identifies S122, T284, and S347 in HvWRKY1 as the major residues phosphorylated by HvMPK4. HvWRKY1 is phosphorylated in barley at the early stages of Bgh infection, which enhances its suppression on barley immunity likely due to enhanced DNA-binding and transcriptional repression activity. Our data suggest that the HvMKK1-HvMPK4 kinase pair acts upstream of HvWRKY1 to negatively regulate barley immunity against powdery mildew.
Collapse
Affiliation(s)
- Pengya Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Renchun Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Qi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifang Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deshui Yu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Singh K, Sharma D, Bhagat PK, Tayyeba S, Noryang S, Sinha AK. Phosphorylation of AGO1a by MAP kinases is required for miRNA mediated resistance against Xanthomonas oryzae pv. oryzae infection in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111967. [PMID: 38154578 DOI: 10.1016/j.plantsci.2023.111967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Bacterial leaf blight is a devastating disease caused by Xanthomonas oryzae pv. oryzae (Xoo) which causes severe crop loss in rice. The molecular mechanism that initiates defense against such pathogens remains unexplored. Reports have suggested crucial role of several miRNAs in regulating immune responses in plants. Argonaute (AGO) proteins have been implicated in imparting immunity against pathogens by using small RNAs as guide molecules. Here, we show that phosphorylation of rice AGO1a by MAP kinases is required for miRNA expression regulation during Xoo infection. AGO1a is induced in response to pathogen infection and is under the control of SA signaling pathway. The pathogen responsive MAP kinases MPK3, MPK4 and MPK6, interact with AGO1a in planta and can phosphorylate the protein in vitro. Overexpression of AGO1a extends disease resistance against Xoo in rice and leads to a higher accumulation of miRNAs. Conversely, overexpression of a non phosphorylatable mutant protein aggravates disease susceptibility and remarkably suppresses the miRNA expression levels. At a molecular level, phosphorylation of AGO1a by MAP kinase is required for increased accumulation of miRNAs during pathogen challenge. Taken together, the data suggests that OsAGO1a is a direct phosphorylation target of MAP kinases and this phosphorylation is crucial for its role in imparting disease resistance.
Collapse
Affiliation(s)
- Kirti Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepika Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prakash Kumar Bhagat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Sumaira Tayyeba
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA
| | - Stanzin Noryang
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; Biochemistry Department, Elizer Joldan Memorial College, UT Ladakh 194101, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
13
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
14
|
Lin J, Zhao J, Du L, Wang P, Sun B, Zhang C, Shi Y, Li H, Sun H. Activation of MAPK-mediated immunity by phosphatidic acid in response to positive-strand RNA viruses. PLANT COMMUNICATIONS 2024; 5:100659. [PMID: 37434356 PMCID: PMC10811337 DOI: 10.1016/j.xplc.2023.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/31/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Increasing evidence suggests that mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant defense against viruses. However, the mechanisms that underlie the activation of MAPK cascades in response to viral infection remain unclear. In this study, we discovered that phosphatidic acid (PA) represents a major class of lipids that respond to Potato virus Y (PVY) at an early stage of infection. We identified NbPLDα1 (Nicotiana benthamiana phospholipase Dα1) as the key enzyme responsible for increased PA levels during PVY infection and found that it plays an antiviral role. 6K2 of PVY interacts with NbPLDα1, leading to elevated PA levels. In addition, NbPLDα1 and PA are recruited by 6K2 to membrane-bound viral replication complexes. On the other hand, 6K2 also induces activation of the MAPK pathway, dependent on its interaction with NbPLDα1 and the derived PA. PA binds to WIPK/SIPK/NTF4, prompting their phosphorylation of WRKY8. Notably, spraying with exogenous PA is sufficient to activate the MAPK pathway. Knockdown of the MEK2-WIPK/SIPK-WRKY8 cascade resulted in enhanced accumulation of PVY genomic RNA. 6K2 of Turnip mosaic virus and p33 of Tomato bushy stunt virus also interacted with NbPLDα1 and induced the activation of MAPK-mediated immunity. Loss of function of NbPLDα1 inhibited virus-induced activation of MAPK cascades and promoted viral RNA accumulation. Thus, activation of MAPK-mediated immunity by NbPLDα1-derived PA is a common strategy employed by hosts to counteract positive-strand RNA virus infection.
Collapse
Affiliation(s)
- Jiayu Lin
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Jinpeng Zhao
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Linlin Du
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Pengkun Wang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Bingjian Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Chao Zhang
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Yan Shi
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Honglian Li
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Hangjun Sun
- The Engineering Research Center for Plant Health Protection Technology in Henan Province, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| |
Collapse
|
15
|
Han P, Zhang R, Li R, Li F, Nie J, Xu M, Wang C, Huang L. MdVQ12 confers resistance to Valsa mali by regulating MdHDA19 expression in apple. MOLECULAR PLANT PATHOLOGY 2024; 25:e13411. [PMID: 38071459 PMCID: PMC10788466 DOI: 10.1111/mpp.13411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
Valine-glutamine (VQ) motif-containing proteins play a crucial role in plant biotic stress responses. Apple Valsa canker, caused by the ascomycete Valsa mali, stands as one of the most severe diseases affecting apple trees. Nonetheless, the underlying resistance mechanism of VQ proteins against this disease has remained largely unexplored. This study reports MdVQ12, a VQ motif-containing protein, as a positive regulator of apple Valsa canker resistance. Genetic transformation experiments demonstrated that MdVQ12 overexpression increased resistance to V. mali, while gene silencing lines exhibited significantly reduced resistance. MdVQ12 interacted with the transcription factor MdWRKY23, which bound to the promoter of the histone deacetylase gene MdHDA19, activating its expression. MdHDA19 enhanced apple resistance to V. mali by participating in the jasmonic acid (JA) and ethylene (ET) signalling pathways. Additionally, MdVQ12 promoted the transcriptional activity of MdWRKY23 towards MdHDA19. Our findings reveal that MdVQ12 enhances apple resistance to V. mali by regulating MdHDA19 expression and thereby regulating the JA and ET signalling pathways, offering potential candidate gene resources for breeding apple Valsa canker-resistant germplasm.
Collapse
Affiliation(s)
- Pengliang Han
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Ruotong Zhang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Rui Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Fudong Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jiajun Nie
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Ming Xu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Chengli Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
16
|
Zhang J, Zhao H, Chen L, Lin J, Wang Z, Pan J, Yang F, Ni X, Wang Y, Wang Y, Li R, Pi E, Wang S. Multifaceted roles of WRKY transcription factors in abiotic stress and flavonoid biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1303667. [PMID: 38169626 PMCID: PMC10758500 DOI: 10.3389/fpls.2023.1303667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Increasing biotic and abiotic stresses are seriously impeding the growth and yield of staple crops and threatening global food security. As one of the largest classes of regulators in vascular plants, WRKY transcription factors play critical roles governing flavonoid biosynthesis during stress responses. By binding major W-box cis-elements (TGACCA/T) in target promoters, WRKYs modulate diverse signaling pathways. In this review, we optimized existing WRKY phylogenetic trees by incorporating additional plant species with WRKY proteins implicated in stress tolerance and flavonoid regulation. Based on the improved frameworks and documented results, we aim to deduce unifying themes of distinct WRKY subfamilies governing specific stress responses and flavonoid metabolism. These analyses will generate experimentally testable hypotheses regarding the putative functions of uncharacterized WRKY homologs in tuning flavonoid accumulation to enhance stress resilience.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
17
|
Saha B, Nayak J, Srivastava R, Samal S, Kumar D, Chanwala J, Dey N, Giri MK. Unraveling the involvement of WRKY TFs in regulating plant disease defense signaling. PLANTA 2023; 259:7. [PMID: 38012461 DOI: 10.1007/s00425-023-04269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
MAIN CONCLUSION This review article explores the intricate role, regulation, and signaling mechanisms of WRKY TFs in response to biotic stress, particularly emphasizing their pivotal role in the trophism of plant-pathogen interactions. Transcription factors (TFs) play a vital role in governing both plant defense and development by controlling the expression of various downstream target genes. Early studies have shown the differential expression of certain WRKY transcription factors by microbial infections. Several transcriptome-wide studies later demonstrated that diverse sets of WRKYs are significantly activated in the early stages of viral, bacterial, and fungal infections. Furthermore, functional investigations indicated that overexpression or silencing of certain WRKY genes in plants can drastically alter disease symptoms as well as pathogen multiplication rates. Hence the new aspects of pathogen-triggered WRKY TFs mediated regulation of plant defense can be explored. The already recognized roles of WRKYs include transcriptional regulation of defense-related genes, modulation of hormonal signaling, and participation in signal transduction pathways. Some WRKYs have been shown to directly bind to pathogen effectors, acting as decoys or resistance proteins. Notably, the signaling molecules like salicylic acid, jasmonic acid, and ethylene which are associated with plant defense significantly increase the expression of several WRKYs. Moreover, induction of WRKY genes or heightened WRKY activities is also observed during ISR triggered by the beneficial microbes which protect the plants from subsequent pathogen infection. To understand the contribution of WRKY TFs towards disease resistance and their exact metabolic functions in infected plants, further studies are required. This review article explores the intrinsic transcriptional regulation, signaling mechanisms, and hormonal crosstalk governed by WRKY TFs in plant disease defense response, particularly emphasizing their specific role against different biotrophic, hemibiotrophic, and necrotrophic pathogen infections.
Collapse
Affiliation(s)
- Baisista Saha
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Jagatjeet Nayak
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India
| | - Richa Srivastava
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Swarnmala Samal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Jeky Chanwala
- Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Nrisingha Dey
- Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Mrunmay Kumar Giri
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
18
|
Chen L, Yang J, Hu H, Jiang Y, Feng L, Liu J, Zhong K, Liu P, Ma Y, Chen M, Yang J. Large-scale phosphoproteome analysis in wheat seedling leaves provides evidence for extensive phosphorylation of regulatory proteins during CWMV infection. BMC PLANT BIOLOGY 2023; 23:532. [PMID: 37914991 PMCID: PMC10621099 DOI: 10.1186/s12870-023-04559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Chinese wheat mosaic virus (CWMV) often causes severe damage to wheat (Triticum aestivum L.) growth and yield. It is well known that a successful infection in plants depends on a complex interaction between the host plant and the pathogen. Post-translational modification (PTM) of proteins is considered to be one of the main processes that decides the outcome of the plant-pathogen arms race during this interaction. Although numerous studies have investigated PTM in various organisms, there has been no large-scale phosphoproteomic analysis of virus-infected wheat plants. We therefore aimed to investigate the CWMV infection-induced phosphoproteomics changes in wheat by high-resolution liquid chromatography-tandem mass spectroscopy (LC-MS/MS) using affinity-enriched peptides followed by comprehensive bioinformatics analysis. RESULTS Through this study, a total of 4095 phosphorylation sites have been identified in 1968 proteins, and 11.6% of the phosphorylated proteins exhibited significant changes (PSPCs) in their phosphorylation levels upon CWMV infection. The result of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that most of the PSPCs were associated with photosynthesis, plant-pathogen interactions, and MAPK signaling pathways. The protein-protein interaction (PPI) network analysis result showed that these PSPCs were mainly participated in the regulation of biosynthesis and metabolism, protein kinase activities, and transcription factors. Furthermore, the phosphorylation levels of TaChi1 and TaP5CS, two plant immunity-related enzymes, were significantly changed upon CWMV infection, resulting in a significant decrease in CWMV accumulation in the infected plants. CONCLUSIONS Our results indicate that phosphorylation modification of protein plays a critical role in wheat resistance to CWMV infection. Upon CWMV infection, wheat plants will regulate the levels of extra- and intra-cellular signals and modifications of enzyme activities via protein phosphorylation. This novel information about the strategies used by wheat to resist CWMV infection will help researchers to breed new CWMV-resistant cultivars and to better understand the arms race between wheat and CWMV.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Crop Sciences, State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jin Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Haichao Hu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lixiao Feng
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jiaqian Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kaili Zhong
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Peng Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Youzhi Ma
- Institute of Crop Sciences, State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Ming Chen
- Institute of Crop Sciences, State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
19
|
Liu Y, Cao Y. GmWRKY17-mediated transcriptional regulation of GmDREB1D and GmABA2 controls drought tolerance in soybean. PLANT MOLECULAR BIOLOGY 2023; 113:157-170. [PMID: 37973764 DOI: 10.1007/s11103-023-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/24/2023] [Indexed: 11/19/2023]
Abstract
Drought affects soybean growth and ultimately led to yield reduction. WRKY transcription factors involve in the regulation of abiotic stress. Few functions of WRKY transcription factors underlying drought tolerance in soybean are clear. Here, we reported a WRKY transcription factor named GmWRKY17 that positively regulates soybean drought tolerance by regulating drought-induced genes and ABA-related genes. Transcriptome sequencing (RNA-Seq) and yeast one hybrid analysis identified downstream genes regulated by GmWRKY17. ChIP-qPCR, EMSA and dual-luciferase reporter assay showed that GmWRKY17 directly bound to the promoters of the GmDREB1D and GmABA2, and activated their expression under drought stress. Overexpression of GmDREB1D gene enhanced drought tolerance of soybean. Taken together, our study revealed a regulatory mechanism that GmWRKY17 transcription factor may improve soybean drought tolerance by mediating ABA synthesis and DREB signaling pathway.
Collapse
Affiliation(s)
- Yi Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yueping Cao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
20
|
Liu S, Liu R, Lv J, Feng Z, Wei F, Zhao L, Zhang Y, Zhu H, Feng H. The glycoside hydrolase 28 member VdEPG1 is a virulence factor of Verticillium dahliae and interacts with the jasmonic acid pathway-related gene GhOPR9. MOLECULAR PLANT PATHOLOGY 2023; 24:1238-1255. [PMID: 37401912 PMCID: PMC10502839 DOI: 10.1111/mpp.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 07/05/2023]
Abstract
Glycoside hydrolase (GH) family members act as virulence factors and regulate plant immune responses during pathogen infection. Here, we characterized the GH28 family member endopolygalacturonase VdEPG1 in Verticillium dahliae. VdEPG1 acts as a virulence factor during V. dahliae infection. The expression level of VdEPG1 was greatly increased in V. dahliae inoculated on cotton roots. VdEPG1 suppressed VdNLP1-mediated cell death by modulating pathogenesis-related genes in Nicotiana benthamiana. Knocking out VdEPG1 led to a significant decrease in the pathogenicity of V. dahliae in cotton. The deletion strains were more susceptible to osmotic stress and the ability of V. dahliae to utilize carbon sources was deficient. In addition, the deletion strains lost the ability to penetrate cellophane membrane, with mycelia showing a disordered arrangement on the membrane, and spore development was affected. A jasmonic acid (JA) pathway-related gene, GhOPR9, was identified as interacting with VdEPG1 in the yeast two-hybrid system. The interaction was further confirmed by bimolecular fluorescence complementation and luciferase complementation imaging assays in N. benthamiana leaves. GhOPR9 plays a positive role in the resistance of cotton to V. dahliae by regulating JA biosynthesis. These results indicate that VdEPG1 may be able to regulate host immune responses as a virulence factor through modulating the GhOPR9-mediated JA biosynthesis.
Collapse
Affiliation(s)
- Shichao Liu
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Spice and Beverage Research InstituteChinese Academy of Tropical Agricultural SciencesWanningHainanChina
| | - Ruibing Liu
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Spice and Beverage Research InstituteChinese Academy of Tropical Agricultural SciencesWanningHainanChina
| | - Junyuan Lv
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
| | - Zili Feng
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
| | - Feng Wei
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Western Agricultural Research Center of Chinese Academy of Agricultural SciencesChinese Academy of Agricultural SciencesChangjiXinjiangChina
| | - Lihong Zhao
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
| | - Yalin Zhang
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
| | - Heqin Zhu
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Western Agricultural Research Center of Chinese Academy of Agricultural SciencesChinese Academy of Agricultural SciencesChangjiXinjiangChina
| | - Hongjie Feng
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Western Agricultural Research Center of Chinese Academy of Agricultural SciencesChinese Academy of Agricultural SciencesChangjiXinjiangChina
| |
Collapse
|
21
|
Sasaki Y, González-Tobón J, Hino Y, Jin C, Li T, Nguyen TAN, Oakley B, Stevens D. 12th Japan-US Seminar in Plant Pathology Meeting Report. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:549-553. [PMID: 37102778 DOI: 10.1094/mpmi-04-23-0041-mr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The 12th iteration of the Japan-US Seminar in Plant Pathology was held in Ithaca, New York at Cornell University in the fall of 2022. Presentations covered a range of topics under the theme "Remodeling of the Plant-Microbe Environment During Disease, Defense, and Mutualism," and the meeting included a panel discussion of best practices in science communication. This report presents highlights of the meeting, from the perspective of early career participants of the seminar. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yumino Sasaki
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Juliana González-Tobón
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Yuta Hino
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chujia Jin
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tianrun Li
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, U.S.A
| | - Tan Anh Nhi Nguyen
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Blake Oakley
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, U.S.A
| | - Danielle Stevens
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, U.S.A
| |
Collapse
|
22
|
Ghorbel M, Haddaji N, Feki K, Tounsi S, Chihaoui M, Alghamdi A, Mseddi K, Brini F. Identification of a putative kinase interacting domain in the durum wheat catalase 1 (TdCAT1) protein. Heliyon 2023; 9:e18916. [PMID: 37609422 PMCID: PMC10440534 DOI: 10.1016/j.heliyon.2023.e18916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Catalases are crucial antioxidant enzymes that regulate plants responses to different biotic and abiotic stresses. It has been previously shown that the activities of durum wheat catalase proteins (TdCAT1) were stimulated in the presence of divalent cations Mn2+, Mg2+, Fe2+, Zn2+, and Ca2+. In addition, TdCAT1s can interact with calmodulins in calcium-independent manner, and this interaction stimulates its catalytic activity in a calcium-dependent manner. Moreover, this activity is further enhanced by Mn2+ cations. The current study showed that wheat catalase presents different phosphorylation targets. Besides, we demonstrated that catalase is able to interact with Mitogen Activated Proteins kinases via a conserved domain. This interaction activates wheat catalase independently of its phosphorylation status but is more promoted by Mn2+, Fe2+ and Ca2+ divalent cations. Interestingly, we have demonstrated that durum wheat catalase activity is differentially regulated by Mitogen Activated Proteins kinases and Calmodulins in the presence of calcium. Moreover, the V0 of the reaction increase gradually following the increasing quantities of Mn2+ divalent cations. Such results have never been described before and suggest i) complex regulatory mechanisms exerted on wheat catalase, ii) divalent cations (Mn2+; Mg2+; Ca2+ and Fe2+) act as key cofactors in these regulatory mechanisms.
Collapse
Affiliation(s)
- Mouna Ghorbel
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha'il City, 81451, Saudi Arabia
| | - Najla Haddaji
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha'il City, 81451, Saudi Arabia
| | - Kaouthar Feki
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, P.O. Box 1177, Sfax, 3018, Tunisia
| | - Sana Tounsi
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, P.O. Box 1177, Sfax, 3018, Tunisia
| | - Mejda Chihaoui
- Computer Science Departement, Applied College- University of Ha'il, P.O. Box 2440, Ha'il City, 81451, Saudi Arabia
| | - Ahmad Alghamdi
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha'il City, 81451, Saudi Arabia
| | - Khalil Mseddi
- Department of Biology, Faculty of Science of Sfax, University of Sfax, Sfax, 3000, Tunisia
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, P.O. Box 1177, Sfax, 3018, Tunisia
| |
Collapse
|
23
|
Liu W, Yan C, Li R, Chen G, Wang X, Wen Y, Zhang C, Wang X, Xu Y, Wang Y. VqMAPK3/VqMAPK6, VqWRKY33, and VqNSTS3 constitute a regulatory node in enhancing resistance to powdery mildew in grapevine. HORTICULTURE RESEARCH 2023; 10:uhad116. [PMID: 37786728 PMCID: PMC10541564 DOI: 10.1093/hr/uhad116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/21/2023] [Indexed: 10/04/2023]
Abstract
Grapevine powdery mildew is caused by Erysiphe necator, which seriously harms grape production in the world. Stilbene synthase makes phytoalexins that contribute to the resistance of grapevine against powdery mildew. A novel VqNSTS3 was identified and cloned from Chinese wild Vitis quinquangularis accession Danfeng-2. The novel VqNSTS3 was transferred into susceptible 'Thompson Seedless' by Agrobacterium-mediated transformation. The transgenic plants showed resistance to the disease and activated other resistance-related genes. VqNSTS3 expression in grapevine is regulated by VqWRKY33, and which binds to TTGACC in the VqNSTS3 promoter. Furthermore, VqWRKY33 was phosphorylated by VqMAPK3/VqMAPK6 and thus led to enhanced signal transduction and increased VqNSTS3 expression. ProVqNSTS3::VqNSTS3-GFP of transgenic VqNSTS3 in Arabidopsis thaliana was observed to move to and wrap the pathogen's haustoria and block invasion by Golovinomyces cichoracearum. These results demonstrate that stilbene accumulation of novel VqNSTS3 of the Chinese wild Vitis quinquangularis accession Danfeng-2 prevented pathogen invasion and enhanced resistance to powdery mildew. Therefore, VqNSTS3 can be used in generating powdery mildew-resistant grapevines.
Collapse
Affiliation(s)
- Wandi Liu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Chaohui Yan
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ruimin Li
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Guanyu Chen
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xinqi Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yingqiang Wen
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Chaohong Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xiping Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yan Xu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
24
|
Zhang F, Kong C, Ma Z, Chen W, Li Y, Lou H, Wu J. Molecular characterization and transcriptional regulation analysis of the Torreya grandis squalene synthase gene involved in sitosterol biosynthesis and drought response. FRONTIERS IN PLANT SCIENCE 2023; 14:1136643. [PMID: 37409301 PMCID: PMC10318344 DOI: 10.3389/fpls.2023.1136643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023]
Abstract
The kernel of Torreya grandis cv. 'Merrillii' (Cephalotaxaceae) is a rare nut with a variety of bioactive compounds and a high economic value. β-sitosterol is not only the most abundant plant sterol but also has various biological effects, such as antimicrobial, anticancer, anti-inflammatory, lipid-lowering, antioxidant, and antidiabetic activities. In this study, a squalene synthase gene from T. grandis, TgSQS, was identified and functionally characterized. TgSQS encodes a deduced protein of 410 amino acids. Prokaryotic expression of the TgSQS protein could catalyze farnesyl diphosphate to produce squalene. Transgenic Arabidopsis plants overexpressing TgSQS showed a significant increase in the content of both squalene and β-sitosterol; moreover, their drought tolerance was also stronger than that of the wild type. Transcriptome data from T. grandis seedlings showed that the expression levels of sterol biosynthesis pathway-related genes, such as HMGS, HMGR, MK, DXS, IPPI, FPPS, SQS, and DWF1, increased significantly after drought treatment. We also demonstrated that TgWRKY3 directly bound to the TgSQS promoter region and regulated its expression through a yeast one-hybrid experiment and a dual luciferase experiment. Together, these findings demonstrate that TgSQS has a positive role in β-sitosterol biosynthesis and in protecting against drought stress, emphasizing its importance as a metabolic engineering tool for the simultaneous improvement of β-sitosterol biosynthesis and drought tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | - Heqiang Lou
- *Correspondence: Heqiang Lou, ; Jiasheng Wu,
| | - Jiasheng Wu
- *Correspondence: Heqiang Lou, ; Jiasheng Wu,
| |
Collapse
|
25
|
Deng B, Gu X, Chen S, Zhang M, Hao S, Wei L, Cao Y, Hu S. Genome-wide analysis and characterization of Dendrocalamus farinosus SUT gene family reveal DfSUT4 involvement in sucrose transportation in plants. FRONTIERS IN PLANT SCIENCE 2023; 13:1118398. [PMID: 36743582 PMCID: PMC9895956 DOI: 10.3389/fpls.2022.1118398] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Sucrose is the main transported form of photosynthetic products. Sucrose transporter (SUT) participates in the translocation of sucrose from source to sink, which is important for the growth and development of plants. Dendrocalamus farinosus is an important economic crop in southwestern China because of its high growth rate, high fiber content, and dual usage for food and timber, but the mechanism of sucrose transportation in D. farinosus is unclear. In this study, a total of 12 SUT transporter genes were determined in D. farinosus by whole-genome identification. DfSUT2, DfSUT7, and DfSUT11 were homologs of rice OsSUT2, while DfSUT4 was a homolog of OsSUT4, and these four DfSUT genes were expressed in the leaf, internode, node, and bamboo shoots of D. farinosus. In addition, DfSUT family genes were involved in photosynthetic product distribution, ABA/MeJA responses, and drought resistance, especially DfSUT4. The function of DfSUT4 was then verified in Nicotiana tabacum. DfSUT4 was localized mainly in the leaf mesophyll and stem phloem of pDfSUT4::GUS transgenic plant. The overexpression of DfSUT4 gene in transgenic plant showed increases of photosynthetic rate, above-ground biomass, thousand grain weight, and cellulose content. Our findings altogether indicate that DfSUT4 can be a candidate gene that can be involved in phloem sucrose transportation from the source leaves to the sink organs, phytohormone responses, abiotic stress, and fiber formation in plants, which is very important in the genetic improvement of D. farinosus and other crops.
Collapse
Affiliation(s)
- Bin Deng
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, Sichuan, China
| | - Xiaoyan Gu
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, Sichuan, China
| | - Sen Chen
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, Sichuan, China
| | - Meng Zhang
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, Sichuan, China
| | - Suwei Hao
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, Sichuan, China
| | - Lixian Wei
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, Sichuan, China
| | - Ying Cao
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, Sichuan, China
| | - Shanglian Hu
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Engineering Research Center for Biomass Resource Utilizaiton and Modification of Sichuan Province, Mianyang, Sichuan, China
| |
Collapse
|
26
|
Li Z, Liu J, Ma W, Li X. Characteristics, Roles and Applications of Proteinaceous Elicitors from Pathogens in Plant Immunity. Life (Basel) 2023; 13:life13020268. [PMID: 36836624 PMCID: PMC9960299 DOI: 10.3390/life13020268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
In interactions between pathogens and plants, pathogens secrete many molecules that facilitate plant infection, and some of these compounds are recognized by plant pattern recognition receptors (PRRs), which induce immune responses. Molecules in both pathogens and plants that trigger immune responses in plants are termed elicitors. On the basis of their chemical content, elicitors can be classified into carbohydrates, lipopeptides, proteinaceous compounds and other types. Although many studies have focused on the involvement of elicitors in plants, especially on pathophysiological changes induced by elicitors in plants and the mechanisms mediating these changes, there is a lack of up-to-date reviews on the characteristics and functions of proteinaceous elicitors. In this mini-review, we provide an overview of the up-to-date knowledge on several important families of pathogenic proteinaceous elicitors (i.e., harpins, necrosis- and ethylene-inducing peptide 1 (nep1)-like proteins (NLPs) and elicitins), focusing mainly on their structures, characteristics and effects on plants, specifically on their roles in plant immune responses. A solid understanding of elicitors may be helpful to decrease the use of agrochemicals in agriculture and gardening, generate more resistant germplasms and increase crop yields.
Collapse
Affiliation(s)
- Zhangqun Li
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
- Institute of Biopharmaceuticals, Taizhou University, Taizhou 318000, China
- Correspondence:
| | - Junnan Liu
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Wenting Ma
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Xiaofang Li
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China
- Institute of Biopharmaceuticals, Taizhou University, Taizhou 318000, China
| |
Collapse
|
27
|
Lv J, Zhou J, Chang B, Zhang Y, Feng Z, Wei F, Zhao L, Zhang Y, Feng H. Two Metalloproteases VdM35-1 and VdASPF2 from Verticillium dahliae Are Required for Fungal Pathogenicity, Stress Adaptation, and Activating Immune Response of Host. Microbiol Spectr 2022; 10:e0247722. [PMID: 36222688 PMCID: PMC9769895 DOI: 10.1128/spectrum.02477-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 01/06/2023] Open
Abstract
Verticillium dahliae is a soilborne fungus that causes destructive vascular wilt diseases in a wide range of plant hosts. In this study, we identified two M35 family metalloproteinases: VdM35-1 and VdASPF2, and investigated their function in vitro and in vivo. The results showed that VdM35-1 and VdASPF2 were located in the cell membrane, as secreted proteins depended on signal peptide, and two histidine residues (H) induced cell death and activated plant immune response. VdM35-1 depended on membrane receptor proteins NbBAK1 and NbSOBIR1 in the process of inducing cell death, while VdASPF2 did not depend on them. The deletion of VdM35-1 and VdASPF2 led to the decrease of sporulation and the slow shortening of mycelial branch growth, and the spore morphology of VdM35-1-deficient strain became malformed. In addition, ΔVdM35-1 and ΔVdASPF2 showed more sensitive to osmotic stress, SDS, Congo red (CR), and high temperature. In terms of the utilization of carbon sources, the knockout mutants exhibited decreased utilization of carbon sources, and the growth rates on the medium containing sucrose, starch, and pectin were lower than the wild type strain, with significantly limited growth, especially on galactose-containing medium. Furthermore, ΔVdM35-1 and ΔVdASPF2 showed a significant reduction in pathogenicity. Collectively, these results suggested that VdM35-1 and VdASPF2 were important multifunction factors in the pathogenicity of V. dahliae and relative to stress adaptation and activated plant immune response. IMPORTANCE Verticillium wilt, caused by the notorious fungal pathogen V. dahliae, is one of the main limiting factors for agricultural production. Metalloproteases played an important role in the pathogenic mechanism of pathogens. Our research found that M35 family metalloproteases VdM35-1 and VdASPF2 played an important role in the development, adaptability, and pathogenicity of V. dahliae, providing a new perspective for further understanding the molecular mechanism of virulence of fungal pathogens.
Collapse
Affiliation(s)
- Junyuan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - BaiYang Chang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Yihao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| |
Collapse
|
28
|
Nguyen NK, Wang J, Liu D, Hwang BK, Jwa NS. Rice iron storage protein ferritin 2 (OsFER2) positively regulates ferroptotic cell death and defense responses against Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2022; 13:1019669. [PMID: 36352872 PMCID: PMC9639352 DOI: 10.3389/fpls.2022.1019669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Ferritin is a ubiquitous iron storage protein that regulates iron homeostasis and oxidative stress in plants. Iron plays an important role in ferroptotic cell death response of rice (Oryza sativa) to Magnaporthe oryzae infection. Here, we report that rice ferritin 2, OsFER2, is required for iron- and reactive oxygen species (ROS)-dependent ferroptotic cell death and defense response against the avirulent M. oryzae INA168. The full-length ferritin OsFER2 and its transit peptide were localized to the chloroplast, the most Fe-rich organelle for photosynthesis. This suggests that the transit peptide acts as a signal peptide for the rice ferritin OsFER2 to move into chloroplasts. OsFER2 expression is involved in rice resistance to M. oryzae infection. OsFER2 knock-out in wild-type rice HY did not induce ROS and ferric ion (Fe3+) accumulation, lipid peroxidation and hypersensitive response (HR) cell death, and also downregulated the defense-related genes OsPAL1, OsPR1-b, OsRbohB, OsNADP-ME2-3, OsMEK2 and OsMPK1, and vacuolar membrane transporter OsVIT2 expression. OsFER2 complementation in ΔOsfer2 knock-out mutants restored ROS and iron accumulation and HR cell death phenotypes during infection. The iron chelator deferoxamine, the lipid-ROS scavenger ferrostatin-1, the actin microfilament polymerization inhibitor cytochalasin E and the redox inhibitor diphenyleneiodonium suppressed ROS and iron accumulation and HR cell death in rice leaf sheaths. However, the small-molecule inducer erastin did not trigger iron-dependent ROS accumulation and HR cell death induction in ΔOsfer2 mutants. These combined results suggest that OsFER2 expression positively regulates iron- and ROS-dependent ferroptotic cell death and defense response in rice-M. oryzae interactions.
Collapse
Affiliation(s)
- Nam Khoa Nguyen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Juan Wang
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Dongping Liu
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| |
Collapse
|
29
|
Wang L, Guo D, Zhao G, Wang J, Zhang S, Wang C, Guo X. Group IIc WRKY transcription factors regulate cotton resistance to Fusarium oxysporum by promoting GhMKK2-mediated flavonoid biosynthesis. THE NEW PHYTOLOGIST 2022; 236:249-265. [PMID: 35727190 DOI: 10.1111/nph.18329] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/09/2022] [Indexed: 05/20/2023]
Abstract
WRKY transcription factors (TFs) are crucial regulators in response to pathogen infection. However, the regulatory mechanisms of WRKY TFs in response to Fusarium oxysporum f. sp. vasinfectum (Fov), the most devastating pathogen of cotton, remain unclear. Here, transcriptome sequencing indicated that the group IIc WRKY TF subfamily was the most important TF subfamily in response to Fov. Gain-of-function and loss-of-function analyses showed that group IIc WRKY TFs positively regulated cotton resistance to Fov. A series of chromatin immunoprecipitation sequencing, yeast one-hybrid assay and electrophoresis mobility shift assay experiments indicated that group IIc WRKY TFs directly bound to the promoter of GhMKK2 and regulated its expression. Importantly, a novel mitogen-activated protein kinase (MAPK) cascade composed of GhMKK2, GhNTF6 and GhMYC2 was identified. The functional analysis indicated that group IIc WRKY TFs induced the GhMKK2-GhNTF6 pathway to increase resistance to Fov by upregulating the GhMYC2-mediated expression of several flavonoid biosynthesis-related genes, which led to flavonoid accumulation. In conclusion, our study demonstrated a novel disease defense mechanism by which the WRKY-MAPK pathway promotes flavonoid biosynthesis to defend against pathogen infection. This pathway improves our understanding of the interaction mode between WRKY TFs and MAPK cascades in plant immunity and the vital role of plant flavonoids in pathogen defense.
Collapse
Affiliation(s)
- Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jiayu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shuxin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
30
|
Gao H, Jiang L, Du B, Ning B, Ding X, Zhang C, Song B, Liu S, Zhao M, Zhao Y, Rong T, Liu D, Wu J, Xu P, Zhang S. GmMKK4-activated GmMPK6 stimulates GmERF113 to trigger resistance to Phytophthora sojae in soybean. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:473-495. [PMID: 35562858 DOI: 10.1111/tpj.15809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Phytophthora root and stem rot is a worldwide soybean (Glycine max) disease caused by the soil-borne pathogen Phytophthora sojae. This disease is devastating to soybean production, so improvement of resistance to P. sojae is a major target in soybean breeding. Mitogen-activated protein kinase (MAPK) cascades are important signaling modules that convert environmental stimuli into cellular responses. Compared with extensive studies in Arabidopsis, the molecular mechanism of MAPK cascades in soybean disease resistance is barely elucidated. In this work, we found that the gene expression of mitogen-activated protein kinase 6 (GmMPK6) was potently induced by P. sojae infection in the disease-resistant soybean cultivar 'Suinong 10'. Overexpression of GmMPK6 in soybean resulted in enhanced resistance to P. sojae and silencing of GmMPK6 led to the opposite phenotype. In our attempt to dissect the role of GmMPK6 in soybean resistance to phytophthora disease, we found that MAPK kinase 4 (GmMKK4) and the ERF transcription factor GmERF113 physically interact with GmMPK6, and we determined that GmMKK4 could phosphorylate and activate GmMPK6, which could subsequently phosphorylate GmERF113 upon P. sojae infection, suggesting that P. sojae can stimulate the GmMKK4-GmMPK6-GmERF113 signaling pathway in soybean. Moreover, phosphorylation of GmERF113 by the GmMKK4-GmMPK6 module promoted GmERF113 stability, nuclear localization and transcriptional activity, which significantly enhanced expression of the defense-related genes GmPR1 and GmPR10-1 and hence improved disease resistance of the transgenic soybean seedlings. In all, our data reveal that the GmMKK4-GmMPK6-GmERF113 cascade triggers resistance to P. sojae in soybean and shed light on functions of MAPK kinases in plant disease resistance.
Collapse
Affiliation(s)
- Hong Gao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Liangyu Jiang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
- Jilin Agricultural University, Changchun, 130118, China
| | - Banghan Du
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Bin Ning
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Xiaodong Ding
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Chuanzhong Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Bo Song
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Shanshan Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Ming Zhao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Yuxin Zhao
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Tianyu Rong
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Dongxue Liu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Junjiang Wu
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation of Ministry of Agriculture P. R. China, Harbin, 150086, China
| | - Pengfei Xu
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| | - Shuzhen Zhang
- Soybean Research Institute, Northeast Agricultural University/Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin, 150030, China
| |
Collapse
|
31
|
Cooperative regulation of PBI1 and MAPKs controls WRKY45 transcription factor in rice immunity. Nat Commun 2022; 13:2397. [PMID: 35577789 PMCID: PMC9110426 DOI: 10.1038/s41467-022-30131-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
The U-box type ubiquitin ligase PUB44 positively regulates pattern-triggered immunity in rice. Here, we identify PBI1, a protein that interacts with PUB44. Crystal structure analysis indicates that PBI1 forms a four-helix bundle structure. PBI1 also interacts with WRKY45, a master transcriptional activator of rice immunity, and negatively regulates its activity. PBI1 is degraded upon perception of chitin, and this is suppressed by silencing of PUB44 or expression of XopP, indicating that PBI1 degradation depends on PUB44. These data suggest that PBI1 suppresses WRKY45 activity when cells are in an unelicited state, and during chitin signaling, PUB44-mediated degradation of PBI1 leads to activation of WRKY45. In addition, chitin-induced MAP kinase activation is required for WRKY45 activation and PBI1 degradation. These results demonstrate that chitin-induced activation of WRKY45 is regulated by the cooperation between MAP kinase-mediated phosphorylation and PUB44-mediated PBI1 degradation. The U-box type ubiquitin ligase PUB44 positively regulates pattern-triggered immunity in rice. Here the authors identify a PUB44 substrate whose degradation is required for activation of the WRKY45 transcription factor upon immune elicitation.
Collapse
|
32
|
Lapin D, Johanndrees O, Wu Z, Li X, Parker JE. Molecular innovations in plant TIR-based immunity signaling. THE PLANT CELL 2022; 34:1479-1496. [PMID: 35143666 PMCID: PMC9153377 DOI: 10.1093/plcell/koac035] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/27/2022] [Indexed: 05/19/2023]
Abstract
A protein domain (Toll and Interleukin-1 receptor [TIR]-like) with homology to animal TIRs mediates immune signaling in prokaryotes and eukaryotes. Here, we present an overview of TIR evolution and the molecular versatility of TIR domains in different protein architectures for host protection against microbial attack. Plant TIR-based signaling emerges as being central to the potentiation and effectiveness of host defenses triggered by intracellular and cell-surface immune receptors. Equally relevant for plant fitness are mechanisms that limit potent TIR signaling in healthy tissues but maintain preparedness for infection. We propose that seed plants evolved a specialized protein module to selectively translate TIR enzymatic activities to defense outputs, overlaying a more general function of TIRs.
Collapse
Affiliation(s)
- Dmitry Lapin
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Oliver Johanndrees
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Zhongshou Wu
- Michael Smith Labs and Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Labs and Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Duesseldorf 40225, Germany
| |
Collapse
|
33
|
Raffeiner M, Üstün S, Guerra T, Spinti D, Fitzner M, Sonnewald S, Baldermann S, Börnke F. The Xanthomonas type-III effector XopS stabilizes CaWRKY40a to regulate defense responses and stomatal immunity in pepper (Capsicum annuum). THE PLANT CELL 2022; 34:1684-1708. [PMID: 35134217 PMCID: PMC9048924 DOI: 10.1093/plcell/koac032] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/20/2022] [Indexed: 05/26/2023]
Abstract
As a critical part of plant immunity, cells that are attacked by pathogens undergo rapid transcriptional reprogramming to minimize virulence. Many bacterial phytopathogens use type III effector (T3E) proteins to interfere with plant defense responses, including this transcriptional reprogramming. Here, we show that Xanthomonas outer protein S (XopS), a T3E of Xanthomonas campestris pv. vesicatoria (Xcv), interacts with and inhibits proteasomal degradation of WRKY40, a transcriptional regulator of defense gene expression. Virus-induced gene silencing of WRKY40 in pepper (Capsicum annuum) enhanced plant tolerance to Xcv infection, indicating that WRKY40 represses immunity. Stabilization of WRKY40 by XopS reduces the expression of its targets, which include salicylic acid-responsive genes and the jasmonic acid signaling repressor JAZ8. Xcv bacteria lacking XopS display significantly reduced virulence when surface inoculated onto susceptible pepper leaves. XopS delivery by Xcv, as well as ectopic expression of XopS in Arabidopsis thaliana or Nicotiana benthamiana, prevented stomatal closure in response to bacteria and biotic elicitors. Silencing WRKY40 in pepper or N. benthamiana abolished XopS's ability to prevent stomatal closure. This suggests that XopS interferes with both preinvasion and apoplastic defense by manipulating WRKY40 stability and downstream gene expression, eventually altering phytohormone crosstalk to promote pathogen proliferation.
Collapse
Affiliation(s)
- Margot Raffeiner
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren 14979, Germany
| | | | - Tiziana Guerra
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren 14979, Germany
| | - Daniela Spinti
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| | - Maria Fitzner
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren 14979, Germany
| | - Sophia Sonnewald
- Department of Biology, Division of Biochemistry, Friedrich-Alexander-Universität, Erlangen 91058, Germany
| | - Susanne Baldermann
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren 14979, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal 14558, Germany
| | | |
Collapse
|
34
|
Yang S, Zhang X, Zhang X, Bi Y, Gao W. A bZIP transcription factor, PqbZIP1, is involved in the plant defense response of American ginseng. PeerJ 2022; 10:e12939. [PMID: 35282281 PMCID: PMC8916028 DOI: 10.7717/peerj.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
American ginseng (Panax quinquefolius L.) is a perennial medicinal plant that has a long usage history in China. However, root rot, which is mainly caused by Fusarium solani can severely reduce the yield and quality of American ginseng, but no disease-resistant variety of American ginseng exists, and the resistance against this disease is not yet well understood. Thus, it is very urgent to analyze the interaction mechanism regulating the interactions between American ginseng and F. solani to mine disease resistance genes. Using transcriptome data and quantitative polymerase chain reaction (qPCR), we screened the transcription factor PqbZIP1 in response to induction by chitin. Yeast self-activation and subcellular localization experiments proved that PqbZIP1 showed transcriptional activity and was localized in the plant nucleus. In addition, qPCR showed that the highest relative expression level was in the roots, wherein chitin and F. solani inhibited and activated the expression of PqbZIP1, respectively, in American ginseng. Additionally, PqbZIP1 significantly inhibited the growth of the Pseudomonas syringae pv. tomato D36E strain in Nicotiana benthamiana, where expressing PqbZIP1 in N. benthamiana increased the jasmonic acid, salicylic acid, and abscisic acid content. Furthermore, PqbZIP1 expression was continually increased upon inoculation with F. solani. Hence, this study revealed that the PqbZIP1 transcription factor might mediate multiple hormonal signaling pathway to modulate root rot disease resistance in American ginseng, and provided important information to breed disease-resistant American ginseng.
Collapse
Affiliation(s)
- Shanshan Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoxiao Zhang
- College of Agriculture, Guangxi University, Nanning, China,Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ximei Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanmeng Bi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Weiwei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Sun T, Zhang Y. MAP kinase cascades in plant development and immune signaling. EMBO Rep 2022; 23:e53817. [PMID: 35041234 PMCID: PMC8811656 DOI: 10.15252/embr.202153817] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/26/2021] [Accepted: 01/01/2022] [Indexed: 02/05/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are important signaling modules regulating diverse biological processes. During the past 20 years, much progress has been made on the functions of MAPK cascades in plants. This review summarizes the roles of MAPKs, known MAPK substrates, and our current understanding of MAPK cascades in plant development and innate immunity. In addition, recent findings on the molecular links connecting surface receptors to MAPK cascades and the mechanisms underlying MAPK signaling specificity are also discussed.
Collapse
Affiliation(s)
- Tongjun Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yuelin Zhang
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
36
|
Imano S, Fushimi M, Camagna M, Tsuyama-Koike A, Mori H, Ashida A, Tanaka A, Sato I, Chiba S, Kawakita K, Ojika M, Takemoto D. AP2/ERF Transcription Factor NbERF-IX-33 Is Involved in the Regulation of Phytoalexin Production for the Resistance of Nicotiana benthamiana to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2022; 12:821574. [PMID: 35154216 PMCID: PMC8830488 DOI: 10.3389/fpls.2021.821574] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Plants recognize molecular patterns unique to a certain group of microbes to induce effective resistance mechanisms. Elicitins are secretory proteins produced by plant pathogenic oomycete genera including Phytophthora and Pythium. Treatment of INF1 (an elicitin produced by P. infestans) induces a series of defense responses in Nicotiana species, including reactive oxygen species (ROS) production, transient induction of ethylene production, hypersensitive cell death and accumulation of the sesquiterpenoid phytoalexin capsidiol. In this study, we analyzed the expression profiles of N. benthamiana genes after INF1 treatment by RNAseq analysis. Based on their expression patterns, N. benthamiana genes were categorized into 20 clusters and 4,761 (8.3%) out of 57,140 genes were assigned to the clusters for INF1-induced genes. All genes encoding enzymes dedicated to capsidiol production, 5-epi-aristolochene (EA) synthase (NbEAS, 10 copies) and EA dehydrogenase (NbEAH, 6 copies), and some genes for ethylene production, such as 1-aminocyclopropane 1-carboxylate (ACC) synthase (NbACS) and ACC oxidase (NbACO), were significantly upregulated by INF1 treatment. Analysis of NbEAS1 and NbEAS4 promoters revealed that AGACGCC (GCC box-like motif) is the essential cis-element required for INF1-induced expression of NbEAS genes. Given that the GCC box is known to be targeted by ERF (ethylene-responsive factor) transcription factors, we created a complete list of N. benthamiana genes encoding AP2/ERF family transcription factors, and identified 45 out of 337 AP2/ERF genes in the clusters for INF1-induced genes. Among INF1-induced NbERF genes, silencing of NbERF-IX-33 compromised resistance against P. infestans and INF1-induced production of capsidiol. Recombinant NbERF-IX-33 protein can bind to the promoter sequence of NbEAS4, suggesting that NbERF-IX-33 is a transcription factor directly regulating the expression of genes for phytoalexin production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
37
|
Jiang L, Zhang S, Su J, Peck SC, Luo L. Protein Kinase Signaling Pathways in Plant- Colletotrichum Interaction. FRONTIERS IN PLANT SCIENCE 2022; 12:829645. [PMID: 35126439 PMCID: PMC8811371 DOI: 10.3389/fpls.2021.829645] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Anthracnose is a fungal disease caused by members of Colletotrichum that affect a wide range of crop plants. Strategies to improve crop resistance are needed to reduce the yield losses; and one strategy is to manipulate protein kinases that catalyze reversible phosphorylation of proteins regulating both plant immune responses and fungal pathogenesis. Hence, in this review, we present a summary of the current knowledge of protein kinase signaling pathways in plant-Colletotrichum interaction as well as the relation to a more general understanding of protein kinases that contribute to plant immunity and pathogen virulence. We highlight the potential of combining genomic resources and phosphoproteomics research to unravel the key molecular components of plant-Colletotrichum interactions. Understanding the molecular interactions between plants and Colletotrichum would not only facilitate molecular breeding of resistant cultivars but also help the development of novel strategies for controlling the anthracnose disease.
Collapse
Affiliation(s)
- Lingyan Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Shizi Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Jianbin Su
- Division of Plant Sciences, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Scott C. Peck
- Division of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Lijuan Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
38
|
Yang W, Hu J, Behera JR, Kilaru A, Yuan Y, Zhai Y, Xu Y, Xie L, Zhang Y, Zhang Q, Niu L. A Tree Peony Trihelix Transcription Factor PrASIL1 Represses Seed Oil Accumulation. FRONTIERS IN PLANT SCIENCE 2021; 12:796181. [PMID: 34956296 PMCID: PMC8702530 DOI: 10.3389/fpls.2021.796181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 05/31/2023]
Abstract
In many higher plants, seed oil accumulation is governed by complex multilevel regulatory networks including transcriptional regulation, which primarily affects fatty acid biosynthesis. Tree peony (Paeonia rockii), a perennial deciduous shrub endemic to China is notable for its seed oil that is abundant in unsaturated fatty acids. We discovered that a tree peony trihelix transcription factor, PrASIL1, localized in the nucleus, is expressed predominantly in developing seeds during maturation. Ectopic overexpression of PrASIL1 in Nicotiana benthamiana leaf tissue and Arabidopsis thaliana seeds significantly reduced total fatty acids and altered the fatty acid composition. These changes were in turn associated with the decreased expression of multitudinous genes involved in plastidial fatty acid synthesis and oil accumulation. Thus, we inferred that PrASIL1 is a critical transcription factor that represses oil accumulation by down-regulating numerous key genes during seed oil biosynthesis. In contrary, up-regulation of oil biosynthesis genes and a significant increase in total lipids and several major fatty acids were observed in PrASIL1-silenced tree peony leaves. Together, these results provide insights into the role of trihelix transcription factor PrASIL1 in controlling seed oil accumulation. PrASIL1 can be targeted potentially for oil enhancement in tree peony and other crops through gene manipulation.
Collapse
Affiliation(s)
- Weizong Yang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Jiayuan Hu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Jyoti R. Behera
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Yanping Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Yuhui Zhai
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Yanfeng Xu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Lihang Xie
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Qingyu Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling, China
| |
Collapse
|
39
|
Shan D, Wang C, Song H, Bai Y, Zhang H, Hu Z, Wang L, Shi K, Zheng X, Yan T, Sun Y, Zhu Y, Zhang T, Zhou Z, Guo Y, Kong J. The MdMEK2-MdMPK6-MdWRKY17 pathway stabilizes chlorophyll levels by directly regulating MdSUFB in apple under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:814-828. [PMID: 34469599 DOI: 10.1111/tpj.15480] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Drought stress severely limits plant growth and production in apple (Malus domestica Borkh.). To breed water-deficit-tolerant apple cultivars that maintain high yields under slight or moderate drought stress, it is important to uncover the mechanisms underlying the transcriptional regulation of chlorophyll metabolism in apple. To explore this mechanism, we generated transgenic 'Gala3' apple plants with overexpression or knockdown of MdWRKY17, which encodes a transcription factor whose expression is significantly induced by water deficit. Under moderate drought stress, we observed significantly higher chlorophyll contents and photosynthesis rates in overexpression transgenic plants than in controls, whereas these were dramatically lower in the knockdown lines. MdWRKY17 directly regulates MdSUFB expression, as demonstrated by in vitro and in vivo experiments. MdSUFB, a key component of the sulfur mobilization (SUF) system that assembles Fe-S clusters, is essential for inhibiting chlorophyll degradation and stabilizing electron transport during photosynthesis, leading to higher chlorophyll levels in transgenic apple plants overexpressing MdWRKY17. The activated MdMEK2-MdMPK6 cascade by water-deficit stress fine-tunes the MdWRKY17-MdSUFB pathway by phosphorylating MdWRKY17 under water-deficit stress. This fine-tuning of the MdWRKY17-MdSUFB regulatory pathway is important for balancing plant survival and yield losses (chlorophyll degradation and reduced photosynthesis) under slight or moderate drought stress. The phosphorylation by MdMEK2-MdMPK6 activates the MdWRKY17-MdSUFB pathway at S66 (identified by LC-MS), as demonstrated by in vitro and in vivo experiments. Our findings reveal that the MdMEK2-MdMPK6-MdWRKY17-MdSUFB pathway stabilizes chlorophyll levels under moderate drought stress, which could facilitate the breeding of apple varieties that maintain high yields under drought stress.
Collapse
Affiliation(s)
- Dongqian Shan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chanyu Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Handong Song
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yixue Bai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Haixia Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zehui Hu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lin Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kun Shi
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaodong Zheng
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tianci Yan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanzhao Sun
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yunpeng Zhu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhaoyang Zhou
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
40
|
Wang T, Zhang X. Genome-wide dynamic network analysis reveals the potential genes for MeJA-induced growth-to-defense transition. BMC PLANT BIOLOGY 2021; 21:450. [PMID: 34615468 PMCID: PMC8493714 DOI: 10.1186/s12870-021-03185-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/23/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Methyl jasmonate (MeJA), which has been identified as a lipid-derived stress hormone, mediates plant resistance to biotic/abiotic stress. Understanding MeJA-induced plant defense provides insight into how they responding to environmental stimuli. RESULT In this work, the dynamic network analysis method was used to quantitatively identify the tipping point of growth-to-defense transition and detect the associated genes. As a result, 146 genes were detected as dynamic network biomarker (DNB) members and the critical defense transition was identified based on dense time-series RNA-seq data of MeJA-treated Arabidopsis thaliana. The GO functional analysis showed that these DNB genes were significantly enriched in defense terms. The network analysis between DNB genes and differentially expressed genes showed that the hub genes including SYP121, SYP122, WRKY33 and MPK11 play a vital role in plant growth-to-defense transition. CONCLUSIONS Based on the dynamic network analysis of MeJA-induced plant resistance, we provide an important guideline for understanding the growth-to-defense transition of plants' response to environment stimuli. This study also provides a database with the key genes of plant defense induced by MeJA.
Collapse
Affiliation(s)
- Tengfei Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, 430074, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiujun Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074, Wuhan, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, 430074, Wuhan, China.
| |
Collapse
|
41
|
Liu L, Wang Z, Li J, Wang Y, Yuan J, Zhan J, Wang P, Lin Y, Li F, Ge X. Verticillium dahliae secreted protein Vd424Y is required for full virulence, targets the nucleus of plant cells, and induces cell death. MOLECULAR PLANT PATHOLOGY 2021; 22:1109-1120. [PMID: 34233072 PMCID: PMC8358993 DOI: 10.1111/mpp.13100] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 05/09/2021] [Accepted: 05/27/2021] [Indexed: 05/26/2023]
Abstract
Fungal pathogens secrete effector proteins that regulate host immunity and can suppress basal defence mechanisms against colonization in plants. Verticillium dahliae is a widespread and destructive soilborne fungus that can cause vascular wilt disease and reduces plant yields. However, little is currently known about how the effectors secreted by V. dahliae function. In this study, we analysed and identified 34 candidate effectors in the V. dahliae secretome and found that Vd424Y, a glycoside hydrolase family 11 protein, was highly upregulated during the early stages of V. dahliae infection in cotton plants. This protein was located in the nucleus and its deletion compromised the virulence of the fungus. The transient expression of Vd424Y in Nicotiana benthamiana induced BAK1- and SOBIR1-dependent cell death and activated both salicylic acid and jasmonic acid signalling. This enhanced its resistance to the oomycetes Phytophthora capsici in a way that depended on its nuclear localization signal and signal peptides. Our results demonstrate that Vd424Y is an important effector protein targeting the host nucleus to regulate and activate effector-triggered immunity in plants.
Collapse
Affiliation(s)
- Lisen Liu
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Zhaohan Wang
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
| | - Jianing Li
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
| | - Ye Wang
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
| | - Jiachen Yuan
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural SciencesZhengzhou UniversityZhengzhouChina
| | - Jingjing Zhan
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
| | - Peng Wang
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Fuguang Li
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
| | - Xiaoyang Ge
- Institute of Cotton ResearchHenan Normal University Research Base of State Key Laboratory of Cotton BiologyHenanChina
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
42
|
Dangol S, Nguyen NK, Singh R, Chen Y, Wang J, Lee HG, Hwang BK, Jwa NS. Mitogen-Activated Protein Kinase OsMEK2 and OsMPK1 Signaling Is Required for Ferroptotic Cell Death in Rice- Magnaporthe oryzae Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:710794. [PMID: 34408766 PMCID: PMC8365360 DOI: 10.3389/fpls.2021.710794] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/05/2021] [Indexed: 05/25/2023]
Abstract
Mitogen-activated protein kinase (MAPK) signaling is required for plant cell death responses to invading microbial pathogens. Iron- and reactive oxygen species (ROS)-dependent ferroptotic cell death occurs in rice (Oryza sativa) during an incompatible rice-Magnaporthe oryzae interaction. Here, we show that rice MAP kinase (OsMEK2 and OsMPK1) signaling cascades are involved in iron- and ROS-dependent ferroptotic cell death responses of rice to M. oryzae infection using OsMEK2 knock-out mutant and OsMEK2 and OsMPK1 overexpression rice plants. The OsMPK1:GFP and OsWRKY90:GFP transcription factor were localized to the nuclei, suggesting that OsMPK1 in the cytoplasm moves into the nuclei to interact with the WRKY90. M. oryzae infection in ΔOsmek2 knock-out plants did not trigger iron and ROS accumulation and lipid peroxidation, and also downregulated OsMPK1, OsWRKY90, OsRbohB, and OsPR-1b expression. However, 35S:OsMEK2 overexpression induced ROS- and iron-dependent cell death in rice. The downstream MAP kinase (OsMPK1) overexpression induced ROS- and iron-dependent ferroptotic cell death response to virulent M. oryzae infection. The small-molecule ferroptosis inhibitor ferrostatin-1 suppressed iron- and ROS-dependent ferroptotic cell death in 35S:OsMPK1 overexpression plants. However, the small-molecule inducer erastin triggered iron- and lipid ROS-dependent, but OsMEK2-independent, ferroptotic cell death during M. oryzae infection. Disease (susceptibility)-related cell death was lipid ROS-dependent, but iron-independent in the ΔOsmek2 knock-out mutant during the late M. oryzae infection stage. These combined results suggest that OsMEK2 and OsMPK1 expression positively regulates iron- and ROS-dependent ferroptotic cell death, and blast disease (susceptibility)-related cell death was ROS-dependent but iron-independent in rice-M. oryzae interactions.
Collapse
Affiliation(s)
- Sarmina Dangol
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Nam Khoa Nguyen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Raksha Singh
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
- Crop Production and Pest Control Research Unit, United States Department of Agriculture-Agricultural Research Service, Purdue University, West Lafayette, IN, United States
| | - Yafei Chen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Juan Wang
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Hyeon-Gu Lee
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Byung KooK Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| |
Collapse
|
43
|
Shi L, Zhang K, Xie L, Yang M, Xie B, He S, Liu Z. The Pepper Mitogen-Activated Protein Kinase CaMAPK7 Acts as a Positive Regulator in Response to Ralstonia solanacearum Infection. Front Microbiol 2021; 12:664926. [PMID: 34295316 PMCID: PMC8290481 DOI: 10.3389/fmicb.2021.664926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways play a vital role in multiple plant processes, including growth, development, and stress signaling, but their involvement in response to Ralstonia solanacearum is poorly understood, particularly in pepper plants. Herein, CaMAPK7 was identified from the pepper genome and functionally analyzed. The accumulations of CaMAPK7 transcripts and promoter activities were both significantly induced in response to R. solanacearum strain FJC100301 infection, and exogenously applied phytohormones, including methyl jasmonate (MeJA), brassinolide (BR), salicylic acid (SA), and ethephon (ETN), were decreased by abscisic acid (ABA) treatment. Virus-induced gene silencing (VIGS) of CaMAPK7 significantly enhanced the susceptibility of pepper plants to infection by R. solanacearum and downregulated the defense-related marker genes, including CaDEF1, CaPO2, CaSAR82A, and CaWRKY40. In contrast, the ectopic overexpression of CaMAPK7 in transgenic tobacco enhanced resistance to R. solanacearum and upregulated the defense-associated marker genes, including NtHSR201, NtHSR203, NtPR4, PR1a/c, NtPR1b, NtCAT1, and NtACC. Furthermore, transient overexpression of CaMAPK7 in pepper leaves triggered intensive hypersensitive response (HR)-like cell death, H2O2 accumulation, and enriched CaWRKY40 at the promoters of its target genes and drove their transcript accumulations, including CaDEF1, CaPO2, and CaSAR82A. Taken together, these data indicate that R. solanacearum infection induced the expression of CaMAPK7, which indirectly modifies the binding of CaWRKY40 to its downstream targets, including CaDEF1, CaPO2, and CaSAR82A, ultimately leading to the activation of pepper immunity against R. solanacearum. The protein that responds to CaMAPK7 in pepper plants should be isolated in the future to build a signaling bridge between CaMAPK7 and CaWRKY40.
Collapse
Affiliation(s)
- Lanping Shi
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kan Zhang
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linjing Xie
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingxing Yang
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baixue Xie
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuilin He
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiqin Liu
- Fujian Provincial Key Laboratory of Applied Genetics, Fujian Agriculture and Forestry University, Fuzhou, China.,College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
44
|
Shan D, Wang C, Zheng X, Hu Z, Zhu Y, Zhao Y, Jiang A, Zhang H, Shi K, Bai Y, Yan T, Wang L, Sun Y, Li J, Zhou Z, Guo Y, Kong J. MKK4-MPK3-WRKY17-mediated salicylic acid degradation increases susceptibility to Glomerella leaf spot in apple. PLANT PHYSIOLOGY 2021; 186:1202-1219. [PMID: 33693824 PMCID: PMC8195508 DOI: 10.1093/plphys/kiab108] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/16/2021] [Indexed: 05/11/2023]
Abstract
Glomerella leaf spot (GLS), a fungal disease caused by Colletotrichum fructicola, severely affects apple quality and yield, yet few resistance genes have been identified in apple (Malus domestica Borkh.). Here we found a transcription factor MdWRKY17 significantly induced by C. fructicola infection in the susceptible apple cultivar "Gala." MdWRKY17 overexpressing transgenic "Gala" plants exhibited increased susceptibility to C. fructicola, whereas MdWRKY17 RNA-interference plants showed opposite phenotypes, indicating MdWRKY17 acts as a plant susceptibility factor during C. fructicola infection. Furthermore, MdWRKY17 directly bound to the promoter of the salicylic acid (SA) degradation gene Downy Mildew Resistant 6 (MdDMR6) and promoted its expression, resulting in reduced resistance to C. fructicola. Additionally, Mitogen-activated protein kinase (MAPK) 3 (MdMPK3) directly interacted with and phosphorylated MdWRKY17. Importantly, predicted phosphorylation residues in MdWRKY17 by MAPK kinase 4 (MdMEK4)-MdMPK3 were critical for the activity of MdWRKY17 to regulate MdDMR6 expression. In the six susceptible germplasms, MdWRKY17 levels were significantly higher than the six tolerant germplasms after infection, which corresponded with lower SA content, confirming the critical role of MdWRKY17-mediated SA degradation in GLS tolerance. Our study reveals a rapid regulatory mechanism of MdWRKY17, which is essential for SA degradation and GLS susceptibility, paving the way to generate GLS resistant apple.
Collapse
Affiliation(s)
- Dongqian Shan
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chanyu Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaodong Zheng
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zehui Hu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yunpeng Zhu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yu Zhao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Awei Jiang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Haixia Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kun Shi
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yixue Bai
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Tianci Yan
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lin Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanzhao Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jianfang Li
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaoyang Zhou
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing 100193, China
- Author for communication:
| |
Collapse
|
45
|
AtWAKL10, a Cell Wall Associated Receptor-Like Kinase, Negatively Regulates Leaf Senescence in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22094885. [PMID: 34063046 PMCID: PMC8124439 DOI: 10.3390/ijms22094885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/22/2023] Open
Abstract
Receptor-like kinases (RLKs) constitute a large group of cell surface receptors that play crucial roles in multiple biological processes. However, the function of most RLKs in plants has not been extensively explored, and much less for the class of cell wall associated kinases (WAKs) and WAK-like kinases (WAKLs). In this study, analyses of developmental expression patterns uncovered a putative role of AtWAKL10 in modulating leaf senescence, which was further investigated at physiological and molecular levels. The expression level of AtWAKL10 increased with the developmental progression and was rapidly upregulated in senescing leaf tissues. The promoter of AtWAKL10 contains various defense and hormone responsive elements, and its expression could be significantly induced by exogenous ABA, JA and SA. Moreover, the loss-of-function atwakl10 mutant showed earlier senescence along the course of natural development and accelerated leaf senescence under darkness and hormonal stresses, while plants overexpressing AtWAKL10 showed an opposite trend. Additionally, some defense and senescence related WRKY transcription factors could bind to the promoter of AtWAKL10. In addition, deletion and overexpression of AtWAKL10 caused several specific transcriptional alterations, including genes involved in cell extension, cell wall modification, defense response and senescence related WRKYs, which may be implicated in regulatory mechanisms adopted by AtWAKL10 in controlling leaf senescence. Taken together, these results revealed that AtWAKL10 negatively regulated leaf senescence.
Collapse
|
46
|
Venturuzzi AL, Rodriguez MC, Conti G, Leone M, Caro MDP, Montecchia JF, Zavallo D, Asurmendi S. Negative modulation of SA signaling components by the capsid protein of tobacco mosaic virus is required for viral long-distance movement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:896-912. [PMID: 33837606 DOI: 10.1111/tpj.15268] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
An important aspect of plant-virus interaction is the way viruses dynamically move over long distances and how plant immunity modulates viral systemic movement. Salicylic acid (SA), a well-characterized hormone responsible for immune responses against virus, is activated through different transcription factors including TGA and WRKY. In tobamoviruses, evidence suggests that capsid protein (CP) is required for long-distance movement, although its precise role has not been fully characterized yet. Previously, we showed that the CP of Tobacco Mosaic Virus (TMV)-Cg negatively modulates the SA-mediated defense. In this study, we analyzed the impact of SA-defense mechanism on the long-distance transport of a truncated version of TMV (TMV ∆CP virus) that cannot move to systemic tissues. The study showed that the negative modulation of NPR1 and TGA10 factors allows the long-distance transport of TMV ∆CP virus. Moreover, we observed that the stabilization of DELLA proteins promotes TMV ∆CP systemic movement. We also characterized a group of genes, part of a network modulated by CP, involved in TMV ∆CP long-distance transport. Altogether, our results indicate that CP-mediated downregulation of SA signaling pathway is required for the virus systemic movement, and this role of CP may be linked to its ability to stabilize DELLA proteins.
Collapse
Affiliation(s)
- Andrea Laura Venturuzzi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Maria Cecilia Rodriguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Melisa Leone
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Maria Del Pilar Caro
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Juan Francisco Montecchia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Diego Zavallo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Sebastian Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| |
Collapse
|
47
|
Yin Z, Wang N, Pi L, Li L, Duan W, Wang X, Dou D. Nicotiana benthamiana LRR-RLP NbEIX2 mediates the perception of an EIX-like protein from Verticillium dahliae. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:949-960. [PMID: 33205907 DOI: 10.1111/jipb.13031] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/23/2020] [Indexed: 05/23/2023]
Abstract
Verticillium wilt diseases caused by the soil-borne fungus Verticillium dahliae result in devastating yield losses in many economically important crops annually. Here, we identified a novel ethylene-inducing xylanase (EIX)-like protein, VdEIX3, from V. dahliae, which exhibits immunity-inducing activity in Nicotiana benthamiana. In vitro-purified VdEIX3 can induce strong oxidative burst, activate the expression of defense-related genes, and increase resistance against oomycete and fungal pathogens in N. benthamiana. VdEIX3 orthologs of other Verticillium pathogens also induce cell death in N. benthamiana, which form a new type of EIX protein family that is distinct from the known EIX proteins. A leucine-rich repeat receptor-like protein, NbEIX2, regulates the perception of VdEIX3 in N. benthamiana. Our results demonstrate that VdEIX3 is a novel EIX-like protein that can be recognized by N. benthamiana NbEIX2, and also suggest that NbEIX2 is a promising receptor-like protein that is potentially applicable to transgenic breeding for improving resistance to Verticillium wilt diseases.
Collapse
Affiliation(s)
- Zhiyuan Yin
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Nan Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Lei Pi
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Lei Li
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Weiwei Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaodan Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Daolong Dou
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
48
|
Du X, Huang R, Zhang Z, Zhang D, Cheng J, Tian P, Wang Y, Zhai Z, Chen L, Kong X, Liu Y, Su P. Rhodopseudomonas palustris Quorum Sensing Molecule pC-HSL Induces Systemic Resistance to TMV Infection via Upregulation of NbSIPK/ NbWIPK Expressions in Nicotiana benthamiana. PHYTOPATHOLOGY 2021; 111:500-508. [PMID: 32876530 DOI: 10.1094/phyto-05-20-0177-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
G-negative bacteria produce myriad N-acyl-homoserine lactones (AHLs) that can function as quorum sensing (QS) signaling molecules. AHLs are also known to regulate various plant biological activities. p-Coumaroyl-homoserine lactone (pC-HSL) is the only QS molecule produced by a photosynthetic bacterium, Rhodopseudomonas palustris. The role of pC-HSL in the interaction between R. palustris and plant has not been investigated. In this study, we investigated the effect of pC-HSL on plant immunity and found that this QS molecule can induce a systemic resistance to Tobacco mosaic virus (TMV) infection in Nicotiana benthamiana. The results show that pC-HSL treatment can prolong the activation of two mitogen-associated protein kinase genes (i.e., NbSIPK and NbWIPK) and increase the expression of transcription factor WRKY8 as well as immune response marker genes NbPR1 and NbPR10, leading to an increased accumulation of reactive oxygen species (ROS) in the TMV-infected plants. Our results also show that pC-HSL treatment can increase activities of two ROS-scavenging enzymes, peroxidase and superoxide dismutase. Knockdown of NbSIPK or NbWIPK expression in N. benthamiana plants through virus-induced gene silencing nullified or attenuated pC-HSL-induced systemic resistance, indicating that the functioning of pC-HSL relies on the activity of those two kinases. Meanwhile, pC-HSL-pretreated plants also showed a strong induction of kinase activities of NbSIPK and NbWIPK after TMV inoculation. Taken together, our results demonstrate that pC-HSL treatment increases plant resistance to TMV infection, which is helpful to uncover the outcome of interaction between R. palustris and its host plants.
Collapse
Affiliation(s)
- Xiaohua Du
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Renyan Huang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhuo Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Deyong Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ju'e Cheng
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Peijie Tian
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanqi Wang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhongying Zhai
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lijie Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiaoting Kong
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yong Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Pin Su
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
49
|
Overexpression of ZmWRKY65 transcription factor from maize confers stress resistances in transgenic Arabidopsis. Sci Rep 2021; 11:4024. [PMID: 33597656 PMCID: PMC7889854 DOI: 10.1038/s41598-021-83440-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
Plant-specific WRKY transcription factors play important roles in regulating the expression of defense-responsive genes against pathogen attack. A multiple stress-responsive WRKY gene, ZmWRKY65, was identified in maize by screening salicylic acid (SA)-induced de novo transcriptomic sequences. The ZmWRKY65 protein was localized in the nucleus of mesophyll protoplasts. The analysis of the ZmWRKY65 promoter sequence indicated that it contains several stress-related transcriptional regulatory elements. Many environmental factors affecting the transcription of ZmWRKY65 gene, such as drought, salinity, high temperature and low temperature stress. Moreover, the transcription of ZmWRKY65 gene was also affected by the induction of defense related plant hormones such as SA and exogenous ABA. The results of seed germination and stomatal aperture assays indicated that transgenic Arabidopsis plants exhibit enhanced sensitivity to ABA and high concentrations of SA. Overexpression of ZmWRKY65 improved tolerance to both pathogen attack and abiotic stress in transgenic Arabidopsis plants and activated several stress-related genes such as RD29A, ERD10, and STZ as well as pathogenesis-related (PR) genes such as PR1, PR2 and PR5; these genes are involved in resistance to abiotic and biotic stresses in Arabidopsis. Together, this evidence implies that the ZmWRKY65 gene is involved in multiple stress signal transduction pathways.
Collapse
|
50
|
Lin L, Wu J, Jiang M, Wang Y. Plant Mitogen-Activated Protein Kinase Cascades in Environmental Stresses. Int J Mol Sci 2021; 22:ijms22041543. [PMID: 33546499 PMCID: PMC7913722 DOI: 10.3390/ijms22041543] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Due to global warming and population growth, plants need to rescue themselves, especially in unfavorable environments, to fulfill food requirements because they are sessile organisms. Stress signal sensing is a crucial step that determines the appropriate response which, ultimately, determines the survival of plants. As important signaling modules in eukaryotes, plant mitogen-activated protein kinase (MAPK) cascades play a key role in regulating responses to the following four major environmental stresses: high salinity, drought, extreme temperature and insect and pathogen infections. MAPK cascades are involved in responses to these environmental stresses by regulating the expression of related genes, plant hormone production and crosstalk with other environmental stresses. In this review, we describe recent major studies investigating MAPK-mediated environmental stress responses. We also highlight the diverse function of MAPK cascades in environmental stress. These findings help us understand the regulatory network of MAPKs under environmental stress and provide another strategy to improve stress resistance in crops to ensure food security.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
| | - Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225000, China
- Correspondence: (J.W.); (Y.W.)
| | - Mingyi Jiang
- College of Life Sciences and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China;
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225000, China
- Correspondence: (J.W.); (Y.W.)
| |
Collapse
|