1
|
Ge Q, Zhang Y, Wu J, Wei B, Li S, Nan H, Fang Y, Min Z. Exogenous strigolactone alleviates post-waterlogging stress in grapevine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109124. [PMID: 39276672 DOI: 10.1016/j.plaphy.2024.109124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/10/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
With global climate change, the frequent occurrence of intense rainfall and aggravation of waterlogging disasters have severely threatened the plant growth and fruit quality of grapevines, which are commercially important fruit crops worldwide. There is accordingly an imperative to clarify the responses of grapevine to waterlogging and to propose appropriate remedial measures. Strigolactone (SL) is a phytohormone associated with plant abiotic stress tolerance, while, its function in plant responses to waterlogging stress remain undetermined. In this study, systematic analyses of the morphology, physiology, and transcriptome changes in grapevine leaves and roots under post-waterlogging and GR24 (a synthetic analog of SL) treatments were performed. Morphological and physiological changes in grapevines in response to post-waterlogging stress, including leaf wilting and yellowing, leaf senescence, photosynthesis inhibition, and increased anti-oxidative systems, could be alleviated by the application of GR24. Moreover, transcriptome analysis revealed that the primary gene functions induced by post-waterlogging stress changed over time; however, they were consistently associated with carbohydrate metabolism. The GR24-induced leaf genes were closely associated with carbohydrate metabolism, photosynthesis, antioxidant systems, and hormone signal transduction, which were considered vital aspects that were influenced by GR24 in grapevine to induce post-waterlogging tolerance. Concerning the roots, an enhancement of microtubules and cytoskeleton for cell construction in GR24 application was proposed to facilitate root system recovery after waterlogging. With this study, we comprehend the knowledge regarding the responses of grapevines to post-waterlogging and the ameliorative effect of GR24 with the insight to the transcriptome changes during these processes.
Collapse
Affiliation(s)
- Qing Ge
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Northwest A&F University, Yangling, 712100, China
| | - Yang Zhang
- Department of Brewing Engineering, Moutai Institute, Renhuai, Guizhou, 564500, China
| | - Jinren Wu
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Northwest A&F University, Yangling, 712100, China
| | - Bingxin Wei
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Northwest A&F University, Yangling, 712100, China
| | - Sijia Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Nan
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yulin Fang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Northwest A&F University, Yangling, 712100, China.
| | - Zhuo Min
- Department of Brewing Engineering, Moutai Institute, Renhuai, Guizhou, 564500, China.
| |
Collapse
|
2
|
Vilasboa J. Anatomy of recalcitrance: integrated imaging and spectroscopy reveal features of hard-to-root rose cuttings. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4680-4683. [PMID: 39192695 DOI: 10.1093/jxb/erae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 08/29/2024]
Abstract
This article comments on:
Wamhoff D, Gundel A, Wagner S, Ortleb S, Borisjuk L, Winkelmann T. 2024. Anatomical limitations in adventitious root formation revealed by magnetic resonance imaging, infrared spectroscopy, and histology of rose genotypes with contrasting rooting phenotypes. Journal of Experimental Botany 75, 4784–4801. https://doi.org/10.1093/jxb/erae158
Collapse
|
3
|
Nguyen DT, Zavadil Kokáš F, Gonin M, Lavarenne J, Colin M, Gantet P, Bergougnoux V. Transcriptional changes during crown-root development and emergence in barley (Hordeum vulgare L.). BMC PLANT BIOLOGY 2024; 24:438. [PMID: 38778283 PMCID: PMC11110440 DOI: 10.1186/s12870-024-05160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Roots play an important role during plant growth and development, ensuring water and nutrient uptake. Understanding the mechanisms regulating their initiation and development opens doors towards root system architecture engineering. RESULTS Here, we investigated by RNA-seq analysis the changes in gene expression in the barley stem base of 1 day-after-germination (DAG) and 10DAG seedlings when crown roots are formed. We identified 2,333 genes whose expression was lower in the stem base of 10DAG seedlings compared to 1DAG seedlings. Those genes were mostly related to basal cellular activity such as cell cycle organization, protein biosynthesis, chromatin organization, cytoskeleton organization or nucleotide metabolism. In opposite, 2,932 genes showed up-regulation in the stem base of 10DAG seedlings compared to 1DAG seedlings, and their function was related to phytohormone action, solute transport, redox homeostasis, protein modification, secondary metabolism. Our results highlighted genes that are likely involved in the different steps of crown root formation from initiation to primordia differentiation and emergence, and revealed the activation of different hormonal pathways during this process. CONCLUSIONS This whole transcriptomic study is the first study aiming at understanding the molecular mechanisms controlling crown root development in barley. The results shed light on crown root emergence that is likely associated with a strong cell wall modification, death of the cells covering the crown root primordium, and the production of defense molecules that might prevent pathogen infection at the site of root emergence.
Collapse
Affiliation(s)
- Dieu Thu Nguyen
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Filip Zavadil Kokáš
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia
- Present address: Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Mathieu Gonin
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Jérémy Lavarenne
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Myriam Colin
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Pascal Gantet
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia
- UMR DIADE, Université de Montpellier, IRD, CIRAD, Montpellier, France
| | - Véronique Bergougnoux
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czechia.
| |
Collapse
|
4
|
Shen B, Li W, Zheng Y, Zhou X, Zhang Y, Qu M, Wang Y, Yuan Y, Pang K, Feng Y, Wu J, Zeng B. Morphological and molecular response mechanisms of the root system of different Hemarthria compressa species to submergence stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1342814. [PMID: 38638357 PMCID: PMC11024365 DOI: 10.3389/fpls.2024.1342814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Introduction The severity of flood disasters is increasing due to climate change, resulting in a significant reduction in the yield and quality of forage crops worldwide. This poses a serious threat to the development of agriculture and livestock. Hemarthria compressa is an important high-quality forage grass in southern China. In recent years, frequent flooding has caused varying degrees of impacts on H. compressa and their ecological environment. Methods In this study, we evaluated differences in flooding tolerance between the root systems of the experimental materials GY (Guang Yi, flood-tolerant) and N1291 (N201801291, flood-sensitive). We measured their morphological indexes after 7 d, 14 d, and 21 d of submergence stress and sequenced their transcriptomes at 8 h and 24 h, with 0 h as the control. Results During submergence stress, the number of adventitious roots and root length of both GY and N1291 tended to increase, but the overall growth of GY was significantly higher than that of N1291. RNA-seq analysis revealed that 6046 and 7493 DEGs were identified in GY-8h and GY-24h, respectively, and 9198 and 4236 DEGs in N1291-8h and N1291-24h, respectively, compared with the control. The GO and KEGG enrichment analysis results indicated the GO terms mainly enriched among the DEGs were oxidation-reduction process, obsolete peroxidase reaction, and other antioxidant-related terms. The KEGG pathways that were most significantly enriched were phenylpropanoid biosynthesis, plant hormone signal transduction etc. The genes of transcription factor families, such as C2H2, bHLH and bZIP, were highly expressed in the H. compressa after submergence, which might be closely related to the submergence adaptive response mechanisms of H. compressa. Discussion This study provides basic data for analyzing the molecular and morphological mechanisms of H. compressa in response to submergence stress, and also provides theoretical support for the subsequent improvement of submergence tolerance traits of H. compressa.
Collapse
Affiliation(s)
- Bingna Shen
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wenwen Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuqian Zheng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoli Zhou
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yinuo Zhang
- College of Grassland Agriculture, Northwest Agriculture and Forestry University, Shanxi, China
| | - Minghao Qu
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Institute of Prataculture, Chongqing Academy of Animal Science, Chongqing, China
| | - Yinchen Wang
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Provincial Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou, China
| | - Yang Yuan
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Provincial Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou, China
| | - Kaiyue Pang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yanlong Feng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jiahai Wu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Provincial Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
- College of Animal Science and Technology, Southwest University, Chongqing University Herbivore Engineering Research Center, Chongqing, China
| |
Collapse
|
5
|
Hao B, Zhang R, Zhang C, Wen N, Xia Y, Zhao Y, Li Q, Qiao L, Li W. Characterization of OsPIN2 Mutants Reveal Novel Roles for Reactive Oxygen Species in Modulating Not Only Root Gravitropism but Also Hypoxia Tolerance in Rice Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:476. [PMID: 38498461 PMCID: PMC10892736 DOI: 10.3390/plants13040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
Tolerance to submergence-induced hypoxia is an important agronomic trait especially for crops in lowland and flooding-affected areas. Although rice (Oryza sativa) is considered a flood-tolerant crop, only limited cultivars display strong tolerance to prolonged submergence and/or hypoxic stress. Therefore, characterization of hypoxic resistant genes and/or germplasms have important theoretical and practical significance for rice breeding and sustained improvements. Previous investigations have demonstrated that loss-of-function of OsPIN2, a gene encoding an auxin efflux transporter, results in the loss of root gravitropism due to disrupted auxin transport in the root tip. In this study, we revealed a novel connection between OsPIN2 and reactive oxygen species (ROS) in modulating root gravitropism and hypoxia tolerance in rice. It is shown that the OsPIN2 mutant had decreased accumulation of ROS in root tip, due to the downregulation of glycolate oxidase encoding gene OsGOX6, one of the main H2O2 sources. The morphological defects of root including waved rooting and agravitropism in OsPIN2 mutant may be rescued partly by exogenous application of H2O2. The OsPIN2 mutant exhibited increased resistance to ROS toxicity in roots due to treatment with H2O2. Furthermore, it is shown that the OsPIN2 mutant had increased tolerance to hypoxic stress accompanied by lower ROS accumulation in roots, because the hypoxia stress led to over production of ROS in the roots of the wild type but not in that of OsPIN2 mutant. Accordingly, the anoxic resistance-related gene SUB1B showed differential expression in the root of the WT and OsPIN2 mutant in response to hypoxic conditions. Notably, compared with the wild type, the OsPIN2 mutant displayed a different pattern of auxin distribution in the root under hypoxia stress. It was shown that hypoxia stress caused a significant increase in auxin distribution in the root tip of the WT but not in that of the war1 mutant. In summary, these results suggested that OsPIN2 may play a role in regulating ROS accumulation probably via mediating auxin transport and distribution in the root tip, affecting root gravitropism and hypoxic tolerance in rice seedlings. These findings may contribute to the genetic improvement and identification of potential hypoxic tolerant lines in rice.
Collapse
Affiliation(s)
- Bowen Hao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Ruihan Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Chengwei Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Na Wen
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Yu Xia
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Yang Zhao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Qinying Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Lei Qiao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
| | - Wenqiang Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; (B.H.); (R.Z.); (C.Z.); (N.W.); (Y.X.); (Y.Z.); (Q.L.); (L.Q.)
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Lin C, Zhang Z, Shen X, Liu D, Pedersen O. Flooding-adaptive root and shoot traits in rice. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23226. [PMID: 38167593 DOI: 10.1071/fp23226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Wetland plants, including rice (Oryza spp.), have developed multiple functional adaptive traits to survive soil flooding, partial submergence or even complete submergence. In waterlogged soils and under water, diffusion of O2 and CO2 is extremely slow with severe impacts on photosynthesis and respiration. As a response to shallow floods or rising floodwater, several rice varieties, including deepwater rice, elongate their stems to keep their leaves above the water surface so that photosynthesis can occur unhindered during partial submergence. In stark contrast, some other varieties hardly elongate even if they become completely submerged. Instead, their metabolism is reduced to an absolute minimum so that carbohydrates are conserved enabling fast regrowth once the floodwater recedes. This review focuses on the fascinating functional adaptive traits conferring tolerance to soil flooding, partial or complete submergence. We provide a general analysis of these traits focusing on molecular, anatomical and morphological, physiological and ecological levels. Some of these key traits have already been introgressed into modern high-yielding genotypes improving flood tolerance of several cultivars used by millions of farmers in Asia. However, with the ongoing changes in climate, we propose that even more emphasis should be placed on improving flood tolerance of rice by breeding for rice that can tolerate longer periods of complete submergence or stagnant flooding. Such tolerance could be achieved via additional tissues; i.e. aquatic adventitious roots relevant during partial submergence, and leaves with higher underwater photosynthesis caused by a longer gas film retention time.
Collapse
Affiliation(s)
- Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; and Plant Developmental Biology and Plant Physiology, University of Kiel, Am Botanischen Garten 5, Kiel 24118, Germany
| | - Zhao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xuwen Shen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Dan Liu
- Plant Developmental Biology and Plant Physiology, University of Kiel, Am Botanischen Garten 5, Kiel 24118, Germany; and Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
| | - Ole Pedersen
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark; and School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
7
|
Singh T, Bisht N, Ansari MM, Chauhan PS. The hidden harmony: Exploring ROS-phytohormone nexus for shaping plant root architecture in response to environmental cues. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108273. [PMID: 38103339 DOI: 10.1016/j.plaphy.2023.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Root system architecture, encompassing lateral roots and root hairs, plays a vital in overall plant growth and stress tolerance. Reactive oxygen species (ROS) and plant hormones intricately regulate root growth and development, serving as signaling molecules that govern processes such as cell proliferation and differentiation. Manipulating the interplay between ROS and hormones has the potential to enhance nutrient absorption, stress tolerance, and agricultural productivity. In this review, we delve into how studying these processes provides insights into how plants respond to environmental changes and optimize growth patterns to better control cellular processes and stress responses in crops. We discuss various factors and complex signaling networks that may exist among ROS and phytohormones during root development. Additionally, the review highlights possible role of reactive nitrogen species (RNS) in ROS-phytohormone interactions and in shaping root system architecture according to environmental cues.
Collapse
Affiliation(s)
- Tanya Singh
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nikita Bisht
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Mohd Mogees Ansari
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
8
|
Liang J, Lu L, Zhang W, Chi M, Shen M, An C, Chen S, Wang X, Liu R, Qin Y, Zheng P. Comprehensive characterization and expression analysis of enzymatic antioxidant gene families in passion fruit ( Passiflora edulis). iScience 2023; 26:108329. [PMID: 38026217 PMCID: PMC10656276 DOI: 10.1016/j.isci.2023.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Passion fruit, a valuable tropical fruit, faces climate-related growth challenges. Antioxidant enzymes are vital for both stress protection and growth regulation in plants. We first provided systemic analysis of enzymatic antioxidant gene families in passion fruit, identifying 90 members including 11 PeSODs, 45 PeAPXs, 8 PeCATs, 7 PeGPXs, 6 PeMDHARs, 8 PeDHARs, and 5 PeGRs. Gene members in each gene family with same subcellular localization showed closer phylogenetic relationship. Many antioxidant genes exhibited tissue- or developmental stage-specific expression patterns during floral and fruit development, with some widely expressed. Their co-expressed genes were linked to photosynthesis and energy metabolism, suggesting roles in protecting highly proliferating tissues from oxidative damage. Potential genes for enhancing temperature stress resistance were identified. The involvement of diverse regulatory factors including miRNAs, transcription factors, and CREs might contribute to the complex roles of antioxidant genes. This study informs future research on antioxidant genes and passion fruit breeding.
Collapse
Affiliation(s)
- Jianxiang Liang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Lu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbin Zhang
- Xinluo Breeding Center for Excellent Germplasms, Longyan 361000, China
| | - Ming Chi
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengqian Shen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang An
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengzhen Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning Investigation Station of South Subtropical Fruit Trees, Ministry of Agriculture, Nanning 530004, China
| | - Ruoyu Liu
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Pingtan Science and Technology Research Institute, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Gu S, Zhang Z, Li J, Sun J, Cui Z, Li F, Zhuang J, Chen W, Su C, Wu L, Wang X, Guo Z, Xu H, Zhao M, Ma D, Chen W. Natural variation in OsSEC13 HOMOLOG 1 modulates redox homeostasis to confer cold tolerance in rice. PLANT PHYSIOLOGY 2023; 193:2180-2196. [PMID: 37471276 DOI: 10.1093/plphys/kiad420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 07/22/2023]
Abstract
Rice (Oryza sativa L.) is a cold-sensitive species that often faces cold stress, which adversely affects yield productivity and quality. However, the genetic basis for low-temperature adaptation in rice remains unclear. Here, we demonstrate that 2 functional polymorphisms in O. sativa SEC13 Homolog 1 (OsSEH1), encoding a WD40-repeat nucleoporin, between the 2 subspecies O. sativa japonica and O. sativa indica rice, may have facilitated cold adaptation in japonica rice. We show that OsSEH1 of the japonica variety expressed in OsSEH1MSD plants (transgenic line overexpressing the OsSEH1 allele from Mangshuidao [MSD], cold-tolerant landrace) has a higher affinity for O. sativa metallothionein 2b (OsMT2b) than that of OsSEH1 of indica. This high affinity of OsSEH1MSD for OsMT2b results in inhibition of OsMT2b degradation, with decreased accumulation of reactive oxygen species and increased cold tolerance. Transcriptome analysis indicates that OsSEH1 positively regulates the expression of the genes encoding dehydration-responsive element-binding transcription factors, i.e. OsDREB1 genes, and induces the expression of multiple cold-regulated genes to enhance cold tolerance. Our findings highlight a breeding resource for improving cold tolerance in rice.
Collapse
Affiliation(s)
- Shuang Gu
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhe Zhang
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Jinquan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Strube Research GmbH & Co. KG, Söllingen 38387, Germany
| | - Jian Sun
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhibo Cui
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Fengcheng Li
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Jia Zhuang
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Wanchun Chen
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Chang Su
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Lian Wu
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoliang Wang
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhifu Guo
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Hai Xu
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | - Minghui Zhao
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| | | | - Wenfu Chen
- Rice Research Institute/Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
10
|
Wen Z, Chen Z, Liu X, Sun J, Zhang F, Zhang M, Dong C. 24-Epibrassinolide Facilitates Adventitious Root Formation by Coordinating Cell-Wall Polyamine Oxidase- and Plasma Membrane Respiratory Burst Oxidase Homologue-Derived Reactive Oxygen Species in Capsicum annuum L. Antioxidants (Basel) 2023; 12:1451. [PMID: 37507989 PMCID: PMC10376213 DOI: 10.3390/antiox12071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Adventitious root (AR) formation is a critical process in cutting propagation of horticultural plants. Brassinosteroids (BRs) have been shown to regulate AR formation in several plant species; however, little is known about their exact effects on pepper AR formation, and the downstream signaling of BRs also remains elusive. In this study, we showed that treatment of 24-Epibrassinolide (EBL, an active BR) at the concentrations of 20-100 nM promoted AR formation in pepper (Capsicum annuum). Furthermore, we investigated the roles of apoplastic reactive oxygen species (ROS), including hydrogen peroxide (H2O2) and superoxide radical (O2•-), in EBL-promoted AR formation, by using physiological, histochemical, bioinformatic, and biochemical approaches. EBL promoted AR formation by modulating cell-wall-located polyamine oxidase (PAO)-dependent H2O2 production and respiratory burst oxidase homologue (RBOH)-dependent O2•- production, respectively. Screening of CaPAO and CaRBOH gene families combined with gene expression analysis suggested that EBL-promoted AR formation correlated with the upregulation of CaPAO1, CaRBOH2, CaRBOH5, and CaRBOH6 in the AR zone. Transient expression analysis confirmed that CaPAO1 was able to produce H2O2, and CaRBOH2, CaRBOH5, and CaRBOH6 were capable of producing O2•-. The silencing of CaPAO1, CaRBOH2, CaRBOH5, and CaRBOH6 in pepper decreased the ROS accumulation and abolished the EBL-induced AR formation. Overall, these results uncover one of the regulatory pathways for BR-regulated AR formation, and extend our knowledge of the functions of BRs and of the BRs-ROS crosstalk in plant development.
Collapse
Affiliation(s)
- Zhengyang Wen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhifeng Chen
- College of Biology and Agricultural Technology, Zunyi Normal College, Zunyi 563006, China
| | - Xinyan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingbo Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengxia Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunjuan Dong
- College of Biology and Agricultural Technology, Zunyi Normal College, Zunyi 563006, China
| |
Collapse
|
11
|
Xu X, Liu M, Hu Q, Yan W, Pan J, Yan Y, Chen X. A CsEIL3-CsARN6.1 module promotes waterlogging-triggered adventitious root formation in cucumber by activating the expression of CsPrx5. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:824-835. [PMID: 36871136 DOI: 10.1111/tpj.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 05/27/2023]
Abstract
The formation of adventitious roots (ARs) derived from hypocotyl is the most important morphological adaptation to waterlogging stress in Cucumis sativus (cucumber). Our previous study showed that cucumbers with the gene CsARN6.1, encoding an AAA ATPase domain-containing protein, were more tolerant to waterlogging through increased AR formation. However, the apparent function of CsARN6.1 remained unknown. Here, we showed that the CsARN6.1 signal was predominantly observed throughout the cambium of hypocotyls, where de novo AR primordia are formed upon waterlogging treatment. The silencing of CsARN6.1 expression by virus-induced gene silencing and CRISPR/Cas9 technologies adversely affects the formation of ARs under conditions of waterlogging. Waterlogging treatment significantly induced ethylene production, thus upregulating CsEIL3 expression, which encodes a putative transcription factor involved in ethylene signaling. Furthermore, yeast one-hybrid, electrophoretic mobility assay and transient expression analyses showed that CsEIL3 binds directly to the CsARN6.1 promoter to initiate its expression. CsARN6.1 was found to interact with CsPrx5, a waterlogging-responsive class-III peroxidase that enhanced H2 O2 production and increased AR formation. These data provide insights into understanding the molecular mechanisms of AAA ATPase domain-containing protein and uncover a molecular mechanism that links ethylene signaling with the formation of ARs triggered by waterlogging.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
| | - Mengyao Liu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Qiming Hu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Wenjing Yan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Jiawei Pan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yongming Yan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| |
Collapse
|
12
|
Tanaka W, Yamauchi T, Tsuda K. Genetic basis controlling rice plant architecture and its modification for breeding. BREEDING SCIENCE 2023; 73:3-45. [PMID: 37168811 PMCID: PMC10165344 DOI: 10.1270/jsbbs.22088] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/13/2023]
Abstract
The shoot and root system architectures are fundamental for crop productivity. During the history of artificial selection of domestication and post-domestication breeding, the architecture of rice has significantly changed from its wild ancestor to fulfil requirements in agriculture. We review the recent studies on developmental biology in rice by focusing on components determining rice plant architecture; shoot meristems, leaves, tillers, stems, inflorescences and roots. We also highlight natural variations that affected these structures and were utilized in cultivars. Importantly, many core regulators identified from developmental mutants have been utilized in breeding as weak alleles moderately affecting these architectures. Given a surge of functional genomics and genome editing, the genetic mechanisms underlying the rice plant architecture discussed here will provide a theoretical basis to push breeding further forward not only in rice but also in other crops and their wild relatives.
Collapse
Affiliation(s)
- Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takaki Yamauchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Katsutoshi Tsuda
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Corresponding author (e-mail: )
| |
Collapse
|
13
|
Flooding tolerance in Rice: adaptive mechanism and marker-assisted selection breeding approaches. Mol Biol Rep 2023; 50:2795-2812. [PMID: 36592290 DOI: 10.1007/s11033-022-07853-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 01/03/2023]
Abstract
Natural and man-made ecosystems worldwide are subjected to flooding, which is a form of environmental stress. Genetic variability in the plant response to flooding involves variations in metabolism, architecture, and elongation development that are related with a low oxygen escape strategy and an opposing quiescence scheme that enables prolonged submergence endurance. Flooding is typically associated with a decrease in O2 in the cells, which is especially severe when photosynthesis is absent or limited, leading to significant annual yield losses globally. Over the past two decades, considerable advancements have been made in understanding of mechanisms of rice adaptation and tolerance to flooding/submergence. The mapping and identification of Sub1 QTL have led to the development of marker-assisted selection (MAS) breeding approach to improve flooding-tolerant rice varieties in submergence-prone ecosystems. The Sub1 incorporated in rice varieties showed tolerance during flash flood, but not during stagnant conditions. Hence, gene pyramiding techniques can be applied to combine/stack multiple resistant genes for developing flood-resilient rice varieties for different types of flooding stresses. This review contains an update on the latest advances in understanding the molecular mechanisms, metabolic adaptions, and genetic factors governing rice flooding tolerance. A better understanding of molecular genetics and adaptation mechanisms that enhance flood-tolerant varieties under different flooding regimes was also discussed.
Collapse
|
14
|
Qu M, Zheng Y, Bi L, Yang X, Shang P, Zhou X, Zeng B, Shen B, Li W, Fan Y, Zeng B. Comparative transcriptomic analysis of the gene expression and underlying molecular mechanism of submergence stress response in orchardgrass roots. FRONTIERS IN PLANT SCIENCE 2023; 13:1104755. [PMID: 36704155 PMCID: PMC9871833 DOI: 10.3389/fpls.2022.1104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Submergence stress creates a hypoxic environment. Roots are the first plant organ to face these low-oxygen conditions, which causes damage and affects the plant growth and yield. Orchardgrass (Dactylis glomerata L.) is one of the most important cold-season forage grasses globally. However, their submergence stress-induced gene expression and the underlying molecular mechanisms of orchardgrass roots are still unknown. METHODS Using the submergence-tolerant 'Dianbei' and submergence-sensitive 'Anba', the transcriptomic analysis of orchardgrass roots at different time points of submergence stress (0 h, 8 h, and 24 h) was performed. RESULTS We obtained 118.82Gb clean data by RNA-Seq. As compared with the control, a total of 6663 and 9857 differentially expressed genes (DEGs) were detected in Dianbei, while 7894 and 11215 DEGs were detected in Anba at 8 h and 24 h post-submergence-stress, respectively. Gene Ontology (GO) enrichment analysis obtained 986 terms, while Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis obtained 123 pathways. Among them, the DEGs in plant hormones, mitogen-activated protein kinase (MAPK) and Ca2+ signal transduction were significantly differentially expressed in Dianbei, but not in Anba. DISCUSSION This study was the first to molecularly elucidate the submergence stress tolerance in the roots of two orchardgrass cultivars. These findings not only enhanced our understanding of the orchardgrass submergence tolerance, but also provided a theoretical basis 36 for the cultivation of submergence-tolerant forage varieties.
Collapse
Affiliation(s)
- Minghao Qu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuqian Zheng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Lei Bi
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xingyun Yang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Panpan Shang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoli Zhou
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Bingna Shen
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wenwen Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan Fan
- Institute of Prataculture, Chongqing Academy of Animal Science, Chongqing, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing University Herbivore Engineering Research Center, Chongqing, China
| |
Collapse
|
15
|
Shao Z, Zhao B, Kotla P, Burns JG, Tran J, Ke M, Chen X, Browning KS, Qiao H. Phosphorylation status of Bβ subunit acts as a switch to regulate the function of phosphatase PP2A in ethylene-mediated root growth inhibition. THE NEW PHYTOLOGIST 2022; 236:1762-1778. [PMID: 36073540 PMCID: PMC9828452 DOI: 10.1111/nph.18467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/25/2022] [Indexed: 05/20/2023]
Abstract
The various combinations and regulations of different subunits of phosphatase PP2A holoenzymes underlie their functional complexity and importance. However, molecular mechanisms governing the assembly of PP2A complex in response to external or internal signals remain largely unknown, especially in Arabidopsis thaliana. We found that the phosphorylation status of Bβ of PP2A acts as a switch to regulate the activity of PP2A. In the absence of ethylene, phosphorylated Bβ leads to an inactivation of PP2A; the substrate EIR1 remains to be phosphorylated, preventing the EIR1-mediated auxin transport in epidermis, leading to normal root growth. Upon ethylene treatment, the dephosphorylated Bβ mediates the formation of the A2-C4-Bβ protein complex to activate PP2A, resulting in the dephosphorylation of EIR1 to promote auxin transport in epidermis of elongation zone, leading to root growth inhibition. Altogether, our research revealed a novel molecular mechanism by which the dephosphorylation of Bβ subunit switches on PP2A activity to dephosphorylate EIR1 to establish EIR1-mediated auxin transport in the epidermis in elongation zone for root growth inhibition in response to ethylene.
Collapse
Affiliation(s)
- Zhengyao Shao
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| | - Bo Zhao
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| | - Prashanth Kotla
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
| | - Jackson G. Burns
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
| | - Jaclyn Tran
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| | - Meiyu Ke
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics CenterFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics CenterFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Karen S. Browning
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| | - Hong Qiao
- Institute for Cellular and Molecular BiologyThe University of Texas at AustinAustinTX78712USA
- Department of Molecular BiosciencesThe University of Texas at AustinAustinTX78712USA
| |
Collapse
|
16
|
Vilasboa J, Da Costa CT, Fett-Neto AG. Environmental Modulation of Mini-Clonal Gardens for Cutting Production and Propagation of Hard- and Easy-to-Root Eucalyptus spp. PLANTS (BASEL, SWITZERLAND) 2022; 11:3281. [PMID: 36501321 PMCID: PMC9740115 DOI: 10.3390/plants11233281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Clonal Eucalyptus propagation is essential for various industry sectors. It requires cuttings to successfully develop adventitious roots (ARs). Environmental conditions are influential on AR development and may be altered to modulate the productivity of hard-to-root clones. The current knowledge gap in research on the physiological patterns underlying commercial-scale propagation results hinders the design of novel strategies. This study aimed to identify patterns of variation in AR-relevant parameters in contrasting seasons and species with distinct rooting performances. E. dunnii and E. ×urograndis (hard- (hardR) and easy-to-root (easyR), respectively) mini-stumps were subjected to light modulation treatments and to mini-tunnel use (MT) for a year. The treatment impact on the branching and rooting rates was recorded. The carbohydrate content, AR-related gene expression, and mineral nutrition profiles of cuttings from the control (Ctrl) and treated mini-stumps were analyzed. Light treatments were often detrimental to overall productivity, while MTs had a positive effect during summer, when it altered the cutting leaf nutrient profiles. Species and seasonality played large roles in all the assessed parameters. E. ×urograndis was particularly susceptible to seasonality, and its overall superior performance correlated with changes in its gene expression profile from excision to AR formation. These patterns indicate fundamental differences between easyR and hardR clones that contribute to the design of data-driven management strategies aiming to enhance propagation protocols.
Collapse
Affiliation(s)
- Johnatan Vilasboa
- Plant Physiology Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
- Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Cibele T. Da Costa
- Plant Physiology Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
- Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Arthur G. Fett-Neto
- Plant Physiology Laboratory, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
- Center for Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
- Department of Botany, Federal University of Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| |
Collapse
|
17
|
Abdirad S, Wu Y, Ghorbanzadeh Z, Tazangi SE, Amirkhani A, Fitzhenry MJ, Kazemi M, Ghaffari MR, Koobaz P, Zeinalabedini M, Habibpourmehraban F, Masoomi-Aladizgeh F, Atwell BJ, Mirzaei M, Salekdeh GH, Haynes PA. Proteomic analysis of the meristematic root zone in contrasting genotypes reveals new insights in drought tolerance in rice. Proteomics 2022; 22:e2200100. [PMID: 35920597 DOI: 10.1002/pmic.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/29/2022]
Abstract
Drought is responsible for major losses in rice production. Root tips contain meristematic and elongation zones that play major roles in determination of root traits and adaptive strategies to drought. In this study we analysed two contrasting genotypes of rice: IR64, a lowland, drought-susceptible, and shallow-rooting genotype; and Azucena, an upland, drought-tolerant, and deep-rooting genotype. Samples were collected of root tips of plants grown under control and water deficit stress conditions. Quantitative proteomics analysis resulted in the identification of 7294 proteins from the root tips of IR64 and 6307 proteins from Azucena. Data are available via ProteomeXchange with identifier PXD033343. Using a Partial Least Square Discriminant Analysis on 4170 differentially abundant proteins, 1138 statistically significant proteins across genotypes and conditions were detected. Twenty two enriched biological processes showing contrasting patterns between two genotypes in response to stress were detected through gene ontology enrichment analysis. This included identification of novel proteins involved in root elongation with specific expression patterns in Azucena, including four Expansins and seven Class III Peroxidases. We also detected an antioxidant network and a metallo-sulfur cluster assembly machinery in Azucena, with roles in reactive oxygen species and iron homeostasis, and positive effects on root cell cycle, growth and elongation.
Collapse
Affiliation(s)
- Somayeh Abdirad
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, New South Wales, Australia
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Sara Esmaeili Tazangi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, New South Wales, Australia
| | - Matthew J Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, New South Wales, Australia
| | - Mehrbano Kazemi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Parisa Koobaz
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mehrshad Zeinalabedini
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | | | | | - Brian J Atwell
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Mehdi Mirzaei
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, New South Wales, Australia.,School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.,School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Paul A Haynes
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
18
|
Xie Q, Hou H, Yan P, Zhang H, Lv Y, Li X, Chen L, Pang D, Hu Y, Ni X. Programmed cell death associated with the formation of schizo-lysigenous aerenchyma in Nelumbo nucifera root. FRONTIERS IN PLANT SCIENCE 2022; 13:968841. [PMID: 36247559 PMCID: PMC9556849 DOI: 10.3389/fpls.2022.968841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Nelumbo nucifera (N. nucifera) is an important aquatic economic crop with high edible, medicinal, ornamental, and ecological restoration values. Aerenchyma formation in N. nucifera root is an adaptive trait to the aquatic environment in long-term evolution. In this study, light microscopy, electron microscopy, and molecular biology techniques were used to study the process of the aerenchyma development and cytological events in N. nucifera root and the dynamic changes of aerenchyma formation under the treatment of exogenous 21% oxygen, ethylene (ET), and ET synthesis i + nhibitor 1-methylcyclopropene (1-MCP). The results showed that programmed cell death (PCD) occurred during the aerenchyma formation in N. nucifera root. Plasmalemma invagination and vacuole membrane rupture appeared in the formation stage, followed by nuclear deformation, chromatin condensation and marginalization, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) detection was positive at this time. In the expansion stage of the aerenchyma development, cytoplasmic degradation and many vesicles appeared in the cytoplasm, and organelles began to degrade. Then the plasma membrane began to degrade, and the degradation of the cell wall was the last PCD step. After 21% oxygen was continuously filled in the rhizosphere environment of N. nucifera roots, the area of aerenchyma in N. nucifera roots was smaller than that in the control group. Moreover, ET induced the earlier occurrence of aerenchyma in N. nucifera root, but also, the area of aerenchyma became larger than that of the control. On the contrary, 1-MCP inhibited the occurrence of aerenchyma to some extent. Therefore, the formation of aerenchyma in N. nucifera root resulted from PCD, and its formation mode was schizo-lysigenous. A hypoxic environment could induce aerenchyma formation in plants. ET signal was involved in aerenchyma formation in N. nucifera root and had a positive regulatory effect. This study provides relevant data on the formation mechanism of plant aerenchyma and the cytological basis for exploring the regulation mechanism of plant aerenchyma formation.
Collapse
Affiliation(s)
- Qinmi Xie
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western, Yinchuan, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, China
| | - Hui Hou
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western, Yinchuan, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, China
| | - Peixuan Yan
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Haiying Zhang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western, Yinchuan, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, China
| | - Yingze Lv
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Xuebin Li
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western, Yinchuan, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, China
- Ningxia Helan Mountain Forest Ecosystem Research Station, State Forestry Administration, Yinchuan, China
| | - Lin Chen
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western, Yinchuan, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, China
- Ningxia Helan Mountain Forest Ecosystem Research Station, State Forestry Administration, Yinchuan, China
| | - Danbo Pang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western, Yinchuan, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, China
- Ningxia Helan Mountain Forest Ecosystem Research Station, State Forestry Administration, Yinchuan, China
| | - Yang Hu
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western, Yinchuan, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, China
- Ningxia Helan Mountain Forest Ecosystem Research Station, State Forestry Administration, Yinchuan, China
| | - Xilu Ni
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western, Yinchuan, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, China
- Ningxia Helan Mountain Forest Ecosystem Research Station, State Forestry Administration, Yinchuan, China
| |
Collapse
|
19
|
Liu Z, Hartman S, van Veen H, Zhang H, Leeggangers HACF, Martopawiro S, Bosman F, de Deugd F, Su P, Hummel M, Rankenberg T, Hassall KL, Bailey-Serres J, Theodoulou FL, Voesenek LACJ, Sasidharan R. Ethylene augments root hypoxia tolerance via growth cessation and reactive oxygen species amelioration. PLANT PHYSIOLOGY 2022; 190:1365-1383. [PMID: 35640551 PMCID: PMC9516759 DOI: 10.1093/plphys/kiac245] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/29/2022] [Indexed: 05/20/2023]
Abstract
Flooded plants experience impaired gas diffusion underwater, leading to oxygen deprivation (hypoxia). The volatile plant hormone ethylene is rapidly trapped in submerged plant cells and is instrumental for enhanced hypoxia acclimation. However, the precise mechanisms underpinning ethylene-enhanced hypoxia survival remain unclear. We studied the effect of ethylene pretreatment on hypoxia survival of Arabidopsis (Arabidopsis thaliana) primary root tips. Both hypoxia itself and re-oxygenation following hypoxia are highly damaging to root tip cells, and ethylene pretreatments reduced this damage. Ethylene pretreatment alone altered the abundance of transcripts and proteins involved in hypoxia responses, root growth, translation, and reactive oxygen species (ROS) homeostasis. Through imaging and manipulating ROS abundance in planta, we demonstrated that ethylene limited excessive ROS formation during hypoxia and subsequent re-oxygenation and improved oxidative stress survival in a PHYTOGLOBIN1-dependent manner. In addition, we showed that root growth cessation via ethylene and auxin occurred rapidly and that this quiescence behavior contributed to enhanced hypoxia tolerance. Collectively, our results show that the early flooding signal ethylene modulates a variety of processes that all contribute to hypoxia survival.
Collapse
Affiliation(s)
| | | | | | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Hendrika A C F Leeggangers
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Shanice Martopawiro
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Femke Bosman
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Florian de Deugd
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Peng Su
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Maureen Hummel
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Tom Rankenberg
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | - Kirsty L Hassall
- Intelligent Data Ecosystems, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Julia Bailey-Serres
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | | | - Laurentius A C J Voesenek
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, 3584 CH, The Netherlands
| | | |
Collapse
|
20
|
Shiono K, Koshide A, Iwasaki K, Oguri K, Fukao T, Larsen M, Glud RN. Imaging the snorkel effect during submerged germination in rice: Oxygen supply via the coleoptile triggers seminal root emergence underwater. FRONTIERS IN PLANT SCIENCE 2022; 13:946776. [PMID: 35968087 PMCID: PMC9372499 DOI: 10.3389/fpls.2022.946776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Submergence during germination impedes aerobic metabolisms and limits the growth of most higher plants. However, some wetland plants including rice can germinate under submerged conditions. It has long been hypothesized that the first elongating shoot tissue, the coleoptile, acts as a snorkel to acquire atmospheric oxygen (O2) to initiate the first leaf elongation and seminal root emergence. Here, we obtained direct evidence for this hypothesis by visualizing the spatiotemporal O2 dynamics during submerged germination in rice using a planar O2 optode system. In parallel with the O2 imaging, we tracked the anatomical development of shoot and root tissues in real-time using an automated flatbed scanner. Three hours after the coleoptile tip reached the water surface, O2 levels around the embryo transiently increased. At this time, the activity of alcohol dehydrogenase (ADH), an enzyme critical for anaerobic metabolism, was significantly reduced, and the coleorhiza covering the seminal roots in the embryo was broken. Approximately 10 h after the transient burst in O2, seminal roots emerged. A transient O2 burst around the embryo was shown to be essential for seminal root emergence during submerged rice germination. The parallel application of a planar O2 optode system and automated scanning system can be a powerful tool for examining how environmental conditions affect germination in rice and other plants.
Collapse
Affiliation(s)
- Katsuhiro Shiono
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Akiko Koshide
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Kazunari Iwasaki
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Kazumasa Oguri
- HADAL and Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
- Research Institute of Global Change, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Takeshi Fukao
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Morten Larsen
- HADAL and Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Ronnie N. Glud
- HADAL and Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
- Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, Minato, Japan
- Danish Institute of Advanced Studies, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
21
|
Li Y, Liu Y, Jin L, Peng R. Crosstalk between Ca 2+ and Other Regulators Assists Plants in Responding to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11101351. [PMID: 35631776 PMCID: PMC9148064 DOI: 10.3390/plants11101351] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 05/08/2023]
Abstract
Plants have evolved many strategies for adaptation to extreme environments. Ca2+, acting as an important secondary messenger in plant cells, is a signaling molecule involved in plants' response and adaptation to external stress. In plant cells, almost all kinds of abiotic stresses are able to raise cytosolic Ca2+ levels, and the spatiotemporal distribution of this molecule in distant cells suggests that Ca2+ may be a universal signal regulating different kinds of abiotic stress. Ca2+ is used to sense and transduce various stress signals through its downstream calcium-binding proteins, thereby inducing a series of biochemical reactions to adapt to or resist various stresses. This review summarizes the roles and molecular mechanisms of cytosolic Ca2+ in response to abiotic stresses such as drought, high salinity, ultraviolet light, heavy metals, waterlogging, extreme temperature and wounding. Furthermore, we focused on the crosstalk between Ca2+ and other signaling molecules in plants suffering from extreme environmental stress.
Collapse
|
22
|
Wu B, Yun P, Zhou H, Xia D, Gu Y, Li P, Yao J, Zhou Z, Chen J, Liu R, Cheng S, Zhang H, Zheng Y, Lou G, Chen P, Wan S, Zhou M, Li Y, Gao G, Zhang Q, Li X, Lian X, He Y. Natural variation in WHITE-CORE RATE 1 regulates redox homeostasis in rice endosperm to affect grain quality. THE PLANT CELL 2022; 34:1912-1932. [PMID: 35171272 PMCID: PMC9048946 DOI: 10.1093/plcell/koac057] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/09/2022] [Indexed: 05/11/2023]
Abstract
Grain chalkiness reduces the quality of rice (Oryza sativa) and is a highly undesirable trait for breeding and marketing. However, the underlying molecular cause of chalkiness remains largely unknown. Here, we cloned the F-box gene WHITE-CORE RATE 1 (WCR1), which negatively regulates grain chalkiness and improves grain quality in rice. A functional A/G variation in the promoter region of WCR1 generates the alleles WCR1A and WCR1G, which originated from tropical japonica and wild rice Oryza rufipogon, respectively. OsDOF17 is a transcriptional activator that binds to the AAAAG cis-element in the WCR1A promoter. WCR1 positively affects the transcription of the metallothionein gene MT2b and interacts with MT2b to inhibit its 26S proteasome-mediated degradation, leading to decreased reactive oxygen species production and delayed programmed cell death in rice endosperm. This, in turn, leads to reduced chalkiness. Our findings uncover a molecular mechanism underlying rice chalkiness and identify the promising natural variant WCR1A, with application potential for rice breeding.
Collapse
Affiliation(s)
- Bian Wu
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Peng Yun
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hao Zhou
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Duo Xia
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuan Gu
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Pingbo Li
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jialing Yao
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhuqing Zhou
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jianxian Chen
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rongjia Liu
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shiyuan Cheng
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hao Zhang
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanyuan Zheng
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guangming Lou
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Pingli Chen
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shanshan Wan
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mingsong Zhou
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanhua Li
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xingming Lian
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
23
|
G. Viana W, Scharwies JD, Dinneny JR. Deconstructing the root system of grasses through an exploration of development, anatomy and function. PLANT, CELL & ENVIRONMENT 2022; 45:602-619. [PMID: 35092025 PMCID: PMC9303260 DOI: 10.1111/pce.14270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 05/16/2023]
Abstract
Well-adapted root systems allow plants to grow under resource-limiting environmental conditions and are important determinants of yield in agricultural systems. Important staple crops such as rice and maize belong to the family of grasses, which develop a complex root system that consists of an embryonic root system that emerges from the seed, and a postembryonic nodal root system that emerges from basal regions of the shoot after germination. While early seedling establishment is dependent on the embryonic root system, the nodal root system, and its associated branches, gains in importance as the plant matures and will ultimately constitute the bulk of below-ground growth. In this review, we aim to give an overview of the different root types that develop in cereal grass root systems, explore the different physiological roles they play by defining their anatomical features, and outline the genetic networks that control their development. Through this deconstructed view of grass root system function, we provide a parts-list of elements that function together in an integrated root system to promote survival and crop productivity.
Collapse
Affiliation(s)
| | | | - José R. Dinneny
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
24
|
Huang X, Shabala L, Zhang X, Zhou M, Voesenek LACJ, Hartman S, Yu M, Shabala S. Cation transporters in cell fate determination and plant adaptive responses to a low-oxygen environment. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:636-645. [PMID: 34718542 DOI: 10.1093/jxb/erab480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Soil flooding creates low-oxygen environments in root zones and thus severely affects plant growth and productivity. Plants adapt to low-oxygen environments by a suite of orchestrated metabolic and anatomical alterations. Of these, formation of aerenchyma and development of adventitious roots are considered very critical to enable plant performance in waterlogged soils. Both traits have been firmly associated with stress-induced increases in ethylene levels in root tissues that operate upstream of signalling pathways. Recently, we used a bioinformatic approach to demonstrate that several Ca2+ and K+ -permeable channels from KCO, AKT, and TPC families could also operate in low oxygen sensing in Arabidopsis. Here we argue that low-oxygen-induced changes to cellular ion homeostasis and operation of membrane transporters may be critical for cell fate determination and formation of the lysigenous aerenchyma in plant roots and shaping the root architecture and adventitious root development in grasses. We summarize the existing evidence for a causal link between tissue-specific changes in oxygen concentration, intracellular Ca2+ and K+ homeostasis, and reactive oxygen species levels, and their role in conferring those two major traits enabling plant adaptation to a low-oxygen environment. We conclude that, for efficient operation, plants may rely on several complementary signalling pathway mechanisms that operate in concert and 'fine-tune' each other. A better understanding of this interaction may create additional and previously unexplored opportunities to crop breeders to improve cereal crop yield losses to soil flooding.
Collapse
Affiliation(s)
- Xin Huang
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528041, China
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| | - Xuechen Zhang
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| | | | - Sjon Hartman
- Plant Ecophysiology, Utrecht University, 3584 CH Utrecht, The Netherlands
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528041, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528041, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tas 7001, Australia
| |
Collapse
|
25
|
Habibullah M, Sarkar S, Islam MM, Ahmed KU, Rahman MZ, Awad MF, ElSayed AI, Mansour E, Hossain MS. Assessing the Response of Diverse Sesame Genotypes to Waterlogging Durations at Different Plant Growth Stages. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112294. [PMID: 34834656 PMCID: PMC8618815 DOI: 10.3390/plants10112294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 05/15/2023]
Abstract
Sesame is sensitive to waterlogging, and its growth is devastatingly impacted under excess moisture conditions. Thus, waterlogging tolerance is crucial to alleviate yield constraints, particularly under expected climate change. In this study, 119 diverse sesame genotypes were screened for their tolerance to 12, 24, 48, and 72 h of waterlogging relative to non-waterlogged conditions. All plants died under 72 h of waterlogging, while 13.45%, 31.93%, and 45.38% of genotypes survived at 48, 24, and 12 h, respectively. Based on the seedling parameters and waterlogging tolerance coefficients, genotypes BD-7008 and BD-6985 exhibited the highest tolerance to waterlogging, while BD-6996 and JP-01811 were the most sensitive ones. The responses of these four genotypes to waterlogged conditions were assessed at different plant growth stages-30, 40, and 50 days after sowing (DAS)-versus normal conditions. Waterlogging, particularly when it occurred within 30 DAS, destructively affected the physiological and morphological characteristics, which was reflected in the growth and yield attributes. Genotype BD-7008, followed by BD-6985, exhibited the highest chlorophyll and proline contents as well as enzymatic antioxidant activities, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). These biochemical and physiological adjustments ameliorated the adverse effects of waterlogging, resulting in higher yields for both genotypes. Conversely, JP-01811 presented the lowest chlorophyll and proline contents as well as enzymatic antioxidant activities, resulting in the poorest growth and seed yield.
Collapse
Affiliation(s)
- Mohammad Habibullah
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (M.H.); (S.S.); (M.M.I.); (K.U.A.)
- Syngenta Bangladesh Limited, Green Rowshan Ara Tower (5th & 6th Floor), 55 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Shahnaz Sarkar
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (M.H.); (S.S.); (M.M.I.); (K.U.A.)
| | - Mohammad Mahbub Islam
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (M.H.); (S.S.); (M.M.I.); (K.U.A.)
| | - Kamal Uddin Ahmed
- Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; (M.H.); (S.S.); (M.M.I.); (K.U.A.)
| | - Md. Zillur Rahman
- Department of Agronomy and Haor Agriculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh;
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Abdelaleim I. ElSayed
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (A.I.E.); (E.M.); (M.S.H.)
| | - Elsayed Mansour
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (A.I.E.); (E.M.); (M.S.H.)
| | - Md. Sazzad Hossain
- Department of Agronomy and Haor Agriculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh;
- Correspondence: (A.I.E.); (E.M.); (M.S.H.)
| |
Collapse
|
26
|
Kacprzyk J, Burke R, Schwarze J, McCabe PF. Plant programmed cell death meets auxin signalling. FEBS J 2021; 289:1731-1745. [PMID: 34543510 DOI: 10.1111/febs.16210] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022]
Abstract
Both auxin signalling and programmed cell death (PCD) are essential components of a normally functioning plant. Auxin underpins plant growth and development, as well as regulating plant defences against environmental stresses. PCD, a genetically controlled pathway for selective elimination of redundant, damaged or infected cells, is also a key element of many developmental processes and stress response mechanisms in plants. An increasing body of evidence suggests that auxin signalling and PCD regulation are often connected. While generally auxin appears to suppress cell death, it has also been shown to promote PCD events, most likely via stimulation of ethylene biosynthesis. Intriguingly, certain cells undergoing PCD have also been suggested to control the distribution of auxin in plant tissues, by either releasing a burst of auxin or creating an anatomical barrier to auxin transport and distribution. These recent findings indicate novel roles of localized PCD events in the context of plant development such as control of root architecture, or tissue regeneration following injury, and suggest exciting possibilities for incorporation of this knowledge into crop improvement strategies.
Collapse
Affiliation(s)
- Joanna Kacprzyk
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| | - Rory Burke
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| | - Johanna Schwarze
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| | - Paul F McCabe
- School of Biology and Environmental Science, Science Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Sasidharan R, Schippers JHM, Schmidt RR. Redox and low-oxygen stress: signal integration and interplay. PLANT PHYSIOLOGY 2021; 186:66-78. [PMID: 33793937 PMCID: PMC8154046 DOI: 10.1093/plphys/kiaa081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 05/21/2023]
Abstract
Plants are aerobic organisms relying on oxygen to serve their energy needs. The amount of oxygen available to sustain plant growth can vary significantly due to environmental constraints or developmental programs. In particular, flooding stress, which negatively impacts crop productivity, is characterized by a decline in oxygen availability. Oxygen fluctuations result in an altered redox balance and the formation of reactive oxygen/nitrogen species (ROS/RNS) during the onset of hypoxia and upon re-oxygenation. In this update, we provide an overview of the current understanding of the impact of redox and ROS/RNS on low-oxygen signaling and adaptation. We first focus on the formation of ROS and RNS during low-oxygen conditions. Following this, we examine the impact of hypoxia on cellular and organellar redox systems. Finally, we describe how redox and ROS/RNS participate in signaling events during hypoxia through potential post-translational modifications (PTMs) of hypoxia-relevant proteins. The aim of this update is to define our current understanding of the field and to provide avenues for future research directions.
Collapse
Affiliation(s)
- Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland 06466, Germany
| | - Romy R Schmidt
- Faculty of Biology, Plant Biotechnology Group, Bielefeld University, Bielefeld 33615, Germany
- Author for communication:
| |
Collapse
|
28
|
Tyagi A, Sharma S, Srivastava H, Singh NK, Gaikwad K. In silico characterization and homology modeling of cytosolic APX gene predicts novel glycine residue modulating waterlogging stress response in pigeon pea. PeerJ 2021; 9:e10888. [PMID: 34026340 PMCID: PMC8123230 DOI: 10.7717/peerj.10888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/12/2021] [Indexed: 11/20/2022] Open
Abstract
Ascorbate peroxidase (APX) is a member of the family of heme-containing peroxidases having a similar structure with Cytochrome c peroxidase (CCP) that effectively scavenge cytosolic and chloroplastic hydrogen peroxide (H2O2) under various stresses. In this study, computational characterization and homology analysis of APX protein from waterlogging tolerant (ICPL 84023) and sensitive (ICP 7035) pigeon pea genotypes were carried out resulting in 100% homology with Glycine max in case of former and 99% in later genotypes respectively with 97.39% alignment coverage among each other. The model structure was further refined by various tools like PROCHECK, ProSA, and Verify3D. The planned model of the APX enzyme was then tested to dock with H2O2along with molecular dynamics (MD) simulation analysis. The docked complex of ICPL 84023 showed the best G-score (23.39 kcal/mol) in comparison to ICP 7035 (16.74 kcal/mol) depicting the higher production of APX for scavenging reactive oxygen species (ROS) production making this genotype more tolerant. The important binding residues in the ICPL 84023-H2O2complex (SER1, THR4, GLU23, and GLY13) have shown less fluctuation than the ICP 7035-H2O2 complex (SER1, THR4, and GLU23). Overall, our results showed that amino acid residue glycine in ICPL 84023 APX gene has a high binding affinity with H2O2 which could be a key factor associated with waterlogging stress tolerance in pigeon pea.
Collapse
Affiliation(s)
- Anshika Tyagi
- ICAR- National Institute for Plant Biotechnology, New Delhi, India
| | - Sandhya Sharma
- ICAR- National Institute for Plant Biotechnology, New Delhi, India
| | | | | | - Kishor Gaikwad
- ICAR- National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
29
|
Mohanty B. Promoter Architecture and Transcriptional Regulation of Genes Upregulated in Germination and Coleoptile Elongation of Diverse Rice Genotypes Tolerant to Submergence. Front Genet 2021; 12:639654. [PMID: 33796132 PMCID: PMC8008075 DOI: 10.3389/fgene.2021.639654] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Rice has the natural morphological adaptation to germinate and elongate its coleoptile under submerged flooding conditions. The phenotypic deviation associated with the tolerance to submergence at the germination stage could be due to natural variation. However, the molecular basis of this variation is still largely unknown. A comprehensive understanding of gene regulation of different genotypes that have diverse rates of coleoptile elongation can provide significant insights into improved rice varieties. To do so, publicly available transcriptome data of five rice genotypes, which have different lengths of coleoptile elongation under submergence tolerance, were analyzed. The aim was to identify the correlation between promoter architecture, associated with transcriptional and hormonal regulation, in diverse genotype groups of rice that have different rates of coleoptile elongation. This was achieved by identifying the putative cis-elements present in the promoter sequences of genes upregulated in each group of genotypes (tolerant, highly tolerant, and extremely tolerant genotypes). Promoter analysis identified transcription factors (TFs) that are common and unique to each group of genotypes. The candidate TFs that are common in all genotypes are MYB, bZIP, AP2/ERF, ARF, WRKY, ZnF, MADS-box, NAC, AS2, DOF, E2F, ARR-B, and HSF. However, the highly tolerant genotypes interestingly possess binding sites associated with HY5 (bZIP), GBF3, GBF4 and GBF5 (bZIP), DPBF-3 (bZIP), ABF2, ABI5, bHLH, and BES/BZR, in addition to the common TFs. Besides, the extremely tolerant genotypes possess binding sites associated with bHLH TFs such as BEE2, BIM1, BIM3, BM8 and BAM8, and ABF1, in addition to the TFs identified in the tolerant and highly tolerant genotypes. The transcriptional regulation of these TFs could be linked to phenotypic variation in coleoptile elongation in response to submergence tolerance. Moreover, the results indicate a cross-talk between the key TFs and phytohormones such as gibberellic acid, abscisic acid, ethylene, auxin, jasmonic acid, and brassinosteroids, for an altered transcriptional regulation leading to differences in germination and coleoptile elongation under submergence. The information derived from the current in silico analysis can potentially assist in developing new rice breeding targets for direct seeding.
Collapse
Affiliation(s)
- Bijayalaxmi Mohanty
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Pucciariello C, Perata P. The Oxidative Paradox in Low Oxygen Stress in Plants. Antioxidants (Basel) 2021; 10:332. [PMID: 33672303 PMCID: PMC7926446 DOI: 10.3390/antiox10020332] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/07/2023] Open
Abstract
Reactive oxygen species (ROS) are part of aerobic environments, and variations in the availability of oxygen (O2) in the environment can lead to altered ROS levels. In plants, the O2 sensing machinery guides the molecular response to low O2, regulating a subset of genes involved in metabolic adaptations to hypoxia, including proteins involved in ROS homeostasis and acclimation. In addition, nitric oxide (NO) participates in signaling events that modulate the low O2 stress response. In this review, we summarize recent findings that highlight the roles of ROS and NO under environmentally or developmentally defined low O2 conditions. We conclude that ROS and NO are emerging regulators during low O2 signalling and key molecules in plant adaptation to flooding conditions.
Collapse
Affiliation(s)
- Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy;
| | | |
Collapse
|
31
|
Kreitschitz A, Kovalev A, Gorb SN. Plant Seed Mucilage as a Glue: Adhesive Properties of Hydrated and Dried-in-Contact Seed Mucilage of Five Plant Species. Int J Mol Sci 2021; 22:ijms22031443. [PMID: 33535533 PMCID: PMC7867067 DOI: 10.3390/ijms22031443] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 11/30/2022] Open
Abstract
Seed and fruit mucilage is composed of three types of polysaccharides—pectins, cellulose, and hemicelluloses—and demonstrates adhesive properties after hydration. One of the important functions of the mucilage is to enable seeds to attach to diverse natural surfaces. Due to its adhesive properties, which increase during dehydration, the diaspore can be anchored to the substrate (soil) or attached to an animal’s body and dispersed over varied distances. After complete desiccation, the mucilage envelope forms a thin transparent layer around the diaspore creating a strong bond to the substrate. In the present study, we examined the mucilaginous seeds of six different plant taxa (from genera Linum, Lepidium, Ocimum, Salvia and Plantago) and addressed two main questions: (1) How strong is the adhesive bond of the dried mucilage envelope? and (2) What are the differences in adhesion between different mucilage types? Generally, the dried mucilage envelope revealed strong adhesive properties. Some differences between mucilage types were observed, particularly in relation to adhesive force (Fad) whose maximal values varied from 0.58 to 6.22 N. The highest adhesion force was revealed in the cellulose mucilage of Ocimum basilicum. However, mucilage lacking cellulose fibrils, such as that of Plantago ovata, also demonstrated high values of adhesion force with a maximum close to 5.74 N. The adhesion strength, calculated as force per unit contact area (Fad/A0), was comparable between studied taxa. Obtained results demonstrated (1) that the strength of mucilage adhesive bonds strongly surpasses the requirements necessary for epizoochory and (2) that seed mucilage has a high potential as a nontoxic, natural substance that can be used in water-based glues.
Collapse
Affiliation(s)
- Agnieszka Kreitschitz
- Department Functional Morphology and Biomechanics, University of Kiel, Am Botanischen Garten 1–9, D-24118 Kiel, Germany; (A.K.); (S.N.G.)
- Department of Plant Morphology and Development, Institute of Experimental Biology, University of Wrocław, Kanonia Street 6/8, 50-328 Wrocław, Poland
- Correspondence:
| | - Alexander Kovalev
- Department Functional Morphology and Biomechanics, University of Kiel, Am Botanischen Garten 1–9, D-24118 Kiel, Germany; (A.K.); (S.N.G.)
| | - Stanislav N. Gorb
- Department Functional Morphology and Biomechanics, University of Kiel, Am Botanischen Garten 1–9, D-24118 Kiel, Germany; (A.K.); (S.N.G.)
| |
Collapse
|
32
|
Jia W, Ma M, Chen J, Wu S. Plant Morphological, Physiological and Anatomical Adaption to Flooding Stress and the Underlying Molecular Mechanisms. Int J Mol Sci 2021; 22:ijms22031088. [PMID: 33499312 PMCID: PMC7865476 DOI: 10.3390/ijms22031088] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 01/09/2023] Open
Abstract
Globally, flooding is a major threat causing substantial yield decline of cereal crops, and is expected to be even more serious in many parts of the world due to climatic anomaly in the future. Understanding the mechanisms of plants coping with unanticipated flooding will be crucial for developing new flooding-tolerance crop varieties. Here we describe survival strategies of plants adaptation to flooding stress at the morphological, physiological and anatomical scale systemically, such as the formation of adventitious roots (ARs), aerenchyma and radial O2 loss (ROL) barriers. Then molecular mechanisms underlying the adaptive strategies are summarized, and more than thirty identified functional genes or proteins associated with flooding-tolerance are searched out and expounded. Moreover, we elaborated the regulatory roles of phytohormones in plant against flooding stress, especially ethylene and its relevant transcription factors from the group VII Ethylene Response Factor (ERF-VII) family. ERF-VIIs of main crops and several reported ERF-VIIs involving plant tolerance to flooding stress were collected and analyzed according to sequence similarity, which can provide references for screening flooding-tolerant genes more precisely. Finally, the potential research directions in the future were summarized and discussed. Through this review, we aim to provide references for the studies of plant acclimation to flooding stress and breeding new flooding-resistant crops in the future.
Collapse
|
33
|
González-Guzmán M, Gómez-Cadenas A, Arbona V. Abscisic Acid as an Emerging Modulator of the Responses of Plants to Low Oxygen Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:661789. [PMID: 33981326 PMCID: PMC8107475 DOI: 10.3389/fpls.2021.661789] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 05/11/2023]
Abstract
Different environmental and developmental cues involve low oxygen conditions, particularly those associated to abiotic stress conditions. It is widely accepted that plant responses to low oxygen conditions are mainly regulated by ethylene (ET). However, interaction with other hormonal signaling pathways as gibberellins (GAs), auxin (IAA), or nitric oxide (NO) has been well-documented. In this network of interactions, abscisic acid (ABA) has always been present and regarded to as a negative regulator of the development of morphological adaptations to soil flooding: hyponastic growth, adventitious root emergence, or formation of secondary aerenchyma in different plant species. However, recent evidence points toward a positive role of this plant hormone on the modulation of plant responses to hypoxia and, more importantly, on the ability to recover during the post-hypoxic period. In this work, the involvement of ABA as an emerging regulator of plant responses to low oxygen conditions alone or in interaction with other hormones is reviewed and discussed.
Collapse
|
34
|
Mhimdi M, Pérez-Pérez JM. Understanding of Adventitious Root Formation: What Can We Learn From Comparative Genetics? FRONTIERS IN PLANT SCIENCE 2020; 11:582020. [PMID: 33123185 PMCID: PMC7573222 DOI: 10.3389/fpls.2020.582020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/18/2020] [Indexed: 05/23/2023]
Abstract
Adventitious root (AR) formation is a complex developmental process controlled by a plethora of endogenous and environmental factors. Based on fossil evidence and genomic phylogeny, AR formation might be considered the default state of plant roots, which likely evolved independently several times. The application of next-generation sequencing techniques and bioinformatics analyses to non-model plants provide novel approaches to identify genes putatively involved in AR formation in multiple species. Recent results uncovered that the regulation of shoot-borne AR formation in monocots is an adaptive response to nutrient and water deficiency that enhances topsoil foraging and improves plant performance. A hierarchy of transcription factors required for AR initiation has been identified from genetic studies, and recent results highlighted the key involvement of additional regulation through microRNAs. Here, we discuss our current understanding of AR formation in response to specific environmental stresses, such as nutrient deficiency, drought or waterlogging, aimed at providing evidence for the integration of the hormone crosstalk required for the activation of root competent cells within adult tissues from which the ARs develop.
Collapse
|
35
|
Bai Z, Zhang J, Ning X, Guo H, Xu X, Huang X, Wang Y, Hu Z, Lu C, Zhang L, Chi W. A Kinase-Phosphatase-Transcription Factor Module Regulates Adventitious Root Emergence in Arabidopsis Root-Hypocotyl Junctions. MOLECULAR PLANT 2020; 13:1162-1177. [PMID: 32534220 DOI: 10.1016/j.molp.2020.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/05/2019] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Adventitious roots form from non-root tissues as part of normal development or in response to stress or wounding. The root primordia form in the source tissue, and during emergence the adventitious roots penetrate the inner cell layers and the epidermis; however, the mechanisms underlying this emergence remain largely unexplored. Here, we report that a regulatory module composed of the AP2/ERF transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4), the MAP kinases MPK3 and MPK6, and the phosphatase PP2C12 plays an important role in the emergence of junction adventitious roots (J-ARs) from the root-hypocotyl junctions in Arabidopsis thaliana. ABI4 negatively regulates J-AR emergence, preventing the accumulation of reactive oxygen species and death of epidermal cells, which would otherwise facilitate J-AR emergence. Phosphorylation by MPK3/MPK6 activates ABI4 and dephosphorylation by PP2C12 inactivates ABI4. MPK3/MPK6 also directly phosphorylate and inactivate PP2C12 during J-AR emergence. We propose that this "double-check" mechanism increases the robustness of MAP kinase signaling and finely regulates the local programmed cell death required for J-AR emergence.
Collapse
Affiliation(s)
- Zechen Bai
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Ning
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Guo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Xiumei Xu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
36
|
Nam BE, Park YJ, Gil KE, Kim JH, Kim JG, Park CM. Auxin mediates the touch-induced mechanical stimulation of adventitious root formation under windy conditions in Brachypodium distachyon. BMC PLANT BIOLOGY 2020; 20:335. [PMID: 32678030 PMCID: PMC7364541 DOI: 10.1186/s12870-020-02544-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/07/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND It is widely perceived that mechanical or thigmomorphogenic stimuli, such as rubbing and bending by passing animals, wind, raindrop, and flooding, broadly influence plant growth and developmental patterning. In particular, wind-driven mechanical stimulation is known to induce the incidence of radial expansion and shorter and stockier statue. Wind stimulation also affects the adaptive propagation of the root system in various plant species. However, it is unknown how plants sense and transmit the wind-derived mechanical signals to launch appropriate responses, leading to the wind-adaptive root growth. RESULTS Here, we found that Brachypodium distachyon, a model grass widely used for studies on bioenergy crops and cereals, efficiently adapts to wind-mediated lodging stress by forming adventitious roots (ARs) from nonroot tissues. Experimental dissection of wind stimuli revealed that not bending of the mesocotyls but physical contact of the leaf nodes with soil particles triggers the transcriptional induction of a group of potential auxin-responsive genes encoding WUSCHEL RELATED HOMEOBOX and LATERAL ORGAN BOUNDARIES DOMAIN transcription factors, which are likely to be involved in the induction of AR formation. CONCLUSIONS Our findings would contribute to further understanding molecular mechanisms governing the initiation and development of ARs, which will be applicable to crop agriculture in extreme wind climates.
Collapse
Affiliation(s)
- Bo Eun Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
- Department of Biology Education, Seoul National University, Seoul, 08826, South Korea
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Kyung-Eun Gil
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Ju-Heon Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jae Geun Kim
- Department of Biology Education, Seoul National University, Seoul, 08826, South Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
37
|
Xiao Y, Wu X, Sun M, Peng F. Hydrogen Sulfide Alleviates Waterlogging-Induced Damage in Peach Seedlings via Enhancing Antioxidative System and Inhibiting Ethylene Synthesis. FRONTIERS IN PLANT SCIENCE 2020; 11:696. [PMID: 32547587 PMCID: PMC7274156 DOI: 10.3389/fpls.2020.00696] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/04/2020] [Indexed: 05/18/2023]
Abstract
Peach (Prunus persica L. Batsch) is a shallow root fruit tree with poor waterlogging tolerance. Hydrogen sulfide (H2S) is a signal molecule which regulates the adaptation of plants to adverse environments. Nevertheless, the effects of exogenous applications of H2S in fruit tree species especially in peach trees under waterlogging stress have been scarcely researched. Thus, the goal of this research was to investigate the alleviating effect of exogenous H2S on peach seedlings under waterlogging stress. In the present study, we found that the effect of exogenous H2S depended on the concentration and 0.2 mM sodium hydrosulfide (NaHS) showed the best remission effect on peach seedlings under waterlogging stress. Waterlogging significantly reduced the stomatal opening, net photosynthetic rate, and Fv/Fm of peach seedlings. The results of histochemical staining and physiological and biochemical tests showed that waterlogging stress increased the number of cell deaths and amounts of reactive oxygen species (ROS) accumulated in leaves, increased the number of root cell deaths, significantly increased the electrolyte permeability, O2.- production rate, H2O2 content and ethylene synthesis rate of roots, and significantly reduced root activity. With prolonged stress, antioxidative enzyme activity increased initially and then decreased. Under waterlogging stress, application of 0.2 mM NaHS increased the number of stomatal openings, improved the chlorophyll content, and photosynthetic capacity of peach seedlings. Exogenous H2S enhanced antioxidative system and significantly alleviate cell death of roots and leaves of peach seedlings caused by waterlogging stress through reducing ROS accumulation in roots and leaves. H2S can improve the activity and proline content of roots, reduce oxidative damage, alleviated lipid peroxidation, and inhibit ethylene synthesis. The H2S scavenger hypotaurine partially eliminated the effect of exogenous H2S on alleviating waterlogging stress of peach seedlings. Collectively, our results provide an insight into the protective role of H2S in waterlogging-stressed peach seedlings and suggest H2S as a potential candidate in reducing waterlogging-induced damage in peach seedlings.
Collapse
Affiliation(s)
| | | | | | - Futian Peng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
38
|
Nakamura M, Noguchi K. Tolerant mechanisms to O 2 deficiency under submergence conditions in plants. JOURNAL OF PLANT RESEARCH 2020; 133:343-371. [PMID: 32185673 PMCID: PMC7214491 DOI: 10.1007/s10265-020-01176-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/06/2020] [Indexed: 05/02/2023]
Abstract
Wetland plants can tolerate long-term strict hypoxia and anoxic conditions and the subsequent re-oxidative stress compared to terrestrial plants. During O2 deficiency, both wetland and terrestrial plants use NAD(P)+ and ATP that are produced during ethanol fermentation, sucrose degradation, and major amino acid metabolisms. The oxidation of NADH by non-phosphorylating pathways in the mitochondrial respiratory chain is common in both terrestrial and wetland plants. As the wetland plants enhance and combine these traits especially in their roots, they can survive under long-term hypoxic and anoxic stresses. Wetland plants show two contrasting strategies, low O2 escape and low O2 quiescence strategies (LOES and LOQS, respectively). Differences between two strategies are ascribed to the different signaling networks related to phytohormones. During O2 deficiency, LOES-type plants show several unique traits such as shoot elongation, aerenchyma formation and leaf acclimation, whereas the LOQS-type plants cease their growth and save carbohydrate reserves. Many wetland plants utilize NH4+ as the nitrogen (N) source without NH4+-dependent respiratory increase, leading to efficient respiratory O2 consumption in roots. In contrast, some wetland plants with high O2 supply system efficiently use NO3- from the soil where nitrification occurs. The differences in the N utilization strategies relate to the different systems of anaerobic ATP production, the NO2--driven ATP production and fermentation. The different N utilization strategies are functionally related to the hypoxia or anoxia tolerance in the wetland plants.
Collapse
Affiliation(s)
- Motoka Nakamura
- Department of Bio-Production, Faculty of Bio-Industry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan.
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
39
|
Kora D, Bhattacharjee S. The interaction of reactive oxygen species and antioxidants at the metabolic interface in salicylic acid-induced adventitious root formation in mung bean [Vigna radiata (L.) R. Wilczek]. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153152. [PMID: 32193034 DOI: 10.1016/j.jplph.2020.153152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Implications of the role of antioxidant buffering in reactive oxygen species (ROS)-antioxidant interactions and associated redox regulation during adventitious root formation (ARF) were assessed in redox-manipulated salicylic acid (SA)-treated hypocotyl explants of mung bean [Vigna radiata (L.) R. Wilczek]. Application of pro-oxidant H2O2 (500 μM) followed by SA (600 μM) was shown to stimulate ARF, whereas treatments combining 600 μM SA and 10 × 10-4 M DPI (diphenyleneiodonium, an inhibitor of NADPH-oxidase) and 600 μM and SA 10 × 10-4 M (dimethylthiourea, a free radical scavenger) were found to prevent ARF. The redox status of the experimental explants monitored under such treatment conditions (in terms of accumulation of pro-oxidants, in situ localization of O2- and H2O2, radical scavenging property and total thiol content) revealed significant changes in ROS-antioxidant interactions at the metabolic interface, causing alterations in the pattern of ARF. Further, the assessment of activities and transcript abundance of the enzymes of the H2O2 turnover pathway (mainly the ascorbate-glutathione system) supported the transcriptional regulation of genes such as vrrboh, vrAPX, vrGR, vrSOD, and vrCAT and the activities of the relevant enzymes necessary for the generation of endogenous redox cues during ARF. The present work provides an inventory in support of the importance of antioxidant buffering associated with redox regulation for the origin of the metabolic redox cue (redox signal) necessary for SA-induced ARF in mung bean.
Collapse
Affiliation(s)
- Durga Kora
- Plant Physiology and Biochemistry Research Laboratory, Centre For Advanced Study, Department of Botany, University of Burdwan, Burdwan, 713104, India
| | - Soumen Bhattacharjee
- Plant Physiology and Biochemistry Research Laboratory, Centre For Advanced Study, Department of Botany, University of Burdwan, Burdwan, 713104, India.
| |
Collapse
|
40
|
Xue L, Sun M, Wu Z, Yu L, Yu Q, Tang Y, Jiang F. LncRNA regulates tomato fruit cracking by coordinating gene expression via a hormone-redox-cell wall network. BMC PLANT BIOLOGY 2020; 20:162. [PMID: 32293294 PMCID: PMC7161180 DOI: 10.1186/s12870-020-02373-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/31/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Fruit cracking occurs easily under unsuitable environmental conditions and is one of the main types of damage that occurs in fruit production. It is widely accepted that plants have developed defence mechanisms and regulatory networks that respond to abiotic stress, which involves perceiving, integrating and responding to stress signals by modulating the expression of related genes. Fruit cracking is also a physiological disease caused by abiotic stress. It has been reported that a single or several genes may regulate fruit cracking. However, almost none of these reports have involved cracking regulatory networks. RESULTS Here, RNA expression in 0 h, 8 h and 30 h saturated irrigation-treated fruits from two contrasting tomato genotypes, 'LA1698' (cracking-resistant, CR) and 'LA2683' (cracking-susceptible, CS), was analysed by mRNA and lncRNA sequencing. The GO pathways of the differentially expressed mRNAs were mainly enriched in the 'hormone metabolic process', 'cell wall organization', 'oxidoreductase activity' and 'catalytic activity' categories. According to the gene expression analysis, significantly differentially expressed genes included Solyc02g080530.3 (Peroxide, POD), Solyc01g008710.3 (Mannan endo-1,4-beta-mannosidase, MAN), Solyc08g077910.3 (Expanded, EXP), Solyc09g075330.3 (Pectinesterase, PE), Solyc07g055990.3 (Xyloglucan endotransglucosylase-hydrolase 7, XTH7), Solyc12g011030.2 (Xyloglucan endotransglucosylase-hydrolase 9, XTH9), Solyc10g080210.2 (Polygalacturonase-2, PG2), Solyc08g081010.2 (Gamma-glutamylcysteine synthetase, gamma-GCS), Solyc09g008720.2 (Ethylene receptor, ER), Solyc11g042560.2 (Ethylene-responsive transcription factor 4, ERF4) etc. In addition, the lncRNAs (XLOC_16662 and XLOC_033910, etc) regulated the expression of their neighbouring genes, and genes related to tomato cracking were selected to construct a lncRNA-mRNA network influencing tomato cracking. CONCLUSIONS This study provides insight into the responsive network for water-induced cracking in tomato fruit. Specifically, lncRNAs regulate the hormone-redox-cell wall network, including plant hormone (auxin, ethylene) and ROS (H2O2) signal transduction and many cell wall-related mRNAs (EXP, PG, XTH), as well as some lncRNAs (XLOC_16662 and XLOC_033910, etc.).
Collapse
Affiliation(s)
- Lingzi Xue
- College of Horticulture, Nanjing Agricultural University, Weigang NO 1, Nanjing, 210095 Xuanwu District China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, 210095 China
| | - Mintao Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun South St, Beijing, 10081 Haidian District China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Weigang NO 1, Nanjing, 210095 Xuanwu District China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, 210095 China
| | - Lu Yu
- College of Horticulture, Nanjing Agricultural University, Weigang NO 1, Nanjing, 210095 Xuanwu District China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, 210095 China
| | - Qinghui Yu
- Institute of Vegetables, Xinjiang Academy of Agricultural Sciences, Nanchang Road 403, Urumchi, 830091 Shayibake District China
| | - Yaping Tang
- Institute of Vegetables, Xinjiang Academy of Agricultural Sciences, Nanchang Road 403, Urumchi, 830091 Shayibake District China
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Weigang NO 1, Nanjing, 210095 Xuanwu District China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, 210095 China
| |
Collapse
|
41
|
Escamez S, André D, Sztojka B, Bollhöner B, Hall H, Berthet B, Voß U, Lers A, Maizel A, Andersson M, Bennett M, Tuominen H. Cell Death in Cells Overlying Lateral Root Primordia Facilitates Organ Growth in Arabidopsis. Curr Biol 2020; 30:455-464.e7. [PMID: 31956028 DOI: 10.1016/j.cub.2019.11.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
Plant organ growth is widely accepted to be determined by cell division and cell expansion, but, unlike that in animals, the contribution of cell elimination has rarely been recognized. We investigated this paradigm during Arabidopsis lateral root formation, when the lateral root primordia (LRP) must traverse three overlying cell layers within the parent root. A subset of LRP-overlying cells displayed the induction of marker genes for cell types undergoing developmental cell death, and their cell death was detected by electron, confocal, and light sheet microscopy techniques. LRP growth was delayed in cell-death-deficient mutants lacking the positive cell death regulator ORESARA1/ANAC092 (ORE1). LRP growth was restored in ore1-2 knockout plants by genetically inducing cell elimination in cells overlying the LRP or by physically killing LRP-overlying cells by ablation with optical tweezers. Our results support that, in addition to previously discovered mechanisms, cell elimination contributes to regulating lateral root emergence.
Collapse
Affiliation(s)
- Sacha Escamez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Domenique André
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Bernadette Sztojka
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Benjamin Bollhöner
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Hardy Hall
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Béatrice Berthet
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ute Voß
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 SRD, UK
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion, 7528809, Israel
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | - Malcolm Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 SRD, UK
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
42
|
Yu F, Liang K, Fang T, Zhao H, Han X, Cai M, Qiu F. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2286-2298. [PMID: 31033158 PMCID: PMC6835127 DOI: 10.1111/pbi.13140] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 05/24/2023]
Abstract
Group VII ethylene response factors (ERFVIIs) play important roles in ethylene signalling and plant responses to flooding. However, natural ERFVII variations in maize (ZmERFVIIs) that are directly associated with waterlogging tolerance have not been reported. Here, a candidate gene association analysis of the ZmERFVII gene family showed that a waterlogging-responsive gene, ZmEREB180, was tightly associated with waterlogging tolerance. ZmEREB180 expression specifically responded to waterlogging and was up-regulated by ethylene; in addition, its gene product localized to the nucleus. Variations in the 5'-untranslated region (5'-UTR) and mRNA abundance of this gene under waterlogging conditions were significantly associated with survival rate (SR). Ectopic expression of ZmEREB180 in Arabidopsis increased the SR after submergence stress, and overexpression of ZmEREB180 in maize also enhanced the SR after long-term waterlogging stress, apparently through enhanced formation of adventitious roots (ARs) and regulation of antioxidant levels. Transcriptomic assays of the transgenic maize line under normal and waterlogged conditions further provided evidence that ZmEREB180 regulated AR development and reactive oxygen species homeostasis. Our study provides direct evidence that a ZmERFVII gene is involved in waterlogging tolerance. These findings could be applied directly to breed waterlogging-tolerant maize cultivars and improve our understanding of waterlogging stress.
Collapse
Affiliation(s)
- Feng Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Kun Liang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Tian Fang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xuesong Han
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Manjun Cai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
43
|
Guan L, Tayengwa R, Cheng ZM, Peer WA, Murphy AS, Zhao M. Auxin regulates adventitious root formation in tomato cuttings. BMC PLANT BIOLOGY 2019; 19:435. [PMID: 31638898 PMCID: PMC6802334 DOI: 10.1186/s12870-019-2002-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/30/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Adventitious root (AR) formation is a critical developmental process in cutting propagation for the horticultural industry. While auxin has been shown to regulate this process, the exact mechanism and details preceding AR formation remain unclear. Even though AR and lateral root (LR) formation share common developmental processes, there are exist some differences that need to be closely examined at the cytological level. Tomato stem cuttings, which readily form adventitious roots, represent the perfect system to study the influence of auxin on AR formation and to compare AR and LR organogenesis. RESULTS Here we show the progression by which AR form from founder cells in the basal pericycle cell layers in tomato stem cuttings. The first disordered clumps of cells assumed a dome shape that later differentiated into functional AR cell layers. Further growth resulted in emergence of mature AR through the epidermis following programmed cell death of epidermal cells. Auxin and ethylene levels increased in the basal stem cutting within 1 h. Tomato lines expressing the auxin response element DR5pro:YFP showed an increase in auxin distribution during the AR initiation phase, and was mainly concentrated in the meristematic cells of the developing AR. Treatment of stem cuttings with auxin, increased the number of AR primordia and the length of AR, while stem cuttings treated with the pre-emergent herbicide/auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) occasionally developed thick, agravitropic AR. Hormone profile analyses showed that auxin positively regulated AR formation, whereas perturbations to zeatin, salicylic acid, and abscisic acid homeostasis suggested minor roles during tomato stem rooting. The gene expression of specific auxin transporters increased during specific developmental phases of AR formation. CONCLUSION These data show that AR formation in tomato stems is a complex process. Upon perception of a wounding stimulus, expression of auxin transporter genes and accumulation of auxin at founder cell initiation sites in pericycle cell layers and later in the meristematic cells of the AR primordia were observed. A clear understanding and documentation of these events in tomato is critical to resolve AR formation in recalcitrant species like hardwoods and improve stem cutting propagation efficiency and effectiveness.
Collapse
Affiliation(s)
- Ling Guan
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences / Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Reuben Tayengwa
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Zongming Max Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Wendy Ann Peer
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA.
- Agriculture Biotechnology Center, University of Maryland, College Park, MD, USA.
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
- Agriculture Biotechnology Center, University of Maryland, College Park, MD, USA
| | - Mizhen Zhao
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences / Jiangsu Key Laboratory for Horticultural Crop Genetic improvement, Nanjing, 210014, China
| |
Collapse
|
44
|
Xu X, Wang K, Pan J, Chen X. Small RNA sequencing identifies cucumber miRNA roles in waterlogging-triggered adventitious root primordia formation. Mol Biol Rep 2019; 46:6381-6389. [PMID: 31538299 DOI: 10.1007/s11033-019-05084-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023]
Abstract
The formation of adventitious roots (ARs) is a key morphological adaptation of cucumber (Cucumis sativus L.) to waterlogging stress. MicroRNAs (miRNAs) constitute a group of non-coding small RNAs (sRNA) that play crucial roles in regulating diverse biological processes, including waterlogging acclimation. However, which specific miRNAs and how they are involved in waterlogging-triggered de novo AR primordia formation are not fully known. Here, Illumina sRNA sequencing was applied to sequence six sRNA libraries generated from the waterlogging-tolerant cucumber Zaoer-N after 48 h of waterlogging and the control. A total of 358 cucumber miRNAs, 312 known and 46 novel, were obtained. Among them, 23 were differentially expressed, with 10 and 13 being up- and downregulated, respectively. A qPCR expression study confirmed that the identified differentially expressed miRNAs were credible. A total of 657 putative miRNA target genes were predicted for the 23 miRNAs using an in silico approach. A gene ontology enrichment analysis revealed that target genes functioning in cell redox homeostasis, cytoskeleton, photosynthesis and cell growth were over-represented. In total, 58 of the 657 target genes showed inverse expression patterns compared with their respective miRNAs through a combined analysis of sRNA- and RNA-sequencing-based transcriptome datasets using the same experimental design. The target gene annotation included a peroxidase, a GDSL esterases/lipase and two heavy metal-associated isoprenylated plant proteins. Our results provide an important framework for understanding the unique miRNA patterns seen in responses to waterlogging and the miRNA-mediated formation of de novo AR primordia in cucumber.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Kaixuan Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiawei Pan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
45
|
Deng Y, Wang C, Wang N, Wei L, Li W, Yao Y, Liao W. Roles of Small-Molecule Compounds in Plant Adventitious Root Development. Biomolecules 2019; 9:E420. [PMID: 31466349 PMCID: PMC6770160 DOI: 10.3390/biom9090420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 01/31/2023] Open
Abstract
Adventitious root (AR) is a kind of later root, which derives from stems and leaf petioles of plants. Many different kinds of small signaling molecules can transmit information between cells of multicellular organisms. It has been found that small molecules can be involved in many growth and development processes of plants, including stomatal movement, flowering, fruit ripening and developing, and AR formation. Therefore, this review focuses on discussing the functions and mechanisms of small signaling molecules in the adventitious rooting process. These compounds, such as nitric oxide (NO), hydrogen gas (H2), hydrogen sulfide (H2S), carbon monoxide (CO), methane (CH4), ethylene (ETH), and hydrogen peroxide (H2O2), can be involved in the induction of AR formation or development. This review also sums the crosstalk between these compounds. Besides, those signaling molecules can regulate the expressions of some genes during AR development, including cell division genes, auxin-related genes, and adventitious rooting-related genes. We conclude that these small-molecule compounds enhance adventitious rooting by regulating antioxidant, water balance, and photosynthetic systems as well as affecting transportation and distribution of auxin, and these compounds further conduct positive effects on horticultural plants under environmental stresses. Hence, the effect of these molecules in plant AR formation and development is definitely a hot issue to explore in the horticultural study now and in the future.
Collapse
Affiliation(s)
- Yuzheng Deng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Ni Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Lijuan Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Weifang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yandong Yao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
46
|
Qi X, Li Q, Ma X, Qian C, Wang H, Ren N, Shen C, Huang S, Xu X, Xu Q, Chen X. Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling. PLANT, CELL & ENVIRONMENT 2019; 42:1458-1470. [PMID: 30556134 DOI: 10.1111/pce.13504] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/01/2018] [Accepted: 12/09/2018] [Indexed: 05/21/2023]
Abstract
Development of adventitious roots (ARs) at the base of the shoot is an important adaptation of plants to waterlogging stress; however, its physiological mechanisms remain unclear. Here, we investigated the regulation of AR formation under waterlogged conditions by hormones and reactive oxygen species (ROS) in Cucumis sativus L., an agriculturally and economically important crop in China. We found that ethylene, auxin, and ROS accumulated in the waterlogged cucumber plants. On the other hand, application of the ethylene receptor inhibitor 1-methylcyclopropene (1-MCP), the auxin transport inhibitor 1-naphthylphthalamic acid (NPA), or the NADPH oxidase inhibitor diphenyleneiodonium (DPI) decreased the number of ARs induced by waterlogging. Auxin enhanced the expression of ethylene biosynthesis genes, which led to ethylene entrapment in waterlogged plants. Both ethylene and auxin induced the generation of ROS. Auxin-induced AR formation was inhibited by 1-MCP, although ethylene-induced AR formation was not inhibited by NPA. Both ethylene- and auxin-induced AR formation were counteracted by DPI. These results indicate that auxin-induced AR formation is dependent on ethylene, whereas ethylene-induced AR formation is independent of auxin. They also show that ROS signals mediate both ethylene- and auxin-induced AR formation in cucumber plants.
Collapse
Affiliation(s)
- Xiaohua Qi
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qianqian Li
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiaotian Ma
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chunlu Qian
- Department of Food Science, School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Huihui Wang
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Nannan Ren
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chenxi Shen
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Shumiao Huang
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuewen Xu
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qiang Xu
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
47
|
Lin C, Sauter M. Polar Auxin Transport Determines Adventitious Root Emergence and Growth in Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:444. [PMID: 31024605 PMCID: PMC6465631 DOI: 10.3389/fpls.2019.00444] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/25/2019] [Indexed: 05/23/2023]
Abstract
Flooding is a severe limitation for crop production worldwide. Unlike other crop plants, rice (Oryza sativa L.) is well adapted to partial submergence rendering it a suitable crop plant to understand flooding tolerance. Formation of adventitious roots (ARs), that support or replace the main root system, is a characteristic response to flooding. In rice, AR emergence is induced by ethylene and in the dark where roots grow upward. We used the synthetic auxins 2,4-D and α-NAA, and the auxin transport inhibitor naphthylphtalamic acid (NPA) to study emergence, growth rate and growth angle of ARs. While α-NAA had no effect, NPA and 2,4-D reduced the root elongation rate and the angle with a stronger effect on root angle in the dark than in the light. Furthermore, NPA delayed emergence of AR primordia suggesting that efflux carrier-mediated auxin transport is required for all aspects of directed AR growth. Expression analysis using OsPIN:GUS reporter lines revealed that OsPIN1b and OsPIN1c promoters were active in the stele and root cap in accord with their predicted role in acropetal auxin transport. OsPIN2 was expressed at the root tip and was reduced in the presence of NPA. Auxin activity, detected with DR5:VENUS, increased in primordia following growth induction. By contrast, auxin activity was high in epidermal cells above primordia and declined following growth induction suggesting that auxin levels are antagonistically regulated in AR primordia and in epidermal cells above AR primordia suggesting that auxin signaling contributes to the coordinated processes of epidermal cell death and AR emergence.
Collapse
|
48
|
Gomes MP, Richardi VS, Bicalho EM, da Rocha DC, Navarro-Silva MA, Soffiatti P, Garcia QS, Sant'Anna-Santos BF. Effects of Ciprofloxacin and Roundup on seed germination and root development of maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2671-2678. [PMID: 30463122 DOI: 10.1016/j.scitotenv.2018.09.365] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/29/2018] [Accepted: 09/29/2018] [Indexed: 06/09/2023]
Abstract
Their continuous release into the environment, associated with their inherent biological activity, has motivated investigations into the detrimental effects of antibiotics and herbicides in natural and agricultural ecosystems. In this study, the interactive effects of the antibiotic ciprofloxacin (Cipro) and the herbicide Roundup on seed germination and root development were investigated. Although both compounds act as inhibitors of the mitochondrial electron transport chain in seeds, neither Cipro nor Roundup disrupted germinability of maize seeds. However, Cipro accelerated germination by promoting ROS accumulation in seeds, while the stimulatory effect of Roundup on ROS-scavenging enzymes (catalase and ascorbate peroxidase) seems to prevent ROS-signaling, delaying the germination process. Roundup reduced root elongation, possibly due to its interference with auxin production, thereby preventing cell division, while Cipro stimulated root elongation by increasing root oxidative status. Cipro and Roundup showed antagonistic effects on maize seeds and root physiology. The presence of the antibiotic is likely not to disturb plant development; however, its stimulatory effects were not sufficient to overcome the deleterious effects of Roundup. According to our results, glyphosate-based herbicides must be carefully used during maize cropping and although antibiotics such as Cipro may not negatively impact agricultural production, their accumulation by crops must be investigated since this can be a pathway of antibiotic-insertion into the food chain.
Collapse
Affiliation(s)
- Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil; Pós-Graduação em Ciências do Solo, Departamento de Solos e Engenharia Agrícola, Setor de Ciências Agrárias, Universidade Federal do Paraná, Rua dos Funcionários, 1540, Juvevê, 80035-050, Curitiba, Paraná, Brazil.
| | - Vinícius Sobrinho Richardi
- Laboratório de Morfologia e Fisiologia de Culicidae e Chironomidae, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Elisa Monteze Bicalho
- Laboratório de Crescimento e Desenvolvimento de Plantas, Setor de Fisiologia Vegetal, Departamento de Botânica, Universidade Federal de Lavras, Campus UFLA, C.P. 3037, 37200-000, Lavras, Minas Gerais, Brazil
| | - Daiane Cristina da Rocha
- Pós-Graduação em Ciências do Solo, Departamento de Solos e Engenharia Agrícola, Setor de Ciências Agrárias, Universidade Federal do Paraná, Rua dos Funcionários, 1540, Juvevê, 80035-050, Curitiba, Paraná, Brazil
| | - Mário Antônio Navarro-Silva
- Laboratório de Morfologia e Fisiologia de Culicidae e Chironomidae, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Patrícia Soffiatti
- Laboratório de Anatomia e Biomecânica Vegetal, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| | - Queila Souza Garcia
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, C.P. 486, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno Francisco Sant'Anna-Santos
- Laboratório de Anatomia e Biomecânica Vegetal, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C.P. 19031, 81531-980, Curitiba, Paraná, Brazil
| |
Collapse
|
49
|
Gill MB, Zeng F, Shabala L, Zhang G, Yu M, Demidchik V, Shabala S, Zhou M. Identification of QTL Related to ROS Formation under Hypoxia and Their Association with Waterlogging and Salt Tolerance in Barley. Int J Mol Sci 2019; 20:E699. [PMID: 30736310 PMCID: PMC6387252 DOI: 10.3390/ijms20030699] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 01/19/2023] Open
Abstract
Waterlogging is a serious environmental problem that limits agricultural production in low-lying rainfed areas around the world. The major constraint that plants face in a waterlogging situation is the reduced oxygen availability. Accordingly, all previous efforts of plant breeders focused on traits providing adequate supply of oxygen to roots under waterlogging conditions, such as enhanced aerenchyma formation or reduced radial oxygen loss. However, reduced oxygen concentration in waterlogged soils also leads to oxygen deficiency in plant tissues, resulting in an excessive accumulation of reactive oxygen species (ROS) in plants. To the best of our knowledge, this trait has never been targeted in breeding programs and thus represents an untapped resource for improving plant performance in waterlogged soils. To identify the quantitative trait loci (QTL) for ROS tolerance in barley, 187 double haploid (DH) lines from a cross between TX9425 and Naso Nijo were screened for superoxide anion (O₂•-) and hydrogen peroxide (H₂O₂)-two major ROS species accumulated under hypoxia stress. We show that quantifying ROS content after 48 h hypoxia could be a fast and reliable approach for the selection of waterlogging tolerant barley genotypes. The same QTL on chromosome 2H was identified for both O₂•- (QSO.TxNn.2H) and H₂O₂ (QHP.TxNn.2H) contents. This QTL was located at the same position as the QTL for the overall waterlogging and salt tolerance reported in previous studies, explaining 23% and 24% of the phenotypic variation for O₂•- and H₂O2 contents, respectively. The analysis showed a causal association between ROS production and both waterlogging and salt stress tolerance. Waterlogging and salinity are two major abiotic factors affecting crop production around the globe and frequently occur together. The markers associated with this QTL could potentially be used in future breeding programs to improve waterlogging and salinity tolerance.
Collapse
Affiliation(s)
- Muhammad Bilal Gill
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Fanrong Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Min Yu
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
| | - Vadim Demidchik
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 222030 Minsk, Belarus.
| | - Sergey Shabala
- International Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China.
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas 7005, Australia.
| |
Collapse
|
50
|
Ni XL, Gui MY, Tan LL, Zhu Q, Liu WZ, Li CX. Programmed Cell Death and Aerenchyma Formation in Water-Logged Sunflower Stems and Its Promotion by Ethylene and ROS. FRONTIERS IN PLANT SCIENCE 2019; 9:1928. [PMID: 30687344 PMCID: PMC6333753 DOI: 10.3389/fpls.2018.01928] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 12/12/2018] [Indexed: 05/25/2023]
Abstract
Previous studies have shown that waterlogging/ hypoxic conditions induce aerenchyma formation to facilitate gas exchange. Ethylene (ET) and reactive oxygen species (ROS), as regulatory signals, might also be involved in these adaptive responses. However, the interrelationships between these signals have seldom been reported. Herein, we showed that programmed cell death (PCD) was involved in aerenchyma formation in the stem of Helianthus annuus. Lysigenous aerenchyma formation in the stem was induced through waterlogging (WA), ethylene and ROS. Pre-treatment with the NADPH oxidase inhibitor diphenyleneiodonium (DPI) partially suppressed aerenchyma formation in the seedlings after treatment with WA, ET and 3-amino-1, 2, 4-triazole (AT, catalase inhibitor). In addition, pre-treatment with the ethylene perception inhibitor 1-methylcyclopropene (1-MCP) partially suppressed aerenchyma formation induced through WA and ET in the seedlings, but barely inhibited aerenchyma formation induced through ROS. These results revealed that ethylene-mediated ROS signaling plays a role in aerenchyma formation, and there is a causal and interdependent relationship during WA, ET and ROS in PCD, which regulates signal networks in the stem of H. annuus.
Collapse
Affiliation(s)
- Xi-Lu Ni
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-western China, Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-western China of Ministry of Education, Yinchuan, China
- Key Laboratory for the Eco-Environment of the Three Gorges Reservoir Region of the Ministry of Education, College of Life Science, Southwest University, Chongqing, China
- School of Life Science, Northwest University, Xi'an, China
| | - Meng-Yuan Gui
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, China
| | - Ling-Ling Tan
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Qiang Zhu
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-western China, Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-western China of Ministry of Education, Yinchuan, China
| | - Wen-Zhe Liu
- School of Life Science, Northwest University, Xi'an, China
| | - Chang-Xiao Li
- Key Laboratory for the Eco-Environment of the Three Gorges Reservoir Region of the Ministry of Education, College of Life Science, Southwest University, Chongqing, China
| |
Collapse
|