1
|
Adamowski M, Matijević I, Friml J. Developmental patterning function of GNOM ARF-GEF mediated from the cell periphery. eLife 2024; 13:e68993. [PMID: 38381485 PMCID: PMC10881123 DOI: 10.7554/elife.68993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.
Collapse
Affiliation(s)
- Maciek Adamowski
- Institute of Science and Technology AustriaKlosterneuburgAustria
- Plant Breeding and Acclimatization Institute – National Research InstituteBłoniePoland
| | - Ivana Matijević
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Jiří Friml
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
2
|
Connected function of PRAF/RLD and GNOM in membrane trafficking controls intrinsic cell polarity in plants. Nat Commun 2022; 13:7. [PMID: 35013279 PMCID: PMC8748900 DOI: 10.1038/s41467-021-27748-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cell polarity is a fundamental feature underlying cell morphogenesis and organismal development. In the Arabidopsis stomatal lineage, the polarity protein BASL controls stomatal asymmetric cell division. However, the cellular machinery by which this intrinsic polarity site is established remains unknown. Here, we identify the PRAF/RLD proteins as BASL physical partners and mutating four PRAF members leads to defects in BASL polarization. Members of PRAF proteins are polarized in stomatal lineage cells in a BASL-dependent manner. Developmental defects of the praf mutants phenocopy those of the gnom mutants. GNOM is an activator of the conserved Arf GTPases and plays important roles in membrane trafficking. We further find PRAF physically interacts with GNOM in vitro and in vivo. Thus, we propose that the positive feedback of BASL and PRAF at the plasma membrane and the connected function of PRAF and GNOM in endosomal trafficking establish intrinsic cell polarity in the Arabidopsis stomatal lineage.
Collapse
|
3
|
Kanazawa T, Nishihama R, Ueda T. Normal oil body formation in Marchantia polymorpha requires functional coat protein complex I proteins. FRONTIERS IN PLANT SCIENCE 2022; 13:979066. [PMID: 36046592 PMCID: PMC9420845 DOI: 10.3389/fpls.2022.979066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 05/13/2023]
Abstract
Eukaryotic cells possess endomembrane organelles equipped with specific sets of proteins, lipids, and polysaccharides that are fundamental for realizing each organelle's specific function and shape. A tightly regulated membrane trafficking system mediates the transportation and localization of these substances. Generally, the secretory/exocytic pathway is responsible for transporting cargo to the plasma membrane and/or the extracellular space. However, in the case of oil body cells in the liverwort Marchantia polymorpha, the oil body, a liverwort-unique organelle, is thought to be formed by secretory vesicle fusion through redirection of the secretory pathway inside the cell. Although their formation mechanism remains largely unclear, oil bodies exhibit a complex and bumpy surface structure. In this study, we isolated a mutant with spherical oil bodies through visual screening of mutants with abnormally shaped oil bodies. This mutant harbored a mutation in a coat protein complex I (COPI) subunit MpSEC28, and a similar effect on oil body morphology was also detected in knockdown mutants of other COPI subunits. Fluorescently tagged MpSEC28 was localized to the periphery of the Golgi apparatus together with other subunits, suggesting that it is involved in retrograde transport from and/or in the Golgi apparatus as a component of the COPI coat. The Mpsec28 mutants also exhibited weakened stiffness of the thalli, suggesting impaired cell-cell adhesion and cell wall integrity. These findings suggest that the mechanism of cell wall biosynthesis is also involved in shaping the oil body in M. polymorpha, supporting the redirection of the secretory pathway inward the cell during oil body formation.
Collapse
Affiliation(s)
- Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Aichi, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
- *Correspondence: Takashi Ueda,
| |
Collapse
|
4
|
Kohorn BD, Zorensky FDH, Dexter-Meldrum J, Chabout S, Mouille G, Kohorn S. Mutation of an Arabidopsis Golgi membrane protein ELMO1 reduces cell adhesion. Development 2021; 148:268319. [PMID: 34015094 DOI: 10.1242/dev.199420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/16/2021] [Indexed: 11/20/2022]
Abstract
Plant growth, morphogenesis and development involve cellular adhesion, a process dependent on the composition and structure of the extracellular matrix or cell wall. Pectin in the cell wall is thought to play an essential role in adhesion, and its modification and cleavage are suggested to be highly regulated so as to change adhesive properties. To increase our understanding of plant cell adhesion, a population of ethyl methanesulfonate-mutagenized Arabidopsis were screened for hypocotyl adhesion defects using the pectin binding dye Ruthenium Red that penetrates defective but not wild-type (WT) hypocotyl cell walls. Genomic sequencing was used to identify a mutant allele of ELMO1 which encodes a 20 kDa Golgi membrane protein that has no predicted enzymatic domains. ELMO1 colocalizes with several Golgi markers and elmo1-/- plants can be rescued by an ELMO1-GFP fusion. elmo1-/- exhibits reduced mannose content relative to WT but no other cell wall changes and can be rescued to WT phenotype by mutants in ESMERALDA1, which also suppresses other adhesion mutants. elmo1 describes a previously unidentified role for the ELMO1 protein in plant cell adhesion.
Collapse
Affiliation(s)
| | | | | | - Salem Chabout
- IJPB, INRAE, AgroParisTech, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Gregory Mouille
- IJPB, INRAE, AgroParisTech, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Susan Kohorn
- Department of Biology, Bowdoin College, ME 04011, USA
| |
Collapse
|
5
|
Defects in Cell Wall Differentiation of the Arabidopsis Mutant rol1-2 Is Dependent on Cyclin-Dependent Kinase CDK8. Cells 2021; 10:cells10030685. [PMID: 33808926 PMCID: PMC8003768 DOI: 10.3390/cells10030685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 01/02/2023] Open
Abstract
Plant cells are encapsulated by cell walls whose properties largely determine cell growth. We have previously identified the rol1-2 mutant, which shows defects in seedling root and shoot development. rol1-2 is affected in the Rhamnose synthase 1 (RHM1) and shows alterations in the structures of Rhamnogalacturonan I (RG I) and RG II, two rhamnose-containing pectins. The data presented here shows that root tissue of the rol1-2 mutant fails to properly differentiate the cell wall in cell corners and accumulates excessive amounts of callose, both of which likely alter the physical properties of cells. A surr (suppressor of the rol1-2 root developmental defect) mutant was identified that alleviates the cell growth defects in rol1-2. The cell wall differentiation defect is re-established in the rol1-2 surr mutant and callose accumulation is reduced compared to rol1-2. The surr mutation is an allele of the cyclin-dependent kinase 8 (CDK8), which encodes a component of the mediator complex that influences processes central to plant growth and development. Together, the identification of the surr mutant suggests that changes in cell wall composition and turnover in the rol1-2 mutant have a significant impact on cell growth and reveals a function of CDK8 in cell wall architecture and composition.
Collapse
|
6
|
Wachsman G, Zhang J, Moreno-Risueno MA, Anderson CT, Benfey PN. Cell wall remodeling and vesicle trafficking mediate the root clock in Arabidopsis. Science 2020; 370:819-823. [PMID: 33184208 DOI: 10.1126/science.abb7250] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022]
Abstract
In Arabidopsis thaliana, lateral roots initiate in a process preceded by periodic gene expression known as the root clock. We identified the vesicle-trafficking regulator GNOM and its suppressor, ADENOSINE PHOSPHATE RIBOSYLATION FACTOR GTPase ACTIVATION PROTEIN DOMAIN3, as root clock regulators. GNOM is required for the proper distribution of pectin, a mediator of intercellular adhesion, whereas the pectin esterification state is essential for a functional root clock. In sites of lateral root primordia emergence, both esterified and de-esterified pectin variants are differentially distributed. Using a reverse-genetics approach, we show that genes controlling pectin esterification regulate the root clock and lateral root initiation. These results indicate that the balance between esterified and de-esterified pectin states is essential for proper root clock function and the subsequent initiation of lateral root primordia.
Collapse
Affiliation(s)
- Guy Wachsman
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA.,Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jingyuan Zhang
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Miguel A Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Philip N Benfey
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA. .,Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
7
|
Xiao Y, Li J, Zhang Y, Zhang X, Liu H, Qin Z, Chen B. Transcriptome analysis identifies genes involved in the somatic embryogenesis of Eucalyptus. BMC Genomics 2020; 21:803. [PMID: 33208105 PMCID: PMC7672952 DOI: 10.1186/s12864-020-07214-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/08/2020] [Indexed: 01/11/2023] Open
Abstract
Background Eucalyptus, a highly diverse genus of the Myrtaceae family, is the most widely planted hardwood in the world due to its increasing importance for fiber and energy. Somatic embryogenesis (SE) is one large-scale method to provide commercial use of the vegetative propagation of Eucalyptus and dedifferentiation is a key step for plant cells to become meristematic. However, little is known about the molecular changes during the Eucalyptus SE. Results We compared the transcriptome profiles of the differentiated and dedifferentiated tissues of two Eucalyptus species – E. camaldulensis (high embryogenetic potential) and E. grandis x urophylla (low embryogenetic potential). Initially, we identified 18,777 to 20,240 genes in all samples. Compared to the differentiated tissues, we identified 9229 and 8989 differentially expressed genes (DEGs) in the dedifferentiated tissues of E. camaldulensis and E. grandis x urophylla, respectively, and 2687 up-regulated and 2581 down-regulated genes shared. Next, we identified 2003 up-regulated and 1958 down-regulated genes only in E. camaldulensis, including 6 somatic embryogenesis receptor kinase, 17 ethylene, 12 auxin, 83 ribosomal protein, 28 zinc finger protein, 10 heat shock protein, 9 histone, 122 cell wall related and 98 transcription factor genes. Genes from other families like ABA, arabinogalactan protein and late embryogenesis abundant protein were also found to be specifically dysregulated in the dedifferentiation process of E. camaldulensis. Further, we identified 48,447 variants (SNPs and small indels) specific to E. camaldulensis, including 13,434 exonic variants from 4723 genes (e.g., annexin, GN, ARF and AP2-like ethylene-responsive transcription factor). qRT-PCR was used to confirm the gene expression patterns in both E. camaldulensis and E. grandis x urophylla. Conclusions This is the first time to study the somatic embryogenesis of Eucalyptus using transcriptome sequencing. It will improve our understanding of the molecular mechanisms of somatic embryogenesis and dedifferentiation in Eucalyptus. Our results provide a valuable resource for future studies in the field of Eucalyptus and will benefit the Eucalyptus breeding program. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07214-5.
Collapse
Affiliation(s)
- Yufei Xiao
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Junji Li
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Ye Zhang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Xiaoning Zhang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Hailong Liu
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Zihai Qin
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China
| | - Bowen Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, 23 Yongwu Road, Nanning, 530002, Guangxi, China.
| |
Collapse
|
8
|
Amalraj B, Govindaraju P, Krishna A, Lavania D, Linh NM, Ravichandran SJ, Scarpella E. GAL4
/
GFP enhancer‐trap
lines for identification and manipulation of cells and tissues in developing Arabidopsis leaves. Dev Dyn 2020; 249:1127-1146. [DOI: 10.1002/dvdy.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/30/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Brindhi Amalraj
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| | | | - Anmol Krishna
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| | - Dhruv Lavania
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| | - Nguyen M. Linh
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| | | | - Enrico Scarpella
- Department of Biological SciencesUniversity of Alberta Edmonton Alberta Canada
| |
Collapse
|
9
|
Verna C, Ravichandran SJ, Sawchuk MG, Linh NM, Scarpella E. Coordination of tissue cell polarity by auxin transport and signaling. eLife 2019; 8:51061. [PMID: 31793881 PMCID: PMC6890459 DOI: 10.7554/elife.51061] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/01/2019] [Indexed: 02/02/2023] Open
Abstract
Plants coordinate the polarity of hundreds of cells during vein formation, but how they do so is unclear. The prevailing hypothesis proposes that GNOM, a regulator of membrane trafficking, positions PIN-FORMED auxin transporters to the correct side of the plasma membrane; the resulting cell-to-cell, polar transport of auxin would coordinate tissue cell polarity and induce vein formation. Contrary to predictions of the hypothesis, we find that vein formation occurs in the absence of PIN-FORMED or any other intercellular auxin-transporter; that the residual auxin-transport-independent vein-patterning activity relies on auxin signaling; and that a GNOM-dependent signal acts upstream of both auxin transport and signaling to coordinate tissue cell polarity and induce vein formation. Our results reveal synergism between auxin transport and signaling, and their unsuspected control by GNOM in the coordination of tissue cell polarity during vein patterning, one of the most informative expressions of tissue cell polarization in plants. Plants, animals and other living things grow and develop over their lifetimes: for example, oak trees come from acorns and chickens begin their lives as eggs. To achieve these transformations, the cells in those living things must grow, divide and change their shape and other features. Plants and animals specify the directions in which their cells will grow and develop by gathering specific proteins to one side of the cells. This makes one side different from all the other sides, which the cells use as an internal compass that points in one direction. To align their internal compasses, animal cells touch one another and often move around inside the body. Plant cells, on the other hand, are surrounded by a wall that keeps them apart and prevents them from moving around. So how do plant cells align their internal compasses? Scientists have long thought that a protein called GNOM aligns the internal compasses of plant cells. The hypothesis proposes that GNOM gathers another protein, called PIN1, to one side of a cell. PIN1 would then pump a plant hormone known as auxin out of this first cell and, in doing so, would also drain auxin away from the cell on the opposite side. In this second cell, GNOM would then gather PIN1 to the side facing the first cell, and this process would repeat until all the cells' compasses were aligned. To test this hypothesis, Verna et al. combined microscopy with genetic approaches to study how cells' compasses are aligned in the leaves of a plant called Arabidopsis thaliana. The experiments revealed that auxin needs to move from cell-to-cell to align the cells’ compasses. However, contrary to the above hypothesis, this movement of auxin was not sufficient: the cells also needed to be able to detect and respond to the auxin that entered them. Along with controlling how auxin moved between the cells, GNOM also regulated how the cells responded to the auxin. These findings reveal how plants specify which directions their cells grow and develop. In the future, this knowledge may eventually aid efforts to improve crop yields by controlling the growth and development of crop plants.
Collapse
Affiliation(s)
- Carla Verna
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | - Megan G Sawchuk
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Nguyen Manh Linh
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Enrico Scarpella
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
10
|
Kania U, Nodzyński T, Lu Q, Hicks GR, Nerinckx W, Mishev K, Peurois F, Cherfils J, De Rycke R, Grones P, Robert S, Russinova E, Friml J. The Inhibitor Endosidin 4 Targets SEC7 Domain-Type ARF GTPase Exchange Factors and Interferes with Subcellular Trafficking in Eukaryotes. THE PLANT CELL 2018; 30:2553-2572. [PMID: 30018156 PMCID: PMC6241256 DOI: 10.1105/tpc.18.00127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/29/2018] [Accepted: 07/17/2018] [Indexed: 05/10/2023]
Abstract
The trafficking of subcellular cargos in eukaryotic cells crucially depends on vesicle budding, a process mediated by ARF-GEFs (ADP-ribosylation factor guanine nucleotide exchange factors). In plants, ARF-GEFs play essential roles in endocytosis, vacuolar trafficking, recycling, secretion, and polar trafficking. Moreover, they are important for plant development, mainly through controlling the polar subcellular localization of PIN-FORMED transporters of the plant hormone auxin. Here, using a chemical genetics screen in Arabidopsis thaliana, we identified Endosidin 4 (ES4), an inhibitor of eukaryotic ARF-GEFs. ES4 acts similarly to and synergistically with the established ARF-GEF inhibitor Brefeldin A and has broad effects on intracellular trafficking, including endocytosis, exocytosis, and vacuolar targeting. Additionally, Arabidopsis and yeast (Saccharomyces cerevisiae) mutants defective in ARF-GEF show altered sensitivity to ES4. ES4 interferes with the activation-based membrane association of the ARF1 GTPases, but not of their mutant variants that are activated independently of ARF-GEF activity. Biochemical approaches and docking simulations confirmed that ES4 specifically targets the SEC7 domain-containing ARF-GEFs. These observations collectively identify ES4 as a chemical tool enabling the study of ARF-GEF-mediated processes, including ARF-GEF-mediated plant development.
Collapse
Affiliation(s)
- Urszula Kania
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
- Department of Plant Biotechnology and Bioinformatics, Ghent University and Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Qing Lu
- Department of Plant Biotechnology and Bioinformatics, Ghent University and Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Glenn R Hicks
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Wim Nerinckx
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent-Zwijnaarde, Belgium
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Kiril Mishev
- Department of Plant Biotechnology and Bioinformatics, Ghent University and Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - François Peurois
- Laboratoire de Biologie et Pharmacologie Appliquée CNRS, Ecole Normale Supérieure Paris-Saclay, 94235 Cachan, France
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée CNRS, Ecole Normale Supérieure Paris-Saclay, 94235 Cachan, France
| | - Riet De Rycke
- Department of Plant Biotechnology and Bioinformatics, Ghent University and Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- VIB BioImaging Core, 9052Ghent, Belgium
| | - Peter Grones
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University and Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
11
|
Massange-Sánchez JA, Palmeros-Suárez PA, Espitia-Rangel E, Rodríguez-Arévalo I, Sánchez-Segura L, Martínez-Gallardo NA, Alatorre-Cobos F, Tiessen A, Délano-Frier JP. Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms. PLoS One 2016; 11:e0164280. [PMID: 27749893 PMCID: PMC5066980 DOI: 10.1371/journal.pone.0164280] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/22/2016] [Indexed: 11/19/2022] Open
Abstract
Two grain amaranth transcription factor (TF) genes were overexpressed in Arabidopsis plants. The first, coding for a group VII ethylene response factor TF (i.e., AhERF-VII) conferred tolerance to water-deficit stress (WS) in transgenic Arabidopsis without affecting vegetative or reproductive growth. A significantly lower water-loss rate in detached leaves coupled to a reduced stomatal opening in leaves of plants subjected to WS was associated with this trait. WS tolerance was also associated with an increased antioxidant enzyme activity and the accumulation of putative stress-related secondary metabolites. However, microarray and GO data did not indicate an obvious correlation between WS tolerance, stomatal closure, and abscisic acid (ABA)-related signaling. This scenario suggested that stomatal closure during WS in these plants involved ABA-independent mechanisms, possibly involving reactive oxygen species (ROS). WS tolerance may have also involved other protective processes, such as those employed for methyl glyoxal detoxification. The second, coding for a class A and cluster I DNA binding with one finger TF (i.e., AhDof-AI) provided salt-stress (SS) tolerance with no evident fitness penalties. The lack of an obvious development-related phenotype contrasted with microarray and GO data showing an enrichment of categories and genes related to developmental processes, particularly flowering. SS tolerance also correlated with increased superoxide dismutase activity but not with augmented stomatal closure. Additionally, microarray and GO data indicated that, contrary to AhERF-VII, SS tolerance conferred by AhDof-AI in Arabidopsis involved ABA-dependent and ABA-independent stress amelioration mechanisms.
Collapse
Affiliation(s)
- Julio A. Massange-Sánchez
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Paola A. Palmeros-Suárez
- Laboratorio de Biología Molecular, Instituto Tecnológico de Tlajomulco, Jalisco, km 10 Carretera a San Miguel Cuyutlán, CP 45640 Tlajomulco de Zúñiga, Jalisco, Mexico
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 13.5 Carrretera Los Reyes-Texcoco, C.P. 56250, Coatlinchán Texcoco, Estado de México, México
| | - Isaac Rodríguez-Arévalo
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, CP 36821, Irapuato, Gto., Mexico
| | - Lino Sánchez-Segura
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Norma A. Martínez-Gallardo
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - Fulgencio Alatorre-Cobos
- Conacyt Research Fellow-Colegio de Postgraduados, Campus Campeche. Carretera Haltunchen-Edzna Km 17.5, Sihochac, Champoton, 24450, Campeche, México
| | - Axel Tiessen
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| | - John P. Délano-Frier
- Centro de Investigación y de Estudios Avanzados del I. P. N., Unidad Irapuato, Km 9.6 del Libramiento Norte Carretera Irapuato-León, C.P. 36821, Irapuato, Gto., México
| |
Collapse
|
12
|
Ma J, Cheng Z, Chen J, Shen J, Zhang B, Ren Y, Ding Y, Zhou Y, Zhang H, Zhou K, Wang JL, Lei C, Zhang X, Guo X, Gao H, Bao Y, Wan JM. Phosphatidylserine Synthase Controls Cell Elongation Especially in the Uppermost Internode in Rice by Regulation of Exocytosis. PLoS One 2016; 11:e0153119. [PMID: 27055010 PMCID: PMC4824389 DOI: 10.1371/journal.pone.0153119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/23/2016] [Indexed: 11/18/2022] Open
Abstract
The uppermost internode is one of the fastest elongating organs in rice, and is expected to require an adequate supply of cell-wall materials and enzymes to the cell surface to enhance mechanical strength. Although it has been reported that the phenotype of shortened uppermost internode 1 (sui1) is caused by mutations in PHOSPHATIDYLSERINE SYNTHASE (OsPSS), the underlying mechanism remains unclear. Here we show that the OsPSS-1, as a gene expressed predominantly in elongating cells, regulates post-Golgi vesicle secretion to intercellular spaces. Mutation of OsPSS-1 leads to compromised delivery of CESA4 and secGFP towards the cell surface, resulting in weakened intercellular adhesion and disorganized cell arrangement in parenchyma. The phenotype of sui1-4 is caused largely by the reduction in cellulose contents in the whole plant and detrimental delivery of pectins in the uppermost internode. We found that OsPSS-1 and its potential product PS (phosphatidylserine) localized to organelles associated with exocytosis. These results together suggest that OsPSS-1 plays a potential role in mediating cell expansion by regulating secretion of cell wall components.
Collapse
Affiliation(s)
- Jin Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (ZJC); (JMW)
| | - Jun Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinbo Shen
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Kunneng Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Jiu-Lin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - He Gao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Yiqun Bao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| | - Jian-Min Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, China
- * E-mail: (ZJC); (JMW)
| |
Collapse
|
13
|
Naramoto S, Otegui MS, Kutsuna N, de Rycke R, Dainobu T, Karampelias M, Fujimoto M, Feraru E, Miki D, Fukuda H, Nakano A, Friml J. Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis. THE PLANT CELL 2014; 26:3062-76. [PMID: 25012191 PMCID: PMC4145132 DOI: 10.1105/tpc.114.125880] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/28/2014] [Accepted: 06/04/2014] [Indexed: 05/19/2023]
Abstract
GNOM is one of the most characterized membrane trafficking regulators in plants, with crucial roles in development. GNOM encodes an ARF-guanine nucleotide exchange factor (ARF-GEF) that activates small GTPases of the ARF (ADP ribosylation factor) class to mediate vesicle budding at endomembranes. The crucial role of GNOM in recycling of PIN auxin transporters and other proteins to the plasma membrane was identified in studies using the ARF-GEF inhibitor brefeldin A (BFA). GNOM, the most prominent regulator of recycling in plants, has been proposed to act and localize at so far elusive recycling endosomes. Here, we report the GNOM localization in context of its cellular function in Arabidopsis thaliana. State-of-the-art imaging, pharmacological interference, and ultrastructure analysis show that GNOM predominantly localizes to Golgi apparatus. Super-resolution confocal live imaging microscopy identified GNOM and its closest homolog GNOM-like 1 at distinct subdomains on Golgi cisternae. Short-term BFA treatment stabilizes GNOM at the Golgi apparatus, whereas prolonged exposures results in GNOM translocation to trans-Golgi network (TGN)/early endosomes (EEs). Malformed TGN/EE in gnom mutants suggests a role for GNOM in maintaining TGN/EE function. Our results redefine the subcellular action of GNOM and reevaluate the identity and function of recycling endosomes in plants.
Collapse
Affiliation(s)
- Satoshi Naramoto
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Molecular Membrane Biology laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan Department of Life Science, International Christian University, Mitaka-shi, Tokyo 181-8585, Japan
| | - Marisa S Otegui
- Department of Botany and Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Riet de Rycke
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Tomoko Dainobu
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Michael Karampelias
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Masaru Fujimoto
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Elena Feraru
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Daisuke Miki
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Nakano
- Molecular Membrane Biology laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan Live Cell Molecular Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
14
|
Naramoto S, Nodzyłski T, Dainobu T, Takatsuka H, Okada T, Friml J, Fukuda H. VAN4 encodes a putative TRS120 that is required for normal cell growth and vein development in Arabidopsis. PLANT & CELL PHYSIOLOGY 2014; 55:750-63. [PMID: 24443495 DOI: 10.1093/pcp/pcu012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Leaf venation develops complex patterns in angiosperms, but the mechanism underlying this process is largely unknown. To elucidate the molecular mechanisms governing vein pattern formation, we previously isolated vascular network defective (van) mutants that displayed venation discontinuities. Here, we report the phenotypic analysis of van4 mutants, and we identify and characterize the VAN4 gene. Detailed phenotypic analysis shows that van4 mutants are defective in procambium cell differentiation and subsequent vascular cell differentiation. Reduced shoot and root cell growth is observed in van4 mutants, suggesting that VAN4 function is important for cell growth and the establishment of venation continuity. Consistent with these phenotypes, the VAN4 gene is strongly expressed in vascular and meristematic cells. VAN4 encodes a putative TRS120, which is a known guanine nucleotide exchange factor (GEF) for Rab GTPase involved in regulating vesicle transport, and a known tethering factor that determines the specificity of membrane fusion. VAN4 protein localizes at the trans-Golgi network/early endosome (TGN/EE). Aberrant recycling of the auxin efflux carrier PIN proteins is observed in van4 mutants. These results suggest that VAN4-mediated exocytosis at the TGN plays important roles in plant vascular development and cell growth in shoot and root. Our identification of VAN4 as a putative TRS120 shows that Rab GTPases are crucial (in addition to ARF GTPases) for continuous vascular development, and provides further evidence for the importance of vesicle transport in leaf vascular formation.
Collapse
Affiliation(s)
- Satoshi Naramoto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Bihmidine S, Hunter CT, Johns CE, Koch KE, Braun DM. Regulation of assimilate import into sink organs: update on molecular drivers of sink strength. FRONTIERS IN PLANT SCIENCE 2013; 4:177. [PMID: 23761804 PMCID: PMC3671192 DOI: 10.3389/fpls.2013.00177] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/17/2013] [Indexed: 05/18/2023]
Abstract
Recent developments have altered our view of molecular mechanisms that determine sink strength, defined here as the capacity of non-photosynthetic structures to compete for import of photoassimilates. We review new findings from diverse systems, including stems, seeds, flowers, and fruits. An important advance has been the identification of new transporters and facilitators with major roles in the accumulation and equilibration of sugars at a cellular level. Exactly where each exerts its effect varies among systems. Sugarcane and sweet sorghum stems, for example, both accumulate high levels of sucrose, but may do so via different paths. The distinction is central to strategies for targeted manipulation of sink strength using transporter genes, and shows the importance of system-specific analyses. Another major advance has been the identification of deep hypoxia as a feature of normal grain development. This means that molecular drivers of sink strength in endosperm operate in very low oxygen levels, and under metabolic conditions quite different than previously assumed. Successful enhancement of sink strength has nonetheless been achieved in grains by up-regulating genes for starch biosynthesis. Additionally, our understanding of sink strength is enhanced by awareness of the dual roles played by invertases (INVs), not only in sucrose metabolism, but also in production of the hexose sugar signals that regulate cell cycle and cell division programs. These contributions of INV to cell expansion and division prove to be vital for establishment of young sinks ranging from flowers to fruit. Since INV genes are themselves sugar-responsive "feast genes," they can mediate a feed-forward enhancement of sink strength when assimilates are abundant. Greater overall productivity and yield have thus been attained in key instances, indicating that even broader enhancements may be achievable as we discover the detailed molecular mechanisms that drive sink strength in diverse systems.
Collapse
Affiliation(s)
- Saadia Bihmidine
- Division of Biological Sciences, University of MissouriColumbia, MO, USA
- Interdisciplinary Plant Group, University of MissouriColumbia, MO, USA
- Missouri Maize Center, University of MissouriColumbia, MO, USA
| | - Charles T. Hunter
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - Christine E. Johns
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - Karen E. Koch
- Horticultural Sciences Department, University of FloridaGainesville, FL, USA
- Plant Molecular and Cellular Biology Program, University of FloridaGainesville, FL, USA
| | - David M. Braun
- Division of Biological Sciences, University of MissouriColumbia, MO, USA
- Interdisciplinary Plant Group, University of MissouriColumbia, MO, USA
- Missouri Maize Center, University of MissouriColumbia, MO, USA
| |
Collapse
|
16
|
Xiao C, Anderson CT. Roles of pectin in biomass yield and processing for biofuels. FRONTIERS IN PLANT SCIENCE 2013; 4:67. [PMID: 23543255 PMCID: PMC3608898 DOI: 10.3389/fpls.2013.00067] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/10/2013] [Indexed: 05/02/2023]
Abstract
Pectin is a component of the cell walls of plants that is composed of acidic sugar-containing backbones with neutral sugar-containing side chains. It functions in cell adhesion and wall hydration, and pectin crosslinking influences wall porosity and plant morphogenesis. Despite its low abundance in the secondary cell walls that make up the majority of lignocellulosic biomass, recent results have indicated that pectin influences secondary wall formation in addition to its roles in primary wall biosynthesis and modification. This mini-review will examine these and other recent results in the context of biomass yield and digestibility and discuss how these traits might be enhanced by the genetic and molecular modification of pectin. The utility of pectin as a high-value, renewable biomass co-product will also be highlighted.
Collapse
Affiliation(s)
- Chaowen Xiao
- Department of Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
- Center for Lignocellulose Structure and Formation, The Pennsylvania State UniversityUniversity Park, PA, USA
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
- Center for Lignocellulose Structure and Formation, The Pennsylvania State UniversityUniversity Park, PA, USA
- *Correspondence: Charles T. Anderson, Department of Biology, The Pennsylvania State University, 201 Huck Life Sciences Building, University Park, PA 16802, USA. e-mail:
| |
Collapse
|
17
|
Yang X, Ye CY, Bisaria A, Tuskan GA, Kalluri UC. Identification of candidate genes in Arabidopsis and Populus cell wall biosynthesis using text-mining, co-expression network analysis and comparative genomics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:675-87. [PMID: 21958710 DOI: 10.1016/j.plantsci.2011.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 12/01/2010] [Accepted: 01/27/2011] [Indexed: 05/17/2023]
Abstract
Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of biofuels from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidence supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database, and additional genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional characterization in relation to cell wall biosynthesis.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division and BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | | | |
Collapse
|
18
|
Reboul R, Geserick C, Pabst M, Frey B, Wittmann D, Lütz-Meindl U, Léonard R, Tenhaken R. Down-regulation of UDP-glucuronic acid biosynthesis leads to swollen plant cell walls and severe developmental defects associated with changes in pectic polysaccharides. J Biol Chem 2011; 286:39982-92. [PMID: 21949134 DOI: 10.1074/jbc.m111.255695] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-glucose dehydrogenase (UGD) plays a key role in the nucleotide sugar biosynthetic pathway, as its product UDP-glucuronic acid is the common precursor for arabinose, xylose, galacturonic acid, and apiose residues found in the cell wall. In this study we characterize an Arabidopsis thaliana double mutant ugd2,3 that lacks two of the four UGD isoforms. This mutant was obtained from a cross of ugd2 and ugd3 single mutants, which do not show phenotypical differences compared with the WT. In contrast, ugd2,3 has a strong dwarfed phenotype and often develops seedlings with severe root defects suggesting that the UGD2 and UGD3 isoforms act in concert. Differences in its cell wall composition in comparison to the WT were determined using biochemical methods indicating a significant reduction in arabinose, xylose, apiose, and galacturonic acid residues. Xyloglucan is less substituted with xylose, and pectins have a reduced amount of arabinan side chains. In particular, the amount of the apiose containing side chains A and B of rhamnogalacturonan II is strongly reduced, resulting in a swollen cell wall. The alternative pathway to UDP-glucuronic acid with the key enzyme myo-inositol oxygenase is not up-regulated in ugd2,3. The pathway also does not complement the ugd2,3 mutation, likely because the supply of myo-inositol is limited. Taken together, the presented data underline the importance of UDP GlcA for plant primary cell wall formation.
Collapse
Affiliation(s)
- Rebecca Reboul
- Department of Cell Biology, Molecular Cell Physiology, University of Salzburg, 5020 Salzburg, Austria
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hoenemann C, Richardt S, Krüger K, Zimmer AD, Hohe A, Rensing SA. Large impact of the apoplast on somatic embryogenesis in Cyclamen persicum offers possibilities for improved developmental control in vitro. BMC PLANT BIOLOGY 2010; 10:77. [PMID: 20426818 PMCID: PMC3095351 DOI: 10.1186/1471-2229-10-77] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 04/28/2010] [Indexed: 05/08/2023]
Abstract
BACKGROUND Clonal propagation is highly desired especially for valuable horticultural crops. The method with the potentially highest multiplication rate is regeneration via somatic embryogenesis. However, this mode of propagation is often hampered by the occurrence of developmental aberrations and non-embryogenic callus. Therefore, the developmental process of somatic embryogenesis was analysed in the ornamental crop Cyclamen persicum by expression profiling, comparing different developmental stages of embryogenic cell cultures, zygotic vs. somatic embryos and embryogenic vs. non-embryogenic cell cultures. RESULTS The analysis was based on a cDNA microarray representing 1,216 transcripts and was exemplarily validated by realtime PCR. For this purpose relative transcript abundances of homologues of a putative receptor kinase, two different glutathione S-transferases (GST), a xyloglucan endotransglycosylase (XET) and a peroxidase (POX) were quantitatively measured by realtime PCR for three different comparisons. In total, 417 genes were found to be differentially expressed. Gene Ontology annotation revealed that transcripts coding for enzymes that are active in the extracellular compartment (apoplast) were significantly overrepresented in several comparisons. The expression profiling results are underpinned by thorough histological analyses of somatic and zygotic embryos. CONCLUSIONS The putative underlying physiological processes are discussed and hypotheses on improvement of the protocol for in vitro somatic embryogenesis in Cyclamen persicum are deduced. A set of physiological markers is proposed for efficient molecular control of the process of somatic embryogenesis in C. persicum. The general suitability of expression profiling for the development and improvement of micropropagation methods is discussed.
Collapse
Affiliation(s)
- Claudia Hoenemann
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Propagation, Kuehnhaeuser Strasse 101, 99189 Erfurt, Germany
| | - Sandra Richardt
- University of Freiburg, Faculty of Biology, Hauptstrasse 1, 79104 Freiburg, Germany
- QIAGEN GmbH, Qiagenstrasse 1, D-40724 Hilden, Germany
| | - Katja Krüger
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Propagation, Kuehnhaeuser Strasse 101, 99189 Erfurt, Germany
| | - Andreas D Zimmer
- University of Freiburg, Faculty of Biology, Plant Biotechnology, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Annette Hohe
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Propagation, Kuehnhaeuser Strasse 101, 99189 Erfurt, Germany
| | - Stefan A Rensing
- University of Freiburg, Faculty of Biology, Hauptstrasse 1, 79104 Freiburg, Germany
| |
Collapse
|
20
|
|
21
|
Caffall KH, Pattathil S, Phillips SE, Hahn MG, Mohnen D. Arabidopsis thaliana T-DNA mutants implicate GAUT genes in the biosynthesis of pectin and xylan in cell walls and seed testa. MOLECULAR PLANT 2009; 2:1000-14. [PMID: 19825675 DOI: 10.1093/mp/ssp062] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Galacturonosyltransferase 1 (GAUT1) is an alpha1,4-D-galacturonosyltransferase that transfers galacturonic acid from uridine 5'-diphosphogalacturonic acid onto the pectic polysaccharide homogalacturonan (Sterling et al., 2006). The 25-member Arabidopsis thaliana GAUT1-related gene family encodes 15 GAUT and 10 GAUT-like (GATL) proteins with, respectively, 56-84 and 42-53% amino acid sequence similarity to GAUT1. Previous phylogenetic analyses of AtGAUTs indicated three clades: A through C. A comparative phylogenetic analysis of the Arabidopsis, poplar and rice GAUT families has sub-classified the GAUTs into seven clades: clade A-1 (GAUTs 1 to 3); A-2 (GAUT4); A-3 (GAUTs 5 and 6); A-4 (GAUT7); B-1 (GAUTs 8 and 9); B-2 (GAUTs 10 and 11); and clade C (GAUTs 12 to 15). The Arabidopsis GAUTs have a distribution comparable to the poplar orthologs, with the exception of GAUT2, which is absent in poplar. Rice, however, has no orthologs of GAUTs 2 and 12 and has multiple apparent orthologs of GAUTs 1, 4, and 7 compared with either Arabidopsis or poplar. The cell wall glycosyl residue compositions of 26 homozygous T-DNA insertion mutants for 13 of 15 Arabidopsis GAUT genes reveal significantly and reproducibly different cell walls in specific tissues of gaut mutants 6, 8, 9, 10, 11, 12, 13, and 14 from that of wild-type Arabidopsis walls. Pectin and xylan polysaccharides are affected by the loss of GAUT function, as demonstrated by the altered galacturonic acid, xylose, rhamnose, galactose, and arabinose composition of distinct gaut mutant walls. The wall glycosyl residue compositional phenotypes observed among the gaut mutants suggest that at least six different biosynthetic linkages in pectins and/or xylans are affected by the lesions in these GAUT genes. Evidence is also presented to support a role for GAUT11 in seed mucilage expansion and in seed wall and mucilage composition.
Collapse
Affiliation(s)
- Kerry H Caffall
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
22
|
Ratnaparkhe SM, Egertsdotter EMU, Flinn BS. Identification and characterization of a matrix metalloproteinase (Pta1-MMP) expressed during Loblolly pine (Pinus taeda) seed development, germination completion, and early seedling establishment. PLANTA 2009; 230:339-54. [PMID: 19466448 DOI: 10.1007/s00425-009-0949-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Accepted: 05/06/2009] [Indexed: 05/09/2023]
Abstract
Extracellular matrix (ECM) modifications occur during plant growth, development, and in response to environmental stimuli. Key modulators of ECM modification in vertebrates, the extracellular matrix metalloproteinases (MMPs), have also been described in a few plants. Here, we report the identification of Loblolly pine (Pinus taeda) Pta1-MMP and its characterization during seed development and germination. Pta1-MMP protein has the structural characteristics of other plant MMPs, the recombinant protein exhibits Zn(2+)-dependent protease activity, and is inhibited by EDTA and the active site-binding hydroxamate inhibitor GM6001. The Pta1-MMP gene is expressed in both embryo and megagametophyte, with transcript levels increasing in both during the period from proembryo to early cotyledonary stage, then declining during late embryogenesis and maturation drying. Protein extracts exhibited similar developmental-stage MMP-like activity. Seed germination was stimulated by GA(3) and inhibited by ABA, and the timing of germination completion was mirrored by the presence of MMP-like protease activity in both water- and GA(3)-imbibed embryos. Pta1-MMP gene transcript levels increased in association with radicle protrusion for both GA(3)- and water-treated embryos, in agreement with MMP-like activity. In contrast, by 11 days after imbibition, Pta1-MMP gene transcripts in ABA-treated embryos were at levels similar to the other treatments, although MMP-like activity was not observed. The application of GM6001 during Loblolly pine seed germination inhibited radicle protrusion. Our results suggest that MMP activity may be involved in ECM modification, facilitating the cell division and expansion required during seed development, germination completion, and subsequent seedling establishment.
Collapse
Affiliation(s)
- Supriya M Ratnaparkhe
- Department of Forestry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0002, USA
| | | | | |
Collapse
|
23
|
Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res 2009; 19:1110-9. [PMID: 19546891 DOI: 10.1038/cr.2009.70] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The fibrous root system in cereals comprises primarily adventitious roots (ARs), which play important roles in nutrient and water uptake. Current knowledge regarding the molecular mechanism underlying AR development is still limited. We report here the isolation of four rice (Oryza sativa L.) mutants, from different genetic backgrounds, all of which were defective in AR formation. These mutants exhibited reduced numbers of lateral roots (LRs) and partial loss of gravitropism. The mutants also displayed enhanced sensitivity to N-1-naphthylphthalamic acid, an inhibitor of polar auxin transport (PAT), indicating that the mutations affected auxin transport. Positional cloning using one of the four mutants revealed that it was caused by loss-of-function of a guanine nucleotide exchange factor for ADP-ribosylation factor (OsGNOM1). RT-PCR and analysis of promoter::GUS transgenic plants showed that OsGNOM1 is expressed in AR primordia, vascular tissues, LRs, root tips, leaves, anthers and lemma veins, with a distribution pattern similar to that of auxin. In addition, the expressions of OsPIN2, OsPIN5b and OsPIN9 were altered in the mutants. Taken together, these findings indicate that OsGNOM1 affects the formation of ARs through regulating PAT.
Collapse
|
24
|
Peer WA, Hosein FN, Bandyopadhyay A, Makam SN, Otegui MS, Lee GJ, Blakeslee JJ, Cheng Y, Titapiwatanakun B, Yakubov B, Bangari B, Murphy AS. Mutation of the membrane-associated M1 protease APM1 results in distinct embryonic and seedling developmental defects in Arabidopsis. THE PLANT CELL 2009; 21:1693-721. [PMID: 19531600 PMCID: PMC2714933 DOI: 10.1105/tpc.108.059634] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 05/14/2009] [Accepted: 06/01/2009] [Indexed: 05/20/2023]
Abstract
Aminopeptidase M1 (APM1), a single copy gene in Arabidopsis thaliana, encodes a metallopeptidase originally identified via its affinity for, and hydrolysis of, the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Mutations in this gene result in haploinsufficiency. Loss-of-function mutants show irregular, uncoordinated cell divisions throughout embryogenesis, affecting the shape and number of cotyledons and the hypophysis, and is seedling lethal at 5 d after germination due to root growth arrest. Quiescent center and cell cycle markers show no signals in apm1-1 knockdown mutants, and the ground tissue specifiers SHORTROOT and SCARECROW are misexpressed or mislocalized. apm1 mutants have multiple, fused cotyledons and hypocotyls with enlarged epidermal cells with cell adhesion defects. apm1 alleles show defects in gravitropism and auxin transport. Gravistimulation decreases APM1 expression in auxin-accumulating root epidermal cells, and auxin treatment increases expression in the stele. On sucrose gradients, APM1 occurs in unique light membrane fractions. APM1 localizes at the margins of Golgi cisternae, plasma membrane, select multivesicular bodies, tonoplast, dense intravacuolar bodies, and maturing metaxylem cells. APM1 associates with brefeldin A-sensitive endomembrane structures and the plasma membrane in cortical and epidermal cells. The auxin-related phenotypes and mislocalization of auxin efflux proteins in apm1 are consistent with biochemical interactions between APM1 and NPA.
Collapse
Affiliation(s)
- Wendy Ann Peer
- Department of Horticulture, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cheng JS, Yuan YJ. Release of proteins: Insights into oxidative response of Taxus cuspidata cells induced by shear stress. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Kleine-Vehn J, Friml J. Polar targeting and endocytic recycling in auxin-dependent plant development. Annu Rev Cell Dev Biol 2008; 24:447-73. [PMID: 18837671 DOI: 10.1146/annurev.cellbio.24.110707.175254] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant development is characterized by a profound phenotypic plasticity that often involves redefining of the developmental fate and polarity of cells within differentiated tissues. The plant hormone auxin and its directional intercellular transport play a major role in these processes because they provide positional information and link cell polarity with tissue patterning. This plant-specific mechanism of transport-dependent auxin gradients depends on subcellular dynamics of auxin transport components, in particular on endocytic recycling and polar targeting. Recent insights into these cellular processes in plants have revealed important parallels to yeast and animal systems, including clathrin-dependent endocytosis, retromer function, and transcytosis, but have also emphasized unique features of plant cells such as diversity of polar targeting pathways; integration of environmental signals into subcellular trafficking; and the link between endocytosis, cell polarity, and cell fate specification. We review these advances and focus on the translation of the subcellular dynamics to the regulation of whole-plant development.
Collapse
Affiliation(s)
- Jürgen Kleine-Vehn
- Department of Plant Systems Biology, VIB, and Department of Molecular Genetics, Ghent University, 9052 Ghent, Belgium
| | | |
Collapse
|
27
|
Leucci MR, Lenucci MS, Piro G, Dalessandro G. Water stress and cell wall polysaccharides in the apical root zone of wheat cultivars varying in drought tolerance. JOURNAL OF PLANT PHYSIOLOGY 2008. [PMID: 18155804 DOI: 10.1016/s0168-9452(03)00215-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Glycosyl composition and linkage analysis of cell wall polysaccharides were examined in apical root zones excised from water-stressed and unstressed wheat seedlings (Triticum durum Desf.) cv. Capeiti ("drought-tolerant") and cv. Creso ("drought sensitive"). Wall polysaccharides were sequentially solubilized to obtain three fractions: CDTA+Na(2)CO(3) extract, KOH extract and the insoluble residue (alpha-cellulose). A comparison between the two genotypes showed only small variations in the percentages of matrix polysaccharides (CDTA+Na(2)CO(3) plus KOH extract) and of the insoluble residues (alpha-cellulose) in water-stressed and unstressed conditions. Xylosyl, glucosyl and arabinosyl residues represented more than 90 mol% of the matrix polysaccharides. The linkage analysis of matrix polysaccharides showed high levels of xyloglucans (23-39 mol%), and arabinoxylans (38-48 mol%) and a low amount of pectins and (1-->3), (1-->4)-beta-D-glucans. The high level of xyloglucans was supported by the release of the diagnostic disaccharide isoprimeverose after Driselase digestion of KOH-extracted polysaccharides. In the "drought-tolerant" cv. Capeiti the mol% of side chains of rhamnogalacturonan I and II significantly increased in response to water stress, whereas in cv. Creso, this increase did not occur. The results support a role of the pectic side chains during water stress response in a drought-tolerant wheat cultivar.
Collapse
Affiliation(s)
- Maria Rosaria Leucci
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy
| | | | | | | |
Collapse
|
28
|
Kleine-Vehn J, Dhonukshe P, Sauer M, Brewer PB, Wiśniewska J, Paciorek T, Benková E, Friml J. ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis. Curr Biol 2008; 18:526-31. [PMID: 18394892 DOI: 10.1016/j.cub.2008.03.021] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 02/25/2008] [Accepted: 03/09/2008] [Indexed: 11/27/2022]
Abstract
Cell polarity manifested by the polar cargo delivery to different plasma-membrane domains is a fundamental feature of multicellular organisms. Pathways for polar delivery have been identified in animals; prominent among them is transcytosis, which involves cargo movement between different sides of the cell [1]. PIN transporters are prominent polar cargoes in plants, whose polar subcellular localization determines the directional flow of the signaling molecule auxin [2, 3]. In this study, we address the cellular mechanisms of PIN polar targeting and dynamic polarity changes. We show that apical and basal PIN targeting pathways are interconnected but molecularly distinct by means of ARF GEF vesicle-trafficking regulators. Pharmacological or genetic interference with the Arabidopsis ARF GEF GNOM leads specifically to apicalization of basal cargoes such as PIN1. We visualize the translocation of PIN proteins between the opposite sides of polarized cells in vivo and show that this PIN transcytosis occurs by endocytic recycling and alternative recruitment of the same cargo molecules by apical and basal targeting machineries. Our data suggest that an ARF GEF-dependent transcytosis-like mechanism is operational in plants and provides a plausible mechanism to trigger changes in PIN polarity and hence auxin fluxes during embryogenesis and organogenesis.
Collapse
Affiliation(s)
- Jürgen Kleine-Vehn
- Department of Plant Systems Biology, Flanders Institute for Biotechnology VIB, Ghent University, 9052 Gent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Guillaumie S, Goffner D, Barbier O, Martinant JP, Pichon M, Barrière Y. Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT) down-regulated, and normal maize plants. BMC PLANT BIOLOGY 2008; 8:71. [PMID: 18582385 PMCID: PMC2453129 DOI: 10.1186/1471-2229-8-71] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 06/26/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND Silage maize is a major forage and energy resource for cattle feeding, and several studies have shown that lignin content and structure are the determining factors in forage maize feeding value. In maize, four natural brown-midrib mutants have modified lignin content, lignin structure and cell wall digestibility. The greatest lignin reduction and the highest cell wall digestibility were observed in the brown-midrib-3 (bm3) mutant, which is disrupted in the caffeic acid O-methyltransferase (COMT) gene. RESULTS Expression of cell wall related genes was investigated in basal and ear internodes of normal, COMT antisens (AS225), and bm3 maize plants of the INRA F2 line. A cell wall macro-array was developed with 651 gene specific tags of genes specifically involved in cell wall biogenesis. When comparing basal (older lignifying) and ear (younger lignifying) internodes of the normal line, all genes known to be involved in constitutive monolignol biosynthesis had a higher expression in younger ear internodes. The expression of the COMT gene was heavily reduced, especially in the younger lignifying tissues of the ear internode. Despite the fact that AS225 transgene expression was driven only in sclerenchyma tissues, COMT expression was also heavily reduced in AS225 ear and basal internodes. COMT disruption or down-regulation led to differential expressions of a few lignin pathway genes, which were all over-expressed, except for a phenylalanine ammonia-lyase gene. More unexpectedly, several transcription factor genes, cell signaling genes, transport and detoxification genes, genes involved in cell wall carbohydrate metabolism and genes encoding cell wall proteins, were differentially expressed, and mostly over-expressed, in COMT-deficient plants. CONCLUSION Differential gene expressions in COMT-deficient plants highlighted a probable disturbance in cell wall assembly. In addition, the gene expressions suggested modified chronology of the different events leading to cell expansion and lignification with consequences far beyond the phenylpropanoid metabolism. The reduced availability of monolignols and S units in bm3 or AS225 plants led to plants also differing in cell wall carbohydrate, and probably protein, composition. Thus, the deficiency in a key-enzyme of the lignin pathway had correlative effects on the whole cell wall metabolism. Furthermore, the observed differential expression between bm3 and normal plants indicated the possible involvement in the maize lignin pathway of genes which up until now have not been considered to play this role.
Collapse
Affiliation(s)
- Sabine Guillaumie
- INRA, Unité de Génétique et d'Amélioration des Plantes Fourragères, BP6, F-86600 Lusignan, France
- UPS CNRS UMR 5546, Chemin de Borde Rouge, F-31326 Castanet-Tolosan, France
| | - Deborah Goffner
- UPS CNRS UMR 5546, Chemin de Borde Rouge, F-31326 Castanet-Tolosan, France
| | - Odile Barbier
- UPS CNRS UMR 5546, Chemin de Borde Rouge, F-31326 Castanet-Tolosan, France
| | | | - Magalie Pichon
- UPS CNRS UMR 5546, Chemin de Borde Rouge, F-31326 Castanet-Tolosan, France
| | - Yves Barrière
- INRA, Unité de Génétique et d'Amélioration des Plantes Fourragères, BP6, F-86600 Lusignan, France
| |
Collapse
|
30
|
He YC, He YQ, Qu LH, Sun MX, Yang HY. Tobacco zygotic embryogenesis in vitro: the original cell wall of the zygote is essential for maintenance of cell polarity, the apical-basal axis and typical suspensor formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:515-27. [PMID: 17243994 DOI: 10.1111/j.1365-313x.2006.02970.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We have developed a reliable in vitro zygotic embryogenesis system in tobacco. A single zygote of a dicotyledonous plant was able to develop into a fertile plant via direct embryogenesis with the aid of a co-culture system in which fertilized ovules were employed as feeders. The results confirmed that a tobacco zygote could divide in vitro following the basic embryogenic pattern of the Solanad type. The zygote cell wall and directional expansion are two critical points in maintaining apical-basal polarity and determining the developmental fate of the zygote. Only those isolated zygotes with an almost intact original cell wall could continue limited directional expansion in vitro, and only these directionally expanded zygotes could divide into typical apical and basal cells and finally develop into a typical embryo with a suspensor. In contrast, isolated zygote protoplasts deprived of cell walls could enlarge but could not directionally elongate, as in vivo zygotes do before cell division, even when the cell wall was regenerated during in vitro culture. The zygote protoplasts could also undergo asymmetrical division to form one smaller and one larger daughter cell, which could develop into an embryonic callus or a globular embryo without a suspensor. Even cell walls that hung loosely around the protoplasts appeared to function, and were closely correlated with the orientation of the first zygotic division and the apical-basal axis, further indicating the essential role of the original zygotic cell wall in maintaining apical-basal polarity and cell-division orientation, as well as subsequent cell differentiation during early embryo development in vitro.
Collapse
Affiliation(s)
- Yu-Chi He
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Science, Wuhan University, Wuhan 430072, China
| | | | | | | | | |
Collapse
|
31
|
Humphrey TV, Bonetta DT, Goring DR. Sentinels at the wall: cell wall receptors and sensors. THE NEW PHYTOLOGIST 2007; 176:7-21. [PMID: 17803638 DOI: 10.1111/j.1469-8137.2007.02192.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The emerging view of the plant cell wall is of a dynamic and responsive structure that exists as part of a continuum with the plasma membrane and cytoskeleton. This continuum must be responsive and adaptable to normal processes of growth as well as to stresses such as wounding, attack from pathogens and mechanical stimuli. Cell expansion involving wall loosening, deposition of new materials, and subsequent rigidification must be tightly regulated to allow the maintenance of cell wall integrity and co-ordination of development. Similarly, sensing and feedback are necessary for the plant to respond to mechanical stress or pathogen attack. Currently, understanding of the sensing and feedback mechanisms utilized by plants to regulate these processes is limited, although we can learn from yeast, where the signalling pathways have been more clearly defined. Plant cell walls possess a unique and complicated structure, but it is the protein components of the wall that are likely to play a crucial role at the forefront of perception, and these are likely to include a variety of sensor and receptor systems. Recent plant research has yielded a number of interesting candidates for cell wall sensors and receptors, and we are beginning to understand the role that they may play in this crucial aspect of plant biology.
Collapse
Affiliation(s)
- Tania V Humphrey
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2 Canada
| | - Dario T Bonetta
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe St North, Science Building UA4000, Oshawa, Ontario, L1H 7K4 Canada
| | - Daphne R Goring
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2 Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Filonova L, Kallas AM, Greffe L, Johansson G, Teeri TT, Daniel G. Analysis of the Surfaces of Wood Tissues and Pulp Fibers Using Carbohydrate-Binding Modules Specific for Crystalline Cellulose and Mannan. Biomacromolecules 2006; 8:91-7. [PMID: 17206793 DOI: 10.1021/bm060632z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbohydrate binding modules (CBMs) are noncatalytic substrate binding domains of many enzymes involved in carbohydrate metabolism. Here we used fluorescent labeled recombinant CBMs specific for crystalline cellulose (CBM1(HjCel7A)) and mannans (CBM27(TmMan5) and CBM35(CjMan5C)) to analyze the complex surfaces of wood tissues and pulp fibers. The crystalline cellulose CBM1(HjCel7A) was found as a reliable marker of both bacterially produced and plant G-layer cellulose, and labeling of spruce pulp fibers with CBM1(HjCel7A) revealed a signal that increased with degree of fiber damage. The mannan-specific CBM27(TmMan5) and CBM35(CjMan5C) CBMs were found to be more specific reagents than a monoclonal antibody specific for (1-->4)-beta-mannan/galacto-(1-->4)-beta-mannan for mapping carbohydrates on native substrates. We have developed a quantitative fluorometric method for analysis of crystalline cellulose accumulation on fiber surfaces and shown a quantitative difference in crystalline cellulose binding sites in differently processed pulp fibers. Our results indicated that CBMs provide useful, novel tools for monitoring changes in carbohydrate content of nonuniform substrate surfaces, for example, during wood or pulping processes and possibly fiber biosynthesis.
Collapse
Affiliation(s)
- Lada Filonova
- Department of Wood Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
33
|
Verbelen JP, De Cnodder T, Le J, Vissenberg K, Baluška F. The Root Apex of Arabidopsis thaliana Consists of Four Distinct Zones of Growth Activities: Meristematic Zone, Transition Zone, Fast Elongation Zone and Growth Terminating Zone. PLANT SIGNALING & BEHAVIOR 2006; 1:296-304. [PMID: 19517000 PMCID: PMC2634244 DOI: 10.4161/psb.1.6.3511] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 10/06/2006] [Indexed: 05/17/2023]
Abstract
In the growing apex of Arabidopsis thaliana primary roots, cells proceed through four distinct phases of cellular activities. These zones and their boundaries can be well defined based on their characteristic cellular activities. The meristematic zone comprises, and is limited to, all cells that undergo mitotic divisions. Detailed in vivo analysis of transgenic lines reveals that, in the Columbia-0 ecotype, the meristem stretches up to 200 microm away from the junction between root and root cap (RCJ). In the transition zone, 200 to about 520 microm away from the RCJ, cells undergo physiological changes as they prepare for their fast elongation. Upon entering the transition zone, they progressively develop a central vacuole, polarize the cytoskeleton and remodel their cell walls. Cells grow slowly during this transition: it takes ten hours to triplicate cell length from 8.5 to about 35 microm in the trichoblast cell files. In the fast elongation zone, which covers the zone from 520 to about 850 microm from the RCJ, cell length quadruplicates to about 140 microm in only two hours. This is accompanied by drastic and specific cell wall alterations. Finally, root hairs fully develop in the growth terminating zone, where root cells undergo a minor elongation to reach their mature lengths.
Collapse
Affiliation(s)
| | - Tinne De Cnodder
- University of Antwerp; Biology Department; Groenenborgerlaan, Antwerp, Belgium
| | - Jie Le
- Purdue University; Agronomy Department; West-Lafayette, Indiana USA
| | - Kris Vissenberg
- University of Antwerp; Biology Department; Groenenborgerlaan, Antwerp, Belgium
| | | |
Collapse
|
34
|
Pereira LAR, Schoor S, Goubet F, Dupree P, Moffatt BA. Deficiency of adenosine kinase activity affects the degree of pectin methyl-esterification in cell walls of Arabidopsis thaliana. PLANTA 2006; 224:1401-14. [PMID: 16761133 DOI: 10.1007/s00425-006-0323-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 05/09/2006] [Indexed: 05/10/2023]
Abstract
Pectin methyl-esterification is catalysed by S-adenosyl-L: -methionine (SAM)-dependent methyltransferases. As deficiency in adenosine kinase (ADK; EC 2.7.1.20) activity impairs SAM recycling and utilization, we investigated the relationship between ADK-deficiency and the degree of pectin methyl-esterification in cell walls of Arabidopsis thaliana. The distribution patterns of epitopes associated with methyl-esterified homogalacturonan in leaves and hypocotyls of wild-type (WT) and ADK-deficient plants were examined using immunolocalization and biochemical techniques. JIM5 and LM7 epitopes, characteristic of low esterified pectins, were more irregularly distributed along the cell wall in ADK-deficient plants than in WT cell walls. In addition, epitopes recognized by JIM7, characteristic of pectins with a higher degree of methyl-esterification, were less abundant in ADK-deficient leaves and hypocotyls. Since de-esterified pectins have enhanced adhesion properties, we propose that the higher abundance and the altered distribution of low methyl-esterified pectin in ADK-deficient cell walls lead to the leaf shape abnormalities observed in these plants.
Collapse
Affiliation(s)
- L A R Pereira
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | | | | | | |
Collapse
|
35
|
Moore JP, Nguema-Ona E, Chevalier L, Lindsey GG, Brandt WF, Lerouge P, Farrant JM, Driouich A. Response of the leaf cell wall to desiccation in the resurrection plant Myrothamnus flabellifolius. PLANT PHYSIOLOGY 2006; 141:651-62. [PMID: 16603665 PMCID: PMC1475438 DOI: 10.1104/pp.106.077701] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 03/14/2006] [Accepted: 03/22/2006] [Indexed: 05/08/2023]
Abstract
The Myrothamnus flabellifolius leaf cell wall and its response to desiccation were investigated using electron microscopic, biochemical, and immunocytochemical techniques. Electron microscopy revealed desiccation-induced cell wall folding in the majority of mesophyll and epidermal cells. Thick-walled vascular tissue and sclerenchymous ribs did not fold and supported the surrounding tissue, thereby limiting the extent of leaf shrinkage and allowing leaf morphology to be rapidly regained upon rehydration. Isolated cell walls from hydrated and desiccated M. flabellifolius leaves were fractionated into their constituent polymers and the resulting fractions were analyzed for monosaccharide content. Significant differences between hydrated and desiccated states were observed in the water-soluble buffer extract, pectin fractions, and the arabinogalactan protein-rich extract. A marked increase in galacturonic acid was found in the alkali-insoluble pectic fraction. Xyloglucan structure was analyzed and shown to be of the standard dicotyledonous pattern. Immunocytochemical analysis determined the cellular location of the various epitopes associated with cell wall components, including pectin, xyloglucan, and arabinogalactan proteins, in hydrated and desiccated leaf tissue. The most striking observation was a constitutively present high concentration of arabinose, which was associated with pectin, presumably in the form of arabinan polymers. We propose that the arabinan-rich leaf cell wall of M. flabellifolius possesses the necessary structural properties to be able to undergo repeated periods of desiccation and rehydration.
Collapse
Affiliation(s)
- John P Moore
- Department of Molecular and Cellular Biology, University of Cape Town, Rondebosch 7701, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mata GH, Sepúlveda B, Richards A, Soriano E. The architecture of Phaseolus vulgaris root is altered when a defense response is elicited by an oligogalacturonide. ACTA ACUST UNITED AC 2006. [DOI: 10.1590/s1677-04202006000200012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phytoalexin accumulation is one of a myriad of plant defense responses; these responses can be elicited by pathogens or molecules such as oligogalacturonides (OGAs). Phytoalexin production has been considered a vital component of the resistance mechanisms that determine the outcome of many plant-microbe interactions. Besides inducing defense responses, OGAs have been shown to affect plant development, which normally is controlled by plant hormones, particularly auxin. In this work we measured phytoalexin accumulation in roots of bean (Phaseolus vulgaris L.) seedlings grown in the presence or absence of the auxin 3-naphtalenacetic acid (NAA) and treated with a decagalacturonide (OGA10). We found that OGA10 (0.01 mM) caused phytoalexin production and also inhibited main root elongation and the formation of secondary roots by ca. 33%. Expression of Cycb 2-2 was also inhibited, while pal and chs were highly expressed. The root growth inhibition was not overcome by the addition of a stimulatory concentration of auxin (NAA 0.1 µM). The data suggests that elicitation of defense responses in the root alters metabolism in such a way that results in the modification of the architecture of bean roots.
Collapse
Affiliation(s)
| | | | - Alan Richards
- Universidad Michoacana de San Nicolás de Hidalgo, México
| | - Eva Soriano
- Universidad Michoacana de San Nicolás de Hidalgo, México
| |
Collapse
|
37
|
Stefano G, Renna L, Chatre L, Hanton SL, Moreau P, Hawes C, Brandizzi F. In tobacco leaf epidermal cells, the integrity of protein export from the endoplasmic reticulum and of ER export sites depends on active COPI machinery. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:95-110. [PMID: 16553898 DOI: 10.1111/j.1365-313x.2006.02675.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Trafficking of secretory proteins between the endoplasmic reticulum (ER) and the Golgi apparatus depends on coat protein complexes I (COPI) and II (COPII) machineries. To date, full characterization of the distribution and dynamics of these machineries in plant cells remains elusive. Furthermore, except for a presumed linkage between COPI and COPII for the maintenance of ER protein export, the mechanisms by which COPI influences COPII-mediated protein transport from the ER in plant cells are largely uncharacterized. Here we dissect the dynamics of COPI in intact cells using live-cell imaging and fluorescence recovery after photobleaching analyses to provide insights into the distribution of COPI and COPII machineries and the mechanisms by which COPI influences COPII-mediated protein export from the ER. We found that Arf1 and coatomer are dynamically associated with the Golgi apparatus and that the COPII coat proteins Sec24 and Sec23 localize at ER export sites that track with the Golgi apparatus in tobacco leaf epidermal cells. Arf1 is also localized at additional structures that originate from the Golgi apparatus but that lack coatomer, supporting the model that Arf1 also has a coatomer-independent role for post-Golgi protein transport in plants. When ER to Golgi protein transport is inhibited by mutations that hamper Arf1-GTPase activity without directly disrupting the COPII machinery for ER protein export, Golgi markers are localized in the ER and the punctate distribution of Sec24 and Sec23 at the ER export sites is lost. These findings suggest that Golgi membrane protein distribution is maintained by the balanced action of COPI and COPII systems, and that Arf1-coatomer is most likely indirectly required for forward trafficking out of the ER due to its role in recycling components that are essential for differentiation of the ER export domains formed by the Sar1-COPII system.
Collapse
Affiliation(s)
- Giovanni Stefano
- Department of Biology, 112 Science Place, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Dhonukshe P, Kleine-Vehn J, Friml J. Cell polarity, auxin transport, and cytoskeleton-mediated division planes: who comes first? PROTOPLASMA 2005; 226:67-73. [PMID: 16231102 DOI: 10.1007/s00709-005-0104-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 03/30/2005] [Indexed: 05/04/2023]
Abstract
In plants, cell polarity is an issue more recurring than in other systems, because plants, due to their adaptive and flexible development, often change cell polarity postembryonically according to intrinsic cues and demands of the environment. Recent findings on the directional movement of the plant signalling molecule auxin provide a unique connection between individual cell polarity and the establishment of polarity at the tissue, organ, and whole-plant levels. Decisions about the subcellular polar targeting of PIN auxin transport components determine the direction of auxin flow between cells and consequently mediate multiple developmental events. In addition, mutations or chemical interference with PIN-based auxin transport result in abnormal cell divisions. Thus, the complicated links between cell polarity establishment, auxin transport, cytoskeleton, and oriented cell divisions now begin to emerge. Here we review the available literature on the issues of cell polarity in both plants and animals to extend our understanding on the generation, maintenance, and transmission of cell polarity in plants.
Collapse
Affiliation(s)
- Pankaj Dhonukshe
- Zentrum für Molekularbiologie der Pflanzen, Universität Tübingen, Tübingen, Federal Republic of Germany.
| | | | | |
Collapse
|
39
|
Baluska F, Liners F, Hlavacka A, Schlicht M, Van Cutsem P, McCurdy DW, Menzel D. Cell wall pectins and xyloglucans are internalized into dividing root cells and accumulate within cell plates during cytokinesis. PROTOPLASMA 2005; 225:141-55. [PMID: 16228896 DOI: 10.1007/s00709-005-0095-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Accepted: 12/10/2004] [Indexed: 05/04/2023]
Abstract
Recently, we have reported that cell wall pectins are internalized into apical meristem root cells. In cells exposed to the fungal metabolite brefeldin A, all secretory pathways were inhibited, while endocytic pathways remained intact, resulting in accumulation of internalized cell wall pectins within brefeldin A-induced compartments. Here we report that, in addition to the already published cell wall epitopes, rhamnogalacturonan I and xyloglucans also undergo large-scale internalization into dividing root cells. Interestingly, multilamellar endosomes were identified as compartments internalizing arabinan cell wall pectins reactive to the 6D7 antibody, while large vacuole-like endosomes internalized homogalacturonans reactive to the 2F4 antibody. As all endosomes belong topographically to the exocellular space, cell wall pectins deposited in these "cell wall islands", enclosed by the plasma-membrane-derived membrane, are ideally suited to act as temporary stores for rapid formation of cell wall and generation of new plasma membrane. In accordance with this notion, we report that all cell wall pectins and xyloglucans that internalize into endosomes are highly enriched within cytokinetic cell plates and accumulate within brefeldin A compartments. On the other hand, only small amounts of the pectins reactive to the JIM7 antibody, which are produced in the Golgi apparatus, localize to cell plates and they do not accumulate within brefeldin A compartments. In conclusion, meristematic root cells have developed pathways for internalization and recycling of cell wall molecules which are relevant for plant-specific cytokinesis.
Collapse
Affiliation(s)
- F Baluska
- Institut für Zelluläre und Molekulare Botanik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Samaj J, Read ND, Volkmann D, Menzel D, Baluska F. The endocytic network in plants. Trends Cell Biol 2005; 15:425-33. [PMID: 16006126 DOI: 10.1016/j.tcb.2005.06.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 05/26/2005] [Accepted: 06/27/2005] [Indexed: 12/28/2022]
Abstract
Endocytosis and vesicle recycling via secretory endosomes are essential for many processes in multicellular organisms. Recently, higher plants have provided useful experimental model systems to study these processes. Endocytosis and secretory endosomes in plants play crucial roles in polar tip growth, a process in which secretory and endocytic pathways are integrated closely. Plant endocytosis and endosomes are important for auxin-mediated cell-cell communication, gravitropic responses, stomatal movements, cytokinesis and cell wall morphogenesis. There is also evidence that F-actin is essential for endocytosis and that plant-specific myosin VIII is an endocytic motor in plants. Last, recent results indicate that the trans Golgi network in plants should be considered an integral part of the endocytic network.
Collapse
Affiliation(s)
- Jozef Samaj
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
41
|
Abstract
Many of the patterning mechanisms in plants were discovered while studying postembryonic processes and resemble mechanisms operating during animal development. The emergent role of the plant hormone auxin, however, seems to represent a plant-specific solution to multicellular patterning. This review summarizes our knowledge on how diverse mechanisms that were first dissected at the postembryonic level are now beginning to provide an understanding of plant embryogenesis.
Collapse
Affiliation(s)
- Viola Willemsen
- Department of Molecular Genetics, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
42
|
Ingram GC. Between the sheets: inter-cell-layer communication in plant development. Philos Trans R Soc Lond B Biol Sci 2004; 359:891-906. [PMID: 15306405 PMCID: PMC1693377 DOI: 10.1098/rstb.2003.1356] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cells of plant meristems and embryos are arranged in an organized, and sometimes extremely beautiful, layered pattern. This pattern is maintained by the controlled orientation of cell divisions within layers. However, despite this layered structure, cell behaviour during plant development is not lineage dependent, and does not occur in a mosaic fashion. Many studies, both classical and recent, have shown that plant cell identity can be re-specified according to position, allowing plants to show remarkable developmental plasticity. However, the layered structure of meristems and the implications of this during plant development, remain subjects of some speculation. Of particular interest is the question of how cell layers communicate, and how communication between cell layers could allow coordinated developmental processes to take place. Recent research has uncovered several examples both of the molecular mechanisms by which cell layers can communicate, and of how this communication can infringe on developmental processes. A range of examples is used to illustrate the diversity of mechanisms potentially implicated in cell-layer communication during plant development.
Collapse
Affiliation(s)
- Gwyneth C Ingram
- Institute of Cell and Molecular Biology, University of Edinburgh, Kings Buildings, Edinburgh EH9 3JR, Scotland, UK.
| |
Collapse
|
43
|
Huang K, Kunkel T, Beck CF. Localization of the blue-light receptor phototropin to the flagella of the green alga Chlamydomonas reinhardtii. Mol Biol Cell 2004; 15:3605-14. [PMID: 15155806 PMCID: PMC491822 DOI: 10.1091/mbc.e04-01-0010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 03/17/2004] [Accepted: 04/12/2004] [Indexed: 11/11/2022] Open
Abstract
Blue light controls the sexual life cycle of Chlamydomonas, mediated by phototropin, a UV-A/blue-light receptor that plays a prominent role in multiple photoresponses. By using fractionation experiments and immunolocalization studies, this blue-light receptor, in addition to its known localization to the cell bodies, also was detected in flagella. Within the flagella, it was completely associated with the axonemes, in striking contrast to the situation in higher plants and the Chlamydomonas cell body where phototropin was observed in the plasma membrane. Its localization was not perturbed in mutants lacking several prominent structural components of the axoneme. This led to the conclusion that phototropin may be associated with the outer doublet microtubules. Analysis of a mutant (fla10) in which intraflagellar transport is compromised suggested that phototropin is a cargo for intraflagellar transport. The blue-light receptor thus seems to be an integral constituent of the flagella of this green alga, extending the list of organisms that harbor sensory molecules within this organelle to unicellular algae.
Collapse
Affiliation(s)
- Kaiyao Huang
- Institut für Biologie III, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
44
|
Capodicasa C, Vairo D, Zabotina O, McCartney L, Caprari C, Mattei B, Manfredini C, Aracri B, Benen J, Knox JP, De Lorenzo G, Cervone F. Targeted modification of homogalacturonan by transgenic expression of a fungal polygalacturonase alters plant growth. PLANT PHYSIOLOGY 2004; 135:1294-304. [PMID: 15247378 PMCID: PMC519048 DOI: 10.1104/pp.104.042788] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 04/05/2004] [Accepted: 04/05/2004] [Indexed: 05/22/2023]
Abstract
Pectins are a highly complex family of cell wall polysaccharides comprised of homogalacturonan (HGA), rhamnogalacturonan I and rhamnogalacturonan II. We have specifically modified HGA in both tobacco (Nicotiana tabacum) and Arabidopsis by expressing the endopolygalacturonase II of Aspergillus niger (AnPGII). Cell walls of transgenic tobacco plants showed a 25% reduction in GalUA content as compared with the wild type and a reduced content of deesterified HGA as detected by antibody labeling. Neutral sugars remained unchanged apart from a slight increase of Rha, Ara, and Gal. Both transgenic tobacco and Arabidopsis were dwarfed, indicating that unesterified HGA is a critical factor for plant cell growth. The dwarf phenotypes were associated with AnPGII activity as demonstrated by the observation that the mutant phenotype of tobacco was completely reverted by crossing the dwarfed plants with plants expressing PGIP2, a strong inhibitor of AnPGII. The mutant phenotype in Arabidopsis did not appear when transformation was performed with a gene encoding AnPGII inactivated by site directed mutagenesis.
Collapse
Affiliation(s)
- Cristina Capodicasa
- Dipartimento di Biologia Vegetale e Laboratorio di Genomica Funzionale e Proteomica, Università di Roma La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Majewska-Sawka A, Münster A, Wisniewska E. Temporal and spatial distribution of pectin epitopes in differentiating anthers and microspores of fertile and sterile sugar beet. PLANT & CELL PHYSIOLOGY 2004; 45:560-72. [PMID: 15169938 DOI: 10.1093/pcp/pch066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We studied the possible involvement of several pectin epitopes in anther differentiation and microsporogenesis in fertile and cytoplasmically male sterile sugar beets. The spatial and temporal distribution of five structural motifs were traced with a panel of monoclonal antibodies in six stages: premeiosis, meiotic prophase, young and mature tetrads, young and expanding microspores. The composition of the walls of sporogenous cells and meiocytes differed than that in the tapetum, as evidenced by the presence of alpha-Fuc(1-->2)-beta-Gal and alpha-(1-->5)-L-Ara epitopes binding CCRC-M1 and LM6 antibodies. At meiotic prophase, the meiocyte walls were additionally marked by the appearance of poorly methyl-esterified domains of homogalacturonan and of (1-->4)-beta-Gal residues, detected by JIM5 and LM5. Some constituents of the meiocyte wall which reacted with JIM5 and JIM7 persisted on the surface of the special callose sheath during tetrad development. In newly formed primexine and exine layers of tetrads and microspores, epitopes that were bound by JIM5, JIM7 and LM5 were abundant. No differences in the deposition or relative abundance of pectins were found between fertile and sterile anthers until microspore release from the callose. Later, at the time of abortion, sterile microspores had much larger amounts of epitopes detected by JIM5 than their fertile counterparts.
Collapse
Affiliation(s)
- Anna Majewska-Sawka
- Institute of Plant Breeding and Acclimatization, Powstanców Wielkopolskich 10, 85-090 Bydgoszcz, Poland.
| | | | | |
Collapse
|
46
|
Abstract
The polar orientation of cells within a tissue is an intensively studied research area in animal cells. The term planar polarity refers to the common polar arrangement of cells within the plane of an epithelium. In plants, the subcellular analysis of tissue polarity has been limited by the lack of appropriate markers. Recently, research on plant tissue polarity has come of age. Advances are based on studies of Arabidopsis patterning, cell polarity and auxin transport mutants employing the coordinated, polar localization of auxin transporters and the planar polarity of root epidermal hairs as markers. These approaches have revealed auxin transport and response, vesicular trafficking, membrane sterol and cytoskeletal requirements of tissue polarity. This review summarizes recent progress in research on vascular tissue and planar epidermal polarity in the Arabidopsis root and compares it to findings on planar polarity in animals and cell polarity in yeast.
Collapse
Affiliation(s)
- Markus Grebe
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
| |
Collapse
|
47
|
Geldner N, Richter S, Vieten A, Marquardt S, Torres-Ruiz RA, Mayer U, Jürgens G. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 2003; 131:389-400. [PMID: 14681187 DOI: 10.1242/dev.00926] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Arabidopsis GNOM gene encodes an ARF GDP/GTP exchange factor involved in embryonic axis formation and polar localisation of the auxin efflux regulator PIN1. To examine whether GNOM also plays a role in post-embryonic development and to clarify its involvement in auxin transport, we have characterised newly isolated weak gnom alleles as well as trans-heterozygotes of complementing strong alleles. These genotypes form a phenotypic series of GNOM activity in post-embryonic development, with auxin-related defects, especially in the maintenance of primary root meristem activity and in the initiation and organisation of lateral root primordia. Our results suggest a model for GNOM action mediating auxin transport in both embryogenesis and post-embryonic organ development.
Collapse
Affiliation(s)
- Niko Geldner
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, D-72076 Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Lao NT, Long D, Kiang S, Coupland G, Shoue DA, Carpita NC, Kavanagh TA. Mutation of a family 8 glycosyltransferase gene alters cell wall carbohydrate composition and causes a humidity-sensitive semi-sterile dwarf phenotype in Arabidopsis. PLANT MOLECULAR BIOLOGY 2003; 53:647-661. [PMID: 15010604 DOI: 10.1023/b:plan.0000019074.60542.6c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The genome of Arabidopsis thaliana contains about 400 genes coding for glycosyltransferases, many of which are predicted to be involved in the synthesis and remodelling of cell wall components. We describe the isolation of a transposon-tagged mutant, parvus, which under low humidity conditions exhibits a severely dwarfed growth phenotype and failure of anther dehiscence resulting in semi-sterility. All aspects of the mutant phenotype were partially rescued by growth under high-humidity conditions, but not by the application of growth hormones or jasmonic acid. The mutation is caused by insertion of a maize Dissociation (Ds) element in a gene coding for a putative Golgi-localized glycosyltransferase belonging to family 8. Members of this family, originally identified on the basis of similarity to bacterial lipooligosaccharide glycosyltransferases, include enzymes known to be involved in the synthesis of bacterial and plant cell walls. Cell-wall carbohydrate analyses of the parvus mutant indicated reduced levels of rhamnogalacturonan I branching and alterations in the abundance of some xyloglucan linkages that may, however, be indirect consequences of the mutation.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Base Sequence
- Blotting, Northern
- Carbohydrates/analysis
- Cell Wall/metabolism
- DNA Transposable Elements/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Plant/isolation & purification
- Fertility/genetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/radiation effects
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/radiation effects
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/radiation effects
- Glycosyltransferases/genetics
- Glycosyltransferases/metabolism
- Humidity
- Light
- Molecular Sequence Data
- Multigene Family/genetics
- Mutagenesis, Insertional
- Mutation
- Neisseria gonorrhoeae/enzymology
- Neisseria gonorrhoeae/genetics
- Phenotype
- Phylogeny
- Plant Growth Regulators/pharmacology
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Nga T Lao
- Department of Genetics, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|
49
|
Pimpl P, Hanton SL, Taylor JP, Pinto-daSilva LL, Denecke J. The GTPase ARF1p controls the sequence-specific vacuolar sorting route to the lytic vacuole. THE PLANT CELL 2003; 15:1242-56. [PMID: 12724547 PMCID: PMC153729 DOI: 10.1105/tpc.010140] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Accepted: 02/17/2003] [Indexed: 05/18/2023]
Abstract
We have studied the transport of soluble cargo molecules by inhibiting specific transport steps to and from the Golgi apparatus. Inhibition of export from the Golgi via coexpression of a dominant-negative GTP-restricted ARF1 mutant (Q71L) inhibits the secretion of alpha-amylase and simultaneously induces the secretion of the vacuolar protein phytepsin to the culture medium. By contrast, specific inhibition of endoplasmic reticulum export via overexpression of Sec12p or coexpression of a GTP-restricted form of Sar1p inhibits the anterograde transport of either cargo molecule in a similar manner. Increased secretion of the vacuolar protein was not observed after incubation with the drug brefeldin A or after coexpression of the GDP-restricted mutant of ARF1 (T31N). Therefore, the differential effect of inducing the secretion of one cargo molecule while inhibiting the secretion of another is dependent on the GTP hydrolysis by ARF1p and is not caused by a general inhibition of Golgi-derived COPI vesicle traffic. Moreover, we demonstrate that GTP-restricted ARF1-stimulated secretion is observed only for cargo molecules that are expected to be sorted in a BP80-dependent manner, exhibiting sequence-specific, context-independent, vacuolar sorting signals. Induced secretion of proteins carrying C-terminal vacuolar sorting signals was not observed. This finding suggests that ARF1p influences the BP80-mediated transport route to the vacuole in addition to transport steps of the default secretory pathway to the cell surface.
Collapse
Affiliation(s)
- Peter Pimpl
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Caño-Delgado A, Penfield S, Smith C, Catley M, Bevan M. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:351-62. [PMID: 12713541 DOI: 10.1046/j.1365-313x.2003.01729.x] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The cell wall determines the shape of plant cells and is also the primary interface for pathogen interactions. The structure of the cell wall can be modified in response to developmental and environmental cues, for example to strengthen the wall and to create barriers to pathogen ingress. The ectopic lignin 1-1 and 1-2 (eli1-1 and eli1-2) mutations lead to an aberrant deposition of lignin, a complex phenylpropanoid polymer. We show that the eli1 mutants occur in the cellulose synthase gene CESA3 in Arabidopsis thaliana and cause reduced cellulose synthesis, providing further evidence for the function of multiple CESA subunits in cellulose synthesis. We show that reduced levels of cellulose synthesis, caused by mutations in cellulose synthase genes and in genes affecting cell expansion, activate lignin synthesis and defense responses through jasmonate and ethylene and other signaling pathways. These observations suggest that mechanisms monitoring cell wall integrity can activate lignification and defense responses.
Collapse
Affiliation(s)
- Ana Caño-Delgado
- Cell and Developmental Biology Department, John Innes Centre, Colney Lane, Norwich NR4 7UJ, UK
| | | | | | | | | |
Collapse
|