1
|
Azmat MA, Zaheer M, Shaban M, Arshad S, Hasan M, Ashraf A, Naeem M, Ahmad A, Munawar N. Autophagy: A New Avenue and Biochemical Mechanisms to Mitigate the Climate Change. SCIENTIFICA 2024; 2024:9908323. [PMID: 39430120 PMCID: PMC11490354 DOI: 10.1155/2024/9908323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 10/22/2024]
Abstract
Autophagy is a preserved process in eukaryotes that allows large material degeneration and nutrient recovery via vacuoles or lysosomes in cytoplasm. Autophagy starts from the moment of induction during the formation of a phagophore. Degradation may occur in the autophagosomes even without fusion with lysosome or vacuole, particularly in microautophagosomes. This process is arbitrated by the conserved machinery of basic autophagy-related genes (ATGs). In selective autophagy, specific materials are recruited by autophagosomes via receptors. Selective autophagy targets a vast variety of cellular components for degradation, i.e., old or damaged organelles, aggregates, and inactive or misfolded proteins. In optimal conditions, autophagy in plants ensures cellular homeostasis, proper plant growth, and fitness. Moreover, autophagy is essential during stress responses in plants and aids in survival of plants. Several biotic and abiotic stresses, i.e., pathogen infection, nutrient deficiency, plant senescence, heat stress, drought, osmotic stress, and hypoxia induce autophagy in plants. Cell death is not a stress, which induces autophagy but in contrast, sometimes it is a consequence of autophagy. In this way, autophagy plays a vital role in plant survival during harsh environmental conditions by maintaining nutrient concentration through elimination of useless cellular components. This review discussed the recent advances regarding regulatory functions of autophagy under normal and stressful conditions in plants and suggests future prospects in mitigating climate change. Autophagy in plants offers a viable way to increase plant resilience to climate change by increasing stress tolerance and nutrient usage efficiency.
Collapse
Affiliation(s)
- Muhammad Abubakkar Azmat
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Sub-Campus Burewala 61010, Vehari, Pakistan
| | - Malaika Zaheer
- Department of Agricultural Biotechnology, Ondokuz Mayis University, Samsun 55270, Turkey
| | - Muhammad Shaban
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Sub-Campus Burewala 61010, Vehari, Pakistan
| | - Saman Arshad
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Sub-Campus Burewala 61010, Vehari, Pakistan
| | | | - Alyan Ashraf
- Pakistan Environmental Protection Agency (Pak-EPA), Ministry of Climate Change and Environmental Coordination, Islamabad, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Aftab Ahmad
- Biochemistry/Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al-Ain 15551, UAE
| |
Collapse
|
2
|
Yuen ELH, Tumtas Y, King F, Ibrahim T, Chan LI, Evangelisti E, Tulin F, Skłenar J, Menke FLH, Kamoun S, Bubeck D, Schornack S, Bozkurt TO. A pathogen effector co-opts a host RabGAP protein to remodel pathogen interface and subvert defense-related secretion. SCIENCE ADVANCES 2024; 10:eado9516. [PMID: 39365859 PMCID: PMC11451530 DOI: 10.1126/sciadv.ado9516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024]
Abstract
Pathogens have evolved sophisticated mechanisms to manipulate host cell membrane dynamics, a crucial adaptation to survive in hostile environments shaped by innate immune responses. Plant-derived membrane interfaces, engulfing invasive hyphal projections of fungal and oomycete pathogens, are prominent junctures dictating infection outcomes. Understanding how pathogens transform these host-pathogen interfaces to their advantage remains a key biological question. Here, we identified a conserved effector, secreted by plant pathogenic oomycetes, that co-opts a host Rab GTPase-activating protein (RabGAP), TOPGAP, to remodel the host-pathogen interface. The effector, PiE354, hijacks TOPGAP as a susceptibility factor to usurp its GAP activity on Rab8a, a key Rab GTPase crucial for defense-related secretion. By hijacking TOPGAP, PiE354 purges Rab8a from the plasma membrane, diverting Rab8a-mediated immune trafficking away from the pathogen interface. This mechanism signifies an uncanny evolutionary adaptation of a pathogen effector in co-opting a host regulatory component to subvert defense-related secretion, thereby providing unprecedented mechanistic insights into the reprogramming of host membrane dynamics by pathogens.
Collapse
Affiliation(s)
- Enoch Lok Him Yuen
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Yasin Tumtas
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Freddie King
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tarhan Ibrahim
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Lok I Chan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Edouard Evangelisti
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, UK
- Université Côte d’Azur, INRAE UMR 1355, CNRS UMR 7254, Institut Sophia Agrobiotech (ISA), 06903 Sophia Antipolis, France
| | - Frej Tulin
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge CB2 1LR, UK
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Jan Skłenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Frank L. H. Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Doryen Bubeck
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
3
|
Sementchoukova I, Domínguez-Ferreras A, Ntoukakis V, Monaghan J. Arabidopsis thaliana protein NSL1 interacts with Pseudomonas syringae pv. tomato DC3000 effector HopM1 in a yeast 2-hybrid assay. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001311. [PMID: 39381642 PMCID: PMC11461026 DOI: 10.17912/micropub.biology.001311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/13/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
Arabidopsis thaliana proteins NECROTIC SPOTTED LESIONS 1 ( NSL1 ) and CONSTITUTIVE ACTIVE DEFENSE 1 ( CAD1 ) have previously been linked to immunity against phytopathogens such as Pseudomonas syringae pv. tomato ( Pst ) DC3000 (Noutoshi et al. 2006; Tsutsui et al. 2008; Asada et al. 2011; Fukunaga et al. 2017; Holmes et al. 2021). Here, we used a yeast 2-hybrid (Y2H) approach to explore their potential to interact with Pst DC3000 effectors. We found that NSL1 , but not CAD1 , interacted with the Pst DC3000 effector HopM1. Although further experiments are needed to validate this interaction, our results suggest that NSL1 may be a host target of HopM1.
Collapse
Affiliation(s)
| | | | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, England, United Kingdom
| | | |
Collapse
|
4
|
Vogel K, Isono E. Erasing marks: Functions of plant deubiquitylating enzymes in modulating the ubiquitin code. THE PLANT CELL 2024; 36:3057-3073. [PMID: 38656977 PMCID: PMC11371157 DOI: 10.1093/plcell/koae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Plant cells need to respond to environmental stimuli and developmental signals accurately and promptly. Ubiquitylation is a reversible posttranslational modification that enables the adaptation of cellular proteostasis to internal or external factors. The different topologies of ubiquitin linkages serve as the structural basis for the ubiquitin code, which can be interpreted by ubiquitin-binding proteins or readers in specific processes. The ubiquitylation status of target proteins is regulated by ubiquitylating enzymes or writers, as well as deubiquitylating enzymes (DUBs) or erasers. DUBs can remove ubiquitin molecules from target proteins. Arabidopsis (A. thaliana) DUBs belong to 7 protein families and exhibit a wide range of functions and play an important role in regulating selective protein degradation processes, including proteasomal, endocytic, and autophagic protein degradation. DUBs also shape the epigenetic landscape and modulate DNA damage repair processes. In this review, we summarize the current knowledge on DUBs in plants, their cellular functions, and the molecular mechanisms involved in the regulation of plant DUBs.
Collapse
Affiliation(s)
- Karin Vogel
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Erika Isono
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
- Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki 444-8585 Aichi, Japan
| |
Collapse
|
5
|
Zahid MA, Kieu NP, Carlsen FM, Lenman M, Konakalla NC, Yang H, Jyakhwa S, Mravec J, Vetukuri R, Petersen BL, Resjö S, Andreasson E. Enhanced stress resilience in potato by deletion of Parakletos. Nat Commun 2024; 15:5224. [PMID: 38890293 PMCID: PMC11189580 DOI: 10.1038/s41467-024-49584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Continued climate change impose multiple stressors on crops, including pathogens, salt, and drought, severely impacting agricultural productivity. Innovative solutions are necessary to develop resilient crops. Here, using quantitative potato proteomics, we identify Parakletos, a thylakoid protein that contributes to disease susceptibility. We show that knockout or silencing of Parakletos enhances resistance to oomycete, fungi, bacteria, salt, and drought, whereas its overexpression reduces resistance. In response to biotic stimuli, Parakletos-overexpressing plants exhibit reduced amplitude of reactive oxygen species and Ca2+ signalling, and silencing Parakletos does the opposite. Parakletos homologues have been identified in all major crops. Consecutive years of field trials demonstrate that Parakletos deletion enhances resistance to Phytophthora infestans and increases yield. These findings demark a susceptibility gene, which can be exploited to enhance crop resilience towards abiotic and biotic stresses in a low-input agriculture.
Collapse
Affiliation(s)
- Muhammad Awais Zahid
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Nam Phuong Kieu
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Frida Meijer Carlsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Marit Lenman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Naga Charan Konakalla
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Huanjie Yang
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Sunmoon Jyakhwa
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center,-Slovak Academy of Sciences, Akademická 2, 950 07, Nitra, Slovakia
| | - Ramesh Vetukuri
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Svante Resjö
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22, Lomma, Sweden.
| |
Collapse
|
6
|
Testi S, Kuhn ML, Allasia V, Auroy P, Kong F, Peltier G, Pagnotta S, Cazareth J, Keller H, Panabières F. The Phytophthora parasitica effector AVH195 interacts with ATG8, attenuates host autophagy, and promotes biotrophic infection. BMC Biol 2024; 22:100. [PMID: 38679707 PMCID: PMC11057187 DOI: 10.1186/s12915-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Plant pathogens secrete effector proteins into host cells to suppress immune responses and manipulate fundamental cellular processes. One of these processes is autophagy, an essential recycling mechanism in eukaryotic cells that coordinates the turnover of cellular components and contributes to the decision on cell death or survival. RESULTS We report the characterization of AVH195, an effector from the broad-spectrum oomycete plant pathogen, Phytophthora parasitica. We show that P. parasitica expresses AVH195 during the biotrophic phase of plant infection, i.e., the initial phase in which host cells are maintained alive. In tobacco, the effector prevents the initiation of cell death, which is caused by two pathogen-derived effectors and the proapoptotic BAX protein. AVH195 associates with the plant vacuolar membrane system and interacts with Autophagy-related protein 8 (ATG8) isoforms/paralogs. When expressed in cells from the green alga, Chlamydomonas reinhardtii, the effector delays vacuolar fusion and cargo turnover upon stimulation of autophagy, but does not affect algal viability. In Arabidopsis thaliana, AVH195 delays the turnover of ATG8 from endomembranes and promotes plant susceptibility to P. parasitica and the obligate biotrophic oomycete pathogen Hyaloperonospora arabidopsidis. CONCLUSIONS Taken together, our observations suggest that AVH195 targets ATG8 to attenuate autophagy and prevent associated host cell death, thereby favoring biotrophy during the early stages of the infection process.
Collapse
Affiliation(s)
- Serena Testi
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
- Present Address: Station Biologique de Roscoff, UMR8227 LBI2M, CNRS-Sorbonne Unversité, 29680, Roscoff, France
| | - Marie-Line Kuhn
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - Valérie Allasia
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - Pascaline Auroy
- Aix Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
| | - Fantao Kong
- Aix Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
- Present address: School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Gilles Peltier
- Aix Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108, Saint Paul-Lez-Durance, France
| | - Sophie Pagnotta
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, 06108, Nice, France
| | - Julie Cazareth
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 06903, Sophia Antipolis, France
| | - Harald Keller
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France.
| | - Franck Panabières
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| |
Collapse
|
7
|
Yagyu M, Yoshimoto K. New insights into plant autophagy: molecular mechanisms and roles in development and stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1234-1251. [PMID: 37978884 DOI: 10.1093/jxb/erad459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023]
Abstract
Autophagy is an evolutionarily conserved eukaryotic intracellular degradation process. Although the molecular mechanisms of plant autophagy share similarities with those in yeast and mammals, certain unique mechanisms have been identified. Recent studies have highlighted the importance of autophagy during vegetative growth stages as well as in plant-specific developmental processes, such as seed development, germination, flowering, and somatic reprogramming. Autophagy enables plants to adapt to and manage severe environmental conditions, such as nutrient starvation, high-intensity light stress, and heat stress, leading to intracellular remodeling and physiological changes in response to stress. In the past, plant autophagy research lagged behind similar studies in yeast and mammals; however, recent advances have greatly expanded our understanding of plant-specific autophagy mechanisms and functions. This review summarizes current knowledge and latest research findings on the mechanisms and roles of plant autophagy with the objective of improving our understanding of this vital process in plants.
Collapse
Affiliation(s)
- Mako Yagyu
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
- Life Sciences Program, Graduate School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kohki Yoshimoto
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
- Life Sciences Program, Graduate School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
8
|
Bonnet DMV, Tirot L, Grob S, Jullien PE. Methylome Response to Proteasome Inhibition by Pseudomonas syringae Virulence Factor Syringolin A. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:693-704. [PMID: 37414416 DOI: 10.1094/mpmi-06-23-0080-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
DNA methylation is an important epigenetic mark required for proper gene expression and silencing of transposable elements. DNA methylation patterns can be modified by environmental factors such as pathogen infection, in which modification of DNA methylation can be associated with plant resistance. To counter the plant defense pathways, pathogens produce effector molecules, several of which act as proteasome inhibitors. Here, we investigated the effect of proteasome inhibition by the bacterial virulence factor syringolin A (SylA) on genome-wide DNA methylation. We show that SylA treatment results in an increase of DNA methylation at centromeric and pericentromeric regions of Arabidopsis chromosomes. We identify several CHH differentially methylated regions (DMRs) that are enriched in the proximity of transcriptional start sites. SylA treatment does not result in significant changes in small RNA composition. However, significant changes in genome transcriptional activity can be observed, including a strong upregulation of resistance genes that are located on chromosomal arms. We hypothesize that DNA methylation changes could be linked to the upregulation of some atypical members of the de novo DNA methylation pathway, namely AGO3, AGO9, and DRM1. Our data suggests that modification of genome-wide DNA methylation resulting from an inhibition of the proteasome by bacterial effectors could be part of an epi-genomic arms race against pathogens. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Louis Tirot
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Stefan Grob
- Department of Plant and Microbial Biology, University of Zurich and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
9
|
Barros JAS, Chatt EC, Augustine RC, McLoughlin F, Li F, Otegui MS, Vierstra RD. Autophagy during maize endosperm development dampens oxidative stress and promotes mitochondrial clearance. PLANT PHYSIOLOGY 2023; 193:1395-1415. [PMID: 37335933 PMCID: PMC10517192 DOI: 10.1093/plphys/kiad340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 06/21/2023]
Abstract
The selective turnover of macromolecules by autophagy provides a critical homeostatic mechanism for recycling cellular constituents and for removing superfluous and damaged organelles, membranes, and proteins. To better understand how autophagy impacts seed maturation and nutrient storage, we studied maize (Zea mays) endosperm in its early and middle developmental stages via an integrated multiomic approach using mutants impacting the core macroautophagy factor AUTOPHAGY (ATG)-12 required for autophagosome assembly. Surprisingly, the mutant endosperm in these developmental windows accumulated normal amounts of starch and Zein storage proteins. However, the tissue acquired a substantially altered metabolome, especially for compounds related to oxidative stress and sulfur metabolism, including increases in cystine, dehydroascorbate, cys-glutathione disulfide, glucarate, and galactarate, and decreases in peroxide and the antioxidant glutathione. While changes in the associated transcriptome were mild, the proteome was strongly altered in the atg12 endosperm, especially for increased levels of mitochondrial proteins without a concomitant increase in mRNA abundances. Although fewer mitochondria were seen cytologically, a heightened number appeared dysfunctional based on the accumulation of dilated cristae, consistent with attenuated mitophagy. Collectively, our results confirm that macroautophagy plays a minor role in the accumulation of starch and storage proteins during maize endosperm development but likely helps protect against oxidative stress and clears unneeded/dysfunctional mitochondria during tissue maturation.
Collapse
Affiliation(s)
- Jessica A S Barros
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Elizabeth C Chatt
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Robert C Augustine
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Faqiang Li
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
10
|
Yuen ELH, Shepherd S, Bozkurt TO. Traffic Control: Subversion of Plant Membrane Trafficking by Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:325-350. [PMID: 37186899 DOI: 10.1146/annurev-phyto-021622-123232] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Membrane trafficking pathways play a prominent role in plant immunity. The endomembrane transport system coordinates membrane-bound cellular organelles to ensure that immunological components are utilized effectively during pathogen resistance. Adapted pathogens and pests have evolved to interfere with aspects of membrane transport systems to subvert plant immunity. To do this, they secrete virulence factors known as effectors, many of which converge on host membrane trafficking routes. The emerging paradigm is that effectors redundantly target every step of membrane trafficking from vesicle budding to trafficking and membrane fusion. In this review, we focus on the mechanisms adopted by plant pathogens to reprogram host plant vesicle trafficking, providing examples of effector-targeted transport pathways and highlighting key questions for the field to answer moving forward.
Collapse
Affiliation(s)
- Enoch Lok Him Yuen
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| | - Samuel Shepherd
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College, London, United Kingdom; , ,
| |
Collapse
|
11
|
Langin G, González-Fuente M, Üstün S. The Plant Ubiquitin-Proteasome System as a Target for Microbial Manipulation. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:351-375. [PMID: 37253695 DOI: 10.1146/annurev-phyto-021622-110443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The plant immune system perceives pathogens to trigger defense responses. In turn, pathogens secrete effector molecules to subvert these defense responses. The initiation and maintenance of defense responses involve not only de novo synthesis of regulatory proteins and enzymes but also their regulated degradation. The latter is achieved through protein degradation pathways such as the ubiquitin-proteasome system (UPS). The UPS regulates all stages of immunity, from the perception of the pathogen to the execution of the response, and, therefore, constitutes an ideal candidate for microbial manipulation of the host. Pathogen effector molecules interfere with the plant UPS through several mechanisms. This includes hijacking general UPS functions or perturbing its ability to degrade specific targets. In this review, we describe how the UPS regulates different immunity-related processes and how pathogens subvert this to promote disease.
Collapse
Affiliation(s)
- Gautier Langin
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany;
- Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
12
|
Hoffmann G, López-González S, Mahboubi A, Hanson J, Hafrén A. Cauliflower mosaic virus protein P6 is a multivalent node for RNA granule proteins and interferes with stress granule responses during plant infection. THE PLANT CELL 2023; 35:3363-3382. [PMID: 37040611 PMCID: PMC10473198 DOI: 10.1093/plcell/koad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Biomolecular condensation is a multipurpose cellular process that viruses use ubiquitously during their multiplication. Cauliflower mosaic virus replication complexes are condensates that differ from those of most viruses, as they are nonmembranous assemblies that consist of RNA and protein, mainly the viral protein P6. Although these viral factories (VFs) were described half a century ago, with many observations that followed since, functional details of the condensation process and the properties and relevance of VFs have remained enigmatic. Here, we studied these issues in Arabidopsis thaliana and Nicotiana benthamiana. We observed a large dynamic mobility range of host proteins within VFs, while the viral matrix protein P6 is immobile, as it represents the central node of these condensates. We identified the stress granule (SG) nucleating factors G3BP7 and UBP1 family members as components of VFs. Similarly, as SG components localize to VFs during infection, ectopic P6 localizes to SGs and reduces their assembly after stress. Intriguingly, it appears that soluble rather than condensed P6 suppresses SG formation and mediates other essential P6 functions, suggesting that the increased condensation over the infection time-course may accompany a progressive shift in selected P6 functions. Together, this study highlights VFs as dynamic condensates and P6 as a complex modulator of SG responses.
Collapse
Affiliation(s)
- Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Silvia López-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Amir Mahboubi
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90736 Umeå, Sweden
| | - Johannes Hanson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90736 Umeå, Sweden
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| |
Collapse
|
13
|
Shi J, Gong Y, Shi H, Ma X, Zhu Y, Yang F, Wang D, Fu Y, Lin Y, Yang N, Yang Z, Zeng C, Li W, Zhou C, Wang X, Qiao Y. ' Candidatus Liberibacter asiaticus' secretory protein SDE3 inhibits host autophagy to promote Huanglongbing disease in citrus. Autophagy 2023; 19:2558-2574. [PMID: 37249424 PMCID: PMC10392736 DOI: 10.1080/15548627.2023.2213040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
Antimicrobial acroautophagy/autophagy plays a vital role in degrading intracellular pathogens or microbial molecules in host-microbe interactions. However, microbes evolved various mechanisms to hijack or modulate autophagy to escape elimination. Vector-transmitted phloem-limited bacteria, Candidatus Liberibacter (Ca. Liberibacter) species, cause Huanglongbing (HLB), one of the most catastrophic citrus diseases worldwide, yet contributions of autophagy to HLB disease proliferation remain poorly defined. Here, we report the identification of a virulence effector in "Ca. Liberibacter asiaticus" (Las), SDE3, which is highly conserved among the "Ca. Liberibacter". SDE3 expression not only promotes the disease development of HLB and canker in sweet orange (Citrus sinensis) plants but also facilitates Phytophthora and viral infections in Arabidopsis, and Nicotiana benthamiana (N. benthamiana). SDE3 directly associates with citrus cytosolic glyceraldehyde-3-phosphate dehydrogenases (CsGAPCs), which negatively regulates plant immunity. Overexpression of CsGAPCs and SDE3 significantly inhibits autophagy in citrus, Arabidopsis, and N. benthamiana. Intriguingly, SDE3 undermines autophagy-mediated immunity by the specific degradation of CsATG8 family proteins in a CsGAPC1-dependent manner. CsATG8 degradation is largely rescued by treatment with an inhibitor of the late autophagic pathway, E64d. Furthermore, ectopic expression of CsATG8s enhances Phytophthora resistance. Collectively, these results suggest that SDE3-CsGAPC interactions modulate CsATG8-mediated autophagy to enhance Las progression in citrus.Abbreviations: ACP: asian citrus psyllid; ACD2: ACCELERATED CELL DEATH 2; ATG: autophagy related; Ca. Liberibacter: Candidatus Liberibacter; CaMV: cauliflower mosaic virus; CMV: cucumber mosaic virus; Cs: Citrus sinensis; EV: empty vector; GAPC: cytosolic glyceraldehyde-3-phosphate dehydrogenase; HLB: huanglongbing; H2O2: hydrogen peroxide; Las: liberibacter asiaticus; Laf: liberibacter africanus; Lam: liberibacter americanus; Pst: Pseudomonas syringae pv. tomato; PVX: potato virus X; ROS: reactive oxygen species; SDE3: sec-delivered effector 3; TEM: transmission electron microscopy; VIVE : virus-induced virulence effector; WT: wild-type; Xcc: Xanthomonas citri subsp. citri.
Collapse
Affiliation(s)
- Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yinan Gong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hongwei Shi
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Xiaoding Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanhong Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Dan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yating Fu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yu Lin
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Naiying Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Zhuhui Yang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Chunhua Zeng
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Weimin Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
14
|
Hickey K, Nazarov T, Smertenko A. Organellomic gradients in the fourth dimension. PLANT PHYSIOLOGY 2023; 193:98-111. [PMID: 37243543 DOI: 10.1093/plphys/kiad310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Organelles function as hubs of cellular metabolism and elements of cellular architecture. In addition to 3 spatial dimensions that describe the morphology and localization of each organelle, the time dimension describes complexity of the organelle life cycle, comprising formation, maturation, functioning, decay, and degradation. Thus, structurally identical organelles could be biochemically different. All organelles present in a biological system at a given moment of time constitute the organellome. The homeostasis of the organellome is maintained by complex feedback and feedforward interactions between cellular chemical reactions and by the energy demands. Synchronized changes of organelle structure, activity, and abundance in response to environmental cues generate the fourth dimension of plant polarity. Temporal variability of the organellome highlights the importance of organellomic parameters for understanding plant phenotypic plasticity and environmental resiliency. Organellomics involves experimental approaches for characterizing structural diversity and quantifying the abundance of organelles in individual cells, tissues, or organs. Expanding the arsenal of appropriate organellomics tools and determining parameters of the organellome complexity would complement existing -omics approaches in comprehending the phenomenon of plant polarity. To highlight the importance of the fourth dimension, this review provides examples of organellome plasticity during different developmental or environmental situations.
Collapse
Affiliation(s)
- Kathleen Hickey
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| | - Taras Nazarov
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, 99164 WA, USA
| |
Collapse
|
15
|
Shi H, Yang Z, Huang J, Wu H, Fu S, Li W, Zou X, Zhou C, Wang X. An effector of 'Candidatus Liberibacter asiaticus' manipulates autophagy to promote bacterial infection. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4670-4684. [PMID: 37166404 DOI: 10.1093/jxb/erad176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Autophagy functions in plant host immunity responses to pathogen infection. The molecular mechanisms and functions used by the citrus Huanglongbing (HLB)-associated intracellular bacterium 'Candidatus Liberibacter asiaticus' (CLas) to manipulate autophagy are unknown. We identified a CLas effector, SDE4405 (CLIBASIA_04405), which contributes to HLB progression. 'Wanjincheng' orange (Citrus sinensis) transgenic plants expressing SDE4405 promotes CLas proliferation and symptom expression via suppressing host immunity responses. SDE4405 interacts with the ATG8-family of proteins (ATG8s), and their interactions activate autophagy in Nicotiana benthamiana. The occurrence of autophagy is also significantly enhanced in SDE4405-transgenic citrus plants. Interrupting NbATG8s-SDE4405 interaction by silencing of NbATG8c reduces Pseudomonas syringae pv. tomato strain DC3000ΔhopQ1-1 (Pst DC3000ΔhopQ1-1) proliferation in N. benthamiana, and transient overexpression of CsATG8c and SDE4405 in citrus promotes Xanthomonas citri subsp. citri (Xcc) multiplication, suggesting that SDE4405-ATG8s interaction negatively regulates plant defense. These results demonstrate the role of the CLas effector protein in manipulating autophagy, and provide new molecular insights into the interaction between CLas and citrus hosts.
Collapse
Affiliation(s)
- Hongwei Shi
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Zuhui Yang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Jie Huang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Haodi Wu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Shimin Fu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Weimin Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Xiuping Zou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| |
Collapse
|
16
|
Zou J, Chen X, Liu C, Guo M, Kanwar MK, Qi Z, Yang P, Wang G, Bao Y, Bassham DC, Yu J, Zhou J. Autophagy promotes jasmonate-mediated defense against nematodes. Nat Commun 2023; 14:4769. [PMID: 37553319 PMCID: PMC10409745 DOI: 10.1038/s41467-023-40472-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
Autophagy, as an intracellular degradation system, plays a critical role in plant immunity. However, the involvement of autophagy in the plant immune system and its function in plant nematode resistance are largely unknown. Here, we show that root-knot nematode (RKN; Meloidogyne incognita) infection induces autophagy in tomato (Solanum lycopersicum) and different atg mutants exhibit high sensitivity to RKNs. The jasmonate (JA) signaling negative regulators JASMONATE-ASSOCIATED MYC2-LIKE 1 (JAM1), JAM2 and JAM3 interact with ATG8s via an ATG8-interacting motif (AIM), and JAM1 is degraded by autophagy during RKN infection. JAM1 impairs the formation of a transcriptional activation complex between ETHYLENE RESPONSE FACTOR 1 (ERF1) and MEDIATOR 25 (MED25) and interferes with transcriptional regulation of JA-mediated defense-related genes by ERF1. Furthermore, ERF1 acts in a positive feedback loop and regulates autophagy activity by transcriptionally activating ATG expression in response to RKN infection. Therefore, autophagy promotes JA-mediated defense against RKNs via forming a positive feedback circuit in the degradation of JAMs and transcriptional activation by ERF1.
Collapse
Affiliation(s)
- Jinping Zou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Xinlin Chen
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Chenxu Liu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Mingyue Guo
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Mukesh Kumar Kanwar
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Zhenyu Qi
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- Agricultural Experiment Station, Zhejiang University, 310058, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, 310058, Hangzhou, China
| | - Guanghui Wang
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, 276000, Linyi, China
| | - Yan Bao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China
- Hainan Institute, Zhejiang University, 572000, Sanya, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, 310058, Hangzhou, China.
- Hainan Institute, Zhejiang University, 572000, Sanya, China.
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, 310058, Hangzhou, China.
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, 276000, Linyi, China.
| |
Collapse
|
17
|
Nomura K, Imboden LA, Tanaka H, He SY. Multiple host targets of Pseudomonas effector protein HopM1 form a protein complex regulating apoplastic immunity and water homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551310. [PMID: 37577537 PMCID: PMC10418078 DOI: 10.1101/2023.07.31.551310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Bacterial type III effector proteins injected into the host cell play a critical role in mediating bacterial interactions with plant and animal hosts. Notably, some bacterial effectors are reported to target sequence-unrelated host proteins with unknown functional relationships. The Pseudomonas syringae effector HopM1 is such an example; it interacts with and/or degrades several HopM1-interacting (MIN) Arabidopsis proteins, including HopM1-interacting protein 2 (MIN2/RAD23), HopM1-interacting protein 7 (MIN7/BIG5), HopM1-interacting protein 10 (MIN10/14-3-3ĸ), and HopM1-interacting protein 13 (MIN13/BIG2). In this study, we purified the MIN7 complex formed in planta and found that it contains MIN7, MIN10, MIN13, as well as a tetratricopeptide repeat protein named HLB1. Mutational analysis showed that, like MIN7, HLB1 is required for pathogen-associated molecular pattern (PAMP)-, effector-, and benzothiadiazole (BTH)-triggered immunity. HLB1 is recruited to the trans-Golgi network (TGN)/early endosome (EE) in a MIN7-dependent manner. Both min7 and hlb1 mutant leaves contained elevated water content in the leaf apoplast and artificial water infiltration into the leaf apoplast was sufficient to phenocopy immune-suppressing phenotype of HopM1. These results suggest that multiple HopM1-targeted MIN proteins form a protein complex with a dual role in modulating water level and immunity in the apoplast, which provides an explanation for the dual phenotypes of HopM1 during bacterial pathogenesis.
Collapse
Affiliation(s)
- Kinya Nomura
- Department of Biology, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Lori Alice Imboden
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Hirokazu Tanaka
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-0033, Japan
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
18
|
Wan C, Zhang H, Cheng H, Sowden RG, Cai W, Jarvis RP, Ling Q. Selective autophagy regulates chloroplast protein import and promotes plant stress tolerance. EMBO J 2023; 42:e112534. [PMID: 37248861 PMCID: PMC10350842 DOI: 10.15252/embj.2022112534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/26/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Chloroplasts are plant organelles responsible for photosynthesis and environmental sensing. Most chloroplast proteins are imported from the cytosol through the translocon at the outer envelope membrane of chloroplasts (TOC). Previous work has shown that TOC components are regulated by the ubiquitin-proteasome system (UPS) to control the chloroplast proteome, which is crucial for the organelle's function and plant development. Here, we demonstrate that the TOC apparatus is also subject to K63-linked polyubiquitination and regulation by selective autophagy, potentially promoting plant stress tolerance. We identify NBR1 as a selective autophagy adaptor targeting TOC components, and mediating their relocation into vacuoles for autophagic degradation. Such selective autophagy is shown to control TOC protein levels and chloroplast protein import and to influence photosynthetic activity as well as tolerance to UV-B irradiation and heat stress in Arabidopsis plants. These findings uncover the vital role of selective autophagy in the proteolytic regulation of specific chloroplast proteins, and how dynamic control of chloroplast protein import is critically important for plants to cope with challenging environments.
Collapse
Affiliation(s)
- Chen Wan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Hongying Cheng
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Robert G Sowden
- Department of Plant Sciences and Section of Molecular Plant Biology (Department of Biology)University of OxfordOxfordUK
| | - Wenjuan Cai
- Core Facility Center, CAS Centre for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - R Paul Jarvis
- Department of Plant Sciences and Section of Molecular Plant Biology (Department of Biology)University of OxfordOxfordUK
| | - Qihua Ling
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
- CAS‐JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
19
|
Raffeiner M, Zhu S, González-Fuente M, Üstün S. Interplay between autophagy and proteasome during protein turnover. TRENDS IN PLANT SCIENCE 2023; 28:698-714. [PMID: 36801193 DOI: 10.1016/j.tplants.2023.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 05/13/2023]
Abstract
Protein homeostasis is epitomized by an equilibrium between protein biosynthesis and degradation: the 'life and death' of proteins. Approximately one-third of newly synthesized proteins are degraded. As such, protein turnover is required to maintain cellular integrity and survival. Autophagy and the ubiquitin-proteasome system (UPS) are the two principal degradation pathways in eukaryotes. Both pathways orchestrate many cellular processes during development and upon environmental stimuli. Ubiquitination of degradation targets is used as a 'death' signal by both processes. Recent findings revealed a direct functional link between both pathways. Here, we summarize key findings in the field of protein homeostasis, with an emphasis on the newly revealed crosstalk between both degradation machineries and how it is decided which pathway facilitates target degradation.
Collapse
Affiliation(s)
- Margot Raffeiner
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Shanshuo Zhu
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Manuel González-Fuente
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany
| | - Suayib Üstün
- Eberhard-Karls-Universität Tübingen, Zentrum für Molekular Biologie der Pflanzen, 72076 Tübingen, Germany; Faculty of Biology & Biotechnology, Ruhr-University of Bochum, 44780 Bochum, Germany.
| |
Collapse
|
20
|
Wang Z, Li T, Zhang X, Feng J, Liu Z, Shan W, Joosten MHAJ, Govers F, Du Y. A Phytophthora infestans RXLR effector targets a potato ubiquitin-like domain-containing protein to inhibit the proteasome activity and hamper plant immunity. THE NEW PHYTOLOGIST 2023; 238:781-797. [PMID: 36653957 DOI: 10.1111/nph.18749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Ubiquitin-like domain-containing proteins (UDPs) are involved in the ubiquitin-proteasome system because of their ability to interact with the 26S proteasome. Here, we identified potato StUDP as a target of the Phytophthora infestans RXLR effector Pi06432 (PITG_06432), which supresses the salicylic acid (SA)-related immune pathway. By overexpressing and silencing of StUDP in potato, we show that StUDP negatively regulates plant immunity against P. infestans. StUDP interacts with, and destabilizes, the 26S proteasome subunit that is referred to as REGULATORY PARTICLE TRIPLE-A ATP-ASE (RPT) subunit StRPT3b. This destabilization represses the proteasome activity. Proteomic analysis and Western blotting show that StUDP decreases the stability of the master transcription factor SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) in SA biosynthesis. StUDP negatively regulates the SA signalling pathway by repressing the proteasome activity and destabilizing StSARD1, leading to a decreased expression of the SARD1-targeted gene ISOCHORISMATE SYNTHASE 1 and thereby a decrease in SA content. Pi06432 stabilizes StUDP, and it depends on StUDP to destabilize StRPT3b and thereby supress the proteasome activity. Our study reveals that the P. infestans effector Pi06432 targets StUDP to hamper the homeostasis of the proteasome by the degradation of the proteasome subunit StRPT3b and thereby suppresses SA-related immunity.
Collapse
Affiliation(s)
- Ziwei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, Shaanxi, 712100, China
| | - Xiaojiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiashu Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuting Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Shaanxi Engineering Research Center for Vegetables, Yangling, Shaanxi, 712100, China
| |
Collapse
|
21
|
Yu P, Hua Z. To Kill or to Be Killed: How Does the Battle between the UPS and Autophagy Maintain the Intracellular Homeostasis in Eukaryotes? Int J Mol Sci 2023; 24:ijms24032221. [PMID: 36768543 PMCID: PMC9917186 DOI: 10.3390/ijms24032221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
The ubiquitin-26S proteasome system and autophagy are two major protein degradation machineries encoded in all eukaryotic organisms. While the UPS is responsible for the turnover of short-lived and/or soluble misfolded proteins under normal growth conditions, the autophagy-lysosomal/vacuolar protein degradation machinery is activated under stress conditions to remove long-lived proteins in the forms of aggregates, either soluble or insoluble, in the cytoplasm and damaged organelles. Recent discoveries suggested an integrative function of these two seemly independent systems for maintaining the proteome homeostasis. One such integration is represented by their reciprocal degradation, in which the small 76-amino acid peptide, ubiquitin, plays an important role as the central signaling hub. In this review, we summarized the current knowledge about the activity control of proteasome and autophagosome at their structural organization, biophysical states, and turnover levels from yeast and mammals to plants. Through comprehensive literature studies, we presented puzzling questions that are awaiting to be solved and proposed exciting new research directions that may shed light on the molecular mechanisms underlying the biological function of protein degradation.
Collapse
Affiliation(s)
- Peifeng Yu
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
22
|
Langin G, Üstün S. A Pipeline to Monitor Proteasome Homeostasis in Plants. Methods Mol Biol 2023; 2581:351-363. [PMID: 36413330 DOI: 10.1007/978-1-0716-2784-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The proteasome is a key component for regulation of protein turnover across kingdoms. The proteasome has been shown to be involved in or affected by various stress conditions in multiple model organisms in plants. As such, studying proteasome homeostasis is crucial to understand its participation in different cellular conditions. However, the involvement of the proteasome in many cellular processes and its interplay with other degradation pathways hamper the interpretation of experiments based on a single approach. Thus, it is crucial to formulate a framework to investigate proteasome dynamics in different model organisms including plants. Here, we describe a pipeline to monitor proteasome homeostasis using four different methods including (i) luminescent-based proteasome activity measurement, (ii) immunoblot analysis of ubiquitinated proteins, (iii) evaluation of proteasome subunit protein levels, and (iv) monitoring of the proteasome stress regulon on mRNA levels using quantitative real-time PCR (polymerase chain reaction).
Collapse
Affiliation(s)
- Gautier Langin
- University of Tübingen, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany.
| | - Suayib Üstün
- University of Tübingen, Center for Plant Molecular Biology (ZMBP), Tübingen, Germany.
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum, Germany.
| |
Collapse
|
23
|
Che R, Liu C, Wang Q, Tu W, Wang P, Li C, Gong X, Mao K, Feng H, Huang L, Li P, Ma F. The Valsa mali effector Vm1G-1794 protects the aggregated MdEF-Tu from autophagic degradation to promote infection in apple. Autophagy 2022:1-19. [DOI: 10.1080/15548627.2022.2153573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Runmin Che
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenyan Tu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ping Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
24
|
Rasmussen NL, Kournoutis A, Lamark T, Johansen T. NBR1: The archetypal selective autophagy receptor. J Cell Biol 2022; 221:213552. [PMID: 36255390 PMCID: PMC9582228 DOI: 10.1083/jcb.202208092] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
NBR1 was discovered as an autophagy receptor not long after the first described vertebrate autophagy receptor p62/SQSTM1. Since then, p62 has currently been mentioned in >10,000 papers on PubMed, while NBR1 is mentioned in <350 papers. Nonetheless, evolutionary analysis reveals that NBR1, and likely also selective autophagy, was present already in the last eukaryotic common ancestor (LECA), while p62 appears first in the early Metazoan lineage. Furthermore, yeast-selective autophagy receptors Atg19 and Atg34 represent NBR1 homologs. NBR1 is the main autophagy receptor in plants that do not contain p62, while most animal taxa contain both NBR1 and p62. Mechanistic studies are starting to shed light on the collaboration between mammalian NBR1 and p62 in the autophagic degradation of protein aggregates (aggrephagy). Several domains of NBR1 are involved in cargo recognition, and the list of known substrates for NBR1-mediated selective autophagy is increasing. Lastly, roles of NBR1 in human diseases such as proteinopathies and cancer are emerging.
Collapse
Affiliation(s)
- Nikoline Lander Rasmussen
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Athanasios Kournoutis
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Trond Lamark
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Autophagy Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
25
|
Sharma I, Kirti PB, Pati PK. Autophagy: a game changer for plant development and crop improvement. PLANTA 2022; 256:103. [PMID: 36307739 DOI: 10.1007/s00425-022-04004-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Manipulation of autophagic pathway represents a tremendous opportunity for designing climate-smart crops with improved yield and better adaptability to changing environment. For exploiting autophagy to its full potential, identification and comprehensive characterization of adapters/receptor complex and elucidation of its regulatory network in crop plants is highly warranted. Autophagy is a major intracellular trafficking pathway in eukaryotes involved in vacuolar degradation of cytoplasmic constituents, mis-folded proteins, and defective organelles. Under optimum conditions, autophagy operates at a basal level to maintain cellular homeostasis, but under stressed conditions, it is induced further to provide temporal stress relief. Our understanding of this highly dynamic process has evolved exponentially in the past few years with special reference to several plant-specific roles of autophagy. Here, we review the most recent advances in the field of autophagy in plants and discuss its potential implications in designing crops with improved stress and disease-tolerance, enhanced yield potential, and improved capabilities for producing metabolites of high economic value. We also assess the current knowledge gaps and the possible strategies to develop a robust module for biotechnological application of autophagy to enhance bioeconomy and sustainability of agriculture.
Collapse
Affiliation(s)
- Isha Sharma
- AgriBiotech Foundation, PJTS Agriculture University, Rajendranagar, Hyderabad, Telangana, 500032, India.
- International Crops Research Institute for the Semi-Arid Tropics, 502324, Patancheru, Telangana, India.
| | | | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 140301, India
| |
Collapse
|
26
|
Autophagy in the Lifetime of Plants: From Seed to Seed. Int J Mol Sci 2022; 23:ijms231911410. [PMID: 36232711 PMCID: PMC9570326 DOI: 10.3390/ijms231911410] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Autophagy is a highly conserved self-degradation mechanism in eukaryotes. Excess or harmful intracellular content can be encapsulated by double-membrane autophagic vacuoles and transferred to vacuoles for degradation in plants. Current research shows three types of autophagy in plants, with macroautophagy being the most important autophagic degradation pathway. Until now, more than 40 autophagy-related (ATG) proteins have been identified in plants that are involved in macroautophagy, and these proteins play an important role in plant growth regulation and stress responses. In this review, we mainly introduce the research progress of autophagy in plant vegetative growth (roots and leaves), reproductive growth (pollen), and resistance to biotic (viruses, bacteria, and fungi) and abiotic stresses (nutrients, drought, salt, cold, and heat stress), and we discuss the application direction of plant autophagy in the future.
Collapse
|
27
|
Sertsuvalkul N, DeMell A, Dinesh-Kumar SP. The complex roles of autophagy in plant immunity. FEBS Lett 2022; 596:2163-2171. [PMID: 35460270 PMCID: PMC9474723 DOI: 10.1002/1873-3468.14356] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/28/2022]
Abstract
Plant immunity is the result of multiple distinct cellular processes cooperating with each other to generate immune responses. Autophagy is a conserved cellular recycling process and has well-established roles in nutrient starvation responses and cellular homeostasis. Recently, the role of autophagy in immunity has become increasingly evident. However, our knowledge about plant autophagy remains limited, and how this fundamental cellular process is involved in plant immunity is still somewhat perplexing. Here, we summarize the current understanding of the positive and negative roles of autophagy in plant immunity and how different microbes exploit this process to their own advantage. The dualistic role of autophagy in plant immunity emphasizes that much remains to be explored in this area.
Collapse
Affiliation(s)
- Nyd Sertsuvalkul
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
- The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - April DeMell
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
- The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Savithramma P. Dinesh-Kumar
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
- The Genome Center, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
28
|
Wang M, Ji Q, Liu P, Liu Y. Guarding and hijacking: stomata on the move. TRENDS IN PLANT SCIENCE 2022; 27:736-738. [PMID: 35613985 DOI: 10.1016/j.tplants.2022.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Stomata-pathogen interactions are a fascinating part of plant immunity. Stomata perceive pathogens and close; in turn, successful pathogens reopen stomata to enter the apoplast. Recent studies by Hu et al. and Roussin-Léveillée et al. demonstrate that, following entry, Pseudomonas syringae closes stomata and, thus, reduces transpiration in infected leaves, adding another layer of complexity to the stomata-pathogen interaction.
Collapse
Affiliation(s)
- Meng Wang
- College of Forestry, Southwest Forestry University, Kunming 650224, Yunnan, China
| | - Qing Ji
- College of Agriculture and Forestry, Puer University, Puer 665000, Yunnan, China.
| | - Peng Liu
- Division of Biological Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Thuwal, Saudi Arabia
| | - Yukun Liu
- College of Forestry, Southwest Forestry University, Kunming 650224, Yunnan, China.
| |
Collapse
|
29
|
Žárský V. Exocyst functions in plants - secretion and autophagy. FEBS Lett 2022; 596:2324-2334. [PMID: 35729750 DOI: 10.1002/1873-3468.14430] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/09/2022]
Abstract
Tethering complexes mediate vesicle-target compartment contact. Octameric complex exocyst initiates vesicle exocytosis at specific cytoplasmic membrane domains. Plant exocyst is possibly stabilized at the membrane by a direct interaction between SEC3 and EXO70A. Land plants evolved three basic membrane-targeting EXO70 subfamilies, the evolution of which resulted in several types of exocyst with distinct functions within the same cell. Surprisingly, some of these EXO70-exocyst versions are implicated in autophagy as is animal exocyst or are involved in host defense, cell-wall fortification and secondary metabolites transport. Interestingly, EXO70Ds act as selective autophagy receptors in the regulation of cytokinin signalling pathway. Secretion of double membrane autophagy-related structures formed with the contribution of EXO70s to the apoplast hints at the possibility of secretory autophagy in plants.
Collapse
Affiliation(s)
- Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague, Czech Republic.,Institute of Experimental Botany, v.v.i., Czech Academy of Sciences, Rozvojová 263, 165 02, Prague, Czech Republic
| |
Collapse
|
30
|
Ubiquitin ligases at the nexus of plant responses to biotic and abiotic stresses. Essays Biochem 2022; 66:123-133. [PMID: 35704617 DOI: 10.1042/ebc20210070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/11/2022] [Accepted: 05/30/2022] [Indexed: 01/15/2023]
Abstract
Plants must cope with an ever-changing environment, including concurrent biotic and abiotic stresses. The ubiquitin-proteasome system (UPS) is intricately involved in regulating signaling events that facilitate cellular changes required to mitigate the detrimental effects of environmental stress. A key component of the UPS are ubiquitin ligases (or E3s) that catalyze the attachment of ubiquitin molecules to select substrate proteins, which are then recognized by the 26S proteasome for degradation. With the identification of substrate proteins, a growing number of E3s are shown to differentially regulate responses to abiotic as well as bioitic stresses. The review discusses select E3s to illustrate the role of ubiquitin ligases as negative and/or positive regulators of responses to both biotic and abiotic stresses.
Collapse
|
31
|
Salguero-Linares J, Serrano I, Ruiz-Solani N, Salas-Gómez M, Phukan UJ, González VM, Bernardo-Faura M, Valls M, Rengel D, Coll NS. Robust transcriptional indicators of immune cell death revealed by spatiotemporal transcriptome analyses. MOLECULAR PLANT 2022; 15:1059-1075. [PMID: 35502144 DOI: 10.1016/j.molp.2022.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Recognition of a pathogen by the plant immune system often triggers a form of regulated cell death traditionally known as the hypersensitive response (HR). This type of cell death occurs precisely at the site of pathogen recognition, and it is restricted to a few cells. Extensive research has shed light on how plant immune receptors are mechanistically activated. However, two central key questions remain largely unresolved: how does cell death zonation take place, and what are the mechanisms that underpin this phenomenon? Consequently, bona fide transcriptional indicators of HR are lacking, which prevents deeper insight into its mechanisms before cell death becomes macroscopic and precludes early or live observation. In this study, to identify the transcriptional indicators of HR we used the paradigmatic Arabidopsis thaliana-Pseudomonas syringae pathosystem and performed a spatiotemporally resolved gene expression analysis that compared infected cells that will undergo HR upon pathogen recognition with bystander cells that will stay alive and activate immunity. Our data revealed unique and time-dependent differences in the repertoire of differentially expressed genes, expression profiles, and biological processes derived from tissue undergoing HR and that of its surroundings. Furthermore, we generated a pipeline based on concatenated pairwise comparisons between time, zone, and treatment that enabled us to define 13 robust transcriptional HR markers. Among these genes, the promoter of an uncharacterized AAA-ATPase was used to obtain a fluorescent reporter transgenic line that displays a strong spatiotemporally resolved signal specifically in cells that will later undergo pathogen-triggered cell death. This valuable set of genes can be used to define cells that are destined to die upon infection with HR-triggering bacteria, opening new avenues for specific and/or high-throughput techniques to study HR processes at a single-cell level.
Collapse
Affiliation(s)
- Jose Salguero-Linares
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Irene Serrano
- LIPM, Université de Toulouse, INRA, CNRS, 84195 Castanet-Tolosan, France
| | - Nerea Ruiz-Solani
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Marta Salas-Gómez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Ujjal Jyoti Phukan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Victor Manuel González
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Martí Bernardo-Faura
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain; LIPM, Université de Toulouse, INRA, CNRS, 84195 Castanet-Tolosan, France
| | - David Rengel
- LIPM, Université de Toulouse, INRA, CNRS, 84195 Castanet-Tolosan, France; INRAE, GeT-PlaGe, Genotoul, 31326 Castanet-Tolosan, France.
| | - Nuria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Department of Genetics, Universitat de Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
32
|
Shukla A, Hoffmann G, Kushwaha NK, López-González S, Hofius D, Hafrén A. Salicylic acid and the viral virulence factor 2b regulate the divergent roles of autophagy during cucumber mosaic virus infection. Autophagy 2022; 18:1450-1462. [PMID: 34740306 PMCID: PMC9225522 DOI: 10.1080/15548627.2021.1987674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macroautophagy/autophagy is a conserved intracellular degradation pathway that has recently emerged as an integral part of plant responses to virus infection. The known mechanisms of autophagy range from the selective degradation of viral components to a more general attenuation of disease symptoms. In addition, several viruses are able to manipulate the autophagy machinery and counteract autophagy-dependent resistance. Despite these findings, the complex interplay of autophagy activities, viral pathogenicity factors, and host defense pathways in disease development remains poorly understood. In the current study, we analyzed the interaction between autophagy and cucumber mosaic virus (CMV) in Arabidopsis thaliana. We show that autophagy is induced during CMV infection and promotes the turnover of the major virulence protein and RNA silencing suppressor 2b. Intriguingly, autophagy induction is mediated by salicylic acid (SA) and dampened by the CMV virulence factor 2b. In accordance with 2b degradation, we found that autophagy provides resistance against CMV by reducing viral RNA accumulation in an RNA silencing-dependent manner. Moreover, autophagy and RNA silencing attenuate while SA promotes CMV disease symptoms, and epistasis analysis suggests that autophagy-dependent disease and resistance are uncoupled. We propose that autophagy counteracts CMV virulence via both 2b degradation and reduced SA-responses, thereby increasing plant fitness with the viral trade-off arising from increased RNA silencing-mediated resistance.
Collapse
Affiliation(s)
- Aayushi Shukla
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Nirbhay Kumar Kushwaha
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Silvia López-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| |
Collapse
|
33
|
Selective autophagy: adding precision in plant immunity. Essays Biochem 2022; 66:189-206. [PMID: 35635102 PMCID: PMC9400066 DOI: 10.1042/ebc20210063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 12/12/2022]
Abstract
Plant immunity is antagonized by pathogenic effectors during interactions with bacteria, viruses or oomycetes. These effectors target core plant processes to promote infection. One such core plant process is autophagy, a conserved proteolytic pathway involved in ensuring cellular homeostasis. It involves the formation of autophagosomes around proteins destined for autophagic degradation. Many cellular components from organelles, aggregates, inactive or misfolded proteins have been found to be degraded via autophagy. Increasing evidence points to a high degree of specificity during the targeting of these components, strengthening the idea of selective autophagy. Selective autophagy receptors bridge the gap between target proteins and the forming autophagosome. To achieve this, the receptors are able to recognize specifically their target proteins in a ubiquitin-dependent or -independent manner, and to bind to ATG8 via canonical or non-canonical ATG8-interacting motifs. Some receptors have also been shown to require oligomerization to achieve their function in autophagic degradation. We summarize the recent advances in the role of selective autophagy in plant immunity and highlight NBR1 as a key player. However, not many selective autophagy receptors, especially those functioning in immunity, have been characterized in plants. We propose an in silico approach to identify novel receptors, by screening the Arabidopsis proteome for proteins containing features theoretically needed for a selective autophagy receptor. To corroborate these data, the transcript levels of these proteins during immune response are also investigated using public databases. We further highlight the novel perspectives and applications introduced by immunity-related selective autophagy studies, demonstrating its importance in research.
Collapse
|
34
|
Leong JX, Raffeiner M, Spinti D, Langin G, Franz-Wachtel M, Guzman AR, Kim JG, Pandey P, Minina AE, Macek B, Hafrén A, Bozkurt TO, Mudgett MB, Börnke F, Hofius D, Üstün S. A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component. EMBO J 2022; 41:e110352. [PMID: 35620914 PMCID: PMC9251887 DOI: 10.15252/embj.2021110352] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Beyond its role in cellular homeostasis, autophagy plays anti‐ and promicrobial roles in host–microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well‐described in animals, the extent to which xenophagy contributes to plant–bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type‐III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense‐related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense‐related autophagy in plant–bacteria interactions.
Collapse
Affiliation(s)
- Jia Xuan Leong
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Margot Raffeiner
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Daniela Spinti
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Gautier Langin
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Mirita Franz-Wachtel
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, Tübingen, Germany
| | - Andrew R Guzman
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Pooja Pandey
- Department of Life Sciences, Imperial College London, London, UK
| | - Alyona E Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Boris Macek
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, Tübingen, Germany
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Frederik Börnke
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Suayib Üstün
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.,Faculty of Biology & Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
35
|
Hickey K, Wood M, Sexton T, Sahin Y, Nazarov T, Fisher J, Sanguinet KA, Cousins A, Kirchhoff H, Smertenko A. Drought Tolerance Strategies and Autophagy in Resilient Wheat Genotypes. Cells 2022; 11:1765. [PMID: 35681460 PMCID: PMC9179661 DOI: 10.3390/cells11111765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 01/18/2023] Open
Abstract
Drought resiliency strategies combine developmental, physiological, cellular, and molecular mechanisms. Here, we compare drought responses in two resilient spring wheat (Triticum aestivum) genotypes: a well-studied drought-resilient Drysdale and a resilient genotype from the US Pacific North-West Hollis. While both genotypes utilize higher water use efficiency through the reduction of stomatal conductance, other mechanisms differ. First, Hollis deploys the drought escape mechanism to a greater extent than Drysdale by accelerating the flowering time and reducing root growth. Second, Drysdale uses physiological mechanisms such as non-photochemical quenching (NPQ) to dissipate the excess of harvested light energy and sustain higher Fv/Fm and ϕPSII, whereas Hollis maintains constant NPQ but lower Fv/Fm and ϕPSII values. Furthermore, more electron donors of the electron transport chain are in the oxidized state in Hollis than in Drysdale. Third, many ROS homeostasis parameters, including peroxisome abundance, transcription of peroxisome biogenesis genes PEX11 and CAT, catalase protein level, and enzymatic activity, are higher in Hollis than in Drysdale. Fourth, transcription of autophagy flux marker ATG8.4 is upregulated to a greater degree in Hollis than in Drysdale under drought, whereas relative ATG8 protein abundance under drought stress is lower in Hollis than in Drysdale. These data demonstrate the activation of autophagy in both genotypes and a greater autophagic flux in Hollis. In conclusion, wheat varieties utilize different drought tolerance mechanisms. Combining these mechanisms within one genotype offers a promising strategy to advance crop resiliency.
Collapse
Affiliation(s)
- Kahleen Hickey
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Magnus Wood
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Tom Sexton
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164, USA; (T.S.); (A.C.)
| | - Yunus Sahin
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Taras Nazarov
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Jessica Fisher
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, P.O. Box 646420, Pullman, WA 99164, USA;
| | - Asaph Cousins
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164, USA; (T.S.); (A.C.)
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| |
Collapse
|
36
|
Wang J, Miao S, Liu Y, Wang Y. Linking Autophagy to Potential Agronomic Trait Improvement in Crops. Int J Mol Sci 2022; 23:ijms23094793. [PMID: 35563184 PMCID: PMC9103229 DOI: 10.3390/ijms23094793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic process in eukaryotic cells, by which the superfluous or damaged cytoplasmic components can be delivered into vacuoles or lysosomes for degradation and recycling. Two decades of autophagy research in plants uncovers the important roles of autophagy during diverse biological processes, including development, metabolism, and various stress responses. Additionally, molecular machineries contributing to plant autophagy onset and regulation have also gradually come into people’s sights. With the advancement of our knowledge of autophagy from model plants, autophagy research has expanded to include crops in recent years, for a better understanding of autophagy engagement in crop biology and its potentials in improving agricultural performance. In this review, we summarize the current research progress of autophagy in crops and discuss the autophagy-related approaches for potential agronomic trait improvement in crop plants.
Collapse
|
37
|
TaNBR1, a Novel Wheat NBR1-like Domain Gene Negatively Regulates Drought Stress Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms23094519. [PMID: 35562909 PMCID: PMC9105663 DOI: 10.3390/ijms23094519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Drought stress is an important factor that severely affects crop yield and quality. Autophagy has a crucial role in the responses to abiotic stresses. In this study, we explore TaNBR1 in response to drought stress. Expression of the TaNBR1 gene was strongly induced by NaCl, PEG, and abscisic acid treatments. The TaNBR1 protein is localized in the Golgi apparatus and autophagosome. Transgenic Arabidopsis plants overexpressing TaNBR1 exhibited reduced drought tolerance. When subjected to drought stress, compared to the wild-type (WT) lines, the transgenic overexpressing TaNBR1 plants had a lower seed germination rate, relative water content, proline content, and reduced accumulation of antioxidant enzymes, i.e., superoxide dismutase, peroxidase, and catalase, as well as higher chlorophyll losses, malondialdehyde contents, and water loss. The transgenic plants overexpressing TaNBR1 produced much shorter roots in response to mannitol stress, in comparison to the WT plants, and they exhibited greater sensitivity to abscisic acid treatment. The expression levels of the genes related to stress in the transgenic plants were affected in response to drought stress. Our results indicate that TaNBR1 negatively regulates drought stress responses by affecting the expression of stress-related genes in Arabidopsis.
Collapse
|
38
|
Hu Y, Ding Y, Cai B, Qin X, Wu J, Yuan M, Wan S, Zhao Y, Xin XF. Bacterial effectors manipulate plant abscisic acid signaling for creation of an aqueous apoplast. Cell Host Microbe 2022; 30:518-529.e6. [PMID: 35247331 DOI: 10.1016/j.chom.2022.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/05/2021] [Accepted: 02/02/2022] [Indexed: 01/23/2023]
Abstract
Phytopathogens like Pseudomonas syringae induce "water soaking" in the apoplastic space of plant leaf tissue as a key virulence mechanism. Water soaking is commonly observed in diverse pathosystems, yet the underlying physiological basis remains largely elusive. Here, we show that one of the strong P. syringae water-soaking inducers, AvrE, alters the regulation of abscisic acid (ABA) to induce ABA signaling, stomatal closure, and, thus, water soaking. AvrE binds and inhibits the function of Arabidopsis type one protein phosphatases (TOPPs), which negatively regulate ABA by suppressing SnRK2s, a key node of the ABA signaling pathway. The topp12537 quintuple mutants display significantly enhanced water soaking after P. syringae inoculation, whereas the loss of the ABA pathway dampens P. syringae-induced water soaking and disease. Our study uncovers the hijacking of ABA signaling and stomatal closure by P. syringae effectors as key mechanisms of disease susceptibility.
Collapse
Affiliation(s)
- Yezhou Hu
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxia Ding
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Boying Cai
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui Qin
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jingni Wu
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Minhang Yuan
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shiwei Wan
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiu-Fang Xin
- National key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Chinese Academy of Sciences (CAS) and John Innes Centre, Centre of Excellence for Plant and Microbial Sciences, Shanghai 200032, China.
| |
Collapse
|
39
|
Roussin-Léveillée C, Lajeunesse G, St-Amand M, Veerapen VP, Silva-Martins G, Nomura K, Brassard S, Bolaji A, He SY, Moffett P. Evolutionarily conserved bacterial effectors hijack abscisic acid signaling to induce an aqueous environment in the apoplast. Cell Host Microbe 2022; 30:489-501.e4. [PMID: 35247330 PMCID: PMC9012689 DOI: 10.1016/j.chom.2022.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/04/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022]
Abstract
High atmospheric humidity levels profoundly impact host-pathogen interactions in plants by enabling the establishment of an aqueous living space that benefits pathogens. The effectors HopM1 and AvrE1 of the bacterial pathogen Pseudomonas syringae have been shown to induce an aqueous apoplast under such conditions. However, the mechanisms by which this happens remain unknown. Here, we show that HopM1 and AvrE1 work redundantly to establish an aqueous living space by inducing a major reprogramming of the Arabidopsis thaliana transcriptome landscape. These effectors induce a strong abscisic acid (ABA) signature, which promotes stomatal closure, resulting in reduced leaf transpiration and water-soaking lesions. Furthermore, these effectors preferentially increase ABA accumulation in guard cells, which control stomatal aperture. Notably, a guard-cell-specific ABA transporter, ABCG40, is necessary for HopM1 induction of water-soaking lesions. This study provides molecular insights into a chain of events of stomatal manipulation that create an ideal microenvironment to facilitate infection.
Collapse
Affiliation(s)
| | - Gaële Lajeunesse
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Méliane St-Amand
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | - Kinya Nomura
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI, USA; Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Durham, NC, USA
| | - Sandrine Brassard
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ayooluwa Bolaji
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheng Yang He
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI, USA; Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Durham, NC, USA
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
40
|
Zeng C, Wu H, Cao M, Zhou C, Wang X, Fu S. Integrated Analysis of the miRNAome and Transcriptome Reveals miRNA-mRNA Regulatory Networks in Catharanthus roseus Through Cuscuta campestris-Mediated Infection With " Candidatus Liberibacter asiaticus". Front Microbiol 2022; 13:799819. [PMID: 35308338 PMCID: PMC8928264 DOI: 10.3389/fmicb.2022.799819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Citrus Huanglongbing (HLB) is the most devastating disease of citrus caused by the Gram-negative phloem-limited bacterium "Candidatus Liberibacter asiaticus" (CLas). It can be transmitted by the Asian citrus psyllid "Diaphorina citri," by grafting, and by the holoparasitic dodder. In this study, the non-natural host periwinkle (Catharanthus roseus) was infected via dodder (Cuscuta campestris) from CLas-infected citrus plants, and the asymptomatic leaves (AS) were subjected to transcriptomic and small-RNA profiling. The results were analyzed together with a transcriptome dataset from the NCBI repository that included leaves for which symptoms had just occurred (S) and yellowing leaves (Y). There were 3,675 differentially expressed genes (DEGs) identified in AS, and 6,390 more DEGs in S and further 2109 DEGs in Y. These DEGs were commonly enriched in photosystem, chloroplast, membrane, oxidation-reduction process, metal/zinc ion binding on GO. A total of 14,974 DEGs and 336 DE miRNAs (30 conserved and 301 novel) were identified. Through weighted gene co-expression network and nested network analyses, two critical nested miRNA-mRNA regulatory networks were identified with four conserved miRNAs. The primary miR164-NAC1 network is potentially involved in plant defense responses against CLas from the early infection stage to symptom development. The secondary network revealed the regulation of secondary metabolism and nutrient homeostasis through miR828-MYB94/miR1134-HSF4 and miR827-ATG8 regulatory networks, respectively. The findings discovered new potential mechanisms in periwinkle-CLas interactions, and its confirmation can be done in citrus-CLas system later on. The advantages of periwinkle plants in facilitating the quick establishment and greater multiplication of CLas, and shortening latency for disease symptom development make it a great surrogate for further studies, which could expedite our understanding of CLas pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Shimin Fu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|
41
|
Liu X, Cai J, Li X, Yu F, Wu D. Can bacterial type III effectors mediate pathogen-plant-microbiota ternary interactions? PLANT, CELL & ENVIRONMENT 2022; 45:5-11. [PMID: 34533222 DOI: 10.1111/pce.14185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Xiaoli Liu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Jun Cai
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Xiaoxu Li
- Tobacco Research Institute, Technology Center, China Tobacco Hunan Industrial Co., Ltd, Changsha, China
| | - Feng Yu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
42
|
Arabidopsis PII Proteins Form Characteristic Foci in Chloroplasts Indicating Novel Properties in Protein Interaction and Degradation. Int J Mol Sci 2021; 22:ijms222312666. [PMID: 34884470 PMCID: PMC8657445 DOI: 10.3390/ijms222312666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022] Open
Abstract
The PII protein is an evolutionary, highly conserved regulatory protein found in both bacteria and higher plants. In bacteria, it modulates the activity of several enzymes, transporters, and regulatory factors by interacting with them and thereby regulating important metabolic hubs, such as carbon/nitrogen homeostasis. More than two decades ago, the PII protein was characterized for the first time in plants, but its physiological role is still not sufficiently resolved. To gain more insights into the function of this protein, we investigated the interaction behavior of AtPII with candidate proteins by BiFC and FRET/FLIM in planta and with GFP/RFP traps in vitro. In the course of these studies, we found that AtPII interacts in chloroplasts with itself as well as with known interactors such as N-acetyl-L-glutamate kinase (NAGK) in dot-like aggregates, which we named PII foci. In these novel protein aggregates, AtPII also interacts with yet unknown partners, which are known to be involved in plastidic protein degradation. Further studies revealed that the C-terminal component of AtPII is crucial for the formation of PII foci. Altogether, the discovery and description of PII foci indicate a novel mode of interaction between PII proteins and other proteins in plants. These findings may represent a new starting point for the elucidation of physiological functions of PII proteins in plants.
Collapse
|
43
|
Lenz RR, Louie KB, Søndreli KL, Galanie SS, Chen JG, Muchero W, Bowen BP, Northen TR, LeBoldus JM. Metabolomic Patterns of Septoria Canker Resistant and Susceptible Populus trichocarpa Genotypes 24 Hours Postinoculation. PHYTOPATHOLOGY 2021; 111:2052-2066. [PMID: 33881913 DOI: 10.1094/phyto-02-21-0053-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sphaerulina musiva is an economically and ecologically important fungal pathogen that causes Septoria stem canker and leaf spot disease of Populus species. To bridge the gap between genetic markers and structural barriers previously found to be linked to Septoria canker disease resistance in poplar, we used hydrophilic interaction liquid chromatography and tandem mass spectrometry to identify and quantify metabolites involved with signaling and cell wall remodeling. Fluctuations in signaling molecules, organic acids, amino acids, sterols, phenolics, and saccharides in resistant and susceptible P. trichocarpa inoculated with S. musiva were observed. The patterns of 222 metabolites in the resistant host implicate systemic acquired resistance (SAR), cell wall apposition, and lignin deposition as modes of resistance to this hemibiotrophic pathogen. This pattern is consistent with the expected response to the biotrophic phase of S. musiva colonization during the first 24 h postinoculation. The fungal pathogen metabolized key regulatory signals of SAR, other phenolics, and precursors of lignin biosynthesis that were depleted in the susceptible host. This is the first study to characterize metabolites associated with the response to initial colonization by S. musiva between resistant and susceptible hosts.
Collapse
Affiliation(s)
- Ryan R Lenz
- Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | - Katherine B Louie
- Metabolomics Technology, DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Kelsey L Søndreli
- Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
| | | | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Benjamin P Bowen
- Metabolomics Technology, DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Trent R Northen
- Metabolomics Technology, DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jared M LeBoldus
- Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331
- Forest Resources, Engineering, and Management Department, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
44
|
Pandey P, Leary AY, Tumtas Y, Savage Z, Dagvadorj B, Duggan C, Yuen EL, Sanguankiattichai N, Tan E, Khandare V, Connerton AJ, Yunusov T, Madalinski M, Mirkin FG, Schornack S, Dagdas Y, Kamoun S, Bozkurt TO. An oomycete effector subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface. eLife 2021; 10:65285. [PMID: 34424198 PMCID: PMC8382295 DOI: 10.7554/elife.65285] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells deploy autophagy to eliminate invading microbes. In turn, pathogens have evolved effector proteins to counteract antimicrobial autophagy. How adapted pathogens co-opt autophagy for their own benefit is poorly understood. The Irish famine pathogen Phytophthora infestans secretes the effector protein PexRD54 that selectively activates an unknown plant autophagy pathway that antagonizes antimicrobial autophagy at the pathogen interface. Here, we show that PexRD54 induces autophagosome formation by bridging vesicles decorated by the small GTPase Rab8a with autophagic compartments labeled by the core autophagy protein ATG8CL. Rab8a is required for pathogen-triggered and starvation-induced but not antimicrobial autophagy, revealing specific trafficking pathways underpin selective autophagy. By subverting Rab8a-mediated vesicle trafficking, PexRD54 utilizes lipid droplets to facilitate biogenesis of autophagosomes diverted to pathogen feeding sites. Altogether, we show that PexRD54 mimics starvation-induced autophagy to subvert endomembrane trafficking at the host-pathogen interface, revealing how effectors bridge distinct host compartments to expedite colonization. With its long filaments reaching deep inside its prey, the tiny fungi-like organism known as Phytophthora infestans has had a disproportionate impact on human history. Latching onto plants and feeding on their cells, it has caused large-scale starvation events such as the Irish or Highland potato famines. Many specialized proteins allow the parasite to accomplish its feat. For instance, PexRD54 helps P. infestans hijack a cellular process known as autophagy. Healthy cells use this ‘self-eating’ mechanism to break down invaders or to recycle their components, for example when they require specific nutrients. The process is set in motion by various pathways of molecular events that result in specific sac-like ‘vesicles’ filled with cargo being transported to specialized compartments for recycling. PexRD54 can take over this mechanism by activating one of the plant autophagy pathways, directing cells to form autophagic vesicles that Phytophthora could then possibly use to feed on or to destroy antimicrobial components. How or why this is the case remains poorly understood. To examine these questions, Pandey, Leary et al. used a combination of genetic and microscopy techniques and tracked how PexRD54 alters autophagy as P. infestans infects a tobacco-related plant. The results show that PexRD54 works by bridging two proteins: one is present on cellular vesicles filled with cargo, and the other on autophagic structures surrounding the parasite. This allows PexRD54 to direct the vesicles to the feeding sites of P. infestans so the parasite can potentially divert nutrients. Pandey, Leary et al. then went on to develop a molecule called the AIM peptide, which could block autophagy by mimicking part of PexRD54. These results help to better grasp how a key disease affects crops, potentially leading to new ways to protect plants without the use of pesticides. They also shed light on autophagy: ultimately, a deeper understanding of this fundamental biological process could allow the development of plants which can adapt to changing environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Cian Duggan
- Imperial College London, London, United Kingdom
| | | | | | - Emily Tan
- Imperial College London, London, United Kingdom
| | | | | | - Temur Yunusov
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, United Kingdom
| | - Mathias Madalinski
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Federico Gabriel Mirkin
- Imperial College London, London, United Kingdom.,Sainsbury Laboratory Cambridge University (SLCU), Cambridge, United Kingdom.,Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria.,INGEBI-CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | | | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
45
|
Pandey P, Leary AY, Tumtas Y, Savage Z, Dagvadorj B, Duggan C, Yuen EL, Sanguankiattichai N, Tan E, Khandare V, Connerton AJ, Yunusov T, Madalinski M, Mirkin FG, Schornack S, Dagdas Y, Kamoun S, Bozkurt TO. An oomycete effector subverts host vesicle trafficking to channel starvation-induced autophagy to the pathogen interface. eLife 2021; 10:65285. [PMID: 34424198 DOI: 10.1101/2020.03.20.000117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/20/2021] [Indexed: 05/26/2023] Open
Abstract
Eukaryotic cells deploy autophagy to eliminate invading microbes. In turn, pathogens have evolved effector proteins to counteract antimicrobial autophagy. How adapted pathogens co-opt autophagy for their own benefit is poorly understood. The Irish famine pathogen Phytophthora infestans secretes the effector protein PexRD54 that selectively activates an unknown plant autophagy pathway that antagonizes antimicrobial autophagy at the pathogen interface. Here, we show that PexRD54 induces autophagosome formation by bridging vesicles decorated by the small GTPase Rab8a with autophagic compartments labeled by the core autophagy protein ATG8CL. Rab8a is required for pathogen-triggered and starvation-induced but not antimicrobial autophagy, revealing specific trafficking pathways underpin selective autophagy. By subverting Rab8a-mediated vesicle trafficking, PexRD54 utilizes lipid droplets to facilitate biogenesis of autophagosomes diverted to pathogen feeding sites. Altogether, we show that PexRD54 mimics starvation-induced autophagy to subvert endomembrane trafficking at the host-pathogen interface, revealing how effectors bridge distinct host compartments to expedite colonization.
Collapse
Affiliation(s)
| | | | | | | | | | - Cian Duggan
- Imperial College London, London, United Kingdom
| | | | | | - Emily Tan
- Imperial College London, London, United Kingdom
| | | | | | - Temur Yunusov
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, United Kingdom
| | - Mathias Madalinski
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Federico Gabriel Mirkin
- Imperial College London, London, United Kingdom
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, United Kingdom
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- INGEBI-CONICET, Ciudad Autonoma de Buenos Aires, Buenos Aires, Argentina
| | | | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
46
|
Trujillo M. Ubiquitin signalling: controlling the message of surface immune receptors. THE NEW PHYTOLOGIST 2021; 231:47-53. [PMID: 33792068 DOI: 10.1111/nph.17360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/25/2021] [Indexed: 05/27/2023]
Abstract
Microbial attack is first detected by immune receptors located at the plasma membrane. Their activation triggers a plethora of signalling cascades that culminate in the immune response. Ubiquitin and ubiquitin-like protein modifiers play key roles in controlling signalling amplitude and intensity, as well as in buffering proteome imbalances caused by pathogen attack. Here I highlight some of the important advances in the field, which are starting to reveal an intertwined and complex signalling circuitry, which regulates cellular dynamics and protein degradation to maintain homeostasis.
Collapse
Affiliation(s)
- Marco Trujillo
- Faculty of Biology, Cell Biology, University of Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
47
|
Ramachandran P, J BJ, Maupin-Furlow JA, Uthandi S. Bacterial effectors mimicking ubiquitin-proteasome pathway tweak plant immunity. Microbiol Res 2021; 250:126810. [PMID: 34246833 DOI: 10.1016/j.micres.2021.126810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022]
Abstract
Plant pathogenic Gram-negative bacteria evade the host plant immune system by secreting Type III (T3E) and Type IV effector (T4E) proteins into the plant cytoplasm. Mostly T3Es are secreted into the plant cells to establish pathogenicity by affecting the vital plant process viz. metabolic pathways, signal transduction and hormonal regulation. Ubiquitin-26S proteasome system (UPS) exists as one of the important pathways in plants to control plant immunity and various cellular processes by employing several enzymes and enzyme components. Pathogenic and non-pathogenic bacteria are found to secrete effectors into plants with structural and/or functional similarity to UPS pathway components like ubiquitin E3 ligases, F-box domains, cysteine proteases, inhibitor of host UPS or its components, etc. The bacterial effectors mimic UPS components and target plant resistance proteins for degradation by proteasomes, thereby taking control over the host cellular activities as a strategy to exert virulence. Thus, the bacterial effectors circumvent plant cellular pathways leading to infection and disease development. This review highlights known bacterial T3E and T4E proteins that function and interfere with the ubiquitination pathway to regulate the immune system of plants.
Collapse
Affiliation(s)
- Priyadharshini Ramachandran
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Beslin Joshi J
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Directorate of Natural Resource Management, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
48
|
Wang J, Xu C, Sun Q, Xu J, Chai Y, Berg G, Cernava T, Ma Z, Chen Y. Post-translational regulation of autophagy is involved in intra-microbiome suppression of fungal pathogens. MICROBIOME 2021; 9:131. [PMID: 34092253 PMCID: PMC8182927 DOI: 10.1186/s40168-021-01077-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/15/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Microbiome interactions are important determinants for ecosystem functioning, stability, and health. In previous studies, it was often observed that bacteria suppress potentially pathogenic fungal species that are part of the same plant microbiota; however, the underlying microbe-microbe interplay remains mostly elusive. Here, we explored antagonistic interactions of the fungus Fusarium graminearum and bacterium Streptomyces hygroscopicus at the molecular level. Both are ubiquitous members of the healthy wheat microbiota; under dysbiosis, the fungus causes devastating diseases. RESULTS In co-cultures, we found that Streptomyces alters the fungal acetylome leading to substantial induction of fungal autophagy. The bacterium secrets rapamycin to inactivate the target of rapamycin (TOR), which subsequently promotes the degradation of the fungal histone acetyltransferase Gcn5 through the 26S proteasome. Gcn5 negatively regulates fungal autophagy by acetylating the autophagy-related protein Atg8 at the lysine site K13 and blocking cellular relocalization of Atg8. Thus, degradation of Gcn5 triggered by rapamycin was found to reduce Atg8 acetylation, resulting in autophagy induction in F. graminearum. CONCLUSIONS Autophagy homeostasis plays an essential role in fungal growth and competition, as well as for virulence. Our work reveals a novel post-translational regulation of autophagy initiated by a bacterial antibiotic. Rapamycin was shown to be a powerful modulator of bacteria-fungi interactions with potential importance in explaining microbial homeostasis in healthy plant microbiomes. The autophagic process provides novel possibilities and targets to biologically control pathogens. Video abstract.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Chaoyun Xu
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qiming Sun
- Department of Biochemistry, and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jinrong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
49
|
Gomez RE, Lupette J, Chambaud C, Castets J, Ducloy A, Cacas JL, Masclaux-Daubresse C, Bernard A. How Lipids Contribute to Autophagosome Biogenesis, a Critical Process in Plant Responses to Stresses. Cells 2021; 10:1272. [PMID: 34063958 PMCID: PMC8224036 DOI: 10.3390/cells10061272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 01/18/2023] Open
Abstract
Throughout their life cycle, plants face a tremendous number of environmental and developmental stresses. To respond to these different constraints, they have developed a set of refined intracellular systems including autophagy. This pathway, highly conserved among eukaryotes, is induced by a wide range of biotic and abiotic stresses upon which it mediates the degradation and recycling of cytoplasmic material. Central to autophagy is the formation of highly specialized double membrane vesicles called autophagosomes which select, engulf, and traffic cargo to the lytic vacuole for degradation. The biogenesis of these structures requires a series of membrane remodeling events during which both the quantity and quality of lipids are critical to sustain autophagy activity. This review highlights our knowledge, and raises current questions, regarding the mechanism of autophagy, and its induction and regulation upon environmental stresses with a particular focus on the fundamental contribution of lipids. How autophagy regulates metabolism and the recycling of resources, including lipids, to promote plant acclimation and resistance to stresses is further discussed.
Collapse
Affiliation(s)
- Rodrigo Enrique Gomez
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Josselin Lupette
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Clément Chambaud
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Julie Castets
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| | - Amélie Ducloy
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Jean-Luc Cacas
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Céline Masclaux-Daubresse
- Institut Jean-Pierre Bourgin, UMR 1318 AgroParisTech-INRAE, Université Paris-Saclay, 78000 Versailles, France; (A.D.); (J.-L.C.); (C.M.-D.)
| | - Amélie Bernard
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, F-33140 Villenave d’Ornon, France; (R.E.G.); (J.L.); (C.C.); (J.C.)
| |
Collapse
|
50
|
Dvořák Tomaštíková E, Hafrén A, Trejo-Arellano MS, Rasmussen SR, Sato H, Santos-González J, Köhler C, Hennig L, Hofius D. Polycomb Repressive Complex 2 and KRYPTONITE regulate pathogen-induced programmed cell death in Arabidopsis. PLANT PHYSIOLOGY 2021; 185:2003-2021. [PMID: 33566101 PMCID: PMC8133635 DOI: 10.1093/plphys/kiab035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2021] [Indexed: 05/10/2023]
Abstract
The Polycomb Repressive Complex 2 (PRC2) is well-known for its role in controlling developmental transitions by suppressing the premature expression of key developmental regulators. Previous work revealed that PRC2 also controls the onset of senescence, a form of developmental programmed cell death (PCD) in plants. Whether the induction of PCD in response to stress is similarly suppressed by the PRC2 remained largely unknown. In this study, we explored whether PCD triggered in response to immunity- and disease-promoting pathogen effectors is associated with changes in the distribution of the PRC2-mediated histone H3 lysine 27 trimethylation (H3K27me3) modification in Arabidopsis thaliana. We furthermore tested the distribution of the heterochromatic histone mark H3K9me2, which is established, to a large extent, by the H3K9 methyltransferase KRYPTONITE, and occupies chromatin regions generally not targeted by PRC2. We report that effector-induced PCD caused major changes in the distribution of both repressive epigenetic modifications and that both modifications have a regulatory role and impact on the onset of PCD during pathogen infection. Our work highlights that the transition to pathogen-induced PCD is epigenetically controlled, revealing striking similarities to developmental PCD.
Collapse
Affiliation(s)
- Eva Dvořák Tomaštíková
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
- Present address: Institute of Experimental Botany, Czech Academy of Sciences; Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00 Olomouc, Czech Republic
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Minerva S Trejo-Arellano
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
- Present address: Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Sheena Ricafranca Rasmussen
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Hikaru Sato
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Lars Hennig
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
- Author for communication:
| |
Collapse
|